WorldWideScience

Sample records for temperature pyrolysis deoxygen

  1. Methods for deoxygenating biomass-derived pyrolysis oil

    Baird, Lance Awender; Brandvold, Timothy A.

    2015-06-30

    Methods for deoxygenating a biomass-derived pyrolysis oil are provided. A method for deoxygenating a biomass-derived pyrolysis oil comprising the steps of combining a biomass-derived pyrolysis oil stream with a heated low-oxygen-pyoil diluent recycle stream to form a heated diluted pyoil feed stream is provided. The heated diluted pyoil feed stream has a feed temperature of about 150.degree. C. or greater. The heated diluted pyoil feed stream is contacted with a first deoxygenating catalyst in the presence of hydrogen at first hydroprocessing conditions effective to form a low-oxygen biomass-derived pyrolysis oil effluent.

  2. Apparatuses and methods for deoxygenating biomass-derived pyrolysis oil

    Kalnes, Tom N.

    2015-12-29

    Apparatuses and methods for deoxygenating a biomass-derived pyrolysis oil are provided herein. In one example, the method comprises of dividing a feedstock stream into first and second feedstock portions. The feedstock stream comprises the biomass-derived pyrolysis oil and has a temperature of about 60.degree. C. or less. The first feedstock portion is combined with a heated organic liquid stream to form a first heated diluted pyoil feed stream. The first heated diluted pyoil feed stream is contacted with a first deoxygenating catalyst in the presence of hydrogen to form an intermediate low-oxygen pyoil effluent. The second feedstock portion is combined with the intermediate low-oxygen pyoil effluent to form a second heated diluted pyoil feed stream. The second heated diluted pyoil feed stream is contacted with a second deoxygenating catalyst in the presence of hydrogen to form additional low-oxygen pyoil effluent.

  3. Methods for deoxygenating biomass-derived pyrolysis oil

    Brandvold, Timothy A.

    2015-07-14

    Methods for deoxygenating a biomass-derived pyrolysis oil are provided. A method comprising the steps of diluting the biomass-derived pyrolysis oil with a phenolic-containing diluent to form a diluted pyoil-phenolic feed is provided. The diluted pyoil-phenolic feed is contacted with a deoxygenating catalyst in the presence of hydrogen at hydroprocessing conditions effective to form a low-oxygen biomass-derived pyrolysis oil effluent.

  4. Methods and apparatuses for deoxygenating biomass-derived pyrolysis oil

    Baird, Lance Awender; Brandvold, Timothy A.

    2015-10-20

    Embodiments of methods and apparatuses for deoxygenating a biomass-derived pyrolysis oil are provided. In one example, a method comprises the steps of separating a low-oxygen biomass-derived pyrolysis oil effluent into a low-oxygen-pyoil organic phase stream and an aqueous phase stream. Phenolic compounds are removed from the aqueous phase stream to form a phenolic-rich diluent recycle stream. A biomass-derived pyrolysis oil stream is diluted and heated with the phenolic-rich diluent recycle stream to form a heated diluted pyoil feed stream. The heated diluted pyoil feed stream is contacted with a deoxygenating catalyst in the presence of hydrogen to deoxygenate the heated diluted pyoil feed stream.

  5. EPR study of deoxygenated high-temperature superconductors

    R J Singh; P K Sharma; Shakeel Khan

    2002-05-01

    High-c superconductors are EPR silent but on a little deoxygenation of the high-c materials and their constituents, they yield rich but complex spectra. Spectra of (1) CuO, (2) BaCuO2, (3) CaCuO2, (4) Y2Cu2O5, (5) La2CuO4, (6) La2-CuO4 (M = Sr, Ba), (7) Y based-123, (8) Bi based-2201, 2212, 2223, (9) Tl based-2223 and (10) Hg based-1212,1223 have been studied. One thing common to all these materials is the CuO2 plane which gets fragmented on deoxygenation and the inherent antiferromagnetic coupling is partially destroyed which results in the appearance of the spectra. The spectra recorded have been identified to be due to (1) Cu-monomer, (2) Cu-dimer, (3) Cutetramer, (4) Cu-octamer and (5) one signal at very low field which could not be identified because there was no structure in it and may be due to fragments higher than octamers. Very big fragments do not give any spectra because the original AF order probably remains intact in them. It is expected that when the fragments become magnetically isolated from the bulk, they produce EPR spectra. Most of the spectra have been analyzed and their spin-Hamiltonian parameters determined. The spectra of these species vary a little in terms of g-value and fine-structure splitting constant from sample to sample or even in the same sample and this may be attributed to some extra oxygen attachments retained with these species. Most frequently occurring species is the Cu-tetramer, (CuO)4. As (CuO)4 represents the unit cell of the all important two-dimensional CuO2 plane of the high-c materials, its spectra have been argued to provide some clue to the mechanism of high-c superconductivity. The tetramer (CuO)4 is a four one-half spin system and is essentially 16-fold degenerate by Heisenberg isotropic exchange, it is split into 6 components: one pentet, three triplets and two singlets. In superconductors the pentet appears to be the ground state and in the non-superconducting constituents the singlets seem to form the ground

  6. Ceria promoted deoxygenation and denitrogenation of Thalassiosira weissflogii and its model compounds by catalytic in-situ pyrolysis.

    Aysu, Tevfik; Maroto-Valer, M Mercedes; Sanna, Aimaro

    2016-05-01

    Pyrolysis of microcrystalline cellulose, egg white powder, palm-jojoba oils mixtures Thalassiosira weissflogii model compounds was performed with CeO2 at 500°C, to evaluate its catalytic upgrading mechanism. Light organics, aromatics and aliphatics were originated from carbohydrates, proteins and lipids, respectively. Dehydration and decarboxylation were the main reactions involved in the algae and model compounds deoxygenation, while nitrogen was removed as NH3 and HCN. CeO2 increased decarbonylation reactions compared to in absence of catalyst, with production of ketones. The results showed that the catalysts had a significant effect on the pyrolysis products composition of T. weissflogii. CeO2, NiCeAl2O3 and MgCe/Al2O3 catalysts increased the aliphatics and decreased the oxygen content in bio-oils to 6-7 wt% of the algae starting O2 content. Ceria catalysts were also able to consistently reduce the N-content in the bio-oil to 20-38% of that in the parent material, with NiCe/Al2O3 being the most effective. PMID:26938809

  7. Low-temperature, selective catalytic deoxygenation of vegetable oil in supercritical fluid media.

    Kim, Seok Ki; Lee, Hong-Shik; Hong, Moon Hyun; Lim, Jong Sung; Kim, Jaehoon

    2014-02-01

    The effects of supercritical fluids on the production of renewable diesel-range hydrocarbons from natural triglycerides were investigated. Various supercritical fluids, which included CO2 (scCO2 ), propane (scC3 H8 ) and n-hexane (scC6 H14 ), were introduced with H2 and soybean oil into a fixed-bed reactor that contained pre-activated CoMo/γ-Al2 O3 . Among these supercritical fluids, scC3 H8 and scC6 H14 efficiently allowed the reduction of the reaction temperature by as much as 50 °C as a result of facilitated heat and mass transfer and afforded similar yields to reactions in the absence of supercritical fluids. The compositional analyses of the gas and liquid products indicated that the addition of scC3 H8 during the hydrotreatment of soybean oil promoted specific deoxygenation pathways, decarbonylation and decarboxylation, which consumed less H2 than the hydrodeoxygenation pathway. As a result, the quantity of H2 required to obtain a high yield of diesel-range hydrocarbons could be reduced to 57 % if scC3 H8 was used. As decarboxylation and decarbonylation are mildly endothermic reactions, the reduced heat transfer resistance in scC3 H8 may drive the deoxygenation reaction to thermodynamically favourable pathways. PMID:24339322

  8. Pyrolysis of biomass. Rapid pyrolysis at high temperature. Slow pyrolysis for active carbon preparation.

    Zanzi, Rolando

    2001-01-01

    Pyrolysis of biomass consists of heating solid biomass inthe absence of air to produce solid, liquid and gaseous fuels.In the first part of this thesis rapid pyrolysis of wood(birch) and some agricultural residues (olive waste, sugarcanebagasse and wheat straw in untreated and in pelletized form) athigh temperature (800ºC–1000ºC) is studied ina free fall reactor at pilot scale. These conditions are ofinterest for gasification in fluidized beds. Of main interestare the gas and char yields and ...

  9. Effect of temperature on pyrolysis products from four nut shells

    Demirbas, Ayhan [Department of Chemical Engineering, Selcuk University, Konya (Turkey)

    2006-06-01

    This article deals with slow pyrolysis of four shells such as hazelnut, walnut, almond and sunflower at the range of temperature 500-1200K in a cylindrical reactor batch reactor. The aim of this work was to experimentally investigate how the temperature affects char, liquid and gaseous product yields from different shells via pyrolysis. The amount of char from pyrolysis of the shell samples decreases with increasing the pyrolysis temperature. The highest liquid yields were obtained from the samples between 650 and 800K. The yield and the chemical composition of char can be calculated as functions of the pyrolysis temperature. The char components and higher heating values (HHVs) of shell fuels were correlated with pyrolysis temperatures. There were highly significant linear correlation between the pyrolysis temperature of the fuel and the fixed carbon content and HHV of char. (author)

  10. Low Temperature Dechlorination of Densified Refuse Derived Fuel in Pyrolysis

    LI Wei; XIE Qiang

    2005-01-01

    Study on behavior of chlorine contained in oval-shaped densified refuse derived fuel (d-RDF) prepared from unicipal solid waste in pyrolysis was carried out by means of temperature-programmed electrical furnace, and the gasevolving from pyrolysis was investigated by FTIR. De-HCl rate was calculated by determining the emission fraction of HCl in the flue gas and the fraction of Cl left in the pyrolysis residue. The results show that Cl in the d-RDF releases primarily in the form of HCl during the pyrolysis, and the initial releasing temperature of HCl enhances with the increase of heating rate. Meanwhile, the higher the end temperature of pyrolysis, the more the Cl released. De-HCl rate is about 70% when the end temperature of pyrolysis is around 600℃. Besides, mechanism of Cl release is discussed.

  11. Effect of temperature on pyrolysis product of empty fruit bunches

    Rahman, Aizuddin Abdul; Sulaiman, Fauziah; Abdullah, Nurhayati [School of Physics, Universiti Sains Malaysia, 11800 Minden, Penang (Malaysia)

    2015-04-24

    Pyrolysis of empty fruit bunches (EFB) was performed in a fixed bed reactor equipped with liquid collecting system. Pyrolysis process was conducted by varying the terminal pyrolysis temperature from 300 to 500°C under heating rate of 10°C/min for at least 2 hours. Char yield was obtained highest at 300°C around 55.88 wt%, and started to decrease as temperature increase. The maximum yield of pyrolysis liquid was obtained around 54.75 wt% as pyrolysis temperature reach 450°C. For gas yield percentage, the yield gained as temperature was increased from 300 to 500°C, within the range between 8.44 to 19.32 wt%. The char obtained at 400°C has great potential as an alternative solid fuel, due to its high heating value of 23.37 MJ/kg, low in volatile matter and ash content which are approximately around 40.32 and 11.12 wt%, respectively. The collected pyrolysis liquid within this temperature range found to have high water content of around 16.15 to 18.20 wt%. The high aqueous fraction seemed to cause the pyrolysis liquid to have low HHV which only ranging from 10.81 to 12.94 MJ/kg. These trends of results showed that necessary enhancement should be employ either on the raw biomass or pyrolysis products in order to approach at least the minimum quality of common hydrocarbon solid or liquid fuel. For energy production, both produced bio-char and pyrolysis liquid are considered as sustainable sources of bio-energy since they contained low amounts of nitrogen and sulphur, which are considered as environmental friendly solid and liquid fuel.

  12. Effect of temperature on pyrolysis product of empty fruit bunches

    Rahman, Aizuddin Abdul; Sulaiman, Fauziah; Abdullah, Nurhayati

    2015-04-01

    Pyrolysis of empty fruit bunches (EFB) was performed in a fixed bed reactor equipped with liquid collecting system. Pyrolysis process was conducted by varying the terminal pyrolysis temperature from 300 to 500°C under heating rate of 10°C/min for at least 2 hours. Char yield was obtained highest at 300°C around 55.88 wt%, and started to decrease as temperature increase. The maximum yield of pyrolysis liquid was obtained around 54.75 wt% as pyrolysis temperature reach 450°C. For gas yield percentage, the yield gained as temperature was increased from 300 to 500°C, within the range between 8.44 to 19.32 wt%. The char obtained at 400°C has great potential as an alternative solid fuel, due to its high heating value of 23.37 MJ/kg, low in volatile matter and ash content which are approximately around 40.32 and 11.12 wt%, respectively. The collected pyrolysis liquid within this temperature range found to have high water content of around 16.15 to 18.20 wt%. The high aqueous fraction seemed to cause the pyrolysis liquid to have low HHV which only ranging from 10.81 to 12.94 MJ/kg. These trends of results showed that necessary enhancement should be employ either on the raw biomass or pyrolysis products in order to approach at least the minimum quality of common hydrocarbon solid or liquid fuel. For energy production, both produced bio-char and pyrolysis liquid are considered as sustainable sources of bio-energy since they contained low amounts of nitrogen and sulphur, which are considered as environmental friendly solid and liquid fuel.

  13. Effect of temperature on pyrolysis product of empty fruit bunches

    Pyrolysis of empty fruit bunches (EFB) was performed in a fixed bed reactor equipped with liquid collecting system. Pyrolysis process was conducted by varying the terminal pyrolysis temperature from 300 to 500°C under heating rate of 10°C/min for at least 2 hours. Char yield was obtained highest at 300°C around 55.88 wt%, and started to decrease as temperature increase. The maximum yield of pyrolysis liquid was obtained around 54.75 wt% as pyrolysis temperature reach 450°C. For gas yield percentage, the yield gained as temperature was increased from 300 to 500°C, within the range between 8.44 to 19.32 wt%. The char obtained at 400°C has great potential as an alternative solid fuel, due to its high heating value of 23.37 MJ/kg, low in volatile matter and ash content which are approximately around 40.32 and 11.12 wt%, respectively. The collected pyrolysis liquid within this temperature range found to have high water content of around 16.15 to 18.20 wt%. The high aqueous fraction seemed to cause the pyrolysis liquid to have low HHV which only ranging from 10.81 to 12.94 MJ/kg. These trends of results showed that necessary enhancement should be employ either on the raw biomass or pyrolysis products in order to approach at least the minimum quality of common hydrocarbon solid or liquid fuel. For energy production, both produced bio-char and pyrolysis liquid are considered as sustainable sources of bio-energy since they contained low amounts of nitrogen and sulphur, which are considered as environmental friendly solid and liquid fuel

  14. Ecotoxicological characterization of biochars : role of feedstock and pyrolysis temperature

    Domene, X.; Enders, A.; Hanley, K; Lehmann, J.

    2015-01-01

    Seven contrasting feedstocks were subjected to slow pyrolysis at low (300 or 350 °C) and high temperature (550 or 600 °C), and both biochars and the corresponding feedstocks tested for short-term ecotoxicity using basal soil respiration and collembolan reproduction tests. After a 28-d incubation, soil basal respiration was not inhibited but stimulated by additions of feedstocks and biochars. However, variation in soil respiration was dependent on both feedstock and pyrolysis temperature. In t...

  15. Pyrolysis polygeneration of poplar wood: Effect of heating rate and pyrolysis temperature.

    Chen, Dengyu; Li, Yanjun; Cen, Kehui; Luo, Min; Li, Hongyan; Lu, Bin

    2016-10-01

    The pyrolysis of poplar wood were comprehensively investigated at different pyrolysis temperatures (400, 450, 500, 550, and 600°C) and at different heating rates (10, 30, and 50°C/min). The results showed that BET surface area of biochar, the HHV of non-condensable gas and bio-oil reached the maximum values of 411.06m(2)/g, 14.56MJ/m(3), and 14.39MJ/kg, under the condition of 600°C and 30°C/min, 600°C and 50°C/min, and 550°C and 50°C/min, respectively. It was conducive to obtain high mass and energy yield of bio-oil at 500°C and higher heating rate, while lower pyrolysis temperature and heating rate contributed towards obtaining both higher mass yield and energy yield of biochar. However, higher pyrolysis temperature and heating rate contributed to obtain both higher mass yield and energy yield of the non-condensable gas. In general, compared to the heating rate, the pyrolysis temperature had more effect on the product properties. PMID:27423545

  16. Flash pyrolysis of rapeseed cake: Influence of temperature on the yield and the characteristics of the pyrolysis liquid

    SMETS, Koen; Adriaensens, Peter; REGGERS, Guy; SCHREURS, Sonja; Carleer, Robert; Yperman, Jan

    2011-01-01

    Biomass waste is a promising source of renewable fuels and value-added chemicals. Rapeseed cake, the solid waste after pressing of rapeseed, is a biomass with such a potential. In this study, the possibilities of flash pyrolysis to convert rapeseed cake into a liquid form are investigated. Flash pyrolysis experiments are performed at four constant temperatures (350, 400, 450 and 550 degrees C) using a home-built lab-scale semi-continuous reactor. It is found that higher pyrolysis temperature ...

  17. Effects of temperature on pyrolysis products of oil sludge

    Jianguo LIU; Wei SONG; Yongfeng NIE

    2008-01-01

    Temperature is the determining factor of pyrolysis, which is one of the alternative technologies for oil sludge treatment. The effects of final:operating temperature ranging from 350 to 550℃ on pyrolysis products of oil sludge were studied in an externally-heating fixed bed reactor. With an increase of temperature, the mass fraction of solid residues, liquids, and gases in the final product is 67.00%-56.00%, 25.60%-32.35%, and 7.40%-11.65%, and their coresponding heat values are 34.4-13.8 MJ/kg, 44.41-46.6 MJ/kg, and 23.94-48.23 MJ/Nm3, respectively. The mass and energy tend to shift from solid to liquid and gas phase (especially to liquid phase) during the process, and the optimum temperature for oil sludge pyrolysis is 500℃. The liquid phase is mainly composed of alkane and alkene (C5.-C29), and the gas phase is dominantly HCs and H2.

  18. Relatively low-temperature pyrolysis of silane in free space

    Levin, H.

    1981-01-01

    The continuous flow pyrolyzer is a free space reactor that is used to study the effects of concentration, flow rate and temperature in making solar-grade silicon by pyrolysis of silane gas. Work with the continuous flow pyrolyzer is within the DOE-sponsored Low-Cost Solar Array Project. The work has led to a new theoretical treatment of silane pyrolysis in free space at relatively low temperatures (550 C to 750 C). It involves a sequential, three-step mechanism of particle growth: first, silicon atom generation by homogeneous reaction; second, coagulation to a 0.1 micron particle due to Brownian motion and van der Waals forces; and finally, chemical vapor deposition by heterogeneous reaction to final particle size.

  19. Low Temperature Pyrolysis of Graptolite Argillite (Dictyonema Shale in Autoclaves

    Galina Sharayeva

    2015-11-01

    Full Text Available The results of the systematic experimental study obtained in this work on the effects of temperature (340–420 °C and exposure time (0–8h at nominal temperature on the yield of pyrolysis products from Estonian graptolite argillite (GA generated in autoclaves without any solvent are described. The yields of solid residue (SR, gas, pyrogenetic water (W and extractable with benzenemix ofthermobitumen and oil (TBO were estimated. The compound groups of TBO were assessed. The highest yield of TBO, 2.18% on dry GA basis and 13.2% of organic matter (OM was obtained at temperature of 420 °C and duration 0.5 h. The main compound groups in TBO obtained at 400 ᵒC are polar hetero-atomic compounds and polycyclic hydrocarbons surpassing 45% and 30% of TBO. The shares of aliphatic and monocyclic hydrocarbons are below 15% of TBO. The yield of W from GA is – about 10-15% of OM. The quantity of OM left in SR after pyrolysis is high, about 65% of OM. The yield of pyrolysis products from GA and the composition of its TBO are compared with those obtained under similar conditions from different oil shales: Estonian Kukersite, US Utah Green River, and Jordanian Attarat.

  20. Low temperature microwave-assisted vs conventional pyrolysis of various biomass feedstocks

    Peter Shuttleworth; Vitaliy Budarin; Mark Gronnow; James H. Clark; Rafael Luque

    2012-01-01

    A comparison between conventional pyrolysis and a novel developed low-temperature microwave-assisted pyrolysis methodology has been performed for the valorisation of a range of biomass feedstocks including waste residues.Microwave pyrolysis was found to efficiently deliver comparable evolution of bio-gases in the system as compared with conventional pyrolysis at significantly reduced temperatures (120-180 ℃ vs 250-400 ℃).The gas obtained from microwave-assistet pyrolysis was found to contain CO2,CH4 and CO as major components as well as other related chemicals (e.g.acids,aldehydes,alkanes) which were obtained in different proportions depending on the selected feedstock.

  1. Flash pyrolysis of heavy metal contaminated biomass from phytoremediation: Influence of temperature, entrained flow and wood/leaves blended pyrolysis on the behaviour of heavy metals

    STALS, Mark; THIJSSEN, Elsy; Vangronsveld, Jaco; Carleer, Robert; Schreurs, Sonja; Yperman, Jan

    2010-01-01

    Phytoremediation crop disposal is a problem inhibiting the widespread use of the remediation technique. Flash pyrolysis as processing method for metal contaminated biomass is investigated: the rather low pyrolysis temperature prevents metal compounds from volatilisation while valuable pyrolysis oil is produced. Both plant stems and leaves are pyrolysed in a lab-scale semi-continuous reactor. Parameters under investigation are pyrolysis temperature (623, 723 and 823 K), the use of hot-gas filt...

  2. Catalytic pyrolysis of palm kernel shell waste in a fluidized bed.

    Kim, Sung Won; Koo, Bon Seok; Lee, Dong Hyun

    2014-09-01

    The catalytic pyrolysis of palm kernel shell was investigated in a fluidized bed with zsm-5 and equilibrium FCC (Ecat) catalysts. Catalytic pyrolysis oil yields were remarkably reduced and gas yields were increased due to the higher catalytic reaction of primary volatiles compared to non-catalytic pyrolysis. Char yields were affected by temperature and the pore structure of the catalysts. The pyrolysis oil was characterized by lower H/C and O/C molar ratios due to aromatization and deoxygenation of volatiles by the catalysts. The catalytic pyrolysis oils contained more oxygen and nitrogen and less sulfur than petroleum oils. The oils had a high concentration of nitriles, with a carbon number distribution similar to fatty acids. The catalytic pyrolysis oils featured high nitriles yield with Ecat and high aromatics yield in the light fraction with zsm-5, due to characteristics of the catalyst. The catalytic pyrolysis oils showed potentials as feedstocks for bio-diesel and chemicals. PMID:25006017

  3. Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties.

    Kloss, Stefanie; Zehetner, Franz; Dellantonio, Alex; Hamid, Raad; Ottner, Franz; Liedtke, Volker; Schwanninger, Manfred; Gerzabek, Martin H; Soja, Gerhard

    2012-01-01

    Biochars are increasingly used as soil amendment and for C sequestration in soils. The influence of feedstock differences and pyrolysis temperature on biochar characteristics has been widely studied. However, there is a lack of knowledge about the formation of potentially toxic compounds that remain in the biochars after pyrolysis. We investigated biochars from three feedstocks (wheat straw, poplar wood, and spruce wood) that were slowly pyrolyzed at 400, 460, and 525°C for 5 h (straw) and 10 h (woodchips), respectively. We characterized the biochars' pH, electrical conductivity, elemental composition (by dry combustion and X-ray fluorescence), surface area (by N adsorption), water-extractable major elements, and cation exchange capacity (CEC). We further conducted differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffractometry to obtain information on the biochars' molecular characteristics and mineralogical composition. We investigated trace metal content, total polycyclic aromatic hydrocarbon (PAH) content, and PAH composition in the biochars. The highest salt (4.92 mS cm) and ash (12.7%) contents were found in straw-derived biochars. The H/C ratios of biochars with highest treatment temperature (HTT) 525°C were 0.46 to 0.40. Surface areas were low but increased (1.8-56 m g) with increasing HTT, whereas CEC decreased (162-52 mmol kg) with increasing HTT. The results of DSC and FTIR suggested a loss of labile, aliphatic compounds during pyrolysis and the formation of more recalcitrant, aromatic constituents. X-ray diffractometry patterns indicated a mineralogical restructuring of biochars with increasing HTT. Water-extractable major and trace elements varied considerably with feedstock composition, with trace elements also affected by HTT. Total PAH contents (sum of EPA 16 PAHs) were highly variable with values up to 33.7 mg kg; irrespective of feedstock type, the composition of PAHs showed increasing dominance

  4. Novel electrochemical deoxygenation reaction using diphenylphosphinates.

    Lam, Kevin; Markó, István E

    2011-02-01

    The electrochemical reduction of diphenylphosphinate esters leads smoothly and in high yields to the corresponding deoxygenated products. In comparison with the previously developed methodologies, the electrolysis could be performed at lower temperature and with a higher current density, resulting in a shorter reaction time. PMID:21174395

  5. Pyrolysis temperature affects phosphorus transformation in biochar: Chemical fractionation and (31)P NMR analysis.

    Xu, Gang; Zhang, You; Shao, Hongbo; Sun, Junna

    2016-11-01

    Phosphorus (P) recycling or reuse by pyrolyzing crop residue has recently elicited increased research interest. However, the effects of feedstock and pyrolysis conditions on P species have not been fully understood. Such knowledge is important in identifying the agronomic and environmental uses of biochar. Residues of three main Chinese agricultural crops and the biochars (produced at 300°C-600°C) derived from these crops were used to determine P transformations during pyrolysis. Hedley sequential fractionation and (31)P NMR analyses were used in the investigation. Our results showed that P transformation in biochar was significantly affected by pyrolysis temperature regardless of feedstock (Wheat straw, maize straw and peanut husk). Pyrolysis treatment transformed water soluble P into a labile (NaHCO3-Pi) or semi-labile pool (NaOH-Pi) and into a stable pool (Dil. HCl P and residual-P). At the same time, organic P was transformed into inorganic P fractions which was identified by the rapid decomposition of organic P detected with solution (31)P NMR. The P transformation during pyrolysis process suggested more stable P was formed at a higher pyrolysis temperature. This result was also evidenced by the presence of less soluble or stable P species, such as such as poly-P, crandallite (CaAl3(OH)5(PO4)2) and Wavellite (Al3(OH)3(PO4)2·5H2O), as detected by solid-state (31)P NMR in biochars formed at a higher pyrolysis temperature. Furthermore, a significant proportion of less soluble pyrophosphate was identified by solution (2%-35%) and solid-state (8%-53%) (31)P NMR, which was also responsible for the stable P forms at higher pyrolysis temperature although their solubility or stability requires further investigation. Results suggested that a relatively lower pyrolysis temperature retains P availability regardless of feedstock during pyrolysis process. PMID:27343937

  6. Effect of pyrolysis temperature and air flow on toxicity of gases from a polycarbonate polymer

    Hilado, C. J.; Brick, V. E.; Brauer, D. P.

    1978-01-01

    A polycarbonate polymer was evaluated for toxicity of pyrolysis gases generated at various temperatures without forced air flow and with 1 L/min air flow, using the toxicity screening test method developed at the University of San Francisco. Time to various animal responses decreased with increasing pyrolysis temperature over the range from 500 C to 800 C. There appeared to be no significant toxic effects at 400 C and lower temperatures.

  7. Formate-assisted pyrolysis

    DeSisto, William Joseph; Wheeler, Marshall Clayton; van Heiningen, Adriaan R. P.

    2015-03-17

    The present invention provides, among other thing, methods for creating significantly deoxygenated bio-oils form biomass including the steps of providing a feedstock, associating the feedstock with an alkali formate to form a treated feedstock, dewatering the treated feedstock, heating the dewatered treated feedstock to form a vapor product, and condensing the vapor product to form a pyrolysis oil, wherein the pyrolysis oil contains less than 30% oxygen by weight.

  8. Microwave and Conventional Pyrolysis of Coffee Hulls at Different Temperatures for a Hydrogen Rich Gas

    Menendez, Angel; Fernandez, Yolanda; Dominguez, Antonio; Pis, Juan; Valente Nabais, Joao; Carrott, Peter; Carrott, Manuela

    2006-01-01

    Microwave and Conventional Pyrolysis of Coffee Hulls at Different Temperatures for a Hydrogen Rich Gas. The paper reports the comparison of using a microwave and a conventional furnace to do the pysolysis of the coffee hulls.

  9. Catalytic pyrolysis of biomass: Effects of pyrolysis temperature, sweeping gas flow rate and MgO catalyst

    Cotton seed, as a biomass source, is pyrolysed in a tubular fixed-bed reactor under various sweeping gas (N2) flow rates at different pyrolysis temperatures. In the non-catalytic work, the maximum bio-oil yield was attained as 48.30% at 550 oC with a sweeping gas flow rate of 200 mL min-1. At the optimum conditions, catalytic pyrolysis of biomass samples was performed with various amounts of MgO catalyst (5, 10, 15, and 20 wt.% of raw material). Catalyst addition decreased the quantity of bio-oil yet increased the quality of bio-oil in terms of calorific value, hydrocarbon distribution and removal of oxygenated groups. It was observed that increasing the amount of catalyst used, decreased the oil yields while increased the gas and char yields. Bio-oils obtained at the optimum conditions were separated into aliphatic, aromatic and polar sub-fractions. After the application of column chromatography, bio-oils were subjected into elemental, FT-IR and 1H NMR analyses. Aliphatic sub-fractions of bio-oils were analyzed by GC-MS. It was deduced that the fuel obtained via catalytic pyrolysis mainly consisted of lower weight hydrocarbons in the diesel range. Finally, obtained results were compared with petroleum fractions and evaluated as a potential source for liquid fuels.

  10. Effect of precursor concentration and spray pyrolysis temperature upon hydroxyapatite particle size and density.

    Cho, Jung Sang; Lee, Jeong-Cheol; Rhee, Sang-Hoon

    2016-02-01

    In the synthesis of hydroxyapatite powders by spray pyrolysis, control of the particle size was investigated by varying the initial concentration of the precursor solution and the pyrolysis temperature. Calcium phosphate solutions (Ca/P ratio of 1.67) with a range of concentrations from 0.1 to 2.0 mol/L were prepared by dissolving calcium nitrate tetrahydrate and diammonium hydrogen phosphate in deionized water and subsequently adding nitric acid. Hydroxyapatite powders were then synthesized by spray pyrolysis at 900°C and at 1500°C, using these calcium phosphate precursor solutions, under the fixed carrier gas flow rate of 10 L/min. The particle size decreased as the precursor concentration decreased and the spray pyrolysis temperature increased. Sinterability tests conducted at 1100°C for 1 h showed that the smaller and denser the particles were, the higher the relative densities were of sintered hydroxyapatite disks formed from these particles. The practical implication of these results is that highly sinterable small and dense hydroxyapatite particles can be synthesized by means of spray pyrolysis using a low-concentration precursor solution and a high pyrolysis temperature under a fixed carrier gas flow rate. PMID:25891158

  11. Interactive Matching between the Temperature Profile and Secondary Reactions of Oil Shale Pyrolysis

    Zhang, Yu; Han, Zhennan; Wu, Hao;

    2016-01-01

    This article investigates the effect of the reactor temperature profile on the distribution and characteristics of the products from fixed-bed pyrolysis of oil shale. Experiments were performed in a one-stage fixed-bed reactor and in a two-stage fixed-bed reactor. In the one-stage reactor, the...... shale oil yield reached 7.40 wt % with a reactor temperature profile from 900 to 550 degrees C and decreased to 2.23 wt % with the reverse temperature profile. The effect of the temperature profile was investigated further in the two-stage fixed-bed reactor combining a pyrolysis stage operating at 550...

  12. A review of the toxicity of biomass pyrolysis liquids formed at low temperatures

    Diebold, J P [Thermalchemie, Inc., Lakewood, CO (United States)

    1997-04-01

    The scaleup of biomass fast pyrolysis systems to large pilot and commercial scales will expose an increasingly large number of personnel to potential health hazards, especially during the evaluation of the commercial use of the pyrolysis condensates. Although the concept of fast pyrolysis to optimize liquid products is relatively new, low-temperature pyrolysis processes have been used over the aeons to produce charcoal and liquid by-products, e.g., smoky food flavors, food preservatives, and aerosols containing narcotics, e.g., nicotine. There are a number of studies in the historical literature that concern the hazards of acute and long-term exposure to smoke and to the historical pyrolysis liquids formed at low temperatures. The reported toxicity of smoke, smoke food flavors, and fast pyrolysis oils is reviewed. The data found for these complex mixtures suggest that the toxicity may be less than that of the individual components. It is speculated that there may be chemical reactions that take place that serve to reduce the toxicity during aging. 81 refs.

  13. Effect of fast pyrolysis conditions on biomass solid residues at high temperatures

    Trubetskaya, Anna; Jensen, Peter Arendt; Jensen, Anker Degn;

    2016-01-01

    Fast pyrolysis of wood and straw was conducted in a drop tube furnace (DTF) and compared with corresponding data from a wire mesh reactor (WMR) to study the influence of temperature (1000-1400)°C, biomass origin (pinewood, beechwood, wheat straw, alfalfa straw), and heating rate (103 °C/s, 104 °C...... decreased in its half-width with respect to the parental fuel, whereas the alfalfa straw char particle size remained unaltered at higher temperatures. Soot particles in a range from 60 to 300 nm were obtained during fast pyrolysis. The soot yield from herbaceous fuels was lower than from wood samples...

  14. The influence of temperature and heating rate on the slow pyrolysis of biomass

    Williams, P.T.; Besler, Serpil [Leeds Univ. (United Kingdom). Dept. of Fuel and Energy

    1996-10-01

    The slow pyrolysis of biomass in the form of pine wood was investigated in a static batch reactor at pyrolysis temperatures from 300 to 720{sup o}C and heating rates from 5 to 80 K min{sup -1}. The compositions and properties of the derived gases, pyrolytic oils and solid char were determined in relation to pyrolysis temperatures and heating rates. In addition, the wood and the major components of the wood - cellulose, hemicellulose and lignin - were pyrolysed in a thermogravimetric analyser (TGA) under the same experimental conditions as in the static batch reactor. The static batch reactor results showed that as the pyrolysis temperature was increased, the percentage mass of solid char decreased, while gas and oil products increased. There was a small effect of heating rate on product yield. The lower temperature regime of decomposition of wood showed that mainly H{sub 2}O, CO{sub 2} and CO were evolved and at the higher temperature regime, the main decomposition products were oil, H{sub 2}O, H{sub 2}, hydrocarbon gases and lower concentrations of CO and CO{sub 2}. Fourier transformation infra-red spectroscopy and elemental analysis of the oils showed they were highly oxygenated. The TGA results for wood showed two main regimes of weight loss, the lower temperature regime could be correlated with the decomposition of hemicellulose and the initial stages of cellulose decomposition whilst the upper temperature regime correlated mainly with the later stages of cellulose decomposition. Lignin thermal decomposition occurred throughout the temperature range of pyrolysis. (author)

  15. Temperature and time influence on the waste plastics pyrolysis in the fixed bed reactor

    Papuga Saša V.

    2016-01-01

    Full Text Available Pyrolysis as a technique of chemical recycling of plastic materials is causing an increasing level of interest as an environmentally and economically acceptable option for the processing of waste materials. Studies of these processes are carried out under different experimental conditions, in different types of reactors and with different raw materials, which makes the comparison of different processes and the direct application of process parameters quite complex. This paper presents the results of investigation of the influence of temperature in the range of 450°C to 525°C, on the yield of the process of pyrolysis of waste plastics mixture, composed of 45% polypropylene, 35% low density polyethylene and 25% high density polyethylene. Also, this paper presents results of the investigation of the effect of the reaction, atintervals of 30-90 [min], on the yield of pyrolysis of the mentioned waste plastics mixture. Research was conducted in a fixed bed pilot reactor, which was developed for this purpose. The results of the research show that at a temperature of 500°C, complete conversion of raw materials was achieved, for a period of 45 [min], with a maximum yield of the pyrolysis oil of 32.80%, yield of the gaseous products of 65.75% and the solid remains of 1.46%. Afurther increase of temperature increases the yield of gaseous products, at the expense of reducing the yield of pyrolysis oil. Obtained pyrolysis oil has a high calorific value of 45.96 [MJ/kg], and in this regard has potential applications as an alternative fuel.

  16. Products from the high temperature pyrolysis of RDF at slow and rapid heating rates

    Efika, EC; Onwudili, JA; Williams, PT

    2015-01-01

    The high-temperature pyrolysis behaviour of a sample of refuse derived fuel (RDF) as a model of municipal solid waste (MSW) was investigated in a horizontal tubular reactor between 700 and 900 °C, at varying heating rates, and at an extended vapour residence time. Experiments were designed to evaluate the influence of process conditions on gas yields as well as gas and oil compositions. Pyrolysis of RDF at 800 °C and at rapid heating rate resulted in the gas yield with the highest CV of 24.8 ...

  17. Effect of Temperature in Fluidized Bed Fast Pyrolysis of Biomass: Oil Quality Assessment in Test Units

    Westerhof, R.J.M.; Brilman, D.W.F.; Swaaij, van W.P.M.; Kersten, S.R.A.

    2010-01-01

    Pine wood was pyrolyzed in a 1 kg/h fluidized bed fast pyrolysis reactor that allows a residence time of pine wood particles up to 25 min. The reactor temperature was varied between 330 and 580 °C to study the effect on product yields and oil composition. Apart from the physical−chemical analysis, a

  18. Selective deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo{sub 2}C) surfaces

    Xiong, Ke [Catalysis Center for Energy Innovation, Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716 (United States); Yu, Weiting [Chemical Engineering, Columbia University, New York, NY 10027 (United States); Chen, Jingguang G., E-mail: jgchen@columbia.edu [Chemical Engineering, Columbia University, New York, NY 10027 (United States)

    2014-12-30

    Highlights: • Mo{sub 2}C surface can deoxygenate propanal and 1-propanol to produce propene through a similar intermediate (propoxide or η{sup 2}(C,O)-propanal). • Mo{sub 2}C surface can deoxygenate furfural and furfuryl alcohol to make 2-methylfuran through a 2-methylfuran-like intermediate. • The presence of furan ring modifies the selectivity between deoxygenation and hydrogenation/dehydrogenation pathways. - Abstract: The selective deoxygenation of aldehydes and alcohols without cleaving the C-C bond is crucial for upgrading bio-oil and other biomass-derived molecules to useful fuels and chemicals. In this work, propanal, 1-propanol, furfural and furfuryl alcohol were selected as probe molecules to study the deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo{sub 2}C) prepared over a Mo(1 1 0) surface. The reaction pathways were investigated using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The deoxygenation of propanal and 1-propanol went through a similar intermediate (propoxide or η{sup 2}(C,O)-propanal) to produce propene. The deoxygenation of furfural and furfuryl alcohol produced a surface intermediate similar to adsorbed 2-methylfuran. The comparison of these results revealed the promising deoxygenation performance of Mo{sub 2}C, as well as the effect of the furan ring on the selective deoxygenation of the C=O and C-OH bonds.

  19. Selective deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo2C) surfaces

    Highlights: • Mo2C surface can deoxygenate propanal and 1-propanol to produce propene through a similar intermediate (propoxide or η2(C,O)-propanal). • Mo2C surface can deoxygenate furfural and furfuryl alcohol to make 2-methylfuran through a 2-methylfuran-like intermediate. • The presence of furan ring modifies the selectivity between deoxygenation and hydrogenation/dehydrogenation pathways. - Abstract: The selective deoxygenation of aldehydes and alcohols without cleaving the C-C bond is crucial for upgrading bio-oil and other biomass-derived molecules to useful fuels and chemicals. In this work, propanal, 1-propanol, furfural and furfuryl alcohol were selected as probe molecules to study the deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo2C) prepared over a Mo(1 1 0) surface. The reaction pathways were investigated using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The deoxygenation of propanal and 1-propanol went through a similar intermediate (propoxide or η2(C,O)-propanal) to produce propene. The deoxygenation of furfural and furfuryl alcohol produced a surface intermediate similar to adsorbed 2-methylfuran. The comparison of these results revealed the promising deoxygenation performance of Mo2C, as well as the effect of the furan ring on the selective deoxygenation of the C=O and C-OH bonds

  20. Liquid Smoke Production Quality from Raw Materials Variation and Different Pyrolysis Temperature

    Ketut Budaraga

    2016-05-01

    Full Text Available This research is intended to know liquid smoke chemical and physical characteristics quality acquired from pyrolysis from various raw materials with different temperature level. The making of liquid smoke is done through pyrolysis process with temperature level 100 ± 10oC;  200 ± 10oC; 300±10oC;  and 400±10oC for 5 hour. This research is done experimentally by using complete random design on factorial pattern 3 x 4 with 3 repetition. Factor A is raw materials type that consists of coconut fibre, coconut shell and cinnamon while factor B is temperature level. The observed parameter consists of liquid smoke physical characteristic that consists of equipment performance, density, rendement, degree of acidity and chemical characteristic that consists of water-content, titrated acid total, phenol-content, carbonyl-content and benzo(apyren-content. The result of research shows that there is a very actual interaction (P<0,01 between using raw materials type with pyrolysis temperature level toward equipment performance, density, rendement, degree of acidity, water-content, titrated acid total, phenol-content, carbonyl-content and benzo(apyren-content. The best liquid smoke production quality can be found in raw materials cinnamon treatment on temperature level 400±10oC, which is pyrolysis equipment performance 16,29 ml/hour.meter, density 1,017 g/ml, rendement 38,78%, pH 3,503, titrated acid total 0,72 %, phenol-content 0,57 %, carbonyl-content 4,13 %, benzo(apyren-content 0,04 ppm. Based on the result of this research, it can be concluded that using cinnamon with level pyrolysis temperature 400±10oC is better used rather than coconut fibre and coconut shell because of its lowest benzo(apyren-content.

  1. Development of coconut pith chars towards high elemental mercury adsorption performance - Effect of pyrolysis temperatures.

    Johari, Khairiraihanna; Saman, Norasikin; Song, Shiow Tien; Cheu, Siew Chin; Kong, Helen; Mat, Hanapi

    2016-08-01

    In this study, chars from coconut pith (CP) were prepared aiming for superior adsorption towards elemental mercury (Hg(o)). The yield, proximate analysis, textural characteristics, surface functional groups and elemental composition analyses of the chars produced at pyrolysis temperature of 300 °C, 500 °C, 700 °C and 900 °C were compared. The surface area, pore volume, ash and carbon content of chars increased, while the yield and moisture content decreased with increasing pyrolysis temperatures. The changing of physical and chemical properties of the chars produced at variety pyrolysis temperature was much effect on the Hg(o) adsorption performance and definitely provides important information on the Hg(o) adsorption mechanism. The highest Hg(o) adsorption capacity was observed for CP900 (6067.49 μg/g), followed by CP700 (2395.98 μg/g), CP500 (289.76 μg/g), CP300 (1.68 μg/g), and CP (0.73 μg/g). The equilibrium data were well described by the Freundlich adsorption isotherm model. The pseudo-second order best described the kinetic data of the Hg(o) adsorption onto CP and CP300. For chars produced at higher pyrolysis temperature, however, the pseudo-zero order and pseudo-second order fitted well for the adsorption and breakthrough regions, respectively. The Hg(o) adsorption capacity of chars obtained from high pyrolysis temperature of CP significantly outperformed the commercial activated carbon (Darco KB-B) as well as superior to chars reported in the literature indicating the CP can be used as a precursor for preparation of chars as elemental mercury adsorbents. PMID:27160635

  2. Effect of temperature on energy potential of pyrolysis products from oil palm shells

    Lina María Romero Millán

    2016-06-01

    Full Text Available Context: Taking into account that near 220 000 tons of oil palm shells are produced every year in Colombia, as a waste of the Elaeis Guineensis palm oil transformation process, the aim of this work is to determine the energy potential of oil palm shells, when transformed through slow pyrolysis process.Methods: Using a fixed bed lab scale reactor, different oil palm shells pyrolysis tests were performed between 300°C and 500°C. The effect of the temperature in the process product yield and in the energy content of produced solids and gases were analyzed.Results: With a maximum mass yield of 50%, the char is considered the main product of oil palm shells pyrolysis, containing up to 73% of the raw biomass energy. The heating value of char raised with the temperature, from 29,6 MJ/kg at 300°C to 31,34 MJ/kg at 500°C. Moreover, the gas produced in the established temperature range had up to 13% of the energy content of the raw biomass, with a heating value near 12,5 MJ/m3.Conclusions: According to the results, slow pyrolysis can be considered an interesting process for the valorization of residual biomass as oil palm shells, through the production of solids and gases that can be used as fuels, or as precursor of other value-added products.

