Ali Ateş
2013-01-01
Full Text Available Soil stabilization has been widely used as an alternative to substitute the lack of suitable material on site. The use of nontraditional chemical stabilizers in soil improvement is growing daily. In this study a laboratory experiment was conducted to evaluate the effects of waterborne polymer on unconfined compression strength and to study the effect of cement grout on pre-venting of liquefiable sandy soils. The laboratory tests were performed including grain size of sandy soil, unit weight, ultrasonic pulse velocity, and unconfined compressive strength test. The sand and various amounts of polymer (1%, 2%, 3%, and 4% and cement (10%, 20%, 30%, and 40% were mixed with all of them into dough using mechanical kneader in laboratory conditions. Grouting experiment is performed with a cylindrical mould of mm. The samples were subjected to unconfined compression tests to determine their strength after 7 and 14 days of curing. The results of the tests indicated that the waterborne polymer significantly improved the unconfined compression strength of sandy soils which have susceptibility of liquefaction.
Eight hydrostatic compression creep tests were performed on crushed salt specimens fabricated from Avery Island dome salt. Following the creep test, each specimen was tested in unconfined compression. The experiments were performed to assess the influence of the following four variables on the consolidation and unconfined strength of crushed salt: grain size distribution, temperature, time, and moisture content. The experiment design comprised a half-fraction factorial matrix at two levels. The levels of each variable investigated were grain size distribution, uniform-graded and well-graded (coefficient of uniformity of 1 and 8); temperature 250C and 1000C; time, 3.5 x 103s and 950 x 103s (approximately 60 minutes and 11 days, respectively); and moisture content, dry and wet (85% relative humidity for 24 hours). The hydrostatic creep stress was 10 MPa. The unconfined compression tests were performed at an axial strain rate of 1 x 10-5s-1. Results show that the variables time and moisture content have the greatest influence on creep consolidation, while grain size distribution and, to a somewhat lesser degree, temperature have the greatest influence on total consolidation. Time and moisture content and the confounded two-factor interactions between either grain size distribution and time or temperature and moisture content have the greatest influence on unconfined strength. 7 refs., 7 figs., 11 tabs
Pfeifle, T.W.; Senseny, P.E.; Mellegard, K.D.
1987-01-01
Eight hydrostatic compression creep tests were performed on crushed salt specimens fabricated from Avery Island dome salt. Following the creep test, each specimen was tested in unconfined compression. The experiments were performed to assess the influence of the following four variables on the consolidation and unconfined strength of crushed salt: grain size distribution, temperature, time, and moisture content. The experiment design comprised a half-fraction factorial matrix at two levels. The levels of each variable investigated were grain size distribution, uniform-graded and well-graded (coefficient of uniformity of 1 and 8); temperature 25/sup 0/C and 100/sup 0/C; time, 3.5 x 10/sup 3/s and 950 x 10/sup 3/s (approximately 60 minutes and 11 days, respectively); and moisture content, dry and wet (85% relative humidity for 24 hours). The hydrostatic creep stress was 10 MPa. The unconfined compression tests were performed at an axial strain rate of 1 x 10/sup -5/s/sup -1/. Results show that the variables time and moisture content have the greatest influence on creep consolidation, while grain size distribution and, to a somewhat lesser degree, temperature have the greatest influence on total consolidation. Time and moisture content and the confounded two-factor interactions between either grain size distribution and time or temperature and moisture content have the greatest influence on unconfined strength. 7 refs., 7 figs., 11 tabs.
Tilak B. Vidya
2015-06-01
Full Text Available This paper presents the effect of coir fibres on the compaction and unconfined compressive strength of a bentonite-lime-gypsum mixture. The coir fiber content varied from 0.5 to 2 %. The results indicated that the dry unit weight and the optimum moisture content of a bentonite – lime mix increased with the addition of gypsum. The unconfined compressive strength of the bentonite increased with the increase in the lime content up to 8 %. Beyond 8 %, the unconfined compressive strength decreased. The dry unit weight of the reference mix decreased, and the optimum moisture content increased with the addition of coir fibre. The unconfined compressive strength of the bentonite + 8 % lime mix increased up to 4 % with the gypsum. Beyond 4 %, the unconfined compressive strength decreased. The unconfined compressive strength of the reference mix increased with the addition of coir fibre up to a fibre content of 1.5 %. The unconfined compressive strength of the reference mix-coir fibre composite was less in comparison to the reference mix. The unconfined compressive strength of the bentonite increased with the addition of lime and gypsum and with the increase in the curing period. The improvement in the post-peak region was better for the reference mix with reinforced coir fibres as compared to the unreinforced reference mix. The improved post-peak behaviour of the bentonite-lime-gypsum-coir fibre mixture could boost the construction of temporary roads on such problematic soils. Further, its use will also provide an environmental motivation for providing a means of consuming large quantities of coir fibres.
Experimental Study on Unconfined Compressive Strength of Basalt Fiber Reinforced Clay Soil
Lei Gao; Guohui Hu; Nan Xu; Junyi Fu; Chao Xiang; Chen Yang
2015-01-01
In order to study the mechanism and effect of basalt fiber reinforced clay soil, a series of unconfined compressive strength tests conducted on clay soil reinforced with basalt fiber have been performed under the condition of optimum water content and maximum dry density. Both the content and length of basalt fiber are considered in this paper. When the effect of content is studied, the 12 mm long fibers are dispersed into clay soil at different contents of 0.05%, 0.1%, 0.15%, 0.20%, 0.25%, 0...
Prediction of zeolite-cement-sand unconfined compressive strength using polynomial neural network
MolaAbasi, H.; Shooshpasha, I.
2016-04-01
The improvement of local soils with cement and zeolite can provide great benefits, including strengthening slopes in slope stability problems, stabilizing problematic soils and preventing soil liquefaction. Recently, dosage methodologies are being developed for improved soils based on a rational criterion as it exists in concrete technology. There are numerous earlier studies showing the possibility of relating Unconfined Compressive Strength (UCS) and Cemented sand (CS) parameters (voids/cement ratio) as a power function fits. Taking into account the fact that the existing equations are incapable of estimating UCS for zeolite cemented sand mixture (ZCS) well, artificial intelligence methods are used for forecasting them. Polynomial-type neural network is applied to estimate the UCS from more simply determined index properties such as zeolite and cement content, porosity as well as curing time. In order to assess the merits of the proposed approach, a total number of 216 unconfined compressive tests have been done. A comparison is carried out between the experimentally measured UCS with the predictions in order to evaluate the performance of the current method. The results demonstrate that generalized polynomial-type neural network has a great ability for prediction of the UCS. At the end sensitivity analysis of the polynomial model is applied to study the influence of input parameters on model output. The sensitivity analysis reveals that cement and zeolite content have significant influence on predicting UCS.
Confined Compressive Strength (UCS) is one of the rock mechanical properties that is important take into account during drilling operations in order to avoid wellbore instability. During drilling operations, UCS variability influences wellbore stability more than other factors such as azimuth, slope, exposure time, and mud weight (Jaramillo, 2004). In last year, the indentation technique has been demonstrated to be an appropriate method for determining rock strength in real time during oil well drilling. This technique implements correlation that allow UCS evaluation from indentation parameters such as Indentation Module (IM) and Critical Transition Force (CTF), that can be measured on small rock fragments obtained during drilling. Shale formations in well drilling have demonstrated to be a hindrance since they represent the most important problem in reservoir stability (Abass, H., A. et al. 2006). Therefore, the main objective of this article is to find experimental correlations that allow the modeling of rock strength by applying the indentation technique to reservoir plug. The importance of this technique is the possibility to get rock strength properties in real time during drilling operations, although, those reservoir sections which do not have neither direct neither UCS records nor indirect measurements. Eight Unconfined Compression Tests (UCS) on rock cylinders (plugs) extracted from the Paja Formation upwelling were conducted in order to develop the corresponding experimental correlations. Two hundred indentation tests were also simultaneously conducted on shale fragments extracted from each plug surroundings in order to simulate the caving obtained from reservoir drilled. Results of both tests were correlated using the Minimum Square technique, seeking the best correlation that shall represent result behavior, thus obtaining two 2nd-degree polynomial correlations. Correlation coefficients of 0.6513 were determined for the (IM) - (UCS) correlation and 0
Chan-Gi Park
2015-08-01
Full Text Available The use of industrial by-products as admixture to ASTM Type I cement (ordinary Portland cement (OPC was investigated with the objective of improving the solidification of organic marine clayey soils. The industrial by-products considered in this paper were oyster-shell powder (OSP, steelmaking slag dust (SMS and fuel-gas-desulfurized (FGD gypsum. The industrial by-products were added to OPC at a ratio of 5% based on dry weight to produce a mixture used to solidify organic marine clayey soils. The dosage ratios of mixtures to organic marine clayey soils were 5, 10 and 15% on a dry weight basis. Unconfined compressive strength (UCS test after 28 days revealed that the highest strength was obtained with the OPC + SMS 15% mixing ratio. The UCS of specimens treated with this mixture was >500 kPa, compared with 300 kPa for specimens treated with a 15% OPC + OSP mixture and 200 kPa when 15% of OPC was used alone. These results were attributed to the more active hydration and pozzolanic reaction of the OPC + SMS mixture. This hypothesis was verified through X-ray diffraction (XRD and scanning electron microscopy (SEM analyses, and was confirmed by variations in the calcium carbonate (CaCO3 content of the materials during curing.
Behavior of Stabilized Peat Soils in Unconfined Compression Tests
Wong L. Sing
2008-01-01
Full Text Available Problem statement: Deep stabilized peat columns were known to be economical at forming foundations to support highway embankments constructed on deep peat land. However, failure in the formation of the columns with adequate strength was often attributed to unsuitable type and insufficient dosage of binder added to the soil. Organic matter in peat was known to impede the cementing process in the soil, thus retarding the early strength gain of stabilized peat. Approach: To evaluate the strength characteristics of stabilized peat, laboratory investigation on early strength gain of the stabilized soil was conducted to formulate a suitable and economical mix design that could be effectively used for the soil stabilization. To achieve such purpose, the study examined the effect of binder, sodium chloride as cement accelerator and siliceous sand as filler on the unconfined compressive strength of stabilized peat soils after 7 days of curing. Binders used to stabilize the peat were Ordinary Portland cement, ground granulated blast furnace slag, sodium bentonite, kaolinite, lime and bentonite. All the stabilized peat specimens were tested using unconfined compression apparatus. Results: The test results revealed that the stabilized peat specimen (80% OPC: 10% GGBS: 10% SB with addition of 4% sodium chloride by weight of binder and 50% well graded siliceous sand by volume of wet peat at 300 kg m-3 binder dosage yielded the highest unconfined compressive strength of 196 kPa. Such finding implied that the higher the dosage of siliceous sand in stabilized peat, the more solid particles were available for the binder to unite and form a load sustainable stabilized peat. Conclusions/Recommendations: It could be summarized that as the rate of hydration process of stabilized peat was accelerated by inclusion of sodium chloride, the solid particles contributed to the hardening of stabilized peat by providing the cementation bonds to form between contact points of
孔德森; 贾腾; 王晓敏; 张伟伟; 吴燕开
2016-01-01
In order to analyze the engineering characteristics of lightweight soil mixed with rubber chips of scrap tires (RST mixed soil), the unconfined compressive strength tests were carried out. Firstly, physical properties of the ingredient materials in RST mixed soil were studied. Then, the mixture ratio scheme and the preparation method of RST mixed soil samples were designed. Furthermore, influence laws of curing age, rubber-soil ratio, cement-soil ratio and water-soil ratio on the unconfined compressive strength of RST mixed soil samples were studied through unconfined compression tests. The results show that the unconfined compressive strength of RST mixed soil increases with the prolonging of curing age during the curing period of 28 d. When the cement-soil ratio is about 10%, the unconfined compressive strength of RST mixed soil is more sensitive to curing age. In addition, the unconfined compressive strength of RST mixed soil decreases with the increase of rubber-soil ratio, while it increases with the increase of cement-soil ratio. The optimal water-soil ratio of RST mixed soil corresponding to the unconfined compressive strength is about 25%.%为了分析废弃轮胎橡胶颗粒混合土（RST 混合土）的工程特性，采用无侧限抗压强度试验对 RST 混合土的无侧限抗压强度进行研究。首先，对组成RST混合土的原材料的物理特性进行分析，然后，进行RST混合土试样的配比方案设计和制备方法研究，进而采用无侧限抗压强度试验，研究养护龄期、胶粒土比、灰土比以及水土比对RST混合土无侧限抗压强度的影响规律。研究结果表明：在28 d的养护龄期内，RST混合土的无侧限抗压强度随养护龄期的延长而增大，且灰土比约为10%的RST混合土试样的无侧限抗压强度对养护龄期尤为敏感；RST混合土的无侧限抗压强度还随胶粒土比的增大而减小，随灰土比的增大而增大；RST混合土无侧限抗压
张瑞敏; 王晓燕; 柴寿喜
2011-01-01
In order to increase the compressive characteristic of saline soil, saline soils reinforced with rice straw and with wheat straw were used to solve the problem of soil strength decrease due to salt expansion and dissolution. And then the unconfined compressive strengths of the saline soils reinforced with rice straw and with wheat straw were compared by selecting reinforced length, reinforced quality ratio, shapes, anticorrosive processing as influence factors. Test results show that： ①Unconfined compressive strength of the saline soil reinforced with natural rice straw and with antiseptic rice straw is higher than the saline soil reinforced with natural wheat straw and with antiseptic wheat straw; unconfined compressive strength of the two reinforced saline soils are higher than saline soil. ②The appropriate reinforcement condition office straw is as follows： reinforced length of 15 mm, reinforced quality ratio of 0.2%; the condition of wheat straw is as follows： reinforced length of 10 mm or 15 ram, reinforced quality ratio of 0.2% or 0.25%. ③As far as the shapes of rice straw and wheat straw are concerned, half tube shape is better than tubular shape, and the shape of a quarter is better than half. ④ Both rice straw and wheat straw need anti-corrosion treatment before reinforcing to improve the strength and durability of the rein- forced saline soil. Rice straw and wheat straw are suitable for reinforcement materials, rice straw reinforcement is better than that of wheat straw; both of them can be used for handling saline soil.%为解决因溶陷和盐胀引起土的强度降低问题，分别采用稻草和麦秸秆加筋滨海盐渍土，以提高其抗压性能．选择加筋长度、质量加筋率、筋材形状及防腐处理作为影响因素，比较稻草加筋土和麦秸秆加筋土的无侧限抗压强度．试验结果为：①天然稻草加筋土和防腐稻草加筋土的无侧限抗压强度相应地高于天然麦秸秆加筋土
2015-01-01
把纳米SiO2、纳米Al2 O3和纳米蒙脱土3种纳米材料加入普通水泥土中，制备掺加纳米材料的水泥土。通过室内无侧限抗压强度试验，研究不同纳米材料及其掺量、龄期、水泥掺量、水胶比对添加纳米材料水泥土无侧限抗压强度的影响，为添加纳米材料水泥土的进一步研究及其在实际工程中的应用提供了方向。%Nano⁃SiO2 , nano⁃Al2 O3 and nano⁃montmorillonite are added into plain soil cement as the admixtures. The influence of various factors including the variety and content of nano structured materials, the age, the content of cement, the water⁃to⁃binder ( the sum of cement and nano structured materials) ratio on the unconfined compressive strength of soil cement is studied. The direction of the further study and the practical application of soil cement with nano structured materials is provided.
Determination of Friction Coefficient in Unconfined Compression of Brain Tissue
Rashid, Badar; Gilchrist, Michael; 10.1016/j.jmbbm.2012.05.001
2013-01-01
Unconfined compression tests are more convenient to perform on cylindrical samples of brain tissue than tensile tests in order to estimate mechanical properties of the brain tissue because they allow for homogeneous deformations. The reliability of these tests depends significantly on the amount of friction generated at the specimen/platen interface. Thus, there is a crucial need to find an approximate value of the friction coefficient in order to predict a possible overestimation of stresses during unconfined compression tests. In this study, a combined experimental-computational approach was adopted to estimate the dynamic friction coefficient mu of porcine brain matter against metal platens in compressive tests. Cylindrical samples of porcine brain tissue were tested up to 30% strain at variable strain rates, both under bonded and lubricated conditions in the same controlled environment. It was established that mu was equal to 0.09 +/- 0.03, 0.18 +/- 0.04, 0.18 +/- 0.04 and 0.20 +/- 0.02 at strain rates of...
Mohd Zairul A. Abdul Rahman
2010-01-01
Full Text Available Problem statement: Foamed concrete has become most commercial material in construction industry. People in industries were come out with the new mix design of foamed concrete to meet the specification and the requirements needed. Approach: This is because foamed concrete has the possibility as alternative of lightweight concrete for producing intermediate strength capabilities with excellent thermal insulation, freeze-thaw resistance, high-impact resistance and good shock absorption. Results: Currently Standard test to measure the compressive strength of foamed concrete is using standard unconfined compressive test. Several research has been conduct but the compressive strength using standard unconfined compressive test not capture true behavior of foamed concrete because it just achieved only low compressive strength and sample under compression failed due to brittle collapse of the sample. This paper was analyses the comparison between standard compressive test and confined compressive test. The confinement test introduced to prevent sample from brittle collapse. Foamed concrete cylindrical sample has been investigated under the standard compressive test for hard concrete (ASTM-C39. Based on the research, samples are produced under unconfined and confined condition. Analysis has been done and the result show that under standard compressive test, the sample failed due to early crack initiation and failed. Confinement condition was increase the compressive strength but this condition influence the result. Conclusion/Recommendations: Standard test is not suitable to capture the true behavior of foamed concrete, and to prevent the sample from brittle collapse during the test, new testing method was introduced to capture the true behavior of foamed concrete which is using Quasi Static Indentation Test. This test can be used to study about the behaviour of foamed concrete before it can be implemented to its final application.
Experimental Study of the Brittle Behavior of Clay shale in Rapid Unconfined Compression
Amann, Florian; Button, Edward Alan; Evans, Keith Frederick; Gischig, Valentin Samuel; Blümel, Manfred
2011-07-01
The mechanical behavior of clay shales is of great interest in many branches of geo-engineering, including nuclear waste disposal, underground excavations, and deep well drilling. Observations from test galleries (Mont Terri, Switzerland and Bure, France) in these materials have shown that the rock mass response near the excavation is associated with brittle failure processes combined with bedding parallel shearing. To investigate the brittle failure characteristics of the Opalinus Clay recovered from the Mont Terri Underground Research Laboratory, a series of 19 unconfined uniaxial compression tests were performed utilizing servo-controlled testing procedures. All specimens were tested at their natural water content with loading approximately normal to the bedding. Acoustic emission (AE) measurements were utilized to help quantify stress levels associated with crack initiation and propagation. The unconfined compression strength of the tested specimens averaged 6.9 MPa. The crack initiation threshold occurred at approximately 30% of the rupture stress based on analyzing both the acoustic emission measurements and the stress-strain behavior. The crack damage threshold showed large variability and occurred at approximately 70% of the rupture stress.
郑娟荣; 赵雪飞
2014-01-01
为了研究胶凝材料性质对干混砂浆抗压强度的影响规律，共制备了24组样品，其中3组样品的微观形貌和孔结构采用扫描电子显微镜和压汞测孔仪（Autopore IV 9500）等测试手段进行了分析。试验结果表明：无论胶凝材料是100%水泥、50%水泥+50%矿渣粉和50%水泥+50%粉煤灰，7 d和28 d砂浆抗压强度均随胶凝材料总量增加而明显提高，增加水泥掺量对砂浆早期强度有利；与以100%水泥为胶凝材料制备的砂浆相比，当每吨干混砂浆中胶凝材料总量分别为100、150、200、250 kg时，以50%水泥+50%矿渣粉为胶凝材料制备的砂浆的抗压强度分别提高47%、55%、10%和0，而以50%水泥+50%粉煤灰为胶凝材料制备的砂浆的抗压强度分别降低77%、66%、56%和44%。与15%水泥制备的砂浆28 d硬化体相比，7.5%水泥+7.5%矿渣制备的砂浆28 d硬化体中水化产物更多或更分散、基体与骨料结合更密实、总孔隙更低及孔径更细；7.5%水泥+7.5%粉煤灰制备的砂浆28 d硬化体中水化产物更少、基体更松散、总孔隙更高及孔径更大。%24 groups of samples were made so as to investigating the influence of the properties of cementing materials on the uncon-fined compressive strengths (UCS) of dry-mixed mortar.The morphology and pore structure of 3 groups of 24 samples were investigated by scanning electron microscope(SEM) and mercury intrusion porosimeter(Autopore IV 9500)(MIP).The results showed that the 7 d and 28 d UCS of hardened mortars increased with the increase of the total content of cementing materials no matter what cementing materials were 100%cement and 50%cement+50%slag powder and 50%cement+50%fly-ash ,and the increase of cement content was in favour of early strength of hardened mortar.Comparing with the hardened mortar of 100%cement as cementing material ,the 28 d UCS of the hard-ened mortar of 50%cement+50%slag powder as cementing material respectively
Spilker, R L; Suh, J K; Mow, V C
1990-05-01
A finite element analysis is used to study a previously unresolved issue of the effects of platen-specimen friction on the response of the unconfined compression test; effects of platen permeability are also determined. The finite element formulation is based on the linear KLM biphasic model for articular cartilage and other hydrated soft tissues. A Galerkin weighted residual method is applied to both the solid phase and the fluid phase, and the continuity equation for the intrinsically incompressible binary mixture is introduced via a penalty method. The solid phase displacements and fluid phase velocities are interpolated for each element in terms of unknown nodal values, producing a system of first order differential equations which are solved using a standard numerical finite difference technique. An axisymmetric element of quadrilateral cross-section is developed and applied to the mechanical test problem of a cylindrical specimen of soft tissue in unconfined compression. These studies show that interfacial friction plays a major role in the unconfined compression response of articular cartilage specimens with small thickness to diameter ratios. PMID:2345443
Influencing factors of compressive strength of solidified inshore saline soil using SH lime-ash
覃银辉; 刘付华; 周琦
2008-01-01
Through unconfined compressive strength test,influencing factors on compressive strength of solidified inshore saline soil with SH lime-ash,ratio of lime-ash(1-K),quantity of lime-ash,age,degree of compression and salt content were studied.The results show that because inshore saline soil has special engineering characteristic,more influencing factors must be considered compared with ordinary soil for the perfect effect of solidifying.
Thermo-mechanical cementation effects in bentonite investigated by unconfined compression tests
Results from the project LOT showed that specimens exposed to warm conditions had a significantly reduced strain at failure compared to reference material. The objective of the present study was to investigate the impact of parameters such as temperature, density, water content and degree of saturation on the occurrence of brittleness at failure of bentonite specimens. To quantify the influence of the different parameters the unconfined compression test was used on specimens with a height and diameter of 20 mm. In this test the relation between stress and strain is determined from axial compression of a cylindrical specimen. Brittle failure is in this investigation mainly seen on specimens having a density of ρ ≥ 2,060 kg/m3 or on specimens exposed to high temperature T ≥ 150 deg C in the laboratory. Brittle failure behaviour was also seen on unsaturated specimens with a degree of saturation less than Sr i = 0% before saturation, on specimens with a final degree of saturation of Sr ≤ 97% and also on one specimen subjected to consolidation during preparation. Brittle failure and reduced strain were noticed in the heated field exposed material in the LOT project. Similar behaviour was also observed in the present short term laboratory tests. However, the specimens in the present study showing this behaviour had higher density, lower degree of saturation or were exposed to higher temperatures than the field exposed specimens
Thermo-mechanical cementation effects in bentonite investigated by unconfined compression tests
Dueck, Ann (Clay Technology AB, Lund (Sweden))
2010-01-15
Results from the project LOT showed that specimens exposed to warm conditions had a significantly reduced strain at failure compared to reference material. The objective of the present study was to investigate the impact of parameters such as temperature, density, water content and degree of saturation on the occurrence of brittleness at failure of bentonite specimens. To quantify the influence of the different parameters the unconfined compression test was used on specimens with a height and diameter of 20 mm. In this test the relation between stress and strain is determined from axial compression of a cylindrical specimen. Brittle failure is in this investigation mainly seen on specimens having a density of rho >= 2,060 kg/m3 or on specimens exposed to high temperature T >= 150 deg C in the laboratory. Brittle failure behaviour was also seen on unsaturated specimens with a degree of saturation less than Sr < 90%. Failure at reduced strain was seen in this investigation on specimens exposed to T = 150 deg C, on specimens having a water content of w{sub i} = 0% before saturation, on specimens with a final degree of saturation of S{sub r} <= 97% and also on one specimen subjected to consolidation during preparation. Brittle failure and reduced strain were noticed in the heated field exposed material in the LOT project. Similar behaviour was also observed in the present short term laboratory tests. However, the specimens in the present study showing this behaviour had higher density, lower degree of saturation or were exposed to higher temperatures than the field exposed specimens
Saturated-Unsaturated flow in a Compressible Leaky-unconfined Aquifer
Mishra, Phoolendra K; Kuhlman, Kristopher L
2011-01-01
An analytical solution is developed for three-dimensional flow towards a partially penetrating large-diameter well in an unconfined aquifer bounded below by an aquitard of finite or semi-infinite extent. The analytical solution is derived using Laplace and Hankel transforms, then inverted numerically. Existing solutions for flow in leaky unconfined aquifers neglect the unsaturated zone following an assumption of instantaneous drainage assumption due to Neuman [1972]. We extend the theory of leakage in unconfined aquifers by (1) including water flow and storage in the unsaturated zone above the water table, and (2) allowing the finite-diameter pumping well to partially penetrate the aquifer. The investigation of model-predicted results shows that leakage from an underlying aquitard leads to significant departure from the unconfined solution without leakage. The investigation of dimensionless time-drawdown relationships shows that the aquitard drawdown also depends on unsaturated zone properties and the pumping...
Liu, Qing; Wang, Tai-Yong; Yang, Xiu-Ping; Li, Kun; Gao, Li-Lan; Zhang, Chun-Qiu; Guo, Yue-Hong
2014-04-01
The unconfined compression and tension experiments of the intervertebral disc were conducted by applying an optimized digital image correlation technique, and the internal strain distribution was analysed for the disc. It was found that the axial strain values of different positions increased obviously with the increase in loads, while inner annulus fibrosus and posterior annulus fibrosus experienced higher axial strains than the outer annulus fibrosus and anterior annulus fibrosus. Deep annulus fibrosus exhibited higher compressive and tensile axial strains than superficial annulus fibrosus for the anterior region, while there was an opposite result for the posterior region. It was noted that all samples demonstrated a nonlinear stress-strain profile in the process of deforming, and an elastic region was shown once the sample was deformed beyond its toe region. PMID:24718863
COMPRESSIVE STRENGTH TESTING OF EARTH MORTARS
Givanildo Alves Azeredo
2007-06-01
Full Text Available This paper discusses the compressive strength of earth mortars. The goal is to use these mortars for masonry construction. Although it is necessary to study the whole masonry behaviour, the scope of this paper refers to the mortar only, without taking into account the blocks. As with other masonry units, compressive strength is a basic measure of quality for masonry mortars. However, there is a great variety of methodology for determining their parameters and properties, such as different samples geometry, the way strains are measured and also the platen restraint effect adopted. The present paper outlines certain experimental devices used to determine compressive strength of earth mortars and tries to show their influence on the properties determined. Proposals for the future development of testing earth mortars are outlined.
Compressive Strength of Fibre Reinforced Concrete
Jelušič, Matjaž
2009-01-01
The thesis features an analysis of the time development of compressive strength of fibre reinforced normal and high strength concrete. Concrete mixtures, taken from the doctoral dissertation of assistant Dr Drago Saje, were used as comparable mixtures to fibre reinforced concrete mixtures with different volume shares of fibres. Two types of steel fibres were used, both featuring the same characteristics but having different lengths (16 and 30 mm), as well as polypropylene fibres. The percenta...
COMPRESSIVE STRENGTH CHARACTERISTICS OF TILE WASTE CONCRETE
Ofonime A. Harry*, Ifiok E. Ekop
2016-01-01
Increase in the use of concrete in construction industry in Nigeria has led to the rise in the cost of its constituent material. This has necessitated research into the use of alternative material which is cheaper and can produce a comparable level of strength as the conventionally used ones. This paper present the results of an investigation into the compressive strength characteristics of concrete made with ceramic tile waste as coarse aggregates. The percentage of tile waste was varied in ...