  3. Influence of Pyrolysis Temperature on Rice Husk Char Characteristics and Its Tar Adsorption Capability

    Anchan Paethanom; Kunio Yoshikawa

    2012-01-01

    A biomass waste, rice husk, was inspected by thermoanalytical investigation to evaluate its capability as an adsorbent medium for tar removal. The pyrolysis process has been applied to the rice husk material at different temperatures 600, 800 and 1000 °C with 20 °C/min heating rate, to investigate two topics: (1) influence of temperature on characterization of rice husk char and; (2) adsorption capability of rice husk char for tar removal. The results showed that subsequent ...

  4. Recycling of automobile shredder residue with a microwave pyrolysis combined with high temperature steam gasification

    Presently, there is a growing need for handling automobile shredder residues - ASR or 'car fluff'. One of the most promising methods of treatment ASR is pyrolysis. Apart of obvious benefits of pyrolysis: energy and metals recovery, there is serious concern about the residues generated from that process needing to be recycled. Unfortunately, not much work has been reported providing a solution for treatment the wastes after pyrolysis. This work proposes a new system based on a two-staged process. The ASR was primarily treated by microwave pyrolysis and later the liquid and solid products become the feedstock for the high temperature gasification process. The system development is supported within experimental results conducted in a lab-scale, batch-type reactor at the Royal Institute of Technology (KTH). The heating rate, mass loss, gas composition, LHV and gas yield of producer gas vs. residence time are reported for the steam temperature of 1173 K. The sample input was 10 g and the steam flow rate was 0.65 kg/h. The conversion reached 99% for liquids and 45-55% for solids, dependently from the fraction. The H2:CO mol/mol ratio varied from 1.72 solids and 1.4 for liquid, respectively. The average LHV of generated gas was 15.8 MJ/N m3 for liquids and 15 MJ/N m3 for solids fuels.

  5. PYROLYSIS OF EMPTY FRUIT BUNCHES: INFLUENCE OF TEMPERATURE ON THE YIELDS AND COMPOSITION OF GASEOUS PRODUCT

    Mohamad Azri Sukiran

    2014-01-01

    Full Text Available With the increasing concern on fossil fuel depletion and environmental problems, the utilization of renewable biomass resources is expected to play an important role in the future. Biomass can be converted into a variety of fuels and chemicals by different processes; one of which is pyrolysis that has been subjected to extensive research in recent years. In this study, pyrolysis of oil palm Empty Fruit Bunches (EFB was investigated using a quartz fluidised-fixed bed reactor. The effects of pyrolysis temperatures on the yields and composition of gaseous products were investigated. The temperatures of pyrolysis used were in the range of 300-600°C. The gaseous products from pyrolysis of (EFB were analyzed using a dual-channel micro-GC with Thermal Conductivity Detector (TCD. The highest and lowest gas yields obtained were 42.98 and 31.55% at 600 and 300°C, respectively. The gases detected were Carbon Monoxide (CO, carbon dioxide (CO2, Methane (CH4, Ethane (C2H6 and Ethylene (C2H4. At 300 and 400°C, the gas mixture comprised mainly CO2 (20% and CO (20%. Other gases such as CH4, C2H4 and C2H6 only evolved at higher temperature starting from 400°C with the yield of the latter two gases in very low concentration.

  6. Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil

    Bruun, Esben; Hauggaard-Nielsen, Henrik; Ibrahim, Norazana;

    2011-01-01

    Production of bio-oil, gas and biochar from pyrolysis of biomass is considered a promising technology for combined production of bioenergy and recalcitrant carbon (C) suitable for sequestration in soil. Using a fast pyrolysis centrifuge reactor (PCR) the present study investigated the relation...... between fast pyrolysis of wheat straw at different reactor temperatures and the short-term degradability of biochar in soil. After 115 days incubation 3–12% of the added biochar-C had been emitted as CO2. On average, 90% of the total biochar-C loss occurred within the first 20 days of the experiment......, emphasizing the importance of knowing the biochar labile fraction when evaluating a specific biochars C sequestration potential. The pyrolysis temperature influenced the outputs of biochar, bio-oil and syngas significantly, as well as the stability of the biochar produced. Contrary to slow pyrolysis a fast...

  7. Effect of pyrolysis temperature on the chemical oxidation stability of bamboo biochar.

    Chen, Dengyu; Yu, Xinzhi; Song, Chao; Pang, Xiaoli; Huang, Jing; Li, Yanjun

    2016-10-01

    Biochar produced by biomass pyrolysis has the advantage of carbon sequestration. However, some of the carbon atoms in biochar are not very stable. In this study, the effect of pyrolysis temperature on the chemical oxidation stability of bamboo biochar was investigated using the atomic ratios of H/C and O/C, Fourier transform infrared spectroscopy, and potassium dichromate (K2Cr2O7) oxidation spectrophotometric method. The results show that the carbon yield and ratios of H/C and O/C decreased from 71.72%, 0.71, and 0.32 to 38.48%, 0.22, and 0.06, respectively, as the temperature was increased from 300°C to 700°C. Moreover, the main oxygen-containing functional groups gradually decreased, while the degree of aromatization increased accordingly. The biochar showed a better stability at a higher pyrolysis temperature. The proportion of carbon loss, i.e., the amount of oxidized carbon with respect to the total carbon of the biochar, decreased from 16.52% to 6.69% with increasing temperature. PMID:27481469

  8. Influence of temperature and particle size on the fixed bed pyrolysis of orange peel residues

    Aguiar, L. [Departamento de Mecanica, Universidad de Pinar del Rio, Cuba. Calle Marti 270, final, Pinar del Rio (Cuba); Marquez-Montesinos, F. [Departamento de Quimica, Universidad de Pinar del Rio, Cuba. Calle Marti 270, final, Pinar del Rio (Cuba); Gonzalo, A.; Sanchez, J.L.; Arauzo, J. [Thermochemical Processes Group (GPT), Aragon Institute for Engineering Research (I3A), University of Zaragoza, Maria de Luna 3, 50018 Zaragoza (Spain)

    2008-09-15

    Orange peel is a residue from the production of juice. Its energetic valorisation could be interesting in areas where a different use, such as animal feed, is not possible. In order to investigate the viability of energy recovery, the pyrolysis of orange peel residues was studied in a fixed bed reactor, as an initial assessment of this process. The influence of pyrolysis temperature (300-600 C) and particle size (d{sub p}<300{mu}m and d{sub p}>800{mu}m) on product distribution, gas composition and char heating value has been investigated using a factorial design of experiments. Gas, char and water are the main products obtained; tar is only about 6 wt.% of the initial residue. Temperature was found to be the parameter which exerts a more important influence on the results than particle size. (author)

  9. Growth Temperature Effect on Carbon Nano tubes Formation by Spray Pyrolysis Method

    Carbon nano tubes has been produced by using spray pyrolysis method with no carrier gas. Carbon nano tubes were formulated from a mixture a ferrocene and benzene with certain ratio and then the mixture were injected by the sprayer into the furnace. Growth temperature was optimized in the range of 650 until 850 oC to get the high quality of carbon nano tubes. These were characterized by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray (EDX). (author)

  10. Biomass Pyrolysis: Comments on Some Sources of Confusions in the Definitions of Temperatures and Heating Rates

    Jacques Lédé

    2010-04-01

    Full Text Available Biomass pyrolysis is usually characterized on the basis of temperature and heating rate. Unfortunately, these parameters are badly defined in processing reactors as well as in laboratory devices. From the results of simplified models, the present paper points out the significant mistakes that can be made when assuming that the actual temperature and heating rate of reacting biomass particles are the same as those of the external heating medium. The difficulties in defining these two parameters are underlined in both cases of a heat source temperature supposed to be constant or to increase with time.

  11. Effect of particle size and temperature on volatiles produced from coal by slow pyrolysis

    Morris, R.M. (University of Durban-Westville, Durban (South Africa). Dept. of Chemical Engineering)

    1990-06-01

    Pyrolysis runs were carried out in the temperature range 1000-1150{degree}C and the particle size range +38 {mu}m to -2360{mu}m on a semianthracite coal from the Welgedacht area. Correlations were established for the yields of hydrogen and methane as functions of particle size and final temperature, and for carbon monoxide and carbon dioxide as a function of particle size at a final temperature before decomposition of carbonates in the mineral matter. The observations are explained in terms of secondary reactions occurring in the diffusion of the primary products through the pores of the char. 10 refs., 6 figs., 4 tabs.

  12. Wood source and pyrolysis temperature interact to control PyOM degradation rates

    Bird, J. A.; Hatton, P. J.; Filley, T. R.; Chatterjee, S.; Auclerc, A.; Gormley, M.; Dastmalchi, K.; Stark, R. E.; Nadelhoffer, K. J.

    2015-12-01

    Surprisingly little is known about how shifts in tree species composition and increased forest fire frequency and intensity will affect one of the most stable pools of soil organic matter, i.e. the pyrogenic organic matter (PyOM or char). In a previous study, we showed that wood source and pyrolysis temperature interact to control PyOM structure and potential reactivity for two tree species common in high-latitude forests, jack pine (JP) and red maple (RM). Here, we investigate whether these differences affect PyOM turnover by examining the fates of 13C/15N-enriched JP wood and PyOM pyrolyzed at 300 (JP300) and 450 °C (JP450) and RM pyrolyzed at 450 °C (RM450). The substrates were applied 1-3 cm below the O/A interface of a well-drained Spodosol in a long-term forest fire study located at the University of Michigan Biological Station (Pellston, MI, USA). 13C-CO2effluxes from the first 996 days of decay showed a significant wood source by pyrolysis temperature interaction on PyOM field mineralisation rates, with RM450 mineralising twice faster than JP450 during the first 90 days. Increasing pyrolysis temperature substantially decreased field mineralization rates during the first 996 days, with mineralisation rates 24 and 80 times slower for JP300 and JP450 compared with JP wood. After 1 year, (i) bacterial groups were large sinks for PyOM-derived C as pyrolysis temperature increased and as substrate use efficiency decreased; (ii) potential phenol oxidase and net peroxidase activities were unaffected by the PyOM addition, although net peroxidase activities measured tended to lesser for soils amended with JP450 and RM450; and (iii) Collembola detritivores appeared less likely to be found for soils amended with JP450 and RM450. PyOM-derived C and N recoveries did not differ after 1 year; we will present 3-y recovery data. Our results suggest that the composition of angiosperms (e.g. RM) and gymnosperms (e.g. JP) in high-latitude forests is an underappreciated but

  13. Hydrogen production from biomass pyrolysis gas via high temperature steam reforming process

    Full text: The aim of this work has been undertaken as part of the design of continuous hydrogen production using the high temperature steam reforming process. The steady-state test condition was carried out using syngas from biomass pyrolysis, whilst operating at high temperatures between 600 and 1200 degree Celsius. The main reformer operating parameters (e.g. temperature, resident time and steam to biomass ratio (S/B)) have been examined in order to optimize the performance of the reformer. The operating temperature is a key factor in determining the extent to which hydrogen production is increased at higher temperatures (900 -1200 degree Celsius) whilst maintaining the same as resident time and S/B ratio. The effects of exhaust gas composition on heating value were also investigated. The steam reforming process produced methane (CH4) and ethylene (C2H4) between 600 to 800 degree Celsius and enhanced production ethane (C2H6) at 700 degree Celsius. However carbon monoxide (CO) emission was slightly increased for higher temperatures all conditions. The results show that the use of biomass pyrolysis gas can produce higher hydrogen production from high temperature steam reforming. In addition the increasing reformer efficiency needs to be optimized for different operating conditions. (author)

  14. Toluene pyrolysis studies and high temperature reactions of propargyl chloride

    Kern, R.D.; Chen, H.; Qin, Z. [Univ. of New Orleans, LA (United States)

    1993-12-01

    The main focus of this program is to investigate the thermal decompositions of fuels that play an important role in the pre-particle soot formation process. It has been demonstrated that the condition of maximum soot yield is established when the reaction conditions of temperature and pressure are sufficient to establish a radical pool to support the production of polyaromatic hydrocarbon species and the subsequent formation of soot particles. However, elevated temperatures result in lower soot yields which are attributed to thermolyses of aromatic ring structures and result in the bell-shaped dependence of soot yield on temperature. The authors have selected several acyclic hydrocarbons to evaluate the chemical thermodynamic and kinetic effects attendant to benzene formation. To assess the thermal stability of the aromatic ring, the authors have studied the pyrolyses of benzene, toluene, ethylbenzene, chlorobenzene and pyridine. Time-of-flight mass spectrometry (TOF) is employed to analyze the reaction zone behind reflected shock waves. Reaction time histories of the reactants, products, and intermediates are constructed and mechanisms are formulated to model the experimental data. The TOF work is often performed with use of laser schlieren densitometry (LS) to measure density gradients resulting from the heats of various reactions involved in a particular pyrolytic system. The two techniques, TOF and LS, provide independent and complementary information about ring formation and ring rupture reactions.

  15. Pyrolysis of waste materials: Characterization and prediction of sorption potential across a wide range of mineral contents and pyrolysis temperatures.

    Kah, Melanie; Sun, Huichao; Sigmund, Gabriel; Hüffer, Thorsten; Hofmann, Thilo

    2016-08-01

    Sewage sludge (50% mineral), manure (29%) and wood (pyrolysis across a wide range of mineral contents. A commercial plant-derived biochar (41% mineral) was also considered. The materials were extensively characterized and tested for their sorption towards the model sorbates benzene, naphthalene and pyrene. Plant-derived materials, regardless of their mineral content, developed micropores causing size exclusion of pyrene. Changes in properties and sorption behavior upon pyrolysis were generally consistent for the manure and wood series. A single regression equation developed on our data (including the sorbate hydrophobicity and sorbent polarity) provided excellent prediction of previously reported changes in sorption upon pyrolysis across a wide range of mineral content (up to 500°C). The sewage sludge series, however, followed a particular behavior, possibly due to very high mineral content (up to 67%). PMID:27136609

  16. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge.

    Chen, Tan; Zhang, Yaxin; Wang, Hongtao; Lu, Wenjing; Zhou, Zeyu; Zhang, Yuancheng; Ren, Lulu

    2014-07-01

    To investigate systematically the influence of pyrolysis temperature on properties and heavy metal adsorption potential of municipal sludge biochar, biophysical dried sludge was pyrolyzed under temperature varying from 500°C to 900°C. The biochar yield decreased with the increase in pyrolysis temperature, while the ash content retained mostly, thus transforming the biochars into alkaline. The structure became porous as the temperature increased, and the concentrations of surface functional group elements remained low. Despite the comparatively high content of heavy metal in the biochar, the leaching toxicity of biochars was no more than 20% of the Chinese standard. In the batch experiments of cadmium(II) adsorption, the removal capacity of biochars improved under higher temperature, especially at 800°C and 900°C even one order of magnitude higher than that of the commercial activated carbon. For both energy recovery and heavy metal removal, the optimal pyrolysis temperature is 900°C. PMID:24835918

  17. Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil

    Production of bio-oil, gas and biochar from pyrolysis of biomass is considered a promising technology for combined production of bioenergy and recalcitrant carbon (C) suitable for sequestration in soil. Using a fast pyrolysis centrifuge reactor (PCR) the present study investigated the relation between fast pyrolysis of wheat straw at different reactor temperatures and the short-term degradability of biochar in soil. After 115 days incubation 3-12% of the added biochar-C had been emitted as CO2. On average, 90% of the total biochar-C loss occurred within the first 20 days of the experiment, emphasizing the importance of knowing the biochar labile fraction when evaluating a specific biochars C sequestration potential. The pyrolysis temperature influenced the outputs of biochar, bio-oil and syngas significantly, as well as the stability of the biochar produced. Contrary to slow pyrolysis a fast pyrolysis process may result in incomplete conversion of biomass due to limitations to heat transfer and kinetics. In our case chemical analysis of the biochars revealed unconverted cellulosic and hemicellulosic fractions, which in turn were found to be proportional with the short-term biochar degradation in soil. As these labile carbohydrates are rapidly mineralized, their presence lowers the biochar-C sequestration potential. By raising the pyrolysis temperature, biochar with none or low contents of these fractions can be produced, but this will be on the expense of the biochar quantity. The yield of CO2 neutral bio-oil is the other factor to optimize when adjusting the pyrolysis temperature settings to give the overall greatest climate change mitigation effect.

  18. Influence of pyrolysis temperature on characteristics and phosphate adsorption capability of biochar derived from waste-marine macroalgae (Undaria pinnatifida roots).

    Jung, Kyung-Won; Kim, Kipal; Jeong, Tae-Un; Ahn, Kyu-Hong

    2016-01-01

    The collected roots of Undaria pinnatifida, the main waste in farming sites, accounting for 40-60% of annual production, was pyrolyzed under temperature ranging from 200 to 800°C to evaluate the influence of pyrolysis temperature on biochar properties and phosphate adsorption capacity. It was confirmed that an increase in the pyrolysis temperature led to a decrease of the yield of biochar, while ash content remained almost due to carbonization followed by mineralization. Elemental analysis results indicated an increase in aromaticity and decreased polarity at a high pyrolysis temperature. When the pyrolysis temperature was increased up to 400°C, the phosphate adsorption capacity was enhanced, while a further increase in the pyrolysis temperature lowered the adsorption capacity due to blocked pores in the biochar during pyrolysis. Finally, a pot experiment revealed that biochar derived from waste-marine macroalgae is a potent and eco-friendly alternative material for fertilizer after phosphate adsorption. PMID:26482944

  19. Fuel and fuel blending components from biomass derived pyrolysis oil

    McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

    2012-12-11

    A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

  20. Application and research on Regenerative High Temperature Air Combustion technology on low-rank coal pyrolysis

    Highlights: • Based on RHTAC technology, RRTC has been developed, and was adopted by Shenwu Pyrolysis Process (SPP). • For RRTC, the low calorific value gas fuel can be used and the heat loss in fume exhausted is low. • The RRTCs can realize accurate temperature control and the separation of volatile materials and fume in the pyrolyzer. • Tar yield and gas quality is improved. Moreover, SPP could solve some technical problems for low-rank coal pyrolysis. - Abstract: Regenerative High Temperature Air Combustion (RHTAC) technology is composed of circular-ceramic regenerator, burners, small four-way reversing valve and control system. RHTAC technology works by using the regenerator in burners to complete heat exchange between the high-temperature fume exhausted and the combustion air. Based on RHTAC technology, Regenerative Radiant Tube Combustor (RRTC) has been developed, and was adopted by Shenwu Pyrolysis Process (SPP), which is a new pyrolysis technology with the heat-carrier-free rotating bed. SPP was researched and developed to upgrade low-rank coal into the upgraded coal, tar and pyrolyzing gas. Presently, various coals from China and other countries have been conducted, including Lignite and Long flame coal. To understand the function of the RRTCs in SPP, a pilot plant has been constructed and used to investigate the effects of the RRTCs on the fume and pyrolyzer temperature distributions and pyrolyzing products. The results show that low calorific value gas fuel (>700 kcal/Nm3) can be used, the heat loss in fume exhausted is low (temp. about 150 °C), so thermal efficiency of the RRTC is greatly improved; the RRTCs can realize accurate temperature control and the separation of volatile materials and fume in the pyrolyzer, so as to increase tar yield and improve gas quality. The tar yield is more than 90% of the Gray-King tar yield; the pyrolyzing gas contains high contents of CH4, H2 and CO. Moreover, SPP could solve some technical problems, such as

  1. The stabilization of tannery sludge and the character of humic acid-like during low temperature pyrolysis.

    Ma, Hongrui; Gao, Mao; Hua, Li; Chao, Hao; Xu, Jing

    2015-11-01

    Tannery sludge contained plenty of organic matter, and the organic substance stability had direct impact on its derived chars' utilization. In this paper, the stabilization of tannery sludge and the variation of humic acid-like (HAL) extracted by different methods were investigated in a magnetic stirring reactor under low temperature pyrolysis of 100-400 °C. Results showed that the aromatic structure of pyrolysis chars increased with the increase of temperature and time. The char contained highly aromatic structure and relatively small dissolved organic matters (DOM) at 300 °C. The similar behaviors appeared in two HAL series by different extraction methods. The N content, H/C value, and aliphatic structures of HAL decreased with the increase of pyrolysis temperature, while the C/N value and aromatic structures increased with the rise of pyrolysis temperature. The composition and functional groups of HAL were similar with the purchased humic acid (HA). The fluorescence spectra revealed that two main peaks were found at Ex/Em = 239/363-368 nm and 283/359-368 nm in each HAL series from raw and 100 °C pyrolysis tannery sludge, representing a protein-like matter. The new peak appeared at Ex/Em = 263-283/388 nm in each HAL series from 200 °C pyrolysis tannery sludge-represented humic acid-like matter. The fluorescence intensity increased strongly compared to the other two peak intensity. Therefore, the humification of organic matter was increased by pyrolyzing. Notably, the HAL from 200 °C pyrolysis tannery sludge contained simple molecular structure, and the polycondensation increased but with a relative lower humification degree compared to soil HAL and purchased HA. Therefore, the sludge needs further oxidation. The humic substance was negligible by direct extraction when the temperature was 300 and 400 °C. PMID:26092361

  2. Multi-species time-history measurements during high-temperature acetone and 2-butanone pyrolysis

    Lam, Kingyiu

    2013-01-01

    High-temperature acetone and 2-butanone pyrolysis studies were conducted behind reflected shock waves using five species time-history measurements (ketone, CO, CH3, CH4 and C2H4). Experimental conditions covered temperatures of 1100-1600 Kat 1.6 atm, for mixtures of 0.25-1.5% ketone in argon. During acetone pyrolysis, the CO concentration time-history was found to be strongly sensitive to the acetone dissociation rate constant κ1 (CH3COCH3 → CH3 + CH3CO), and this could be directly determined from the CO time-histories, yielding κ1(1.6 atm) = 2.46 × 1014 exp(-69.3 [kcal/mol]/RT) s-1 with an uncertainty of ±25%. This rate constant is in good agreement with previous shock tube studies from Sato and Hidaka (2000) [3] and Saxena et al. (2009) [4] (within 30%) at temperatures above 1450 K, but is at least three times faster than the evaluation from Sato and Hidaka at temperatures below 1250 K. Using this revised κ1 value with the recent mechanism of Pichon et al. (2009) [5], the simulated profiles during acetone pyrolysis show excellent agreement with all five species time-history measurements. Similarly, the overall 2-butanone decomposition rate constant κtot was inferred from measured 2-butanone time-histories, yielding κ tot(1.5 atm) = 6.08 × 1013 exp(-63.1 [kcal/mol]/RT) s -1 with an uncertainty of ±35%. This rate constant is approximately 30% faster than that proposed by Serinyel et al. (2010) [11] at 1119 K, and approximately 100% faster at 1412 K. Using the measured 2-butanone and CO time-histories and an O-atom balance analysis, a missing removal pathway for methyl ketene was identified. The rate constant for the decomposition of methyl ketene was assumed to be the same as the value for the ketene decomposition reaction. Using the revised κtot value and adding the methyl ketene decomposition reaction to the Serinyel et al. mechanism, the simulated profiles during 2-butanone pyrolysis show good agreement with the measurements for all five species.

  3. Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and feedstock quality.

    Jassal, Rachhpal S; Johnson, Mark S; Molodovskaya, Marina; Black, T Andrew; Jollymore, Ashlee; Sveinson, Kelly

    2015-04-01

    Nitrogen (N) enrichment of biochar from both inorganic and organic waste N sources has the potential to add economic and environmental value through its use as a slow release N fertilizer. We investigated the sorption of N by, and its release from, biochar made at pyrolysis temperatures of 400, 500 and 600 °C from three feedstocks: poultry litter (PL with a carbon (C) to N ratio (C:N) of 14), softwood chips of spruce-pine-fir (SPF with a C:N of 470), and a 50:50 mixture of PL and SPF (PL/SPF). The prepared biochars were enriched with ammonium nitrate (AN) and urea ammonium nitrate (UAN). PL biochars had the lowest C content (50-56% C), but the highest pH (9.3-9.9), electrical conductivity (EC, 780-960 dS m(-1)), cation exchange capacity (CEC, 40-46 cmol kg(-1)), and N content (3.3-4.5%). While N content and hydrogen (H) to C atomic ratio (H:C) decreased with increasing pyrolysis temperature irrespective of the feedstock used, both pH and EC slightly increased with pyrolysis temperature for all feedstocks. The PL and SPF biochars showed similar H:C and also similar N sorption and N release at all pyrolysis temperatures. These biochars sorbed up to 5% N by mass, irrespective of the source of N. However, PL/SPF biochar performed poorly in sorbing N from either AN or UAN. Biochar H:C was found to be unrelated to N sorption rates, suggesting that physical adsorption on active surfaces was the main mechanism of N sorption in these biochars. There were minor differences between N sorbed from NO3-N and NH4-N among different biochars. Very small amounts of sorbed N (0.2-0.4 mg N g(-1) biochar) was released when extracted with 1 M KCl solution, indicating that the retained N was strongly held in complex bonds, more so for NH4-N because the release of NO3-N was 3-4 times greater than that of NH4-N. NH4-N sorption far exceeded the effective CEC of the biochars, thereby suggesting that most of the sorption may be due to physical entrapment of NH4(+) in biochar pores

  4. Evaluating the effects of temperature on pressurized pyrolysis of Nannochloropsis oculata based on products yields and characteristics

    Highlights: • N. oculata is a suitable feedstock for pyrolysis due to high volatile matter. • Temperature effects on product yields and properties during pressurized pyrolysis. • Algal bio-oil has high energy content and has similar composition as diesel fuel. • Suitability of char as a fuel was based on Van Krevelen diagram. • Gas from pyrolysis of N. oculata has high percentage of combustible hydrocarbons. - Abstract: Biofuels derived from pyrolysis of microalgae can be potential alternatives for petroleum-derived fuels. Pyrolysis is an easily controllable thermochemical conversion process that yields energy fuels such as bio-oil, char and combustible gases. Microalgae is a very promising feedstock for this process since it has high lipid content, grows faster than lignocellulosic biomass, has high productivity and high photosynthetic efficiency. Several reaction parameters including temperature could affect the yield and quality of biofuels from pyrolysis. This paper aimed to evaluate the effect of temperature during pyrolysis of Nannochloropsis oculata using a pressurized fixed-bed batch-type reactor. Based on the results, the distribution of the products significantly varied with pyrolysis temperature, and the pyrolysis process can be manipulated to favor one of its products. Bio-oil with high heating value (HHV) of about 38 MJ/kg, due to its high carbon (76wt%) and hydrogen (11wt%) contents, and low oxygen content (7wt%), can be produced from N. oculata. It also consists mainly of saturated (34.95%) and unsaturated aliphatics (34.43%), and aromatics (14.19%) ranging from C8 to C21, which is comparable to diesel fuel. The HHV of the char (27 MJ/kg) and gas (27 MJ/m3) were also relatively high. Based on their heating values (HHV) and compositions, the char, bio-oil and gas produced from pyrolysis of N. oculata can be potentially used as alternative sources of energy. Mass and energy conversion efficiencies of the process were also estimated to be

  5. Growth and characterization of V2O5 nanorods deposited by spray pyrolysis at low temperatures

    Abd-Alghafour, N. M.; Ahmed, Naser M.; Hassan, Zai.; Mohammad, Sabah M.; Bououdina, M.

    2016-07-01

    Vanadium pentoxide (V2O5) nanorods were deposited by spray pyrolysis on preheated glass substrates at low temperatures. The influence of substrate temperature on the crystallization of V2O5 has been investigated. X-ray diffraction analysis (XRD) revealed that the films deposited at Tsub = 300°C were orthorhombic structures with preferential along (001) direction. Formation of nanorods from substrate surface which led to the formation of films with small-sized and rod-shaped nanostructure is observed by field scanning electron microscopy. Optical transmittance in the visible range increases to reach a maximum value of about 80% for a substrate temperature of 350°C. PL spectra reveal one main broad peak centered around 540 nm with high intensity.

  6. Effect of pyrolysis temperatures and times on the adsorption of cadmium onto orange peel derived biochar.

    Tran, Hai Nguyen; You, Sheng-Jie; Chao, Huan-Ping

    2016-02-01

    The mechanism and capacity of adsorption of cadmium (Cd) on orange peel (OP)-derived biochar at various pyrolysis temperatures (400, 500, 600, 700 and 800°C) and heating times (2 and 6 h) were investigated. Biochar was characterized using proximate analysis, point of zero charge (PZC) analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. Equilibrium and kinetic experiments of Cd adsorption on biochar were performed. The results indicated that the pH value at PZC of biochar approached 9.5. Equilibrium can be reached rapidly (within 1 min) in kinetic experiments and a removal rate of 80.6-96.9% can be generated. The results fitted the pseudo-second-order model closely. The adsorption capacity was estimated using the Langmuir model. The adsorption capacity of Cd on biochar was independent of the pyrolysis temperature and heating time (p>0.01). The maximum adsorption capacity of Cd was 114.69 (mg g(-1)). The adsorption of Cd on biochar was regarded as chemisorption. The primary adsorption mechanisms were regarded as Cπ-cation interactions and surface precipitation. Cadmium can react with calcite to form the precipitation of (Ca,Cd)CO3 on the surface of biochar. The OP-derived biochar can be considered a favourable alternative and a new green adsorbent for removing Cd(2+) ions from an aqueous solution. PMID:26608900

  7. Factors affecting sorption of nitro explosives to biochar: pyrolysis temperature, surface treatment, competition, and dissolved metals.

    Oh, Seok-Young; Seo, Yong-Deuk

    2015-05-01

    The application of rice straw-derived biochar for removing nitro explosives, including 2,4-dinitrotoluene (DNT), 2,4,6-trinitrotoluene (TNT), and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), from contaminated water was investigated through batch experiments. An increase in the pyrolysis temperature from 250 to 900°C in general led to higher pH, surface area, cation exchange capacity (CEC), point of zero charge, and C:O ratio of biochar. The maximum sorption capacity estimated by a mixed sorption-partition model increased when pyrolysis temperatures were elevated from 250 to 900°C, indicating that C content and aromaticity of biochar were strongly related to the sorption of nitro explosives to biochar. Surface treatment with acid or oxidant increased the sorption capacity of biochar for the two strong π-acceptor compounds (DNT and TNT) but not for RDX. However, the enhancement of sorption capacity was not directly related to increased surface area and CEC. Compared with single-sorption systems, coexistence of explosives or cationic metals resulted in decreased sorption of each explosive to biochar, suggesting that sorption of nitro explosives and cationic metals to electron-rich portions in biochar was competitive. Our results suggest that π-π electron donor acceptor interactions are main sorption mechanisms and that changing various conditions can enhance or reduce the sorption of nitro explosives to biochar. PMID:26024263

  8. Structures and lithium storage performance of Si-O-C composite materials depending on pyrolysis temperatures

    Fukui, Hiroshi; Eguchi, Katsuya; Ohsuka, Hisashi; Hino, Takakazu; Kanamura, Kiyoshi

    2013-12-01

    A polymer blend of a partially-branched phenyl-substituted polysilane, (Ph2Si)0.85(PhSi)0.15, and polystyrene (1:1 by weight) has been prepared to produce silicon oxycarbide (Si-O-C) composite materials through pyrolysis in the temperature range 700-1200 °C under an argon atmosphere. According to elemental analysis results, carbon is a major constituent in a series of Si-O-C composite materials obtained in this study. Completely amorphous features were observed for the composite materials obtained between 700 and 1100 °C, while a clearly discernible crystalline evolution of silicon carbide (SiC) phases was found in a glass network of the composite material obtained at 1200 °C. This paper also deals with electrochemical lithiation and delithiation for the series of Si-O-C composite materials. The first delithiation capacities of these composite materials were highly dependent on pyrolysis temperatures. The composite material obtained at 700 °C had the maximum delithiation capacity of ca. 800 mA h g-1, while the composite material obtained at 1200 °C showed the minimum delithiation capacity of ca. 330 mA h g-1. The crystalline evolution of SiC phases is thought to cause such a drastic decrease in delithiation capacity at 1200 °C.

  9. Substitution of fossil fuels by using low temperature pyrolysis of agricultural residues

    Externally heated rotary kiln pyrolysis reactor is used as a new process technology for the conversion of biomass into useful primary energy products. A 3 MW pyrolysis pilot plant is being operated for a period of two years using agricultural residues. Several analytical methods are applied to provide an insight into the complex process of pyrolysis. Fundamentals for an advanced pyrolysis model approach will be obtained by the results of the pilot plant. (author)

  10. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor

    Trevor James Morgan; Scott Q Turn; Anthe George

    2015-01-01

    A reactor was designed and commissioned to study the fast pyrolysis behavior of banagrass as a function of temperature and volatiles residence time. Four temperatures between 400 and 600°C were examined as well as four residence times between ~1.0 and 10 seconds. Pyrolysis product distributions of bio-oil, char and permanent gases were determined at each reaction condition. The elemental composition of the bio-oils and chars was also assessed. The greatest bio-oil yield was recorded when work...

  11. RELATION BETWEEN MECHANICAL PROPERTIES AND PYROLYSIS TEMPERATURE OF PHENOL FORMALDEHYDE RESIN FOR GAS SEPARATION MEMBRANES

    MONIKA ŠUPOVÁ

    2012-03-01

    Full Text Available The aim of this paper has been to characterize the relation between the pyrolysis temperature of phenol-formaldehyde resin, the development of a porous structure, and the mechanical properties for the application of semipermeable membranes for gas separation. No previous study has dealt with this problem in its entirety. Phenol-formaldehyde resin showed an increasing trend toward micropore porosity in the temperature range from 500 till 1000°C, together with closure of mesopores and macropores. Samples cured and pyrolyzed at 1000°C pronounced hysteresis of desorption branch. The ultimate bending strength was measured using a four-point arrangement that is more suitable for measuring of brittle materials. The chevron notch technique was used for determination the fracture toughness. The results for mechanical properties indicated that phenol-formaldehyde resin pyrolyzates behaved similarly to ceramic materials. The data obtained for the material can be used for calculating the technical design of gas separation membranes.

  12. High temperature pyrolysis: A new system for isotopic and elemental analysis

    A new method for the automated sample conversion and on-line determination of deuterium, carbon, nitrogen and oxygen isotopes for organic and inorganic substances is presented. The samples are pyrolytically decomposed in presence of reactive carbon in a high temperature pyrolysis system (HTP) at a temperature higher than 1400 deg. C. The method has a great potential for the analysis of hydrogen, carbon, nitrogen and oxygen stable isotopes ratios. The instrumentation and application is very simple and cost effective. The reproducibility of the δ-values is 3 per mille for D/H, 0.3 per mille for 18O, and 0.2 per mille for 13C and 15N respectively. The system is suitable for solid, liquid and gaseous samples. Results are presented for the isotopic composition of international reference materials which show the precision and accuracy of the method. (author)

  13. Indium oxide thin-film transistors processed at low temperature via ultrasonic spray pyrolysis

    Faber, Hendrik

    2015-01-14

    The use of ultrasonic spray pyrolysis is demonstrated for the growth of polycrystalline, highly uniform indium oxide films at temperatures in the range of 200-300 °C in air using an aqueous In(NO3)3 precursor solution. Electrical characterization of as-deposited films by field-effect measurements reveals a strong dependence of the electron mobility on deposition temperature. Transistors fabricated at ∼250 °C exhibit optimum performance with maximum electron mobility values in the range of 15-20 cm2 V -1 s-1 and current on/off ratio in excess of 106. Structural and compositional analysis of as-grown films by means of X-ray diffraction, diffuse scattering, and X-ray photoelectron spectroscopy reveal that layers deposited at 250 °C are denser and contain a reduced amount of hydroxyl groups as compared to films grown at either lower or higher temperatures. Microstructural analysis of semiconducting films deposited at 250 °C by high resolution cross-sectional transmission electron microscopy reveals that as-grown layers are extremely thin (∼7 nm) and composed of laterally large (30-60 nm) highly crystalline In2O3 domains. These unique characteristics of the In2O3 films are believed to be responsible for the high electron mobilities obtained from transistors fabricated at 250 °C. Our work demonstrates the ability to grow high quality low-dimensional In2O3 films and devices via ultrasonic spray pyrolysis over large area substrates while at the same time it provides guidelines for further material and device improvements.

  14. Indium oxide thin-film transistors processed at low temperature via ultrasonic spray pyrolysis.

    Faber, Hendrik; Lin, Yen-Hung; Thomas, Stuart R; Zhao, Kui; Pliatsikas, Nikos; McLachlan, Martyn A; Amassian, Aram; Patsalas, Panos A; Anthopoulos, Thomas D

    2015-01-14

    The use of ultrasonic spray pyrolysis is demonstrated for the growth of polycrystalline, highly uniform indium oxide films at temperatures in the range of 200-300 °C in air using an aqueous In(NO3)3 precursor solution. Electrical characterization of as-deposited films by field-effect measurements reveals a strong dependence of the electron mobility on deposition temperature. Transistors fabricated at ∼250 °C exhibit optimum performance with maximum electron mobility values in the range of 15-20 cm(2) V (-1) s(-1) and current on/off ratio in excess of 10(6). Structural and compositional analysis of as-grown films by means of X-ray diffraction, diffuse scattering, and X-ray photoelectron spectroscopy reveal that layers deposited at 250 °C are denser and contain a reduced amount of hydroxyl groups as compared to films grown at either lower or higher temperatures. Microstructural analysis of semiconducting films deposited at 250 °C by high resolution cross-sectional transmission electron microscopy reveals that as-grown layers are extremely thin (∼7 nm) and composed of laterally large (30-60 nm) highly crystalline In2O3 domains. These unique characteristics of the In2O3 films are believed to be responsible for the high electron mobilities obtained from transistors fabricated at 250 °C. Our work demonstrates the ability to grow high quality low-dimensional In2O3 films and devices via ultrasonic spray pyrolysis over large area substrates while at the same time it provides guidelines for further material and device improvements. PMID:25490965

  15. Influences of Temperature and Coal Particle Size on the Flash Pyrolysis of Coal in a Fast-entrained Bed

    2006-01-01

    The experiments on the flash pyrolysis of a lignite were carried out in a fast-entrained bed reactor as a basic study on a so-called 'coal topping process'. The investigation focused on the effects of pyrolysis temperature and coal particle size on the product distribution and composition. The experimental results show that an increase in the pyrolysis temperature results in a higher yield of gaseous products while a larger particle size leads to a decrease of the liquid yield. An optimum temperature for the liquid yield was found to be 650 ℃. A certain amount of phenol groups was found in the liquid products, which may be used to produce high-valued fine chemicals. The FTIR analyses of the coal and chars show that aliphatic structures in the chars are gradually replaced by aromatic structures with the increasing of pyrolysis temperature and coal particle size. The results of this study provide fundamental data and optimal conditions to maximize light oils yields for the coal topping process.

  16. Flash pyrolysis at high temperature of ligno-cellulosic biomass and its components - production of synthesis gas

    Pyrolysis is the first stage of any thermal treatment of biomass and governs the formation of synthesis gas for the production of electricity, hydrogen or liquid fuels. The objective of this work is to establish a link between the composition of a biomass and its pyrolysis gas. We study experimental flash pyrolysis and fix the conditions in which quantities of gas are maximal, while aiming at a regime without heat and mass transfer limitations (particles about 100 μm): temperature of 950 C and residence time of about 2 s. Then we try to predict gas yields of any biomass according to its composition, applicable in this situation where thermodynamic equilibrium is not reached. We show that an additivity law does not allow correlating gas yields of a biomass with fractions of cellulose, hemi-cellulose and lignin contained in this biomass. Several explanations are suggested and examined: difference of pyrolytic behaviour of the same compound according to the biomass from which it is extracted, interactions between compounds and influence of mineral matter. With the aim of industrial application, we study pyrolysis of millimetric and centimetric size particles, and make a numerical simulation of the reactions of pyrolysis gases reforming. This simulation shows that the choice of biomass affects the quantities of synthesis gas obtained. (author)

  17. Effect of pyrolysis temperature on the properties of carbon/nickel nanocomposites prepared by sol–gel method

    Mansour, N. Ben, E-mail: Nabil.Benmansour@fsg.rnu.tn [Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE), Gabès University, Faculty of Sciences in Gabès, Gabès (Tunisia); Najeh, I.; Mansouri, S. [Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE), Gabès University, Faculty of Sciences in Gabès, Gabès (Tunisia); El Mir, L. [Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE), Gabès University, Faculty of Sciences in Gabès, Gabès (Tunisia); Al Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Sciences, Department of Physics, Riyadh 11623 (Saudi Arabia)

    2015-05-15

    Highlights: • Synthesis of nickel oxide nanoparticles in carbon structures. • Presence of multiwall carbon nanotubes (MWNT) around Ni nanoparticles for the sample treated at high pyrolysis temperature. • DC conductivity exhibited the presence of conduction percolation phenomenon and the dominance of conduction model 3D-GVRH in the studied materials. • From AC conductance PF/Ni nanocomposites have two behaviors: semiconductor and metal, depending on the pyrolysis temperature. • Appearance of a negative differential resistance (NDR) at room temperature in the sample treated at 600 °C. - Abstract: Carbon–nickel nanocomposites (C/Ni) were prepared by sol–gel method after the incorporation of nickel oxide (NiO) nanoparticles in organic matrix based on pyrogallol-formaldehyde (PF). The nanocomposites heated under inert atmosphere have been characterized by various techniques such as X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), and electrical analysis. The XRD spectra exhibited the presence of NiO or metallic Ni phase in amorphous carbon matrix at low pyrolysis temperature, while at 1000 °C the graphite structure line was observed. The TEM images indicate the presence of multiwall carbon nanotubes (MWNT) around Ni nanoparticles for the sample treated at high pyrolysis temperature. The AC conductance shows that our nanocomposites have two behaviors: semiconductor and metal, depending on the pyrolysis temperature. The voltage–current V(I) characteristics of the compound show two different regions: an Ohmic region at low current and a negative differential resistance (NDR) region at higher current. This switching phenomenal behavior has been explained by an electrothermal model.

  18. Effect of pyrolysis temperature on the properties of carbon/nickel nanocomposites prepared by sol–gel method

    Highlights: • Synthesis of nickel oxide nanoparticles in carbon structures. • Presence of multiwall carbon nanotubes (MWNT) around Ni nanoparticles for the sample treated at high pyrolysis temperature. • DC conductivity exhibited the presence of conduction percolation phenomenon and the dominance of conduction model 3D-GVRH in the studied materials. • From AC conductance PF/Ni nanocomposites have two behaviors: semiconductor and metal, depending on the pyrolysis temperature. • Appearance of a negative differential resistance (NDR) at room temperature in the sample treated at 600 °C. - Abstract: Carbon–nickel nanocomposites (C/Ni) were prepared by sol–gel method after the incorporation of nickel oxide (NiO) nanoparticles in organic matrix based on pyrogallol-formaldehyde (PF). The nanocomposites heated under inert atmosphere have been characterized by various techniques such as X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), and electrical analysis. The XRD spectra exhibited the presence of NiO or metallic Ni phase in amorphous carbon matrix at low pyrolysis temperature, while at 1000 °C the graphite structure line was observed. The TEM images indicate the presence of multiwall carbon nanotubes (MWNT) around Ni nanoparticles for the sample treated at high pyrolysis temperature. The AC conductance shows that our nanocomposites have two behaviors: semiconductor and metal, depending on the pyrolysis temperature. The voltage–current V(I) characteristics of the compound show two different regions: an Ohmic region at low current and a negative differential resistance (NDR) region at higher current. This switching phenomenal behavior has been explained by an electrothermal model

  19. Effect of Fast Pyrolysis Conditions on the Biomass Solid Residues at High Temperatures (1000-1400°C)

    Trubetskaya, Anna; Jensen, Anker D.; Jensen, Peter Arendt;

    Fast pyrolysis of wood and straw was conducted in a drop tube furnace (DTF) and compared with the experimental work on the wire-mesh reactor (WMR) to study the influence of temperature (1000-1400°C), biomass origin (softwood, hardwood, grass) and heating rate (1000°C/s, 10^4 °C/s) on the char yield...... and morphology. Scanning electron microscopy (SEM/EDS), elementary analysis, CAMSIZER XT, ash compositional analysis were applied to characterize the effect of operational conditions on the solid and gas products. Char yield from fast pyrolysis in the DFT setup was 2 to 6 % (daf) lower than in the WMR...... lower than from wood samples. During fast pyrolysis, additionally to the soot and char particles, spherical solid residues of particle size (60-300 nm) were obtained. Based on the previous studies, these smooth spherical particles are associated with the formation of condensed tars under fast heating...

  20. Effect of biochar produced at different pyrolysis temperature on the soil respiration of abandoned mine soil

    Kim, Yong Seong; Kim, Juhee; Hwang, Wonjae; Hyun, Seunghun

    2015-04-01

    Contaminated soils near an abandoned mine site included the high acidic mine tailing have received great interest due to potential risk to human health, because leachable elements in low pH continuously release from mine site soil with ground water and precipitation event. Biochar, which is the obtained pyrolysis process of biomass, is used as a soil amendments and carbon storage. Especially, many researchers report that the biochar application to soil show increasing soil pH, CEC, adsorption capacity of various elements, as well as, enhanced microbial activity. Therefore, biochar application to contaminated soil near abandoned mine site is expected to have a positive effects on management of these site and soils through the decreased leachability of contaminants. However, effects of biochar application to these site on the soil respiration, as a common measure of soil health, are poorly understood. The objective of this study is to evaluate the effects of biochar application to abandoned mine site soil on the microbial activity with soil respiration test. Biochar was obtained from giant Miscanthus in a slow pyrolysis process (heating rate of 10° C min-1 and N2 gas flow rate of 1.2 L min-1) at the temperature of 400° C (BC4) and 700° C (BC7), respectively. All biochar samples were prepared with grinding and sieving for particle size control (150~500μm). Soil sample was collected from abandoned mine site at Korea (36° 58'N, 128° 10'E). Main contaminants of this soil were As (12.5 g kg-1), Pb (7.3 g kg-1), and Zn (1.1 g kg-1). Biochars were applied (5% by dry weight) to the soil (final mixture weight were 800g), and then moisture contents were adjusted to 100% field capacity (-0.33 bar) in the respirometer with vacuum pump. CO2 efflux of each samples was continuously assessed using continuous aeration system (air flow rate 25 cc min-1) using air cylinder during 130hr (at 20° C and darkness condition). The CO2 emitted from the samples were carried to the

  1. Evaluation of Integrated Time-Temperature Effect in Pyrolysis Process of Historically Contaminated Soils with Cadmium (Cd and Lead (Pb

    Bulmău C

    2013-04-01

    Full Text Available It is already known that heavy metals pollution causes important concern to human and ecosystem health. Heavy metals in soils at the European level represents 37.3% between main contaminates affecting soils (EEA, 2007. This paper illustrates results obtained in the framework of laboratory experiments concerning the evaluation of integrated time-temperature effect in pyrolysis process applied to contaminated soil by two different ways: it is about heavy metals historically contaminated soil from one of the most polluted areas within Romania, and artificially contaminated with PCB-containing transformer oil. In particular, the authors focused on a recent evaluation of pyrolysis efficiency on removing lead (Pb and cadmium (Cd from the contaminated soil. The experimental study evaluated two important parameters related to the studied remediation methodology: thermal process temperature and the retention time in reactor of the contaminated soils. The remediation treatments were performed in a rotary kiln reactor, taking into account three process temperatures (400°C, 600°C and 800°C and two retention times: 30 min. and 60 min. Completed analyses have focused on pyrolysis solids and gas products. Consequently, both ash and gas obtained after pyrolysis process were subjected to chemical analyses.

  2. Effect of temperature during the spray pyrolysis synthesis of silver nanopowder

    We report the results of the synthesis and characterization of Ag, AgO, AgNO3 nanopowders or mixtures of them, obtained by spray pyrolysis technique. An aqueous solution of AgNO3 with a concentration of 0.2 mol/L was sprayed through a horizontal tubular furnace where the solvent was evaporated and pyrolytic reaction occurs producing AgNO3, AgO and Ag particles. The synthesis was made at 500, 600 and 700 oC. The obtained material was analyzed by Transmission Electron Microscopy, and the optimal temperature to obtain particles of around 10 nm was 600 oC. The X-rays and Electron Diffraction analysis determined the coexistence of the phases of Ag, AgO and AgNO3, whereas the measurement of x-rays fluorescence the presence of Ag was detected. The solution concentration and the carrier flow, the temperature and the temperature gradient in the furnace influence in the phase and size of the particle.. (author)

  3. Techno-economic evaluation of high temperature pyrolysis processes for mixed plastic waste.

    Westerhout, R.W.J.; Koningsbruggen, van M.P.; Ham, van der A.G.J.; Kuipers, J.A.M.; Swaaij, van W.P.M.

    1998-01-01

    Three pyrolysis processes for Mixed Plastic Waste (MPW) with different reactors (Bubbling Fluidized Bed, Circulating Fluidized Bed and Rotating Cone Reactor, respectively BFB, CFB and RCR) were designed and evaluated. The estimated fixed capital investment for a 50 kton/year MPW pyrolysis plant buil

  4. Catalytic Flash Pyrolysis of Biomass Using Different Types of Zeolite and Online Vapor Fractionation

    Imran, Ali

    2016-03-11

    Bio-oil produced from conventional flash pyrolysis has poor quality and requires expensive upgrading before it can be used as a transportation fuel. In this work, a high quality bio-oil has been produced using a novel approach where flash pyrolysis, catalysis and fractionation of pyrolysis vapors using two stage condensation are combined in a single process unit. A bench scale unit of 1 kg/h feedstock capacity is used for catalytic pyrolysis in an entrained down-flow reactor system equipped with two-staged condensation of the pyrolysis vapor. Zeolite-based catalysts are investigated to study the effect of varying acidities of faujasite Y zeolites, zeolite structures (ZSM5), different catalyst to biomass ratios and different catalytic pyrolysis temperatures. Low catalyst/biomass ratios did not show any significant improvements in the bio-oil quality, while high catalyst/biomass ratios showed an effective deoxygenation of the bio-oil. The application of zeolites decreased the organic liquid yield due to the increased production of non-condensables, primarily hydrocarbons. The catalytically produced bio-oil was less viscous and zeolites were effective at cracking heavy molecular weight compounds in the bio-oil. Acidic zeolites, H-Y and H-ZSM5, increased the desirable chemical compounds in the bio-oil such as phenols, furans and hydrocarbon, and reduced the undesired compounds such as acids. On the other hand reducing the acidity of zeolites reduced some of the undesired compounds in the bio-oil such as ketones and aldehydes. The performance of H-Y was superior to that of the rest of zeolites studied: bio-oil of high chemical and calorific value was produced with a high organic liquid yield and low oxygen content. H-ZSM5 was a close competitor to H-Y in performance but with a lower yield of bio-oil. Online fractionation of catalytic pyrolysis vapors was employed by controlling the condenser temperature and proved to be a successful process parameter to tailor the

  5. Low oxygen biomass-derived pyrolysis oils and methods for producing the same

    Marinangeli, Richard; Brandvold, Timothy A; Kocal, Joseph A

    2013-08-27

    Low oxygen biomass-derived pyrolysis oils and methods for producing them from carbonaceous biomass feedstock are provided. The carbonaceous biomass feedstock is pyrolyzed in the presence of a catalyst comprising base metal-based catalysts, noble metal-based catalysts, treated zeolitic catalysts, or combinations thereof to produce pyrolysis gases. During pyrolysis, the catalyst catalyzes a deoxygenation reaction whereby at least a portion of the oxygenated hydrocarbons in the pyrolysis gases are converted into hydrocarbons. The oxygen is removed as carbon oxides and water. A condensable portion (the vapors) of the pyrolysis gases is condensed to low oxygen biomass-derived pyrolysis oil.

  6. Influence of the Pyrolysis Temperature on Sewage Sludge Product Distribution, Bio-Oil, and Char Properties

    Trinh, Ngoc Trung; Jensen, Peter Arendt; Dam-Johansen, Kim;

    2013-01-01

    behaviors of sludge oils were found to be considerably influenced by the applied pyrolysis temperatures. The sludge oil properties obtained at the optimal temperature of 575 °C were a HHV of 25.5 MJ/kg, a water-insoluble fraction of 18.7 wt %, a viscosity of 43.6 mPa s at 40 °C, a mean molecular weight of...... centrifugel reactor (PCR) at 475, 525, 575, and 625 °C. Maxima of both organic oil yield of 41 wt % on a dry ash free feedstock basis (daf) and a sludge oil energy recovery of 50% were obtained at 575 °C. The water-insoluble fraction, molecular-weight distribution, higher heating value (HHV), and thermal...... 392 g/mol, and metal concentrations lower than 0.14 wt % on a dry basis (db). Less optimal oil properties with respect to industrial applications were observed for oil samples obtained at 475 and 625 °C. Char properties of the 575 °C sample were an ash content of 81 wt % and a HHV of 6.1 MJ/kg db. A...

  7. Effect of pyrolysis temperature on polycyclic aromatic hydrocarbons toxicity and sorption behaviour of biochars prepared by pyrolysis of paper mill effluent treatment plant sludge.

    Devi, Parmila; Saroha, Anil K

    2015-09-01

    The polycyclic aromatic hydrocarbons (PAHs) toxicity and sorption behaviour of biochars prepared from pyrolysis of paper mill effluent treatment plant (ETP) sludge in temperature range 200-700 °C was studied. The sorption behaviour was found to depend on the degree of carbonization where the fractions of carbonized and uncarbonized organic content in the biochar act as an adsorption media and partition media, respectively. The sorption and partition fractions were quantified by isotherm separation method and isotherm parameters were correlated with biochar properties (aromaticity, polarity, surface area, pore volume and ash content). The risk assessment for the 16 priority EPA PAHs present in the biochar matrix was performed and it was found that the concentrations of the PAHs in the biochar were within the permissible limits prescribed by US EPA (except BC400 and BC500 for high molecular weight PAHs). PMID:26048085

  8. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor.

    Trevor James Morgan

    Full Text Available A reactor was designed and commissioned to study the fast pyrolysis behavior of banagrass as a function of temperature and volatiles residence time. Four temperatures between 400 and 600°C were examined as well as four residence times between ~1.0 and 10 seconds. Pyrolysis product distributions of bio-oil, char and permanent gases were determined at each reaction condition. The elemental composition of the bio-oils and chars was also assessed. The greatest bio-oil yield was recorded when working at 450°C with a volatiles residence time of 1.4 s, ~37 wt% relative to the dry ash free feedstock (excluding pyrolysis water. The amounts of char (organic fraction and permanent gases under these conditions are ~4 wt% and 8 wt% respectively. The bio-oil yield stated above is for 'dry' bio-oil after rotary evaporation to remove solvent, which results in volatiles and pyrolysis water being removed from the bio-oil. The material removed during drying accounts for the remainder of the pyrolysis products. The 'dry' bio-oil produced under these conditions contains ~56 wt% carbon which is ~40 wt% of the carbon present in the feedstock. The oxygen content of the 450°C, 1.4 s 'dry' bio-oil is ~38 wt%, which accounts for ~33 wt% of the oxygen in the feedstock. At higher temperature or longer residence time less bio-oil and char is recovered and more gas and light volatiles are produced. Increasing the temperature has a more significant effect on product yields and composition than increasing the volatiles residence time. At 600°C and a volatiles residence time of 1.2 seconds the bio-oil yield is ~21 wt% of the daf feedstock, with a carbon content of 64 wt% of the bio-oil. The bio-oil yield from banagrass is significantly lower than from woody biomass or grasses such as switchgrass or miscanthus, but is similar to barley straw. The reason for the low bio-oil yield from banagrass is thought to be related to its high ash content (8.5 wt% dry basis and high

  9. PYROLYSIS OF EMPTY FRUIT BUNCHES: INFLUENCE OF TEMPERATURE ON THE YIELDS AND COMPOSITION OF GASEOUS PRODUCT

    Mohamad Azri Sukiran; Loh Soh Kheang; Nasrin Abu Bakar; Choo Yuen May

    2014-01-01

    With the increasing concern on fossil fuel depletion and environmental problems, the utilization of renewable biomass resources is expected to play an important role in the future. Biomass can be converted into a variety of fuels and chemicals by different processes; one of which is pyrolysis that has been subjected to extensive research in recent years. In this study, pyrolysis of oil palm Empty Fruit Bunches (EFB) was investigated using a quartz fluidised-fixed bed reactor. The effects of p...

  10. Effect of pyrolysis temperature on the properties of carbon/nickel nanocomposites prepared by sol-gel method

    Mansour, N. Ben; Najeh, I.; Mansouri, S.; El Mir, L.

    2015-05-01

    Carbon-nickel nanocomposites (C/Ni) were prepared by sol-gel method after the incorporation of nickel oxide (NiO) nanoparticles in organic matrix based on pyrogallol-formaldehyde (PF). The nanocomposites heated under inert atmosphere have been characterized by various techniques such as X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), and electrical analysis. The XRD spectra exhibited the presence of NiO or metallic Ni phase in amorphous carbon matrix at low pyrolysis temperature, while at 1000 °C the graphite structure line was observed. The TEM images indicate the presence of multiwall carbon nanotubes (MWNT) around Ni nanoparticles for the sample treated at high pyrolysis temperature. The AC conductance shows that our nanocomposites have two behaviors: semiconductor and metal, depending on the pyrolysis temperature. The voltage-current V(I) characteristics of the compound show two different regions: an Ohmic region at low current and a negative differential resistance (NDR) region at higher current. This switching phenomenal behavior has been explained by an electrothermal model.

  11. Relationship between chemical composition and pyrolysis behaviour of a medium temperature pitch (or Lurgi-gasifier pitch)

    Sima, L.; Blanco Rodríguez, Clara; Santamaría Ramírez, Ricardo; Granda Ferreira, Marcos; Slaghuis, H.; Menéndez López, Rosa María

    2003-01-01

    This paper studies the chemical composition and pyrolysis behaviour of a medium temperature pitch produced in the SASOL–Lurgi coal gasification process. The results are compared to a commercial petroleum pitch and a commercial binder coal-tar pitch. The SASOL pitch had a high content in oxygen, mainly forming phenols, which make it very reactive at temperatures between 410 and 430 °C, temperatures at which the commercial pitches do not react in a great extent. Despite the high reactivity show...

  12. Studies on liquefaction and pyrolysis of peat and biomass at KTH

    A brief review of the study on thermochemical conversion of solid fuels is done. The study have been performed in the Royal Institute of Technology, Stockholm, since the outbreak of energy crisis in the seventies. The main problems connected with utilisation of peat for energy are: 90% moisture content in the deposits and 35-40% oxygen content in the dry substance. Simultaneous dewatering and liquefaction of peat have been achieved by the Bjoerbom method. The wet peat has been treated with CO and H2O without preliminary drying, using water as a medium agent. After treatment water has been phase-separated from the heavy oil product. Another approach is de-oxygenation of peat prior to liquefaction. A significant part of oxygen in peat and biomass can be removed by thermal decomposition of the fuels prior to liquefaction and removal of carbon dioxide and water from the organic matter in them. The products obtained after de-oxygenation demand low consumption of external hydrogenation agent because they are rich in hydrogen. Some criteria for selection of peat as a raw material for liquefaction are given. The equipment and experimental procedure for pyrolysis of peat and biomass are described. A free fall tubular reactor with max operating pressure of 5 MPa and temperature of 1100oC has been used. The effect of treatment conditions under the rapid pyrolysis in the free fall reactor on the yield and the reactivity of char obtained after the final pyrolysis is shown. Peat and wood are transformed into pyrolysis products for less than 1 second; 35-50% of the moisture- and ash-free peat and 70% of the wood have been converted into gaseous products.The char obtained in the rapid pyrolysis contains a fraction which can be further de-volatilized by slow pyrolysis for a few minutes - time much longer than the time for formation of primary products. High reactivity of char is favoured by lower pyrolysis temperature, shorter residence time and larger particle size of the fuel. 3

  13. Evaluation of phosphorus adsorption capacity of sesame straw biochar on aqueous solution: influence of activation methods and pyrolysis temperatures.

    Park, J H; Ok, Y S; Kim, S H; Cho, J S; Heo, J S; Delaune, R D; Seo, D C

    2015-12-01

    The phosphorus (P) adsorption characteristic of sesame straw biochar prepared with different activation agents and pyrolysis temperatures was evaluated. Between 0.109 and 0.300 mg L(-1) in the form of inorganic phosphate was released from raw sesame straw biochar in the first 1 h. The release of phosphate was significantly enhanced from 62.6 to 168.2 mg g(-1) as the pyrolysis temperature increased. Therefore, sesame straw biochar cannot be used as an adsorbent for P removal without change in the physicochemical characteristics. To increase the P adsorption of biochar in aqueous solution, various activation agents and pyrolysis temperatures were applied. The amount of P adsorbed from aqueous solution by biochar activated using different activation agents appeared in the order ZnCl2 (9.675 mg g(-1)) > MgO (8.669 mg g(-1)) ⋙ 0.1N-HCl > 0.1N-H2SO4 > K2SO4 ≥ KOH ≥ 0.1N-H3PO4, showing ZnCl2 to be the optimum activation agent. Higher P was adsorbed by the biochar activated using ZnCl2 under different pyrolysis temperatures in the order 600 °C > 500 °C > 400 °C > 300 °C. Finally, the amount of adsorbed P by activated biochar at different ratios of biochar to ZnCl2 appeared in the order 1:3 ≒ 1:1 > 3:1. As a result, the optimum ratio of biochar to ZnCl2 and pyrolysis temperature were found to be 1:1 and 600 °C for P adsorption, respectively. The maximum P adsorption capacity by activated biochar using ZnCl2 (15,460 mg kg(-1)) was higher than that of typical biochar, as determined by the Langmuir adsorption isotherm. Therefore, the ZnCl2 activation of sesame straw biochar was suitable for the preparation of activated biochar for P adsorption. PMID:26040973

  14. Effects of Temperature Rise Rate on Pyrolysis of Plastic Wastes%升温速率对废塑料热解过程的影响

    石耀华; 马晓波; 陈德珍; 周恭明

    2011-01-01

    In this paper, pyrolysis experiments of plastic wastes, i.e. polyethylene ( PE), polypropylene (PP), polyvinylchloride(PVC) and their mixtures, were made at temperature rise rates of lO℃/min,20℃/min and 30℃/min in nitrogen atmosphere in which the temperature was from 20℃ to 700℃.Effects of pyrolysis process of waste plastics at different temperature rise rate were analyzed, and kinetics investigations were carried out by Coast - Redfern integration method. Pyrolysis characteristics and kinetic parameters of these three kinds of plastic wastes and their mixtures were obtained. The results show that temperature rise rate has an influence on pyrolysis rate, pyrolysis temperature range, activation energy and pre -exponential factor. The greater temperature rise rate, the faster pyrolysis reacts, the greater activation energy required, the more energy consumption on pyrolysis process. Therefore, in the pyrolysis process of waste plastics, temperature rise rate, pyrolysis materials, pyrolysis temperature and other conditions should be considered integrally. This research can provide theoretical and experimental data for the design of pyrolysis technology of plastic wastes.%选取废旧塑料聚乙烯(polyethylene,PE)、聚丙烯(polypropylene,PP)、聚氯乙烯(polyvi-nyl chloride,PVC)及其混合物,在氮气气氛下进行热解实验,实验温度从室温到700℃,升温速率分别为10℃/min、20℃/min和30℃/min.讨论了不同升温速率对废塑料热解过程的影响,并采用Coast-Redfem法进行了热解动力学分析,得到了三种废塑料及其混合物的热解特性及反应动力学、参数.研究结果表明,升温速率对热解速率,热解温度段,活化能,频率因子都有影响.升温速率越快,热解反应越快,所需的活化能也越大,热解过程对能量的消耗越多.因此,在废塑料热解过程中,要综合考虑升温速率,热解原料,热解温度等条件.本文可为废塑料热解工艺的研究提供理论依据和参考数据.

  15. STUDY ON THE GASEOUS PRODUCTS OF HIGH TEMPERATURE PYROLYSIS OF ACRYLONITRILE POLYMERS BY ON-LINE FTIR METHOD

    ZHAO Genxiang; CHEN Bangjie

    1987-01-01

    The gaseous products of high temperature pyrolysis (300℃ to 960℃) of acrylonitrile polymers were measured continuously under nitrogen atnosphere by on-line Fourier Transform Infrared Spectroscopic method (FTIR). From the variations of characteristic peaks it was found that the nitrogen of macromolecules evolved were mainly in the form of hydrogen cyanide and ammonia. During the pyrolysis amorphous carbonaceous element was formed, and crosslinked to form network structure. Three kinds of samples were used for comparison. The experimental results show that the gaseous products of volatile small molecules were HCN, NH3, CH4, C2H6 and cyanide. CO and CO2 were also formed when copolymers of PAN were thermally pyrolyzed.

  16. Fast Pyrolysis of Lignin Using a Pyrolysis Centrifuge Reactor

    Trinh, Ngoc Trung; Jensen, Peter Arendt; Sárossy, Zsuzsa;

    2013-01-01

    Fast pyrolysis of lignin from an ethanol plant was investigated on a lab scale pyrolysis centrifuge reactor (PCR) with respect to pyrolysis temperature, reactor gas residence time, and feed rate. A maximal organic oil yield of 34 wt % dry basis (db) (bio-oil yield of 43 wt % db) is obtained at...

  17. Temperature dependent grain-size and microstrain of CdO thin films prepared by spray pyrolysis method

    B G Jeyaprakash; K Kesavan; R Ashok Kumar; S Mohan; A Amalarani

    2011-07-01

    CdO thin films on glass substrate were prepared by home built spray pyrolysis unit from aqueous solution of Cd(CH3COO)2.2H2O at different substrate temperatures. X-ray diffraction (XRD) studies indicate the formation of polycrystalline cubic CdO phase with preferential orientation along (111) plane. X-ray line broadening technique is adopted to study the effect of substrate temperature on microstructural parameters such as grain size and microstrain. Scanning electron microscopy (SEM) shows that the film prepared at 250°C consists of spherical shape grains with size in nanometer range and is comparable with the XRD studies.

  18. Effect of Annealing Temperature on the Performance of SnO2 Thin Film Transistors Prepared by Spray Pyrolysis.

    Zhang, XinAn; Zhai, JunXia; Yu, XianKun; Zhu, RuiJuan; Zhang, WeiFeng

    2015-08-01

    We fabricated SnO2 thin film transistors on thermally oxidized p-type silicon substrates by low-cost spray pyrolysis. The effect of annealing temperatures on electrical characteristics of SnO2 thin film transistors were investigated. Thermal annealing at higher temperatures induced a negative shift of the threshold voltage (VT) and an increase in the saturation mobility. It was found that the device annealed at 450 °C exhibited a good electrical performance with the field-effect mobility of 0.19 cm2/Vs, the threshold voltage of 2.5 V, and the on/off current ratio of 10(3). PMID:26369222

  19. Influence of Pyrolysis Temperature on Physico-Chemical Properties of Corn Stover (Zea mays L.) Biochar and Feasibility for Carbon Capture and Energy Balance

    Rafiq, Muhammad Khalid; Bachmann, Robert Thomas; Rafiq, Muhammad Tariq; Shang, Zhanhuan; Joseph, Stephen; Long, Ruijun

    2016-01-01

    This study examined the influence of pyrolysis temperature on biochar characteristics and evaluated its suitability for carbon capture and energy production. Biochar was produced from corn stover using slow pyrolysis at 300, 400 and 500°C and 2 hrs holding time. The experimental biochars were characterized by elemental analysis, BET, FTIR, TGA/DTA, NMR (C-13). Higher heating value (HHV) of feedstock and biochars was measured using bomb calorimeter. Results show that carbon content of corn sto...

  20. The effects of calcination temperature on the electrochemical performance of LiMnPO4 prepared by ultrasonic spray pyrolysis

    Research highlights: → Carbon-coated LiMnPO4 cathode materials were prepared by ultrasonic spray pyrolysis. → The effects of calcinations temperature on the microstructure and electrochemical performance of C-LiMnPO4 were investigated. → X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations revealed that the calcination temperature had a strong influence on the morphology and crystallite size of the prepared final powder, and therefore the subsequent electrochemical performance of the material. → The C-LiMnPO4 powders prepared at 650 oC exhibited excellent electrochemical performance with a discharge capacity of 118 mAh g-1. - Abstract: Carbon-coated LiMnPO4 powders were prepared by ultrasonic spray pyrolysis. The effects of calcination temperature on the microstructure and electrochemical performance of C-LiMnPO4 were investigated. X-ray diffraction (XRD) studies showed that the crystallite size varied with calcination temperature. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations revealed that the calcination temperature had a strong influence on the morphology of the prepared final powder, and therefore the subsequent electrochemical performance of the material. The C-LiMnPO4 powders prepared at 650 oC exhibited excellent electrochemical performance with a discharge capacity of 118 mAh g-1.

  1. Effects of Biochar Feedstock and Pyrolysis Temperature on Growth of Corn, Soybean, Lettuce and Carrot

    Biochar, the carbon-rich material remaining after pyrolysis (low oxygen) of cellulosic feedstocks, has the potential as a soil amendment to sequester carbon, improve soil water-holding capacity, and increase nutrient retention thereby enhancing soil conditions to benefit plant gr...

  2. Sustainable valorization of plastic wastes for energy with environmental safety via High-Temperature Pyrolysis (HTP) and High-Temperature Steam Gasification (HTSG)

    In the present study the energetic valorization of electric cable shredder residues (mixed plastics) has been investigated. Thermochemical conversion by means of High-Temperature Steam Gasification (HTSG) and High-Temperature Pyrolysis (HTP) was studied. The effects of temperature and reaction time - process parameters - were investigated. Comparison of the results showed that HTSG seems a more suitable process in terms of produced syngas quality (64%, v/v and 13 MJ/Nm3) than HTP because of higher H2 yield and lower tar content.

  3. Sustainable valorization of plastic wastes for energy with environmental safety via High-Temperature Pyrolysis (HTP) and High-Temperature Steam Gasification (HTSG)

    Kantarelis, E. [Department of Chemical Engineering, Aristotle University of Thessaloniki, Un.Box 455, University Campus, GR54124 Thessaloniki (Greece); Donaj, P.; Yang, W. [Royal Institute of Technology (KTH), School of Industrial Engineering and Management, Department of Materials Science and Engineering, Division of Energy and Furnace Technology, SE100 44 Stockholm (Sweden); Zabaniotou, A., E-mail: sonia@cheng.auth.gr [Department of Chemical Engineering, Aristotle University of Thessaloniki, Un.Box 455, University Campus, GR54124 Thessaloniki (Greece)

    2009-08-15

    In the present study the energetic valorization of electric cable shredder residues (mixed plastics) has been investigated. Thermochemical conversion by means of High-Temperature Steam Gasification (HTSG) and High-Temperature Pyrolysis (HTP) was studied. The effects of temperature and reaction time - process parameters - were investigated. Comparison of the results showed that HTSG seems a more suitable process in terms of produced syngas quality (64%, v/v and 13 MJ/Nm{sup 3}) than HTP because of higher H{sub 2} yield and lower tar content.

  4. Characterization of Free Radicals By Electron Spin Resonance Spectroscopy in Biochars from Pyrolysis at High Heating Rates and at High Temperatures

    Trubetskaya, Anna; Jensen, Anker Degn; Larsen Andresen, Mogens;

    reactions is important in order to achieve the high fuel conversion at short residence times. However, little is known about the extent of free radical reactions in pulverized biomass at fast pyrolysis conditions.The concentration and type of free radicals from the decay (termination stage) of pyrolysis at......Understanding fast pyrolysis of biomass-derived materials is an important step in optimization of combustion processes. Similar to coal combustion, the fuel burn out is known to be influenced by the yield and reactivity of chars, produced during pyrolysis. The rapid heating of small biomass...... particles and the short residence time at high temperatures minimize the char yield and increase char reactivity. The differences in chemical composition of organic and inorganic matter between wood and herbaceous biomass affect the operational flexibility of power plants, and increase the complexity of...

  5. Analysis of sulfur in carbonaceous compounds by laser microprobe mass spectrometry and temperature-programmed oxidative pyrolysis

    Zimny, T.; Weber, J.V.; Krier, G.; Schneider, M.; Fixari, B.; Muller, J.F. [IUT, St. Avold (France). Dept. of Chemistry

    1995-08-01

    The laser microprobe coupled with mass spectrometry and the temperature-programmed oxidative pyrolysis technique are used to analyze sulfur in a range of solid carbonaceous samples containing increasing amounts of sulfur (0.54-5.44% by weight). The results of both techniques are analysed by principal component analysis and multiple linear regression to determine significant mass spectral peaks and in order to establish the correlation between thermal analysis data and mass spectral intensities. The results demonstrate the potential of laser microprobe/mass spectrometry as an analytical tool for sulfur determination in solids.

  6. Interactive effects of biochar ageing in soils related to feedstock, pyrolysis temperature, and historic charcoal production.

    Heitkötter, Julian; Marschner, Bernd

    2015-04-01

    Biochar is suggested for soil amelioration and carbon sequestration, based on its assumed role as the key factor for the long-term fertility of Terra preta soils. Several studies have shown that certain biochar properties can undergo changes through ageing processes, especially regarding charge characteristics. However, only a few studies determined the changes of different biochars under the same incubation conditions and in different soils. The objective of this study was to characterize the changes of pine chip (PC)- and corn digestate (CD)-derived biochars pyrolyzed at 400 or 600 °C during 100 days of laboratory incubation in a historical kiln soil and an adjacent control soil. Separation between soil and biochar was ensured by using mesh bags. Especially, changes in charge characteristics depended on initial biochar properties affected by feedstock and pyrolysis temperature and on soil properties affected by historic charcoal production. While the cation exchange capacity (CEC) markedly increased for both CD biochars during incubation, PC biochars showed no or only slight increases in CEC. Corresponding to the changes in CEC, ageing of biochars also increased the amount of acid functional groups with increases being in average about 2-fold higher in CD biochars than in PC biochars. Further and in contrast to other studies, the surface areas of biochars increased during ageing, likely due to ash leaching and degradation of tar residues. Changes in CEC and surface acidity of CD biochars were more pronounced after incubation in the control soil, while surface area increase was higher in the kiln soil. Since the two acidic forest soils used in this this study did not greatly differ in physical or chemical properties, the main process for inducing these differences in the buried biochar most likely is related to the differences in dissolved organic carbon (DOC). Although the kiln soil contained about 50% more soil organic carbon due to the presence of charcoal

  7. Temperature and time influence on the waste plastics pyrolysis in the fixed bed reactor

    Papuga Saša V.; Gvero Petar M.; Vukić Ljiljana M.

    2016-01-01

    Pyrolysis as a technique of chemical recycling of plastic materials is causing an increasing level of interest as an environmentally and economically acceptable option for the processing of waste materials. Studies of these processes are carried out under different experimental conditions, in different types of reactors and with different raw materials, which makes the comparison of different processes and the direct application of process parameters quite ...

  8. Effect of Fast Pyrolysis Conditions on Structural Transformation and Reactivity of Herbaceous Biomasses at High Temperatures

    Trubetskaya, Anna; Jensen, Anker D.; Jensen, Peter Arendt;

    particle size on the char yield. X-ray diffractometry (XRD), N-adsorption (BET), scanning electron microscopy (SEM), particle size analysis (CAMSIZER XT), nuclear magnetic resonance spectroscopy (29Si NMR; 13C NMR) and electron spinning resonance spectroscopy (ESR) were conducted to investigate the effect...... results, emphasizing its excellent properties as an ash tracer for the more precise recovery of elemental mass balances in pyrolysis....

  9. Low Temperature Synthesis of Fluorine-Doped Tin Oxide Transparent Conducting Thin Film by Spray Pyrolysis Deposition.

    Ko, Eun-Byul; Choi, Jae-Seok; Jung, Hyunsung; Choi, Sung-Churl; Kim, Chang-Yeoul

    2016-02-01

    Transparent conducting oxide (TCO) is widely used for the application of flat panel display like liquid crystal displays and plasma display panel. It is also applied in the field of touch panel, solar cell electrode, low-emissivity glass, defrost window, and anti-static material. Fluorine-doped tin oxide (FTO) thin films were fabricated by spray pyrolysis of ethanol-added FTO precursor solutions. FTO thin film by spray pyrolysis is very much investigated and normally formed at high temperature, about 500 degrees C. However, these days, flexible electronics draw many attentions in the field of IT industry and the research for flexible transparent conducting thin film is also required. In the industrial field, indium-tin oxide (ITO) film on polymer substrate is widely used for touch panel and displays. In this study, we investigated the possibility of FTO thin film formation at relatively low temperature of 250 degrees C. We found out that the control of volume of input precursor and exhaust gases could make it possible to form FTO thin film with a relatively low electrical resistance, less than 100 Ohm/sq and high optical transmittance about 88%. PMID:27433704

  10. Chemical composition and temperature dependent performance of ZnO-thin film transistors deposited by pulsed and continuous spray pyrolysis

    Zinc oxide thin film transistors (TFTs) deposited by continuous and pulsed spray pyrolysis were investigated to analyze process kinetics which make reduction of process temperature possible. Thus, fluid mechanics, chemical composition, electrical performance, and deposition and annealing temperature were systematically analyzed. It was found that ZnO layers continuously deposited at 360 °C contained zinc oxynitrides, CO3, and hydro carbonate groups from pyrolysis of basic zinc acetate. Statistically, every second wurtzite ZnO unit cell contained an impurity atom. The purity and performance of the ZnO-TFTs increased systematically with increasing deposition temperature due to an improved oxidation processes. At 500 °C the zinc to oxygen ratio exceeded a high value of 0.96. Additionally, the ZnO film was not found to be in a stabilized state after deposition even at high temperatures. Introducing additional subsequent annealing steps stabilizes the film and allows the reduction of the overall thermal stress to the substrate. Further improvement of device characteristics was obtained by pulsed deposition which allowed a more effective transport of the by-products and oxygen. A significant reduction of the deposition temperature by 140 °C was achieved compared to the same performance as in continuous deposition mode. The trap density close to the Fermi energy could be reduced by a factor of two to 4 × 1017 eV−1 cm−3 due to the optimized combustion process on the surface. The optimization of the deposition processes made the fabrication of TFTs with excellent performance possible. The mobility was high and exceeded 12 cm2/V s, the subthreshold slope was 0.3 V dec−1, and an on-set close to the ideal value of 0 V was achieved

  11. The effects of feedstock pre-treatment and pyrolysis temperature on the production of biochar from the green seaweed Ulva.

    Roberts, David A; de Nys, Rocky

    2016-03-15

    Green seaweeds from the genus Ulva are a promising feedstock for the production of biochar for carbon (C) sequestration and soil amelioration. Ulva can be cultivated in waste water from land-based aquaculture and Ulva blooms ("green tides") strand millions of tons of biomass on coastal areas of Europe and China each year. The conversion of Ulva into biochar could recycle C and nutrients from eutrophic water into agricultural production. We produce biochar from Ulva ohnoi, cultivated in waste water from an aquaculture facility, and characterize its suitability for C sequestration and soil amelioration through bio-chemical analyses and plant growth experiments. Two biomass pre-treatments (fresh water rinsing to reduce salt, and pelletisation to increase density) were crossed with four pyrolysis temperatures (300-750 °C). Biomass rinsing decreased the ash and increased the C content of the resulting biochar. However, biochar produced from un-rinsed biomass had a higher proportion of fixed C and a higher yield. C sequestration decreased with increasing pyrolysis temperatures due to the combination of lower yield and lower total C content of biochar produced at high temperatures. Biochar produced from un-rinsed biomass at 300 °C had the greatest gravimetric C sequestration (110-120 g stable C kg(-1) seaweed). Biochar produced from un-pelletised Ulva enhanced plant growth three-fold in low fertility soils when the temperature of pyrolysis was less than 450 °C. The reduced effectiveness of the high-temperature biochars (>450 °C) was due to a lower N and higher salt content. Soil ameliorated with biochar produced from pelletised biomass had suppressed plant germination and growth. The most effective biochar for C sequestration and soil amelioration was produced from un-rinsed and un-pelletised Ulva at 300 °C. The green tide that occurs annually along the Shandong coastline in China generates sufficient biomass (200,000 tons dry weight) to ameliorate 12,500

  12. Co-production of biochar, bio-oil and syngas from halophyte grass (Achnatherum splendens L.) under three different pyrolysis temperatures.

    Irfan, Muhammad; Chen, Qun; Yue, Yan; Pang, Renzhong; Lin, Qimei; Zhao, Xiaorong; Chen, Hao

    2016-07-01

    In the present study, pyrolysis of Achnatherum splendens L. was performed under three different pyrolysis temperature (300, 500, and 700°C) to investigate the characteristics of biochar, bio-oil, and syngas. Biochar yield decreased from 48% to 24%, whereas syngas yield increased from 34% to 54% when pyrolysis temperature was increased from 300 to 700°C. Maximum bio-oil yield (27%) was obtained at 500°C. The biochar were characterized for elemental composition, surface, and adsorption properties. The results showed that obtained biochar could be used as a potential soil amendment. The bio-oil and syngas co-products will be evaluated in the future as bioenergy sources. Overall, our results suggests that A. splendens L. could be utilized as a potential feedstock for biochar and bioenergy production through pyrolytic route. PMID:27035478

  13. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water.

    Ahmad, Mahtab; Lee, Sang Soo; Dou, Xiaomin; Mohan, Dinesh; Sung, Jwa-Kyung; Yang, Jae E; Ok, Yong Sik

    2012-08-01

    Conversion of crop residues into biochars (BCs) via pyrolysis is beneficial to environment compared to their direct combustion in agricultural field. Biochars developed from soybean stover at 300 and 700 °C (S-BC300 and S-BC700, respectively) and peanut shells at 300 and 700 °C (P-BC300 and P-BC700, respectively) were used for the removal of trichloroethylene (TCE) from water. Batch adsorption experiments showed that the TCE adsorption was strongly dependent on the BCs properties. Linear relationships were obtained between sorption parameters (K(M) and S(M)) and molar elemental ratios as well as surface area of the BCs. The high adsorption capacity of BCs produced at 700 °C was attributed to their high aromaticity and low polarity. The efficacy of S-BC700 and P-BC700 for removing TCE from water was comparable to that of activated carbon (AC). Pyrolysis temperature influencing the BC properties was a critical factor to assess the removal efficiency of TCE from water. PMID:22721877

  14. Preconversion catalytic deoxygenation of phenolic functional groups. Quarterly technical progress report, October 1--December 31, 1995

    Kubiak, C.P.

    1996-07-01

    Recent research in the author`s laboratory has established the viability of the catalytic deoxygenation of phenols by Co monoxide. The deoxygenation of phenols is a problem of both fundamental and practical importance. The deoxygenation of phenols to arenes is a conceptually simple, yet a very difficult chemical transformation to achieve. The phenolic C-O bond energy of 103 kcal/mol is as strong as a benzene C-H bond and over 10 kcal/mol stronger than the C-O bonds of methanol or ethanol. Catalytic hydrodeoxygenation (HDO) of phenols over sulfided Mo/{gamma}-Al{sub 2}O{sub 3}, Ni-Mo/{gamma}-Al{sub 2}O{sub 3}, Co-Mo/{gamma}-Al{sub 2}O{sub 3} or other supported metal oxide catalysts can be achieved, at exceedingly high hydrogen pressures and temperature. Arene ring hydrogenation generally competes effectively with hydrodeoxygenation, and was found to occur an order of magnitude faster than HDO. As a consequence, most of the hydrogen is consumed in hydrogenation of the aromatic rings. HDO catalysts are easily poisoned. The inefficiency of catalysts for phenol deoxygenation in the presence of hydrogen can be attributed to the absence of a low energy mechanistic pathway for the hydrogenolysis of the strong phenol C-O bond. The authors are currently studying new transition metal catalysts for the efficient and selective deoxygenation of phenols using the Co/Co{sub 2} couple to remove phenolic oxygen atoms. The paper describes recent results on the mechanism of Co insertion into metal-oxygen bonds of phenoxides.

  15. Bitumen pyrolysis

    In the past bitumen was a preferred matrix for the embedding of low and intermediate level radioactive waste: its geological history promised long term stability in final repositories. A great variety of waste has been embedded: technological waste, spent ion exchange resins, concrete, rubble, etc. Liquid waste like evaporator concentrates can be dried and embedded simultaneously in extruders, allowing simple processes and equipment. Unfortunately, during long term intermediate storage the bituminized waste drums proved out being not as stable as expected: a significant number turned out to be no longer acceptable for final disposal, and some of them even needed repacking to enable further intermediate storage. A method to rework such drums with bituminized radioactive waste seems to be urgently needed. Pyrolysis and pyro-hydrolysis (= pyrolysis with water steam added) have a long history for the treatment of organic waste: spent solvent (TBP), spent ion exchange resins, alpha waste (predominantly PVC), etc. Due to its low process temperature and the endothermic character, such processes offer significant safety advantages, as compared to incineration or dissolving in organic solvents. Results of lab-scale investigations and concepts for facilities are presented. (authors)

  16. Sorption Characteristic of Phenanthrene on Biochar-Amended Soils: Effect of feedstock, pyrolysis temperature, and aging duration

    Hyun, S.; Kim, C.; Kim, Y. S.; Kim, J.

    2015-12-01

    The high sorption capacity of biochar is widely known in environmental studies. Especially, biochar is effective for removal of hydrophobic organic compounds (HOCs) due to high surface area and porosity. In this study, the sorption characteristic of biochar-amended soil was evaluated by sorption kinetic experiment of phenanthrene (PHE). For PHE sorption test, the effect of biochar feedstock (sludge waste char (SWC), municipal waste char (MWC) and wood char (WC), Giant Miscanthus (GM)), pyrolysis temperature (400°C, 500°C and 700°C,), and duration of amending period (0, 3, 6, and 12 months) was assessed. Field Emission-Scanning Electron Microscopy (FE-SEM) and Fourier Transform-Infrared Spectroscopy (FT-IR) techniques were used to detect pore structure and the surface functional group of biochar amended soils. For all kinetic tests, apparent sorption equilibrium was attained in 24 hr. The result showed that sorption capacity of biochar amended soils was greatly influenced by biochar feedstock and pyrolysis temperature. For all samples, the sorption capacity of PHE by biochar amended soils decreased with aging period. This observation is due to the fact that the aromatic characters of biochar are different by feedstock and pyrolysis temperature and the amount of O-containing hydrophilic functional groups increased surfaces of biochar by natural oxidation (e.g. carboxyl groups) as confirmed by the result of FT-IR and FE-SEM. In addition, biochar pore blockage by inorganic minerals, which tended to increase with aging period, might attenuate the sorption capacity of samples. In conclusion, biochar derived from various feed stocks are all effective for PHE sorption. But the sorption capacity of biochar amended soils decreased with increasing aging duration most likely due to increasing hydrophilic functional groups of biochar surfaces and pore blockage by inorganic minerals in the weathering processes. Therefore, for the design of biochar amendment to attenuate

  17. Experimental design applied to the optimization of pyrolysis and atomization temperatures for As measurement in water samples by GFAAS

    Ávila, Akie K.; Araujo, Thiago O.; Couto, Paulo R. G.; Borges, Renata M. H.

    2005-10-01

    In general, research experimentation is often used mainly when new methodologies are being developed or existing ones are being improved. The characteristics of any method depend on its factors or components. The planning techniques and analysis of experiments are basically used to improve the analytical conditions of methods, to reduce experimental labour with the minimum of tests and to optimize the use of resources (reagents, time of analysis, availability of the equipment, operator time, etc). These techniques are applied by the identification of variables (control factors) of a process that have the most influence on the response of the parameters of interest, by attributing values to the influential variables of the process in order that the variability of response can be minimum, or the obtained value (quality parameter) be very close to the nominal value, and by attributing values to the influential variables of the process so that the effects of uncontrollable variables can be reduced. In this central composite design (CCD), four permanent modifiers (Pd, Ir, W and Rh) and one combined permanent modifier W+Ir were studied. The study selected two factors: pyrolysis and atomization temperatures at five different levels for all the possible combinations. The pyrolysis temperatures with different permanent modifiers varied from 600 °C to 1600 °C with hold times of 25 s, while atomization temperatures ranged between 1900 °C and 2280 °C. The characteristic masses for As were in the range of 31 pg to 81 pg. Assuming the best conditions obtained on CCD, it was possible to estimate the measurement uncertainty of As determination in water samples. The results showed that considering the main uncertainty sources such as the repetitivity of measurement inherent in the equipment, the calibration curve which evaluates the adjustment of the mathematical model to the results and the calibration standards concentrations, the values obtained were similar to international

  18. Effects of several types of biomass fuels on the yield, nanostructure and reactivity of soot from fast pyrolysis at high temperatures

    Trubetskaya, Anna; Jensen, Peter Arendt; Jensen, Anker Degn;

    2016-01-01

    This study presents the effect of biomass origin on the yield, nanostructure and reactivity of soot. Soot was produced from wood and herbaceous biomass pyrolysis at high heating rates and at temperatures of 1250 and 1400 °C in a drop tube furnace. The structure of solid residues was characterized...

  19. Optimization of growth temperature of multi-walled carbon nanotubes synthesized by spray pyrolysis method and application for arsenic removal

    S. Mageswari

    2014-12-01

    Full Text Available Multi-walled carbon nanotubes have been synthesized at different temperatures ranging from 550 °C to 750 °C on silica supported Fe-Co catalyst by spray pyrolysis method using Citrus limonum oil under nitrogen atmosphere. The as-grown MWNTs were characterized by scanning electron microscope (SEM, high resolution transmission electron microscope (HRTEM, X-ray diffraction analysis (XRD and Raman spectral studies. The HRTEM and Raman spectroscopic studies confirmed the evolution of MWNTs with the outer diameter between 25 and 38 nm. The possibility of use of as-grown MWNTs as an adsorbent for removal of As (V ions from drinking water was studied. Adsorption isotherm data were interpreted by the Langmuir and Freundlich equations. Kinetic data were studied using Elovich, pseudo-first order and pseudo-second order equations in order to elucidate the reaction mechanism.