Delaine-Smith, R M; Burney, S; Balkwill, F R; Knight, M M
2016-07-01
Mechanical characterisation of soft biological tissues using standard compression or tensile testing presents a significant challenge due to specimen geometrical irregularities, difficulties in cutting intact and appropriately sized test samples, and issues with slippage or damage at the grips. Indentation can overcome these problems but requires fitting a model to the resulting load-displacement data in order to calculate moduli. Despite the widespread use of this technique, few studies experimentally validate their chosen model or compensate for boundary effects. In this study, viscoelastic hydrogels of different concentrations and dimensions were used to calibrate an indentation technique performed at large specimen-strain deformation (20%) and analysed with a range of routinely used mathematical models. A rigid, flat-ended cylindrical indenter was applied to each specimen from which 'indentation moduli' and relaxation properties were calculated and compared against values obtained from unconfined compression. Only one indentation model showed good agreement (<10% difference) with all moduli values obtained from compression. A sample thickness to indenter diameter ratio ≥1:1 and sample diameter to indenter diameter ratio ≥4:1 was necessary to achieve the greatest accuracy. However, it is not always possible to use biological samples within these limits, therefore we developed a series of correction factors. The approach was validated using human diseased omentum and bovine articular cartilage resulting in mechanical properties closely matching compression values. We therefore present a widely useable indentation analysis method to allow more accurate calculation of material mechanics which is important in the study of soft tissue development, ageing, health and disease. PMID:26974584
Size effect on compressive strength of reactive powder concrete
AN Ming-zhe; ZHANG Li-jun; YI Quan-xin
2008-01-01
In this paper the coefficient and law of the size effect of RPC were studied through experiments and theoretical analysis. The size-effect coefficients for the compressive strength of RPC are deduced through experiments. They indicate that RPC without fiber behaves quite the same as normal or high strength concrete. The size effect on compressive strength is more prominent in RPC containing fiber. Bazant's size effect formula of compressive strength applies to RPC. A formula is given to predict the compressive strength of cubic RPC specimens 100 mm on a side where the fiber dosage ranges from 0-2%.
Axial Compressive Strength of Foamcrete with Different Profiles and Dimensions
Othuman Mydin M.A.
2014-01-01
Full Text Available Lightweight foamcrete is a versatile material; primarily consist of a cement based mortar mixed with at least 20% volume of air. High flow ability, lower self-weight, minimal requirement of aggregate, controlled low strength and good thermal insulation properties are a few characteristics of foamcrete. Its dry densities, typically, is below 1600kg/m3 with compressive strengths maximum of 15MPa. The ASTM standard provision specifies a correction factor for concrete strengths of between 14 and 42MPa to compensate for the reduced strength when the aspect height-to-diameter ratio of specimen is less than 2.0, while the CEB-FIP provision specifically mentions the ratio of 150 x 300mm cylinder strength to 150 mm cube strength. However, both provisions requirements do not specifically clarify the applicability and/or modification of the correction factors for the compressive strength of foamcrete. This proposed laboratory work is intended to study the effect of different dimensions and profiles on the axial compressive strength of concrete. Specimens of various dimensions and profiles are cast with square and circular cross-sections i.e., cubes, prisms and cylinders, and to investigate their behavior in compression strength at 7 and 28 days. Hypothetically, compressive strength will decrease with the increase of concrete specimen dimension and concrete specimen with cube profile would yield comparable compressive strength to cylinder (100 x 100 x 100mm cube to 100dia x 200mm cylinder.
The uniaxial compressive strength of the Arctic summer sea ice
HAN Hongwei; LI Zhijun; HUANG Wenfeng; LU Peng; LEI Ruibo
2015-01-01
The results on the uniaxial compressive strength of Arctic summer sea ice are presented based on the sam-ples collected during the fifth Chinese National Arctic Research Expedition in 2012 (CHINARE-2012). Exper-imental studies were carried out at different testing temperatures (−3, −6 and −9°C), and vertical samples were loaded at stress rates ranging from 0.001 to 1 MPa/s. The temperature, density, and salinity of the ice were measured to calculate the total porosity of the ice. In order to study the effects of the total porosity and the density on the uniaxial compressive strength, the measured strengths for a narrow range of stress rates from 0.01 to 0.03 MPa/s were analyzed. The results show that the uniaxial compressive strength decreases linearly with increasing total porosity, and when the density was lower than 0.86 g/cm3, the uniaxial com-pressive strength increases in a power-law manner with density. The uniaxial compressive behavior of the Arctic summer sea ice is sensitive to the loading rate, and the peak uniaxial compressive strength is reached in the brittle-ductile transition range. The dependence of the strength on the temperature shows that the calculated average strength in the brittle-ductile transition range, which was considered as the peak uniaxial compressive strength, increases steadily in the temperature range from −3 to −9°C.
STRENGTH SHRINKAGE AND CREEP OF CONCRETE IN TENSION AND COMPRESSION
S A Kristiawan
2006-01-01
Strength, shrinkage and creep of concrete in tension and compression have been determined and the relationship between those properties was studied. Direct tensile tests were applied to measure those properties in tension. The relationship of creep in tension and compression was determined based on the measurement of creep at similar stress and similar stress/strength ratio. It is found that concrete deforms more in tension than in compression. Except for concrete with a higher water/cement r...
Application of size effect to compressive strength of concrete members
Jin-Keun Kim; Seong-Tae Yi
2002-08-01
It is important to consider the effect of size when estimating the ultimate strength of a concrete member under various loading conditions. Well known as the size effect, the strength of a member tends to decrease when its size increases. Therefore, in view of recent increased interest in the size effect of concrete this research focuses on the size effect of two main classes of compressive strength of concrete: pure axial compressive strength and ﬂexural compressive strength. First, fracture mechanics type size effect on the compressive strength of cylindrical concrete specimens was studied, with the diameter, and the height/diameter ratio considered as the main parameters. Theoretical and statistical analyses were conducted, and a size effect equation was proposed to predict the compressive strength specimens. The proposed equation showed good agreement with the existing test results for concrete cylinders. Second, the size, length, and depth variations of a ﬂexural compressive member have been studied experimentally. A series of -shaped specimens subjected to axial compressive load and bending moment were tested. The shape of specimens and the test procedures used were similar to those by Hognestad and others. The test results are curve-ﬁtted using Levenberg-Marquardt’s least squares method (LSM) to obtain parameters for the modiﬁed size effect law (MSEL) by Kim and co workers. The results of the analysis show that the effect of specimen size, length, and depth on ultimate strength is signiﬁcant. Finally, more general parameters for MSEL are suggested.
Ta Hong Phong1a,
2015-10-01
Full Text Available The ship hull can be considered as a thin – walled box gider constituted by stiffened panels. In order to research the ship ultimate strength, the ultimate strength of stiffened panel must be considered. Stiffened plates are typical structure of ship. Ultimate strength analysis of stiffened plate for the analysis of ships' structures. In present paper, the nonlinear finite element method is employed to predict the ultimate strength of stiffened plate model under longitudinal compression, transverse compression, lateral pressure.
STRENGTH SHRINKAGE AND CREEP OF CONCRETE IN TENSION AND COMPRESSION
S A Kristiawan
2006-01-01
Full Text Available Strength, shrinkage and creep of concrete in tension and compression have been determined and the relationship between those properties was studied. Direct tensile tests were applied to measure those properties in tension. The relationship of creep in tension and compression was determined based on the measurement of creep at similar stress and similar stress/strength ratio. It is found that concrete deforms more in tension than in compression. Except for concrete with a higher water/cement ratio, the use of pulverised fuel ash, ground granulated blast furnace slag, superplasticizer and shrinkage reducing admixture has no effect on strength. However, they affect creep and shrinkage of concrete.
HE Zhen-jun; SONG Yu-pu
2008-01-01
Multiaxial compression tests were performed on 100 mm × 100 mm × 100 nun high-strength high-performance concrete (HSHPC) cubes and normal strength concrete (NSC) cubes. The failure modes of specimens were presented, the static compressive strengths in principal directions were measured, the influence of the stress ratios was analyzed. The experimental results show that the ultimate strengths for HSHPC and NSC under multiaxial compression are greater than the uniaxial compressive strengths at all stress ratios, and the multiaxial strength is dependent on the brittleness and stiffness of concrete, the stress state and the stress ratios. In addition, the Kupfer-Gerstle and Ottosen's failure criteria for plain HSHPC and NSC under multiaxial compressive loading were modified.
Effect of magnesia on the compressive strength of pellets
Feng-man Shen; Qiang-jian Gao; Xin Jiang; Guo Wei; Hai-yan Zheng
2014-01-01
The compressive strength of MgO-fluxed pellets was investigated before and after they were reduced. The porosity and pore size of green pellets, product pellets, and reduced pellets were analyzed to clarify how MgO affects the strength of the pellets. Experimental re-sults show that when the MgO-bearing flux content in the pellets increases from 0.0wt%to 2.0wt%, the compressive strength of the pellets at ambient temperature decreases, but the compressive strength of the pellets after reduction increases. Therefore, the compressive strength of the pellets after reduction exhibits no certain positive correlation with that before reduction. The porosity and pore size of all the pellets (with different MgO contents) increase when the pellets are reduced. However, the increase in porosity of the MgO-fluxed pellets is relatively smaller than that of the traditional non-MgO-fluxed pellets, and the pore size range of the MgO-fluxed pellets is relatively narrower. The re-duction swelling index (RSI) is a key factor for governing the compressive strength of the reduced pellets. An approximately reversed linear relation can be concluded that the lower the RSI, the greater the compressive strength of the reduced pellets is.
Compressive strength and rheology of environmentally-friendly binders
Juan Manuel Lizarazo Marriaga
2010-07-01
Full Text Available Ordinary Portland cement production accounts for 9% of worldwide greenhouse gas emissions. This paper summarises the results of research aimed at developing environmentally-friendly binders which can be used as an alternative in civil construction, aimed at generating alternatives and sustainable materials. Mixes of the combination of granulated ground blast furnace slag, basic oxygen slag, cement kiln dust and plasterboard gypsum were used for optimising the binders, according to their compressive strength, to obtain 5 concrete mixtures made partially or completely with industrial waste. The results showed that the compressive strength of mixtures of Portland cement and industrial waste were suitable for different civil construction applications and, although mixtures formed entirely from industrial waste had a significant decrease in their compressive strength, the results sho- wed great potential for specific industrial applications. In addition to compressive strength, the rheological properties of these mixtures were determined for defining flow and workability characteristics.
Compressive strength of brick masonry made with weak mortars
Pedersen, Erik Steen; Hansen, Klavs Feilberg
2013-01-01
strength of masonry depends only on the strength of the bricks. A compression failure in masonry made with weak mortars occurs as a tension failure in the bricks, as they seek to prevent the mortar from being pressed out of the joints. The expression is derived by assuming hydrostatic pressure in the...... mortar joints, which is the most unfavourable stress distribution with respect to tensile stresses in bricks. The expression is compared with the results of compression tests of masonry made with weak mortars. It can take into account bricks with arbitrary dimensions as well as perforated bricks. For a...... stronger mortar (fm≈6 N/mm2) compression tests of masonry with perforated bricks show that the EC6 expression is not always safe for Danish masonry. This is probably because the tensile strength of the bricks also has an effect on the compressive strength of masonry when the mortar is stronger than weak...
Analysis of Homogel Uniaxial Compression Strength on Bio Grouting Material
Kyungho Park; Daehyeon Kim
2016-01-01
This study analyzed uniaxial compression strength over time by preparing a homogel specimen from a bio grouting material, a cement-like form produced by environment-friendly microbial reactions. Among chemical grouting methods, the most commonly used method is the Labile Waterglass method. In this study, the homogel uniaxial compressive strength of Labile Waterglass (LW) injection material and that of bio grouting material were measured and analyzed. In order to perform the experiment, a tota...
Compressive Strength of Longitudinally Stiffened GRP Panels
Böhme, J.; Noury, P.; Riber, Hans Jørgen;
1996-01-01
A structural analysis of a cross stiffened orthotropic GRP panel subjected to uniaxial compressive loads is carried out. Analytical solutions to the buckling of such structures are proposed and validated by a finite element analysis. Both analytical and finite element approaches confirm an identi...
Static strength of gold compressed up to 127 GPa
Jing Qiu-Min; Wu Qiang; Liu Lei; Bi Yan; Zhang Yi; Liu Sheng-Gang; Xu Ji-An
2012-01-01
Gold powder is compressed non-hydrostatically up to 127 GPa in a diamond anvil cell (DAC),and its angle dispersive X-ray diffraction patterns are recorded.The compressive strength of gold is investigated in a framework of the lattice strain theory by the line shift analysis.The result shows that the compressive strength of gold increases continuously with the pressure up to 106 GPa and reaches 2.8 GPa at the highest experimental pressure (127 GPa) achieved in our study.This result is in good agreement with our previous experimental result in a relevant pressure range.The compressive strength of gold may be the major source of the error in the equation-of-state measurement in various pressure environments.
TRIAXIAL COMPRESSIVE STRENGTH OF ULTRA HIGH PERFORMANCE CONCRETE
Radoslav Sovják
2013-12-01
Full Text Available The aim of this work is to describe the strength of Ultra High Performance Concrete (UHPC under triaxial compression. The main goal is to find a trend in the triaxial compressive strength development under various values of confinement pressure. The importance of triaxial tests lies in the spatial loading of the sample, which simulates the real loading of the material in the structure better than conventional uniaxial strength tests. In addition, the authors describe a formulation process for UHPC that has been developed without using heat treatment, pressure or a special mixer. Only ordinary materials available commercially in the Czech Republic were utilized throughout the material design process.
Hodge, Andrew J.; Nettles, Alan T.; Jackson, Justin R.
2011-01-01
Notched (open hole) composite laminates were tested in compression. The effect on strength of various sizes of through holes was examined. Results were compared to the average stress criterion model. Additionally, laminated sandwich structures were damaged from low-velocity impact with various impact energy levels and different impactor geometries. The compression strength relative to damage size was compared to the notched compression result strength. Open-hole compression strength was found to provide a reasonable bound on compression after impact.
Compression strength perpendicular to grain of structural timber and glulam
Damkilde, Lars; Hoffmeyer, Preben; Pedersen, Torben N.
1998-01-01
The characteristic strength values for compression perpendicular to grain as they appear in EN 338 (structural timber) and EN 1194 (glulam) are currently up for discussion. The present paper provides experimental results based on EN 1193 that may assist in the correct assignment of such strength....... Nonetheless test results show that the levels of characteristic compression strength perpendicular to grain are of the same order for structural timber and glulam. The values are slightly lower than those appearing in EN 1194 and less than half of those appearing in EN 338. The paper presents a numerical...... values. The dominant failure mode of glulam specimens is shown to be fundamentally different from that of structural timber specimens. Glulam specimens often show tension perpendicular to grain failure before the compression strength value is reached. Such failure mode is not seen for structural timber...
Shafiq, Nasir; Fadhilnuruddin, Muhd; Elshekh, Ali Elheber Ahmed; Fathi, Ahmed
2015-07-01
Ultrasonic pulse velocity (UPV), is considered as the most important test for non-destructive techniques that are used to evaluate the mechanical characteristics of high strength concrete (HSC). The relationship between the compressive strength of HSC containing chopped basalt fibre stands (CBSF) and UPV was investigated. The concrete specimens were prepared using a different ratio of CBSF as internal strengthening materials. The compressive strength measurements were conducted at the sample ages of 3, 7, 28, 56 and 90 days; whilst, the ultrasonic pulse velocity was measured at 28 days. The result of HSC's compressive strength with the chopped basalt fibre did not show any improvement; instead, it was decreased. The UPV of the chopped basalt fibre reinforced concrete has been found to be less than that of the control mix for each addition ratio of the basalt fibre. A relationship plot is gained between the cube compressive strength for HSC and UPV with various amounts of chopped basalt fibres.
PREPARATION OF BIOACTIVE NANOSTRUCTURE SCAFFOLD WITH IMPROVED COMPRESSIVE STRENGTH
R. EMADI
2011-03-01
Full Text Available Highly porous scaffolds with open structure are today the best candidates for bone substitution to ensure bone oxygenation and angiogenesis. In this study, we developed a new route to enhance the compressive strength of porous hydroxyapatite scaffold made of natural bone. Briefly, the spongy bone of an adult bovine was extracted, annealed, and coated by a nanostructure bioactive glass layer to be subsequently sintered at different temperatures. The apatite formation ability on the surfaces of the coated scaffolds was investigated by standard procedures. Our results showed that the scaffold and coating microstructure consisted of the grains smaller than 100 nm. These nanostructures improved the compressive strength and bioactivity of highly porous scaffold. The results showed that with increasing the sintering temperature, the compressive strength of scaffolds increased while their in vitro bioactivity decreased.
Effect Of Salt Water On Compressive Strength Of Concrete
Preeti Tiwari
2014-04-01
Full Text Available In this research work, the effect of salt water on the compressive strength of concrete was investigated. This paper therefore presents the result and findings of an experimental research on the effect of salt water on compressive strength of concrete. For this concrete cubes were cast using fresh wi and salt water for a design mix of M-30 1:1.8:3.31 by weight of concrete, and 0.45 water- cement ratio. Half of concrete cubes were cast and cured with fresh water and remaining half cubes were cast and cured with salt water. The concrete cubes were cured for 7,14 and 28 days respectively. The result of the average compressive strength of concrete obtained using fresh water ranges from 27.12 - 39.12N/mm2 and using salt water ranges from 28.45 – 41.34N/mm2
Effect Of Salt Water On Compressive Strength Of Concrete
Preeti Tiwari; Rajiv Chandak
2014-01-01
In this research work, the effect of salt water on the compressive strength of concrete was investigated. This paper therefore presents the result and findings of an experimental research on the effect of salt water on compressive strength of concrete. For this concrete cubes were cast using fresh wi and salt water for a design mix of M-30 1:1.8:3.31 by weight of concrete, and 0.45 water- cement ratio. Half of concrete cubes were cast and cured with fresh water and remaining ha...
Goose`s eggshell strength at compressive loading
Šárka Nedomová
2014-02-01
Full Text Available The paper deals with the study of the goose eggs behaviour under compressive loading between two plates using testing device TIRATEST. The influences of the loading orientation as well as the effect of compressive velocity are studied. 226 eggs from Landes geese were chosen for the experiment. Eggs have been loaded between their poles and in the equator plane. Five different compressive velocities (0.0167, 0.167, 0.334, 1.67 and 5 mm.s-1 were used. The increase in rupture force with loading rate was observed for loading in all direction (along main axes. Dependence of the rupture force on loading rate was quantifies and described. The highest rupture force was obtained when the eggs were loaded along their axes of symmetry (X-axis. Compression in the equator plane (along the Z-axis required the least compressive force to break the eggshells. The eggshell strength was described by the rupture force, specific rupture deformation and by the absorbed energy. The rupture force is highly dependent on compression speeds. The dependence of the rupture force on the compression velocity can be described by a power function. The same is valid for the rate dependence of the energy absorbed by the egg up to the fracture. The rate sensitivity of the Goose's eggshells strength is significantly higher than that reported for the hen's eggs
Liu, Xianfeng; Yuan, Shengyang; Sieffert, Yannick; Fityus, Stephen; Buzzi, Olivier
2016-08-01
This study falls in the context of underground coal fires where burning coal can elevate the temperature of a rock mass in excess of 1000°. The objective of the research is to experimentally characterize the change in mechanical behaviour, mineralogy and microstructural texture of two sedimentary rocks when subjected to temperatures up to 1200 °C for 24 h. Specimens of local sandstone and mudstone were comprehensively characterized by X-ray diffraction and thermal-gravimetric analysis. These analyses were complemented by optical microscopy and scanning electron microscopy on polished thin sections. In addition, pore size distributions of these heated rocks were inferred by means of mercury intrusion porosimetry. These results were extended to an estimation of the intrinsic permeability using the Katz-Thompson model. Investigations at micro scale were followed by mechanical testing (both unconfined and confined compression tests) on cylindrical specimens of heated rocks. Results show that the unconfined compressive strength (UCS) of both rock types tends to increase when the temperatures increases up to 900 °C, beyond which the UCS tends to slightly decrease. As for the permeability, a clear increase in intrinsic permeability was observed for both rocks. The macroscopic behaviour was found to be fully consistent with the changes observed at micro scale.
Koh, Ilsoo; López, Alejandro; Helgason, Benedikt; Ferguson, Stephen J
2014-06-01
Calcium sulphate-based bone cement is a bone filler with proven biological advantages including biodegradability, biocompatibility and osteoconductivity. Mechanical properties of such brittle ceramic cements are frequently determined using the testing standard designed for ductile acrylic cements. The aims of the study were (1) to validate the suitability of this common testing protocol using saturated calcium sulphate dihydrate (CSD), and (2) to compare the strength and effective modulus of non-saturated and saturated CSD, in order to determine the changes in the mechanical behavior of CSD upon saturation. Unconfined compression tests to failure were performed on 190 cylindrical CSD samples. The samples were divided into four groups having different saturation levels (saturated, non-saturated) and end conditions (capped and non-capped). Two effective moduli were calculated per sample, based on the deformations measured using the machine platens and a sample-mounted extensometer. The effective moduli of non-saturated groups were found to be independent of the end conditions. The saturated and capped group showed no difference in the effective moduli derived from different measurement methods, while the saturated and non-capped group showed a significant difference between the machine platen- and extensometer-derived moduli. Strength and modulus values were significantly lower for saturated samples. It was assumed that the existence of water in saturated CSD alters the mechanical response of the material due to the changes in chemical and physical behaviors. These factors are considered to play important roles to decrease the shear strength of CSD. It was proposed that the reduction in CSD shear strength evokes local deformation at the platen-sample boundary, affecting the strength and effective moduli derived from the experiments. The results of this study highlighted the importance of appropriate and consistent testing methods when determining the mechanical
Unfired clay bricks – moisture properties and compressive strength
Hansen, E.J. de Place; Hansen, Kurt Kielsgaard
2002-01-01
Apparatus, methods and test results from an experimental investigation of (1) the properties for moisture performance of the materials, including water vapour sorption and water vapour transmission, (2) humidity buffering of the indoor climate by an absorbent material, and (3) the compressive str...... strength are presented....
Non-Uniform Compressive Strength of Debonded Sandwich Panels
Nøkkentved, Alexandros; Lundsgaard-Larsen, Christian; Berggreen, Carl Christian
2005-01-01
Face/core debond-damaged sandwich panels exposed to non-uniform compression loads are studied. The panel geometry is rectangular with a centrally located circular debond. The study primarily includes experimental methods, but simple finite element calculations are also applied. The complexity of...... applying a controlled non-uniform compressive load to the test panels requires a strong focus on the development of a suitable testrig. This is done by the extensive use of product development methods. The experimental results based on full-scale testing of 10 GFRP/foam core panels with prefabricated...... debonds show a considerable strength reduction with increasing debond diameter, with failure mechanisms varying between fast debond propagation and wrinkling-introduced face compression failure for large and small debonds, respectively. Residual strength predictions are based on intact panel testing, and...
Insulation interlaminar shear strength testing with compression and irradiation
The Compact Ignition Tokamak (CIT) project identified the need for research and development for the insulation to be used in the toroidal field coils. The requirements included tolerance to a combination of high compression and shear and a high radiation dose. Samples of laminate-type sheet material were obtained from commercial vendors. The materials included various combinations of epoxy, polyimide, E-glass, S-glass, and T-glass. The T-glass was in the form of a three-dimensional weave. The first tests were with 50 x 25 x 1 mm samples. These materials were loaded in compression and then to failure in shear. At 345-MPa compression, the interlaminar shear strength was generally in the range of 110 to 140 MPa for the different materials. A smaller sample configuration was developed for irradiation testing. The data before irradiation were similar to those for the larger samples but approximately 10% lower. Limited fatigue testing was also performed by cycling the shear load. No reduction in shear strength was found after 50,000 cycles at 90% of the failure stress. Because of space limitations, only three materials were chosen for irradiation: two polyimide systems and one epoxy system. All used boron-free glass. The small shear/compression samples and some flexure specimens were irradiated to 4 x 109 and 2 x 1010 rad in the Advanced Technology Reactor at Idaho National Engineering Laboratory. A lead shield was used to ensure that the majority of the dose was from neutrons. The shear strength with compression before and after irradiation at the lower dose was determined. Flexure strength and the results from irradiation at the higher dose level will be available in the near future. 7 refs., 7 figs., 2 tabs
Analysis of Homogel Uniaxial Compression Strength on Bio Grouting Material
Kyungho Park
2016-03-01
Full Text Available This study analyzed uniaxial compression strength over time by preparing a homogel specimen from a bio grouting material, a cement-like form produced by environment-friendly microbial reactions. Among chemical grouting methods, the most commonly used method is the Labile Waterglass method. In this study, the homogel uniaxial compressive strength of Labile Waterglass (LW injection material and that of bio grouting material were measured and analyzed. In order to perform the experiment, a total of 10 types of grouting mixing ratios were prepared by a combination of different materials such as Ordinary Portland Cement, Micro Cement, Bio Grouting Material and Sodium Silicate. They were cured in the air, and their homogel uniaxial compression strengths were measured on days 1, 3, 7 and 28 Based on the test results, it was confirmed that the uniaxial strength of the specimen made with Bio Grouting Material, Ordinary Portland Cement and Micro Cement was increased by more than 30% than that of the specimen only used with Ordinary Portland Cement, as a result of hydrogen-released heat reaction between calcium carbonate, the main ingredient of the bio grouting material, and calcium silicate in the cement. This indicates that the use of 30% bio-grouting material instead of cement in the grouting can be a reasonable mixing ratio to save the use of cement, leading to reduction in CO2 emission.
Fracture Energy of High-Strength Concrete in Compression
Dahl, Henrik; Brincker, Rune
Compression tests are usually carried out in load control. This implies the termination of the test at the peak point of the load-displacement curve, while the fracture under these conditions becomes unstable at the descending branch of the load displacement relation. However, the descending bran...... experimental method has been used to investigate the influence of boundary conditions, loading rate, size effects and the influence of the strength on the fracture energy of high-strength concrete over the range 70 MPa to 150 MPa, expressed in nominal values....
Optimization of compressive strength of zirconia based dental composites
U V Hambire; V K Tripathi
2014-10-01
Dental composites are tooth-coloured restorative material used by dentists for various applications. Restoration of a lost tooth structure requires a material having mechanical as well as aesthetic properties similar to that of tooth. This poses challenges to engineers and the dentist alike. Dental composites consist of a matrix and a dispersed phase called filler, which are mainly responsible for its mechanical properties. Most commonly used matrix is bisphenol glycidyl methacrylate (Bis-GMA) and triethylene glycol dimethacrylate (TEGMA). Silica and glass are conventional fillers used in the past. Recently, zirconia is being used due to its improved mechanical properties. A study was conducted to evaluate the contribution of zirconia to the mechanical properties in general and compressive strength in particular. We have attempted to make an experimental dental composite with a conglomerate of nanofillers, namely, zirconia, glass and silica, and optimize this filler volume percentage and obtain an optimum compressive strength for the experimental dental composite.
Compressive strength of human openwedges: a selection method
Follet, H.; Gotteland, M.; Bardonnet, R.; Sfarghiu, A. M.; Peyrot, J.; Rumelhart, C.
2004-02-01
A series of 44 samples of bone wedges of human origin, intended for allograft openwedge osteotomy and obtained without particular precautions during hip arthroplasty were re-examined. After viral inactivity chemical treatment, lyophilisation and radio-sterilisation (intended to produce optimal health safety), the compressive strength, independent of age, sex and the height of the sample (or angle of cut), proved to be too widely dispersed [ 10{-}158 MPa] in the first study. We propose a method for selecting samples which takes into account their geometry (width, length, thicknesses, cortical surface area). Statistical methods (Principal Components Analysis PCA, Hierarchical Cluster Analysis, Multilinear regression) allowed final selection of 29 samples having a mean compressive strength σ_{max} =103 MPa ± 26 and with variation [ 61{-}158 MPa] . These results are equivalent or greater than average materials currently used in openwedge osteotomy.