  20. Low-temperature spray-pyrolysis of FeS2 films and their electrical and optical properties

    Orletskii, I. G.; Mar'yanchuk, P. D.; Maistruk, E. V.; Solovan, M. N.; Brus, V. V.

    2016-01-01

    Iron disulfide (FeS2) films with a wide range of electrical resistivities 100 Ω cm ⩽ ρ ⩽ 800 kΩ cm, a high adhesion to the substrate, and a resistance to aggressive media have been prepared by the spray pyrolysis of aqueous solutions of the salts FeCl3 · 6H2O and (NH2)2CS at low temperatures in the range 250°C ⩽ T S ⩽ 400°C. It has been found that the FeS2 films have a high transmittance T ≈ 60-70% and are characterized by a sharp transmission edge. It has been shown that the optical band gap for direct ( E g op = 2.19-2.78 eV) and indirect ( E g 'op = 1.26-1.36 eV) optical transitions depends on the conditions of film preparation.

  1. Influence of Growth Temperature on Structure and Optical Properties of Tin Oxide Films by Spray Pyrolysis Method

    Y. Larbah

    2015-10-01

    Full Text Available Tin oxide films (SnO2 are prepared by the spray pyrolysis technique at different temperatures. The XRD measurement confirm that the thin films grown by this technique have good crystalline tetragonal rutile structures. The observations by scanning electron microscopy indicate that polycrystalline SnO2 film surfaces were formed by pyramidal grains (200 nm 300 nm, The composition on the films was obtained by Auger electron spectroscopy (AES, which is identical to the analysis EDS. Characterization by UV-visible spectrophotometry of thin films showed that the films have an optical transmission above 80 % in the visible and the values of Eg were in the range 3.98-4.02 eV.

  2. Large-scale reactive molecular dynamics simulation and kinetic modeling of high-temperature pyrolysis of the Gloeocapsomorphaprisca microfossils.

    Zou, Chenyu; Raman, Sumathy; van Duin, Adri C T

    2014-06-12

    The ability to predict accurately the thermal conversion of complex carbonaceous materials is of value in both petroleum exploration and refining operations. Modeling the thermal cracking of kerogen under basinal heating conditions improves the predrill prediction of oil and gas yields and quality, thereby ultimately lowering the exploration risk. Modeling the chemical structure and reactivity of asphaltene from petroleum vacuum residues enables prediction of coke formation and properties in refinery processes, thereby lowering operating cost. The chemical structure-chemical yield modeling (CS-CYM) developed by Freund et al. is more rigorous, time-consuming, and requires a great deal of chemical insight into reaction network and reaction kinetics. The present work explores the applicability of a more fundamental atomistic simulation using the quantum mechanically based reactive force field to predict the product yield and overall kinetics of decomposition of two biopolymers, namely, the Kukersite and Gutternberg. Reactive molecular dynamics (RMD) simulations were performed on systems consisting of 10(4) to 10(5) atoms at different densities and temperatures to derive the overall kinetic parameters and a lumped kinetic model for pyrolysis. The kinetic parameters derived from the simulated pyrolysis of an individual component and the mixture of all four components in Guttenberg reveal the role of cross-talk between the fragments and enhanced reactivity of component A by radicals from other components. The Arrhenius extrapolation of the model yields reasonable prediction for the overall barrier for cracking. Because simulations were run at very high temperature (T > 1500 K) to study cracking within the simulation time of up to 1 ns, it, however, led to the entropically favored ethylene formation as a dominant decomposition route. Future work will focus on evaluating the applicability of accelerated reactive MD approaches to study cracking. PMID:24821589

  3. Desulphurization of a Turkish lignite by pyrolysis: comparison of slow and flash pyrolysis

    Ersahan, H. (Ataturk University, Erzurum (Turkey). Dept. of Chemical Engineering)

    1994-01-01

    To observe the effect of the heating rate on the desulphurization, Bolu-Mengen lignite was desulphurized in the temperature range of 450-750[degree]C using flash and slow pyrolysis methods. A reduction of 57.6% and 34.2% in the total sulphur was obtained for the slow and flash pyrolysis at a pyrolysis temperature of 750[degree]C, respectively. It was observed that the flash pyrolysis is shifted toward higher temperatures with respect to the slow pyrolysis. The flash pyrolysis having high thermal efficiency has a potential as a desulphurization process. 27 refs., 5 figs., 2 tabs.

  4. Fractional Catalytic Pyrolysis Technology for the Production of Upgraded Bio-oil using FCC Catalyst

    Mante, Nii Ofei Daku

    2011-01-01

    Catalytic pyrolysis technology is one of the thermochemical platforms used to produce high quality bio-oil and chemicals from biomass feedstocks. In the catalytic pyrolysis process, the biomass is rapidly heated under inert atmosphere in the presence of an acid catalyst or zeolite to promote deoxygenation and cracking of the primary vapors into hydrocarbons and small oxygenates. This dissertation examines the utilization of conventional fluid catalytic cracking (FCC) catalyst in the fractiona...

  5. Temperature dependence of the photoluminescence spectra of CdS: In thin films prepared by the spray pyrolysis technique

    Indium doped cadmium sulfide thin films (CdS:In) are prepared by the spray pyrolysis technique on glass substrates using a home-made spraying system at a substrate temperature Ts=490 °C. The photoluminescence (PL) spectra are recorded at different temperatures in the range 24–160 K. Two broad peaks were observed; a strong one in the visible region centered on E≈2.0 eV and a weak one in the infrared region centered on E≈1.06 eV. The first one is deconvoluted into two Gaussian peaks corresponding to the yellow and red bands, and the second one is deconvoluted into one Gaussian peak corresponding to the infrared band. A strong quenching of the PL intensity with temperature is observed after T=60 K for the yellow and infrared bands and after T=90 K for the red band. The activation energy Ea was estimated by using the Arrhenius plot for the different bands. The estimated values for the three bands lie in the range Ea≈23.4–27.3 meV. The peak positions of the yellow and red bands are red-shifted after T=90 K, while the peak position of the infrared band is blue shifted in the whole temperature range. The full width at half maximum (FWHM) for the three bands increases with temperature. According to these findings the three bands are explained in terms of bound excitons. -- Highlights: • The photoluminescence (PL) of sprayed CdS:In thin films is recorded at different temperatures. • The PL spectrum is deconvoluted to three Gaussian peaks corresponding to yellow, red and infrared bands. • The decrease of the PL intensity with temperature for these bands has similar behaviors. • The yellow and red bands are red-shifted with temperature, but the infrared band is blue-shifted. • From the Arrhenius plots the activation energy is estimated

  6. Role of the Support and Reaction Conditions on the Vapor-Phase Deoxygenation of m-Cresol over Pt/C and Pt/TiO2 Catalysts

    Griffin, Michael B.; Ferguson, Glen A.; Ruddy, Daniel A.; Biddy, Mary J.; Beckham, Gregg T.; Schaidle, Joshua A.

    2016-04-01

    The catalytic deoxygenation of biomass fast pyrolysis vapors offers a promising route for the sustainable production of liquid transportation fuels. However, a clear understanding of the mechanistic details involved in this process has yet to be achieved, and questions remain regarding the role of the catalyst support and the influence of reaction conditions. In order to gain insight into these questions, the deoxygenation of m-cresol was investigated over Pt/C and Pt/TiO2 catalysts using experimental and computational techniques. The performance of each catalyst was evaluated in a packed-bed reactor under two conditions (523 K, 2.0 MPa and 623 K, 0.5 MPa), and the energetics of the ring hydrogenation, direct deoxygenation, and tautomerization mechanisms were calculated over hydrogen-covered Pt(111) and oxygen vacancies on the surface of TiO2(101). Over Pt(111), ring hydrogenation to 3-methylcyclohexanone and 3-methylcyclohexanol was found to be the most energetically favorable pathway. Over TiO2(101), tautomerization and direct deoxygenation to toluene were identified as additional energetically favorable routes. These calculations are consistent with the experimental data, in which Pt/TiO2 was more active on a metal site basis and exhibited higher selectivity to toluene at 623 K relative to Pt/C. On the basis of these results, it is likely that the reactivity of Pt/TiO2 and Pt/C is driven by the metallic phase at 523 K, while contributions from the TiO2 support enhance deoxygenation at 623 K. These results highlight the synergistic effects between hydrogenation catalysts and reducible metal oxide supports and provide insight into the reaction pathways responsible for their enhanced deoxygenation performance.

  7. Influence of Pyrolysis Temperature on Physico-Chemical Properties of Corn Stover (Zea mays L.) Biochar and Feasibility for Carbon Capture and Energy Balance

    Rafiq, Muhammad Khalid; Bachmann, Robert Thomas; Rafiq, Muhammad Tariq; Shang, Zhanhuan; Joseph, Stephen; Long, Ruijun

    2016-01-01

    This study examined the influence of pyrolysis temperature on biochar characteristics and evaluated its suitability for carbon capture and energy production. Biochar was produced from corn stover using slow pyrolysis at 300, 400 and 500°C and 2 hrs holding time. The experimental biochars were characterized by elemental analysis, BET, FTIR, TGA/DTA, NMR (C-13). Higher heating value (HHV) of feedstock and biochars was measured using bomb calorimeter. Results show that carbon content of corn stover biochar increased from 45.5% to 64.5%, with increasing pyrolysis temperatures. A decrease in H:C and O:C ratios as well as volatile matter, coupled with increase in the concentration of aromatic carbon in the biochar as determined by FTIR and NMR (C-13) demonstrates a higher biochar carbon stability at 500°C. It was estimated that corn stover pyrolysed at 500°C could provide of 10.12 MJ/kg thermal energy. Pyrolysis is therefore a potential technology with its carbon-negative, energy positive and soil amendment benefits thus creating win- win scenario. PMID:27327870

  8. Influence of Pyrolysis Temperature on Physico-Chemical Properties of Corn Stover (Zea mays L. Biochar and Feasibility for Carbon Capture and Energy Balance.

    Muhammad Khalid Rafiq

    Full Text Available This study examined the influence of pyrolysis temperature on biochar characteristics and evaluated its suitability for carbon capture and energy production. Biochar was produced from corn stover using slow pyrolysis at 300, 400 and 500°C and 2 hrs holding time. The experimental biochars were characterized by elemental analysis, BET, FTIR, TGA/DTA, NMR (C-13. Higher heating value (HHV of feedstock and biochars was measured using bomb calorimeter. Results show that carbon content of corn stover biochar increased from 45.5% to 64.5%, with increasing pyrolysis temperatures. A decrease in H:C and O:C ratios as well as volatile matter, coupled with increase in the concentration of aromatic carbon in the biochar as determined by FTIR and NMR (C-13 demonstrates a higher biochar carbon stability at 500°C. It was estimated that corn stover pyrolysed at 500°C could provide of 10.12 MJ/kg thermal energy. Pyrolysis is therefore a potential technology with its carbon-negative, energy positive and soil amendment benefits thus creating win- win scenario.

  9. Influence of Pyrolysis Temperature on Physico-Chemical Properties of Corn Stover (Zea mays L.) Biochar and Feasibility for Carbon Capture and Energy Balance.

    Rafiq, Muhammad Khalid; Bachmann, Robert Thomas; Rafiq, Muhammad Tariq; Shang, Zhanhuan; Joseph, Stephen; Long, Ruijun

    2016-01-01

    This study examined the influence of pyrolysis temperature on biochar characteristics and evaluated its suitability for carbon capture and energy production. Biochar was produced from corn stover using slow pyrolysis at 300, 400 and 500°C and 2 hrs holding time. The experimental biochars were characterized by elemental analysis, BET, FTIR, TGA/DTA, NMR (C-13). Higher heating value (HHV) of feedstock and biochars was measured using bomb calorimeter. Results show that carbon content of corn stover biochar increased from 45.5% to 64.5%, with increasing pyrolysis temperatures. A decrease in H:C and O:C ratios as well as volatile matter, coupled with increase in the concentration of aromatic carbon in the biochar as determined by FTIR and NMR (C-13) demonstrates a higher biochar carbon stability at 500°C. It was estimated that corn stover pyrolysed at 500°C could provide of 10.12 MJ/kg thermal energy. Pyrolysis is therefore a potential technology with its carbon-negative, energy positive and soil amendment benefits thus creating win- win scenario. PMID:27327870

  10. High-temperature pyrolysis of blended animal manures for producing renewable energy and value-added biochar

    In this study, we used a commercial pilot-scale pyrolysis reactor system to produce combustible gas and biochar at 620 degrees Celsium from three sources (chicken litter, swine solids, mixture of swine solids with rye grass). Pyrolysis of swine solids produced gas with the greatest higher heating va...

  11. Deoxygenation of Plant Fatty Acid using NiSnK/ SiO2 as Catalyst

    Environmental friendly bio-oil which offers supply reliability as a potential alternative fuel, has spurred to rapid development of bio fuels technology. Palm oil is a potential renewable energy source for bio fuels production in the future and Malaysia is one of the world largest palm oil producers. However, undesired oxygen content in the plant fatty acid that contributes to low energy density, high viscosity, and low stability, makes the palm oil not effective to be used as bio fuels directly. In the present study, the performance of silica supported trimetal catalyst, NiSnK/ SiO2, on deoxygenation of used palm oil was evaluated. In addition, the effects of operating parameters, such as reaction temperature and weight hourly space velocity were investigated. Conversion of palmitic acid as high as 90 % was achieved in deoxygenation of used palm oil at reaction temperature 350 degree Celsius. In order to have a better understanding on the deoxygenation reaction, model compound system using the major saturated fatty acid in the used palm oil, palmitic acid was also carried out. Palmitic acid was found mainly decarboxylated into n-pentadecane with some decarboxylation and isomerization products. (author)

  12. Pyrolysis of Pine Wood

    Fjellerup, Jan Søren; Ahrenfeldt, Jesper; Henriksen, Ulrik Birk

    2005-01-01

    In this study, pinewood has been pyrolyzed using a fixed heating rate with a variable end-temperature. The pyrolysis process has been simulated using a mechanism with three parallel reactions for the formation of char, gas and tar. First order irreversible kinetics is assumed. This kind of model...... may predict the variation of product yield with operating conditions such as temperature and heating rate. The system of coupled differential equations describing the pyrolysis process is solved using the software DYMOLA. Various literature values for kinetic parameters have been compared with the...

  13. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    Nicholas, Christpher P; Boldingh, Edwin P

    2013-12-17

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and show to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hyrdocarbons into hydrocarbons removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  14. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    Nicholas, Christopher P; Boldingh, Edwin P

    2014-10-07

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and shown to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub.1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  15. Effect of pyrolysis temperatures on freely dissolved polycyclic aromatic hydrocarbon (PAH) concentrations in sewage sludge-derived biochars.

    Zielińska, Anna; Oleszczuk, Patryk

    2016-06-01

    The aim of this study was to evaluate the effect of sewage sludge pyrolysis on freely dissolved (Cfree) polycyclic aromatic hydrocarbon (PAH) contents in biochars. Four sewage sludges with varying properties and PAH contents were pyrolysed at temperatures of 500 °C, 600 °C or 700 °C. Cfree PAH contents were determined using polyoxymethylene (POM). The contents of Cfree PAHs in the sludges ranged from 262 to 294 ng L(-1). Sewage sludge-derived biochars have from 2.3- to 3.4-times lower Cfree PAH contents comparing to corresponding sewage sludges. The Cfree PAH contents in the biochars ranged between 81 ng L(-1) and 126 ng L(-1). As regards agricultural use of biochar, the lower contents of Cfree PAHs in the biochars compared to the sewage sludges makes biochar a safer material than sewage sludge in terms of PAH contents. PMID:27010168

  16. Effect of ZSM-5 Acidity on Aromatic Product Selectivity during Upgrading of Pine Pyrolysis Vapors

    Engtrakul, Chaiwat; Mukarakate, Calvin; Starace, Anne K.; Magrini, Kimberly A.; Rogers, Allyson K.; Yung, Matthew M.

    2016-07-01

    The impact of catalyst acidity on the selectivity of upgraded biomass pyrolysis products was studied by passing pine pyrolysis vapors over five ZSM-5 catalysts of varying acidity at 500 degrees C. The SiO2-to-Al2O3 ratio (SAR) of the ZSM-5 zeolite was varied from 23 to 280 to control the acidity of the catalyst and the composition of upgraded products. The upgraded product stream was analyzed by GCMS. Additionally, catalysts were characterized using temperature programmed desorption, diffuse-reflectance FTIR spectroscopy, N2 physisorption, and X-ray diffraction. The results showed that the biomass pyrolysis vapors were highly deoxygenated to form a slate of aromatic hydrocarbons over all of the tested ZSM-5 catalysts. As the overall acidity of the ZSM-5 increased the selectivity toward alkylated (substituted) aromatics (e.g., xylene, dimethyl-naphthalene, and methyl-anthracene) decreased while the selectivity toward unsubstituted aromatics (e.g., benzene, naphthalene, and anthracene) increased. Additionally, the selectivity toward polycyclic aromatic compounds (2-ring and 3-ring) increased as catalyst acidity increased, corresponding to a decrease in acid site spacing. The increased selectivity toward less substituted polycyclic aromatic compounds with increasing acidity is related to the relative rates of cyclization and alkylation reactions within the zeolite structure. As the acid site concentration increases and sites become closer to each other, the formation of additional cyclization products occurs at a greater rate than alkylated products. The ability to adjust product selectivity within 1-, 2-, and 3-ring aromatic families, as well as the degree of substitution, by varying ZSM-5 acidity could have significant benefits in terms creating a slate of upgraded biomass pyrolysis products to meet specific target market demands.

  17. Flash pyrolysis at high temperature of ligno-cellulosic biomass and its components - production of synthesis gas; Pyrolyse flash a haute temperature de la biomasse ligno-cellulosique et de ses composes - production de gaz de synthese

    Couhert, C

    2007-11-15

    Pyrolysis is the first stage of any thermal treatment of biomass and governs the formation of synthesis gas for the production of electricity, hydrogen or liquid fuels. The objective of this work is to establish a link between the composition of a biomass and its pyrolysis gas. We study experimental flash pyrolysis and fix the conditions in which quantities of gas are maximal, while aiming at a regime without heat and mass transfer limitations (particles about 100 {mu}m): temperature of 950 C and residence time of about 2 s. Then we try to predict gas yields of any biomass according to its composition, applicable in this situation where thermodynamic equilibrium is not reached. We show that an additivity law does not allow correlating gas yields of a biomass with fractions of cellulose, hemi-cellulose and lignin contained in this biomass. Several explanations are suggested and examined: difference of pyrolytic behaviour of the same compound according to the biomass from which it is extracted, interactions between compounds and influence of mineral matter. With the aim of industrial application, we study pyrolysis of millimetric and centimetric size particles, and make a numerical simulation of the reactions of pyrolysis gases reforming. This simulation shows that the choice of biomass affects the quantities of synthesis gas obtained. (author)

  18. Catalytic pyrolysis of Laminaria japonica over nanoporous catalysts using Py-GC/MS

    Jeon Jong-Ki

    2011-01-01

    Full Text Available Abstract The catalytic pyrolysis of Laminaria japonica was carried out over a hierarchical meso-MFI zeolite (Meso-MFI and nanoporous Al-MCM-48 using pyrolysis gas chromatography/mass spectrometry (Py-GC/MS. The effect of the catalyst type on the product distribution and chemical composition of the bio-oil was examined using Py-GC/MS. The Meso-MFI exhibited a higher activity in deoxygenation and aromatization during the catalytic pyrolysis of L. japonica. Meanwhile, the catalytic activity of Al-MCM-48 was lower than that of Meso-MFI due to its weak acidity.

  19. The pyrolysis of a tungsten alkyne complex as a low temperature route to tungsten carbide

    The synthesis of designed organometallic compounds and their selective activation and transformation into materials of high purity (for electronic applications), high strength and/or high temperature stability (for refractory or structural applications), represents a potential area of extreme growth in organometallic chemistry. Research in this area could provide entirely new, inexpensive, fabrication methods for common and exotic materials. In this paper, the authors develop design principles for the preparation of organometallic precursors, ''premetallics'' that can be selectively converted, in high yields, to a desired refractory metal. They also describe preliminary efforts to prepare tungsten carbides (WC/sub x/) from a prematallic

  20. Effect of low-temperature oxidation on the pyrolysis and combustion of whole oil

    Low-temperature oxidation (LTO) of the Fosterton crude oil mixed with its reservoir sand has been investigated in a tubular reactor. Reservoir sand saturated with 15 wt% of crude oil (20.5o API gravity) was subjected to air injection at low-temperature (220 oC) for a period of time (17 h and 30 min), resulting in the formation of an oxygenated hydrocarbon fuel. The vent gases were analyzed for the content of CO, CO2, and oxygen and the residue was analyzed to determine the elemental composition and calorific value. The presence of LTO region was verified from the values of apparent H/C ratio. In addition, thermal behavior and combustion kinetics of the residue was investigated using thermogravimetric analysis (TGA). TG involves both non-isothermal and isothermal analysis and kinetic data was derived from isothermal studies. The general model for nth order reaction was used to obtain the kinetic parameters of the coke oxidation reaction. The activation energy, frequency factor and order of the reactions were determined using the model.

  1. Effect of oxidation on the chemical nature and distribution of low-temperature pyrolysis products from bituminous coal

    Furimsky, E.; MacPhee, J.A.; Vancea, L.; Ciavaglia, L.A.; Nandi, B.N.

    1983-04-01

    Two bituminous coals, a high volatile Eastern Canadian and a medium volatile Western Canadian, were used to investigate the effect of oxidation on yields and chemical composition of gases, liquids and chars produced during coal pyrolysis. Pyrolysis experiments were performed at 500 C using the Fischer assay method. Mild oxidation of coals resulted in a decrease of liquid hydrocarbon yields. Further coal oxidation increased the proportion of aromatic carbon in liquid products as determined by N.M.R. and also increased the content of oxygen in liquid products. The content of oxygen in chars was markedly lower than in corresponding coals. An attempt is made to explain reactions occurring during oxidation and subsequent pyrolysis of coal on the basis of differences in chemical composition of gases, liquids and chars. (19 refs.)

  2. Effect of oxidation on the chemical nature and distribution of low-temperature pyrolysis products from bituminous coal

    Furimsky, E.; Ciavaglia, L.A.; MacPhee, J.A.; Nandi, B.N.; Vancea, L.

    1983-04-01

    Two bituminous coals, a high volatile Eastern Canadian and a medium volatile Western Canadian, were used to investigate the effect of oxidation on yields and chemical composition of gases, liquids and chars produced during coal pyrolysis. Pyrolysis experiments were performed at 500/sup 0/C using the Fischer assay method. Mild oxidation of coals resulted in a decrease of liquid hydrocarbon yields. Further coal oxidation increased the proportion of aromatic carbon in liquid products as determined by n.m.r., and also increased the content of oxygen in liquid products. The content of oxygen in chars was markedly lower than in corresponding coals. An attempt is made to explain reactions occurring during oxidation and subsequent pyrolysis of coal on the basis of differences in chemical composition of gases, liquids and chars.

  3. Structure, provenance and residence time of terrestrial organic carbon: insights from Programmed temperature Pyrolysis-Combustion of river sediments

    Feng, X.; Galy, V.; Rosenheim, B. E.; Roe, K. M.; Williams, E. K.

    2010-12-01

    The terrestrial organic carbon (OC) represents one of the largest reservoirs of C on earth and thus plays a crucial role in the global C cycle, participating to the regulation of atmospheric chemistry. While degradation of sedimentary OC (petrogenic C) is a source of CO2 for the atmosphere, burial of biospheric C (e.g. plant debris and soil OC) is a long-term sequestration of atmospheric CO2. Over short timescales, the atmospheric CO2 level is also sensitive to variations of the residence time of carbon in continental reservoirs. Fluvial transport plays a crucial role in the organic carbon cycle, constituting the connection between the different reservoirs and promoting the transfer of C from one reservoir to the other. Moreover, thanks to the integrating effect of erosion, studying river sediments allows the spatial and temporal integration of organic carbon exchanges occurring in a given basin. OC transported by rivers (riverine OC) is known to be extremely heterogeneous in nature and reactivity, however; ranging from extremely refractory petrogenic C (e.g. graphite) to soil complex OC to labile vegetation debris. Here we use a recently developed method, a programmed-temperature pyrolysis-combustion system (PTP-CS) coupled to multiisotopic analysis, to determine the reactivity, age and nature of OC in river sediments. The method takes advantage of the wide range of reactivity and radiocarbon content of different components of riverine OC. We submitted to PTP-CS a set of river sediments from 1) the Ganges-Brahmputra river system and, 2) the lower Mississippi river. Preliminary results highlight the heterogeneous nature of riverine OC. Different components of the riverine OC pool decompose at different temperature and are characterized by extremely variable isotopic compositions. The decomposition of radiocarbon dead petrogenic C at very high temperature allows estimating the respective contribution of biospheric and petrogenic C. Moreover, biospheric OC appears to

  4. Characterization of the pyrolysis oil produced in the slow pyrolysis of sunflower-extracted bagasse

    Yorgun, S.; Sensoz, S. [Osmangazi Univ., Eskisehir (Turkey). Dept. of Chemical Engineering; Kockar, O.M. [Anadolu Univ., Eskisehir (Turkey). Dept. of Chemical Engineering

    2001-07-01

    Sunflower (Helianthus annus L.)-extracted bagasse pyrolysis experiments were performed in a fixed-bed reactor. The effects of heating rate, final pyrolysis temperature, particle size and pyrolysis atmosphere on the pyrolysis product yields and chemical compositions have been investigated. The maximum oil yield of 23% was obtained in N{sub 2} atmosphere at a pyrolysis temperature of 550 {sup o}C and a heating rate of 7 {sup o}C min {sup -1}. The chemical characterisation has shown that the oil obtained from sunflower-extracted bagasse may be potentially valuable as fuel and chemical feedstocks. (Author)

  5. Catalytic pyrolysis using UZM-44 aluminosilicate zeolite

    Nicholas, Christopher P; Boldingh, Edwin P

    2013-12-17

    A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  6. Oxo-rhenium catalyzed reductive coupling and deoxygenation of alcohols.

    Kasner, Gabrielle R; Boucher-Jacobs, Camille; Michael McClain, J; Nicholas, Kenneth M

    2016-06-01

    Representative benzylic, allylic and α-keto alcohols are deoxygenated to alkanes and/or reductively coupled to alkane dimers by reaction with PPh3 catalyzed by (PPh3)2ReIO2 (1). The newly discovered catalytic reductive coupling reaction is a rare C-C bond-forming transformation of alcohols. PMID:27174412

  7. Catalytic Deoxygenation of Fatty Acids: Elucidation of the Inhibition Process

    Hollak, S.A.W.; Jong, de K.P.; Es, van D.S.

    2014-01-01

    Catalytic deoxygenation of unsaturated fatty acids in the absence of H2 is known to suffer from significant catalyst inhibition. Thus far, no conclusive results have been reported on the cause of deactivation. Here we show that CC double bonds present in the feed or the products dramatically reduce

  8. Influence of biochar pyrolysis temperature and post-treatment on the uptake of mercury from flue gas

    Thermal processing, or pyrolysis, of plant and animal waste under oxygen limiting conditions results in a carbonized material called biochar. Most often, the proposed application for the biochar is soil applications as a conditioner or for the purpose of carbon sequestration. In this paper we demons...

  9. Pyrolysis Model of Single Biomass Pellet in Downdraft Gasifier

    薛爱军; 潘继红; 田茂诚; 伊晓璐

    2016-01-01

    By coupling the heat transfer equation with semi-global chemical reaction kinetic equations, a one-dimensional, unsteady mathematical model is developed to describe the pyrolysis of single biomass pellet in the pyrolysis zone of downdraft gasifier. The simulation results in inert atmosphere and pyrolysis zone agree well with the published experimental results. The pyrolysis of biomass pellets in pyrolysis zone is investigated, and the results show that the estimated convective heat transfer coefficient and emissivity coefficient are suitable. The mean pyro-lysis time is 15.22%, shorter than that in inert atmosphere, and the pellet pyrolysis process in pyrolysis zone belongs to fast pyrolysis. Among the pyrolysis products, tar yield is the most, gas the second, and char the least. During pyrolysis, the temperature change near the center is contrary to that near the surface. Pyrolysis gradually moves inwards layer by layer. With the increase of pyrolysis temperature and pellet diameter, the total pyrolysis time, tar yield, char yield and gas yield change in different ways. The height of pyrolysis zone is calculated to be 1.51—3.51 times of the characteristic pellet diameter.

  10. Pyrolysis of tyres. Influence of the final temperature of the process on emissions and the calorific value of the products recovered

    A study was made of the pyrolysis of tyre particles, with the aim of determining the possibilities of using the products resulting from the process as fuel. Three final temperatures were used, determined from thermogravimetric data. The design of the experiment was a horizontal oven containing a reactor into which particles of the original tyre were placed. After the process, a solid fraction (char) remained in the reactor, while the gases generated went through a set of scrubbers where most of the condensable fraction (oils) was retained. Finally, once free of this fraction, the gases were collected in glass ampoules. Solid and liquids fractions were subjected to thermogravimetric analyses in order to study their combustibility. The gas fraction was analysed by means of gas chromatography to establish the content of CO, CO2, H2 and hydrocarbons present in the samples (mainly components of gases produced in the pyrolysis process). A special study was made of the sulphur and chlorine content of all the fractions, as the presence of these elements could be problematic if the products are used as fuel. Tyre pyrolysis engenders a solid carbon residue that concentrates sulphur and chorine, with a relatively high calorific value, although not so high as that of the original tyre. The liquid fraction produced by the process has a high calorific value, which rises with the final temperature, up to 40 MJ/kg. The chlorine content of this fraction is negligible. Over 95% of the gas fraction, regardless of the final temperature, is composed of hydrocarbons of a low molecular weight and hydrogen, this fraction also appearing to be free of chlorine

  11. Pyrolysis Strategies for Effective Utilization of Lignocellulosic and Algal Biomass

    Maddi, Balakrishna

    protein degradation). Algal bio-char also had a significantly higher N-content. Overall, our results suggest that it is feasible to convert algal cultures deficient in lipids, such as nuisance algae obtained from natural blooms, into liquid fuels by thermochemical methods. Next, pyrolysis characteristics of each of the major components present in lignocellulosic as well as algal biomass were studied independently in a thermo-gravimetric analyzer, using model compounds. From those studies, we have established that, with algae and oil seed feed stocks, triglycerides degrade at distinctly higher temperatures (T>350 C) compared to both protein and carbohydrate fractions (T ~ 250-350 C). Similar trend was not seen for lignocellulosic biomass, where degradation temperature interval of lignin overlapped with that of carbohydrates. This unique trend observed for algal biomass (and oil seeds) can be exploited in multiple ways. First, it permits to separately collect high value triglyceride degradation products not contaminated with N-compounds from protein and oxygenates from carbohydrates; this observation formed the basis of a novel "pyrolytic fractionation technique" developed in this thesis. Second, it led to the development of a new and simple analytical method for rapid estimation of the triglyceride content of oleaginous feed stocks. Pyrolytic fractionation is a two-step pyrolysis approach that can be implemented for oleaginous feed stocks (algae and oil-seeds) to separately recover triglyceride degradation products as a "high-quality" bio-oil fraction. The first step is a low-temperature pyrolysis (T ~ 300-320 C) to produce bio-oils from degradation of protein and carbohydrate fractions. Solid residues left behind can subsequently be subjected to a second higher temperature pyrolysis (T ~ 420-430 C) to volatilize and/or degrade triglycerides to produce fatty acids and their derivatives (such as mono-, di- and tri-glycerides) and long chain hydrocarbons. Proof

  12. Pyrolysis and oxidative pyrolysis experiments with organization exchange resin

    Pyrolysis may be an important pretreatment step before vitrification in a cold crucible melter (CCM). During vitrification of organic resin the carbon or other remaining residues may harm the performance of the cold crucible melter of the eventual stability of the final glass product. Hence, it is important to reduce or prevent such harmful waste from entry into the cold crucible melter. Pretreatment with pyrolysis will generally provide volume reduction resulting in less amount of solid waste that needs to be handled by the CCM; in addition, the pyrolytic processes may breakdown much of the complex organics causing release through volatilization resulting in less carbon and other harmful substances. Hence, KEPRI has undertaken studies on the pyrolysis and oxidative pyrolysis of organic ion exchange resin. Pyrolysis and oxidative pyrolysis were examined with TGA and a tube furnace. TGA results for pyrolysis with the flow of nitrogen indicate that even after pyrolyzing from room temperature to about 900 deg C, a significant mass fraction of the original cationic resin remains, approximately 46 %. The anionic resin when pyrolytically heated in a flow of nitrogen only, from room temperature to about 900 deg C, produced a final residue mass fraction of about 8 percent. Oxidation at a ratio of air to nitrogen, 1:2, reduced the cationic resin to 5.3% when heated at 5 C/min. Oxidation of anionic resin at the same ratio and same heating rate left almost no solid residue. Pyrolysis (e.g. nitrogen-only environment) in the tube furnace of larger samples relative to the TGA produced very similar results to the TGA. The differences may be attributed to the scale effects such as surface area exposure to the gas stream, temperature distributions throughout the resin, etc. (author) 7 refs., 7 figs

  13. Substrate Temperature Effect on Charge Transport Performance of ZnO Electron Transport Layer Prepared by a Facile Ultrasonic Spray Pyrolysis in Polymer Solar Cells

    Jiang Cheng

    2015-01-01

    Full Text Available A novel ultrasonic spray pyrolysis for high-quality ZnO films based on zinc-ammonia solution was achieved in air. To investigate the structural and optical properties as well as the performance of polymer solar cells (PSCs, ZnO films at different substrate temperatures and thicknesses were prepared. The performance of poly(3-hexylthiophene:[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM based PSC was found to be improved due to the ZnO films. The crystal structure and roughness of the ZnO films fabricated at different temperatures were found to affect the performance of PSCs. The optimized power conversion efficiency was found to be maximum for PSCs with ZnO films prepared at 200°C. The growth process of these ZnO films is very simple, cost-effective, and compatible for larger-scale PSC preparation. The precursor used for spray pyrolysis is environmentally friendly and helps to achieve ZnO film preparation at a relative low temperature.

  14. Structural and optical properties of nanostructural V{sub 2}O{sub 5} thin films deposited by spray pyrolysis technique: Effect of the substrate temperature

    Irani, R. [Spray Lab, Physics Department, University of Guilan, Rasht (Iran, Islamic Republic of); Rozati, S.M., E-mail: smrozati@gmail.com [Spray Lab, Physics Department, University of Guilan, Rasht (Iran, Islamic Republic of); Beke, S. [Department of Nanophysics, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genova (Italy)

    2013-05-15

    V{sub 2}O{sub 5} thin films were deposited on glass substrates by spray pyrolysis technique. The variation in the structural and optical properties with a variation in the substrate temperature was investigated by means of X-ray diffraction (XRD) and UV–vis spectrophotometer. XRD was used to reveal the possible orientations of crystallites in the films prepared at different substrate temperatures ranging from 200 °C to 550 °C. The results showed that by increasing the temperature, the films grew along the (001) direction with an orthorhombic structure. The crystallite size was calculated using the Scherrer equation and observed that it increased with elevating the substrate temperature to 450 °C, but decreased when further increasing it. The highest transmittance was achieved when films were deposited at 550 °C. The absorption edge was estimated by using the Tauc plot. In the range 350 °C–550 °C, a shift of the absorption edge from 2.5 eV to 2.8 eV was observed due to the formation of chemical bonds at the V{sub 2}O{sub 5} film–substrate interface at high substrate temperatures (>450 °C). Field emission scanning electron microscopy showed that nanorods were formed when depositing at 500 °C. We conclude that by altering the substrate temperature the size of crystallites can be well controlled. - Highlights: ► Spray pyrolysis technique was used. ► We have synthesized highly oriented nanocrystalline V{sub 2}O{sub 5} films. ► By altering the substrate temperature the size of crystallites can be well controlled. ► The highest transmittance was achieved when films were deposited at 550 °C. ► Scanning electron microscopy showed that nanorods were formed when depositing at 500 °C.

  15. Structural and optical properties of nanostructural V2O5 thin films deposited by spray pyrolysis technique: Effect of the substrate temperature

    V2O5 thin films were deposited on glass substrates by spray pyrolysis technique. The variation in the structural and optical properties with a variation in the substrate temperature was investigated by means of X-ray diffraction (XRD) and UV–vis spectrophotometer. XRD was used to reveal the possible orientations of crystallites in the films prepared at different substrate temperatures ranging from 200 °C to 550 °C. The results showed that by increasing the temperature, the films grew along the (001) direction with an orthorhombic structure. The crystallite size was calculated using the Scherrer equation and observed that it increased with elevating the substrate temperature to 450 °C, but decreased when further increasing it. The highest transmittance was achieved when films were deposited at 550 °C. The absorption edge was estimated by using the Tauc plot. In the range 350 °C–550 °C, a shift of the absorption edge from 2.5 eV to 2.8 eV was observed due to the formation of chemical bonds at the V2O5 film–substrate interface at high substrate temperatures (>450 °C). Field emission scanning electron microscopy showed that nanorods were formed when depositing at 500 °C. We conclude that by altering the substrate temperature the size of crystallites can be well controlled. - Highlights: ► Spray pyrolysis technique was used. ► We have synthesized highly oriented nanocrystalline V2O5 films. ► By altering the substrate temperature the size of crystallites can be well controlled. ► The highest transmittance was achieved when films were deposited at 550 °C. ► Scanning electron microscopy showed that nanorods were formed when depositing at 500 °C

  16. Modeling pyrolysis of charring material in fire

    2002-01-01

    A modified model of pyrolysis for charring materials in fire has been proposed in this note. In this model some special factors which show the effect on pyrolysis are considered, i.e. heat loss by convection and radiation caused by surface temperature rise and shrinkage of char surface are considered. Experimental device is designed specially for validating the reliability of the model. Effects of density of materials and heat radiation on pyrolysis of materials have also been investigated.

  17. De-oxygenation of CO2 by using Hydrogen, Carbon and Methane over Alumina-Supported Catalysts

    R.Y. Raskar

    2012-06-01

    Full Text Available The de-oxygenation of CO2 was explored by using hydrogen, methane, carbon etc., over alumina supported catalysts. The alumina-supported ruthenium, rhodium, platinum, molybdenum, vanadium and magnesium catalysts were first reduced in hydrogen atmosphere and then used for the de-oxygenation of CO2. Furthermore, experimental variables for the de-oxygenation of CO2 were temperature (range 50 to 650 oC, H2/CO2 mole ratios (1.0 to 5, and catalyst loading (0.5 to 10 wt %. During the de-oxygenation of CO2 with H2 or CH4 or carbon, conversion of CO2, selectivity to CO and CH4 were estimated. Moreover, 25.4 % conversion of CO2 by hydrogen was observed over 1 wt% Pt/Al2O3 catalyst at 650 oC with 33.8 % selectivity to CH4. However, 8.1 to 13.9 % conversion of CO2 was observed over 1 wt% Pt/Al2O3 catalyst at 550 oC in the presence of both H2 and CH4. Moreover, 42.8 to 79.4 % CH4 was converted with 9 to 23.1 % selectivity to CO. It was observed that the de-oxygenation of CO2 by hydrogen, carbon and methane produced carbon, CO and CH4. © 2012 BCREC UNDIP. All rights reservedReceived: 6th February 2012; Revised: 23rd April 2012; Accepted: 24th April 2012[How to Cite: R. Y. Raskar, K. B. Kale, A. G. Gaikwad. (2011. De-oxygenation of CO2 by using Hydrogen, Carbon and Methane over Alumina-Supported Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (1: 59-69.  doi:10.9767/bcrec.7.1.1631.59-69][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.1.1631.59-69 ] | View in 

  18. Effects of Pyrolysis Temperature on Product Yields and Energy Recovery from Co-Feeding of Cotton Gin Trash, Cow Manure, and Microalgae: A Simulation Study

    Hanif, Muhammad Usman; Capareda, Sergio C.; Iqbal, Hamid; Arazo, Renato Ortiz; Baig, Muhammad Anwar

    2016-01-01

    The intensive search of new and cleaner energy catches interest in recent years due to huge consumption of fossil fuels coupled with the challenge of energy and environmental sustainability. Production of renewable and environmentally benign energy from locally available raw materials is coming in the frontline. In this work, conversion of the combined biomass (cotton gin trash, cow manure, and Microalgae [Nannochloropsis oculata]) through batch pyrolysis has been investigated. The effect of temperature to the production of energy fuels such as bio-oil, char, and biogas have been simulated considering the yield and energy content as responses. Result of the investigation generally revealed that the proportions of the different biomass did not significantly affect the product yield and energy recovery. Significant effect of temperature is evident in the simulation result of energy recovery whereby maximum conversion was achieved at 400°C for char (91 wt%), 600°C for syngas (22 wt%), and 551°C for bio-oil (48 wt%). Overall energy conversion efficiency of 75.5% was obtained at 589°C in which 15.6 MJ/kg of mixed biomass will be elevated to pyrolysis products. PMID:27043929

  19. Effects of Pyrolysis Temperature on Product Yields and Energy Recovery from Co-Feeding of Cotton Gin Trash, Cow Manure, and Microalgae: A Simulation Study.

    Muhammad Usman Hanif

    Full Text Available The intensive search of new and cleaner energy catches interest in recent years due to huge consumption of fossil fuels coupled with the challenge of energy and environmental sustainability. Production of renewable and environmentally benign energy from locally available raw materials is coming in the frontline. In this work, conversion of the combined biomass (cotton gin trash, cow manure, and Microalgae [Nannochloropsis oculata] through batch pyrolysis has been investigated. The effect of temperature to the production of energy fuels such as bio-oil, char, and biogas have been simulated considering the yield and energy content as responses. Result of the investigation generally revealed that the proportions of the different biomass did not significantly affect the product yield and energy recovery. Significant effect of temperature is evident in the simulation result of energy recovery whereby maximum conversion was achieved at 400°C for char (91 wt%, 600°C for syngas (22 wt%, and 551°C for bio-oil (48 wt%. Overall energy conversion efficiency of 75.5% was obtained at 589°C in which 15.6 MJ/kg of mixed biomass will be elevated to pyrolysis products.

  20. Effects of Pyrolysis Temperature on Product Yields and Energy Recovery from Co-Feeding of Cotton Gin Trash, Cow Manure, and Microalgae: A Simulation Study.

    Hanif, Muhammad Usman; Capareda, Sergio C; Iqbal, Hamid; Arazo, Renato Ortiz; Baig, Muhammad Anwar

    2016-01-01

    The intensive search of new and cleaner energy catches interest in recent years due to huge consumption of fossil fuels coupled with the challenge of energy and environmental sustainability. Production of renewable and environmentally benign energy from locally available raw materials is coming in the frontline. In this work, conversion of the combined biomass (cotton gin trash, cow manure, and Microalgae [Nannochloropsis oculata]) through batch pyrolysis has been investigated. The effect of temperature to the production of energy fuels such as bio-oil, char, and biogas have been simulated considering the yield and energy content as responses. Result of the investigation generally revealed that the proportions of the different biomass did not significantly affect the product yield and energy recovery. Significant effect of temperature is evident in the simulation result of energy recovery whereby maximum conversion was achieved at 400°C for char (91 wt%), 600°C for syngas (22 wt%), and 551°C for bio-oil (48 wt%). Overall energy conversion efficiency of 75.5% was obtained at 589°C in which 15.6 MJ/kg of mixed biomass will be elevated to pyrolysis products. PMID:27043929

  1. Platelet inhibition by nitrite is dependent on erythrocytes and deoxygenation.

    Sirada Srihirun

    Full Text Available BACKGROUND: Nitrite is a nitric oxide (NO metabolite in tissues and blood, which can be converted to NO under hypoxia to facilitate tissue perfusion. Although nitrite is known to cause vasodilation following its reduction to NO, the effect of nitrite on platelet activity remains unclear. In this study, the effect of nitrite and nitrite+erythrocytes, with and without deoxygenation, on platelet activity was investigated. METHODOLOGY/FINDING: Platelet aggregation was studied in platelet-rich plasma (PRP and PRP+erythrocytes by turbidimetric and impedance aggregometry, respectively. In PRP, DEANONOate inhibited platelet aggregation induced by ADP while nitrite had no effect on platelets. In PRP+erythrocytes, the inhibitory effect of DEANONOate on platelets decreased whereas nitrite at physiologic concentration (0.1 µM inhibited platelet aggregation and ATP release. The effect of nitrite+erythrocytes on platelets was abrogated by C-PTIO (a membrane-impermeable NO scavenger, suggesting an NO-mediated action. Furthermore, deoxygenation enhanced the effect of nitrite as observed from a decrease of P-selectin expression and increase of the cGMP levels in platelets. The ADP-induced platelet aggregation in whole blood showed inverse correlations with the nitrite levels in whole blood and erythrocytes. CONCLUSION: Nitrite alone at physiological levels has no effect on platelets in plasma. Nitrite in the presence of erythrocytes inhibits platelets through its reduction to NO, which is promoted by deoxygenation. Nitrite may have role in modulating platelet activity in the circulation, especially during hypoxia.