Estimating compressive strength of concrete by mortar testing
Camões, Aires; Aguiar, J. L. Barroso de; Jalali, Said
2005-01-01
Concrete mix design laboratory tests which time consuming and entails considerable effort. This study presents a method of reducing mix design testing costs by testing mortar instead of concrete specimens. The experimental programme consisted of defining mortar mixes equivalent to concrete mixes, moulding specimens of both mortar and concrete mixes studied and finally evaluating the compressive strength of specimens cured at different curing time. Results obtained indicate that a goo...
Effect of aluminum oxide on the compressive strength of pellets
Jian-liang Zhang; Zhen-yang Wang; Xiang-dong Xing; Zheng-jian Liu
2014-01-01
Analytical-reagent-grade Al2O3 was added to magnetite ore during the process of pelletizing, and the methods of mercury intru-sion, scanning electron microscopy, and image processing were used to investigate the effect of Al2O3 on the compressive strength of the pellets. The results showed that, as the Al2O3 content increased, the compressive strength of the pellets increased slightly and then decreased gradually. When a small amount of Al2O3 was added to the pellets, the Al2O3 combined with fayalite (2FeO·SiO2) and the aluminosilicate (2FeO·2Al2O3·5SiO2) was generated, which releases some iron oxide and reduces the inhibition of fayalite to the solid phase of consolidation. When Al2O3 increased sequentially, high melting point of Al2O3 particles hinder the oxidation of Fe3O4 and the recrystallization of Fe2O3, making the internal porosity of the pellets increase, which leads to the decrease in compressive strength of the pellets.
Scaling of compression strength in disordered solids: metallic foams
J. Kováčik
2016-03-01
Full Text Available The scaling of compression strength with porosity for aluminium foams was investigated. The Al 99.96, AlMg1Si0.6 and AlSi11Mg0.6 foams of various porosity, sample size with and without surface skin were tested in compression. It was observed that the compression strength of aluminium foams scales near the percolation threshold with Tf ≈ 1.9 - 2.0 almost independently on the matrix alloy, sample size and presence of surface skin. The difference of the obtained values of Tf to the theoretical estimate of Tf = 2.64 ± 0.3 by Arbabi and Sahimi and to Ashby estimate of 1.5 was explained using an analogy with the Daoud and Coniglio approach to the scaling of the free energy of sol-gel transition. It leads to the finding that, there are two different universality classes for the critical exponent Tf: when the stretching forces dominate Tf = f = 2.1, respectively when bending forces prevail Tf = .d = 2.64 seems to be valid. Another possibility is the validity of relation Tf ≤ f which varies only according to the universality class of modulus of elasticity in foam.
Natural minerals mixture for enhancing concrete compressive strength
Abdoullah Namdar,
2012-01-01
The construction material quality is required to be improved in order to enhancing structure stability, optimizing construction cost and quality. The kaolin and bentonite have been mixed in equal quantity and treated by heat for 1 hour under 600 ºC, 800 ºC and 1000 ºC to create new minerals under high temperature condition to introduce an acceptable concrete additive for achieving concrete compressive strength in early age. To study micro properties of additive-cement mixture, X-ray and FESEM...
Size effect on cubic and prismatic compressive strength of cement paste
苏捷; 叶缙垚; 方志; 赵明华
2015-01-01
A series of compression tests were conducted on 150 groups of cement paste specimens with side lengths ranging from 40 mm to 200 mm. The specimens include cube specimens and prism specimens with height to width ratio of 2. The experiment results show that size effect exists in the cubic compressive strength and prismatic compressive strength of the cement paste, and larger specimens resist less in terms of strength than smaller ones. The cubic compressive strength and the prismatic compressive strength of the specimens with side length of 200 mm are respectively about 91% and 89% of the compressive strength of the specimens with the side length of 40 mm. Water to binder ratio has a significant influence on the size effect of the compressive strengths of the cement paste. With a decrease in the water to binder ratio, the size effect is significantly enhanced. When the water to binder ratio is 0.2, the size effects of the cubic compressive strength and the prismatic compressive strength of the cement paste are 1.6 and 1.4 times stronger than those of a water to binder ratio of 0.6. Furthermore, a series of formulas are proposed to calculate the size effect of the cubic compressive strength and the prismatic compressive strength of cement paste, and the results of the size effect predicted by the formulas are in good agreement with the experiment results.
Effect of Banana Fibers on the Compressive and Flexural Strength of Compressed Earth Blocks
Marwan Mostafa
2015-03-01
Full Text Available Sustainable development of the built environment in developing countries is a major challenge in the 21st century. The use of local materials in construction of buildings is one of the potential ways to support sustainable development in both urban and rural areas. Building with Compressed Earthen Blocks (CEBs is becoming more popular due to their low cost and relative abundance of materials. The proposed Green-Compressed Earth Block (GCEB consists of ordinary CEB ingredients plus Banana fibers, which will be the focus of this study. Banana fibers are widely available worldwide as agricultural waste from Banana cultivation. Banana fibers are environmentally friendly and present important attributes, such as low density, light weight, low cost, high tensile strength, as well as being water and fire resistant. This kind of waste has a greater chance of being utilized for different application in construction and building materials. This focused on the use of banana fiber and its effect on the compressive and flexural strength in CEB. The deflection at the mid-span of the blocks studied was calculated using the Linear Variable Differential Transformer (LVDT. The results of this study will highlight general trends in the strength properties of different soil mixes for CEBs. These efforts are necessary to ensure that GCEB technology becomes more widely accepted in the world of building materials and is considered a reliable option for providing low-cost housing.
Prediction of concrete compression strength using ultrasonic pulse velocity
Azreen, M. N.; Pauzi, I. M.; Nasharuddin, I.; Haniza, M. M.; Akasyah, J.; Karsono, A. D.; Lei, V. Yen
2016-01-01
The relationship of ultrasonic stress waves transmitted along direct and indirect paths in concrete samples was investigated. Tests were conducted on plain concrete slabs from different grades of 15, 25, 30, 40 and Ultrahigh Performance Concrete that have dimensions of 750mm x 150mm x 150 mm. Direct ultrasonic pulse velocity tests were conducted between the top and the bottom surfaces of the concrete samples and indirect tests were conducted along the surface. A test procedure to determine indirect wave velocities was refined by defining the spacing of the transducers which are 50, 100, 150, 200, 250, 300, 350, 400, 450 mm. The correlation was established between direct and indirect UPV measurements via statistical analysis. From the analysis, it can be concluded that direct UPV has higher value than indirect UPV value by 16.5 % due to position of transducers. The compression strength of the concretes was studied to be compared with the direct and indirect transmission, with direct transmission method showed a good correlation with compression strength.
Compressive strength and hydrolytic stability of fly ash based geopolymers
Nikolić Irena
2013-01-01
Full Text Available The process of geopolymerization involves the reaction of solid aluminosilicate materials with highly alkaline silicate solution yielding an aluminosilicate inorganic polymer named geopolymer, which may be successfully applied in civil engineering as a replacement for cement. In this paper we have investigated the influence of synthesis parameters: solid to liquid ratio, NaOH concentration and the ratio of Na2SiO3/NaOH, on the mechanical properties and hydrolytic stability of fly ash based geopolymers in distilled water, sea water and simulated acid rain. The highest value of compressive strength was obtained using 10 mol dm-3 NaOH and at the Na2SiO3/NaOH ratio of 1.5. Moreover, the results have shown that mechanical properties of fly ash based geopolymers are in correlation with their hydrolytic stability. Factors that increase the compressive strength also increase the hydrolytic stability of fly ash based geopolymers. The best hydrolytic stability of fly ash based geopolymers was shown in sea water while the lowest stability was recorded in simulated acid rain. [Projekat Ministarstva nauke Republike Srbije, br. 172054 i Nanotechnology and Functional Materials Center, funded by the European FP7 project No. 245916
Permeability, porosity and compressive strength of self-compacting concrete
Valcuende, M.O.
2005-12-01
Full Text Available Most deterioration affecting the durability of self-compacting concrete structures is mediated by water penetration in the concrete, a condition related to its porous structure. The present study analyzes these two factors. To this end, two types of concrete were prepared, a self-compacting and a traditional vibrated concrete, with different W/C ratios and different types of cement. The results of low-pressure water testing to evaluate permeability and analyses to determine compressive strength and pore size distribution showed that self-compacting concrete has lower capillary porosity than traditional concrete, which would explain its greater resistance to water penetration. Such concrete likewise reached higher strength values, except where large proportions of lime powder with low sand equivalents were used in its manufacture, when lower strength was recorded. Lastly, the depth of water penetration and compressive strength were found to be linearly correlated. That correlation was seen to depend, in turn, on the type of concrete, since for any given strength level, self-compacting concrete was less permeable than the traditional material.
En este trabajo experimental se estudia la penetración de agua en hormigones autocompactables, analizando al mismo tiempo su estructura porosa, pues gran parte de los procesos de deterioro que afectan a la durabilidad de las estructuras están condicionados por estos dos aspectos. Para ello se han fabricado dos tipos de hormigones, uno autocompactable y otro tradicional vibrado, con diferentes relaciones A/C y distintos tipos de cemento. Tras determinar la permeabilidad al agua bajo presión, la resistencia a compresión y las distribuciones de tamaño de poro, los resultados obtenidos ponen de manifiesto que los hormigones autocompactables presentan menor porosidad capilar que los tradicionales, lo que les confiere mejores prestaciones frente a la penetración de agua. Asimismo, dichos hormigones
Compressive strength and hardness of metal matrix syntactic foams
Six types of metal matrix syntactic foams (MMSFs) were produced by pressure infiltration technique. The foams were investigated by upsetting tests at increased (2200C) and at room (250C) temperature. The parameters were the constituents of the composites and the aspect ratio (height-diameter ratio, H/D) of the specimens. The characteristic properties were: the compressive strength, the fracture strain, the structural stiffness of the foams and the absorbed energy. The strength, the strain and the energy were decreased while the stiffness was increased by increasing the H/D. Increased temperature caused ∼25 % drop in the strength and in the stiffness. Macrohardness, depth sensitive and dynamic hardness tests were also performed on MMSF blocks: macrohardness is a structural property and independent from the matrix material. The depth sensitive hardness is sensitive to the deformation capability of the matrix and to a possible change reaction. The dynamic hardnesses of the MMSFs were higher than the hardness of the matrices and this is a microballoon related property.
Md. Safiuddin
2016-05-01
Full Text Available Modeling is a very useful method for the performance prediction of concrete. Most of the models available in literature are related to the compressive strength because it is a major mechanical property used in concrete design. Many attempts were taken to develop suitable mathematical models for the prediction of compressive strength of different concretes, but not for self-consolidating high-strength concrete (SCHSC containing palm oil fuel ash (POFA. The present study has used artificial neural networks (ANN to predict the compressive strength of SCHSC incorporating POFA. The ANN model has been developed and validated in this research using the mix proportioning and experimental strength data of 20 different SCHSC mixes. Seventy percent (70% of the data were used to carry out the training of the ANN model. The remaining 30% of the data were used for testing the model. The training of the ANN model was stopped when the root mean square error (RMSE and the percentage of good patterns was 0.001 and ≈100%, respectively. The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength. The coefficient of determination (R2 for the relationship between the predicted and experimental compressive strengths was 0.9486, which shows the higher degree of accuracy of the network pattern. Furthermore, the predicted compressive strength was found very close to the experimental compressive strength during the testing process of the ANN model. The absolute and percentage relative errors in the testing process were significantly low with a mean value of 1.74 MPa and 3.13%, respectively, which indicated that the compressive strength of SCHSC including POFA can be efficiently predicted by the ANN.
Compressive strength after blast of sandwich composite materials.
Arora, H; Kelly, M; Worley, A; Del Linz, P; Fergusson, A; Hooper, P A; Dear, J P
2014-05-13
Composite sandwich materials have yet to be widely adopted in the construction of naval vessels despite their excellent strength-to-weight ratio and low radar return. One barrier to their wider use is our limited understanding of their performance when subjected to air blast. This paper focuses on this problem and specifically the strength remaining after damage caused during an explosion. Carbon-fibre-reinforced polymer (CFRP) composite skins on a styrene-acrylonitrile (SAN) polymer closed-cell foam core are the primary composite system evaluated. Glass-fibre-reinforced polymer (GFRP) composite skins were also included for comparison in a comparable sandwich configuration. Full-scale blast experiments were conducted, where 1.6×1.3 m sized panels were subjected to blast of a Hopkinson-Cranz scaled distance of 3.02 m kg(-1/3), 100 kg TNT equivalent at a stand-off distance of 14 m. This explosive blast represents a surface blast threat, where the shockwave propagates in air towards the naval vessel. Hopkinson was the first to investigate the characteristics of this explosive air-blast pulse (Hopkinson 1948 Proc. R. Soc. Lond. A 89, 411-413 (doi:10.1098/rspa.1914.0008)). Further analysis is provided on the performance of the CFRP sandwich panel relative to the GFRP sandwich panel when subjected to blast loading through use of high-speed speckle strain mapping. After the blast events, the residual compressive load-bearing capacity is investigated experimentally, using appropriate loading conditions that an in-service vessel may have to sustain. Residual strength testing is well established for post-impact ballistic assessment, but there has been less research performed on the residual strength of sandwich composites after blast. PMID:24711494
The nuclear grade graphite is the candidate materials for the in-core components of the very high temperature gas-cooled tractor (VHTR) due to its very high conductivity, melting temperature, chemical resistance and mechanical stability. Nuclear graphite undergoes dimensional change and mechanical properties change because of irradiation damage. To estimate the irradiation damage, surveillance capsule would be inserted in reactor. Surveillance capsule sizes were limited because it would be located inside of a reactor vessel. Thus, a new test method using small specimen is needed and diametral compressive test is one of them. However, circular anvils are needed according to the specimen size. A flattened disc specimen were proposed to overcome such a problem and applied for determination of mechanical properties for brittle rocks. In this study, the applicability of such specimen was investigated. In addition, minimum specimen size for test was determined and diametral compressive strength of nuclear graphite was measured
Influence of pore structure on compressive strength of cement mortar.
Zhao, Haitao; Xiao, Qi; Huang, Donghui; Zhang, Shiping
2014-01-01
This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure. PMID:24757414
Influence of Pore Structure on Compressive Strength of Cement Mortar
Haitao Zhao
2014-01-01
Full Text Available This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure.
Keun-Hyeok Yang
2015-01-01
Full Text Available This study examined the relative strength-maturity relationship of high-strength concrete (HSC specifically developed for nuclear facility structures while considering the economic efficiency and durability of the concrete. Two types of mixture proportions with water-to-binder ratios of 0.4 and 0.28 were tested under different temperature histories including (1 isothermal curing conditions of 5°C, 20°C, and 40°C and (2 terraced temperature histories of 20°C for an initial age of individual 1, 3, or 7 days and a constant temperature of 5°C for the subsequent ages. On the basis of the test results, the traditional maturity function of an equivalent age was modified to consider the offset maturity and the insignificance of subsequent curing temperature after an age of 3 days on later strength of concrete. To determine the key parameters in the maturity function, the setting behavior, apparent activation energy, and rate constant of the prepared mixtures were also measured. This study reveals that the compressive strength development of HSC cured at the reference temperature for an early age of 3 days is insignificantly affected by the subsequent curing temperature histories. The proposed maturity approach with the modified equivalent age accurately predicts the strength development of HSC.
Numerical analysis of the spacer grids' compression strength
Among the components of the fuel assembly, the spacer grids play an important structural role during the energy generation process, mainly for their requirement to have enough structural strength to withstand lateral impact loads, due to fuel assembly shipping/handling and due to forces outcome from postulated accidents (earthquake and LOCA). This requirement ensures a proper geometry for cooling and for guide thimble straightness in the fuel assembly. In this way, the understanding of the macroscopic mechanical behavior of this component becomes essential even to any subsequent geometrical modifications to optimize the flue assemblies' structural behavior. In the present work, three-dimensional finite element models destined to provide consistent predictions of 16X16-type spacer grids lateral strength were proposed. Firstly, buckling tests based on results available in the literature were performed to establish a methodology for spacer grid finite element-based modeling. The, by considering a spacer grid interesting geometry and some possible variations associated to its fabrication, tolerance, the proposed numerical models were submitted to compression conditions to calculate the buckling force. Also, these models were validated for comparison with experimental buckling load results. Comparison of buckling predictions combined to observations of actual and simulated deformed spacer grids geometries permitted to verify the consistency and applicability of the proposed models. Thus, these numerical results show a good agreement between the and the experimental results. (author)
Test results and model for the residual compressive strength of concrete after a fire
Li, Yi-Hai; Franssen, Jean-Marc
2011-01-01
An investigation into temperature induced degradation of the compressive strength of concrete including that under cooling phase is carried out. The paper gathers and reviews a considerable amount of test data, considering the influence of different test parameters such as initial compressive strength, aggregate type, cooling regime and specimen shape. It is found that the compressive strength of concrete at high temperature is in accordance with the model proposed in the Eurocodes for calcar...
Juan Manuel Lizarazo Marriaga; José Gabriel Gómez Cortés
2010-01-01
The present study was conducted for predicting the compressive strength of concrete based on unit weight ultrasonic and pulse velocity (UPV) for 41 different concrete mixtures. This research emerged from the need for a rapid test for predicting concrete’s compressive strength. The research was also conducted for predicting concrete’s electrical resistivity based on unit weight ultrasonic, pulse velocity (UPV) and compressive strength with the same mixes. The prediction was made using simple ...
Antonius; Iswandi Imran
2012-01-01
An experimental study of 23 low-, medium- and high-strength concrete columns is presented in this paper. Square-confined concrete columns without longitudinal reinforcement were designed, and tested under concentric axial compression. The columns were made of concrete with a compressive strength ranging between 30 MPa and 70 MPa. The test parameters in the study are concrete compressive strengths and confining steel properties, i.e. spacing, volumetric ratios and configurations. The effects o...
Juan Manuel Lizarazo Marriaga
2010-04-01
Full Text Available The present study was conducted for predicting the compressive strength of concrete based on unit weight ultrasonic and pulse velocity (UPV for 41 different concrete mixtures. This research emerged from the need for a rapid test for predicting concrete’s compressive strength. The research was also conducted for predicting concrete’s electrical resistivity based on unit weight ultrasonic, pulse velocity (UPV and compressive strength with the same mixes. The prediction was made using simple regression analysis and artificial neural networks. The results revealed that artificial neural networks can be used for effectively predicting compressive strength and electrical resistivity.
Compressive impact strength of high temperature gas-cooled reactor graphite
To investigate the effect of strain rate on fracture behavior for coarse grained nuclear graphite, PGX, a hydraulic servo type impact testing machine has been constructed and compressive impact strength test was performed at various strain up to more than 100(1/s). From the results, the following conclusions were derived. (1) Compressive impact strength of graphite increases with increasing of strain rate in the range of 10-3 to 100(1/s). (2) Compressive impact strength decreases drastically for strain rates more than 100(1/s). (3) Compressive impact strength dose not depend on specimen volume. (author)
Mechanical properties of Concrete with SAP. Part I: Development of compressive strength
Hasholt, Marianne Tange; Jespersen, Morten H. Seneka; Jensen, Ole Mejlhede
compressive strength can be accounted for in the same way as when taking the air content into account in Bolomeys formula. The implication of the model is that at low w/c ratios (w/c <0.40) and moderate SAP additions, SAP increases the compressive strength at later ages (from 3 days after casting and onwards...
The experiment was performed to determine the strength of laminated organic insulators loaded simultaneously in face compression and interlaminar shear. Thin disks of polyimide/S2 glass (PS2) laminate were compressed perpendicular to the surface and loaded in face torsion at room temperature and 77 K. The interlaminar shear strength was determined as a function of face pressure
Dataset of long-term compressive strength of concrete with manufactured sand.
Ding, Xinxin; Li, Changyong; Xu, Yangyang; Li, Fenglan; Zhao, Shunbo
2016-03-01
This paper presents 186 groups compressive strength tests data of concrete with manufactured sand (MSC) in different curing age and 262 groups compressive strength tests data of MSC at 28 days collected from authors' experiments and other researches in China. Further interpretation and discussion were described in this issues. PMID:26949726
Krishna Rao M.V.
2011-01-01
Full Text Available Concrete is a versatile material with tremendous applications in civil engineering construction. Structural concrete elements are generally made with concrete having a compressive strength of 20 to 35 MPa. Lately, there is an increase in use of high strength concrete (HSC in major construction projects such as high-rise buildings, and bridges involving members of different sizes and shapes. The compressive strength of concrete is used as the most basic and important material property in the design of reinforced concrete structures. It has become a problem to use this value as the control specimen sizes and shapes are different from country to country. In India, the characteristic compressive strength is usually measured based on 150 mm cubes [1]. But, the ACI code of practice specifies the design compressive strength based on the standard 150x300 mm cylinders [2]. The use of 100x200 mm cylinders gained more acceptance as the need to test high strength concrete increases [3]. In this context the size and shape of concrete becomes an important parameter for the compressive strength. In view of the significance of compressive strength of concrete and due to the fact that the structural elements of different sizes and shapes are used, it is proposed to investigate the effect of size and shape of the specimen on the compressive strength of concrete. In this work, specimens of plain as well as Glass Fiber Reinforced Concrete (GFRC specimens are cast in order to carry out a comparative study.
Various types of ultrasonic techniques have been used for the estimation of compressive strength of concrete structures. However, conventional ultrasonic velocity method using only longitudial wave cannot be determined the compressive strength of concrete structures with accuracy. In this paper, by using the introduction of multiple parameter, e. g. velocity of shear wave, velocity of longitudinal wave, attenuation coefficient of shear wave, attenuation coefficient of longitudinal wave, combination condition, age and preservation method, multiple regression analysis method was applied to the determination of compressive strength of concrete structures. The experimental results show that velocity of shear wave can be estimated compressive strength of concrete with more accuracy compared with the velocity of longitudinal wave, accuracy of estimated error range of compressive strength of concrete structures can be enhanced within the range of ± 10% approximately
EFFECT OF DAMAGE ON COMPRESSIVE STRENGTH IN FIBER DIRECTION FOR CFRP
Eyer, G; Montagnier, O; Hochard, C; Charles, J-P; Mazerolle, F
2015-01-01
The influence of transverse damage on compressive strength in fiber direction for carbon fiber reinforced epoxy materials is investigated by an experimental approach. Several experimental methods are proposed. The first study focuses on tubular samples. Theses samples are damaged by torsional and cyclic load and next submitted to compressive load. Results show that the transverse damage affects the compressive strength. Yet the stiffness is not modified. A model is then proposed with these re...
The compressive strength of magnesium potassium phosphate chemically bonded ceramics is important in biomedical field. In this work, the compressive strength of magnesium potassium phosphate chemically bonded ceramics was investigated with different liquid-to-solid and MgO-to-KH2PO4 ratios. X-ray diffractometer was applied to characterize its phase composition. The microstructure was imaged using a scanning electron microscope. The results showed that the compressive strength of the chemically bonded ceramics increased with the decrease of liquid-to-solid ratio due to the change of the packing density and the crystallinity of hydrated product. However, with the increase of MgO-to-KH2PO4 weight ratio, its compressive strength increased firstly and then decreased. The low compressive strength in lower MgO-to-KH2PO4 ratio might be explained by the existence of the weak phase KH2PO4. However, the low value of compressive strength with the higher MgO-to-KH2PO4 ratio might be caused by lack of the joined phase in the hydrated product. Besides, it has been found that the microstructures were different in these two cases by the scanning electron microscope. Colloidal structure appeared for the samples with lower liquid-to-solid and higher MgO-to-KH2PO4 ratios possibly because of the existence of amorphous hydrated products. The optimization of both liquid-to-solid and MgO-to-KH2PO4 ratios was important to improve the compressive strength of magnesium potassium phosphate chemically bonded ceramics. - Highlights: • High packing density and amorphous hydrated phase improved the compressive strength. • Residual KH2PO4 and poor bonding phase lower the compressive strength. • MPCBC fabricated with optimized parameters had the highest compressive strength
Early Age Compressive Strength of Pastes by Electrical Resistivity Method and Maturity Method
XIAO Lianzhen; WEI Xiaosheng
2011-01-01
The compressive strength development of Portland cement pastes was investigated by the electrical resistivity method and the maturity method.The experiments were carried out on the cement pastes with different water-cement ratios at different curing temperatures.The results show that the application of the maturity method has limitation to obtain the strength.It is found that both of the compressive strength and the electrical resistivity follow hyperbolic trend for all the mixes.The hyperbolic equation of each mix is obtained to estimate the ultimate resistivity value which can probably be reached.The relationship between electrical resistivity and compressive strength of the cement pastes is established based on the test results and interpreted by the empirical Archie equation and a strength-porosity equation.The relationship between the electrical resistivity after temperature correction and the compressive strength was linear and independent of curing temperature and water-cement ratio.
无
2001-01-01
Ultrahigh-strength mortar mixed surface-oxidized silicon carbide as a fine aggregate was prepared by means of press-casting followed by curing in an autoclave. The relation between modulus of elasticity up to 111 GPa and compressive strength up to 360 MPa of mortar mixed silicon carbide was discussed and it was revealed that the contributions of the aggregate hardness and of the interfacial strength between the aggregate and the cement paste on the elasticity of mortar were imporant.
Fracture Energy of High-Strength Concrete in Compression
Dahl, H.; Brincker, Rune
1989-01-01
is essential for understanding the fracture mechanism of concrete in compression. In this paper a series of tests is reported, carried out for the purpose of studying the fracture mechanical properties of concrete in compression. Including the measurement and study of the descending branch, a new...
A Study on Occupancy and Compressive Strength of Concrete with Produced Injection Method
Cevdet Emin Ekinci
2014-01-01
Full Text Available Concrete is a composite construction material made primarily of aggregate, cement, and water. Fresh concrete must have certain features. These are shown in durability, workability, compressive strength, flexural strength, shrinkage, impact resistance, wear, and so forth. In this study, compressive strength, erosion, and attrition behavior of concrete with silica fume additive produced by injection method were researched. Concrete with high occupancy is produced with injection. Use of more than 10% silica fume increases the fresh concrete’s need for mixed water significantly. It was observed that as the ratio of silica fume additive increases, concrete becomes stronger against compression, erosion, and attrition.
Influence of added concrete compressive strength on adhesion to an existing concrete substrate
Júlio, Eduardo N. B. S.; Branco, Fernando A. B.; Silva, Vítor D.; Lourenço, Jorge F.
2006-01-01
An experimental study was performed to evaluate the bond strength between two concrete layers of different ages, considering different mixtures of added concrete, with different strengths. The specimens first had the roughness of the substrate surface increased by sand blasting. Later, the new concrete was added. Afterwards, slant shear tests were performed to quantify the bond strength in shear. These tests indicated that increasing the compressive strength of the added concrete relative to ...
Compressive Strength of Fiber Reinforced Fly- Ash Concrete using Regression Model
H.S. Chore; P.A. Dode; N.L. Shelke
2011-01-01
In construction industry, strength is a primary criterion in selecting a concrete for a particular application. Concrete used for construction gains strength over a long period of time after pouring the concrete. The characteristic strength of concrete is defined as the compressive strength of a sample that has been aged for 28 days. Neither waiting 28 days for such a test would not serve the rapidity of construction, nor would neglecting it serve the quality control process on concrete in la...
Xingang Wang
2014-01-01
Full Text Available This study investigated compressive strength, chloride penetration, and freeze-thaw resistance of multiwalled carbon nanotube (MWNT concrete. More than 100 cylindrical specimens were used to assess test variables during sensitivity observations, including water-cement ratios (0.75, 0.5, and 0.4 and exposure to chemical agents (including gum arabic, propanol, ethanol, sodium polyacrylate, methylcellulose, sodium dodecyl sulfate, and silane. To determine the adequate sonication time for MWNT dispersal in water, the compressive strengths of MWNT concrete cylinders were measured after sonication times ranging from 2 to 24 minutes. The results demonstrated that the addition of MWNT can increase the compressive strength of concrete by up to 108%. However, without chemical treatment, MWNT concretes tend to have poor freeze-thaw resistance. Among the different chemical treatments, MWNT concrete treated with sodium polyacrylate has the best compressive strength, chloride resistance, and freeze-thaw durability.