  2. Comparison of activation media and pyrolysis temperature for activated carbons development by pyrolysis of potato peels for effective adsorption of endocrine disruptor bisphenol-A.

    Arampatzidou, Anastasia C; Deliyanni, Eleni A

    2016-03-15

    Activated carbon prepared from potato peels, a solid waste by product has been studied for the adsorption of an endocrine disruptor, Bisphenol-A, from aqueous solutions. The potato peels biomass was activated with H3PO4, KOH and ZnCl2 in order the effect of the activation agent to be evaluated. The activated biomass was carbonized at 400, 600 and/or 800 °C in order the effect of carbonization temperature on the texture, surface chemistry and adsorption properties to be found. The activated carbons prepared were characterized by nitrogen adsorption, Scanning Electron Microscope, thermal analysis and Fourier Transform Infrared Spectroscopy. Equilibrium adsorption data followed both Langmuir and Freundlich isotherms. Adsorption followed second order rate kinetics. The adsorption capacity calculated from the Langmuir isotherm was found 454.62 mg g(-1) at an initial pH 3 at 25 °C for the phosphoric acid activated carbon carbonized at 400 °C that proved to be the best adsorbent. PMID:26707777

  3. Effect of the substrate temperature on the physical properties of molybdenum tri-oxide thin films obtained through the spray pyrolysis technique

    Martinez, H.M. [Grupo de Materiales con Aplicaciones Tecnologicas, Departamento de Fisica Universidad Nacional de Colombia sede Bogota (Colombia); Torres, J., E-mail: njtorress@unal.edu.co [Grupo de Materiales con Aplicaciones Tecnologicas, Departamento de Fisica Universidad Nacional de Colombia sede Bogota (Colombia); Lopez Carreno, L.D. [Grupo de Materiales con Aplicaciones Tecnologicas, Departamento de Fisica Universidad Nacional de Colombia sede Bogota (Colombia); Rodriguez-Garcia, M.E. [Departamento de Nanotecnologia, Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Campus Juriquilla, Queretaro, Qro., Mexico (Colombia)

    2013-01-15

    Polycrystalline molybdenum tri-oxide thin films were prepared using the spray pyrolysis technique; a 0.1 M solution of ammonium molybdate tetra-hydrated was used as a precursor. The samples were prepared on Corning glass substrates maintained at temperatures ranging between 423 and 673 K. The samples were characterized through micro Raman, X-ray diffraction, optical transmittance and DC electrical conductivity. The species MoO{sub 3} (H{sub 2}O){sub 2} was found in the sample prepared at a substrate temperature of 423 K. As the substrate temperature rises, the water disappears and the samples crystallize into {alpha}-MoO{sub 3}. The optical gap diminishes as the substrate temperature rises. Two electrical transport mechanisms were found: hopping under 200 K and intrinsic conduction over 200 K. The MoO{sub 3} films' sensitivity was analyzed for CO and H{sub 2}O in the temperature range 160 to 360 K; the results indicate that CO and H{sub 2}O have a reduction character. In all cases, it was found that the sensitivity to CO is lower than that to H{sub 2}O. - Highlights: Black-Right-Pointing-Pointer A low cost technique is used which produces good material. Black-Right-Pointing-Pointer Thin films are prepared using ammonium molybdate tetra hydrated. Black-Right-Pointing-Pointer The control of the physical properties of the samples could be done. Black-Right-Pointing-Pointer A calculation method is proposed to determine the material optical properties. Black-Right-Pointing-Pointer The MoO{sub 3} thin films prepared by spray pyrolysis could be used as gas sensor.

  4. Effect of temperature on structural, optical and photoluminescence properties of polycrystalline CuInS2 thin films prepared by spray pyrolysis

    Copper indium disulphide (CuInS2), is a good absorber material for photovoltaic applications. In this work, CuInS2 is deposited by chemical spray pyrolysis on heated glass substrates. It is observed that the film growth temperature and the ion ratio Cu/In affects the structural and optical properties of CuInS2 thin films. This paper presents the effect of temperature on the growth (for the ion ratio Cu/In=1.25), optical and photoluminescence properties of sprayed CuInS2 films. The XRD patterns confirm the well defined single phase composition of CuInS2 films grown from 300 to 350 deg. C (at Cu/In=1.25) as optimum temperature for depositing well defined crystallites along (1 1 2) oriented CuInS2 thin films with chalcopyrite structure. D2d point symmetry group is associated with the CuInS2 crystallites with energy gap of 1.53 eV at room temperature. The chemical nature and the presence of additional phases are discussed based on the EDAX measurements. The absorption coefficient of sprayed CuInS2 films is found to be in the order of 105-106 cm-1 in the UV-visible region and the optical band gap decreases with increase in temperature. Defects-related photoluminescence properties are also discussed. CuInS2 polycrystalline films are prepared by the cost effective method of spray pyrolysis from the aqueous solutions of copper (II) chloride, indium (III) chloride and thiourea for synthesis on heated glass substrates.

  5. Effect of the substrate temperature on the physical properties of molybdenum tri-oxide thin films obtained through the spray pyrolysis technique

    Polycrystalline molybdenum tri-oxide thin films were prepared using the spray pyrolysis technique; a 0.1 M solution of ammonium molybdate tetra-hydrated was used as a precursor. The samples were prepared on Corning glass substrates maintained at temperatures ranging between 423 and 673 K. The samples were characterized through micro Raman, X-ray diffraction, optical transmittance and DC electrical conductivity. The species MoO3 (H2O)2 was found in the sample prepared at a substrate temperature of 423 K. As the substrate temperature rises, the water disappears and the samples crystallize into α-MoO3. The optical gap diminishes as the substrate temperature rises. Two electrical transport mechanisms were found: hopping under 200 K and intrinsic conduction over 200 K. The MoO3 films' sensitivity was analyzed for CO and H2O in the temperature range 160 to 360 K; the results indicate that CO and H2O have a reduction character. In all cases, it was found that the sensitivity to CO is lower than that to H2O. - Highlights: ► A low cost technique is used which produces good material. ► Thin films are prepared using ammonium molybdate tetra hydrated. ► The control of the physical properties of the samples could be done. ► A calculation method is proposed to determine the material optical properties. ► The MoO3 thin films prepared by spray pyrolysis could be used as gas sensor.

  6. Pyrolysis process for producing fuel gas

    Serio, Michael A. (Inventor); Kroo, Erik (Inventor); Wojtowicz, Marek A. (Inventor); Suuberg, Eric M. (Inventor)

    2007-01-01

    Solid waste resource recovery in space is effected by pyrolysis processing, to produce light gases as the main products (CH.sub.4, H.sub.2, CO.sub.2, CO, H.sub.2O, NH.sub.3) and a reactive carbon-rich char as the main byproduct. Significant amounts of liquid products are formed under less severe pyrolysis conditions, and are cracked almost completely to gases as the temperature is raised. A primary pyrolysis model for the composite mixture is based on an existing model for whole biomass materials, and an artificial neural network models the changes in gas composition with the severity of pyrolysis conditions.

  7. Pyrolysis processing for solid waste resource recovery

    Serio, Michael A. (Inventor); Kroo, Erik (Inventor); Wojtowicz, Marek A. (Inventor); Suuberg, Eric M. (Inventor)

    2007-01-01

    Solid waste resource recovery in space is effected by pyrolysis processing, to produce light gases as the main products (CH.sub.4, H.sub.2, CO.sub.2, CO, H.sub.2O, NH.sub.3) and a reactive carbon-rich char as the main byproduct. Significant amounts of liquid products are formed under less severe pyrolysis conditions, and are cracked almost completely to gases as the temperature is raised. A primary pyrolysis model for the composite mixture is based on an existing model for whole biomass materials, and an artificial neural network models the changes in gas composition with the severity of pyrolysis conditions.

  8. Influence of pyrolysis temperature on fracture response in SiOC based composites reinforced by basalt woven fabric

    Chlup, Zdeněk; Černý, Martin; Strachota, Adam; Sucharda, Zbyněk; Halasová, Martina; Dlouhý, Ivo

    2014-01-01

    Roč. 34, č. 14 (2014), s. 3389-3398. ISSN 0955-2219 R&D Projects: GA ČR GAP107/12/2445; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 ; RVO:67985891 ; RVO:61389013 Keywords : Fracture behaviour * CMCs * Pyrolysis * Basalt fibre * Polysiloxane Subject RIV: JL - Materials Fatigue, Friction Mechanics; JI - Composite Materials (USMH-B); JH - Ceramics, Fire-Resistant Materials and Glass (UMCH-V) Impact factor: 2.947, year: 2014

  9. Direct Synthesis of Fe3C-Functionalized Graphene by High Temperature Autoclave Pyrolysis for Oxygen Reduction

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei;

    2014-01-01

    We present a novel approach to direct fabrication of few-layer graphene sheets with encapsulated Fe3C nanoparticles from pyrolysis of volatile non-graphitic precursors without any substrate. This one-step autoclave approach is facile and potentially scalable for production. Tested as an...... electrocatalyst, the graphene-based composite exhibited excellent catalytic activity towards the oxygen reduction reaction in alkaline solution with an onset potential of ca. 1.05 V (vs. the reversible hydrogen electrode) and a half-wave potential of 0.83 V, which is comparable to the commercial Pt/C catalyst....

  10. Thermodynamic method of establishing the pyrolysis enthalpy of solid fuels

    Postrzednik, S.

    1989-02-01

    This article presents a new method of establishing the pyrolysis enthalpy (heat) of solid fuels by exploiting the differential energy and material balance for the pyrolysis process. To this end, two values are utilised - temperature T and the concentration of volatile matter xi/sub FB/ - which unambiguously describe the course of pyrolysis. Progressive changes in concentration are determined with the aid of appropriate kinetic relationships for fuel pyrolysis.

  11. Gasification of some tropical woods by flash pyrolysis. Comparison of flash pyrolysis and conventional slow pyrolysis

    Doat, J.; Deglise, X.

    1982-01-01

    Flash pyrolysis was carried out on afforestation species and mixtures grouped as having high lignin, extractives or carbohydrate contents, at 500, 700, 900 and 1000 degrees C. As a control, temperate woods, cellulose and lignin were tested under the same conditions. The results showed that high temperature increased gasification, producing more CO and hydrocarbons. The addition of water or catalysts improved yields at high temperatures. Gas production was inversely correlated to lignin content of wood. A comparison between (a) slow pyrolysis and (b) flash pyrolysis showed (a) gave as much gas at 500 degrees C as (b) at 700 degrees C, but produced more CO2 than CO. At high temperature (b) gave the best gas yield and the worst charcoal yields. (Refs. 17).

  12. An optically accessible pyrolysis microreactor

    Baraban, J. H.; Ellison, G. Barney [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309 (United States); David, D. E. [Integrated Instrument Development Facility, CIRES, University of Colorado, Boulder, Colorado 80309-0216 (United States); Daily, J. W. [Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309 (United States)

    2016-01-15

    We report an optically accessible pyrolysis micro-reactor suitable for in situ laser spectroscopic measurements. A radiative heating design allows for completely unobstructed views of the micro-reactor along two axes. The maximum temperature demonstrated here is only 1300 K (as opposed to 1700 K for the usual SiC micro-reactor) because of the melting point of fused silica, but alternative transparent materials will allow for higher temperatures. Laser induced fluorescence measurements on nitric oxide are presented as a proof of principle for spectroscopic characterization of pyrolysis conditions.

  13. An optically accessible pyrolysis microreactor

    Baraban, J. H.; David, D. E.; Ellison, G. Barney; Daily, J. W.

    2016-01-01

    We report an optically accessible pyrolysis micro-reactor suitable for in situ laser spectroscopic measurements. A radiative heating design allows for completely unobstructed views of the micro-reactor along two axes. The maximum temperature demonstrated here is only 1300 K (as opposed to 1700 K for the usual SiC micro-reactor) because of the melting point of fused silica, but alternative transparent materials will allow for higher temperatures. Laser induced fluorescence measurements on nitric oxide are presented as a proof of principle for spectroscopic characterization of pyrolysis conditions.

  14. An optically accessible pyrolysis microreactor

    We report an optically accessible pyrolysis micro-reactor suitable for in situ laser spectroscopic measurements. A radiative heating design allows for completely unobstructed views of the micro-reactor along two axes. The maximum temperature demonstrated here is only 1300 K (as opposed to 1700 K for the usual SiC micro-reactor) because of the melting point of fused silica, but alternative transparent materials will allow for higher temperatures. Laser induced fluorescence measurements on nitric oxide are presented as a proof of principle for spectroscopic characterization of pyrolysis conditions

  15. The slow and fast pyrolysis of cherry seed.

    Duman, Gozde; Okutucu, Cagdas; Ucar, Suat; Stahl, Ralph; Yanik, Jale

    2011-01-01

    The slow and fast pyrolysis of cherry seeds (CWS) and cherry seeds shells (CSS) was studied in fixed-bed and fluidized bed reactors at different pyrolysis temperatures. The effects of reactor type and temperature on the yields and composition of products were investigated. In the case of fast pyrolysis, the maximum bio-oil yield was found to be about 44 wt% at pyrolysis temperature of 500 °C for both CWS and CSS, whereas the bio yields were of 21 and 15 wt% obtained at 500 °C from slow pyrolysis of CWS and CSS, respectively. Both temperature and reactor type affected the composition of bio-oils. The results showed that bio-oils obtained from slow pyrolysis of CWS and CSS can be used as a fuel for combustion systems in industry and the bio-oil produced from fast pyrolysis can be evaluated as a chemical feedstock. PMID:20801019

  16. Effects of pyrolysis temperature on carbon retention and stability of biochar%热解温度对生物质炭碳保留量及稳定性的影响

    李飞跃; 汪建飞; 谢越; 李贺; 李孝良; 李粉茹

    2015-01-01

    以核桃壳为生物质炭生产原料,研究热解温度(200~700℃)对生物质炭产率、元素组成、表面官能团分布及其稳定性的影响,以期探明生物质炭基本性质随热解温度变化的规律,为全面了解生物质炭固碳减排效果提供理论参考。结果表明,生物质炭的C含量随温度升高而增加,H和O元素含量却随温度升高而降低。此外,生物质炭的H/C和O/C随着温度增加而减少。生物质炭的产率及碳保留量随着温度的升高而降低。红外光谱分析结果表明,经过热解核桃壳原材料分子中所含的-C-O和O-CH3基团消失,随着热解温度升高,生物质炭中的烷烃基团-CH逐渐减少,芳香化程度逐渐升高。500℃制备生物质炭的K2Cr2O7和KMnO4氧化碳损失量均最低,分别为10.4%和1.66%。相关分析表明,生物质炭的产率、碳保留量及稳定性与热解温度之间均具有显著相关关系。%Turning biomass wastes into biochar under the conditions of low temperature and limited oxygen has recently proven to be a promising approach for long-term carbon sequestration. However, the ultimate carbon sequestration efficiency of biochar depends not only on the feedstock type and production condition, but also on the environmental conditions of soil. In order to reveal the effects of pyrolysis temperature which is main parameter of biochar production condition on carbon retention and biochar stability, and provide more information for further improvement of carbon sequestration potential by turning biomass into biochar, the characteristics of biochar derived from walnut shell under lab condition were analyzed. During a typical slow pyrolysis process, the biochar was heated at a speed of approximately 20℃/minin a Muffle Furnace under limited oxygen and held at 200-700℃ for 2 h; then, biochar yield, elemental composition, functional groups distribution using Fourier transform infrared spectroscopy (FTIR

  17. Deoxygenation Reduces Sickle Cell Blood Flow at Arterial Oxygen Tension.

    Lu, Xinran; Wood, David K; Higgins, John M

    2016-06-21

    The majority of morbidity and mortality in sickle cell disease is caused by vaso-occlusion: circulatory obstruction leading to tissue ischemia and infarction. The consequences of vaso-occlusion are seen clinically throughout the vascular tree, from the relatively high-oxygen and high-velocity cerebral arteries to the relatively low-oxygen and low-velocity postcapillary venules. Prevailing models of vaso-occlusion propose mechanisms that are relevant only to regions of low oxygen and low velocity, leaving a wide gap in our understanding of the most important pathologic process in sickle cell disease. Progress toward understanding vaso-occlusion is further challenged by the complexity of the multiple processes thought to be involved, including, but not limited to 1) deoxygenation-dependent hemoglobin polymerization leading to impaired rheology, 2) endothelial and leukocyte activation, and 3) altered cellular adhesion. Here, we chose to focus exclusively on deoxygenation-dependent rheologic processes in an effort to quantify their contribution independent of the other processes that are likely involved in vivo. We take advantage of an experimental system that, to our knowledge, uniquely enables the study of pressure-driven blood flow in physiologic-sized tubes at physiologic hematocrit under controlled oxygenation conditions, while excluding the effects of endothelium, leukocyte activation, adhesion, inflammation, and coagulation. We find that deoxygenation-dependent rheologic processes are sufficient to increase apparent viscosity significantly, slowing blood flow velocity at arterial oxygen tension even without additional contributions from inflammation, adhesion, and endothelial and leukocyte activation. We quantify the changes in apparent viscosity and define a set of functional regimes of sickle cell blood flow personalized for each patient that may be important in further dissecting mechanisms of in vivo vaso-occlusion as well as in assessing risk of patient

  18. Slow, fast and flash pyrolysis of rapeseed

    Onay, O.; Kockar, O.M. [Anadolu University, Eskisehir (Turkey). Dept. of Chemical Engineering

    2003-12-01

    Pyrolysis experiments have been conducted on a sample of rapeseed to determine particularly the effects of pyrolysis temperature, heating rate, particle size and sweep gas flow rate on the pyrolysis product yields and their chemical compositions. The maximum oil yield of 73% was obtained at the final pyrolysis temperature of 550-600{sup o}C, particle size range of +0.6-1.25 mm, and sweep gas flow rate of 100 cm{sup 3}min{sup -1} (N{sub 2}) at flash pyrolysis conditions in 2 tubular transport reactor. Chromatographic and spectroscopic studies on the pyrolytic oil showed that the oil obtained from rapeseed can be used as a renewable fuel and chemical feedstock. (author)

  19. Transportation fuels from biomass via fast pyrolysis and hydroprocessing

    Elliott, Douglas C.

    2013-09-21

    Biomass is a renewable source of carbon, which could provide a means to reduce the greenhouse gas impact from fossil fuels in the transportation sector. Biomass is the only renewable source of liquid fuels, which could displace petroleum-derived products. Fast pyrolysis is a method of direct thermochemical conversion (non-bioconversion) of biomass to a liquid product. Although the direct conversion product, called bio-oil, is liquid; it is not compatible with the fuel handling systems currently used for transportation. Upgrading the product via catalytic processing with hydrogen gas, hydroprocessing, is a means that has been demonstrated in the laboratory. By this processing the bio-oil can be deoxygenated to hydrocarbons, which can be useful replacements of the hydrocarbon distillates in petroleum. While the fast pyrolysis of biomass is presently commercial, the upgrading of the liquid product by hydroprocessing remains in development, although it is moving out of the laboratory into scaled-up process demonstration systems.

  20. Influence of substrate temperature on physical properties of (111 oriented CdIn2S4 thin films by nebulized spray pyrolysis technique

    J.Raj Mohamed

    2016-06-01

    Full Text Available In this work, we present the substrate temperature influenced change in the structural, optical, morphological, and electrical conductivity properties of CdIn2S4 thin films deposited on amorphous glass substrates by nebulized spray pyrolysis (NSP technique. X-ray diffraction pattern revealed that the as-deposited CdIn2S4 thin films had a cubic structure with a preferred orientation along (111 plane. The reduced strain by increasing the substrate temperature from 200 to 350 °C increased the average crystalline size from 17 to 33 nm while the formation of secondary phases such as CdIn2O4 and In2O3 reduced it to 21 nm after the substrate temperature at 450 °C. The energy dispersive analysis by X-ray (EDAX studies confirmed the presence of Cd, In, and S. The absorption coefficient, direct band gap energy, Urbach energy, skin depth, and extinction coefficient of CdIn2S4 films were analyzed by optical absorption spectra. The better conductivity and mobility noticed at Ts = 350 °C are explained by carrier concentration and crystalline size. Better optical and electrical conductivity behavior of CdIn2S4 thin film sample suggests for effective PEC solar cell fabrication.

  1. A Comparison of Lignin, Macroalgae, Wood and Straw Fast Pyrolysis

    Trinh, Ngoc Trung; Jensen, Peter Arendt; Dam-Johansen, Kim;

    2013-01-01

    A fast pyrolysis study on lignin and macroalgae (non-conventional biomass) and wood and straw (conventional biomass) were carried out in a pyrolysis centrifugal reactor at pyrolysis temperature of 550 ºC. The product distributions and energy recoveries were measured and compared among...... these biomasses. The fast pyrolysis of macroalgae showed a promising result with a bio-oil yield of 65 wt% dry ash free basis (daf) and 76 % energy recovery in the bio-oil while the lignin fast pyrolysis provides a bio-oil yield of 47 wt% daf and energy recovery in bio-oil of 45 %. The physiochemical properties...

  2. Four-electron deoxygenative reductive coupling of carbon monoxide at a single metal site

    Buss, Joshua A.; Agapie, Theodor

    2016-01-01

    Carbon dioxide is the ultimate source of the fossil fuels that are both central to modern life and problematic: their use increases atmospheric levels of greenhouse gases, and their availability is geopolitically constrained. Using carbon dioxide as a feedstock to produce synthetic fuels might, in principle, alleviate these concerns. Although many homogeneous and heterogeneous catalysts convert carbon dioxide to carbon monoxide, further deoxygenative coupling of carbon monoxide to generate useful multicarbon products is challenging. Molybdenum and vanadium nitrogenases are capable of converting carbon monoxide into hydrocarbons under mild conditions, using discrete electron and proton sources. Electrocatalytic reduction of carbon monoxide on copper catalysts also uses a combination of electrons and protons, while the industrial Fischer-Tropsch process uses dihydrogen as a combined source of electrons and electrophiles for carbon monoxide coupling at high temperatures and pressures. However, these enzymatic and heterogeneous systems are difficult to probe mechanistically. Molecular catalysts have been studied extensively to investigate the elementary steps by which carbon monoxide is deoxygenated and coupled, but a single metal site that can efficiently induce the required scission of carbon-oxygen bonds and generate carbon-carbon bonds has not yet been documented. Here we describe a molybdenum compound, supported by a terphenyl-diphosphine ligand, that activates and cleaves the strong carbon-oxygen bond of carbon monoxide, enacts carbon-carbon coupling, and spontaneously dissociates the resulting fragment. This complex four-electron transformation is enabled by the terphenyl-diphosphine ligand, which acts as an electron reservoir and exhibits the coordinative flexibility needed to stabilize the different intermediates involved in the overall reaction sequence. We anticipate that these design elements might help in the development of efficient catalysts for

  3. FAST PYROLYSIS OF ENZYMATIC/MILD ACIDOLYSIS LIGNIN FROM MOSO BAMBOO

    Rui Lou; Shu-bin Wu; Gao-jin Lv

    2010-01-01

    The characteristics of enzymatic/mild acidolysis lignin (EMAL) isolated from moso bamboo were investigated using pyrolysis-gas chromato-graphy/mass spectrometry (Py-GC/MS). Pyrolysis temperature as a factor on products was studied, and the pyrolysis mechanism was inferred with respect to the dominating products. Research results showed that pyrolysis products derived from EMAL pyrolysis were mainly heterocyclic (2,3-dihydrobenzofuran), phenols, esters, and a minor amount of acetic acid. Pyrol...

  4. Torrefaction/biochar production by microwave and conventional slow pyrolysis - comparison of energy properties

    Gronnow, Mark; Budarin, Vitaly; MASEK, Ondrej; Crombie, Kyle; Brownsort, Peter; Shuttleworth, Peter; Hurst, Peter; Clark, James

    2013-01-01

    The energy efficiency of torrefaction/pyrolysis of biomass to fuel/biochar was studied using conventional (slow) and microwave (low temperature) pyrolysis. Conventional pyrolysis is approximately three times as energy efficient as microwave pyrolysis, in terms of the energy required to process a unit of feedstock. However, this is more than compensated for by the higher energy content of the condensable and gaseous coproducts from microwave pyrolysis, as these can be utilized to generate the ...

  5. Role of substrate temperature on the properties of Na-doped ZnO thin film nanorods and performance of ammonia gas sensors using nebulizer spray pyrolysis technique

    Highlights: • Na-doped ZnO films deposited on glass by nebulizer spray pyrolysis (NSP) method. • NSP method for large area coatings and good results as compared with other methods. • HR-SEM studies reveal the formation of Na-doped ZnO films consisting of nano-rods. • Na-doped ZnO films ensure their stability and suitability for gas sensors. -- Abstract: Sodium doped zinc oxide (Na:ZnO) thin films were deposited on glass substrates at substrate temperatures 300, 400 and 500 °C by a novel nebulizer spray method. X-ray diffraction shows that all the films are polycrystalline in nature having hexagonal structure with high preferential orientation along (0 0 2) plane. High resolution SEM studies reveal the formation of Na-doped ZnO films having uniformly distributed nano-rods over the entire surface of the substrates at 400 °C. The complex impedance of the ZnO nano-rods shows two distinguished semicircles and the diameter of the arcs got decreased in diameter as the temperature increases from 170 to 270 °C and thereafter slightly increased

  6. Role of substrate temperature on the properties of Na-doped ZnO thin film nanorods and performance of ammonia gas sensors using nebulizer spray pyrolysis technique

    Mariappan, R., E-mail: marijpr@gmail.com [Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641 020, Tamil Nadu (India); Department of Physics, Adhiyamaan College of Engineering, Hosur 635 109, Tamilnadu (India); Ponnuswamy, V.; Suresh, R. [Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641 020, Tamil Nadu (India); Suresh, P. [Materials Research Centre, Indian Institute of Science, Bangalore 560 012 (India); Chandra Bose, A. [Department of Physics, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu (India); Ragavendar, M. [Department of Physics, KPR Institute of Engineering and Technology, Coimbatore 641 407, Tamil Nadu (India)

    2014-01-05

    Highlights: • Na-doped ZnO films deposited on glass by nebulizer spray pyrolysis (NSP) method. • NSP method for large area coatings and good results as compared with other methods. • HR-SEM studies reveal the formation of Na-doped ZnO films consisting of nano-rods. • Na-doped ZnO films ensure their stability and suitability for gas sensors. -- Abstract: Sodium doped zinc oxide (Na:ZnO) thin films were deposited on glass substrates at substrate temperatures 300, 400 and 500 °C by a novel nebulizer spray method. X-ray diffraction shows that all the films are polycrystalline in nature having hexagonal structure with high preferential orientation along (0 0 2) plane. High resolution SEM studies reveal the formation of Na-doped ZnO films having uniformly distributed nano-rods over the entire surface of the substrates at 400 °C. The complex impedance of the ZnO nano-rods shows two distinguished semicircles and the diameter of the arcs got decreased in diameter as the temperature increases from 170 to 270 °C and thereafter slightly increased.

  7. Spray pyrolysis growth of a high figure of merit, nano-crystalline, p-type transparent conducting material at low temperature

    Farrell, L.; Norton, E.; O'Dowd, B. J.; Caffrey, D.; Shvets, I. V.; Fleischer, K.

    2015-07-01

    In this letter, we demonstrate a low temperature (≈345 °C) growth method for Cu deficient CuCrO2 performed by spray pyrolysis using metal-organic precursors and a simple air blast nozzle. Smooth films were grown on glass substrates with a highest conductivity of 12 S/cm. The most conductive samples retain transparencies above 55% resulting in a figure of merit as high as 350 μS, which is the best performing p-type transparent conducting material grown by solution methods to date. Remarkably, despite the nano-crystallinity of the films, properties comparable with crystalline CuCrO2 are observed. No postannealing of the films is required in contrast to previous reports on crystalline material. The low processing temperature of this method means that the material can be deposited on flexible substrates. As this is a solution based technique, it is more attractive to industry as physical vapour deposition methods are slow and costly in comparison.

  8. Slow pyrolysis of pistachio shell

    Esin Apaydin-Varol; Ersan Putun; Ayse E. Putun [Anadolu University, Eskisehir (Turkey). Department of Chemical Engineering

    2007-08-15

    In this study, pistachio shell is taken as the biomass sample to investigate the effects of pyrolysis temperature on the product yields and composition when slow pyrolysis is applied in a fixed-bed reactor at atmospheric pressure to the temperatures of 300, 400, 500, 550, 700{sup o}C. The maximum liquid yield was attained at about 500-550{sup o}C with a yield of 20.5%. The liquid product obtained under this optimum temperature and solid products obtained at all temperatures were characterized. As well as proximate and elemental analysis for the products were the basic steps for characterization, column chromatography, FT-IR, GC/MS and SEM were used for further characterization. The results showed that liquid and solid products from pistachio shells show similarities with high value conventional fuels. 31 refs., 9 figs., 1 tab.

  9. Alveolar gas exchange, oxygen delivery and tissue deoxygenation in men and women during incremental exercise.

    Peltonen, Juha E; Hägglund, Harriet; Koskela-Koivisto, Tiina; Koponen, Anne S; Aho, Jyrki M; Rissanen, Antti-Pekka E; Shoemaker, J Kevin; Tiitinen, Aila; Tikkanen, Heikki O

    2013-08-15

    We investigated whether leg and arm skeletal muscle, and cerebral deoxygenation, differ during incremental cycling exercise in men and women, and if women's lower capacity to deliver O2 affects tissue deoxygenation. Men (n=10) compared to women (n=10), had greater cardiac output, which with greater hemoglobin concentration produced greater absolute (QaO2) and body size-adjusted oxygen delivery (QaO2i) at peak exercise. Despite women's lower peak QaO2, their leg muscle deoxygenation was similar at a given work rate and QaO2, but less than in men at peak exercise (Δtissue saturation index -27.1 ± 13.2% vs. -11.8 ± 5.7%, Pexercise, oxygen uptake was associated both with QaO2 and leg muscle deoxygenation (both Pmuscle and cerebral deoxygenation did not differ between sexes at peak exercise. Thus, both high O2 delivery and severe active muscle deoxygenation are determinants of good exercise performance, and active muscle deoxygenation responses are regulated partly in a sex-specific manner with an influence of exercise capacity. PMID:23707876

  10. Direct spray pyrolysis of aluminum chloride solution for alumina preparation

    吕国志; 张廷安; 王龙; 马思达; 豆志河; 刘燕

    2014-01-01

    The effects of pyrolysis mode and pyrolysis parameters on Cl content in alumina were investigated, and the alumina products were characterized by XRD, SEM and ASAP. The experimental results indicate that the spray pyrolysis efficiency is higher than that of static pyrolysis process, and the reaction and evaporation process lead to a multi-plot state of the alumina products by spray pyrolysis. Aluminum phase starts to transform intoγ-Al2O3 at spray pyrolysis temperature of 600 °C, which is about 200 °C lower than that of static pyrolysis process. The primary particle size of γ-Al2O3 product is 27.62 nm, and Cl content in alumina products is 0.38%at 800 °C for 20 min.

  11. Study on biomass catalytic pyrolysis for production of bio-gasoline by on-line FTIR

    Chang Bo Lu; Jian Zhong Yao; Wei Gang Lin; Wen Li Song

    2007-01-01

    The pyrolysis of biomass is a promising way for production of bio-gasoline if the stability and quality problems of the bio-crudeoil can be solved by catalytic cracking and reforming. In this paper, an on-line infrared spectrum was used to study the characteristics of catalytic pyrolysis with the following preliminary results. The removal of C=O of organic acid is more difficult than that of aldehydes and ketones. HUSY/γ-Al2O3 and REY/γ-Al2O3 catalysts exhibited better deoxygenating activities while HZSM-5/γ-Al2O3 catalyst exhibited preferred selectivities for production of iso-alkanes and aromatics. Finally, possible mechanisms of biomass catalytic pyrolysis are discussed as well.

  12. Effect of Solution Molarity, Substrate Temperature and Spray Time on The Structural and Optical Properties Of ZnO Thin Films Deposited By Spray Pyrolysis

    Zinc oxide thin films were deposited on a glass substrate by spray pyrolysis technique using solution of zinc acetate and air as the carrier gas. Effects of solution molarity, substrate temperature and spray time on films properties were investigated. All films deposited were characterized using X-ray diffraction for structural characterization and UV-VIS transmission spectrophotometry for optical properties. According to the analytical method, the type of crystal lattice was found to be hexagonal and X-ray diffraction (XRD) patterns showed that the films deposited were polycrystalline with (002) plane as preferential orientation. The values of lattice constant, grain size, micro strain and dislocation density of all samples were calculated. In addition, Optical behaviors of film samples were analyzed by obtaining transmission spectra, in the wavelength range of 350-800 nm. The UV-VIS spectroscopy shows the high transparency of ZnO films in the UV region. An optimization of the films has been carried out to determine the best preparation conditions.

  13. An investigation on substrate temperature and copper to sulphur molar ratios on optical and electrical properties of nanostructural CuS thin films prepared by spray pyrolysis method

    Copper sulphide (CuS) thin films have been deposited on glass substrates by spray pyrolysis method using an aqueous solutions of copper (II) acetate and thiourea with different Cu to S molar ratios (0.33 and 0.43) at various substrate temperatures of 260, 285 and 310 °C. The structural, optical and electrical characterizations have been carried out using XRD, UV-Vis. transmittance/reflectance, PL spectra and Hall effect measurements. These characterizations indicated the formation of a CuS single phase (covellite) with polycrystalline nature with preferred orientation along (1 0 2) plane, except one with amorphous nature. Optical studies showed that the deposited layers have a relatively high absorption coefficient (5 × 104 to 1 × 105 cm-1) in the visible range, with an effective optical band gap of ∼2.4-2.6 eV. The Hall effect data showed that all the grown samples have a degenerate p-type conductivity with a hole concentration of ∼1.8 × 1020 to 1.7 × 1021 cm-3.

  14. Structural and optical properties of ZnO nanostructures grown by aerosol spray pyrolysis: Candidates for room temperature methane and hydrogen gas sensing

    Motaung, D.E., E-mail: dmotaung@csir.co.za [DST/CSIR Nanotechnology Innovation Centre, National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, P. O. Box 395, Pretoria 0001 (South Africa); Mhlongo, G.H., E-mail: gmhlongo@csir.co.za [DST/CSIR Nanotechnology Innovation Centre, National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, P. O. Box 395, Pretoria 0001 (South Africa); Kortidis, I. [Transparent Conductive Materials Lab, Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, 100N. Plastira str., Vassilika Vouton, 70013 Heraklion, Crete (Greece); Nkosi, S.S., E-mail: skosi@csir.co.za [CSIR-National Laser Centre, 626 Meiring Naude Rd, Brummeria, Pretoria 0001 (South Africa); School of Physics, University of Witwatersrand, Private Bag X3, Johannesburg 2030 (South Africa); Malgas, G.F.; Mwakikunga, B.W.; Ray, S.Sinha [DST/CSIR Nanotechnology Innovation Centre, National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, P. O. Box 395, Pretoria 0001 (South Africa); Kiriakidis, G., E-mail: kiriakid@iesl.forth.gr [Transparent Conductive Materials Lab, Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas, 100N. Plastira str., Vassilika Vouton, 70013 Heraklion, Crete (Greece); University of Crete, Department of Physics, 710 03 Heraklion, Crete (Greece)

    2013-08-15

    We report on the synthesis of ZnO films by aerosol spray pyrolysis method at different deposition times. The surface morphology, crystal structure and the cross-sectional analysis of the prepared ZnO films were characterized by X-ray diffraction (XRD), focused ion beam scanning electron microscopy (FIB-SEM), atomic force microscopy (AFM) and high resolution transmission electron microscopy (HR-TEM). XRD analysis revealed that the ZnO films are polycrystalline in nature. Structural analysis exploiting cross-sectional TEM profile showed that the films composed of nano-particles and columnar structures growing perpendicular to the substrate. AFM revealed that the columnar structures have a higher surface roughness as compared to the nanoparticles. The effect of ZnO crystallite size and crystallinity on the gas sensing performance of hydrogen and methane gases was also evaluated. Sensing film based on ZnO nanoparticles has numerous advantages in terms of its reliability and high sensitivity. These sensing materials revealed an improved response to methane and hydrogen gases at room temperature due to their high surface area, indicating their possible application as a gas sensor.

  15. Structural and optical properties of ZnO nanostructures grown by aerosol spray pyrolysis: Candidates for room temperature methane and hydrogen gas sensing

    Motaung, D. E.; Mhlongo, G. H.; Kortidis, I.; Nkosi, S. S.; Malgas, G. F.; Mwakikunga, B. W.; Ray, S. Sinha; Kiriakidis, G.

    2013-08-01

    We report on the synthesis of ZnO films by aerosol spray pyrolysis method at different deposition times. The surface morphology, crystal structure and the cross-sectional analysis of the prepared ZnO films were characterized by X-ray diffraction (XRD), focused ion beam scanning electron microscopy (FIB-SEM), atomic force microscopy (AFM) and high resolution transmission electron microscopy (HR-TEM). XRD analysis revealed that the ZnO films are polycrystalline in nature. Structural analysis exploiting cross-sectional TEM profile showed that the films composed of nano-particles and columnar structures growing perpendicular to the substrate. AFM revealed that the columnar structures have a higher surface roughness as compared to the nanoparticles. The effect of ZnO crystallite size and crystallinity on the gas sensing performance of hydrogen and methane gases was also evaluated. Sensing film based on ZnO nanoparticles has numerous advantages in terms of its reliability and high sensitivity. These sensing materials revealed an improved response to methane and hydrogen gases at room temperature due to their high surface area, indicating their possible application as a gas sensor.

  16. Orientation-dependent low field magnetic anomalies and room-temperature spintronic material – Mn doped ZnO films by aerosol spray pyrolysis

    Graphical abstract: Optical microscopy images of Mn doped ZnO films deposited for 20 min. Highlights: •Mn–ZnO films showing transparent spherical bubbles were synthesized by ASP. •LFMA phenomenon was observed for these films. •A relatively novel reversal magnetic feature to that of LFMA was observed. •Ferromagnetic to paramagnetic transition due to Mn doping was observed. •Angular dependence analysis showed evidence of magnetic anisotropy present. -- Abstract: High quality un-doped and Mn-doped ZnO films deposited by a simple aerosol spray pyrolysis technique for 20 and 30 min were studied using electron paramagnetic resonance (EPR), X-ray diffraction (XRD) and atomic force microscopy (AFM) techniques. EPR analysis showed novel observation of low field microwave absorption (LFMA) on the manganese (Mn) doped zinc oxide (ZnO) films at various Mn concentrations. The results showed a peculiar behavior, reversal signal to that of LFMA. These findings also demonstrated that these films contain ferromagnetism at room temperature with possible applications in spintronics. Angular dependence measurements were found to induce magnetic transition from ferromagnetism to paramagnetism. Structural analysis showed that the undertaken materials are in wurtzite structures. The light absorption edge of Mn–ZnO films red shifted which enhanced the observed ferromagnetism. The direct modulation of the band gap caused by Mn–ZnO substitution is responsible for the red shift effect in absorption edge of ZnO

  17. Structural and optical properties of ZnO nanostructures grown by aerosol spray pyrolysis: Candidates for room temperature methane and hydrogen gas sensing

    We report on the synthesis of ZnO films by aerosol spray pyrolysis method at different deposition times. The surface morphology, crystal structure and the cross-sectional analysis of the prepared ZnO films were characterized by X-ray diffraction (XRD), focused ion beam scanning electron microscopy (FIB-SEM), atomic force microscopy (AFM) and high resolution transmission electron microscopy (HR-TEM). XRD analysis revealed that the ZnO films are polycrystalline in nature. Structural analysis exploiting cross-sectional TEM profile showed that the films composed of nano-particles and columnar structures growing perpendicular to the substrate. AFM revealed that the columnar structures have a higher surface roughness as compared to the nanoparticles. The effect of ZnO crystallite size and crystallinity on the gas sensing performance of hydrogen and methane gases was also evaluated. Sensing film based on ZnO nanoparticles has numerous advantages in terms of its reliability and high sensitivity. These sensing materials revealed an improved response to methane and hydrogen gases at room temperature due to their high surface area, indicating their possible application as a gas sensor.

  18. Conventional and microwave induced pyrolysis of coffee hulls for the production of a hydrogen rich fuel gas

    Dominguez, Antonio; Menendez, Angel; Fernandez, Yolanda; Pis, Jose; Valente Nabais, Joao; Carrott, Peter; Carrott, Manuela

    2007-01-01

    This paper describes the conventional and microwave-assisted pyrolysis of coffee hulls at 500, 800 and 1000 8C. The influence of the pyrolysis method and temperature on the product yields and on the characteristics of the pyrolysis products is discussed. It was found that the pyrolysis of this particular residue gives rise to a larger yield of the gas fraction compared to the other fractions, even at relatively low temperatures. A comparison of microwave-assisted pyrolysis and conven...

  19. The influence of the pyrolysis temperature on the electrochemical behavior of carbon-rich SiCN polymer-derived ceramics as anode materials in lithium-ion batteries

    Reinold, Lukas Mirko; Yamada, Yuto; Graczyk-Zajac, Magdalena; Munakata, Hirokazu; Kanamura, Kiyoshi; Riedel, Ralf

    2015-05-01

    Within this study we report on the impact of the pyrolysis temperature on the structural and electrochemical properties of the poly(phenylvinylsilylcarbodiimide) derived silicon carbonitride (SiCN) ceramic. Materials pyrolysed at 800 °C and 1300 °C, SiCN 800 and SiCN 1300, are found amorphous. Raman spectroscopy measurements indicate the increase in ordering of the free carbon phase with increasing pyrolysis temperature which leads to lower capacity recovered by SiCN 1300. Significant hysteresis is found for materials pyrolysed at 800 °C during electrochemical lithium insertion/extraction. This feature is attributed to much higher hydrogen content in SiCN 800 sample. An aging of SiCN 800 reflected by a change of elemental composition upon contact to air and a strong film formation are attenuated at a higher pyrolysis temperature. Single particle microelectrode investigation on SiCN 800 and SiCN 1300 clarify different electrochemical behavior of the materials. Much lower charge transfer resistance of SiCN 1300 in comparison to SiCN 800 explains better high currents electrochemical performance. Lithium ions diffusion coefficient Dmin ranges from 3.2 10-9 cm2s-1 to 6.4 10-11 cm2s-1 and is independent on the potential.

  20. Pyrolysis of spent ion-exchanger resins

    Slametschka, Rainer; Braehler, Georg [NUKEM Technologies GmbH (Germany)

    2012-11-01

    Initial tests have shown that ion exchangers (IEX) can be decomposed by pyrolysis with very good results, yielding an inert and chemically resistant product. No additives are necessary. The main constituent of the product, the pyrolysis residues or ash, is carbon. It has been discovered that the entire radioactive inventory remains in the pyrolysis residues during pyrolysis of the IEX. This is achieved by relatively low process temperatures that prevent highly volatile nuclides such as the caesium nuclides from passing into the gaseous phase. Sintered metal filters in pyrolysis plant ensure that even the radioactivity bonded to the dust remains in the pyrolysis residues. In addition to the radionuclides, the main constituents of the residue are carbon from the original polystyrene matrix and sulphur from the functional groups. The pyrolysis residues form a flowable solid material and not a melt. It is thus easy to handle and can be compacted or cemented, depending on the requirements for interim and permanent storage. Any further constituents such as inorganic filter materials or even other organic materials do not interfere with the process, they are dried, calcined or also pyrolysed. (orig.)

  1. High quality bio-oil from catalytic flash pyrolysis of lignocellulosic biomass over alumina-supported sodium carbonate

    Imran, Ali

    2014-11-01

    Performance of a novel alumina-supported sodium carbonate catalyst was studied to produce a valuable bio-oil from catalytic flash pyrolysis of lignocellulosic biomass. Post treatment of biomass pyrolysis vapor was investigated in a catalyst fixed bed reactor at the downstream of the pyrolysis reactor. In-situ catalytic upgrading of biomass pyrolysis vapor was conducted in an entrained flow pyrolysis reactor by feeding a premixed feedstock of the catalyst and biomass. Na2CO3/gamma-Al2O3 was very effective for de-oxygenation of the pyrolysis liquid and oxygen content of the bio-oil was decreased from 47.5 wt.% to 16.4 wt.%. An organic rich bio-oil was obtained with 5.8 wt.% water content and a higher heating value of 36.1 MJ/kg. Carboxylic acids were completely removed and the bio-oil had almost a neutral pH. This bio-oil of high calorific low, low water and oxygen content may be an attractive fuel precursor. In-situ catalytic upgrading of biomass pyrolysis vapor produced a very similar quality bio-oil compared to post treatment of pyrolysis vapors, and shows the possible application of Na2CO3/gamma-Al2O3 in a commercial type reactor system such as a fluidized bed reactor. (C) 2014 Elsevier B.V. All rights reserved.

  2. Spray pyrolysis process for preparing superconductive films

    This paper describes a spray pyrolysis method for preparing thin superconductive film. It comprises: preparing a spray pyrolysis solution comprising Bi,Sr,Ca and Cu metals in a solvent; heating a substrate to a first temperature; spraying the solution onto the heated substrate to form a film thereon; heating the film and substrate to a second temperature of about 700 degrees-825 degrees C, the second temperature being higher than the first temperature; heating the film and substrate to a third temperature of about 870 degrees-890 degrees C to melt the film; once the film and substrate reach the third temperature, further heat treating the film and substrate; cooling the film and substrate to ambient temperature. This patent also describes a spray pyrolysis method for preparing thin superconductive films. It comprises: preparing a spray pyrolysis solution comprising Bi, Ca and Cu metals and fluxing agent in a solvent; heating a substrate to a first temperature; spraying the solution onto the heated substrate to form a film thereon; heating the film and substrate to a second temperature about 700 degrees-825 degrees C, the second temperature being higher than the first temperature; heating the film and substrate at a third temperature about 840 degrees-860 degrees C; and cooling the film and substrate to ambient temperature

  3. Charcoal Production via Multistage Pyrolysis

    Adetoyese Olajire Oyedun; Ka Leung Lam; Chi Wai Hui

    2012-01-01

    Interests in charcoal usage have recently been re-ignited because it is believed that charcoal is a muchbetter fuel than wood. The conventional charcoal production consumes a large amount of energy due to the prolonged heating time and cooling time which contribute to the process completing in one to several days. Wood py-rolysis consists of both endothermic and exothermic reactions as well as the decomposition of the different components at different temperature range (hemicellulose: 200-260℃; cellulose: 240-350℃ and lignin: 280-500℃). Inthis study we propose a multistagepyrolysis which is an approach to carry out pyrolysis with multiple heating stages so as to gain certain processing benefits. We propose a three-stage approach which includes rapid stepwise heating stage to a variable target temperatures of 250 ℃, 300℃, 350 ℃ and 400 ℃, slow and gradual heatingstage to a tinal temperature of 400℃ and adiabatic with cooling stage. The multi-stage pyrolysis process can save 30% energy and the processing time by using a first temperature target of 300 ℃and heating rate of 5℃.min-1 to produce a fixed-carbon yield of 25.73% as opposed to the base case with a fixed-carbon yield of23.18%.

  4. Catalytic Pyrolysis and a Pyrolysis Kinetic Study of Shredded Printed Circuit Board for Fuel Recovery

    Salmiaton Ali; Chee Hoe Ng; Hizam Hashim

    2014-01-01

    Scrap printed circuit boards (PCBs) are the most abundant wastes that can be found in the landfills in Malaysia and this disposal certainly poses serious detrimental to the environment. This research aims to investigate optimum temperature for pyrolyzing waste PCBs, find out the best catalyst to be used in accelerating PCBs’ pyrolysis, select suitable ratio of catalyst to PCBs for higher oil yield and examine kinetics pyrolysis of the waste PCBs’ decomposition. Operating temperatures ranged f...

  5. Stochastic state-space temperature regulation of biochar production Part II: Application to manure processing via pyrolysis

    BACKGROUND: The concept of a designer biochar that targets the improvement of a specific soil property imposes the need for production processes to generate biochars with both high consistency and quality. These important production parameters can be affected by variations in process temperature tha...

  6. Analyses of residual iron in carbon nanotubes produced by camphor/ferrocene pyrolysis and purified by high temperature annealing

    Antunes, E. F.; de Resende, V. G.; Mengui, U. A.; Cunha, J. B. M.; Corat, E. J.; Massi, M.

    2011-07-01

    A detailed analysis of iron-containing phases in multiwall carbon nanotube (MWCNT) powder was carried out. The MWCNTs were produced by camphor/ferrocene and purified by high temperature annealing in an oxygen-free atmosphere (N2 or VC). Thermogravimetric analysis, Mössbauer spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy enabled the evaluation of the residual iron in MWCNTs after purification. The VC treatments provided MWCNTs with a purity degree higher than 99%. Moreover, Raman spectroscopy revealed a significant improvement in graphitic ordering after thermal annealing. A brief description of the mechanism of iron removal was included. We highlight the mobility of iron atoms through graphitic sheets and the large contact angle of iron clusters formed on MWCNT surfaces at high temperatures.

  7. Analyses of residual iron in carbon nanotubes produced by camphor/ferrocene pyrolysis and purified by high temperature annealing

    Antunes, E.F., E-mail: ericafa@las.inpe.br [Instituto Tecnologico de Aeronautica (ITA), Praca Marechal Eduardo Gomes, 50, CEP 12.228-900, Sao Jose dos Campos, SP (Brazil); Instituto Nacional de Pesquisas Espaciais (INPE), Av. dos Astronautas, 1758, CEP 12.227-010, Sao Jose dos Campos, SP (Brazil); Resende, V.G. de; Mengui, U.A. [Instituto Nacional de Pesquisas Espaciais (INPE), Av. dos Astronautas, 1758, CEP 12.227-010, Sao Jose dos Campos, SP (Brazil); Cunha, J.B.M. [Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Goncalves, 9500, CEP 91.501-970, Porto Alegre, RS (Brazil); Corat, E.J.; Massi, M. [Instituto Nacional de Pesquisas Espaciais (INPE), Av. dos Astronautas, 1758, CEP 12.227-010, Sao Jose dos Campos, SP (Brazil)

    2011-07-01

    A detailed analysis of iron-containing phases in multiwall carbon nanotube (MWCNT) powder was carried out. The MWCNTs were produced by camphor/ferrocene and purified by high temperature annealing in an oxygen-free atmosphere (N{sub 2} or VC). Thermogravimetric analysis, Moessbauer spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy enabled the evaluation of the residual iron in MWCNTs after purification. The VC treatments provided MWCNTs with a purity degree higher than 99%. Moreover, Raman spectroscopy revealed a significant improvement in graphitic ordering after thermal annealing. A brief description of the mechanism of iron removal was included. We highlight the mobility of iron atoms through graphitic sheets and the large contact angle of iron clusters formed on MWCNT surfaces at high temperatures.

  8. Investigation on the photo-induced de-oxygenation process of myoglobin in aqueous solution by use of fluorescence spectroscopy

    2008-01-01

    A photo-induced de-oxygenation process of myoglobin (Mb) in aqueous solution was investigated by use of fluorescence spectroscopy. The spectra are characterized by the fluorescence intensity declining gradually after each scan,and the decay of fluorescence intensity being significant in each scan,which is assigned to the release of oxygen from the opening of the heme-pockets induced by illumination. More illumination will cause more release of oxygen; if the temperature of an Mb solution is increased when it is illuminated,the rate of de-oxygenation will be higher. It was found that ligand-oxygen in Fe-porphyrin could be removed from Mb by nitrogen. This indicates that the interac-tion between oxy-Mb and other different gases can be tested by the method of fluorescence spectros-copy. In addition,fluorescence spectroscopy can be employed to probe the energy transfer between Fe-porphyrin and tryptophan or tyrosine in Mb molecules.

  9. How to control the temperature of the furnace for flash pyrolysis of coal. Sekitan kyusoku netsubunkairo no roon control hoho

    Egashira, T.; Iida, H.; Kawamura, T.; Kosuiryu, H.; Hashimoto, S.

    1994-02-15

    Conventionally, the thermal decomposition of coal is done by coke oven. Recently, a research is conducted to develop the process for quickly heating thermal decomposition of coal to produce the fuel gas and the tar with a higher yield. In this process, the heat required for thermal decomposition is supplied by indirectly heating the circulation gas. The circulation of a large quantity of high temperature gas accelerates the erosion-corrosion of the refractories and increases the heat loss through the furnace wall. This invention solves the problem. A particulate collector is installed at the outlet of the thermal decomposition furnace. The collected hot char is recycled to the high temperature gas generation furnace through a feeder as the heat source for the gasification reaction. The recycle quantity is arbitrarily set above the stoichiometric quantity to the oxidizing gas for combustion. With this way, the furnace temperature can be controlled to an arbitrary level, and the expansion of the service life of the refractories as well as the reduction of heat loss can be achieved. 4 figs.

  10. Pyrolysis of waste tyres: A review

    Williams, Paul T., E-mail: p.t.williams@leeds.ac.uk

    2013-08-15

    Graphical abstract: - Highlights: • Pyrolysis of waste tyres produces oil, gas and char, and recovered steel. • Batch, screw kiln, rotary kiln, vacuum and fluidised-bed are main reactor types. • Product yields are influenced by reactor type, temperature and heating rate. • Pyrolysis oils are complex and can be used as chemical feedstock or fuel. • Research into higher value products from the tyre pyrolysis process is reviewed. - Abstract: Approximately 1.5 billion tyres are produced each year which will eventually enter the waste stream representing a major potential waste and environmental problem. However, there is growing interest in pyrolysis as a technology to treat tyres to produce valuable oil, char and gas products. The most common reactors used are fixed-bed (batch), screw kiln, rotary kiln, vacuum and fluidised-bed. The key influence on the product yield, and gas and oil composition, is the type of reactor used which in turn determines the temperature and heating rate. Tyre pyrolysis oil is chemically very complex containing aliphatic, aromatic, hetero-atom and polar fractions. The fuel characteristics of the tyre oil shows that it is similar to a gas oil or light fuel oil and has been successfully combusted in test furnaces and engines. The main gases produced from the pyrolysis of waste tyres are H{sub 2}, C{sub 1}–C{sub 4} hydrocarbons, CO{sub 2}, CO and H{sub 2}S. Upgrading tyre pyrolysis products to high value products has concentrated on char upgrading to higher quality carbon black and to activated carbon. The use of catalysts to upgrade the oil to a aromatic-rich chemical feedstock or the production of hydrogen from waste tyres has also been reported. Examples of commercial and semi-commercial scale tyre pyrolysis systems show that small scale batch reactors and continuous rotary kiln reactors have been developed to commercial scale.

  11. Pyrolysis of waste tyres: A review

    Graphical abstract: - Highlights: • Pyrolysis of waste tyres produces oil, gas and char, and recovered steel. • Batch, screw kiln, rotary kiln, vacuum and fluidised-bed are main reactor types. • Product yields are influenced by reactor type, temperature and heating rate. • Pyrolysis oils are complex and can be used as chemical feedstock or fuel. • Research into higher value products from the tyre pyrolysis process is reviewed. - Abstract: Approximately 1.5 billion tyres are produced each year which will eventually enter the waste stream representing a major potential waste and environmental problem. However, there is growing interest in pyrolysis as a technology to treat tyres to produce valuable oil, char and gas products. The most common reactors used are fixed-bed (batch), screw kiln, rotary kiln, vacuum and fluidised-bed. The key influence on the product yield, and gas and oil composition, is the type of reactor used which in turn determines the temperature and heating rate. Tyre pyrolysis oil is chemically very complex containing aliphatic, aromatic, hetero-atom and polar fractions. The fuel characteristics of the tyre oil shows that it is similar to a gas oil or light fuel oil and has been successfully combusted in test furnaces and engines. The main gases produced from the pyrolysis of waste tyres are H2, C1–C4 hydrocarbons, CO2, CO and H2S. Upgrading tyre pyrolysis products to high value products has concentrated on char upgrading to higher quality carbon black and to activated carbon. The use of catalysts to upgrade the oil to a aromatic-rich chemical feedstock or the production of hydrogen from waste tyres has also been reported. Examples of commercial and semi-commercial scale tyre pyrolysis systems show that small scale batch reactors and continuous rotary kiln reactors have been developed to commercial scale

  12. Pyrolysis of rubber gloves in integral pyrolysis test plant

    Previously, pyrolysis of rubber gloves in laboratory study was described. In order to visualize the practical application of rubber gloves pyrolysis in terms of treating rubber gloves in medical waste, a new test plant was designed and constructed. The semi-continuous test plant was designed to accommodate rubber gloves that were not cut or shredded. The test plant has a capacity of 2kg/ hr and employed auxiliary fuel instead of the conventional electrical power for heating. The concept was based on moving bed reactor, but additional feature of sand jacket feature was also introduced in the design. Pyrolysis of the gloves was conducted at three temperatures, namely 350 degree Celsius, 400 degree Celsius and 450 degree Celsius. Oxygen presents inside of the reactor due to the combined effect of imperfect sealing and suction effect. This study addresses the performance of this test plant covering the time temperature profile, gas evolution profile and product yield. Comparison between the yield of the liquid, gas and char pyrolyzate was made against the laboratory study. It was found that the oil yield was less than the one obtained from bench scale study. Water formation was more pronounced. The presence of the oxygen also altered the tail gas composition but eliminate the sticky nature of solid residue, making it easier to handle. The chemical composition of the oil was determined and the main compounds in the oil were esters and phtalic acid. (author)

  13. Greenhouse gas emissions and soil properties following amendment with manure-derived biochars: Influence of pyrolysis temperature and feedstock type.

    Subedi, Raghunath; Taupe, Natalie; Pelissetti, Simone; Petruzzelli, Laura; Bertora, Chiara; Leahy, James J; Grignani, Carlo

    2016-01-15

    Manure-derived biochars can offer a potential option for the stabilization of manure, while mitigating climate change through carbon sequestration and the attenuation of nitrous oxide emission. A laboratory incubation study was conducted to assess the effects of four different manure-derived biochars produced from different feedstocks (poultry litter and swine manure) at different temperatures (400 or 600 °C). A commonly available standard wood chip biochar, produced at a greater temperature (1000 °C), and non-amended treatments were used as references. Two different soils (sandy and silt-loam) were amended with 2% (w/w) biochar on a dry soil weight basis (corresponding to 20 Mg ha(-1)), with the soil moisture being adjusted to 75% saturation level. After a pre-incubation period (21 days), 170 kg N ha(-1) of NH4NO3 fertilizer was added. Measurements of CO2, N2O, CH4 emissions and soil N mineralisation were carried out on different days during the 85 days of incubation. The net C mineralization and N2O emissions from both soils amended with poultry litter biochar at 400 °C were significantly greater than the other biochar treatments. Nitrate availability was greater in both soils in which the manure-derived biochar was used instead of the standard biochar. All of the biochars increased the pH of the silt-loam, sub-acid soil, but failed to improve the cation exchange capacities (CEC) in either soil. Total C and N, P, K and Mg (except Ca) were significantly increased in the manure-derived biochar amended soils, compared to the Control, and were positively correlated to the biochar nutrient contents. This study indicates that the soil application of biochar engenders effects that can vary considerably according to the biochar properties, as determined on the basis of the feedstock types and process conditions. Low-temperature biochar production from manure represents a possible way of producing a soil amendment that can stabilize C while supplying a

  14. Influence of Bark Pyrolysis Technology on Yield

    ZHAO Yong; YAN Zhen; LIU Yurong; WANG Shu

    2006-01-01

    With the self-made pyrolysis equipment in miniature,we experimented in different pyrolysis conditions to get different pyrolyzate yields (carbon,vinegar and gas).It proved that with the rise of temperature,the average yield of carbon descends gradually while the yields of vinegar and gas rise gradually.As the temperature rises,the yield of gas increases much more than that of vinegar.When speeding up the rising temperature,yield of carbon goes down while yields of vinegar and gas go up.

  15. Effects of Biomass Feedstock on the Yield and Reactivity of Soot from Fast Pyrolysis at High Temperatures

    Trubetskaya, Anna; Jensen, Peter A.; Glarborg, Peter;

    that of beechwood soot (from 33.2 to 102 nm) and wheat straw soot (from 11.5 to 165.3 nm). In addition, pinewood soot particles contained mainly multi-core structures at 1250°C. The potassium content played a more important role on the soot reactivity than the particle size and nanostructure.......This study investigated the effect of feedstock on the yield, nanostructure and reactivity of soot. Woody and herbaceous biomass were pyrolyzed at high heating rates and temperatures of 1250 and 1400°C in a drop tube furnace. The collected solid residues were structurally characterized by electron...... respect to the alkali content, particle size and nanostructure. Potassium was incorporated in the soot matrix and to a significant extent influenced the soot reactivity. The particle size distribution of pinewood soot produced at 1250°C was in the range from 27.2 to 263 nm which was broader compared to...

  16. Study on the optimization of low-temperature pyrolysis conditions for removal of mercury from soil%低温热解去除土壤汞污染的条件优化研究

    廖银锋

    2016-01-01

    The low-temperature pyrolysis method was used to remove the soil mercury pollution by heating the soil with low temperature( ﹤600℃). The mercury and its compounds in the soil could be converted into gas and the soil could be collected and used for cultivation. The temperature,heating time and water content in soil were the key factors affecting the removal of mercury from soil by low-temperature pyrolysis. This experimental studying on the relationship between the soil mercury removal rate with pyrolysis temperature,heating time,water content in soil,and optimize the influential factors to reach the best treatment effect.%低温热解法去除土壤汞污染利用低温(﹤600℃)加热土壤,使土壤中汞及其化合物转化为气态进行收集处理,处理后的土壤可继续用于耕作.热解温度、加热时间、土壤含水量是影响低温热解法去除土壤汞污染的关键因素.通过实验研究不同热解温度、热解时间、土壤含水量与土壤汞去除率之间的关系,优化低温热解法脱汞效率的影响因素,以期达到最好的处理效果.

  17. CATALYTIC FAST PYROLYSIS OF CELLULOSE MIXED WITH SULFATED TITANIA TO PRODUCE LEVOGLUCOSENONE: ANALYTICAL PY-GC/MS STUDY

    Qiang Lu; Xu-Ming Zhang,; Zhi-Bo Zhang; Ying Zhang; Xi-Feng Zhu; Chang-Qing Dong

    2012-01-01

    Sulfated titania (SO42-/TiO2) was prepared and used for catalytic fast pyrolysis of cellulose to produce levoglucosenone (LGO), a valuable anhydrosugar product. Analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) technique was employed in this study to achieve the catalytic fast pyrolysis of cellulose and on-line analysis of the pyrolysis vapors. Experiments were performed to investigate the effects of several factors on the LGO production, i.e. pyrolysis temperature, cellulo...

  18. Pyrolysis technologies for municipal solid waste: A review

    Highlights: • MSW pyrolysis reactors, products and environmental impacts are reviewed. • MSW pyrolysis still has to deal with flue gas emissions and products’ contamination. • Definition of standardized products is suggested to formalize MSW pyrolysis technology. • Syngas is recommended to be the target product for single MSW pyrolysis technology. - Abstract: Pyrolysis has been examined as an attractive alternative to incineration for municipal solid waste (MSW) disposal that allows energy and resource recovery; however, it has seldom been applied independently with the output of pyrolysis products as end products. This review addresses the state-of-the-art of MSW pyrolysis in regards to its technologies and reactors, products and environmental impacts. In this review, first, the influence of important operating parameters such as final temperature, heating rate (HR) and residence time in the reaction zone on the pyrolysis behaviours and products is reviewed; then the pyrolysis technologies and reactors adopted in literatures and scale-up plants are evaluated. Third, the yields and main properties of the pyrolytic products from individual MSW components, refuse-derived fuel (RDF) made from MSW, and MSW are summarised. In the fourth section, in addition to emissions from pyrolysis processes, such as HCl, SO2 and NH3, contaminants in the products, including PCDD/F and heavy metals, are also reviewed, and available measures for improving the environmental impacts of pyrolysis are surveyed. It can be concluded that the single pyrolysis process is an effective waste-to-energy convertor but is not a guaranteed clean solution for MSW disposal. Based on this information, the prospects of applying pyrolysis technologies to dealing with MSW are evaluated and suggested

  19. Pyrolysis technologies for municipal solid waste: A review

    Chen, Dezhen, E-mail: chendezhen@tongji.edu.cn [Thermal and Environmental Engineering Institute, Tongji University, Shanghai 200092 (China); Yin, Lijie; Wang, Huan [Thermal and Environmental Engineering Institute, Tongji University, Shanghai 200092 (China); He, Pinjing [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2014-12-15

    Highlights: • MSW pyrolysis reactors, products and environmental impacts are reviewed. • MSW pyrolysis still has to deal with flue gas emissions and products’ contamination. • Definition of standardized products is suggested to formalize MSW pyrolysis technology. • Syngas is recommended to be the target product for single MSW pyrolysis technology. - Abstract: Pyrolysis has been examined as an attractive alternative to incineration for municipal solid waste (MSW) disposal that allows energy and resource recovery; however, it has seldom been applied independently with the output of pyrolysis products as end products. This review addresses the state-of-the-art of MSW pyrolysis in regards to its technologies and reactors, products and environmental impacts. In this review, first, the influence of important operating parameters such as final temperature, heating rate (HR) and residence time in the reaction zone on the pyrolysis behaviours and products is reviewed; then the pyrolysis technologies and reactors adopted in literatures and scale-up plants are evaluated. Third, the yields and main properties of the pyrolytic products from individual MSW components, refuse-derived fuel (RDF) made from MSW, and MSW are summarised. In the fourth section, in addition to emissions from pyrolysis processes, such as HCl, SO{sub 2} and NH{sub 3}, contaminants in the products, including PCDD/F and heavy metals, are also reviewed, and available measures for improving the environmental impacts of pyrolysis are surveyed. It can be concluded that the single pyrolysis process is an effective waste-to-energy convertor but is not a guaranteed clean solution for MSW disposal. Based on this information, the prospects of applying pyrolysis technologies to dealing with MSW are evaluated and suggested.

  20. Reprint of: Pyrolysis technologies for municipal solid waste: A review

    Chen, Dezhen, E-mail: chendezhen@tongji.edu.cn [Thermal & Environmental Engineering Institute, Tongji University, Shanghai 200092 (China); Yin, Lijie; Wang, Huan [Thermal & Environmental Engineering Institute, Tongji University, Shanghai 200092 (China); He, Pinjing [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2015-03-15

    Highlights: • MSW pyrolysis reactors, products and environmental impacts are reviewed. • MSW pyrolysis still has to deal with flue gas emissions and products’ contamination. • Definition of standardized products is suggested to formalize MSW pyrolysis technology. • Syngas is recommended to be the target product for single MSW pyrolysis technology. - Abstract: Pyrolysis has been examined as an attractive alternative to incineration for municipal solid waste (MSW) disposal that allows energy and resource recovery; however, it has seldom been applied independently with the output of pyrolysis products as end products. This review addresses the state-of-the-art of MSW pyrolysis in regards to its technologies and reactors, products and environmental impacts. In this review, first, the influence of important operating parameters such as final temperature, heating rate (HR) and residence time in the reaction zone on the pyrolysis behaviours and products is reviewed; then the pyrolysis technologies and reactors adopted in literatures and scale-up plants are evaluated. Third, the yields and main properties of the pyrolytic products from individual MSW components, refuse-derived fuel (RDF) made from MSW, and MSW are summarised. In the fourth section, in addition to emissions from pyrolysis processes, such as HCl, SO{sub 2} and NH{sub 3}, contaminants in the products, including PCDD/F and heavy metals, are also reviewed, and available measures for improving the environmental impacts of pyrolysis are surveyed. It can be concluded that the single pyrolysis process is an effective waste-to-energy convertor but is not a guaranteed clean solution for MSW disposal. Based on this information, the prospects of applying pyrolysis technologies to dealing with MSW are evaluated and suggested.

  1. Reprint of: Pyrolysis technologies for municipal solid waste: A review

    Highlights: • MSW pyrolysis reactors, products and environmental impacts are reviewed. • MSW pyrolysis still has to deal with flue gas emissions and products’ contamination. • Definition of standardized products is suggested to formalize MSW pyrolysis technology. • Syngas is recommended to be the target product for single MSW pyrolysis technology. - Abstract: Pyrolysis has been examined as an attractive alternative to incineration for municipal solid waste (MSW) disposal that allows energy and resource recovery; however, it has seldom been applied independently with the output of pyrolysis products as end products. This review addresses the state-of-the-art of MSW pyrolysis in regards to its technologies and reactors, products and environmental impacts. In this review, first, the influence of important operating parameters such as final temperature, heating rate (HR) and residence time in the reaction zone on the pyrolysis behaviours and products is reviewed; then the pyrolysis technologies and reactors adopted in literatures and scale-up plants are evaluated. Third, the yields and main properties of the pyrolytic products from individual MSW components, refuse-derived fuel (RDF) made from MSW, and MSW are summarised. In the fourth section, in addition to emissions from pyrolysis processes, such as HCl, SO2 and NH3, contaminants in the products, including PCDD/F and heavy metals, are also reviewed, and available measures for improving the environmental impacts of pyrolysis are surveyed. It can be concluded that the single pyrolysis process is an effective waste-to-energy convertor but is not a guaranteed clean solution for MSW disposal. Based on this information, the prospects of applying pyrolysis technologies to dealing with MSW are evaluated and suggested

  2. FAST PYROLYSIS OF ENZYMATIC/MILD ACIDOLYSIS LIGNIN FROM MOSO BAMBOO

    Rui Lou

    2010-05-01

    Full Text Available The characteristics of enzymatic/mild acidolysis lignin (EMAL isolated from moso bamboo were investigated using pyrolysis-gas chromato-graphy/mass spectrometry (Py-GC/MS. Pyrolysis temperature as a factor on products was studied, and the pyrolysis mechanism was inferred with respect to the dominating products. Research results showed that pyrolysis products derived from EMAL pyrolysis were mainly heterocyclic (2,3-dihydrobenzofuran, phenols, esters, and a minor amount of acetic acid. Pyrolysis temperature had a distinct impact on yields of pyrolysis products. As pyrolysis temperature increased, the yield of 2,3-dihydrobenzofuran rapidly decreased; however, yields of phenols increased smoothly. It can be obtained that, at the low temperatures (250-400oC, pyrolysis products were mainly 2,3-dihydrobenzofuran, and the highest yield was 66.26% at 320oC; at the high temperatures (400-800oC, pyrolysis products were mainly phenols, and yields hit their highest level of 56.43% at 600 oC. A minor amount of acetic acid only emerged at 800°C. Knowledge of pyrolysis products releasing from EMAL and the pyrolysis mechanism could be basic and essential to the understanding of thermochemical conversion of EMAL to chemicals or high-grade energy.

  3. Suspension Combustion of Wood: Influence of Pyrolysis Conditions on Char Yield, Morphology, and Reactivity

    Dall'Ora, Michelangelo; Jensen, Peter Arendt; Jensen, Anker Degn

    2008-01-01

    Chars from pine and beech wood were produced by fast pyrolysis in an entrained flow reactor and by slow pyrolysis in a thermogravimetric analyzer. The influence of pyrolysis temperature, heating rate and particle size on char yield and morphology was investigated. The applied pyrolysis temperatur......, char oxidation reactivity decreased as pyrolysis temperature increased. The amount and composition of the ash forming matter of the wood fuels seems to play an important role in determining the differences in char yield, morphology and reactivity.......Chars from pine and beech wood were produced by fast pyrolysis in an entrained flow reactor and by slow pyrolysis in a thermogravimetric analyzer. The influence of pyrolysis temperature, heating rate and particle size on char yield and morphology was investigated. The applied pyrolysis temperature...... varied in the range 673−1673 K for slow pyrolysis and between 873 and 1573 K for fast pyrolysis. The chars were oxidized in a thermogravimetric analyzer and the mass loss data were used to determine char oxidation reactivity. Char yield from fast pyrolysis (104−105 K/s) was as low as 1 to 6% on a dry ash...

  4. Microwave-assisted pyrolysis of biomass for liquid biofuels production

    Yin, Chungen

    2012-01-01

    Production of 2nd-generation biofuels from biomass residues and waste feedstock is gaining great concerns worldwide. Pyrolysis, a thermochemical conversion process involving rapid heating of feedstock under oxygen-absent condition to moderate temperature and rapid quenching of intermediate products......, is an attractive way for bio-oil production. Various efforts have been made to improve pyrolysis process towards higher yield and quality of liquid biofuels and better energy efficiency. Microwave-assisted pyrolysis is one of the promising attempts, mainly due to efficient heating of feedstock by...... ‘‘microwave dielectric heating’’ effects. This paper presents a state-of-the-art review of microwave-assisted pyrolysis of biomass. First, conventional fast pyrolysis and microwave dielectric heating is briefly introduced. Then microwave-assisted pyrolysis process is thoroughly discussed stepwise from biomass...

  5. Kinetic analysis on lignite pyrolysis,combustion and gasification

    HU Xin; WANG Zhihua; ZHOU Zhijun; YOU Zhuo; ZHOU Junhu; CEN Kefa

    2013-01-01

    Pyrolysis and combustion combined polygeneration system is a more efficient way for lignite utilization,and can also produce variety of valuable pyrolysis products.To explore the feasibility of this polygeneration system,thermo-gravimetric analysis on YM lignite and DT bituminous coal was conducted,and the characteristic parameters for pyrolysis,combustion,and gasification were obtained.Moreover,the activation energy of each reaction was calculated by Coats-Redfern method.The experimental results showed that,compared with DT bituminous coal,YM lignite pyrolysis process starts at a lower temperature,and its semi-coke reactivity during combustion and gasification was better.In addition,activation energy calculation indicated that,the apparent activation energy of gasification of both coals were much higher than that of the pyrolysis.Therefore,for lignite,pyrolysis and combustion combined polygeneration system may achieve higher efficiency and be worthy for further research.

  6. Fast pyrolysis of lignin, macroalgae and sewage sludge

    Trinh, Ngoc Trung; Dam-Johansen, Kim; Jensen, Peter Arendt

    2013-01-01

    In the last twenty years, the fast pyrolysis process has been explored to produce bio-oil from biomass. Fast pyrolysis is a thermal conversion technology that is performed at a temperatures of 450 - 600 ºC, high biomass heating ratess (100 - 2000 K/s), a short gas residence time (less than 2 s) with no presence of oxygen. Fast pyrolysis can convert a large fraction of the biomass to bio-oil, and smaller fractions of char and gas. The pyrolysis centrifuge reactor (PCR) has been developed at th...

  7. Plasma pyrolysis of toxic waste

    The comparison of technical economic indexes of different waste treatment methods and plasma pyrolysis is presented in the paper. It testifies that plasma technologies are economically expedient for these purposes. Physical prerequisites allowing realizing plasma technologies are presented. Reliable and economical (70-120 Euro per ton of treated product) plasma generation is the basic condition of the technology realization. In this connection, various types of powerful generators of dense plasma (plasmatrons) in the range from 100 kW to 3 MW and temperature of plasma jets from 2000 to 10 000 K, and also physical processes taking place in electric-discharge chambers are examined. Differences between AC and DC electric arc plasma generators are analysed. Temperature in arcs of plasma generators varies from 6000 to 20,000 K, electron concentration is ne ∼ (1014-1019 cm-3). Specific ware of electrodes in various types of plasma generators intended for long-time operation modes is (10-7-10-4) g C-1. Physicochemical processes in plasma reactors intended for waste treatment and pyrolysis are described. Different types of technological processes on plasma treatment and pyrolysis of waste are analysed. Estimation of present situation of physical investigations and technological developments in this area and predictions for nearest future are included

  8. Plasma pyrolysis of toxic waste

    Rutberg, Ph G.

    2003-06-01

    The comparison of technical economic indexes of different waste treatment methods and plasma pyrolysis is presented in the paper. It testifies that plasma technologies are economically expedient for these purposes. Physical prerequisites allowing realizing plasma technologies are presented. Reliable and economical (70-120 Euro per ton of treated product) plasma generation is the basic condition of the technology realization. In this connection, various types of powerful generators of dense plasma (plasmatrons) in the range from 100 kW to 3 MW and temperature of plasma jets from 2000 to 10 000 K, and also physical processes taking place in electric-discharge chambers are examined. Differences between AC and DC electric arc plasma generators are analysed. Temperature in arcs of plasma generators varies from 6000 to 20 000 K, electron concentration is ne~(1014-1019 cm-3). Specific ware of electrodes in various types of plasma generators intended for long-time operation modes is (10-7-10-4) g C-1. Physicochemical processes in plasma reactors intended for waste treatment and pyrolysis are described. Different types of technological processes on plasma treatment and pyrolysis of waste are analysed. Estimation of present situation of physical investigations and technological developments in this area and predictions for nearest future are included. This article was scheduled to appear in issue 5 of Plasma Phys. Control. Fusion. To access this Special issue please follow this link: http://www.iop.org/EJ/toc/0741-3335/45/5

  9. Deoxygenation of glycolaldehyde and furfural on Mo2C/Mo(100)

    McManus, Jesse R.; Vohs, John M.

    2014-12-01

    The desire to produce fuels and chemicals in an energy conscious, environmentally sympathetic approach has motivated considerable research on the use of cellulosic biomass feedstocks. One of the major challenges facing the utilization of biomass is finding effective catalysts for the efficient and selective removal of oxygen from the highly-oxygenated, biomass-derived platform molecules. Herein, a study of the reaction pathways for the biomass-derived platform molecule furfural and biomass-derived sugar model compound glycolaldehyde provides insight into the mechanisms of hydrodeoxygenation (HDO) on a model molybdenum carbide catalyst, Mo2C/Mo(100). Using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS), it was found that the Mo2C/Mo(100) catalyst was active for selective deoxygenation of the aldehyde carbonyl by facilitating adsorption of the aldehyde in an η2(C,O) bonding configuration. Furthermore, the catalyst showed no appreciable activity for furanic ring hydrogenation, highlighting the promise of relatively inexpensive Mo2C catalysts for selective HDO chemistry.

  10. Pyrolysis Process in Aramid Fibers Investigated by Py-GC/MS & TGA-DTA/MS

    WANG Xin-wei; HU Zu-ming; LIU Zhao-feng

    2007-01-01

    Poly(m-phenylene isophthalamine) (PMIA) and Poly( p-phenylene terphthalamine) (PPTA) are among the most important high-temperature resistant aramid fibers. The pyrolysis behaviors of these two fibers under inert gases were studied using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and thermogravimetric analysis coupled with mass spectrometry ( TGA-DTA/MS ). The pyrolysis processes of PMIA and PPTA are distinguishing, and the stepwise pyrolysates reflect these differences. A mechanism system of pyrolysis is suggested, which involving hydrolysis and homolysis. At low pyrolysis temperatures, hydrolysis is a primary reaction, and it is very noticeable in the first-step pyrolysis region of PMIA. Elevating pyrolysis temperature, homolysis is enhanced and keep a large advantage in the high temperature range. On the other hand, at higher temperatures, carbonization appens and the homolysis and carbonization of PPTA are emphasized more than of PMIA.

  11. Study of pyrolysis and gasification of biomass from the self-organization perspective

    Alevanau, Aliaksandr

    2015-01-01

    This thesis focuses on the analysis of kinetics of i) low-temperature pyrolysis of gaseous hydrocarbons, ii) high-temperature steam gasification of char of wood pellets (>700oC), iii) high temperature pyrolysis of straw pellets in an atmosphere of argon and steam, and iv) high temperature pyrolysis of slices of transversally cut wooden sticks. The results of the kinetic measurements in the high-temperature cases are approximated using a least-square based optimization software, which was s...

  12. Pyrolysis and Gasification

    Astrup, Thomas; Bilitewski, B.

    2011-01-01

    incineration capacity, but also a better ability of gasification over incineration to preserve the chemical energy of the waste is important. This chapter provides an overview of pyrolysis and gasification processes related to waste, the technology involved, energy recovery options, and important environmental......Pyrolysis and gasification include processes that thermally convert carbonaceous materials into products such as gas, char, coke, ash, and tar. Overall, pyrolysis generates products like gas, tar, and char, while gasification converts the carboncontaining materials (e.g. the outputs from pyrolysis......) into a mainly gaseous output. The specific output composition and relative amounts of the outputs greatly depend on the input fuel and the overall process configuration. Although pyrolysis processes in many cases also occur in gasification (however prior to the gasification processes), the overall...

  13. Microwave and Slow Pyrolysis Biochar – Comparison of Physical and Functional Properties

    Masek, Ondrej; Budarin, Vitaly; Gronnow, Mark; Crombie, Kyle; Brownsort, Peter; Fitzpatrick, Emma; Hurst, Peter

    2012-01-01

    This article reports work that compares slow pyrolysis and MW pyrolysis of two different feedstock (willow chips and straw), with particular focus on physical properties of resulting chars and their relation to biochar soil function. In these experiments, slow pyrolysis laboratory units at the University of Edinburgh and the MW pyrolysis units at the University of York were used to produce biochar from identical feedstock under a range of temperatures. Physical properties and stability of thu...

  14. 污水污泥低温热解技术工艺与能量平衡分析%Analysis on Conditions and Energy Balance of Low-temperature Pyrolysis of Sewage Sludge

    胡艳军; 宁方勇

    2013-01-01

    Process conditions of pyrolysis technology with one-time feeding and stable operation system to produce the three-phase sewage sludge pyrolysis were in detailed investigated. Energy balance relationship was analyzed through energy-flow diagram, energy recycling rate and energy consumption rate. It was found that yield and calorific value of sludge pyrolysis product were influenced with three key factors in a decreased order of final temperature, reaction time and heating rate. Heating loss has a significant difference under different pyrolysis working conditions. Residence time and lower heating rate can cause obvious increase of input energy and the heat loss. Results of the heating balance analysis showed that pyrolysis system that produce gas products with high quality has the highest energy recycling rate and energy consumption rate, which are 0.94 and 1.73 respectively. Compared with pyrolysis process to produce liquid oil product, total energy is almost the same but total energy consumption can be reduced by 35%. It can be verified that low temperature pyrolysis technology of sewage sludge is more suitable to produce gas product according to its energy recovery and saving.%针对一次给料稳定运行污泥热解系统制取三相产物的工艺展开分析,并基于能流图、能源回收率、能耗比等方法和衡算指标讨论该工艺的能量平衡关系.研究发现:热解产物的产率和热值高低受热解终温影响最大,反应时间次之,升温速率最小.不同工况条件下热解过程热量损失具有明显差别,热解停留时间长、升温速率低都造成输入能量、热损失增大.热解过程能量平衡分析也验证了以制取气相产物为目标的污泥热解工艺条件的回收率和能耗比最高,分别为0.94和1.73;与高产出液相油的热解过程相比,产物总能量相差不多而系统消耗的能量能够减少35%.从能源回收、节约能源角度分析,污泥低温热解制取可燃性气

  15. Pyrolysis technologies for municipal solid waste: a review.

    Chen, Dezhen; Yin, Lijie; Wang, Huan; He, Pinjing

    2014-12-01

    Pyrolysis has been examined as an attractive alternative to incineration for municipal solid waste (MSW) disposal that allows energy and resource recovery; however, it has seldom been applied independently with the output of pyrolysis products as end products. This review addresses the state-of-the-art of MSW pyrolysis in regards to its technologies and reactors, products and environmental impacts. In this review, first, the influence of important operating parameters such as final temperature, heating rate (HR) and residence time in the reaction zone on the pyrolysis behaviours and products is reviewed; then the pyrolysis technologies and reactors adopted in literatures and scale-up plants are evaluated. Third, the yields and main properties of the pyrolytic products from individual MSW components, refuse-derived fuel (RDF) made from MSW, and MSW are summarised. In the fourth section, in addition to emissions from pyrolysis processes, such as HCl, SO2 and NH3, contaminants in the products, including PCDD/F and heavy metals, are also reviewed, and available measures for improving the environmental impacts of pyrolysis are surveyed. It can be concluded that the single pyrolysis process is an effective waste-to-energy convertor but is not a guaranteed clean solution for MSW disposal. Based on this information, the prospects of applying pyrolysis technologies to dealing with MSW are evaluated and suggested. PMID:25256662

  16. Reprint of: Pyrolysis technologies for municipal solid waste: a review.

    Chen, Dezhen; Yin, Lijie; Wang, Huan; He, Pinjing

    2015-03-01

    Pyrolysis has been examined as an attractive alternative to incineration for municipal solid waste (MSW) disposal that allows energy and resource recovery; however, it has seldom been applied independently with the output of pyrolysis products as end products. This review addresses the state-of-the-art of MSW pyrolysis in regards to its technologies and reactors, products and environmental impacts. In this review, first, the influence of important operating parameters such as final temperature, heating rate (HR) and residence time in the reaction zone on the pyrolysis behaviours and products is reviewed; then the pyrolysis technologies and reactors adopted in literatures and scale-up plants are evaluated. Third, the yields and main properties of the pyrolytic products from individual MSW components, refuse-derived fuel (RDF) made from MSW, and MSW are summarised. In the fourth section, in addition to emissions from pyrolysis processes, such as HCl, SO2 and NH3, contaminants in the products, including PCDD/F and heavy metals, are also reviewed, and available measures for improving the environmental impacts of pyrolysis are surveyed. It can be concluded that the single pyrolysis process is an effective waste-to-energy convertor but is not a guaranteed clean solution for MSW disposal. Based on this information, the prospects of applying pyrolysis technologies to dealing with MSW are evaluated and suggested. PMID:25700606

  17. Effect of temperature on composition of tar generated from pyrolysis of organic fraction of municipal solid waste%温度对城市有机垃圾热解焦油成分的影响

    张尚毅; 刘国涛; 唐利兰; 谢梦佩

    2016-01-01

    A series of batch experiments were performed to characterize the composition change of tars generated from pyrolysis of organic fraction of municipal solid waste (OFMSW) at the final pyrolysis temperatures of 600, 700 and 800℃, respectively. The carbon content in the tars increased from 74.49% to 83.42% with the pyrolysis temperature increased from 600 to 800℃. Although the aromaticity of tars was higher than OFMSW and lower than chars, the polarity of tars was lower than both OFMSW and chars. Decreases in H/C and O/C ratios in tars were observed with the increase in final pyrolysis temperature. The content of polycyclic aromatic hydrocarbons (PAHs), the dominant components of tars, increased from 54.06% to 83.45% when the pyrolysis temperature rose from 600 to 800°C. Naphthalene and its derivatives were main components of PAHs, and they accounted for 50.72%, 46.80% and 39.26% of total PAHs in tars that were obtained at 600, 700, 800℃, respectively. The pyrolysis tars generated from OFMSW could be utilized as carbon based matrix composites and the raw materials for the production of dyes, resins, solvents, and insect repellents, etc.%以城市有机垃圾热解焦油为对象,研究了不同热解终温下(600~800℃)焦油的特性及其随温度的变化规律.结果表明:随着热解终温从600℃升高至800℃,焦油中C含量从74.49%增至83.42%;焦油的芳香化程度高于原料而低于热解炭,焦油的极性低于原料和热解炭,随着热解终温的升高,焦油的H/C和O/C逐渐降低;多环芳烃(PAHs)是焦油的主要成分,随着热解终温从600℃升高至800℃,其含量从54.06%增至83.45%;萘及其衍生物是焦油PAHs的主要成分,其含量在热解终温600、700、800℃时分别占PAHs的50.72%、46.80%、39.26%.研究结果证明了垃圾热解焦油可用作碳基复合材料和作为制备染料、树脂、溶剂、驱虫剂等的原料.

  18. Pyrolysis and Gasification

    Astrup, Thomas; Bilitewski, B.

    2011-01-01

    Pyrolysis and gasification include processes that thermally convert carbonaceous materials into products such as gas, char, coke, ash, and tar. Overall, pyrolysis generates products like gas, tar, and char, while gasification converts the carboncontaining materials (e.g. the outputs from pyrolysis....... In Europe during World War II, wood-fueled gasifiers (or ‘gas generators’) were used to power cars during shortages of oil-based fuels. Sparked by oil price crises in 1970s and 1980s, further development in gasification technologies focused mainly on coal as a fuel to substitute for oil...

  19. ISOTHERMAL PYROLYSIS OF KRAFT PULP MILL SLUDGE

    Syamsudin Syamsudin

    2014-12-01

    Full Text Available Kraft pulp mill sludge cake composed of rejected wood fibers and activated sludge microorganisms. With a heating value about 14 MJ/kg (dried basis, this type of biomass had a potential as an alternative energy source. Unfortunately, it had an ash content of 27.6% and a moisture content of 80%. For reducing moisture content with minimum energy consumption, a combination of mechanical dewatering and thermal drying was studied previously. Meanwhile, experiments on isothermal pyrolysis had been carried out for further improvement on ultimate and proximate analysis of solid fuel. Final mass of char obtained from pyrolysis at 500oC was not significantly different from that of 700oC, so pyrolysis was considered to be optimum at 500oC. A char obtained from pyrolysis at temperature of 500oC had a pore surface area of 77.049 m2/g (highest among other temperatures. Kinetic of isothermal pyrolysis was well represented with a first order modified volumetric model with a frequency factor of 0.782 1/s and an activation of 34.050 kJ/mol.

  20. Analytical Applications Of Laser Powered Pyrolysis

    Woodin, R. L.; Kajkowski, K. A.

    1984-05-01

    The ability to rapidly heat samples using infrared laser radiation without the complicating effects of hot surfaces offers new opportunities for pyrolysis techniques in materials characterization and process control. By using pulsed radiation, timescales on the order of microseconds are achieved, restricting the chemistry primarily to initial reactions. The homogeneous nature of laser powered heating minimizes wall reactions and improves reproducibility by eliminating effects of surface contamination in the pyrolysis reactor. In Laser Powered Homogeneous Pyrolysis (LPHP), a pulsed CO2 laser (10μm) is used to rapidly heat a gas mixture to be pyrolyzed. If the mixture does not absorb 10um radiation, a chemically inert sensitizer such as SF6 or SiF4 must be added to couple energy into the mixture. Temperatures up to 1200K can be reached, with reaction times ranging from lOpsec to lOmsec. Product analysis is by gas chromatography after a sufficient number of laser pulses to generate detectable amounts of products. Applications of LPHP to hydrocarbon mixture analysis will be presented, as well as potential applications to process control. The short reaction times in LPHP will be illustrated by methane and ethane pyrolysis, which also provide information on the details of the temperature profile during laser powered pyrolysis.