Wang, Xingang; Rhee, Inkyu; Wang, Yao; Xi, Yunping
2014-01-01
This study investigated compressive strength, chloride penetration, and freeze-thaw resistance of multiwalled carbon nanotube (MWNT) concrete. More than 100 cylindrical specimens were used to assess test variables during sensitivity observations, including water-cement ratios (0.75, 0.5, and 0.4) and exposure to chemical agents (including gum arabic, propanol, ethanol, sodium polyacrylate, methylcellulose, sodium dodecyl sulfate, and silane). To determine the adequate sonication time for MWNT dispersal in water, the compressive strengths of MWNT concrete cylinders were measured after sonication times ranging from 2 to 24 minutes. The results demonstrated that the addition of MWNT can increase the compressive strength of concrete by up to 108%. However, without chemical treatment, MWNT concretes tend to have poor freeze-thaw resistance. Among the different chemical treatments, MWNT concrete treated with sodium polyacrylate has the best compressive strength, chloride resistance, and freeze-thaw durability. PMID:25140336
Estimation of compressive strength of fresh-concrete by using ultrasonic wave propagation velocity
The purpose of this work is to give the correlation between ultrasonic wave propagation velocity of fresh concrete and compressive strength of concrete after a age of few days. The ultrasonic wave velocity was measured by using pulse transmission method, and the compressive strength of concrete after 3, 7, and 28 days were measured. For reducing cost, we newly made equipment of measuring the velocity. As results of experiments, regressive equations of which average reliability was about 80%, were proposed.
Hongying Dong; Wanlin Cao; Jianhui Bian; Jianwei Zhang
2014-01-01
In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were...
Predicting Concrete Compressive Strength and Modulus of Rupture Using Different NDT Techniques
2014-01-01
Quality tests applied to hydraulic concrete such as compressive, tension, and bending strength are used to guarantee proper characteristics of materials. All these assessments are performed by destructive tests (DTs). The trend is to carry out quality analysis using nondestructive tests (NDTs) as has been widely used for decades. This paper proposes a framework for predicting concrete compressive strength and modulus of rupture by combining data from four NDTs: electrical resistivity, ultraso...
Ortega Álvarez, José Marcos; Pastor Navarro, José Luis; Albaladejo Ruiz, Arturo; Sánchez Martín, Isidro; Climent, Miguel-Ángel
2014-01-01
Special foundations, most prominently micropiles and soil anchors, are frequently used in construction today. In Spain, the grout for these special technical applications is generally prepared with portland cement, although the codes and standards in place stipulate only the minimum compressive strength required, with no mention of cement type. Those texts also establish a range of acceptable water:cement ratios. In the present study, durability and compressive strength in cement grout prepar...
Analysis of the Optimum Usage of Slag for the Compressive Strength of Concrete
Han-Seung Lee; Xiao-Yong Wang; Li-Na Zhang; Kyung-Taek Koh
2015-01-01
Ground granulated blast furnace slag is widely used as a mineral admixture to replace partial Portland cement in the concrete industry. As the amount of slag increases, the late-age compressive strength of concrete mixtures increases. However, after an optimum point, any further increase in slag does not improve the late-age compressive strength. This optimum replacement ratio of slag is a crucial factor for its efficient use in the concrete industry. This paper proposes a numerical procedu...
Fahimeh Mirlohi; Ali Doostmohammadi; Ahmad Monshi
2012-01-01
In recent years, there have been many efforts to improve biological and biocompatibility features of amalgam. The aim of this research was investigating the effect of adding fluoroapatite (FA) nanoparticles on compressive strength and corrosion behaviour of dental amalgam. An amalgam alloy powder was mixed with 1, 3 and 5 wt.% of FA nanoparticles to form composite powders. Compressive strength of the corresponding dental amalgam samples was measured on the first and seventh day after preparat...
Determine the Compressive Strength of Calcium Silicate Bricks by Combined Nondestructive Method
2014-01-01
The paper deals with the application of combined nondestructive method for assessment of compressive strength of calcium silicate bricks. In this case, it is a combination of the rebound hammer method and ultrasonic pulse method. Calibration relationships for determining compressive strength of calcium silicate bricks obtained from nondestructive parameter testing for the combined method as well as for the L-type Schmidt rebound hammer and ultrasonic pulse method are quoted here. Calibration ...
J BU; Z TIAN
2016-03-01
Properties of concrete are strongly dependent on its pore structure features, porosity being an important one among them. This study deals with developing an understanding of the pore structure-compressive strength relationship in concrete. Several concrete mixtures with different pore structures are proportioned and subjected to static compressive tests. The pore structure features such as porosity, pore size distribution are extracted using mercury intrusion porosimetry technique. A statistical model is developed to relate thecompressive strength to relevant pore structure features.
Identification of Bacteria and the Effect on Compressive Strength of Concrete
Anneza L. H.; Irwan J. M.; Othman N.; Alshalif A. Faisal
2016-01-01
This paper presents the species of bacteria used in this study as well as the effect of the bacteria on compressive strength of bioconcrete. Bioconcrete is not only more environmentally friendly but it is easy to procure. The objective of this research is to identify the ureolytic bacteria and sulphate reduction bacteria that have been isolated and further use the bacteria in concrete to determine the effect of bacteria on compressive strength. Identification of bacteria is conducted through ...
Prediction of compressive strength of concrete containing fly ash using data mining techniques
Martins, Francisco F.; Camões, Aires
2013-01-01
The concrete compressive strength is the most used mechanical property in the design of concrete structures. Therefore, the use of rational models to its prediction, to simulate the effects of its different constituents and its properties can play an important role in the achievement of the safety-economy required. Models to forecast the concrete compressive strength have already been presented before by some researchers. However, the comparison of different rational models and the applicatio...
Keaveny, T M; Wachtel, E F; Ford, C M; Hayes, W C
1994-09-01
The conflicting conclusions regarding the relationship between the tensile and compressive strengths of trabecular bone remain unexplained. To help resolve this issue, we compared measurements of the tensile (n = 22) and compressive (n = 22) yield strengths, and yield strains, of trabecular bone specimens taken from 38 bovine proximal tibiae. We also studied how these failure properties depended on modulus and apparent density. To enhance accuracy, trabecular orientation was controlled, and each specimen had a reduced section where strains were measured with a miniature extensometer. We found that the mean yield strength was 30% lower for tensile loading. However, the difference between individual values of the tensile and compressive strengths increased linearly with increasing modulus and density, being negligible for low moduli, but substantial for high moduli. By contrast, both the tensile and compressive yield strains were independent of modulus and density, with the yield strain being 30% lower for tensile loading. Thus, the difference between the tensile and compressive strengths of bovine tibial trabecular bone depends on the modulus, but the difference between yield strains does not. This phenomenon may explain in part that conflicting conclusions reached previously on the tensile and compressive strengths of trabecular bone since the mean modulus has varied among different studies. Realizing that our data pertain only directly to bovine tibial trabecular bone for longitudinal loading, our results nevertheless suggest that failure parameters based on strains may provide more powerful and general comparisons of the failure properties for trabecular bone than measures based on stress. PMID:7929463
Effect of Pelletized Coconut Fibre on the Compressive Strength of Foamed Concrete
Mohd Jaini Zainorizuan
2016-01-01
Full Text Available Foamed concrete is a controlled low density ranging from 400kg/m3 to 1800kg/m3, and hence suitable for the construction of buildings and infrastructures. The uniqueness of foamed concrete is does not use aggregates in order to retain low density. Foamed concrete contains only cement, sand, water and foam agent. Therefore, the consumption of cement is higher in producing a good quality and strength of foamed concrete. Without the present of aggregates, the compressive strength of foamed concrete can only achieve as high as 15MPa. Therefore, this study aims to introduce the pelletized coconut fibre aggregate to reduce the consumption of cement but able to enhance the compressive strength. In the experimental study, forty-five (45 cube samples of foamed concrete with density 1600kg/m3 were prepared with different volume fractions of pelletized coconut fibre aggregate. All cube samples were tested using the compression test to obtain compressive strength. The results showed that the compressive strength of foamed concrete containing 5%, 10%, 15% and 20% of pelletized coconut fibre aggregate are 9.6MPa, 11.4MPa, 14.6MPa and 13.4MPa respectively. It is in fact higher than the controlled foamed concrete that only achieves 9MPa. It is found that the pelletized coconut fibre aggregate indicates a good potential to enhance the compressive strength of foamed concrete.
Knowledge about the early age compressive strength development of cementitious materials is an important factor for the progress and safety of many construction projects. This paper uses cylindrical mortar specimens produced with a ram extruder to investigate the transition of the mortar from plastic and deformable to hardened state. In addition, wave transmission and reflection measurements with P- and S-waves were conducted to obtain further information about the microstructural changes during the setting and hardening process. The experiments have shown that uniaxial compression tests conducted on extruded mortar cylinders are a useful tool to evaluate the green strength as well as the initiation and further development of the compressive strength of the tested material. The propagation of P-waves was found to be indicative of the internal structure of the tested mortars as influenced, for example, by the addition of fine clay particles. S-waves used in transmission and reflection mode proved to be sensitive to the inter-particle bonding caused by the cement hydration and expressed by an increase in compressive strength
Unfired clay bricks – moisture properties and compressive strength
Hansen, E.J. de Place; Hansen, Kurt Kielsgaard
Apparatus, methods and test results from an experimental investigation of (1) the properties for moisture performance of the materials, including water vapour sorption and water vapour transmission, (2) humidity buffering of the indoor climate by an absorbent material, and (3) the compressive str...
Identification of Bacteria and the Effect on Compressive Strength of Concrete
Anneza L. H.
2016-01-01
Full Text Available This paper presents the species of bacteria used in this study as well as the effect of the bacteria on compressive strength of bioconcrete. Bioconcrete is not only more environmentally friendly but it is easy to procure. The objective of this research is to identify the ureolytic bacteria and sulphate reduction bacteria that have been isolated and further use the bacteria in concrete to determine the effect of bacteria on compressive strength. Identification of bacteria is conducted through Polymerase chain reaction (PCR method and DNA sequencing. The DNA of the bacteria was run through BLAST algorithm to determine the bacterial species.The bacteria were added into the concrete mix as a partial replacement of water. 3% of water is replaced by ureolytic bacteria and 5% of water is replaced by sulphate reduction bacteria. After running BLAST algorithm the bacteria were identified as Enterococcus faecalis (ureolytic bacteria and Bacillus sp (sulphate reduction bacteria. The result of the compressive strength for control is 36.0 Mpa. Partial replacement of 3% water by ureolytic bacteria has strength of 38.2Mpa while partial replacement of 5% of water by sulphate reduction bacteria has strength of 42.5Mpa. The significant increase of compressive strength with the addition of bacteria shows that bacteria play a significant role in the improvement of compressive strength.
Effect of Silica Nanoparticles on Compressive Strength of Leaves-Waste Composite
Masturi, Masturi; Aliah, Hasniah; Aji, Mahardika Prasetya; Sagita, Adi Ardian; Bukit, Minsyahril; Sustini, Euis; Khairurrijal, Khairurrijal; Abdullah, Mikrajuddin
2011-12-01
The utilization of solid-waste, especially leaves-waste is one of interesting research of environmental field. One of them is making a composite using polyvinyl acetate (PVAc) polymer as binder (matrix) and silica nanoparticles as reinforcement (filler) to improve the strength of composite-produced. Those raw materials preliminary were mixed by simple mixing with varied compositions and then hot-pressed at 36 MPa and 100 °C for 20 minutes. From compressive strength test, it was found that composite with composition 7:8 of PVAc and leaves-waste had maximum compressive strength, i.e. 57.60 MPa. It was also that the enhancement of strength due to PVAc fraction (w/w) increasing is a percolation behavior, even though its mathematical explanation has not been performed. Into composition of maximum strength above, silica with average size is 74 nm then was added to improve the strength and found that at silica weight fraction of 0.79 (%w/w), the composite had optimum compressive strength, i.e. 70.5 MPa, or increased up to 22.4% of that without silica. The final compressive strength was very comparable to some building goods such as sandstones and bricks. The composite density was also measured and obtained that it was about 0.9 g/cm3 that is very close to some usual woods.
Estimation of hardness and compressive strength of SP 100 aluminum powder epoxy
Han, Jeong Young [Pusan National Univ., Busan (Korea, Republic of); Kim, Myung Hun [Korea Institute of Footwear and Leather Technology, Busan (Korea, Republic of); Kang, Sung Soo [Jeonju Univ., Jeonju (Korea, Republic of)
2012-09-15
In this study, we performed experimental tests on five SP 100 aluminum powder epoxy specimens with several after curing conditions in order to estimate their hardness with temperature and compressive strength. In the surface hardness test, it was found that the higher the after curing temperature, the higher was the hardness. In particular, it was found that the hardness of the specimens in cases 3 and 4 was much higher than in the other cases. In addition, in the compression tests carried out to evaluate the compressive strength, it was found that the specimens showed relatively similar stiffness and strength with after curing, and specimens with no after curing showed compression stress strain curves similar to those of thermoplastic resins.
JIANG Hong-bin; LI Long-fei
2009-01-01
Existing nondestructive detection methods were adopted to test the compressive strength of grouted concrete block masonry, i.e. the rebound method, pulling-out method and core drilling method were employed to test the strength of block, mortar and grouted concrete, respectively. The suitability of these methods for the testing of strength of grouted concrete block masonry was discussed, and the comprehensive strength of block masonry was appraised by combining existing nondestructive or micro-destructive detection methods. The nondestructive detection test on 25 grouted concrete block masonry specimens was carried out. Experimental results show that these methods mentioned above are applicable for the strength detection of grouted concrete block masonry. Moreover, the formulas of compressive strength, detection methods and proposals are given as well.
The estimation of compressive strength of normal and recycled aggregate concrete
Janković Ksenija
2011-01-01
Full Text Available Estimation of concrete strength is an important issue in ready-mixed concrete industry, especially, in proportioning new mixtures and for the quality assurance of the concrete produced. In this article, on the basis of the existing experimental data of compressive strength of normal and recycled aggregate concrete and equation for compressive strength calculating given in Technical regulation are compared. The accuracies of prediction by experimental data obtained in laboratory as well as by EN 1992-1-1, ACI 209 and SRPS U.M1.048 are compared on the basis of the coefficient of determination. The determination of the compressive strengths by the equation described here relies on determination of type of cement and age of concrete with the constant curing temperature.
Non-Uniform Compressive Strength of Debonded Sandwich Panels
Berggreen, Carl Christian; Simonsen, Bo Cerup
2005-01-01
This article describes the development, validation and application of a FEM based numerical model for prediction of residual strength of damaged sandwich panels. The core of the theoretical method is a newly developed procedure for prediction of the propagation of a face-core debond. As demonstra...
Strength and stiffness of thermally rectified eucalyptus wood under compression
Marcio Rogério da Silva; Gilmara de Oliveira Machado; José Otávio Brito; Carlito Calil Junior
2013-01-01
The aim of this work was the evaluation of the thermal-rectification process of reforestation wood Corymbia citriodora Hook by measuring of mechanical properties under compression parallel to the grain and also determining of chemical composition. The tested samples were thermally treated in a furnace with nitrogen-atmosphere at heating rate of 0.033 ºC.min-1, at temperatures of 160, 180, 200, 220 and 240 ºC. The chemical components and mechanical properties were affected with the thermal rec...
Videla, C.
2002-03-01
Full Text Available The study of Structural Lightweight Concrete (SLC, which is a material generally composed of cement, water and lightweight aggregate, has been mainly focused on developing particular cases. Then, the main objective of this research was to generalise the knowledge of this type of material. Particularly, the effect of replacing conventional coarse aggregate by lightweight aggregate on mechanical properties of concrete was studied. SLC may be conceived as a two -phase material. The first phase, composed of cement, water and siliceous natural sand, is called the "resistant phase", and contributes to the structural strength. The second phase is the lightweight phase, comprised of coarse lightweight aggregate, and it is meant to decrease the concrete density. In this way it would be possible to describe the mechanical behaviour of concrete, based on lightweight aggregate and the cement mortar parameters. The obtained results allow for the proposition of relationships between mechanical properties of SLC (such as compressive strength and modulus of elasticity and the constituent materials properties and amount. At the same time, an easily measured index representing the structural capability of lightweight aggregate is also proposed, this index allows to estimate the potential mechanical properties of concrete which could be obtained by using a particular aggregate.
El estudio del Hormigón Ligero Estructural (HLE, material compuesto generalmente por cemento, agua y árido ligero, ha estado enfocado principalmente al desarrollo de casos particulares. Por lo anterior, el objetivo principal de esta investigación fue generalizar el conocimiento sobre este material. En particular, la meta de este trabajo fue estudiar el efecto que tiene el reemplazo de árido convencional por un árido ligero, en las propiedades mecánicas del hormigón. El modelo aplicado conceptualiza al HLE como un material de dos fases, una denominada "soportante", constituida
On the Compressive and Tensile Strength of Magnesium Aluminate Spinel
Paris, V.; Hayun, S.; Dariel, M. P.; Frage, N.; Zaretsky, E.
2009-12-01
Magnesium aluminate spinel is a strong polycrystalline transparent ceramic. Spinel is an attractive material for armor applications and its behavior under shock wave loading is of obvious interest. The purpose of the present study was to determine the Hugoniot elastic limit (HEL) of this material, its Hugoniot response above the HEL, and its spall strength. Planar impact experiments were performed over the 2 to 40 GPa stress range using the Velocity Interferometer System for Any Reflector (VISAR) as a principal diagnostics tool. According to these tests, spinel has a HEL of about 11.3 GPa. The spall strength of the material was found to be close to zero at low, about 2 GPa, impact stress.
Compressive Strength of Hydrostatic-Stress-Sensitive Materials at High Strain-Rates
LI Q M; LU Y B
2008-01-01
Many engineering materials demonstrate dynamic enhancement of their compressive strength with the increase of strain-rate.which have been included in material models to improve the reliability of numerical Simulations of the material and structural responses Under impact and biasl tcads,The strain-rate effects on the dynamic Compressive strength of a range of engineering materials which behave in hydrostatic-stress-sensitive manner were investigated.It is concluded that the dynamic enhancement of the compressive strength of a hydrostatic-stress-sensitive material may include inertia-induced lateral confinement effects,which,as a non-strain-rate factor,may greatly enhance the compressive strength of these materials.Some empirical formulae based on the dynamic stress-strain measurements over-predict the strain-rate effects on the compressive strength of these hydrostatic-stress-sensitive materials,and thus may over-estimate the structural resistance to impact and blast lgads.leading fo non-conservative design of protective structures.
Hongying Dong
2014-12-01
Full Text Available In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete’s compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength.
Investigation on Compressive Strength of Special Concrete made with Crushed Waste Glass
Mohd Sani Mohd Syahrul Hisyam
2015-01-01
Full Text Available Special concrete is the type of concrete that produced by using waste material or using unusual techniques/method of preparation. Special concrete made with waste material is becoming popular in a construction site. This is because the special concrete is selected due to quality, integrity, economic factor and environmental factor. The waste glass is selected as an additional material to provide a good in compressive strength value. The compressive strength is the importance of mechanical properties of concrete and typically the concrete is sustained and stiffed in compression load. The significant issue to utilize the waste glass from the automotive windscreen is to improve the strength of concrete. The waste glass is crushed to become 5 mm size and recognised as crushed waste glass that be used in concrete as additional material. The main objective of the study is to determine the appropriate percentage of crushed waste glass in concrete grade, 30 in order to enhance the compressive strength. There are four mixes of concrete that contained of crushed waste glass with percentage of 2 %, 4 %, 6 % and 8 % and one control mix with 0 % of crushed waste glass. As the result, crushed waste glass with an additional 4 % in concrete is reported having a higher value of compressive strength in early and mature stage. In addition, if the percentage of crushed glass wastes in concrete increases and it leads to a reduction in the workability of concrete.
Bogas, J Alexandre; Gomes, M Glória; Gomes, Augusto
2013-07-01
In this paper the compressive strength of a wide range of structural lightweight aggregate concrete mixes is evaluated by the non-destructive ultrasonic pulse velocity method. This study involves about 84 different compositions tested between 3 and 180 days for compressive strengths ranging from about 30 to 80 MPa. The influence of several factors on the relation between the ultrasonic pulse velocity and compressive strength is examined. These factors include the cement type and content, amount of water, type of admixture, initial wetting conditions, type and volume of aggregate and the partial replacement of normal weight coarse and fine aggregates by lightweight aggregates. It is found that lightweight and normal weight concretes are affected differently by mix design parameters. In addition, the prediction of the concrete's compressive strength by means of the non-destructive ultrasonic pulse velocity test is studied. Based on the dependence of the ultrasonic pulse velocity on the density and elasticity of concrete, a simplified expression is proposed to estimate the compressive strength, regardless the type of concrete and its composition. More than 200 results for different types of aggregates and concrete compositions were analyzed and high correlation coefficients were obtained. PMID:23351273
Dynamic compressive and tensile strengths of spark plasma sintered alumina
Girlitsky, I.; Zaretsky, E.; Kalabukhov, S.; Dariel, M. P.; Frage, N.
2014-06-01
Fully dense submicron grain size alumina samples were manufactured from alumina nano-powder using Spark Plasma Sintering and tested in two kinds of VISAR-instrumented planar impact tests. In the first kind, samples were loaded by 1-mm tungsten impactors, accelerated to a velocity of about 1 km/s. These tests were aimed at studying the Hugoniot elastic limit (HEL) of Spark Plasma Sintering (SPS)-processed alumina and the decay, with propagation distance, of the elastic precursor wave. In the tests of the second kind, alumina samples of 3-mm thickness were loaded by 1-mm copper impactors accelerated to 100-1000 m/s. These tests were aimed at studying the dynamic tensile (spall) strength of the alumina specimens. The tensile fracture of the un-alloyed alumina shows a monotonic decline of the spall strength with the amplitude of the loading stress pulse. Analysis of the decay of the elastic precursor wave allowed determining the rate of the irreversible (inelastic) strains in the SPS-processed alumina at the initial stages of the shock-induced inelastic deformation and to clarify the mechanisms responsible for the deformation. The 1-% addition of Cr2O3 decreases the HEL of the SPS-processed alumina by 5-% and its spall strength by 50% but barely affects its static properties.
Dynamic compressive and tensile strengths of spark plasma sintered alumina
Fully dense submicron grain size alumina samples were manufactured from alumina nano-powder using Spark Plasma Sintering and tested in two kinds of VISAR-instrumented planar impact tests. In the first kind, samples were loaded by 1-mm tungsten impactors, accelerated to a velocity of about 1 km/s. These tests were aimed at studying the Hugoniot elastic limit (HEL) of Spark Plasma Sintering (SPS)-processed alumina and the decay, with propagation distance, of the elastic precursor wave. In the tests of the second kind, alumina samples of 3-mm thickness were loaded by 1-mm copper impactors accelerated to 100–1000 m/s. These tests were aimed at studying the dynamic tensile (spall) strength of the alumina specimens. The tensile fracture of the un-alloyed alumina shows a monotonic decline of the spall strength with the amplitude of the loading stress pulse. Analysis of the decay of the elastic precursor wave allowed determining the rate of the irreversible (inelastic) strains in the SPS-processed alumina at the initial stages of the shock-induced inelastic deformation and to clarify the mechanisms responsible for the deformation. The 1-% addition of Cr2O3 decreases the HEL of the SPS-processed alumina by 5-% and its spall strength by 50% but barely affects its static properties.
Setyawan, Paryanto Dwi; Sugiman, Saputra, Yudhi
2016-03-01
The paper presents the compressive and the short beam shear strength of a sandwich composite with opened cell foam made of bamboo fiber as the core and plywood as the skins. The core thickness was varied from 10 mm to 40 mm keeping the volume fraction of fiber constant. Several test s were carried out including the core density, flatwise compressive and the short beam shear testing in three point bending. The results show that the density of bamboo opened cell foam is comparable with commercial plastic foam, such as polyurethane foam. The compressive strength tends to increase linearly with increasing the core thickness. The short beam shear failure load of the sandwich composite increases with the increase of core thickness, however on the contrary, the short beam shear strength which tends to sharply decrease from the thickness of 10 mm to 30 mm and then becomes flat.
A Study of Compressive Strength Characteristics of Laterite Sand Hollow Blocks
Abiodun Olanipekun
2007-01-01
Full Text Available This paper presents the results of experimental investigations carried out on partial replacement of sand with laterite as it affects the compressive strength of sandcrete hollow blocks. Two mix proportions (1:6 and 1:8 were used with laterite content varying between 0 and 50% at 10% intervals. Hand and machine compaction methods were used. Curing was done by sprinkling water on the specimens. The results showed that for each mix proportion and compaction method, the compressive strength decreases with increase in laterite content. Machine compacted hollow sandcrete blocks made from mix ratio 1:6 and with up to 10% laterite content is found suitable and hence recommended for building construction having attained a 28-day compressive strength of 2.07N/mm2 as required by the Nigerian Standards.
Mishra, A. Deepak; Srigyan, M.; Basu, A.; Rokade, P. J.
2015-01-01
Uniaxial compressive strength ( UCS ) is one of the most widely used rock mechanical parameters in rock engineering. Determi- nation of this parameter in the laboratory, however, requires quality rock specimens. The use of various index tests that require little or no specimen preparation and are easier to perform as well as less expensive than the uniaxial compression test has always been attractive in order to predict UCS of rock materials empirically 1 – 16 . Amongst differe...
Improving the Prediction of Cement Compressive Strength by Coupling of Dynamical Models
Tsamatsoulis, D.
2016-01-01
The dynamic approach of two well-known techniques has been used to predict a cement’s 28-day compressive strength: Multiple linear regression (MLR), and artificial neural networks (ANN). The modeling is based on Portland cement data and utilizes daily physical, chemical analyses, and early strength results at days 1 and 7. Two kinds of models have been built, containing the 1-day strength as an independent variable, or both 1- and 7-day strength. The models are dynamic because they are applie...
Effect of In-Situ Curing on Compressive Strength of Reactive Powder Concrete
Bali Ika
2016-01-01
Full Text Available A development of Reactive Powder Concrete (RPC currently is the use of quartz powder as a stabilizing agent with the content to cement ratio of 30% and steam curing method in an autoclave temperature of 250ºC which produced a high compressive strength of 180 MPa. That RPC can be generated due to one reason for using the technique of steam curing in an autoclave in the laboratory. This study proposes in-situ curing method in order the curing can be applied in the field and with a reasonable compressive strength results of RPC. As the benchmarks in this study are the curing methods in laboratory that are steam curing of 90°C for 8 hours (C1, and water curing for 28 days (C2. For the in-situ curing methods that are covering with tarpaulins and flowed steam of 3 hours per day for 7 days (C3, covering with wet sacks for 28 days (C4, and covering with wet sacks for 28 days for specimen with unwashed sand as fine aggregate (C5. The comparison of compressive strength of the specimens in this study showed compressive strength of RPC with in-situ steam curing (101.64 MPa close to the compressive strength of RPC with steam curing in the laboratory with 8.2% of different. While in-situ wet curing compared with the water curing in laboratory has the different of 3.4%. These results indicated that the proposed in-situ curing methods are reasonable good in term of the compressive strength that can be achieved.
Highlights: • Results show POFA is adaptable as replacement in FA based geopolymer mortar. • The increase in POFA/FA ratio delay of the compressive development of geopolymer. • The density of POFA based geoploymer is lower than FA based geopolymer mortar. - Abstract: This paper presents the effects and adaptability of palm oil fuel ash (POFA) as a replacement material in fly ash (FA) based geopolymer mortar from the aspect of microstructural and compressive strength. The geopolymers developed were synthesized with a combination of sodium hydroxide and sodium silicate as activator and POFA and FA as high silica–alumina resources. The development of compressive strength of POFA/FA based geopolymers was investigated using X-ray florescence (XRF), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and field emission scanning electron microscopy (FESEM). It was observed that the particle shapes and surface area of POFA and FA as well as chemical composition affects the density and compressive strength of the mortars. The increment in the percentages of POFA increased the silica/alumina (SiO2/Al2O3) ratio and that resulted in reduction of the early compressive strength of the geopolymer and delayed the geopolymerization process
Degree of compression as a potential process control tool of tablet tensile strength.