  1. Aerobic training enhances muscle deoxygenation in early post-myocardial infarction

    Takagi, Shun; Murase, Norio; Kime, Ryotaro; Niwayama, Masatsugu; Osada, Takuya; Katsumura, Toshihito

    2016-01-01

    Purpose Exercise-induced skeletal muscle deoxygenation is startling by its absence in early post-myocardial infarction (MI) patients. Exercise training early post-MI is associated with reduced cardiovascular risk and increased aerobic capacity. We therefore investigated whether aerobic training could enhance the muscle deoxygenation in early post-MI patients. Methods 21 ± 8 days after the first MI patients (n = 16) were divided into 12-week aerobic training (TR, n = 10) or non-training (CON, ...

  2. Desulphurization of lignites by slow, fast, and flash pyrolysis and high intensity dry magnetic separation

    Koca, H.; Kockar, O.M.; Koca, S. [Anadolu University, Eskisehir (Turkey). Porsuk Technical College

    2007-07-01

    Slow, fast and flash pyrolysis followed by high intensity dry magnetic (HIDM) separation experiments were conducted to obtain improved solid fuels. Pyrolysis experiments were performed in three different apparatus, and important parameters of processes, temperature, particle size, residence time and heating rate were studied to determine the optimum conditions. Desulphurization of lignites by flash pyrolysis is more successful than slow and fast pyrolysis. At optimum conditions of pyrolysis, up to 58.15, 60.24, and 62.31% sulphur reductions were obtained in slow, fast and flash pyrolysis, respectively. Char, obtained from the pyrolysis experiments, was further cleaned by a Permroll HIDM separator. Sulphur reduction enhanced up to 82.68, 84.40, and 86.55% in the char of slow, fast and flash pyrolysis, respectively.

  3. Effects of Pyrolysis Temperature on Product Yields and Energy Recovery from Co-Feeding of Cotton Gin Trash, Cow Manure, and Microalgae: A Simulation Study

    Hanif, Muhammad Usman; Capareda, Sergio C.; Iqbal, Hamid; Arazo, Renato Ortiz; Baig, Muhammad Anwar

    2016-01-01

    The intensive search of new and cleaner energy catches interest in recent years due to huge consumption of fossil fuels coupled with the challenge of energy and environmental sustainability. Production of renewable and environmentally benign energy from locally available raw materials is coming in the frontline. In this work, conversion of the combined biomass (cotton gin trash, cow manure, and Microalgae [Nannochloropsis oculata]) through batch pyrolysis has been investigated. The effect of ...

  4. Application of hierarchical MFI zeolite for the catalytic pyrolysis of Japanese larch.

    Park, Kyu-Hong; Park, Hyun Ju; Kim, Jeongnam; Ryoo, Ryong; Jeon, Jong-Ki; Park, Junhong; Park, Young-Kwon

    2010-01-01

    The catalytic pyrolysis of Japanese larch was carried out over a hierarchical MFI zeolite (Meso MFI C16). The zeolite was synthesized using an amphiphilic organosilane as a mesopore-directing agent, and its catalytic activity was compared with that of the conventional HZSM-5 and the mesoporous material from HZSM-5 (MMZ(ZSM-5)). The effect of the hierarchical MFI zeolite on the product distribution and chemical composition of the bio-oil was also examined. The hierarchical MFI zeolite exhibited the highest activity in deoxygenation and aromatization during the catalytic pyrolysis of Japanese larch. In particular, it showed high selectivity for valuable aromatics, such as benzene, toluene, and xylenes (BTX), even though it decreased the organic fraction of bio-oil. Its higher mesoporosity resulted, however, in an increase in the coke amount and in undesirable products, such as polycyclic aromatic hydrocarbons (PAHs). PMID:20352861

  5. Novel technique for coal pyrolysis and hydrogenation product analysis

    Pfefferle, L.D.; Boyle, J.

    1993-03-15

    A microjet reactor coupled to a VUV photoionization time-of-flight mass spectrometer has been used to obtain species measurements during high temperature pyrolysis and oxidation of a wide range of hydrocarbon compounds ranging from allene and acetylene to cyclohexane, benzene and toluene. Initial work focused on calibration of the technique, optimization of ion collection and detection and characterization of limitations. Using the optimized technique with 118 nm photoionization, intermediate species profiles were obtained for analysis of the hydrocarbon pyrolysis and oxidation mechanisms. The soft'' ionization, yielding predominantly molecular ions, allowed the study of reaction pathways in these high temperature systems where both sampling and detection challenges are severe. Work has focused on the pyrolysis and oxidative pyrolysis of aliphatic and aromatic hydrocarbon mixtures representative of coal pyrolysis and hydropyrolysis products. The detailed mass spectra obtained during pyrolysis and oxidation of hydrocarbon mixtures is especially important because of the complex nature of the product mixture even at short residence times and low primary reactant conversions. The combustion community has advanced detailed modeling of pyrolysis and oxidation to the C4 hydrocarbon level but in general above that size uncertainties in rate constant and thermodynamic data do not allow us to a priori predict products from mixed hydrocarbon pyrolyses using a detailed chemistry model. For pyrolysis of mixtures of coal-derived liquid fractions with a large range of compound structures and molecular weights in the hundreds of amu the modeling challenge is severe. Lumped models are possible from stable product data.

  6. FAST PYROLYSIS OF LIGNINS

    Sedat Beis; Saikrishna Mukkamala; Nathan Hill; Jincy Joseph; Cirila Baker; Bruce Jensen; Elizabeth Stemmler; Clayton Wheeler; Brian Frederick; Adriaan van Heiningen; Alex Berg; William Joseph DeSisto

    2010-01-01

    Three lignins: Indulin AT, LignoboostTM, and Acetocell lignin, were characterized and pyrolyzed in a continuous-fed fast pyrolysis process. The physical and chemical properties of the lignins included chemical composition, heat content, ash, and water content. The distributed activation energy model (DAEM) was used to describe the pyrolysis of each lignin. Activation energy distributions of each lignin were quite different and generally covered a broad range of energies, typically found in li...

  7. Pyrolysis of waste tyres: a review.

    Williams, Paul T

    2013-08-01

    Approximately 1.5 billion tyres are produced each year which will eventually enter the waste stream representing a major potential waste and environmental problem. However, there is growing interest in pyrolysis as a technology to treat tyres to produce valuable oil, char and gas products. The most common reactors used are fixed-bed (batch), screw kiln, rotary kiln, vacuum and fluidised-bed. The key influence on the product yield, and gas and oil composition, is the type of reactor used which in turn determines the temperature and heating rate. Tyre pyrolysis oil is chemically very complex containing aliphatic, aromatic, hetero-atom and polar fractions. The fuel characteristics of the tyre oil shows that it is similar to a gas oil or light fuel oil and has been successfully combusted in test furnaces and engines. The main gases produced from the pyrolysis of waste tyres are H(2), C(1)-C(4) hydrocarbons, CO(2), CO and H(2)S. Upgrading tyre pyrolysis products to high value products has concentrated on char upgrading to higher quality carbon black and to activated carbon. The use of catalysts to upgrade the oil to a aromatic-rich chemical feedstock or the production of hydrogen from waste tyres has also been reported. Examples of commercial and semi-commercial scale tyre pyrolysis systems show that small scale batch reactors and continuous rotary kiln reactors have been developed to commercial scale. PMID:23735607

  8. CHARACTERIZATION OF BIO-OIL FROM PALM KERNEL SHELL PYROLYSIS

    Ahmad, R; N. Hamidin; U.F.M. Ali; C.Z.A. Abidin

    2014-01-01

    Pyrolysis of palm kernel shell in a fixed-bed reactor was studied in this paper. The objectives were to investigate the effect of pyrolysis temperature and particle size on the products yield and to characterize the bio-oil product. In order to get the optimum pyrolysis parameters on bio-oil yield, temperatures of 350, 400, 450, 500 and 550 °C and particle sizes of 212–300 µm, 300–600 µm, 600µm–1.18 mm and 1.18–2.36 mm under a heating rate of 50 °C min-1 were investigated. The maximum bio-oil...

  9. Application of pyrolysis process in processing of mixed food wastes

    Grycová Barbora; Koutník Ivan; Pryszcz Adrian; Kaloč Miroslav

    2016-01-01

    The food industry produces large amounts of solid and also liquid wastes. Different waste materials and their mixtures were pyrolysed in the laboratory pyrolysis unit to a final temperature of 800°C with a 10 minute delay at the final temperature. After the pyrolysis process of the selected wastes a mass balance of the resulting products, off-line analysis of the pyrolysis gas and evaluation of solid and liquid products were carried out. The highest concentration of methane, hydrogen and carb...

  10. Differences in the mechanism of slow and rapid pyrolysis

    Levin, E.D.

    1971-01-01

    The pattern of change in the temperature field in a layer of disperse bark of Larix sibirica during pyrolysis was investigated. The peripheral part of the charge, adjacent to the retort wall, is coked at a rate of temperature increase of 5/sup 0/C/min, while the central part is coked at a rate of 15/sup 0/C/min, but the structure of the semi-coke is identical, indicating that the mechanism is the same in slow and rapid pyrolysis. However, the mechanism of the secondary transformations of the other chemical products does depend on the speed of pyrolysis.

  11. Fish Ecology and Evolution in the World's Oxygen Minimum Zones and Implications of Ocean Deoxygenation.

    Gallo, N D; Levin, L A

    2016-01-01

    Oxygen minimum zones (OMZs) and oxygen limited zones (OLZs) are important oceanographic features in the Pacific, Atlantic, and Indian Ocean, and are characterized by hypoxic conditions that are physiologically challenging for demersal fish. Thickness, depth of the upper boundary, minimum oxygen levels, local temperatures, and diurnal, seasonal, and interannual oxycline variability differ regionally, with the thickest and shallowest OMZs occurring in the subtropics and tropics. Although most fish are not hypoxia-tolerant, at least 77 demersal fish species from 16 orders have evolved physiological, behavioural, and morphological adaptations that allow them to live under the severely hypoxic, hypercapnic, and at times sulphidic conditions found in OMZs. Tolerance to OMZ conditions has evolved multiple times in multiple groups with no single fish family or genus exploiting all OMZs globally. Severely hypoxic conditions in OMZs lead to decreased demersal fish diversity, but fish density trends are variable and dependent on region-specific thresholds. Some OMZ-adapted fish species are more hypoxia-tolerant than most megafaunal invertebrates and are present even when most invertebrates are excluded. Expansions and contractions of OMZs in the past have affected fish evolution and diversity. Current patterns of ocean warming are leading to ocean deoxygenation, causing the expansion and shoaling of OMZs, which is expected to decrease demersal fish diversity and alter trophic pathways on affected margins. Habitat compression is expected for hypoxia-intolerant species, causing increased susceptibility to overfishing for fisheries species. Demersal fisheries are likely to be negatively impacted overall by the expansion of OMZs in a warming world. PMID:27573051

  12. The fast pyrolysis of oilseed rape

    Bridgwater, A.V.; Dick, C.M.; Hague, R.A.

    1996-12-31

    Rape meal, rape straw and rape seeds have all been successfully pyrolysed at temperatures ranging from 450{sup o}C to 525{sup o}C, in a fluidized bed pyrolysis reactor. An accumulation of char particles, retaining the shape of the original rape seed, caused some problems and these would have to be overcome in large scale continuous use of the process, possibly using higher fluidisation velocities. Rape straw did not cause such blockages, making it suitable as a fast pyrolysis feedstock. Rape meal caused considerable clogging requiring increased fluidising and feed gas flow rates. Odour problems were also worse. Strategies for whole crop pyrolysis are outlined along with necessary future research. (UK)

  13. Pyrolysis of biomass briquettes, modelling and experimental verification

    van der Aa, B; Lammers, G; Beenackers, AACM; Kopetz, H; Weber, T; Palz, W; Chartier, P; Ferrero, GL

    1998-01-01

    Carbonisation of biomass briquettes was studied using a dedicated single briquette carbonisation reactor. The reactor enabled continuous measurement of the briquette mass and continuous measurement of the radial temperature profile in the briquette. Furthermore pyrolysis gas production and compositi

  14. Cerebral and muscle deoxygenation, hypoxic ventilatory chemosensitivity and cerebrovascular responsiveness during incremental exercise.

    Peltonen, Juha E; Paterson, Donald H; Shoemaker, J Kevin; Delorey, Darren S; Dumanoir, Gregory R; Petrella, Robert J; Kowalchuk, John M

    2009-10-31

    To examine if cerebral (frontal cortex) and skeletal muscle (m. vastus lateralis) deoxygenation and cerebral blood flow velocity (V(mean)) in the middle cerebral artery differentiated between normoxic and hypoxic (end-tidal P(O)(2) 71 mmHg) conditions, and if they were associated with hypoxic ventilatory chemosensitivity and cerebrovascular responsiveness, 8 men performed incremental cycling trials (30W/min ramp) under normoxic (T1-N) and hypoxic (T1-H) conditions until volitional fatigue, or until arterial O2 saturation decreased below 80%. The tests were repeated (T2-N; T2-H) on another day with supplemental O2 (Sup-O2) at the end of exercise. The V(mean) response was similar in normoxia and hypoxia. In hypoxia compared to normoxia, cerebral deoxygenation ( upward arrow deoxyhemoglobin concentration (Delta[HHb]) and downward arrow tissue oxygenation index (TOI)) was greater at a given work rate. A strong hypoxic ventilatory chemosensitivity was associated with a rapid reduction of cerebral TOI (r=0.94, PMuscle deoxygenation was similar in normoxia and hypoxia suggesting greater muscle blood flow in hypoxia compared to normoxia and thus the existence of control features that match muscle perfusion and O2 delivery tightly with O2 demand during exercise. Sup-O2 reduced both cerebral and muscle deoxygenation, at least transiently. PMID:19729079

  15. Reaction Pathways for the Deoxygenation of Vegetable Oils and Related Model Compounds

    Gosselink, R.W.; Hollak, S.A.W.; Chang, S.; Haveren, van J.; Jong, de K.P.; Bitter, J.H.; Es, van D.S.

    2013-01-01

    Vegetable oil-based feeds are regarded as an alternative source for the production of fuels and chemicals. Paraffins and olefins can be produced from these feeds through catalytic deoxygenation. The fundamentals of this process are mostly studied by using model compounds such as fatty acids, fatty a

  16. Deoxygenation of Vegetable Oils over Sulfided Ni, Mo and NiMo Catalysts

    Kubička, D.; Kaluža, Luděk

    2010-01-01

    Roč. 372, č. 2 (2010), s. 199-208. ISSN 0926-860X R&D Projects: GA MPO FT-TA3/074 Institutional research plan: CEZ:AV0Z40720504 Keywords : deoxygenation * hydrodeoxygenation * biofuels Subject RIV: CC - Organic Chemistry Impact factor: 3.383, year: 2010

  17. Influence of gemfibrozil on sulfate transport in human erythrocytes during the oxygenation-deoxygenation cycle

    Tellone, E.; Ficarra, S.; Scatena, R.; Giardina, B.; Kotyk, Arnošt; Russo, A.; Colucci, D.; Bellocco, E.; Lagana, G.; Galtieri, A.

    2008-01-01

    Roč. 57, č. 4 (2008), s. 621-629. ISSN 0862-8408 R&D Projects: GA AV ČR(CZ) 1ET400110403 Institutional research plan: CEZ:AV0Z50110509 Keywords : gemfibrozil * sulfate transport * oxygenation-deoxygenation Subject RIV: CE - Biochemistry Impact factor: 1.653, year: 2008

  18. Changes of RBC aggregation in oxygenation-deoxygenation: pH dependency and cell morphology.

    Cicha, Iwona; Suzuki, Yoji; Tateishi, Norihiko; Maeda, Nobuji

    2003-06-01

    The effects of the oxygenation-deoxygenation process on red blood cell (RBC) aggregation were examined in relation to morphological changes in RBCs and the contribution of CO(2). A low-shear rheoscope was used to measure the rate of rouleaux (one-dimensional aggregate) formation in diluted autologous plasma exposed to gas mixtures with different Po(2) and Pco(2). RBC indexes and RBC suspension pH were measured for the oxygenated or the deoxygenated condition, and the cell shape was observed with a scanning electron microscope. In the oxygenation-deoxygenation process, the rate of rouleaux formation increased with rising pH of the RBC suspension, which was lowered in the presence of CO(2). The rate increased with increasing mean corpuscular hemoglobin concentration (thus the cells shrank), which increased with rising pH and decreased in the presence of CO(2). With rising pH, cell diameter increased and cell thickness decreased (thus the cell flattened). In addition, slight echinocytosis was induced in the presence of CO(2), and the aggregation was reduced by the morphological change. In conclusion, RBC aggregation in the oxygenation-deoxygenation process is mainly influenced by the pH-dependent change in the surface area-to-volume ratio of the cells, and the aggregation is modified by CO(2)-induced acidification and the accompanying changes in mean corpuscular hemoglobin concentration and cell shape. PMID:12742832

  19. Catalytic Pyrolysis and a Pyrolysis Kinetic Study of Shredded Printed Circuit Board for Fuel Recovery

    Salmiaton Ali

    2014-10-01

    Full Text Available Scrap printed circuit boards (PCBs are the most abundant wastes that can be found in the landfills in Malaysia and this disposal certainly poses serious detrimental to the environment. This research aims to investigate optimum temperature for pyrolyzing waste PCBs, find out the best catalyst to be used in accelerating PCBs’ pyrolysis, select suitable ratio of catalyst to PCBs for higher oil yield and examine kinetics pyrolysis of the waste PCBs’ decomposition. Operating temperatures ranged from 200 to 350 ˚C of PCB’s pyrolysis were conducted with the optimum temperature obtained was 275 ˚C. Fluid cata-lytic cracking (FCC catalyst, zeolite socony mobil-5 (ZSM-5, H-Y-type zeolite and dolomite were used to accelerate PCB’s pyrolysis at 275 ˚C and FCC was identified as the best catalyst to be used. Differ-ent ratios of FCC to waste PCBs such as 10:90, 20:80, 30:70, 40:60 and 50:50 were applied in the pyro-lysis at 275 ˚C and ratio of 10:90 was selected as the suitable ratio to be utilized for maximum yield. The kinetic study was done through thermogravimetric analysis on waste PCBs under various heating rates and different particle sizes. The GC-MS analysis revealed that compounds detected in the pyro-oil have the potential to be used as fuel. © 2014 BCREC UNDIP. All rights reservedReceived: 23rd July 2014; Revised: 14th August 2014; Accepted: 14th August 2014 How to Cite: Ng, C.H., Salmiaton, A., Hizam, H. (2014. Catalytic Pyrolysis and a Pyrolysis Kinetic Study of Shredded Printed Circuit Board for Fuel Recovery. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (3: 224-240. (doi:10.9767/bcrec.9.3.7148.224-240 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.3.7148.224-240

  20. Syngas yield during pyrolysis and steam gasification of paper

    Main characteristics of gaseous yield from steam gasification have been investigated experimentally. Results of steam gasification have been compared to that of pyrolysis. The temperature range investigated were 600-1000 °C in steps of 100 °C. Results have been obtained under pyrolysis conditions at same temperatures. For steam gasification runs, steam flow rate was kept constant at 8.0 g/min. Investigated characteristics were evolution of syngas flow rate with time, hydrogen flow rate and chemical composition of syngas, energy yield and apparent thermal efficiency. Residuals from both processes were quantified and compared as well. Material destruction, hydrogen yield and energy yield is better with gasification as compared to pyrolysis. This advantage of the gasification process is attributed mainly to char gasification process. Char gasification is found to be more sensitive to the reactor temperature than pyrolysis. Pyrolysis can start at low temperatures of 400 °C; however char gasification starts at 700 °C. A partial overlap between gasification and pyrolysis exists and is presented here. This partial overlap increases with increase in temperature. As an example, at reactor temperature 800 °C this overlap represents around 27% of the char gasification process and almost 95% at reactor temperature 1000 °C.

  1. Pyrolysis of Polytrimethylene Terephthalate (PTT) Fiber by Pyrolysis Gas Chromatography-Mass Spectroscopy

    QIAN He-sheng

    2007-01-01

    Pyrolysis of polytrimethylene terephthalate (PTT) fiber has been investigated by pyrolysis gas chromatography-mass spectroscopy in the temperature range from 400℃ to 750℃ in order to observe the possible effect of the temperature on its composition of pyrolysates. At 400℃, pyrolysis of molecular chain could occur, only 13 pyrolysates could be identified. The trimethylene moieties bound to the macromolecular core by ester bonds are cleaved at around 400℃. At 550℃ -750℃, pyrolysis of molecular chain could completely take place, 46 pyrolysates could be found. As the temperature increases, the compositions of pyrolysate are distinctly increased. Several compounds, especially benzoic acid, monopropenyl-p-phthalate, 2 - propenyl benzoate, di - 2 - propenyl ester, 1,4 -benzenedicarboxylic acid, benzene, 1, 5 - hexadiene, biphenyl and 1, 3 - propanediol dibenzoate could be formed. The thermal degradation mechanism, which is determined by structure and amount of the thermal decomposition products, are described. During pyrolysis of polytrimethylene terephthalate, polymeric chain scissions take place a peeling reaction as a successive removal of the dimer units from the polymeric chain. The chain scissions are followed by the elimination reaction, linkage action and secondary reactions, which bring about a variety fragment.

  2. CHARACTERISTICS OF CORN STALK HEMICELLULOSE PYROLYSIS IN A TUBULAR REACTOR

    Gao-Jin Lv; Shu-Bin Wu; Rui Lou

    2010-01-01

    Pyrolysis characteristics of corn stalk hemicellulose were investigated in a tubular reactor at different temperatures, with focus mainly on the releasing profiles and forming behaviors of pyrolysis products (gas, char, and tar). The products obtained were further identified using various approaches (including GC, SEM, and GC-MS) to understand the influence of temperature on product properties and compositions. It was found that the devolatilization of hemicellulose mainly occurred at low tem...

  3. Pyrolysis of scrap tyres with zeolite USY

    A zeolite catalyst of ultrastable Y-type (USY) was investigated in the research of two staged pyrolysis-catalysis of scrap tyres. Scrap tyres were pyrolysed in a fixed bed reactor and the evolved pyrolysis gases were passed through a secondary catalytic reactor. The main objective of this paper was to investigate the effect of zeolite USY on the yield of products and the composition of derived oil. The influences of several parameters such as pyrolysis temperature, catalytic temperature, catalyst/tyre ratio, heating rate, etc. on the yield of the derived oil, char and gas were investigated. It showed that the increase of catalytic temperature and catalyst/tyre ratio resulted in high yield of gas at the expense of the oil yield. For example, when the catalyst/tyre ratio increased from 0.25 to 1.0, the yield of gas increased from 30.5 to 49.9 wt.%, and the oil yield decreased nearly two-fold from 31.6 to 12.7 wt.%. The concentration of light naphtha (boiling point < 160 deg. C) was also investigated in this study. And the high catalyst/tyre ratio favored to increase the concentration of light naphtha (<160 deg. C) in oil. In order to study the composition of derived oil, a distilled fraction (<280 deg. C), which was 92.5 wt.% of the oil obtained from catalytic pyrolysis of scrap tyre at a pyrolysis temperature, catalytic temperature and catalyst/tyre ratio of 500, 400 deg. C and 0.5, respectively, was analyzed with gas chromatography/mass spectrometry (GC/MS). The distillate was found to contain 1.23 wt.% benzene, 9.35 wt.% toluene, 3.68 wt.% ethylbenzene, 12.64 wt.% xylenes, 1.81 wt.% limonene and 13.89 wt.% PAHs, etc., where the single ring aromatics represented a significant potential use as chemicals

  4. Production, characterization and reactivity studies of chars produced by the isothermal pyrolysis of flax straw

    The influence of pyrolysis temperature and residence time on the char yields and resultant char characteristics were investigated in the isothermal pyrolysis of flax straw. The pyrolysis temperature was varied in the range between 300 and 500 °C and reaction residence time was varied from 15 to 60 min. The char yield was found to decrease with both increasing pyrolysis temperature and residence time. The char structure and physical characteristics were thoroughly investigated by means of X-ray diffraction (XRD), temperature-programmed oxidation (TPO) and N2 physisorption techniques. The results show that the degree of porosity and graphitization increased with increasing pyrolysis temperature and time. TPO studies on the char samples corroborate well with the XRD findings and showed the presence of two types of carbon; namely, amorphous filamentous carbon and crystalline graphitic carbon. Thermogravimetric analysis (TGA) of the char was performed to understand the combustion kinetics and reactivity. Chars formed at lower pyrolysis temperatures were found to be more reactive than the chars produced at higher pyrolysis temperatures, and these findings are well supported by the TPO, TGA, N2 physisorption and XRD characterization data. Furthermore, an empirical global kinetic model was devised based on power law and used to estimate the activation energy and other kinetic parameters of both flax straw pyrolysis and char combustion processes. -- Highlights: ► The results show conditions to obtain reactive chars from pyrolysis of flax straw. ► A higher pyrolysis temperature leads to a higher amount of nonreactive chars. ► A longer reaction time leads to a higher amount of nonreactive chars. ► A lower pyrolysis temperature and a shorter residence time lead to reactive chars. ► Pyrolysis temperature has a stronger effect on char reactivity than residence time.

  5. Fluidized-bed pyrolysis of waste bamboo

    2007-01-01

    Bamboo was a popular material substituting for wood, especially for one-off commodity in China. In order to recover energy and materials from waste bamboo, the basic characteristics of bamboo pyrolysis were studied by a thermogravimetric analyzer. It implied that the reaction began at 190~210 ℃, and the percentage of solid product deceased from about 25% to 17% when temperature ranged from 400 ℃ to 700 ℃. A lab-scale fluidized-bed furnace was setup to research the detailed properties of gaseous, liquid and solid products respectively. When temperature increased from 400 ℃ to 700 ℃, the mass percent of solid product decreased from 27% to 17% approximately, while that of syngas rose up from 19% to 35%. When temperature was about 500℃, the percentage of tar reached the top, about 31%. The mass balance of these experiments was about 93%~95%. It indicated that three reactions involved in the process: pyrolysis of exterior bamboo, pyrolysis of interior bamboo and secondary pyrolysis of heavy tar.

  6. Electrocatalytic upgrading of biomass pyrolysis oils to chemical and fuel

    Lam, Chun Ho

    The present project's aim is to liquefy biomass through fast pyrolysis and then upgrade the resulting "bio-oil" to renewable fuels and chemicals by intensifying its energy content using electricity. This choice reflects three points: (a) Liquid hydrocarbons are and will long be the most practical fuels and chemical feedstocks because of their energy density (both mass and volume basis), their stability and relative ease of handling, and the well-established infrastructure for their processing, distribution and use; (b) In the U.S., the total carbon content of annually harvestable, non-food biomass is significantly less than that in a year's petroleum usage, so retention of plant-captured carbon is a priority; and (c) Modern technologies for conversion of sunlight into usable energy forms---specifically, electrical power---are already an order of magnitude more efficient than plants are at storing solar energy in chemical form. Biomass fast pyrolysis (BFP) generates flammable gases, char, and "bio-oil", a viscous, corrosive, and highly oxygenated liquid consisting of large amounts of acetic acid and water together with hundreds of other organic compounds. With essentially the same energy density as biomass and a tendency to polymerize, this material cannot practically be stored or transported long distances. It must be upgraded by dehydration, deoxygenation, and hydrogenation to make it both chemically and energetically compatible with modern vehicles and fuels. Thus, this project seeks to develop low cost, general, scalable, robust electrocatalytic methods for reduction of bio-oil into fuels and chemicals.

  7. Selective Deoxygenation of Biomass-Derived Bio-oils within Hydrogen-Modest Environments: A Review and New Insights.

    Rogers, Kyle A; Zheng, Ying

    2016-07-21

    Research development of processes for refining bio-oils is becoming increasingly popular. One issue that these processes possess is their high requirement for H2 gas. In response, researchers must develop catalysts that perform deoxygenation while minimizing H2 consumption-selective deoxygenation. Unlike traditional deoxygenation processes, selective deoxygenation reactions and catalysts represent an information gap that, prior to this publication, has yet to be reviewed. This review addresses the gap by providing both a summary of recent research developments and insight into future developments of new catalytic materials. Bifunctional catalysts containing a combination of oxophilicity and an active metal phase appear to be the most beneficial for selective deoxygenation processes in a H2 -modest environment. It is important that catalysts have a supply of disassociated hydrogen, because without such, activity and stability will suffer. The authors recommend to maximize the use of internally available hydrogen in bio-fuel, which may be the only viable approach for deoxygenation if external H2 gas is limited. This would be possible through the development of catalysts that promote both the water-gas-shift and deoxygenation reactions. PMID:27385663

  8. Pyrolysis process for the treatment of food waste.

    Grycová, Barbora; Koutník, Ivan; Pryszcz, Adrian

    2016-10-01

    Different waste materials were pyrolysed in the laboratory pyrolysis unit to the final temperature of 800°C with a 10min delay at the final temperature. After the pyrolysis process a mass balance of the resulting products, off-line analysis of the pyrolysis gas and evaluation of solid and liquid products were carried out. The gas from the pyrolysis experiments was captured discontinuously into Tedlar gas sampling bags and the selected components were analyzed by gas chromatography (methane, ethene, ethane, propane, propene, hydrogen, carbon monoxide and carbon dioxide). The highest concentration of measured hydrogen (WaCe 61%vol.; WaPC 66%vol.) was analyzed at the temperature from 750 to 800°C. The heating values of the solid and liquid residues indicate the possibility of its further use for energy recovery. PMID:27474954

  9. Effect of torrefaction pretreatment and catalytic pyrolysis on the pyrolysis poly-generation of pine wood.

    Chen, Dengyu; Li, Yanjun; Deng, Minsi; Wang, Jiayang; Chen, Miao; Yan, Bei; Yuan, Qiqiang

    2016-08-01

    Torrefaction of pine wood was performed in a tube furnace at three temperatures (220, 250, and 280°C) for 30min. Then catalytic pyrolysis of raw and torrefied pine wood was performed using HZSM-5 catalyst in a fixed-bed pyrolysis reactor at 550°C for 15min. Torrefaction pretreatment and catalytic pyrolysis have an very important effect on the yield, property, and energy distribution of pyrolysis products. The results showed that the yield of biochar rapidly increased, while that of bio-oil decreased with increasing torrefaction temperature. The oxy-compound content of bio-oil, such as acids and aldehydes, sharply decreased. However, the aromatic hydrocarbon content not only increased but also further promoted by HZSM-5 catalyst. With highest mass yields and energy yields, biochar was also the very important product of pyrolysis. The oxygen content in biomass was mainly removed in the form of CO2 and H2O, leading to increasing CO2 content in non-condensable gas. PMID:27183238

  10. Preparation of doping titania antibacterial powder by ultrasonic spray pyrolysis

    WEI Shun-wen; PENG Bing; CHAI Li-yuan; LIU Yun-chao; LI Zhu-ying

    2008-01-01

    Doping titania powders were synthesized by ultrasonic spray pyrolysis method from an aqueous solution containing H2TiF6 and AgNO3. The effects of the processing parameters on panicle size distribution, structure, and morphology of doping panicles were investigated. The results show that aggregation-free spherical panicles with average diameter of 200-600 nm are obtained and the particle size of the powder can be controlled by adjusting the concentration of solution. The experimental approach indicates that the size and the value of standard deviation of panicle size increase from 210 nm to 450 nm and from 0.46 to 0.73 respectively with the increase of the titanic ion concentration from 0.05 to 0.4 mol/L. Composite TiOF2 is obtained when the pyrolysis temperature is set to be 400 ℃. With increasing pyrolysis temperature from 400 ℃ to 800 ℃, the crystal size of titania powders increases from 14.1 to 26.5 nm and TiOF2 content of powder decreases dramatically. The property of ion released from powder is affected significantly by the pyrolysis temperature, and the amount of fluorine ion and silver ion released from powder decrease with increasing pyrolysis temperature. The optical property of doping titania powders is not affected by pyrolysis temperature. Antibacterial test results show that composite powders containing more fluorine ions exhibit stronger antibacterial activity against E.coli.

  11. Vacuum pyrolysis of swine manure : biochar production and characteristics

    Verma, M. [Inst. de recherche et de developpement en agroenvironnement Inc., Quebec City, PQ (Canada); Centre de recherche industrielle du Quebec, Quebec City, PQ (Canada); Godbout, S.; Larouche, J.P.; Lemay, S.P.; Pelletier, F. [Inst. de recherche et de developpement en agroenvironnement Inc., Quebec City, PQ (Canada); Solomatnikova, O. [Centre de recherche industrielle du Quebec, Quebec City, PQ (Canada); Brar, S.K. [Inst. national de la recherche scientifique, eau, terre et environnement, Quebec City, PQ (Canada)

    2010-07-01

    Quebec accounts for nearly 25 per cent of swine production in Canada. The issue of swine manure is addressed through land spreading and conversion into fertilizer. However, current regulations restrict the use of swine manure as fertilizer on most farmlands due to the problem of surplus phosphorus and nitrogen. Although many technologies exist to separate phosphorus and nitrogen from the organic-rich dry matter in swine manure, about 40 per cent of the treated waste matter must still be disposed in an environmentally sound manner. This study investigated the technical feasibility of pretreating the swine manure solids into biofuels on a farm-scale basis using vacuum pyrolysis process. A custom built stainless steel pressure vessel was used to carry out pyrolysis reaction of swine manure biomass at a temperature range between 200 to 600 degrees C under vacuum. The pyrolytic vapour was condensed in 2 glass condensers in series. The biochar was collected directly from the pyrolysis vessel following completion of the pyrolysis batch. The non condensable vapour and gases were considered as losses. Biochar, bio-oil, an aqueous phase and a gas mixture were the 4 products of the pyrolysis process. A thermogravimetric analysis of the swine manure samples was conducted before the pyrolysis tests. The study showed that 238 degrees C is the optimal pyrolysis temperature for biochar production.

  12. Rapid habitability assessment of Mars samples by pyrolysis-FTIR

    Gordon, Peter R.; Sephton, Mark A.

    2016-02-01

    Pyrolysis Fourier transform infrared spectroscopy (pyrolysis FTIR) is a potential sample selection method for Mars Sample Return missions. FTIR spectroscopy can be performed on solid and liquid samples but also on gases following preliminary thermal extraction, pyrolysis or gasification steps. The detection of hydrocarbon and non-hydrocarbon gases can reveal information on sample mineralogy and past habitability of the environment in which the sample was created. The absorption of IR radiation at specific wavenumbers by organic functional groups can indicate the presence and type of any organic matter present. Here we assess the utility of pyrolysis-FTIR to release water, carbon dioxide, sulfur dioxide and organic matter from Mars relevant materials to enable a rapid habitability assessment of target rocks for sample return. For our assessment a range of minerals were analyzed by attenuated total reflectance FTIR. Subsequently, the mineral samples were subjected to single step pyrolysis and multi step pyrolysis and the products characterised by gas phase FTIR. Data from both single step and multi step pyrolysis-FTIR provide the ability to identify minerals that reflect habitable environments through their water and carbon dioxide responses. Multi step pyrolysis-FTIR can be used to gain more detailed information on the sources of the liberated water and carbon dioxide owing to the characteristic decomposition temperatures of different mineral phases. Habitation can be suggested when pyrolysis-FTIR indicates the presence of organic matter within the sample. Pyrolysis-FTIR, therefore, represents an effective method to assess whether Mars Sample Return target rocks represent habitable conditions and potential records of habitation and can play an important role in sample triage operations.

  13. Study of thermal reactivity of brown coal tars from rapid and slow pyrolysis

    Teubel, J.; Rast, A.; Schmiers, H.; Scholze, S. (Bergakademie, Freiberg (German Democratic Republic))

    1990-01-01

    Analyzes differences in properties of brown coal tars produced from coal of the same deposit, but using either rapid or slow pyrolysis. Samples of rapid pyrolysis tar originated from laboratory fluidized bed carbonization; the slow pyrolysis tar came from industrial brown coal coking. The study showed that rapid pyrolysis tar has a high thermal reactivity in the 400 C temperature range. Obtained pitch from thermal tar treatment has a high content of asphaltenes and benzene insoluble compounds. Electrode coke produced by carbonization of this pitch had an unfavorable microstructure and is unsuitable for graphitization. Secondary pyrolysis is therefore required to gain rapid pyrolysis pitch comparable in properties to pitch from industrial slow pyrolysis. 4 refs.

  14. Flash pyrolysis of jatropha oil cake in electrically heated fluidized bed reactor

    Fluidized bed flash pyrolysis experiments have been conducted on a sample of jatropha oil cake to determine particularly the effects of particle size, pyrolysis temperature and nitrogen gas flow rate on the pyrolysis yields. The particle size, nitrogen gas flow rate and temperature of jatropha oil cake were varied from 0.3 to 1.18 mm, 1.25 to 2.4 m3/h and 350 to 550 oC. The maximum oil yield of 64.25 wt% was obtained at a nitrogen gas flow rate of 1.75 m3/h, particle size of 0.7-1.0 mm and pyrolysis temperature of 500 oC. The calorific value of pyrolysis oil was found to be 19.66 MJ/kg. The pyrolysis gas can be used as a gaseous fuel.

  15. Study on pyrolysis and gasification of wood in MSW

    2006-01-01

    In order to develop municipal solid waste(MSW) pyrolysis/gasification and melting technology with low emission and high efficiency, it was planed that all the main components in MSW and some typical kinds of MSW were pyrolyzed/gasified to propose an expert system for raw MSW. In this paper, wood, which was a prevalent component in MSW, was pyrolyzed and gasified in fluidized-bed reactors at different apparent excess air ratios (EARs), temperatures and fluidizing velocities. For pyrolysis, with temperature increasing from 400℃ to 700℃, the yield of pyrolysis char decreased while that of pyrolysis gas increased (in this paper respectively from 28% to 20% and from 10% to 35%), and when temperature was 500℃, the yield of pyrolysis tar reached the highest,up to 38% in this paper. It was the optimum for gasification when temperature was 600℃ and apparent EAR was 0.4. Under the experimental conditions of this paper, gasification efficiency achieved 73%, lower heat value(LHV) reached 5800 kJ/(Nm3) and yield of syngas was 2.01 Nm3/kg. Lower fluidizing velocity was useful to upgrade gasification efficiency and LHV of syngas for wood gasification. Based on the results, the reactive courses and mechanism were analyzed respectively for wood pyrolysis and gasification.

  16. Thermal analysis of charring materials based on pyrolysis interface model

    Huang Hai-Ming

    2014-01-01

    Full Text Available Charring thermal protection systems have been used to protect hypersonic vehicles from high heat loads. The pyrolysis of charring materials is a complicated physical and chemical phenomenon. Based on the pyrolysis interface model, a simulating approach for charring ablation has been designed in order to obtain one dimensional transient thermal behavior of homogeneous charring materials in reentry capsules. As the numerical results indicate, the pyrolysis rate and the surface temperature under a given heat flux rise abruptly in the beginning, then reach a plateau, but the temperature at the bottom rises very slowly to prevent the structural materials from being heated seriously. Pyrolysis mechanism can play an important role in thermal protection systems subjected to serious aerodynamic heat.

  17. Studies on Catalytic Pyrolysis of Daqing Atmospheric Residue

    孟祥海; 徐春明; 张倩; 高金森

    2004-01-01

    Catalytic pyrolysis of Daqing atmospheric residue on catalyst CEP-1 was investigated in a confined fluidized bed reactor. The results show that reaction temperature, the mass ratios of catalyst to oil and steam to oil have significant effects on product distribution and yields of light olefins. The yields of light olefins show the maxima with the increase of reaction temperature, the mass ratios of catalyst to oil and steam to oil, respectively. The optimized operating conditions were determined in the laboratory, and under that condition the yields of ethylene, propylene and total light olefins by mass were 15.9%, 20.7% and 44.3% respectively. The analysis of pyrolysis gas and pyrolysis liquid indicates that CEP-1 has good capacity of converting heavy oils into light olefins, and there is a large amount of aromatics in pyrolysis liquid.

  18. ENGINEERING BULLETIN: PYROLYSIS TREATMENT

    Pyrolysis is formally defined as chemical decomposition induced in organic materials by heat in the absence of oxygen. In practice, it is not possible to achieve a completely oxygen-free atmosphere; actual pyrolytic systems are operated with less than stoichiometric quantities of...

  19. Pyrolysis temperature optimization of biochar from tobacco stalk and its physicochemical characterization%烟秆生物质炭热解温度优化及理化性质分析

    杨兴; 黄化刚; 王玲; 申燕; 陆扣萍; 韩学博; 王海龙

    2016-01-01

    microporous structures . Previous studies have demonstrated that biochar can be used for remediation of soils contaminated with organic and inorganic pollutants . Moreover , biochar has the potential of enhancing long‐term sequestration on soil organic carbon , improving soil structure and water retention ability , promoting bioavailability and retention of the nutrients , and ultimately promoting plant growth and increasing crop yield . The environmental behavior and impacts of biochar mainly depend on its physical and chemical properties , while pyrolysis temperature is the main factor affecting the physicochemical characteristic . To understand the influence of pyrolysis temperature on the physicochemical properties of biochars , the tobacco stalk was pyrolyzed at 350 , 400 , 450 , 500 , 550 and 600 ℃ , then the properties of biochars such as yield rate , pH value , electrical conductivity and specific surface area were determined . The composition and structure characteristics of biochars were investigated by scanning electron microscopy , Fourier transform infrared spectroscopy , energy dispersive X‐ray spectrometry , X‐ray diffraction and 13 C‐nuclear magnetic resonance analyses . The results showed that the yield rate ,contents of O and H as well as the H/C ,O/C , (O + N)/C ratios of the biochars decreased with the rise of pyrolysis temperature . However , the pH value , electrical conductivity , specific surface area and total carbon contents of biochars increased as the pyrolysis temperature increased . The yield rate and pH value of biochar tended to be stable above 500 ℃ , and the specific surface area and pH value peaked at 450 ℃ . With the rise of pyrolysis temperature , the content of mineral elements and surface crystal increased , whereas the content of oxygen‐containing functional groups decreased . Concentrations of K , Al and Ca were 28 .46 35 .47 , 10 .74 35 .86 and 13 .15 24 .95 g/kg , respectively . The stability and aromaticity of

  20. Bifunctional Nanoparticle-SILP Catalysts (NPs@SILP) for the Selective Deoxygenation of Biomass Substrates

    Luska, Kylie L. [RWTH Aachen Univ. (Germany); Julis, Jennifer [RWTH Aachen Univ. (Germany); Evonik Industries AG, Marl (Germany); Stavitski, Eli [Brookhaven National Lab. (BNL), Upton, NY (United States); Zakharov, Dmitri N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Adams, Alina [RWTH Aachen Univ. (Germany); Leitner, Walter [RWTH Aachen Univ. (Germany); Max Planck Inst. for Coal Research, Ruhr (Germany)

    2014-08-27

    We immobilized ruthenium nanoparticles onto an acidic supported ionic liquid phase (RuNPs@SILP) in the development of bifunctional catalysts for the selective deoxygenation of biomass substrates. RuNPs@SILPs possessed high catalytic activities, selectivities and recyclabilities in the hydrogenolytic deoxygenation and ring opening of C8- and C9-substrates derived from furfural or 5-hydroxymethylfurfural and acetone. When we tailor the acidity of the SILP through the ionic liquid loading provided a molecular parameter by which the catalytic activity and selectivity of the RuNPs@SILPs were controlled to provide a flexible catalyst system toward the formation of different classes of value-added products: cyclic ethers, primary alcohols or aliphatic ethers.

  1. A Membrane De-Oxygenator for the Study of Anoxic Processes

    Arcangeli, Jean-Pierre; Arvin, Erik

    1995-01-01

    A membrane reactor for the elimination of oxygen in an anoxic medium for microbial growth has been studied. The reactor consists of a reservoir containing a solution of sulfite and cobalt salt where silicone tubing, through which the medium flows, is immersed. Silicone is highly permeable to gases......, so oxygen diffuses through the silicone membrane and is absorbed in the sulfite solution. The maximum oxygen removal rate was 1.1 g m−2 d−1 at 15°C. The advantage of this de-oxygenator is its low cost and the ease with which it can be handled. A calculation method is discussed in relation to the...... design of the membrane de-oxygenator....