Nordström, Josefina; Alderborn, Goran
2011-01-01
The current view on the development and manufacturing of pharmaceutical preparations points towards improved control tools that can be implemented in pharmaceutical manufacturing as a means to better control end product properties. The objective of this paper was to investigate the relationship between tablet tensile strength and the degree of bed compression in order to evaluate the suitability of assessing the straining of the powder bed during tableting as a process control tool of tablet tensile strength. Microcrystalline cellulose was used as powder raw material and subjected to wet granulation by different procedures to create agglomerates of different physical and compression properties. The produced agglomerates thus showed a large variation in compressibility and compactibility. However, in terms of the relationship between the degree of compression and the tablet tensile strength, all agglomerates gathered reasonably around a single general relationship. The degree of compression hence appears to be a potential valuable process control tool of the tablet tensile strength that may enable the use of an adaptive tableting process with improved product quality consistency. PMID:20649411
Vertebral insufficiency fractures may result from excessive loading of normal and routine loading of osteoporotic spines. Fractures occur when the mechanical load exceeds the vertebral compressive strength, i.e., the maximum load a vertebra can tolerate. Vertebral compressive strength is determined by trabecular bone density and the size of end-plate area. Both parameters can be measured non-invasively by quanti-tative computed tomography (QCT). In 75 patients compressive strength (i.e., trabecular bone density and endplate area) of the vertebra L3 was determined using QCT. In addition, conventional radiographs of the spines were analysed for the prevalence of insufficiency fractures in each case. By relating fracture prevalence to strength, 3 fracture risk groups were found: a high-risk group with strength values of L35 kN and a fracture risk near 0 percent. Biomechanical measurements and model calculations indicate that spinal loads of 3 to 4 kN at L3/4 will be common in everyday activities. These data and the results described above suggest that spines with strength values of L3<3 kN are at an extremely high risk of insufficiency fractures in daily life. Advantages of fracture risk assessment by strength determination over risk estimation based on clinically used trabecular bone density measurements are discussed. (author). 18 refs.; 4 figs
Osei, Daniel Yaw
2013-01-01
This paper presents a report of an experimental investigation on the effect of complete replacement of natural aggregate by recycled concrete aggregate in the production of concrete on the compressive strength of concrete. Two sets of concrete mixtures of ratios 1:3:6, 1:2:4, 1:11/2:3, 1:1:2 by mass were cast using natural aggregates and recycled aggregates concrete respectively. The 28-day compressive strengths of 1:3:6, 1:2:4, 1:11/2:3, 1:1:2 concrete using recycled concrete aggregates were...
Razavi, Sonia M.; Gonzalez, Marcial; Cuitino, Alberto M.
2014-01-01
We propose a general framework for determining optimal relationships for tensile strength of doubly convex tablets under diametrical compression. This approach is based on the observation that tensile strength is directly proportional to the breaking force and inversely proportional to a non-linear function of geometric parameters and materials properties. This generalization reduces to the analytical expression commonly used for flat faced tablets, i.e., Hertz solution, and to the empirical ...
MENG Xian-hong; SONG Yu-pu
2008-01-01
To investigate the residual strength of concrete under fatigue loading, experiments were conducted to determine the functional relation between residual strength and the number of cycles. 80 100mm×100mm×100ram specimens of plain concrete were tested under uniaxial compressive fatigue loading. Based on probabili-ty distribution of the residual strength of concrete under fatigue loading, the empirical expressions of the residual strength corresponding to the number of cycles were obtained. There is a good correlation between residual strength and residual secant elastic modulus. Thus the relationship between residual secant elastic modulus and the number of cycles is established. A damage variable based on the longitudinal maximum strain is defined, and a good linearity relationship between residual strength and damage is found out.
Effect of additives on the compressive strength and setting time of a Portland cement
Desirée Freitas Mryczka Machado
2010-06-01
Full Text Available Improvements in strength and setting time of Portland cements (PC are needed to enhance their performance as endodontic and load bearing materials. This study sought to enhance the compressive strength and setting time of a PC by adding one of the following additives: 20% and 30% poly-methylmethacrylate (PMMA, 20% and 30% irregular and spherical amalgam alloys, and 10% CaCl2. The control consisted of unreinforced PC specimens. Setting time was determined using a Gillmore apparatus according to standardized methods while compressive strength was measured using a universal testing machine after 21 hours or 60 days of water storage. Data were analyzed by ANOVA, Tukey and Games-Howell tests (α = 5%. All additives significantly decreased both initial and final setting times as compared with the PC-control (p < .05. 30% PMMA and 30% irregular alloy had the lowest values of initial setting time. 30% irregular alloy also produced the lowest values of final setting time while 30% spherical alloy yielded the highest (p < .05. No differences were detected between the compressive strength values of 21 hours and 60 days. While 10% CaCl2, 20% and 30% PMMA produced values significantly lower than the PC-control, 30% spherical alloy significantly improved the compressive strength of the reinforced PC (p < .05. In summary, all additives significantly reduced the setting time and 30% spherical amalgam alloy yielded a significant increase in compressive strength for the tested PC, which might represent an improved composition for PCs to expand their use as endodontic and potentially load bearing materials.
Prediction of potential compressive strength of Portland clinker from its mineralogy
Svinning, K.; Høskuldsson, Agnar; Justnes, H.
2010-01-01
mineralogy was described by patterns from X-ray diffraction analysis in the 20-regions 29.88-30.70 degrees and 32.90-34.10 degrees (using CuK alpha-radiation). It has been shown that prediction of potential compressive strength of clinker up to 28 d from the observed variation in the mineralogy gave a...
Effects of CuO nanoparticles on compressive strength of self-compacting concrete
Ali Nazari; Shadi Riahi
2011-06-01
In the present study, the compressive strength, thermal properties and microstructure of self-compacting concrete with different amounts of CuO nanoparticles have been investigated. CuO nanoparticles with an average particle size of 15 nm were added to self-compacting concrete and various properties of the specimens were measured. The results indicate that CuO nanoparticles are able to improve the compressive strength of self-compacting concrete and reverse the negative effects of superplasticizer on compressive strength of the specimens. CuO nanoparticles as a partial replacement of cement up to 4 wt.% could accelerate C–S–H gel formation as a result of the increased crystalline Ca(OH)2 amount at the early ages of hydration. Increasing CuO nanoparticle content to more than 4 wt.%, causes reduced compressive strength because of unsuitable dispersion of nanoparticles in the concrete matrix. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of peaks related to hydrated products in X-ray diffraction results, all indicate that CuO nanoparticles up to 4 wt.% could improve the mechanical and physical properties of the specimens. Finally, CuO nanoparticles improved the pore structure of concrete and caused shifting of the distributed pores from harmless to low harm.
无
2005-01-01
N, O-carboxymethyl chitosan ( CMCTS ), a kind of biodegradable organic substance, was added to calcium phosphate bone cement (CPC) to produce a composite more similar in composition to human bone. The compressive strength of the new material was increased by 10 times compared with conventional CPC.
The Effect of Blood Contamination on the Compressive Strength of Calcium-Enriched Mixture
Alireza Adl
2015-03-01
Full Text Available Statement of the Problem: In clinical situations, Calcium-Enriched Mixture (CEM comes into direct contact or even mixes with blood during or after placement. Purpose: The aim of this study was to evaluate the effect of blood contamination on the compressive strength of CEM. Materials and Method: Three experimental groups were included in this study. In the first group, CEM was mixed with distilled water and was exposed to normal saline (control group. In the second group, CEM cement was mixed with distilled water and then was exposed to blood. In the third group, CEM was mixed with and exposed to blood. Nine custom-made two-part split Plexiglas molds with five holes were used to form CEM samples for compressive strength testing (15 samples in each group. After 7 days of incubation, compressive bond strength testing was performed using a universal testing machine. Data were statistically analyzed using the Mann–Whitney U test with a significance level of p 0.05. Conclusion: It can be concluded that exposure to blood does not adversely affect the compressive strength of CEM, but incorporation of blood makes the cement very brittle.
Prediction of Corrosion Resistance of Concrete Containing Natural Pozzolan from Compressive Strength
al-Swaidani, A. M.; Ismat, R.; Diyab, M. E.; Aliyan, S. D.
2015-11-01
A lot of Reinforced Concrete (RC) structures in Syria have suffered from reinforcement corrosion which shortened significantly their service lives. Probably, one of the most effective approaches to make concrete structures more durable and concrete industry on the whole - more sustainable is to substitute pozzolan for a portion of Portland cement (PC). Syria is relatively rich in natural pozzolan. In the study, in order to predict the corrosion resistance from compressive strength, concrete specimens were produced with seven cement types: one plain Portland cement (control) and six natural pozzolan-based cements with replacement levels ranging from 10 to 35%. The development of the compressive strengths of concrete cube specimens with curing time has been investigated. Chloride penetrability has also been evaluated for all concrete mixes after three curing times of 7, 28 and 90 days. The effect on resistance of concrete against damage caused by corrosion of the embedded reinforcing steel has been investigated using an accelerated corrosion test by impressing a constant anodic potential for 7, 28 and 90 days curing. Test results have been statistically analysed and correlation equations relating compressive strength and corrosion performance have been developed. Significant correlations have been noted between the compressive strength and both rapid chloride penetrability and corrosion initiation times. So, this prediction could be reliable in concrete mix design when using natural pozzolan as cement replacement.
EXPERIMENTAL STUDY ON EFFECT OF VARIOUS FACTORS ON COMPRESSIVE STRENGTH OF CONCRETE
BİNİCİ, Hanifi; İsmail H. ÇAĞATAY; Kaplan, Hasan
2000-01-01
In this study, the factors affecting at the compressive strength of the concrete were determined. According the result of the test, the quality of concrete, which was used, is very low. Cement, analysis of aggregates for concrete, compacting, mixing placing and curing of concrete, and the techniques of the production of concrete have effected by different ratio of the quality of concrete.
Comparison of Compression Strength of Red Oak and Pedunculate Oak Wood from Mine Dumps
Brich, Jiří
2013-01-01
The aim of this work was to determine the strength of wood in compression on samples of oak and red oak coming from the reclaimed landscape, the Most brown coal basins. There was also examined the dependence of the strength of density, which eventually significantly affected. These results were achieved by laboratory tests and calculations according to. The average value of red oak strength is 55,29 MPa and tensile oak 56,18 MPa. These values correspond to those in the literature. ...
Keun-Hyeok Yang; Jae-Sung Mun; Myung-Sug Cho
2015-01-01
This study examined the relative strength-maturity relationship of high-strength concrete (HSC) specifically developed for nuclear facility structures while considering the economic efficiency and durability of the concrete. Two types of mixture proportions with water-to-binder ratios of 0.4 and 0.28 were tested under different temperature histories including (1) isothermal curing conditions of 5°C, 20°C, and 40°C and (2) terraced temperature histories of 20°C for an initial age of individual...
Optimum Compressive Strength of Hardened Sandcrete Building Blocks with Steel Chips
Alohan Omoregie
2013-02-01
Full Text Available The recycling of steel chips into an environmentally friendly, responsive, and profitable commodity in the manufacturing and construction industries is a huge and difficult challenge. Several strategies designed for the management and processing of this waste in developed countries have been largely unsuccessful in developing countries mainly due to its capital-intensive nature. To this end, this investigation attempts to provide an alternative solution to the recycling of this material by maximizing its utility value in the building construction industry. This is to establish their influence on the compressive strength of sandcrete hollow blocks and solid cubes with the aim of specifying the range percent of steel chips for the sandcrete optimum compressive strength value. This is particularly important for developing countries in sub-Saharan Africa, and even Latin America where most sandcrete blocks exhibit compressive strengths far below standard requirements. Percentages of steel chips relative to the weight of cement were varied and blended with the sand in an attempt to improve the sand grading parameters. The steel chips variations were one, two, three, four, five, ten and fifteen percent respectively. It was confirmed that the grading parameters were improved and there were significant increases in the compressive strength of the blocks and cube samples. The greatest improvement was noticed at four percent steel chips and sand combination. Using the plotted profile, the margin of steel chips additions for the optimum compressive strength was also established. It is recommended that steel chip sandcrete blocks are suitable for both internal load bearing, and non-load bearing walls, in areas where they are not subjected to moisture ingress. However, for external walls, and in areas where they are liable to moisture attack after laying, the surfaces should be well rendered. Below ground level, the surfaces should be coated with a water
Compressive strength of dental composites photo-activated with different light tips
The aim of this study was to evaluate the compressive strength of microhybrid (Filtek™ Z250) and nanofilled (Filtek™ Supreme XT) composite resins photo-activated with two different light guide tips, fiber optic and polymer, coupled with one LED. The power density was 653 mW cm−2 when using the fiber optic light tip and 596 mW cm−2 with the polymer. After storage in distilled water at 37 ± 2 °C for seven days, the samples were subjected to mechanical testing of compressive strength in an EMIC universal mechanical testing machine with a load cell of 5 kN and speed of 0.5 mm min−1. The statistical analysis was performed using ANOVA with a confidence interval of 95% and Tamhane’s test. The results showed that the mean values of compressive strength were not influenced by the different light tips (p > 0.05). However, a statistical difference was observed (p < 0.001) between the microhybrid composite resin photo-activated with the fiber optic light tip and the nanofilled composite resin. Based on these results, it can be concluded that microhybrid composite resin photo-activated with the fiber optic light tip showed better results than nanofilled, regardless of the tip used, and the type of the light tip did not influence the compressive strength of either composite. Thus, the presented results suggest that both the fiber optic and polymer light guide tips provide adequate compressive strength to be used to make restorations. However, the fiber optic light tip associated with microhybrid composite resin may be an interesting option for restorations mainly in posterior teeth. (paper)
Effect of pH and Lidocaine on the Compressive Strength of Calcium Enriched Mixture Cement
Sobhnamayan F
2015-12-01
Full Text Available Statement of Problem: The pH of the human abscess has been measured as low as 5.0. This low pH could potentially inhibit setting reactions, affect adhesion, or increase the solubility of root end filling materials hence affect the compressive strength. Moreover, root end filling materials might expose or even mix with lidocaine HCL during periapical surgery. Objectives: The aim of this in vitro study was to evaluate the effect of acidic pH and lidocaine on the compressive strength of calcium-enriched mixture (CEM. Materials and Methods: CEM was mixed according to the manufacturer’s instructions or with lidocaine (L, and condensed into 6 × 4 mm split moulds. The samples were exposed to phosphate buffered saline (PBS at pH 5 or 7.4 for 7 or 28 days. Cylindrical blocks of CEM (total number = 120 and 15 for each group were subjected to compressive strength test using a universal testing machine. Data were analysed using three-factor analysis of variance (ANOVA. Results: Regardless of pH and time, significant differences were not found between lidocaine groups and the groups that were mixed according to the manufacturer’s instruction (p = 0.083. For both mixing agents, regardless of time, there were no significant differences between the two pH levels (p = 0.157. Regardless of the material and pH, there was a significant increase in the compressive strength from days 7 to 28 (p < 0.001. Conclusions: Mixtures with lidocaine and exposure to an acidic environment had no adverse effects on the compressive strength of CEM Cement.
Akaninyene Afangide Umoh
2012-12-01
Full Text Available The study examined the effect of periwinkle shell ash as supplementary cementitious material on the compressive strength and static modulus of elasticity of concrete with a view to comparing it’s established relation with an existing model. The shells were calcined at a temperature of 800oC. Specimens were prepared from a mix of designed strength 25N/mm2. The replacement of cement with periwinkle shell ash (PSA was at five levels of 0, 10, 20, 30 and 40% by volume. A total of 90 cubical and cylindrical specimens each were cast and tested at 7, 14, 28, 90, 120 and 180 days. The results revealed that the PSA met the minimum chemical and physical requirements for class C Pozzolans. The compressive strength of the PSA blended cement concrete increased with increase in curing age up to 180 days but decreased as the PSA content increased. The design strength was attained with 10%PSA content at the standard age of 28 days. The static modulus of elasticity of PSA blended cement concrete was observed to increase with increased in curing age and decreases with PSA content. In all the curing ages 0%PSA content recorded higher value than the blended cement concrete. The statistical analysis indicated that the percentage PSA replacement and the curing age have significant effect on the properties of the concrete at 95% confidence level. The relation between compressive strength and static modulus of elasticity fitted into existing model for normal-weight concrete.
Effect of quartz sand on compressive strength of the solid waste composite
Masturi, Marwoto, Putut; Sunarno, Rustad, Supriadi
2016-02-01
A solid waste composite was successfully made. Preliminary, the composite was synthesized using polyurethane (PU) as binder mixed with the solid waste using simple mixing method and then hot-pressed at at pressure of 4 metric-tons and temperature of 80°C for 20 minutes. To enhance its strength, quartz sand partilces with varied content then were added into the PU-solid waste mixture. From the compressive strength test, it was obtained that PU/solid waste composite with PU fraction (w/w) of 0.43 has optimum compressive strength of 38.91 MPa. Having been added quartz sand having average particles size of 0.94 μm, its compressive strength attains maximum at 40.47 MPa for quartz sand fraction (w/w) of 4.27 × 10-3. The strength is comparable to that of clay brick, slate stone, sandstone, limestone, alder wood, aspen wood, black cherry and pine woods. Therefore, this composite is very adequate to compete the building materials such as the bricks, stones and woods.
THE COMPRESSIVE AND FLEXURAL STRENGTHS OF SELF-COMPACTING CONCRETE USING RAW RICE HUSK ASH
MD NOR ATAN
2011-12-01
Full Text Available This study investigates the compressive and flexural strengths of self-compacting concrete incorporating raw rice husk ash, individually and in combination with other types of mineral additives, as partial cement replacement. The additives paired with raw rice husk ash were fine limestone powder, pulverized fuel ash and silica fumes. The mix design was based on the rational method where solid constituents were fixed while water and superplasticizer contents were adjusted to produce optimum viscosity and flowability. All mixes were designed to achieve SF1 class slump-flow with conformity criteria ≥ 520 mm and ≤ 700 mm. Test results show that 15% replacement of cement using raw rice husk ash produced grade 40 concrete. It was also revealed that 30% and 45% cement replacements using raw rice husk ash combined with limestone powder and raw rice husk ash combined with limestone powder and silica fume respectively, produced comparable compressive strength to normal concrete and improved flexural strengths.
The objective of this study is to determine the effect of various sterilization and preservation techniques (autoclave, deep-freeze, freeze-dried, and hydrogen peroxide vapor) done at the Philippine General Hospital Tissue Bank on the compression strength of canine bone allografts. Ninety six bone segments taken from left and right matched pairs of the humerus, radius, femur and tibia were harvested from four dogs. All of the left-sided long bones were placed in the control group and all the right sided long bones were placed in the experimental group. The average weight was 2.29 gm and 2.20 gm for the control and treatment groups, respectively. The average length was 1.8 cm for the control group and 1.8 cm for the treatment group. The average compressive area was 0.55 cm sup 2 and 0.6 cm sup 2 for the control and treatment groups, respectively. In general, all bone blocks treated with autoclave and deep-freeze showed a decrease in compression strength as compared to the control group by an average of 19.88% and 18.37%, respectively Ali bone segments treated with freeze-drying and hydrogen peroxide vapor showed an increase in the compression strength as compared to the control group by an average of 23.48% and 24.63%, respectively
A low cost method of testing compression-after-impact strength of composite laminates
Nettles, Alan T.
1991-01-01
A method was devised to test the compression strength of composite laminate specimens that are much thinner and wider than other tests require. The specimen can be up to 7.62 cm (3 in) wide and as thin as 1.02 mm (.04 in). The best features of the Illinois Institute of Technology Research Institute (IITRI) fixture are combined with an antibuckling jig developed and used at the University of Dayton Research Institute to obtain a method of compression testing thin, wide test coupons on any 20 kip (or larger) loading frame. Up to 83 pct. less composite material is needed for the test coupons compared to the most commonly used compression-after-impact (CAI) tests, which calls for 48 ply thick (approx. 6.12 mm) test coupons. Another advantage of the new method is that composite coupons of the exact lay-up and thickness of production parts can be tested for CAI strength, thus yielding more meaningful results. This new method was used to compression test 8 and 16 ply laminates of T300/934 carbon/epoxy. These results were compared to those obtained using ASTM standard D 3410-87 (Celanese compression test). CAI testing was performed on IM6/3501-6, IM7/SP500 and IM7/F3900. The new test method and associated fixture work well and is a valuable asset to MSFC's damage tolerance program.
Compressive strength and microstructure of carbon nanotubes-fly ash cement composites
In this work, carbon nanotubes of 0.5 and 1% by weight were added for the first time in a fly ash cement system to produce carbon nanotubes-fly ash composites in the form of pastes and mortars. Compressive strengths of the composites were then investigated. It was found that the use of carbon nanotubes resulted in higher strength of fly ash mortars. The highest strength obtained for 20% fly ash cement mortars was found at 1% carbon nanotubes where the compressive strength at 28 days was 51.8 MPa. This benefit can clearly be seen in fly ash cement with fly ash of 20% where the importance of the addition of carbon nanotubes means that the relative strength to that of Portland cement became almost 100% at 28 days. In addition, scanning electron micrographs also showed that good interaction between carbon nanotubes and the fly ash cement matrix is seen with carbon nanotubes acting as a filler resulting in a denser microstructure and higher strength when compared to the reference fly ash mix without CNTs.
Correlation between aggregate quality and compressive strength of andesite from Hungary
Czinder, Balázs; Török, Ákos
2015-04-01
Andesite is one of the most common lithology that is used as aggregate. Testing of aggregate quality traditionally includes Los Angeles, micro-Deval tests and the quality of the stone is assessed according to these values. In the present paper both aggregate properties and strength properties of andesites are compared in order to find correlation between aggregate strength, durability and compressive and tensile strength as well as frost resistance. Tests were made from andesite types obtained from two operating quarries of Nógrádkövesd and Gyöngyössolymos. Uniaxial compressive strength (UCS) values were compared with aggregate test results obtained from the same block. Air dry, water saturated and freeze-thaw subjected specimens were tested. According to lithological description and fabric analyses samples were grouped into 4 main lithotypes: one from Nógrádkövesd and three from Gyöngyössolymos. Fine porphyric andesite from Gyöngyössolymos provided the best micro-Deval values. In terms of uniaxial compressive strength the same trend was found, fine porphyric andesite from Gyöngyössolymos had the highest UCS under laboratory conditions, while coarser porphyritic andesite from the same quarry had lower strength. Water saturation decreased UCS as it was expected. Tensile strength values show a gradual deceases from air dry to water saturated and finally subjected to freeze-thaw cycles. Mean micro-Deval value of fine porphyric Gyöngyössolymos andesite was about 7, while that of the coarser porphyritic andesite was app. 16. These values are still higher than the mean micro-Deval test result of Nógrádkövesd andesite; which was 20. A good correlation was found in between Los Angeles and micro-Deval values, but there was no indication that micro-Deval values correlate well with UCS.
A study with 25 patients was performed in order to find out whether intermittent, sequential, pneumatic leg compression is of value in the preventive management of thrombosis due to its effect on the venous flow rates. For this purpose, xenon 133 was injected into one of the foot veins and the flow rate in each case determined for the distance between instep and inguen using different compression strengths, with pressure being exerted on the ankle, calf and thigh. Increased flow rates were already measured at an average pressure value of 34.5 mmHg, while the maximum effect was achieved by exerting a pressure of 92.5 mmHg, which increased the flow rate by 366% as compared to the baseline value. The results point to a significant improvement of the venous flow rates due to intermittent, sequential, pneumatic leg compression and thus provide evidence to prove the value of this method in the prevention of hemostasis and thrombosis. (TRV)
Strength and texture of Pt compressed to 63 GPa
Angle- and energy-dispersive X-ray diffraction experiments in a radial geometry were performed in the diamond anvil cell on polycrystalline platinum samples at pressures up to 63 GPa. Observed yield strength and texture depend on grain size. For samples with 70–300-nm particle size, the yield strength is 5–6 GPa at ∼60 GPa. Coarse-grained (∼2-μm particles) Pt has a much lower yield strength of 1–1.5 GPa at ∼60 GPa. Face-centered cubic metals Pt and Au have lower strength to shear modulus ratio than body-centered cubic or hexagonal close-packed metals. While a 300-nm particle sample exhibits the 〈110〉 texture expected of face-centered-cubic metals under compression, smaller and larger particles show a weak mixed 〈110〉 and 〈100〉 texture under compression. Differences in texture development may also occur due to deviations from uniaxial stress under compression in the diamond anvil cell
Sair Kahraman; Tekin Yeken
2010-12-01
Electrical resistivity values of 12 different igneous rocks were measured on core samples using a resistivity meter in the laboratory. The resistivity tests were conducted on the samples fully saturated with brine (NaCl solution) and the uniaxial compressive strength (UCS), Brazilian tensile strength, density and porosity values of the samples were determined in the laboratory. The test results were evaluated using simple and multiple regression analysis. It was seen that the UCS and tensile strength values were linearly correlated with the electrical resistivity. The correlation coefficients are generally higher for the multiple regression models than that of the simple regression models. It was concluded that the UCS and tensile strength of igneous rocks can be estimated from electrical resistivity. However, the derived relations are purely empirical and they should be checked for other igneous rocks. The effect of rock types such as sedimentary and metamorphic rocks on the derived equations also needs to be investigated.
Vijaykumar H.K
2014-07-01
Full Text Available In this paper, commercially available Fly Ash and Epoxy is used for the core material, woven glass fabric as reinforcing skin material, epoxy as matrix/adhesive materials used in this study for the construction of sandwich composite. Analysis is carried out on different proportions of epoxy and fly ash sandwiched composite material for determining the flexural strength and compressive strength, three different proportions of epoxy and fly ash used for the study. Those are 65%-35% (65% by weight fly ash and 35% by weight epoxy resin composite material, 60%-40% and 55%-45% composite material. 60%-40% composite material specimen shows better results in the entire test carried out i.e. Flexure and Compression. The complete experimental results are discussed and presented in this paper.
Increasing the compressive strength of portland cement concrete using flat glass powder
This paper analyzes the compressive strength of Portland cement concrete in response to the incorporation of 5%, 10% and 20% of flat glass powder in place of sand, at w/c (water/cement) ratios of 0.50, 0.55 and 0.58. A statistical analysis of variance (ANOVA) was performed after 7, 14 and 28 days of curing. The compressive strength test results indicate that the concrete containing a w/c ratio of 0.50 can be used for structural applications, regardless of the waste glass content, as can that with a w/c ratio of 0.55 containing 20% of waste glass. We suggest that the use of flat glass powder in place of sand in the above mentioned percentages is feasible for the production of an environmentally appropriate and structurally applicable concrete. However, the concrete's fluidity and void content must be taken into account. (author)
Increasing the compressive strength of portland cement concrete using flat glass powder
Miranda Junior, Edson Jansen Pedrosa de; Bezerra, Helton de Jesus Costa Leite; Politi, Flavio Salgado; Paiva, Antonio Ernandes Macedo, E-mail: edson.jansen@ifma.edu.br [Instituto Federal de Educacao, Ciencia e Tecnologia do Maranha (IFMA), Sao Luis, MA (Brazil). Dept. de Mecanica e Materiais
2014-08-15
This paper analyzes the compressive strength of Portland cement concrete in response to the incorporation of 5%, 10% and 20% of flat glass powder in place of sand, at w/c (water/cement) ratios of 0.50, 0.55 and 0.58. A statistical analysis of variance (ANOVA) was performed after 7, 14 and 28 days of curing. The compressive strength test results indicate that the concrete containing a w/c ratio of 0.50 can be used for structural applications, regardless of the waste glass content, as can that with a w/c ratio of 0.55 containing 20% of waste glass. We suggest that the use of flat glass powder in place of sand in the above mentioned percentages is feasible for the production of an environmentally appropriate and structurally applicable concrete. However, the concrete's fluidity and void content must be taken into account. (author)
Predicting Concrete Compressive Strength and Modulus of Rupture Using Different NDT Techniques
Wilfrido Martínez-Molina
2014-01-01
Full Text Available Quality tests applied to hydraulic concrete such as compressive, tension, and bending strength are used to guarantee proper characteristics of materials. All these assessments are performed by destructive tests (DTs. The trend is to carry out quality analysis using nondestructive tests (NDTs as has been widely used for decades. This paper proposes a framework for predicting concrete compressive strength and modulus of rupture by combining data from four NDTs: electrical resistivity, ultrasonic pulse velocity, resonant frequency, and hammer test rebound with DTs data. The model, determined from the multiple linear regression technique, produces accurate indicators predictions and categorizes the importance of each NDT estimate. However, the model is identified from all the possible linear combinations of the available NDT, and it was selected using a cross-validation technique. Furthermore, the generality of the model was assessed by comparing results from additional specimens fabricated afterwards.
Sakshi Gupta
2015-12-01
Full Text Available In this paper, application of fuzzy logic technique using triangular membership function for developing models for predicting compressive strength of concrete with partial replacement of cement with nanosilica has been carried out. For this, the data have been taken from various literatures and help in optimizing the constituents available and reducing cost and efforts in studying design to develop mixes by predefining suitable range for experimenting. The use of nanostructured materials in concrete can add many benefits that are directly related to the durability of various cementitious materials, besides the fact that it is possible to reduce the quantities of cement in the composite. Successful prediction by the model indicates that fuzzy logic could be a useful modelling tool for engineers and research scientists in the area of cement and concrete. Compressive strength values of concrete can be predicted in fuzzy logic models without attempting any experiments in a quite short period of time with tiny error rates.
Due to the brittle character of the material an indirect method (diametrical and axial compression testing) was adopted for tensile strength determination. Two lots of compacts were prepared from salt powder, by pressing it in steel dyes by means of a hydraulic press. For uniaxial tests, cylindrical compacts were used. Biaxial tests were done on disk-shaped compacts, each disk having a diametrical V-shaped cut on one of its plane areas. The punches used for compression tests, were designed to obtain a ratio of 1.2 between their curvature radius and sample radius. At the same time with the tensile strength, the stress intensity factor (KIC and KIIC values) has been obtained. The results obtained are in good agreement with the mechanical properties of the salt, previously reported. (Authors)
EXPERIMENTAL STUDY ON EFFECT OF VARIOUS FACTORS ON COMPRESSIVE STRENGTH OF CONCRETE
Hanifi BİNİCİ
2000-03-01
Full Text Available In this study, the factors affecting at the compressive strength of the concrete were determined. According the result of the test, the quality of concrete, which was used, is very low. Cement, analysis of aggregates for concrete, compacting, mixing placing and curing of concrete, and the techniques of the production of concrete have effected by different ratio of the quality of concrete.
Kruszka Leopold; Moćko Wojciech; Fenu Luigi; Cadoni Ezio
2015-01-01
Specimen reinforced with glass and basalt fibers were prepared using Standard Portland cement (CEM I, 52.5 R as prescribed by EN 197-1) and standard sand, in accordance with EN 196-1. From this cementitious mixture, a reference cement mortar without fibers was first prepared. Compressive strength, modulus of elasticity, and mod of fracture were determined for all specimens. Static and dynamic properties were investigated using Instron testing machine and split Hopkinson pressure bar, respecti...
U.J. Alengaram; Jumaat, M. Z.; H. Mahmud
2008-01-01
This study reports the effect of cementitious materials, fine and coarse aggregates content on workability and compressive strength of palm kernel shell concrete. Palm kernel shells a by product of the production of palm oil, were used as lightweight aggregates. The following cementitious materials were added: 10% silica fume as additional cementitious material and 5% fly ash as cement replacement on weight of cement. The influence of varying fine aggregate and palm kernel shell content...
Strength of Tubular Joints Made by Electromagnetic Compression at Quasistatic and Cyclic Loading
Barreiro, P.; Beerwald, C.; Homberg, W.; Kleiner, M.; Löhe, D.; Marré, M.; Schulze, V.
2006-01-01
Electromagnetic compression of tubular profiles with high electrical conductivity is an innovative joining process for lightweight structures. The components are joined using pulsed magnetic fields which apply radial pressures of up to 200 MPa to tubular workpieces, causing a symmetric reduction of the diameter with typical strain rates of up to 10^4 sec^(-1). This process avoids any surface damage of the workpiece because there is no contact between component and forming tool. The strength o...
PENGARUH KETEBALAN SEMEN BASE POLIKARBOKSILAT TERHADAP COMPRESSIVE STRENGTH AMALGAM HIGH COPPER
Angreani W, Olivia
2007-01-01
Amalgam merupakan salah satu bahan restorasi gigi yang populer dan sering digunakan sampai saat ini. Selain kuat menahan daya kunyah, penggunaannya sederhana dan harganya terjangkau. Compressive strength amalgam high copper adalah daya tahan bahan restorasi amalgam high copper terhadap kekuatan tekan sampai bahan tersebut pecah. Semen polikarboksilat dikembangkan pada tahun 1960 oleh Dennis Smith dalam sebuah usaha untuk menghindari kemungkinan kerusakan pulpa yang dihubungkan dengan pH rend...
EFFECT OF NATURAL ZEOLITE ON THE COMPRESSIVE STRENGTH AND FREEZE-THAW RESISTANCE OF PORTLAND CEMENT
Bayartsetseg, E.; Lkhagvajargal, G.; Batgerel, D.; Sarangerel, D.; Ochirkhuyag, B
2011-01-01
Effects of zeolites in various natural deposits as replacement cementing material on mechanical performance of Portland cement were studied. The blended cement pastes with zeolites were cured at room temperature in air for various durations (1, 7 and 28 days). Mechanical performance of the blended cement samples such as setting time, volume of water, compressive strength, normal consistency and freeze-thaw resistance of the mortar are determined. The optimal substitution ratio was 20 wt. % of...
Uniaxial compressive strength prediction of jet grouting columns using support vector machines
Tinoco, Joaquim Agostinho Barbosa; Correia, A. Gomes; Cortez, Paulo
2011-01-01
Uniaxial compressive strength (UCS) is the mechanical properties currently used in geotechnical works design, namely in jet grouting (JG) treatments. However, when working with this soil improvement technology, due to its inherent geological complexity and high number of variables involved, such design is a hard, perhaps very hard task. To help in such task, a support vector machine (SVM), which is a data mining algorithm particularly adequate to explore high number of complex data, was train...
Xingang Wang; Inkyu Rhee; Yao Wang; Yunping Xi
2014-01-01
This study investigated compressive strength, chloride penetration, and freeze-thaw resistance of multiwalled carbon nanotube (MWNT) concrete. More than 100 cylindrical specimens were used to assess test variables during sensitivity observations, including water-cement ratios (0.75, 0.5, and 0.4) and exposure to chemical agents (including gum arabic, propanol, ethanol, sodium polyacrylate, methylcellulose, sodium dodecyl sulfate, and silane). To determine the adequate sonication time for MWNT...
Compression-after-impact strength of sandwich panels with core crushing damage
Shipsha, Andrey; Zenkert, Dan
2005-01-01
Compression-after-impact (CAI) strength of foam-cored sandwich panels with composite face sheets is investigated experimentally. The low-velocity impact by a semi-spherical (blunt) projectile is considered, producing a damage mainly in a form of core crushing accompanied by a permanent indentation (residual dent) in the face sheet. Instrumentation of the panels by strain gauges and digital speckle photography analysis are used to study the effect of damage on failure mechanisms in the panel. ...
THE COMPRESSIVE AND FLEXURAL STRENGTHS OF SELF-COMPACTING CONCRETE USING RAW RICE HUSK ASH
MD NOR ATAN; HANIZAM AWANG
2011-01-01
This study investigates the compressive and flexural strengths of self-compacting concrete incorporating raw rice husk ash, individually and in combination with other types of mineral additives, as partial cement replacement. The additives paired with raw rice husk ash were fine limestone powder, pulverized fuel ash and silica fumes. The mix design was based on the rational method where solid constituents were fixed while water and superplasticizer contents were adjusted to produce optimum vi...
Effect of compressive prestress on the Young's modulus and strength of isotropic graphite
It is well known that properties, such as Young's modulus, strength and so on, change when compressive or tensile prestresses are applied to graphite materials at room temperature. It is important from the designer's standpoint in the sense that it should be taken into consideration for the structural design of the graphite components if there is an effect of prestresses at high temperature on the mechanical properties. In this study compressive prestresses were applied to an isotropic fine-grained graphite at room temperature (RT) and high temperature (2010 deg. C). As a result decrease in Young's modulus due to high temperature prestressing was 56% which was much larger than the 6.4% that was due to RT prestressing. This finding was considered to be due primarily to difference in degree of preferred orientation of crystallites in the graphite on the basis of Bacon anisotropy factor (BAF) from X-ray diffraction measurement of the prestressed specimens. Furthermore, high temperature compressive prestressing produced an increase in the strength of the isotropic graphite, although room temperature prestressing produced no such effect. The results obtained here suggest that isotropic graphite which is subjected to high-temperature compressive stress becomes anisotropic. It is concluded that it should be considered in the design stage of the reactors that the anisotropy may change after long term operation of high temperature gas-cooled reactors. (author). 6 refs, 8 figs, 3 tabs
Superplasticized Portland cement: Production and compressive strength of mortars and concrete
Bouzoubaa, N.; Zhang, M.H.; Malhotra, V.M. [Natural Resources Canada, Ottawa, Ontario (Canada)
1998-12-01
This paper deals with the effect of intergrinding different percentages of a naphthalene-based superplasticizer with Portland cement clinker and gypsum on the fineness of the product, and on the water requirement and the compressive strength of the mortars made with the superplasticized cement. The properties of the fresh and hardened concrete made with the superplasticized cements were also investigated. The results showed that the intergrinding of a given amount of a naphthalene-based superplasticizer with Portland clinker and gypsum reduced the grinding time required for obtaining the same Blaine fineness as that of the control Portland cement without the superplasticizer. The water requirement of the mortars made with the superplasticized cements was similar to that of the mortars made with the control Portland cements when the same amount of the superplasticizer was added at the mortar mixer; for a given grinding time and a Blaine fineness of {approximately}4500 cm{sup 2}/g, the mortars made with the superplasticized cement had higher compressive strength than those made with the control Portland cement. For a given grinding time or Blaine fineness of cement {ge}5000 cm{sup 2}/g, the slump loss, air content stability, bleeding, autogenous temperature rise, setting times, and compressive strength of the concrete made with the superplasticized cements were generally comparable to those of the concrete made with the control Portland cements when the superplasticizer was added at the concrete mixer.
Investigation of compressive strength of concrete with slag and silica fu
Without doubt, concrete has special place in construction of different types of structures, and used as one of the most important materials in construction industry. Today, with development and modernization of human knowledge in construction industry, it is possible to reach high performance concrete. Mechanical properties and durability of high performance concrete is quite better than that of conventional concrete. In present, the use of supplementary cementitious materials, mainly silica fume, fly ash and blast furnace slag has become increasingly common for reasons of economy and technical benefits imparted by these materials. The aim of present research is investigation and comparison compressive strength of concrete specimens due to variation of water to cementitious materials ratio (W/C M), silica fume and slag percent and their proportions as cement replacement. Furthermore, it is intended to determine best combination of these materials with cement in concrete (optimum percent) to reach to maximum compressive strength. In the current study, specimens were made in 0.5,0.4 and 0.3 W/C M ratio contained 0,20,35 and 50 percent of slag as cement replacement, where in each slag replacement percent, 0, 5, 10 and 15 percent of of silica fume were used as cement replacement. Results of the current study show that the combination effect of slag and silica fume replacement in concrete leads to the maximum compressive strength in concrete; also there are some optimum percents for replacement of slag and silica fume to cement to get the best results
Determination of dynamic shear strength of 2024 aluminum alloy under shock compression
Zhang, H. S.; Yan, M.; Wang, H. Y.; Shen, L. T.; Dai, L. H.
2016-04-01
A series of plate impact shock-reshock and shock-release experiments were conducted by using an one-stage light gas gun to determine the critical shear strength of the 2024 aluminum alloy under shock compression levels ranging from 0.66 to 3.05 GPa in the present study. In the experiments, a dual flyer plate assembly, i.e., the 2024 aluminum alloy flyer backed either by a brass plate or a PMMA plate, was utilized to produce reshock or release wave. The stress profiles of uniaxial plane strain wave propagation in the 2024 aluminum alloy sample under different pre-compressed states were measured by the embedded stress gauges. The stress-strain data at corresponding states were then calculated by a Lagrangian analysis method named as path line method. The critical shear strengths at different stress levels were finally obtained by self-consistent method. The results show that, at the low shock compression level (0.66 to 3.05 GPa), the critical shear strength of the 2024 aluminum alloy cannot be ignored and increases with the increasing longitudinal stress, which may be attributed to rate-dependence and/or pressure dependent yield behavior of the 2024 aluminum alloy.
Determination of dynamic shear strength of 2024 aluminum alloy under shock compression
H. S. Zhang
2016-04-01
Full Text Available A series of plate impact shock-reshock and shock-release experiments were conducted by using an one-stage light gas gun to determine the critical shear strength of the 2024 aluminum alloy under shock compression levels ranging from 0.66 to 3.05 GPa in the present study. In the experiments, a dual flyer plate assembly, i.e., the 2024 aluminum alloy flyer backed either by a brass plate or a PMMA plate, was utilized to produce reshock or release wave. The stress profiles of uniaxial plane strain wave propagation in the 2024 aluminum alloy sample under different pre-compressed states were measured by the embedded stress gauges. The stress-strain data at corresponding states were then calculated by a Lagrangian analysis method named as path line method. The critical shear strengths at different stress levels were finally obtained by self-consistent method. The results show that, at the low shock compression level (0.66 to 3.05 GPa, the critical shear strength of the 2024 aluminum alloy cannot be ignored and increases with the increasing longitudinal stress, which may be attributed to rate-dependence and/or pressure dependent yield behavior of the 2024 aluminum alloy.
Prediction of compression strength of high performance concrete using artificial neural networks
High-strength concrete is undoubtedly one of the most innovative materials in construction. Its manufacture is simple and is carried out starting from essential components (water, cement, fine and aggregates) and a number of additives. Their proportions have a high influence on the final strength of the product. This relations do not seem to follow a mathematical formula and yet their knowledge is crucial to optimize the quantities of raw materials used in the manufacture of concrete. Of all mechanical properties, concrete compressive strength at 28 days is most often used for quality control. Therefore, it would be important to have a tool to numerically model such relationships, even before processing. In this aspect, artificial neural networks have proven to be a powerful modeling tool especially when obtaining a result with higher reliability than knowledge of the relationships between the variables involved in the process. This research has designed an artificial neural network to model the compressive strength of concrete based on their manufacturing parameters, obtaining correlations of the order of 0.94
Standard test method for compressive (crushing) strength of fired whiteware materials
American Society for Testing and Materials. Philadelphia
1988-01-01
1.1 This test method covers two test procedures (A and B) for the determination of the compressive strength of fired whiteware materials. 1.2 Procedure A is generally applicable to whiteware products of low- to moderately high-strength levels (up to 150 000 psi or 1030 MPa). 1.3 Procedure B is specifically devised for testing of high-strength ceramics (over 100 000 psi or 690 MPa). 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
Huai-Shuai Shang
2012-01-01
Full Text Available An experimental study of C20, C25, C30, C40, and C50 big mobility concrete cubes that came from laboratory and construction site was completed. Nondestructive testing (NDT was carried out using impact rebound hammer (IRH techniques to establish a correlation between the compressive strengths and the rebound number. The local curve for measuring strength of the regression method is set up and its superiority is proved. The rebound method presented is simple, quick, and reliable and covers wide ranges of concrete strengths. The rebound method can be easily applied to concrete specimens as well as existing concrete structures. The final results were compared with previous ones from the literature and also with actual results obtained from samples extracted from existing structures.
Hidayat, Irpan; Siauwantara, Alice
2014-03-01
The value of the density normal concrete which ranges between 2200-2400 kg/m3. Therefore the use of Expanded Polystyrene (EPS) as a subitute to fine aggregate can reduce the density of concrete. The purpose this research is to reduce the density of normal concrete but increase compressive strength of EPS concrete, with use surfactant as coating for the EPS. Variables of substitution percentage of EPS and EPS coated by surfactant are 5%,10%,15%,20%,25%. Method of concrete mix design based on SNI 03-2834-2000 "Tata Cara Pembuatan Rencana Campuran Beton Normal (Provisions for Proportioning Normal Concrete Mixture)". The result of testing, every increase percentage of EPS substitution will decrease the compressive strength around 1,74 MPa and decrease density 34,03 kg/m3. Using Surfactant as coating of EPS , compressive strength increase from the EPS's compressive strength. Average of increasing compressive strength 0,19 MPa and increase the density 20,03 kg/m3,average decrease of the tensile split strength EPS coated surfaktan is 0,84 MPa.
Hidayat Irpan
2014-03-01
Full Text Available The value of the density normal concrete which ranges between 2200–2400 kg/m3. Therefore the use of Expanded Polystyrene (EPS as a subitute to fine aggregate can reduce the density of concrete. The purpose this research is to reduce the density of normal concrete but increase compressive strength of EPS concrete, with use surfactant as coating for the EPS. Variables of substitution percentage of EPS and EPS coated by surfactant are 5%,10%,15%,20%,25%. Method of concrete mix design based on SNI 03-2834-2000 “Tata Cara Pembuatan Rencana Campuran Beton Normal (Provisions for Proportioning Normal Concrete Mixture”. The result of testing, every increase percentage of EPS substitution will decrease the compressive strength around 1,74 MPa and decrease density 34,03 kg/m3. Using Surfactant as coating of EPS , compressive strength increase from the EPS’s compressive strength. Average of increasing compressive strength 0,19 MPa and increase the density 20,03 kg/m3,average decrease of the tensile split strength EPS coated surfaktan is 0,84 MPa.
Influence of curing regimes on compressive strength of ultra high performance concrete
Prabhat Ranjan Prem; B H Bharatkumar; Nagesh R Iyer
2013-12-01
The present paper is aimed to identify an efficient curing regime for ultra high performance concrete (UHPC), to achieve a target compressive strength more than 150 MPa, using indigenous materials. The thermal regime plays a vital role due to the limited fineness of ingredients and low water/binder ratio. By activation of the reaction kinetics, the effectiveness of the binder is enhanced which leads to improvements in mechanical as well as durability properties. The curing cycle employed are ambient air curing, water curing and hot air curing. The specimens were exposed to thermal regime at (90°C/150°C/200°C) for duration of 24, 48 or 72 hours at the age of 3rd and 7th day followed with air curing or water curing till 28 days. The results showed a marked difference in compressive strength ranging from 217 to 142 MPa with change in curing regimes. The samples when thermally cured at the age of 3rd and 7th day produced an average ultimate strength of 217–152 MPa and 196–150 MPa, respectively.
Compressive Strength of Steel Frames after Welding with Micro-Jet Cooling
Hadryś D.
2016-03-01
Full Text Available Low carbon steel weld structures generally exhibit a very linear stress-strain relationship. In the study of strength of materials, the compressive strength is the capacity of a material or structure to withstand loads tending to reduce size of structure. It is mainly measured by plotting applied force against deformation in a testing machine. Compressive strength is a main key value for design of welded structures.The main goal of that paper was analysing of plastic properties of frame welds which were made with various parameters of micro-jet cooling. New technology of micro-jet welding could be regarded as a new way to improve plastic properties of welds. It allows to obtain welds with better mechanical properties in comparison to ordinary welding method. Furthermore it is possible to steering of weld structure and properties of the weld. There were given main information about influence of various micro-jet gases on metallographic and properties of structure steel welds.
Highlights: • The addition of NS compensates low early age compressive strength of HVFA system. • NS also contributes to later age compressive strength gain of HVFA system. • The XRD results confirm the reduction of CH in HVFA paste due to addition of NS. - Abstract: This paper presents the effect of nano silica (NS) on the compressive strength of mortars and concretes containing different high volume fly ash (HVFA) contents ranging from 40% to 70% (by weight) as partial replacement of cement. The compressive strength of mortars is measured at 7 and 28 days and that for concretes is measured at 3, 7, 28, 56 and 90 days. The effects of NS in microstructure development and pozzolanic reaction of pastes containing above HVFA contents are also studied through backscattered electron (BSE) image and X-ray diffraction (XRD) analysis. Results show that among different NS contents ranging from 1% to 6%, cement mortar containing 2% NS exhibited highest 7 and 28 days compressive strength. This NS content (2%) is then added to the HVFA mortars and concretes and the results show that the addition of 2% NS improved the early age (7 days) compressive strength of mortars containing 40% and 50% fly ash by 5% and 7%, respectively. However, this improvement is not observed at high fly ash contents beyond 50%. On the other hand, all HVFA mortars exhibited improvement in 28 days compressive strength due to addition of 2% NS and the most significant improvement is noticed in mortars containing more than 50% fly ash. In HVFA concretes, the improvement of early age (3 days) compressive strength is also noticed due to addition of 2% NS. The BSE and XRD analysis results also support the above findings
Sutarno, Soepriyanto, Syoni; Korda, Akhmad A.; Dirgantara, Tatacipta
2015-09-01
The physical mechanical properties of Al-7000 aluminium foam product and processing has been evaluated in this study. The characterization through the compressive testing refers to flatwise direction provided more confident result than edgewise direction. This experiment may correlate with formation of side products of calcia alumina and alumina silica that involved in metal mixture of aluminium foam. These compounds are formed from additional calcium carbonate and silica in the mixture. Calcium carbonate (CaCO3) roles as a blowing agent source of carbon dioxide (CO2). The formation of calcia alumina (CaO.Al2O3) may role to strengthen of cell wall of aluminium foam and to improve the viscosity of melting metal. The Al-7000 aluminium foam indicated a decrease of compressive strength probably due to existence of alumina silica (3Al2O3.SiO2) in the metal mixture.
Jaidka, Shipra; Somani, Rani; Singh, Deepti J.; Shafat, Shazia
2016-01-01
Aim: To comparatively evaluate the compressive strength, diametral tensile strength, and shear bond strength of glass ionomer cement type IX, chlorhexidine-incorporated glass ionomer cement, and triclosan-incorporated glass ionomer cement. Materials and Methods: In this study, glass ionomer cement type IX was used as a control. Chlorhexidine diacetate, and triclosan were added to glass ionomer cement type IX powder, respectively, in order to obtain 0.5, 1.25, and 2.5% concentrations of the respective experimental groups. Compressive strength, diametral tensile strength, and shear bond strength were evaluated after 24 h using Instron Universal Testing Machine. The results obtained were statistically analyzed using the independent t-test, Dunnett test, and Tukey test. Results: There was no statistical difference in the compressive strength, diametral tensile strength, and shear bond strength of glass ionomer cement type IX (control), 0.5% triclosan-glass ionomer cement, and 0.5% chlorhexidine-glass ionomer cement. Conclusion: The present study suggests that the compressive strength, diametral tensile strength, and shear bond strength of 0.5% triclosan-glass ionomer cement and 0.5% chlorhexidine-glass ionomer cement were similar to those of the glass ionomer cement type IX, discernibly signifying that these can be considered as viable options for use in pediatric dentistry with the additional value of antimicrobial property along with physical properties within the higher acceptable range. PMID:27195231
Alexandre Costa Reis BRITO
2007-05-01
Full Text Available Purpose: To compare the compressive strength of two commercially available laboratorial resins - Solidex® (Shofu and Cristobal® (Dentsply - to that of a direct composite resin (Concept®; Vigodent, as a control group.Method: Five specimens of each tested material were fabricated using stainless steel matrices with the following dimensions: 8 mm of internal diameter on the base, 9 mm of internal diameter on the top and 4 mm of height. The specimens were stored in distilled water for 72 hours and submitted to an axial load by the action of a 2-mm-diameter round-end tip adapted to a universal testing machine (EMIC 500. A 200 kgf load cell was used running at a crosshead speed of 0.5 mm/min. The load and the point of failure were recorded. Results: Means, in kgf, were: Concept® (Ct = 124.26; Cristobal® (C =184.63; Solidex® (S =173.58. Data (means and standard deviations were analyzed statistically by ANOVA and Tukey’s for comparisons among the groups using the SPSS software (version 10.0. Significance level was set at á=0.05 (95%. Concept® presented significantly lower (p<0.05 compressive strength than the other two materials, Cristobal® and Solidex®, which, in turn, did not differ significantly to each other.Conclusion: Cristobal® and Solidex® laboratorial resins did not show significant difference to each other and both presented compressive strength significantly higher than that of Concept® direct resin.
Ortega, J. M.
2014-03-01
Full Text Available Special foundations, most prominently micropiles and soil anchors, are frequently used in construction today. In Spain, the grout for these special technical applications is generally prepared with portland cement, although the codes and standards in place stipulate only the minimum compressive strength required, with no mention of cement type. Those texts also establish a range of acceptable water:cement ratios. In the present study, durability and compressive strength in cement grout prepared with blast furnace slag cement at different w/c ratios are characterised and compared to the findings for a reference portland cement grout. The results show that slag grout exhibits greater durability than the portland cement material and complies with the compressive strength requirements laid down in the respective codes.Actualmente es muy frecuente el empleo de cimentaciones especiales, entre las que destacan los micropilotes y los anclajes. En España, las lechadas de cemento para estos trabajos geotécnicos especiales se preparan habitualmente con cemento Portland, aunque las diferentes normativas al respecto no restringen el tipo de cemento a emplear, siempre que se alcance una determinada resistencia a compresión. Respecto a la dosificación de las lechadas, la normativa permite emplear diferentes relaciones agua/cemento dentro de un determinado rango. En vista de ello, en este trabajo se han caracterizado las propiedades de durabilidad y resistencia a compresión de lechadas de cemento preparadas con un cemento con escoria de alto horno y con diferentes relaciones a/c, tomando como referencia de comportamiento lechadas de cemento Portland. El uso de un cemento con escoria conlleva una mejora en la durabilidad de las lechadas, cumpliendo los requisitos de resistencia a compresión establecidos por la normativa.
Mishra, A. Deepak; Srigyan, M.; Basu, A.; Rokade, P. J.
2015-01-01
Roč. 80, December 2015 (2015), s. 418-424. ISSN 1365-1609 Institutional support: RVO:68145535 Keywords : uniaxial compressive strength * rock indices * fuzzy inference system * artificial neural network * adaptive neuro-fuzzy inference system Subject RIV: DH - Mining , incl. Coal Mining Impact factor: 1.686, year: 2014 http://ac.els-cdn.com/S1365160915300708/1-s2.0-S1365160915300708-main.pdf?_tid=318a7cec-8929-11e5-a3b8-00000aacb35f&acdnat=1447324752_2a9d947b573773f88da353a16f850eac
Mishra, A. Deepak; Srigyan, M.; Basu, A.; Rokade, P. J.
2015-01-01
Roč. 80, December 2015 (2015), s. 418-424. ISSN 1365-1609 Institutional support: RVO:68145535 Keywords : uniaxial compressive strength * rock indices * fuzzy inference system * artificial neural network * adaptive neuro-fuzzy inference system Subject RIV: DH - Mining, incl. Coal Mining Impact factor: 1.686, year: 2014 http://ac.els-cdn.com/S1365160915300708/1-s2.0-S1365160915300708-main.pdf?_tid=318a7cec-8929-11e5-a3b8-00000aacb35f&acdnat=1447324752_2a9d947b573773f88da353a16f850eac
Santos Cristina Calmeiro; Rodrigues João Paulo C.
2013-01-01
This paper presents the results of a research work on the evaluation of the compressive strength at high temperatures of a concrete made with recycled tire steel and textile fibers. It was considered five different concrete compositions, with a water/cement ratio (W/C = 0.43), differ only in the type and amount of fibers. The compositions with smaller amounts of textile fibers were those that gave better results. The compositions with steel fibers showed a less explosive rupture showing the e...
Santos Cristina Calmeiro
2013-09-01
Full Text Available This paper presents the results of a research work on the evaluation of the compressive strength at high temperatures of a concrete made with recycled tire steel and textile fibers. It was considered five different concrete compositions, with a water/cement ratio (W/C = 0.43, differ only in the type and amount of fibers. The compositions with smaller amounts of textile fibers were those that gave better results. The compositions with steel fibers showed a less explosive rupture showing the effectiveness of this type of fibers in the spalling and cracking control.
ALKALI-ACTIVATION KINETICS OF PHOSPHORUS SLAG CEMENT USING COMPRESSIVE STRENGTH DATA
Hojjatollah Maghsoodloorad; Ali Allahverdi
2015-01-01
In this research, through compressive strength data, the order and kinetics of alkali-activation of phosphorus slag activated with two compound activators of NaOH + Na2CO3 and Na2CO3 + Ca(OH)2, has been evaluated. The kinetics and order of alkali activation is a key factor to forecasting the mechanical behavior of alkali activated cement at different curing time and temperatures without carrying out experimental tests. The apparent activation energy was obtained as 35.6 kJ.mol-1 and 60.7 kJ.m...
Mirza Aryanto
2013-06-01
Full Text Available Background: The use of different polymerization methods may result in variation of mechanical properties of composite resin. Polymerization increases the conversion rate of monomers reflecting in improvement of compressive strength. Post-curing methods can be used to increase strength to the composite resin. Purpose: To determine the difference of compressive strength of post cured hybrid composite resin by using three different size of lightbox. Methods: This research was conducted in a true in vitro experiment. Research carried out by making a tube-shaped cylinder hybrid with 3 mm diameter and 6 mm height composite resin samples post cured by using 3 different size of light box, 3 cm x 3 cm x 3 cm (A, 4 cm x 4 cm x 4 cm (B 6 cm x 6 cm x 6 cm (C, and a non post-curing control. Compressive strength test was then performed using a universal testing machine. Each sample was tested and averaged to obtain values in order to be analyzed statistically using ANOVA and multiple comparison. Results: There is an increase in compressive strength of each group, namely group A (172.9460 MPa, B (154.821 MPa, C (154.0789 MPa and control (123.3550 MPa, and a statistically significant difference (F<0.05. Conclusion: The smaller size of the lightbox is used, the higher the compressive strength of composite resin.Latar belakang: Penggunaan berbagai metode polimerisasi dapat mengubah sifat mekanis resin komposit. Proses polimerisasi dapat meningkatkan derajat konversi monomer, sehingga dapat meningkatkan compressive strength resin komposit. Metode post curing dapat digunakan untuk menambah kekuatan resin komposit. Tujuan: Untuk mengetahui perbedaan compressive strength resin komposit hybrid yang dilakukan post curing menggunakan tiga ukuran lightbox yang berbeda. Metode: Jenis penelitian ini adalah eksperimental murni yang dilakukan secara in vitro. Penelitian dilakukan dengan membuat sampel resin komposit hybrid berbentuk tabung silinder dengan diameter 3 mm dan
Ahmadian Khoshemehr Leila
2009-09-01
Full Text Available Background: Luting agents are used to attach indirect restoration into or on the tooth. Poor mechanical properties of cement may be a cause of fracture of this layer and lead to caries and restoration removal. The purpose of this study was to compare the elastic modulus and compressive strength of Ariadent (A Poly and Harvard polycarboxylate (H Poly cements and Vitremer resin modified glass ionomer (RGl.Materials & Methods: In this experimental study 15 specimens were prepared form each experimental cement in Laboratory of Tehran Oil Refining Company. The cylindrical specimens were compressed in Instron machine after 24 hours. Elastic modulus and compressive strength were calculated from stress/strain curve of each specimen. One way ANOVA and Tukey tests were used for statistical analysis and P values<0.05 were considered to be statistically significant.Results: The mean elastic modulus and mean compressive strength were 2.2 GPa and 87.8MPa in H poly, 2.4 GPa and 56.5 MPa in A Poly, and 0.8GPa and 105.6 MPa in RGI, respectively. Statistical analysis showed that compressive strength and elastic modulus of both polycarboxylate cements were significantly different from hybrid ionomer (P<0.05, but the difference between elastic modulus of two types of polycarboxilate cements was not statistically significant. Compressive strength of two polycarboxilate cements were significantly different (P<0.05. Conclusion: An ideal lutting agent must have the best mechanical properties. Between the tested luttins RGl cement had the lowest elastic modulus and the highest compressive strength, but the A poly cement had the highest elastic modulus and the lowest compressive strength. Therefore none of them was the best.
Ultimate uniaxial compressive strength of stiffened panel with opening under lateral pressure
Yu Chang-Li
2015-06-01
Full Text Available This paper concentrated on the ultimate uniaxial compressive strength of stiffened panel with opening under lateral load and also studied the design-oriented formulae. For this purpose, three series of well executed experiments on longitudinal stiffened panel with rectangular opening subjected to the combined load have been selected as test models. The finite element analysis package, ABAQUS, is used for simulation with considering the large elasticplastic deflection behavior of stiffened panels. The feasibility of the numerical procedure is verified by a good agreement of experimental results and numerical results. More cases studies are executed employing nonlinear finite element method to analyze the influence of design variables on the ultimate strength of stiffened panel with opening under combined pressure. Based on data, two design formulae corresponding to different opening types are fitted, and accuracy of them is illustrated to demonstrate that they could be applied to basic design of practical engineering structure.
Higher compressive strengths and the Bauschinger effect in conformally passivated copper nanopillars
Our current understanding of size-dependent strength in nano- and microscale crystals is centered around the idea that the overall strength is determined by the stress required to propagate dislocation sources. The nature and type of these dislocation sources is the subject of extensive debate, however, one commonality amongst these theories is that the ability of the free surface to absorb dislocations is a necessary condition for transition to a source controlled regime. In this work we demonstrate that atomic layer deposition (ALD) of conformal 5–25 nm thick TiO2/Al2O3 coatings onto electroplated single crystalline copper pillars with diameters ranging from 75 nm to 1 μm generally inhibits the ability of a dislocation to vanish at the free surface. Uniaxial compression tests reveal increased strength and hardening relative to uncoated pillars at equivalent diameters, as well as a notable recovery of plastic strain during unloading, i.e. the Bauschinger effect. Unlike previous reports, these coated pillars retained the stochastic signature in their stress–strain curves. We explain these observations within the framework of a size-dependent strength theory based on a single arm source model, dislocation theory, and microstructural analysis by transmission electron microscopy.
The effects of aging on compressive strength of low-level radioactive waste form samples
The Field Lysimeter Investigations: Low-Level Waste Data Base Development Program, funded by the US Nuclear Regulatory Commission (NRC), is (a) studying the degradation effects in organic ion-exchange resins caused by radiation, (b) examining the adequacy of test procedures recommended in the Branch Technical Position on Waste Form to meet the requirements of 10 CFR 61 using solidified ion-exchange resins, (c) obtaining performance information on solidified ion-exchange resins in a disposal environment, and (d) determining the condition of liners used to dispose ion-exchange resins. Compressive tests were performed periodically over a 12-year period as part of the Technical Position testing. Results of that compressive testing are presented and discussed. During the study, both portland type I-II cement and Dow vinyl ester-styrene waste form samples were tested. This testing was designed to examine the effects of aging caused by self-irradiation on the compressive strength of the waste forms. Also presented is a brief summary of the results of waste form characterization, which has been conducted in 1986, using tests recommended in the Technical Position on Waste Form. The aging test results are compared to the results of those earlier tests. 14 refs., 52 figs., 5 tabs
Uniaxial compression test series on Bullfrog Tuff
Nineteen uniaxial compressive experiments were performed on samples of the Bullfrog Member of the Crater Flat Tuff, obtained from drillhole USW-G1 at Yucca Mountain on the Nevada Test Site. The water saturated samples were deformed at a nominal strain rate of 10-5 sec-1, atmospheric pressure and room temperature. Resultant unconfined compressive strengths, axial strains to failure, Young's moduli and Poisson's ratios ranged from 4.63 to 153. MPa, .0028 to .0058, 2.03 to 28.9 GPa and .08 to .16, respectively
Sherif El-Gamal
2015-01-01
Full Text Available Due to their high strength, corrosion resistance, and durability, fiber reinforced polymers (FRP are very attractive for civil engineering applications. One of these applications is the strengthening of concrete columns with FRP sheets. The performance of this strengthening technique at elevated temperature is still questionable and needs more investigations. This research investigates the effects of exposure to high temperatures on the compressive strength of concrete cylinders wrapped with glass and carbon FRP sheets. Test specimens consisted of 30 unwrapped and 60 wrapped concrete cylinders. All specimens were exposed to temperatures of 100, 200, and 300°C for periods of 1, 2, and 3 hours. The compressive strengths of the unwrapped concrete cylinders were compared with their counterparts of the wrapped cylinders. For the unwrapped cylinders, test results showed that the elevated temperatures considered in this study had almost no effect on their compressive strength; however, the wrapped specimens were significantly affected, especially those wrapped with GFRP sheets. The compressive strength of the wrapped specimens decreased as the exposure period and the temperature level increased. After three hours of exposure to 300°C, a maximum compressive strength loss of about 25.3% and 37.9%, respectively, was recorded in the wrapped CFRP and GFRP specimens.
The Densification and Diametral Compression Strength of IsiOgwuta Clay
J. E. O. Ovri
2016-07-01
Full Text Available The diametral compression strength of clay was investigated. The clay sample was analyzed to ascertain its chemical composition and mineralogical constituent. The diametral clay discs were produced using a uniaxial cold pressing hydraulic press and sintered at a predetermined temperature and time (1200℃ and 15 minutes. Two diameters (D of discs of 23mm and 29mm were used with varying thicknesses (3mm-10mm. The effect of disc thickness with intent to qualitatively define the plane stress and the plane strain fracture conditions of the clay was undertaken. The plane stress condition was obtained by discs with thickness ≤ 1 ⁄ 4 D for 23mm and 29mm whilst the plane strain condition was obtained by testing discs of thickness > 1 ⁄ 4 D. The diametral compression strength of discs of thicknesses 3 −10mm gave a range of 14.6− 5.5MPa for samples of 23mm diameter whilst a range of 5.8 − 2.2MPa was obtained for samples of 29mm diameter. Greater numbers of 29mm diameter samples failed in the normal tensile fracture mode whilst more samples of 23mm diameter failed in the triple-cleft fracture mode. 23mm diameter discs gave higher values of Weibull moduli in comparison with the values obtained for discs of 29mm diameter indicating the flaws sampled in the 23mm diameter were of the same severity. Pores were observed to be singularly effective as initiation sites for failure as shown by the negative slope of the effect of porosity on the strength of clay.
Dynamics of unconfined spherical flames
Leblanc, Louis; Dennis, Kadeem; Zhe,; Liang,; Radulescu, Matei I
2012-01-01
Using the soap bubble technique, we visualize the dynamics of unconfined hydrogen-air flames using high speed schlieren video. We show that for sufficiently weak mixtures, i.e., low flame speeds, buoyancy effects become important. Flame balls of a critical dimension begin to rise. The experiments are found in very good agreement with the scaling laws proposed by Zingale and Dursi. We report the results in a fluid dynamics video.
Compressive Strength Evaluation in Brazed ZrO2/Ti6Al4V Joints Using Finite Element Analysis
Sharma, Ashutosh; Kee, Se Ho; Jung, Flora; Heo, Yongku; Jung, Jae Pil
2016-04-01
This study aims to synthesize and evaluate the compressive strength of the ZrO2/Ti-6Al-4V joint brazed using an active metal filler Ag-Cu-Sn-Ti, and its application to dental implants assuring its reliability to resist the compressive failure in the actual oral environment. The brazing was performed at a temperature of 750 °C for 30 min in a vacuum furnace under 5 × 10-6 Torr atmosphere. The microstructure of the brazed joint showed the presence of an Ag-rich matrix and a Cu-rich phase, and Cu-Ti intermetallic compounds were observed along the Ti-6Al-4V bonded interface. The compressive strength of the brazed ZrO2/Ti-6Al-4V joint was measured by EN ISO 14801 standard test method. The measured compressive strength of the joint was ~1477 MPa—a value almost five times that of existing dental cements. Finite element analysis also confirmed the high von Mises stress values. The compressive strains in the samples were found concentrated near the Ti-6Al-4V position, matching with the position of the real fractured sample. These results suggest extremely significant compressive strength in ZrO2/Ti-6Al-4V joints using the Ag-Cu-Sn-Ti filler. It is believed that a highly reliable dental implant can be processed and designed using the results of this study.
Compressive Strength Evaluation in Brazed ZrO2/Ti6Al4V Joints Using Finite Element Analysis
Sharma, Ashutosh; Kee, Se Ho; Jung, Flora; Heo, Yongku; Jung, Jae Pil
2016-05-01
This study aims to synthesize and evaluate the compressive strength of the ZrO2/Ti-6Al-4V joint brazed using an active metal filler Ag-Cu-Sn-Ti, and its application to dental implants assuring its reliability to resist the compressive failure in the actual oral environment. The brazing was performed at a temperature of 750 °C for 30 min in a vacuum furnace under 5 × 10-6 Torr atmosphere. The microstructure of the brazed joint showed the presence of an Ag-rich matrix and a Cu-rich phase, and Cu-Ti intermetallic compounds were observed along the Ti-6Al-4V bonded interface. The compressive strength of the brazed ZrO2/Ti-6Al-4V joint was measured by EN ISO 14801 standard test method. The measured compressive strength of the joint was ~1477 MPa—a value almost five times that of existing dental cements. Finite element analysis also confirmed the high von Mises stress values. The compressive strains in the samples were found concentrated near the Ti-6Al-4V position, matching with the position of the real fractured sample. These results suggest extremely significant compressive strength in ZrO2/Ti-6Al-4V joints using the Ag-Cu-Sn-Ti filler. It is believed that a highly reliable dental implant can be processed and designed using the results of this study.
Ultimate tensile strength testing campaign on ITER pre-compression ring mock-ups
Rossi, Paolo, E-mail: paolo.rossi@enea.it [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, C.P. 65, 00044 Frascati (Rome) (Italy); Capobianchi, Mario; Crescenzi, Fabio; Massimi, Alberto; Mugnaini, Giampiero; Nardi, Claudio; Pizzuto, Aldo [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, C.P. 65, 00044 Frascati (Rome) (Italy); Bettinali, Livio [Consorzio CREATE, Via Claudio 21, 80125 Napoli (Italy); Knaster, Juan [ITER, Route de Vinon-sur-Verdon CS 90 046, 13067, St. Paul-lez-Durance Cedex (France); Rajainmaki, Hannu [FUSION FOR ENERGY, Josep Pla no 2, Torres Diagonal Litoral Edificio B3, 08019 Barcelona (Spain); Evans, David [Advanced Cryogenic Materials, Abingdon, Oxon (United Kingdom)
2011-10-15
ENEA has developed and characterized a high strength glass fibre-epoxy composite as reference material for the manufacture of the two sets of 3 pre-compression rings located at top and bottom of the inner straight leg region of the ITER Toroidal Field (TF) coils. These rings will provide a radial force of about 70 MN/coil at cryogenic temperature pulling the TF coils into contact and reducing toroidal tension in the four outer intercoil structures. The paper describes the ultimate tensile strength (UTS) testing campaign carried out at ENEA Frascati laboratories on six different rings manufactured winding S2 glass fibers on a diameter of 1 m (1/5 of the full scale) by both vacuum pressure epoxy impregnation and filament wet winding techniques. The volumetric glass content was around 70%. The rings were expanded with radial steps of 0.1 mm into a dedicated hydraulic testing machine consisting of 18 radial actuators working in position control with a total capability of 1000 tons. All the mock-ups showed very high tensile strength (1550 MPa is the average of the mean hoop stresses at failure) and a practically constant tensile modulus. The test results are reported and discussed.
Luecke, William E.; Ma, Li; Graham, Stephen M.; Adler, Matthew A.
2010-01-01
Ten commercial laboratories participated in an interlaboratory study to establish the repeatability and reproducibility of compression strength tests conducted according to ASTM International Standard Test Method E9. The test employed a cylindrical aluminum AA2024-T351 test specimen. Participants measured elastic modulus and 0.2 % offset yield strength, YS(0.2 % offset), using an extensometer attached to the specimen. The repeatability and reproducibility of the yield strength measurement, expressed as coefficient of variations were cv(sub r)= 0.011 and cv(sub R)= 0.020 The reproducibility of the test across the laboratories was among the best that has been reported for uniaxial tests. The reported data indicated that using diametrically opposed extensometers, instead of a single extensometer doubled the precision of the test method. Laboratories that did not lubricate the ends of the specimen measured yield stresses and elastic moduli that were smaller than those measured in laboratories that lubricated the specimen ends. A finite element analysis of the test specimen deformation for frictionless and perfect friction could not explain the discrepancy, however. The modulus measured from stress-strain data were reanalyzed using a technique that finds the optimal fit range, and applies several quality checks to the data. The error in modulus measurements from stress-strain curves generally increased as the fit range decreased to less than 40 % of the stress range.
Improvement compressive strength of concrete in different curing media by Al2O3 nanoparticles
Research highlights: → Al2O3 nanoparticles. → Mechanical properties. → Physical properties. → Thermal properties. → Microstructure. - Abstract: In the present work, the effect of curing medium on microstructure together with physical, mechanical and thermal properties of concrete containing Al2O3 nanoparticles has been investigated. Portland cement was partially replaced by Al2O3 nanoparticles with the average particle size of 15 nm and the specimens were cured in water and saturated limewater for specific ages. The results indicate that Al2O3 nanoparticles up to maximum of 2.0% produces concrete with improved compressive strength and setting time when the specimens cured in saturated limewater. The optimum level of replacement for cured specimens in water is 1.0 wt%. Although the limewater reduces the strength of concrete without nanoparticles when it is compared with the specimens cured in water, curing the specimens bearing nanoparticles in saturated limewater results in more strengthening gel formation around Al2O3 nanoparticles causes more rapid setting time together with high strength. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of peaks related to hydrated products in X-ray diffraction results, all indicate that Al2O3 nanoparticles could improve mechanical and physical properties of the specimens.
ALKALI-ACTIVATION KINETICS OF PHOSPHORUS SLAG CEMENT USING COMPRESSIVE STRENGTH DATA
Hojjatollah Maghsoodloorad
2015-09-01
Full Text Available In this research, through compressive strength data, the order and kinetics of alkali-activation of phosphorus slag activated with two compound activators of NaOH + Na2CO3 and Na2CO3 + Ca(OH2, has been evaluated. The kinetics and order of alkali activation is a key factor to forecasting the mechanical behavior of alkali activated cement at different curing time and temperatures without carrying out experimental tests. The apparent activation energy was obtained as 35.6 kJ.mol-1 and 60.7 kJ.mol-1 for the two activators, respectively. Investigations proved that the alkali-activation kinetics of phosphorus slag resembles chemical reactions of second order. Moreover, the order of alkali-activation of phosphorus slag does not depend on the type of activator.
Sair Kahraman; Michael Alber
2014-10-01
Fault breccias are usually not suitable for preparing smooth specimens or else the preparation of such specimens is tedious, time consuming and expensive. To develop a predictive model for the uniaxial compressive strength (UCS) of a fault breccia from electrical resistivity values obtained from the electrical impedance spectroscopy measurements, twenty-four samples of a fault breccia were tested in the laboratory. The UCS values were correlated with corresponding resistivity values and a strong correlation between them could not be found. However, a strong correlation was found for the samples having volumetric block proportion (VBP) of 25–75%. In addition, it was seen that VBP strongly correlated with resistivity. It was concluded that the UCS of the tested breccia can be estimated from resistivity for the samples having VBP of 25–75%.
Dawn M. Wellman
2008-01-01
Full Text Available Nanoporous metal phosphate (NP-MPO materials are being developed for removal of contaminant oxyanions (As(OHO32−, CrO42−, and TcO4−, and cations (mercury, cadmium, and lead from water and waste streams. Following sequestration, incorporation of metal laden NP-MPOs as a portion of cement formulation would provide an efficient and low-cost way to immobilize metal laden NP-MPOs in an easily handled waste form suitable for permanent disposal. There are no known investigations regarding the incorporation of NP-MPOs in concrete and the effects imparted on the physical and mechanical properties of concrete. Results of this investigation demonstrated that incorporating of NP-MPO materials requires additional water in the concrete formulation which decreases the compressive strength. Thus, incorporation of NP-MPOs in concrete may not serve as an efficient means for long-term disposal.
Waldemir Rodrigues
2004-06-01
Full Text Available The durability of wood is affected by several factors. For this reason, much research has been done on a variety of chemical compounds for impregnating wood, aimed at preserving it while simultaneously improving its properties. Recent studies of the properties of impregnated wood have demonstrated the possibility of substantially improving its mechanical characteristics. Thus, the purpose of this work was to compare the strength to parallel compression of wooden fibers (Eucalyptus grandis, both nonimpregnated and impregnated with a monocomponent resin, from the standpoint of pressure and impregnation time, aiming at its structural utilization. The results demonstrate that the compressive strength of impregnated test specimens is greater than that of nonimpregnated ones, indicating that monocomponent polyurethane resin can be considered suitable for impregnating wood, since it increases the compressive strength of eucalyptus.
Bahador Abolpour
2015-09-01
Full Text Available In this study, the effects of various factors (weight fraction of the SiO2, Al2O3, Fe2O3, Na2O, K2O, CaO, MgO, Cl, SO3, and the Blaine of the cement particles on the concrete compressive strength and also initial setting time have been investigated. Compressive strength and setting time tests have been carried out based on DIN standards in this study. Interactions of these factors have been obtained by the use of analysis of variance and regression equations of these factors have been obtained to predict the concrete compressive strength and initial setting time. Also, simple and applicable formulas with less than 6% absolute mean error have been developed using the genetic algorithm to predict these parameters. Finally, the effect of each factor has been investigated when other factors are in their low or high level.
Kupaei, Ramin Hosseini; Alengaram, U. Johnson; Jumaat, Mohd Zamin
2014-01-01
This paper presents the experimental results of an on-going research project on geopolymer lightweight concrete using two locally available waste materials—low calcium fly ash (FA) and oil palm shell (OPS)—as the binder and lightweight coarse aggregate, respectively. OPS was pretreated with three different alkaline solutions of sodium hydroxide (NaOH), potassium hydroxide, and sodium silicate as well as polyvinyl alcohol (PVA) for 30 days; afterwards, oil palm shell geopolymer lightweight concrete (OPSGPC) was cast by using both pretreated and untreated OPSs. The effect of these solutions on the water absorption of OPS, and the development of compressive strength in different curing conditions of OPSGPC produced by pretreated OPS were investigated; subsequently the influence of NaOH concentration, alkaline solution to FA ratio (A/FA), and different curing regimes on the compressive strength and density of OPSGPC produced by untreated OPS was inspected. The 24-hour water absorption value for OPS pretreated with 20% and 50% PVA solution was about 4% compared to 23% for untreated OPS. OPSGPC produced from OPS treated with 50% PVA solution produced the highest compressive strength of about 30 MPa in ambient cured condition. The pretreatment with alkaline solution did not have a significant positive effect on the water absorption of OPS aggregate and the compressive strength of OPSGPC. The result revealed that a maximum compressive strength of 32 MPa could be obtained at a temperature of 65°C and curing period of 4 days. This investigation also found that an A/FA ratio of 0.45 has the optimum amount of alkaline liquid and it resulted in the highest level of compressive strength. PMID:25531006
ZhenYa Liu; JingYu Liu; QingZhi Wang; JianKun Liu
2015-01-01
Freeze-thaw damage is the most common disease of semi-rigid bases in cold regions, which may greatly affect the dura-bility of roadways. In this study, the compressive strength and frost resistance of four different types of semi-rigid bases (lime-fly ash-stabilized sand, cement-stabilized sand, lime-fly ash-stabilized gravel, and cement-stabilized gravel) are assessed by varying the materials content. Based on freeze-thaw and compressive strength tests, this paper presents the performance of the different materials, each having different physical properties, and the optimal amounts of materials contents are proposed.
Naughton, J. W.; Cattafesta, L. N.; Settles, G. S.
1993-01-01
The effect of streamwise vorticity on compressible axisymmetric mixing layers is examined using vortex strength assessment and seed particle dynamics analysis. Experimental results indicate that the particles faithfully represent the dynamics of the turbulent swirling flow. A comparison of the previously determined mixing layer growth rates with the present vortex strength data reveals that the increase of turbulent mixing up to 60 percent scales with the degree of swirl. The mixing enhancement appears to be independent of the compressibility level of the mixing layer.
Bahador Abolpour; Mohammad Mehdi Afsahi; Saeed Gharib Hosseini
2015-01-01
In this study, the effects of various factors (weight fraction of the SiO2, Al2O3, Fe2O3, Na2O, K2O, CaO, MgO, Cl, SO3, and the Blaine of the cement particles) on the concrete compressive strength and also initial setting time have been investigated. Compressive strength and setting time tests have been carried out based on DIN standards in this study. Interactions of these factors have been obtained by the use of analysis of variance and regression equations of these factors have been obtain...
Abolpour, Bahador; Mehdi Afsahi, Mohammad; Hosseini, Saeed Gharib
2014-01-01
In this study, the effects of various factors (weight fraction of the SiO2, Al2O3, Fe2O3, Na2O, K2O, CaO, MgO, Cl, SO3, and the Blaine of the cement particles) on the concrete compressive strength and also initial setting time have been investigated. Compressive strength and setting time tests have been carried out based on DIN standards in this study. Interactions of these factors have been obtained by the use of analysis of variance and regression equations of these factors have been obtain...
Chen Yimin; Zhou Shuangxi; Zhang Wensheng [China Building Materials Academy, Beijing (China)
2008-02-15
The effects of activated coal gangue on compressive strength, porosity and pore size distribution of hardened cement pastes were investigated. Activated coal gangue with two different kaolin contents, one higher and one lower, were used to partially replace Portland cement at 0%, 10%, and 30% by weight. The water to binder ratio of 0.5 was used for all the blended cement paste mixes. Experimental results indicate that the blended cement of activated coal gangue mortar with higher kaolin mineral content has a higher compressive strength than that with lower kaolin mineral content. The porosity and pore size of blended cement mortar were significantly affected by the replacement of activated coal gangue.
Forood Torabian Isfahani; Elena Redaelli; Federica Lollini; Weiwen Li; Luca Bertolini
2016-01-01
The effects of the addition of different nanosilica dosages (0.5%, 1%, and 1.5% with respect to cement) on compressive strength and durability properties of concrete with water/binder ratios 0.65, 0.55, and 0.5 were investigated. Water sorptivity, apparent chloride diffusion coefficient, electrical resistivity, and carbonation coefficient of concrete were measured. The results showed that compressive strength significantly improved in case of water/binder = 0.65, while for water/binder = 0.5 ...
Compressive Strength and Water Permeability Performance of Micronised Biomass Silica Concrete
S.H. Adnan
2009-12-01
Full Text Available Concrete is a common material that is widely used in construction industry. Cement is the main material component for producing concrete but its production has lead into CO2 emission. This work presents a study on Micronised Biomass Silica (MBS that can be used as pozzolan material which can enhance the quality of concrete. The material can be produced from a by-product of biomass agricultural waste but for this study rice husk has been used. From the chemical analysis, MBS has a chemical composition that is fulfill the standard requirement for becoming pozzolan material. The result of MBS concrete shows that the MBS material can enhance the performance of concrete by increasing the compressive strength development and reducing the water permeability. The drawback of MBS is the workability of fresh concrete but can be rectify by using superplasticizer. By replacing up to 12% of cement, MBS material gives the highest performance in term of strength and permeability of the concrete.
于昌利; LEE Joo-sung
2014-01-01
The-main-objective-of-this-study-is-to-numerically-investigate-the-characteristics-of-ultimate-compressive-strength-of-stiffened-panels-with-opening-and-also-to-fit-the-design-oriented-formulae.-For-this-purpose,-three-series-of-well-executed-experimental-data-on-longitudinally-stiffened-steel-plates-with-and-without-opening-subjected-to-the-uniform-axial-in-pane-load-which-is-carried-out-to-study-the-buckling-and-post-buckling-up-to-the-final-failure-are-chosen.-Also,-a-nonlinear-finite-element-method-capable-of-efficiently-analyzing-the-large-elasto-plastic-deflection-behavior-of-stiffened-panels-is-developed-and-used-for-simulation.-The-feasibility-of-the-present-simulation-process-is-confirmed-by-a-good-agreement-with-the-experimental-results.-More-case-studies-are-developed-employing-the-simulation-process-to-analyze-the-influence-of-various-design-variables-on-the-reduction-rate-of-ultimate-strength-of-stiffened-panel-induced-by-opening.-Based-on-the-computed-results,-two-design-formulae-are-fitted-and-the-accuracy-of-design-formulae-is-studied.-Furthermore,-the-viability-of-the-design-formulae-for-practical-engineering-is-proved.
Noor Ahmed Memon, Fahad ul Rehman Abro, Ubaidullah Memon, Salihuddin Radin Sumadi
2014-01-01
The overall performance of the hardened concrete is believed to be greatly affected by the type and duration of the curing. The influence of the curing on the strength and durability of concrete becomes more significant when the concrete is to be exposed to high ambient temperature of the local area. This paper presents the results of an experimental study conducted to investigate effect of curing conditions and superplasticizer on compressive strength of concr...
Sherif El-Gamal; Khalifa Al-Jabri; Ahmed Al-Mahri; Saud Al-Mahrouqi
2015-01-01
Due to their high strength, corrosion resistance, and durability, fiber reinforced polymers (FRP) are very attractive for civil engineering applications. One of these applications is the strengthening of concrete columns with FRP sheets. The performance of this strengthening technique at elevated temperature is still questionable and needs more investigations. This research investigates the effects of exposure to high temperatures on the compressive strength of concrete cylinders wrapped with...
Zlatko Briševac; Trpimir Kujundžić; Borna Jutriša
2014-01-01
Exploration area Crnoglav, near Neum, Bosnia and Herzegovina, is composed of limestone sedimentary rock. Research of influence of saturation with water was made on intact material from this area on physical and mechanical properties of the rock: uniaxial compressive strength, module of deformation, point load strength index and Schmidt rebound hardness. Tests were conducted on recommendation of International Society for Rock Mechanics (ISRM Suggested methods) and Croatian Standards. Results s...
Borvorn Israngkura Na Ayudhya
2011-10-01
Full Text Available This paper presents the results of an experimental study on the residual compressive and splitting tensile strength ofautoclaved aerated concrete (AAC containing perlite and polypropylene (PP fiber subjected to high temperatures. Cylinderspecimens were subjected to various temperature ranges of 100, 200, 400, 800, and 1,000°C. The mixtures were prepared withAAC cementitious materials containing perlite at 15%, 20%, and 30% sand replacement. The polypropylene fiber content of0, 0.5%, 1%, 1.5%, and 2% by volume was also added to the mixture. The results showed that the unheated compressive andsplitting tensile strength of AACs containing PP fiber were not significantly higher than those containing no PP fiber.Furthermore, the presence of PP fiber was not more effective for residual compressive strength than splitting tensile strength.The 30% perlite replacement of sand gave the highest strength. Based on the results, it can be concluded that addition ofPP fiber did not significantly promote the residual strength of AAC specimens subjected to high temperatures.
Bilgehan, Mahmut
2011-03-01
In this paper, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN) model have been successfully used for the evaluation of relationships between concrete compressive strength and ultrasonic pulse velocity (UPV) values using the experimental data obtained from many cores taken from different reinforced concrete structures having different ages and unknown ratios of concrete mixtures. A comparative study is made using the neural nets and neuro-fuzzy (NF) techniques. Statistic measures were used to evaluate the performance of the models. Comparing of the results, it is found that the proposed ANFIS architecture with Gaussian membership function is found to perform better than the multilayer feed-forward ANN learning by backpropagation algorithm. The final results show that especially the ANFIS modelling may constitute an efficient tool for prediction of the concrete compressive strength. Architectures of the ANFIS and neural network established in the current study perform sufficiently in the estimation of concrete compressive strength, and particularly ANFIS model estimates closely follow the desired values. Both ANFIS and ANN techniques can be used in conditions where too many structures are to be examined in a restricted time. The presented approaches enable to practically find concrete strengths in the existing reinforced concrete structures, whose records of concrete mixture ratios are not available or present. Thus, researchers can easily evaluate the compressive strength of concrete specimens using UPV and density values. These methods also contribute to a remarkable reduction in the computational time without any significant loss of accuracy. A comparison of the results clearly shows that particularly the NF approach can be used effectively to predict the compressive strength of concrete using UPV and density values. In addition, these model architectures can be used as a nondestructive procedure for health monitoring of
Umehara, H.; Ueda, M. (Nagoya Inst. of Technology, Nagoya (Japan). Faculty of Engineering); Zhang, J. (Yahagi Construction Ltd., Nagoya (Japan)); Yoshida, H. (Nagoya Inst. of Technology, Nagoya (Japan))
1992-08-20
Compressive strength of coarse aggregate as well as the bond between coarse aggregate and cement paste effect the compressive strength of concrete greatly. Furthermore the said bond is affected by the bleeding. Consequently, to grasp the level of the voids, under the bottom of the coarse aggregate, caused by the bleeding is the most important in estimating the compressive strength of concrete. However, the researches by now are almost performed on the specimens with Gmax (maximum size of coarse aggregate) being less than 40 mm, and there is nearly none being carried out on a specimen such as dam concrete comprising Gmax as around 150 mm. Now, in the present study, the mechanism of the deterioration of compressive strength in dam concrete due to the voids under the bottom of coarse aggregate is clarified based on the experiment carried out on the alterations of the size, shape, number. location and surface states of the model coarse aggregate in the prepared model concrete made by mortar with Gmax as more than 80 mm. 16 refs., 9 figs., 5 tabs.
Highlights: • Nano zinc oxide was used as an additive material. • Microstructure and phase characterization of pastes were characterized using SEM and XRD. • TGA and FTIR were also used to determine the hydration reaction. • Compressive strength of ZnO mixes was found to increase at 28 days. - Abstract: Zinc oxide nanoparticles as a nanophotocatalyst has great potential for self-cleaning applications in concrete structures, its effects on the cement hydration, setting time and compressive strength are also important when using it in practice. This paper reports the effects of zinc oxide nanoparticles, as an additive material, on properties of cement-based materials. Setting time, compressive strength and porosity of mortars were investigated. Microstructure and morphology of pastes were characterized using scanning electron microscope and X-ray diffraction (XRD), respectively. Moreover, thermal gravimetric analysis (TGA) and Fourier-transform infrared spectrometer (FTIR) were also used to determine the hydration reaction. The results show that Portland cement paste with additional ZnO was found to slightly increase the water requirement while the setting time presented prolongation period than the control mix. However, compressive strength of ZnO mixes was found to be higher than that of PC mix up to 15% (at 28 days) via filler effect. Microstructure, XRD and TGA results of ZnO pastes show less hydration products before 28 days but similar at 28 days. In addition, FTIR results confirmed the retardation when ZnO was partially added in Portland cement pastes
Reaction Degree of Silica Fume and Its Effect on Compressive Strength of Cement-silica Fume Blends
WANG Xiaojun; PAN Zhigang; ZHU Chengfei; ZHU Hongfei
2014-01-01
The compressive strength of the cement-silica fume blends with 5mass%, 10mass%, 20mass%and 30mass%of silica fume and water to binder ratio of 0.28, 0.32 and 0.36 from three days to ninety days were investigated. The reaction degree of silica fume was calculated from the Q4 silica tetrahedron, which was used as a probe obtained from 29Si solid state nuclear magnetic resonance analysis. The flat of compressive strength after 28 days disappeared for blended cement with inereasing reaction degree of silica fume. The compressive strength of the blended cement pastes approached that of P.I. cement pastes after 56 days and exceeded that after 90 days. The addition of silica fume and the w/b ratio of blends are both critical to the reaction degree of silica fume. The appropriate addition of silica fume, high silica fume reaction degree and low w/b ratio are beneficial to the compressive strength of the cement-silica fume blends.
Dowling, Adam H
2012-03-01
Three strength tests (compressive, three point flexure and biaxial) were performed on three glass ionomer (GI) restoratives to assess the most appropriate methodology in terms of validity and reliability. The influence of mixing induced variability on the data sets generated were eliminated by using encapsulated GIs.
Strength properties of soft clay treated with mixture of nano-SiO2 and recycled polyester fiber
Foad Changizi; Abdolhosein Haddad
2015-01-01
This paper investigates the effect of recycled polyester fiber, produced from polyethylene (PET) bottles, in combination with nano-SiO2 as a new stabilizer to improve the mechanical properties of soils. We intend to study the effect of adding nano-SiO2 and recycled polyester fiber on soil engineering properties, especially the shear strength and unconfined compressive strength (UCS), using clayey soil with low liquid limit. Three different combinations of fiber-soil ratios ranging between 0.1...
Márta Kurutz
2008-12-01
Full Text Available Márta Kurutz1, Judit Donáth3, Miklós Gálos2, Péter Varga1, Béla Fornet41Department of Structural Mechanics; 2Department of Construction Materials, Budapest University of Technology and Economics, Budapest, Hungary; 3Department of Reumatology, National Institute for Reumatology, Budapest, Hungary; 4Department of Radiology, County Hospital András Jósa, Nyiregyháza, HungaryObjective: To obtain the compressive load bearing and energy absorption capacity of lumbar vertebrae of osteoporotic elderly for the everyday medical praxis in terms of the simple diagnostic data, like computed tomography (CT, densitometry, age, and sex.Methods: Compressive test of 54 osteoporotic cadaver vertebrae L1 and L2, 16 males and 38 females (age range 43–93, mean age 71.6 ± 13.3 years, mean bone mineral density (BMD 0.377 ± 0.089 g/cm2, mean T-score −5.57 ± 0.79, Z-score −4.05 ± 0.77 was investigated. Based on the load-displacement diagrams and the measured geometrical parameters of vertebral bodies, proportional, ultimate and yield stresses and strains, Young’s modulus, ductility and energy absorption capacity were determined. Three vertebral regions were distinguished: superior, central and inferior regions, but certain parameters were calculated for the upper/lower intermediate layers, as well. Cross-sectional areas, and certain bone tissue parameters were determined by image analysis of CT pictures of vertebrae. Sex- and age-related decline functions and trends of strength characteristics were determined.Results: Size-corrected failure load was 15%–25% smaller in women, proportional and ultimate stresses were about 30%–35% smaller for women in any region, and 20%–25% higher in central regions for both sexes. Young’s moduli were about 30% smaller in women in any region, and 20%–25% smaller in the central region for both sexes. Small strains were higher in males, large strains were higher in females, namely, proportional strains were
The compressive strength of concrete is assessed to ensure uniformity of the placed concretc and adequacy of thc strcngth. Non-destructive test (NDT) techniques of ultrasonic pulse velocity and Schmidt rebound hammer tests are commonly used to estimate concrete strength, but the applicability is dependent on correlation of the data with the compressive strength of concrete, the equipment calibration and interpretation of the data. Twenty four standard concrcte cubes were cast respectively from 3 concrete mixes, and tested after 28 days of curing by ultrasonic velocity, rebound hammer and crushing tests. The data were analysed by regression methods to obtain equations for predicting the compression strength of concrete based on the ultrasonic pulse velocity and rebound number. Accurate prediction of the strength of concrete was made when the ultrasonic pulse velocity and the rebound hammer data were combined than when used separately, as the standard error was least. Comparison on the calibration curves of the prediction equations with published plots showed very good agreement. (au)
The purpose of this research is to develop a method for evaluating tensile and compressive strengths considering scale effect which is an old problem in rock mechanics. The method is based on the results of investigation on geometrical information of discontinuity distribution in rock mass. We created a three-dimensional structural model of rock mass with reference to previous studies. Discontinuities in the 3D model were arranged in the supposed cube which is equal to the size of FEM mesh in stability analysis. We clipped arbitrarily-sized two-dimensional cross-section model from the 3D model and calculated tensile and compressive strengths of the 2D model by the stress analysis method we proposed. The relationship between the strength and the size, or the scale effect can be obtained from the method previously describe. The results of the simulations of the proposed method agree with the past test results that the strength and the rate of change of strength decreases with decreasing scale, and show that the scale effect varies according to conditions of geometrical information of discontinuity, confining stress and compression or tension. (author)
Apoorv Singh
2014-09-01
Full Text Available Concrete is the most widely used material in the world today. This paper is about the comparative study of the flexural strength and compressive strength of concrete when different admixtures are used as partial replacement of cement in the concrete mix. The mineral admixtures that are used here are Silica Fume, Rice Husk Ash and Iron slag as partial replacement of cement. All these materials are industrial waste products and are abundantly available nowadays. These materials have high silica content and pozzolanic properties and can be effectively used as a replacement of cement during the formation of High Performance Concrete. Compressive and Flexural strength are the two most important characteristic of concrete and are calculated for the hardened concrete to analyze the load bearing capacity for design purposes. Thus for the effective judgment of type of mineral admixtures to be used a comparative study is very useful.
Kruszka, Leopold; Moćko, Wojciech; Fenu, Luigi; Cadoni, Ezio
2015-09-01
Specimen reinforced with glass and basalt fibers were prepared using Standard Portland cement (CEM I, 52.5 R as prescribed by EN 197-1) and standard sand, in accordance with EN 196-1. From this cementitious mixture, a reference cement mortar without fibers was first prepared. Compressive strength, modulus of elasticity, and mod of fracture were determined for all specimens. Static and dynamic properties were investigated using Instron testing machine and split Hopkinson pressure bar, respectively. Content of the glass fibers in the mortar does not influence the fracture stress at static loading conditions in a clearly observed way. Moreover at dynamic range 5% content of the fiber results in a significant drop of fracture stress. Analysis of the basalt fibers influence on the fracture stress shows that optimal content of this reinforcement is equal to 3% for both static and dynamic loading conditions. Further increase of the fiber share gives the opposite effect, i.e. drop of the fracture stress.
Kruszka Leopold
2015-01-01
Full Text Available Specimen reinforced with glass and basalt fibers were prepared using Standard Portland cement (CEM I, 52.5 R as prescribed by EN 197-1 and standard sand, in accordance with EN 196-1. From this cementitious mixture, a reference cement mortar without fibers was first prepared. Compressive strength, modulus of elasticity, and mod of fracture were determined for all specimens. Static and dynamic properties were investigated using Instron testing machine and split Hopkinson pressure bar, respectively. Content of the glass fibers in the mortar does not influence the fracture stress at static loading conditions in a clearly observed way. Moreover at dynamic range 5% content of the fiber results in a significant drop of fracture stress. Analysis of the basalt fibers influence on the fracture stress shows that optimal content of this reinforcement is equal to 3% for both static and dynamic loading conditions. Further increase of the fiber share gives the opposite effect, i.e. drop of the fracture stress.
Relationship Between Compression Strength and Its Microstructure of 5 Axial-Braided Composite
Yang; Chaokun; Zhu; Jianxun; Jiang; Yun
2007-01-01
Compression performance of 5-axial braided composites is observed through compression tests.A mixed model of micro-buckling shear with braided tows web is set up to predict compression stress of braided composite through analyzing three broken modes.Using this mixed model,data from tests indicated that the main parameters effecting the compression properties of braided composite are fiber volume fraction,directional angle,axial-tow volume fraction and diameter of tow.Contributing rate of tows is proposed to describe the compression properties of fibre composites.Optimization geometrical structure of braids can optimize composite properties.
Rolando, A.
2006-09-01
Full Text Available In this paper the compression strength of a clay brickwork masonry bound with cement mortar is analyzed. The target is to obtain the characteristic compression strength of unreinforced brickwork masonry. This research try to test the validity of the analytical equations in European codes, comparing the experimental strength with the analytically obtained from the strength of its components (clay brick and cement mortar.En este artículo se analiza la resistencia a compresión de una fábrica de ladrillo cerámico, asentado con mortero de cemento.El objetivo es obtener la resistencia característica a compresión de la fábrica sin armar.La investigación comprueba la fiabilidad de las expresiones analíticas existentes en la normativa europea, comparando la resistencia obtenida experimentalmente con la obtenida analíticamente, a partir de la resistencia de sus componentes (ladrillo cerámico y mortero de cemento.
ZHANG Biao; QIAN Fatang; DUAN Xinglong; WU Bolin
2009-01-01
Relationship between leucite content and compressive strength of K2O-Al2O3-SiO2 sys-tem dental glass ceramics were investigated. 10 groups of feedstock powder with different composi-tions were treated according to the same thermal treatment system of leucite micro-crystallization reported in some primary studies. The products of each group were analyzed by X-ray diffractometer,polaring microscope and scanning electronic microscope (SEM), and then the compressive strength was tested by a material testing machine. A direct proportion was found between leucite content and the compressive strength when leucite content was less than 50 vol%, and compressive strength de-creased with the increasing of leucite micro-crystals when leucite content was more than 50vol%, The leucite content has a notable influence on the compressive strength of K2O-Al2O3-SiO2 system dental glass ceramics.
S. M. Alamgir Kabir
2015-01-01
Full Text Available The investigation concerns the use of the optimum mix proportion of two locally available pozzolanic waste materials, namely, ground granulated blast furnace slag (GGBS and palm oil fuel ash (POFA, together with metakaolin (MK as binders. In addition, another local waste material, manufactured sand (M-sand, was used as a replacement for conventional sand in the development of green geopolymer mortar. Twenty-four mortar mixtures were designed with varying binder contents and alkaline activators. The oven dry curing was also kept consistent for all the mix proportions at a temperature of 65°C for 24 hours. The highest 28-day compressive strength of about 48 MPa was obtained for the mortar containing 20% of MK, 35% of GGBS, and 45% of POFA. The increment of MK beyond 20% leads to reduction of the compressive strength. The GGBS replacement beyond 35% also reduced the compressive strength. The entire specimen achieved average 80% of the 28-day strength at the age of 3 days. The density decreased with the increase of POFA percentage. The finding of this research by using the combination of MK, GGBS, and POFA as binders to wholly replace conventional ordinary Portland cement would lead to alternate eco-friendly geopolymer matrix.
Noor Ahmed Memon, Fahad ul Rehman Abro, Ubaidullah Memon, Salihuddin Radin Sumadi
2014-07-01
Full Text Available The overall performance of the hardened concrete is believed to be greatly affected by the type and duration of the curing. The influence of the curing on the strength and durability of concrete becomes more significant when the concrete is to be exposed to high ambient temperature of the local area. This paper presents the results of an experimental study conducted to investigate effect of curing conditions and superplasticizer on compressive strength of concrete exposed to high ambient temperature. The cube specimens of standard size were cast and tested. The superplasticizer was used as percentage of cement being 0% to 2% with an increment of 5%. The specimens were cured initially in water for 3days, 7 days and 14 days and then exposed to the ambient environment up to the testing age. All the specimens were tested at 28 days. In addition, a batch of the specimens was cast and cured continuously in water for 28 days and another batch of the specimens was exposed to the high ambient temperature without initial wet curing. Both the batches were also tested at 28 days age. The results were compared to investigate the effect of initial wet curing and superplasticizer on compressive strength when it is exposed to the high ambient temperature. The results reveals that the compressive strength of concrete exposed to the high ambient temperature is significantly influenced by the wet curing period and the addition of superplasticizer.
Fareed Ahmed Memon
2012-03-01
Full Text Available This study documents the results of an experimental work carried out to investigate the effect of superplasticizer and amount of extra water on strength and workability properties of Fly ash-based Selfcompacting geopolymer concrete. The experiments were conducted by varying the amount of extra water and dosage of superplasticizer. A total of nine mixtures with superplasticizer content varying from 3 to 7% and extra water ranging from 10 to 20% of the mass of fly ash were prepared and tested. The essential workability properties of the freshly prepared concrete such as filling ability, passing ability and segregation resistance were evaluated by using Slump flow, T50 slump flow, V-funnel, L-box and J-ring test methods. The compressive strength tests were carried out at 1, 3, 7 and 28 days. Test results indicated that extra water and superplasticizer are key parameters and play an important role in the development of self-compacting geopolymer concrete. Workability of self-compacting geopolymer concrete was dependent on the amount of extra water and dosage of superplasticizer. With the increase in amount of extra water and superplasticizer, the workability was improved. However, the addition of water beyond 15% resulted in bleeding as well as segregation and decreased the compressive strength of the concrete. The compressive strength of self-compacting geopolymer concrete was significantly decreased as the amount of extra water exceeded 12% by mass of Fly ash.
Neela Deshpande
2014-12-01
Full Text Available In the recent past Artificial Neural Networks (ANN have emerged out as a promising technique for predicting compressive strength of concrete. In the present study back propagation was used to predict the 28 day compressive strength of recycled aggregate concrete (RAC along with two other data driven techniques namely Model Tree (MT and Non-linear Regression (NLR. Recycled aggregate is the current need of the hour owing to its environmental friendly aspect of re-use of the construction waste. The study observed that, prediction of 28 day compressive strength of RAC was done better by ANN than NLR and MT. The input parameters were cubic meter proportions of Cement, Natural fine aggregate, Natural coarse Aggregates, recycled aggregates, Admixture and Water (also called as raw data. The study also concluded that ANN performs better when non-dimensional parameters like Sand–Aggregate ratio, Water–total materials ratio, Aggregate–Cement ratio, Water–Cement ratio and Replacement ratio of natural aggregates by recycled aggregates, were used as additional input parameters. Study of each network developed using raw data and each non dimensional parameter facilitated in studying the impact of each parameter on the performance of the models developed using ANN, MT and NLR as well as performance of the ANN models developed with limited number of inputs. The results indicate that ANN learn from the examples and grasp the fundamental domain rules governing strength of concrete.
Lin, Zhiqiang; Gui, Xuchun; Gan, Qiming; Chen, Wenjun; Cheng, Xiaoping; Liu, Ming; Zhu, Yuan; Yang, Yanbing; Cao, Anyuan; Tang, Zikang
2015-06-01
Carbon nanotube (CNT) and graphene-based sponges and aerogels have an isotropic porous structure and their mechanical strength and stability are relatively lower. Here, we present a junction-welding approach to fabricate porous CNT solids in which all CNTs are coated and welded in situ by an amorphous carbon layer, forming an integral three-dimensional scaffold with fixed joints. The resulting CNT solids are robust, yet still highly porous and compressible, with compressive strengths up to 72 MPa, flexural strengths up to 33 MPa, and fatigue resistance (recovery after 100,000 large-strain compression cycles at high frequency). Significant enhancement of mechanical properties is attributed to the welding-induced interconnection and reinforcement of structural units, and synergistic effects stemming from the core-shell microstructures consisting of a flexible CNT framework and a rigid amorphous carbon shell. Our results provide a simple and effective method to manufacture high-strength porous materials by nanoscale welding.
Prahara, E.; Meilani
2014-03-01
Pervious concrete was introduced in America in 2003, popularized by Dan Brown and used as a rigid pavement in the open parking lot. Rigid pavement using pervious concrete can absorb water in the surface to go straight through the concrete to the ground below.This water flow is one of the benefit of using the pervious concrete. Using of wastes such as broken roof and ceramics tiles are not commonly used in Indonesia. Utilization these kind of wastes is predicted lower the compressive strength of pervious concrete as they are used as a substitute for coarse aggregate.In this research, pervious concrete is made using a mixture of the fragment of ceramics and roof tiles.This research using broken ceramics and roof tiles with a grain size that loose from 38 mm sieve, retained on 19 mm sieve and the coarse aggregate from crushed stone that loose 12.5 mm sieve, retained on 9.5 mm sieve. The water cement ratio is 0.3 and to assist the mixing process, the addition of addictive in pervious concrete is used.The size of coarse aggregate used in the mixture affects the strength of pervious concrete. The larger the size of aggregate, the obtained compressive strength becomes smaller. It also affects the density of pervious concrete. The using of mixture of ceramics and roof tiles only reduce 2 MPa of pervious concrete compressive strength so this mixture can be used as a substitute for coarse aggregate with a maximum portion of 30 %. The high porosity of the specimens causes the reduction of pervious concrete density that affect the compressive strength. This high level of porosity can be seen from the high level of water absorption that exceed the required limit of water infiltration.
Prahara E.
2014-03-01
Full Text Available Pervious concrete was introduced in America in 2003, popularized by Dan Brown and used as a rigid pavement in the open parking lot. Rigid pavement using pervious concrete can absorb water in the surface to go straight through the concrete to the ground below.This water flow is one of the benefit of using the pervious concrete. Using of wastes such as broken roof and ceramics tiles are not commonly used in Indonesia. Utilization these kind of wastes is predicted lower the compressive strength of pervious concrete as they are used as a substitute for coarse aggregate.In this research, pervious concrete is made using a mixture of the fragment of ceramics and roof tiles.This research using broken ceramics and roof tiles with a grain size that loose from 38 mm sieve, retained on 19 mm sieve and the coarse aggregate from crushed stone that loose 12.5 mm sieve, retained on 9.5 mm sieve. The water cement ratio is 0.3 and to assist the mixing process, the addition of addictive in pervious concrete is used.The size of coarse aggregate used in the mixture affects the strength of pervious concrete. The larger the size of aggregate, the obtained compressive strength becomes smaller. It also affects the density of pervious concrete. The using of mixture of ceramics and roof tiles only reduce 2 MPa of pervious concrete compressive strength so this mixture can be used as a substitute for coarse aggregate with a maximum portion of 30 %. The high porosity of the specimens causes the reduction of pervious concrete density that affect the compressive strength. This high level of porosity can be seen from the high level of water absorption that exceed the required limit of water infiltration.
Floriberto Díaz-Díaz
2013-11-01
Full Text Available In cement-based materials porosity plays an important role in determining their mechanical and transport properties. This paper describes an improved low–cost embeddable miniature NMR sensor capable of non-destructively measuring evaporable water loss and porosity refinement in low and high water-to-cement ratio cement-based materials. The sensor consists of two NdFeB magnets having their North and South poles facing each other, separated by 7 mm to allow space for a Faraday cage containing a Teflon tube and an ellipsoidal RF coil. To account for magnetic field changes due to temperature variations, and/or the presence of steel rebars, or frequency variation due to sample impedance, an external tuning circuit was employed. The sensor performance was evaluated by analyzing the transverse magnetization decay obtained with a CPMG measurement from different materials, such as a polymer phantom, fresh white and grey cement pastes with different w/c ratios and concrete with low (0.30 and high (0.6 w/c ratios. The results indicated that the sensor is capable of detecting changes in water content in fresh cement pastes and porosity refinement caused by cement hydration in hardened materials, even if they are prepared with a low w/c ratio (w/c = 0.30. The short lifetime component of the transverse relaxation rate is directly proportional to the compressive strength of concrete determined by destructive testing. The r2 (0.97 from the linear relationship observed is similar to that obtained using T2 data from a commercial Oxford Instruments 12.9 MHz spectrometer.
Uswatta, Suren P; Okeke, Israel U; Jayasuriya, Ambalangodage C
2016-12-01
In this study we have fabricated porous injectable spherical scaffolds using chitosan biopolymer, sodium tripolyphosphate (TPP) and nano-hydroxyapatite (nHA). TPP was primarily used as an ionic crosslinker to crosslink nHA/chitosan droplets. We hypothesized that incorporating nHA into chitosan could support osteoconduction by emulating the mineralized cortical bone structure, and improve the Ultimate Compressive Strength (UCS) of the scaffolds. We prepared chitosan solutions with 0.5%, 1% and 2% (w/v) nHA concentration and used simple coacervation and lyophilization techniques to obtain spherical scaffolds. Lyophilized spherical scaffolds had a mean diameter of 1.33mm (n=25). Further, portion from each group lyophilized scaffolds were soaked and dried to obtain Lyophilized Soaked and Dried (LSD) scaffolds. LSD scaffolds had a mean diameter of 0.93mm (n=25) which is promising property for the injectability. Scanning Electron Microscopy images showed porous surface morphology and interconnected pore structures inside the scaffolds. Lyophilized and LSD scaffolds had surface pores lyophilized scaffolds at 3.93MPa. Standardize UCS values were 79.98MPa and 357MPa for 2% nHA/chitosan lyophilized and LSD particles respectively. One-way ANOVA results showed a significant increase (plyophilized scaffolds compared to 0% and 0.5% nHA/chitosan lyophilized scaffolds. Moreover, 2% nHA LSD scaffolds had significantly increased (plyophilized scaffolds. In a drawback, all scaffolds have lost their mechanical properties by 95% on the 2nd day when fully immersed in phosphate buffered saline. Additionally live and dead cell assay showed no cytotoxicity and excellent osteoblast attachment to both lyophilized and LSD scaffolds at the end of 14th day of in vitro studies. 2% nHA/chitosan scaffolds showed higher osteoblast attachment than 0% nHA/chitosan scaffolds. PMID:27612741