  2. Pulse radiolysis of 1,2-di(α-naphthyl)ethane in deoxygenated methanol and tetrahydrofuran

    Pulse radiolysis of 1,2-di(α-naphthyl)ethane (1,2-DNE) was performed in deoxygenated pure methanol and tetrahydrofuran (THF). Absorption spectra and kinetics of 1,2-DNE- in both solvents are presented. In methanol 1,2-DNE- is formed and decays by a second order reaction. No cleavage of benzylic C-C bond occurs as has been observed in the presence of alkali metals in ethers. Hence, it can be concluded that the assistance of the metal cations is necessary for the reductive bond splitting process. For comparison, 1-bromomethylnaphthalene (Br-MN) and 1,2-diphenylethane (1,2-DPE) were investigated in deoxygenated methanol and results are given. Probable reaction mechanisms are presented. (author)

  3. Copper nanocrystal plane effect on stereoselectivity of catalytic deoxygenation of aromatic epoxides.

    Xiao, Bin; Niu, Zhiqiang; Wang, Yang-Gang; Jia, Wei; Shang, Jian; Zhang, Lan; Wang, Dingsheng; Fu, Yao; Zeng, Jie; He, Wei; Wu, Kai; Li, Jun; Yang, Jinlong; Liu, Lei; Li, Yadong

    2015-03-25

    Previous studies have shown that crystal planes of heterogeneous catalysts could display enhanced activity, such that higher turnover or chemoselectivity could be achieved. Here we report an example where the reaction stereoselectivity was significantly affected by the catalyst crystal planes. In copper-catalyzed deoxygenation reaction of aromatic epoxides, copper cubes, wires, and plates gave the olefin products with different cis/trans selectivities, whereas homogeneous copper catalysts showed poor selectivity. Scanning tunneling microscope and density functional theory studies revealed that the different adsorption mode and higher adsorption strength of epoxide oxygen on Cu{100} plane were responsible for the observed variation of selectivity. The copper-catalyzed deoxygenation reaction provided new practical access to cis-olefins from readily available aromatic epoxides. Our work also indicated that nanocrystal catalysts may provide useful stereochemical control in organic reactions. PMID:25778784

  4. Pteropods on the edge: Cumulative effects of ocean acidification, warming, and deoxygenation

    Bednaršek, Nina; Harvey, Chris J.; Kaplan, Isaac C.; Feely, Richard A.; Možina, Jasna

    2016-06-01

    We review the state of knowledge of the individual and community responses of euthecosome (shelled) pteropods in the context of global environmental change. In particular, we focus on their responses to ocean acidification, in combination with ocean warming and ocean deoxygenation, as inferred from a growing body of empirical literature, and their relatively nascent place in ecosystem-scale models. Our objectives are: (1) to summarize the threats that these stressors pose to pteropod populations; (2) to demonstrate that pteropods are strong candidate indicators for cumulative effects of OA, warming, and deoxygenation in marine ecosystems; and (3) to provide insight on incorporating pteropods into population and ecosystem models, which will help inform ecosystem-based management of marine resources under future environmental regimes.

  5. Deoxygenation alters bacterial diversity and community composition in the ocean’s largest oxygen minimum zone

    Beman, J. Michael; Carolan, Molly T.

    2013-10-01

    Oceanic oxygen minimum zones (OMZs) have a central role in biogeochemical cycles and are expanding as a consequence of climate change, yet how deoxygenation will affect the microbial communities that control these cycles is unclear. Here we sample across dissolved oxygen gradients in the oceans’ largest OMZ and show that bacterial richness displays a unimodal pattern with decreasing dissolved oxygen, reaching maximum values on the edge of the OMZ and decreasing within it. Rare groups on the OMZ margin are abundant at lower dissolved oxygen concentrations, including sulphur-cycling Chromatiales, for which 16S rRNA was amplified from extracted RNA. Microbial species distribution models accurately replicate community patterns based on multivariate environmental data, demonstrate likely changes in distributions and diversity in the eastern tropical North Pacific Ocean, and highlight the sensitivity of key bacterial groups to deoxygenation. Through these mechanisms, OMZ expansion may alter microbial composition, competition, diversity and function, all of which have implications for biogeochemical cycling in OMZs.

  6. Theoretical study of the pyrolysis of vanillin as a model of secondary lignin pyrolysis

    Wang, Meng; Liu, Chao; Xu, Xiaoxiao; Li, Qibin

    2016-06-01

    The unimolecular and bimolecular decomposition reactions in processes of vanillin pyrolysis were theoretically investigated by employing density functional theory (DFT) method at M06-2X/6-31 G+(d,p) level. The result shows that the homolytic cleavage of O-CH3 bond could be the dominant initial step in the pyrolysis of vanillin. The hydrogen abstractions from functional groups of vanillin by the formed radicals play important roles in the formation of main products. Both formyl, hydroxyl and methoxyl group contribute to the formation of CO. Benzene is formed from the hydrogen addition reaction between hydrogen radical and phenol at high temperature.

  7. Pyrolysis characteristics and pyrolysis products separation for recycling organic materials from waste liquid crystal display panels.

    Wang, Ruixue; Xu, Zhenming

    2016-01-25

    Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate with indium-tin oxide film), and organic materials (polarizing film and liquid crystal). The organic materials should be removed beforehand since the organic matters would hinder the indium recycling process. In the present study, pyrolysis process is used to remove the organic materials and recycle acetic as well as and triphenyl phosphate (TPP) from waste LCD panels in an environmental friendly way. Several highlights of this study are summarized as follows: (i) Pyrolysis characteristics and pyrolysis kinetics analysis are conducted which is significant to get a better understanding of the pyrolysis process. (ii) Optimum design is developed by applying Box-Behnken Design (BBD) under response surface methodology (RSM) for engineering application which is significant to guide the further industrial recycling process. The oil yield could reach 70.53 wt% and the residue rate could reach 14.05 wt% when the pyrolysis temperature is 570 °C, nitrogen flow rate is 6 L min(-1) and the particle size is 0.5 mm. (iii) Furthermore, acetic acid and TPP are recycled, and then separated by rotary evaporation, which could reduce the consumption of fossil energy for producing acetic acid, and be reused in electronics manufacturing industry. PMID:26444486

  8. Solid waste utilization: pyrolysis

    Boegly, W.J. Jr.; Mixon, W.R.; Dean, C.; Lizdas, D.J.

    1977-08-01

    As a part of the Integrated Community Energy System (ICES) Program, a number of technology evaluations are being prepared on various current and emerging sources of energy. This evaluation considers the use of pyrolysis as a method of producing energy from municipal solid waste. The energy can be in the form of a gas, oil, chars, or steam. Pyrolysis, the decomposition of organic matter in the absence of oxygen (or in an oxygen-deficient atmosphere), has been used to convert organic matter to other products or fuels. This process is also described as ''destructive distillation''. Four processes are described in detail: the ''Landgard'' System (Monsanto Environ-Chem Systems, Inc.); the Occidental Research Corporation Process (formerly the Garrett Research and Development Company; The ''Purox'' System (Union Carbide Corporation); and the ''Refu-Cycler'' (Hamilton Standard Corporation). ''Purox'' and ''Refu-Cycler'' produce a low-Btu gas; the Occidental process produces an oil, and the ''Landgard'' process produces steam using on-site auxiliary boilers to burn the fuel gases produced by the pyrolysis unit. Also included is a listing of other pyrolysis processes currently under development for which detailed information was not available. The evaluation provides information on the various process flowsheets, energy and material balances, product characteristics, and economics. Pyrolysis of municipal solid waste as an energy source can be considered a potential for the future; however little operational or economic information is available at this time.

  9. Slow Pyrolysis of Cassava Wastes for Biochar Production and Characterization

    Nurhidayah Mohamed Noor; Adilah Shariff; Nurhayati Abdullah

    2012-01-01

    Production of biochar from slow pyrolysis of biomass is a promising carbon negative procedure since it removes the net carbon dioxide in the atmosphere and produce recalcitrant carbon suitable for sequestration in soil. Biochar production can vary significantly with the pyrolysis parameter. This study investigated the impact of temperature and heating rate on the yield and properties of biochar derived from cassava plantations residues which are cassava stem (CS) and cassava rhizome (CR). The...

  10. Characterization of a C3 Deoxygenation Pathway Reveals a Key Branch Point in Aminoglycoside Biosynthesis.

    Lv, Meinan; Ji, Xinjian; Zhao, Junfeng; Li, Yongzhen; Zhang, Chen; Su, Li; Ding, Wei; Deng, Zixin; Yu, Yi; Zhang, Qi

    2016-05-25

    Apramycin is a clinically interesting aminoglycoside antibiotic (AGA) containing a highly unique bicyclic octose moiety, and this octose is deoxygenated at the C3 position. Although the biosynthetic pathways for most 2-deoxystreptamine-containing AGAs have been well characterized, the pathway for apramycin biosynthesis, including the C3 deoxygenation process, has long remained unknown. Here we report detailed investigation of apramycin biosynthesis by a series of genetic, biochemical and bioinformatical studies. We show that AprD4 is a novel radical S-adenosyl-l-methionine (SAM) enzyme, which uses a noncanonical CX3CX3C motif for binding of a [4Fe-4S] cluster and catalyzes the dehydration of paromamine, a pseudodisaccharide intermediate in apramycin biosynthesis. We also show that AprD3 is an NADPH-dependent reductase that catalyzes the reduction of the dehydrated product from AprD4-catalyzed reaction to generate lividamine, a C3' deoxygenated product of paromamine. AprD4 and AprD3 do not form a tight catalytic complex, as shown by protein complex immunoprecipitation and other assays. The AprD4/AprD3 enzyme system acts on different pseudodisaccharide substrates but does not catalyze the deoxygenation of oxyapramycin, an apramycin analogue containing a C3 hydroxyl group on the octose moiety, suggesting that oxyapramycin and apramycin are partitioned into two parallel pathways at an early biosynthetic stage. Functional dissection of the C6 dehydrogenase AprQ shows the crosstalk between different AGA biosynthetic gene clusters from the apramycin producer Streptomyces tenebrarius, and reveals the remarkable catalytic versatility of AprQ. Our study highlights the intriguing chemistry in apramycin biosynthesis and nature's ingenuity in combinatorial biosynthesis of natural products. PMID:27120352

  11. Thiophenic Sulfur Compounds Released During Coal Pyrolysis.

    Xing, Mengwen; Kong, Jiao; Dong, Jie; Jiao, Haili; Li, Fan

    2013-06-01

    Thiophenic sulfur compounds are released during coal gasification, carbonization, and combustion. Previous studies indicate that thiophenic sulfur compounds degrade very slowly in the environment, and are more carcinogenic than polycyclic aromatic hydrocarbons and nitrogenous compounds. Therefore, it is very important to study the principle of thiophenic sulfur compounds during coal conversion, in order to control their emission and promote clean coal utilization. To realize this goal and understand the formation mechanism of thiophenic sulfur compounds, this study focused on the release behavior of thiophenic sulfur compounds during coal pyrolysis, which is an important phase for all coal thermal conversion processes. The pyrolyzer (CDS-5250) and gas chromatography-mass spectrometry (Focus GC-DSQII) were used to analyze thiophenic sulfur compounds in situ. Several coals with different coal ranks and sulfur contents were chosen as experimental samples, and thiophenic sulfur compounds of the gas produced during pyrolysis under different temperatures and heating rates were investigated. Levels of benzothiophene and dibenzothiophene were obtained during pyrolysis at temperatures ranging from 200°C to 1300°C, and heating rates ranging from 6°C/ms to 14°C/ms and 6°C/s to 14°C/s. Moreover, the relationship between the total amount of benzothiophene and dibenzothiophene released during coal pyrolysis and the organic sulfur content in coal was also discussed. This study is beneficial for understanding the formation and control of thiophenic sulfur compounds, since it provides a series of significant results that show the impact that operation conditions and organic sulfur content in coal have on the amount and species of thiophenic sulfur compounds produced during coal pyrolysis. PMID:23781126

  12. Pyrolysis of wastewater biosolids significantly reduces estrogenicity.

    Hoffman, T C; Zitomer, D H; McNamara, P J

    2016-11-01

    Most wastewater treatment processes are not specifically designed to remove micropollutants. Many micropollutants are hydrophobic so they remain in the biosolids and are discharged to the environment through land-application of biosolids. Micropollutants encompass a broad range of organic chemicals, including estrogenic compounds (natural and synthetic) that reside in the environment, a.k.a. environmental estrogens. Public concern over land application of biosolids stemming from the occurrence of micropollutants hampers the value of biosolids which are important to wastewater treatment plants as a valuable by-product. This research evaluated pyrolysis, the partial decomposition of organic material in an oxygen-deprived system under high temperatures, as a biosolids treatment process that could remove estrogenic compounds from solids while producing a less hormonally active biochar for soil amendment. The estrogenicity, measured in estradiol equivalents (EEQ) by the yeast estrogen screen (YES) assay, of pyrolyzed biosolids was compared to primary and anaerobically digested biosolids. The estrogenic responses from primary solids and anaerobically digested solids were not statistically significantly different, but pyrolysis of anaerobically digested solids resulted in a significant reduction in EEQ; increasing pyrolysis temperature from 100°C to 500°C increased the removal of EEQ with greater than 95% removal occurring at or above 400°C. This research demonstrates that biosolids treatment with pyrolysis would substantially decrease (removal>95%) the estrogens associated with this biosolids product. Thus, pyrolysis of biosolids can be used to produce a valuable soil amendment product, biochar, that minimizes discharge of estrogens to the environment. PMID:27344259

  13. Thermal decomposition and gasification of biomass pyrolysis gases using a hot bed of waste derived pyrolysis char.

    Al-Rahbi, Amal S; Onwudili, Jude A; Williams, Paul T

    2016-03-01

    Chars produced from the pyrolysis of different waste materials have been investigated in terms of their use as a catalyst for the catalytic cracking of biomass pyrolysis gases during the two-stage pyrolysis-gasification of biomass. The chars were produced from the pyrolysis of waste tyres, refused derived fuel and biomass in the form of date stones. The results showed that the hydrocarbon tar yields decreased significantly with all the char materials used in comparison to the non-char catalytic experiments. For example, at a cracking temperature of 800°C, the total product hydrocarbon tar yield decreased by 70% with tyre char, 50% with RDF char and 9% with biomass date stones char compared to that without char. There was a consequent increase in total gas yield. Analysis of the tar composition showed that the content of phenolic compounds decreased and polycyclic aromatic hydrocarbons increased in the product tar at higher char temperatures. PMID:26773946

  14. Gas evolution kinetics of two coal samples during rapid pyrolysis

    Chen, L.; Zeng, C.; Guo, X.; Mao, Y.; Zhang, Y.; Zhang, X.; Li, W. [Coal Polygeneration Tech Laboratory, GE Global Research - Shanghai, Shanghai, 201203 (China); Long, Y. [Material Characterization Laboratory, GE Global Research - Shanghai, Shanghai, 201203 (China); Zhu, H. [Functional Materials Laboratory, GE Global Research - Shanghai, Shanghai, 201203 (China); Eiteneer, B. [Fuel Conversion Laboratory, GE Global Research - Irvine, California 92618 (United States); Zamansky, V. [Energy and Propulsion Technologies, GE Global Research - Irvine, California 92618 (United States)

    2010-08-15

    Quantitative gas evolution kinetics of coal primary pyrolysis at high heating rates is critical for developing predictive coal pyrolysis models. This study aims to investigate the gaseous species evolution kinetics of a low rank coal and a subbituminous coal during pyrolysis at a heating rate of 1000 C s{sup -} {sup 1} and pressures up to 50 bar using a wire mesh reactor. The main gaseous species, including H{sub 2}, CO, CO{sub 2}, and light hydrocarbons CH{sub 4}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}, C{sub 3}H{sub 6}, C{sub 3}H{sub 8}, were quantified using high sensitivity gas chromatography. It was found that the yields of gaseous species increased with increasing pyrolysis temperature up to 1100 C. The low rank coal generated more CO and CO{sub 2} than the subbituminous coal under similar pyrolysis conditions. Pyrolysis of the low rank coal at 50 bar produced more gas than at atmospheric pressure, especially CO{sub 2}, indicating that the tar precursor had undergone thermal cracking during pyrolysis at the elevated pressure. (author)

  15. Analysis of cyclic pyrolysis products formed from amino acid monomer.

    Choi, Sung-Seen; Ko, Ji-Eun

    2011-11-18

    Amino acid was mixed with silica and tetramethylammonium hydroxide (TMAH) to favor pyrolysis of amino acid monomer. The pyrolysis products formed from amino acid monomer were using GC/MS and GC. 20 amino acids of alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine were analyzed. The pyrolysis products were divided into cyclic and non-cyclic products. Among the 20 amino acids, arginine, asparagine, glutamic acid, glutamine, histidine, lysine, and phenylalanine generated cyclic pyrolysis products of the monomer. New cyclic pyrolysis products were formed by isolation of amino acid monomers. They commonly had polar side functional groups to 5-, 6-, or 7-membered ring structure. Arginine, asparagine, glutamic acid, glutamine, histidine, and phenylalanine generated only 5- or 6-membered ring products. However, lysine generated both 6- and 7-membered ring compounds. Variations of the relative intensities of the cyclic pyrolysis products with the pyrolysis temperature and amino acid concentration were also investigated. PMID:21993510

  16. Mild partial deoxygenation of esters catalyzed by an oxazolinylborate-coordinated rhodium silylene.

    Xu, Songchen; Boschen, Jeffery S; Biswas, Abhranil; Kobayashi, Takeshi; Pruski, Marek; Windus, Theresa L; Sadow, Aaron D

    2015-09-28

    An electrophilic, coordinatively unsaturated rhodium complex supported by borate-linked oxazoline, oxazoline-coordinated silylene, and N-heterocyclic carbene donors [{κ(3)-N,Si,C-PhB(Ox(Me2))(Ox(Me2)SiHPh)Im(Mes)}Rh(H)CO][HB(C6F5)3] (, Ox(Me2) = 4,4-dimethyl-2-oxazoline; Im(Mes) = 1-mesitylimidazole) is synthesized from the neutral rhodium silyl {PhB(Ox(Me2))2Im(Mes)}RhH(SiH2Ph)CO () and B(C6F5)3. The unusual oxazoline-coordinated silylene structure in is proposed to form by rearrangement of an unobserved isomeric cationic rhodium silylene species [{PhB(Ox(Me2))2Im(Mes)}RhH(SiHPh)CO][HB(C6F5)3] generated by H abstraction. Complex catalyzes reductions of organic carbonyl compounds with silanes to give hydrosilylation products or deoxygenation products. The pathway to these reactions is primarily influenced by the degree of substitution of the organosilane. Reactions with primary silanes give deoxygenation of esters to ethers, amides to amines, and ketones and aldehydes to hydrocarbons, whereas tertiary silanes react to give 1,2-hydrosilylation of the carbonyl functionality. In contrast, the strong Lewis acid B(C6F5)3 catalyzes the complete deoxygenation of carbonyl compounds to hydrocarbons with PhSiH3 as the reducing agent. PMID:26278517

  17. Electrochemical interfacial influences on deoxygenation and hydrogenation reactions in CO reduction on a Cu(100) surface.

    Sheng, Tian; Lin, Wen-Feng; Sun, Shi-Gang

    2016-06-01

    Electroreduction of CO2 to hydrocarbons on a copper surface has attracted much attention in the last few decades for providing a sustainable way for energy storage. During the CO2 and further CO electroreduction processes, deoxygenation that is C-O bond dissociation, and hydrogenation that is C-H bond formation, are two main types of surface reactions catalyzed by the copper electrode. In this work, by performing the state-of-the-art constrained ab initio molecular dynamics simulations, we have systematically investigated deoxygenation and hydrogenation reactions involving two important intermediates, COHads and CHOads, under various conditions of (i) on a Cu(100) surface without water molecules, (ii) at the water/Cu(100) interface and (iii) at the charged water/Cu(100) interface, in order to elucidate the electrochemical interfacial influences. It has been found that the electrochemical interface can facilitate considerably the C-O bond dissociation via changing the reaction mechanisms. However, C-H bond formation has not been affected by the presence of water or electrical charge. Furthermore, the promotional roles of an aqueous environment and negative electrode potential in deoxygenation have been clarified, respectively. This fundamental study provides an atomic level insight into the significance of the electrochemical interface towards electrocatalysis, which is of general importance for understanding electrochemistry. PMID:27211005

  18. Factors Controlling Deoxygenation of "Floodwater" Overlying an Acid Sulfate Soil: Experimental Modeling

    C. LIN; P. G. HASKINS; J. LIN

    2003-01-01

    An incubation experiment was conducted to simulate the effect of flooding on water deoxygenation in acid sulfate soil floodplain systems. The originally oxygenated "floodwater" could be deoxygenated immediately following "flooding" and it is likely that this was caused mainly by decomposition of organic debris from the inundated plants. Deoxygenation eventually led to the depletion of dissolved oxygen (DO) in the "floodwater"and it is highly possible that this resulted in the transformations of ferric Fe to ferrous Fe, sulfate to hydrogen sulfide, and organic nitrogen to ammonia (ammonification). The accumulation of these reduced substances allows the "floodwater" to develop DO-consuming capacity (DOCC). When the "floodwater" is mixed with the introduced oxygenated water, apart from the dilution effects, the reduced substances contained in the "floodwater" oxidize to further consume DO carried by the introduced water. However, it appears that the DO drop in the mixed water can only last for a few hours if no additional DO-depleted "floodwater" is added.Entry of atmospheric oxygen into the water can raise the DO level of the mixed water and lower water pH through the oxidation of the reduced substances.

  19. A mathematical model relating cortical oxygenated and deoxygenated hemoglobin flows and volumes to neural activity

    Cornelius, Nathan R.; Nishimura, Nozomi; Suh, Minah; Schwartz, Theodore H.; Doerschuk, Peter C.

    2015-08-01

    Objective. To describe a toolkit of components for mathematical models of the relationship between cortical neural activity and space-resolved and time-resolved flows and volumes of oxygenated and deoxygenated hemoglobin motivated by optical intrinsic signal imaging (OISI). Approach. Both blood flow and blood volume and both oxygenated and deoxygenated hemoglobin and their interconversion are accounted for. Flow and volume are described by including analogies to both resistive and capacitive electrical circuit elements. Oxygenated and deoxygenated hemoglobin and their interconversion are described by generalization of Kirchhoff's laws based on well-mixed compartments. Main results. Mathematical models built from this toolkit are able to reproduce experimental single-stimulus OISI results that are described in papers from other research groups and are able to describe the response to multiple-stimuli experiments as a sublinear superposition of responses to the individual stimuli. Significance. The same assembly of tools from the toolkit but with different parameter values is able to describe effects that are considered distinctive, such as the presence or absence of an initial decrease in oxygenated hemoglobin concentration, indicating that the differences might be due to unique parameter values in a subject rather than different fundamental mechanisms.

  20. The Study of Kinetic Properties and Analytical Pyrolysis of Coconut Shells

    Mahir Said; Geoffrey John; Cuthbert Mhilu; Samwel Manyele

    2015-01-01

    The kinetic properties of coconut shells during pyrolysis were studied to determine its reactivity in ground form. The kinetic parameters were determined by using thermogravimetric analyser. The activation energy was 122.780 kJ/mol. The pyrolysis products were analyzed using pyrolysis gas chromatography/mass spectrometry (Py-GC/MS). The effects of pyrolysis temperature on the distribution of the pyrolytic products were assessed in a temperature range between 673 K and 1073 K. The set time for...

  1. Selective deoxygenation of stearic acid via an anhydride pathway

    Hollak, S.A.W.; Bitter, W.; Haveren, van J.; Es, van D.S.

    2012-01-01

    Stearic anhydride is proposed as reactive intermediate in the hydrogen free decarbonylation and ketonization of stearic acid over Pd/Al2O3 at 523 K. This information is crucial towards developing of a selective low temperature decarbonylation process of fatty acids towards olefins.

  2. Fast Pyrolysis of Four Lignins from Different Isolation Processes Using Py-GC/MS

    Xiaona Lin

    2015-06-01

    Full Text Available Pyrolysis is a promising approach that is being investigated to convert lignin into higher value products including biofuels and phenolic chemicals. In this study, fast pyrolysis of four types of lignin, including milled Amur linden wood lignin (MWL, enzymatic hydrolysis corn stover lignin (EHL, wheat straw alkali lignin (AL and wheat straw sulfonate lignin (SL, were performed using pyrolysis gas-chromatography/mass spectrometry (Py-GC/MS. Thermogravimetric analysis (TGA showed that the four lignins exhibited widely different thermolysis behaviors. The four lignins had similar functional groups according to the FTIR analysis. Syringyl, guaiacyl and p-hydroxyphenylpropane structural units were broken down during pyrolysis. Fast pyrolysis product distributions from the four lignins depended strongly on the lignin origin and isolation process. Phenols were the most abundant pyrolysis products from MWL, EHL and AL. However, SL produced a large number of furan compounds and sulfur compounds originating from kraft pulping. The effects of pyrolysis temperature and time on the product distributions from corn stover EHL were also studied. At 350 °C, EHL pyrolysis mainly produced acids and alcohols, while phenols became the main products at higher temperature. No obvious influence of pyrolysis time was observed on EHL pyrolysis product distributions.

  3. Pyrolysis of waste plastic crusts of televisions.

    Liu, Xinmin; Wang, Zhen; Xu, Dongyan; Guo, Qingjie

    2012-09-01

    The disposal of waste plastic crusts of televisions is an issue that is gaining increasing interest around the world. In this investigation, the pyrolysis and catalytic cracking of the waste television crusts mainly composed of acrylonitrile--butadiene-styrene copolymer was studied. Thermogravimetric analysis was used for initial characterization of the pyrolysis of the waste plastic, but most of the investigations were carried out using a 600 mL tubing reactor. Effects of temperature, reaction time and catalyst on the pyrolysis of the waste television crusts were investigated. The results showed that the oil yield increased with increasing temperature or with prolongation of reaction time. With increasing temperature, the generating percentage of gasoline and diesel oil increased, but the heavy oil yield decreased. Zinc oxide, iron oxide and fluid catalytic cracking catalyst (FCC catalyst) were employed to perform a series of experiments. It was demonstrated that the liquid product was markedly improved and the reaction temperature decreased 100 degrees C when FCC was used. The composition ofpyrolysis oils was analysed using gas chromatography-mass spectrometry, and they contained 36.49% styrene, 19.72% benzenebutanenitrile, 12.1% alpha-methylstyrene and 9.69% dimethylbenzene. PMID:23240191

  4. Volatile Analysis by Pyrolysis of Regolith for Planetary Resource Exploration

    Glavin, Daniel P.; Malespin, Charles; ten Kate, Inge L.; Getty, Stephanie A.; Holmes, Vincent E.; Mumm, Erik; Franz, Heather B.; Noreiga, Marvin; Dobson, Nick; Southard, Adrian E.; Feng, Steven H.; Kotecki, Carl A.; Dworkin, Jason P.; Swindle, Timothy D.; Bleacher, Jacob E.; Rice, James W.; Mahaffy, Paul R.

    2012-01-01

    The extraction and identification of volatile resources that could be utilized by humans including water, oxygen, noble gases, and hydrocarbons on the Moon, Mars, and small planetary bodies will be critical for future long-term human exploration of these objects. Vacuum pyrolysis at elevated temperatures has been shown to be an efficient way to release volatiles trapped inside solid samples. In order to maximize the extraction of volatiles, including oxygen and noble gases from the breakdown of minerals, a pyrolysis temperature of 1400 C or higher is required, which greatly exceeds the maximum temperatures of current state-of-the-art flight pyrolysis instruments. Here we report on the recent optimization and field testing results of a high temperature pyrolysis oven and sample manipulation system coupled to a mass spectrometer instrument called Volatile Analysis by Pyrolysis of Regolith (VAPoR). VAPoR is capable of heating solid samples under vacuum to temperatures above 1300 C and determining the composition of volatiles released as a function of temperature.

  5. Biomass fast pyrolysis in fluidized bed : product cleaning by in-situ filtration

    Wang, Xiaoquan

    2006-01-01

    This thesis is dedicated to the subject of fast pyrolysis in a fluid bed reactor. A large part of the work is related to reactor design aspects of fast pyrolysis, a subject that has not been considered sufficiently. Past research efforts were focussed mainly on the kinetics of wood pyrolysis and the testing of different reactor types by measuring the bio-oil yield as a function of the reactor temperature.

  6. Biomass pyrolysis processes: performance parameters and their influence on biochar system benefits

    Brownsort, Peter A

    2009-01-01

    This study focuses on performance of biomass pyrolysis processes for use in biochar systems. Objectives are to understand the range of control of such processes and how this affects potential benefits of pyrolysis biochar systems, in particular for climate change mitigation. Slow, intermediate and fast pyrolysis processes are reviewed. Product yield distributions change depending on feedstock composition and preparation, control of temperature and material flows. These allow s...

  7. Pyrolysis of biomass and refuse-derived fuel performance in laboratory scale batch reactor

    Kluska Jacek; Klein Marek; Kazimierski Paweł; Kardaś Dariusz

    2014-01-01

    The results of pyrolysis of pine chips and refuse derived fuel fractions are presented. The experiments were carried out in a pilot pyrolysis reactor. The feedstock was analyzed by an elemental analyzer and the X-ray fluorescence spectrometer to determine the elemental composition. To find out optimum conditions for pyrolysis and mass loss as a function of temperature the thermogravimetric analysis was applied. Gases from the thermogravimetric analysis were directed to the infrared spectromet...

  8. Fuel-N Evolution during the Pyrolysis of Industrial Biomass Wastes with High Nitrogen Content

    Kunio Yoshikawa; Guangwen Xu; Hongfang Chen; Yin Wang

    2012-01-01

    In this study, sewage sludge and mycelial waste from antibiotic production were pyrolyzed in a batch scale fixed-bed reactor as examples of two kinds of typical industrial biomass wastes with high nitrogen content. A series of experiments were conducted on the rapid pyrolysis and the slow pyrolysis of these wastes in the temperature range from 500–800 °C to investigate the Fuel-N transformation behavior among pyrolysis products. The results showed that Fuel-N conversion to ...

  9. Copper-carbon nanocomposites prepared by solid-phase pyrolysis of copper phthalocyanine

    By using solid-phase pyrolysis of copper phthalocyanine we have prepared copper nanoparticles in carbon matrices. The elemental composition, structure and morphology of nanocomposites were investigated by scanning electron microscopy, energy dispersive X-ray microanalysis and X ray diffraction. Depending on the temperature and time of pyrolysis the sizes of copper nanoparticles can be varied from 10 nm to 400 nm. The structure of carbon matrices also strongly depends on the pyrolysis conditions, which allows to synthesize nanocomposites with given properties

  10. Effect of the deposition temperature on the electrochemical properties of La0.6Sr0.4Co0.8Fe0.2O3-δ cathode prepared by conventional spray-pyrolysis

    Marrero-López, D.; Romero, R.; Martín, F.; Ramos-Barrado, J. R.

    2014-06-01

    La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF) cathodes have been deposited by conventional spray pyrolysis on Ce0.8Gd0.2O1.9 (CGO) electrolytes at different temperatures between 250 and 450 °C, obtaining electrodes with different microstructure and porosity. Highly porous and macroporous electrodes are obtained at deposition temperatures of 250 °C and 450 °C, respectively, with an average grain size of 30-50 nm. The influence of the post-annealing treatment on the microstructure and on the electrochemical properties is investigated by scanning electron microscopy and impedance spectroscopy in air and as a function of the oxygen partial pressure to identify the different contributions to the polarization. Samples annealed at 650 °C show similar values of area specific resistance 0.04-0.06 Ω cm2 at a measured temperature of 650 °C. However, after annealing the samples at 850 °C, the ASR values increase up to 0.1-0.6 Ω cm2 with the lowest value corresponding to the film deposited at 250 °C due to the large porosity and surface area of this film. The performance degradation upon annealing is attributed to decreasing reaction sites induced by grain growth and densification.

  11. Silane-Pyrolysis Reactor With Nonuniform Heating

    Iya, Sridhar K.

    1991-01-01

    Improved reactor serves as last stage in system processing metallurgical-grade silicon feedstock into silicon powder of ultrahigh purity. Silane pyrolized to silicon powder and hydrogen gas via homogeneous decomposition reaction in free space. Features set of individually adjustable electrical heaters and purge flow of hydrogen to improve control of pyrolysis conditions. Power supplied to each heater set in conjunction with flow in reactor to obtain desired distribution of temperature as function of position along reactor.

  12. Experimental and Theoretical Study on Pyrolysis of Isopsoralen

    Jiu-zhong Yang; Feng Zhang; Liang-yuan Jia; Li-dong Zhang; Fei Qi; Hai-yan Fan; Ji-bao Cai

    2012-01-01

    The pyrolysis of isopsoralen was studied by synchrotron vacuum ultraviolet photoionization mass spectrometry at low pressure.The pyrolysis products were detected at different photon energies,the ratios of products to precursor were measured at various pyrolysis temperatures.The experimental results demonstrate that the main pyrolysis products are primary CO and sequential CO elimination products (C10H6O2 and C9H6O).The decomposition channels of isopsoralen were also studied by the density functional theory,then rate constants for competing pathways were calculated by the transition state theory.The dominant decomposition channels of isopsoralen and the molecular structures for corresponding products were identified bv combined experimental and theoretical studies.

  13. Pyrolysis and gasification behavior of black liquor under pressurized conditions

    Whitty, K.

    1997-11-01

    The purpose of this study has been to enhance the understanding of the processes involved in pressurized black liquor gasification. Gasification is known to occur in three stages: drying, pyrolysis and char gasification. The work presented here focuses on the pyrolysis and gasification stages. Experiments were carried out primarily in two laboratory-scale reactors. A pressurized grid heater was used to study black liquor pyrolysis under pressurized conditions. Char yields and the fate of elements in the liquor, as well as the degree of liquor swelling, were measured in this device. A pressurized thermogravimetric reactor was used to measure the rate of the char gasification process under different temperatures and pressures and in various gas atmospheres. Pyrolysis experiments were also carried out in this device, and data on swelling behavior, char yields and component release were obtained 317 refs.

  14. Distribution of sulphur into products from waste tire pyrolysis

    Tire pyrolysis is getting growing attention as an effective waste tire disposal method in comparison to environmentally less friendly methods like dumping or incineration. But the scrap tire sulphur content can be a potential obstacle to scrap tire utilization as a fuel. In this paper the distribution of sulphur into tire pyrolysis yields, solid (char) and liquid (tar), was investigated. The pyrolysis experiments were carried out under different conditions to determine the partitioning of sulphur into pyrolysis products. The influence of different temperatures and reaction times was investigated in a laboratory flow reactor under nitrogen atmosphere. Solid and liquid residues were collected and analyzed by elemental analysis. The sulphur content in residual char and tar was determined using an elemental analyzer and the sulphur forms in tar were characterized by the X-ray photoelectron spectroscopy (XPS). (Authors)

  15. Fixed-bed pyrolysis of rapeseed (Brassica napus L.)

    Fixed-bed slow and fast pyrolysis experiments have been conducted on a sample of rapeseed. The experiments were performed in two different pyrolysis reactors, namely a fixed-bed Heinze and a well-swept fixed-bed tubular retort to investigate the effects of heating rate, pyrolysis temperature, particle size, sweep gas velocity on the pyrolysis product yields and chemical compositions. The maximum oil yield of 51.7% was obtained in the Heinze reactor 550 deg. C, with a particle size range of +0.6-1.8 mm (sweep gas 100 cm3 min-1 N2) at a heating rate of 30 deg. C min-1. In the well-swept fixed-bed reactor, the maximum oil yield of 68% was obtained at a heating rate of 300 deg. C min-1. Chromatographic and spectroscopic studies on the pyrolytic oil showed that the oil obtained from rapeseed could be use as a renewable fuels and chemical feedstock

  16. Refining fast pyrolysis of biomass

    Westerhof, Roel Johannes Maria

    2011-01-01

    Pyrolysis oil produced from biomass is a promising renewable alternative to crude oil. Such pyrolysis oil has transportation, storage, and processing benefits, none of which are offered by the bulky, inhomogeneous solid biomass from which it originates. However, pyrolysis oil has both a different composition to and different properties from crude oil. This makes its direct use in those applications and conversion processes originally developed for fossil feeds problematic. Improvement of the ...

  17. Pyrolysis products of PCBs.

    Paasivirta, J.; R. Herzschuh; Humppi, T; Kantolahti, E; Knuutinen, J; Lahtiperä, M; Laitinen, R; Salovaara, J; Tarhanen, J; Virkki, L

    1985-01-01

    Model compound studies which were previously done for impurities and environmental residues of chlorophenols and for wastes of chlorination processes were extended to the impurities and pyrolysis products of polychlorinated biphenyls (PCBs). Model compounds were commercial products or synthesized and their structures proven by spectroscopic methods. These models were used as analytical reference substances in GC/ECD and GC/MS studies of the pyrolyzed PCB samples. In addition to previously kno...

  18. On methane pyrolysis special applications

    Toncu, D. C.; Toncu, G.; Soleimani, S.

    2015-11-01

    Methane pyrolysis represents one of the most important processes in industrial use, with applications rising from the chemical and petrochemical industry, combustion, materials and protective coatings. Despite the intense research, experimental data lack kinetic aspects, and the thermodynamics involved often leads to inaccurate results when applied to various systems. Carrying out a comparative analysis of several available data on methane pyrolysis, the paper aims to study the phenomenon of methane pyrolysis under different environments (combustion and plasma), concluding on the most possible reaction pathways involved in many of its applications. Computer simulation using different database underlines the conclusion, helping to the understanding of methane pyrolysis importance in future technologies.

  19. Kinetics and Mechanism of Deoxygenation Reactions over Proton-Form and Molybdenum-Modified Zeolite Catalysts

    Bedard, Jeremy William

    The depletion of fossil fuel resources and the environmental consequences of their use have dictated the development of new sources of energy that are both sustainable and economical. Biomass has emerged as a renewable carbon feedstock that can be used to produce chemicals and fuels traditionally obtained from petroleum. The oxygen content of biomass prohibits its use without modification because oxygenated hydrocarbons are non-volatile and have lower energy content. Chemical processes that eliminate oxygen and keep the carbon backbone intact are required for the development of biomass as a viable chemical feedstock. This dissertation reports on the kinetic and mechanistic studies conducted on high and low temperature catalytic processes for deoxygenation of biomass precursors to produce high-value chemicals and fuels. Low temperature, steady state reaction studies of acetic acid and ethanol were used to identify co-adsorbed acetic acid/ethanol dimers as surface intermediates within specific elementary steps involved in the esterification of acetic acid with ethanol on zeolites. A reaction mechanism involving two dominating surface species, an inactive ethanol dimeric species adsorbed on Bronsted sites inhibiting ester formation and a co-adsorbed complex of acetic acid and ethanol on the active site reacting to produce ethyl acetate, is shown to describe the reaction rate as a function of temperature (323 -- 383 K), acetic acid (0.5 -- 6.0 kPa), and ethanol (5.0 -- 13.0 kPa) partial pressure on proton-form BEA, FER, MFI, and MOR zeolites. Measured differences in rates as a function of zeolite structure and the rigorous interpretation of these differences in terms of esterification rate and equilibrium constants is presented to show that the intrinsic rate constant for the activation of the co-adsorbed complex increases in the order FER dehydrogenation reaction sequences results instead in a two-zone, stratified bed reactor configuration consisting of upstream

  20. Fast pyrolysis of hardwood residues using a fixed bed drop-type pyrolyzer

    Highlights: • Pyrolysis of rubber and Meranti wood was conducted by using a drop-type pyrolyzer. • As temperature increase, char yield decrease, but bio-oil and gas yield increase. • Maximum pyrolysis temperature for pyrolysis of RWS is 550 °C and 600 °C for MWS. • Calorific value of bio-char is very high and potential to be used as a solid fuel. • CO and CO2 are the major gas components in the non-condensable gases by-product. - Abstract: In this research, rubber wood sawdust (RWS) and Meranti wood sawdust (MWS) were pyrolyzed in a fixed bed drop-type pyrolyzer under an inert condition. The first part of the study is to determine the influence of pyrolysis temperature (450, 500, 550, 600, 650 °C) on the yield of pyrolysis products. Pyrolysis of these different residues generate an almost identical maximum amount of bio-oil close to 33 wt.%, but at different maximum temperature (550 °C for pyrolysis of RWS and 600 °C for pyrolysis of MWS). To evaluate the effect of biomass type on the composition and characterization of pyrolysis products, the second part involves the analyses of pyrolysis products from the maximum pyrolysis temperature. Acetic acid, tetrahydrofuran, and benzene were the main bio-oil components. The bio-oil contained high percentage of oxygen and hydrogen, indicating high water content in the bio-oil. High amount of water in bio-oil significantly reduced its calorific value. Under extensive heating, particle size of the bio-char from SEM images decreased due to breakage and shrinkage mechanisms. The major components of non-condensable gases were CO and CO2

  1. Pyrolysis of EVA and its application in recycling of photovoltaic modules

    ZENG De-wen; Manfred Born; Karsten Wambach

    2004-01-01

    The basic pyrolysis behaviour of ethylene vinyl acetate(EVA) copolymer, which is often used as a lamination agent in solar modules, was investigated in thermogravimetry, differential thermal analysis(DTA) and thermovolumetry. The TG analysis showed that the EVA pyrolysis can be accelerated under the partial oxidizing atmosphere but the end pyrolysis temperature must be higher than in nitrogen, to eliminate the coke formed. Meanwhile, a strong exothermal peak occurs at about 450℃ under the air condition and gets weaker obviously at the oxygen content lower than 10 vol.%. The mass balance of EVA pyrolysis was given through thermovolumetry with the output of 10 wt.% permanent gas, 89.9 wt.% condensate and 0.1% residual coke. Besides, the composition of the permanent gas and condensate at different pyrolysis stages were analysed and interpreted on the known pyrolysis mechanism.

  2. Pyrolysis of EVA and its application in recycling of photovoltaic modules.

    Zeng, De-Wen; Born, Manfred; Wambach, Karsten

    2004-01-01

    The basic pyrolysis behaviour of ethylene vinyl acetate (EVA) copolymer, which is often used as a lamination agent in solar modules, was investigated in thermogravimetry, differential thermal analysis(DTA) and thermovolumetry. The TG analysis showed that the EVA pyrolysis can be accelerated under the partial oxidizing atmosphere but the end pyrolysis temperature must be higher than in nitrogen, to eliminate the coke formed. Meanwhile, a strong exothermal peak occurs at about 450 degrees C under the air condition and gets weaker obviously at the oxygen content lower than 10 vol. %. The mass balance of EVA pyrolysis was given through the thermovolumetry with the output of 10 wt. % permanent gas, 89.9 wt. % condensate and 0.1% residual coke. Besides, the composition of the permanent gas and condensate at different pyrolysis stages were analysed and interpreted on the known pyrolysis mechanism. PMID:15900714

  3. Conventional and microwave-assisted pyrolysis of biomass under different heating rates

    Wu, C.; Budarin, VL; Gronnow, MJ; de Bruyn, M.; Onwudili, JA; Clark, JH; Williams, PT

    2014-01-01

    Biomass was subjected to conventional and microwave pyrolysis, to determine the influence of each process on the yield and composition of the derived gas, oil and char products. The influence of pyrolysis temperature and heating rate for the conventional pyrolysis and the microwave power was investigated. Two major stages of gas release were observed during biomass pyrolysis, the first being CO/CO and the second one CH/H. This two-stage gas release was much more obvious for the conventional p...

  4. Molten salt pyrolysis of milled beech wood using an electrostatic precipitator for oil collection

    Nygård, Heidi S.; Espen Olsen

    2015-01-01

    A tubular electrostatic precipitator (ESP) was designed and tested for collection of pyrolysis oil in molten salt pyrolysis of milled beech wood (0.5-2 mm). The voltage-current (V-I) characteristics were studied, showing most stable performance of the ESP when N2 was utilized as inert gas. The pyrolysis experiments were carried out in FLiNaK and (LiNaK)2CO3 over the temperature range of 450-600 ℃. The highest yields of pyrolysis oil were achieved in FLiNaK, with a maximum of 34.2 wt% at 500 ℃...

  5. Activated carbon from char obtained from vacuum pyrolysis of teak sawdust: pore structure development and characterization.

    Ismadji, S; Sudaryanto, Y; Hartono, S B; Setiawan, L E K; Ayucitra, A

    2005-08-01

    The preparation of activated carbon from vacuum pyrolysis char of teak sawdust was studied and the results are presented in this paper. The effects of process variables such as temperature and activation time on the pore structure of activated carbons were studied. The activated carbon prepared from char obtained by vacuum pyrolysis has higher surface area and pore volume than that from atmospheric pyrolysis char. The BET surface area and pore volume of activated carbon prepared from vacuum pyrolysis char were 1150 m2/g and 0.43 cm3/g, respectively. PMID:15792584

  6. The fate of sulfur during rapid pyrolysis of scrap tires.

    Hu, Hongyun; Fang, Yuan; Liu, Huan; Yu, Ren; Luo, Guangqian; Liu, Wenqiang; Li, Aijun; Yao, Hong

    2014-02-01

    The fate of sulfur during rapid pyrolysis of scrap tires at temperatures from 673 to 1073K was investigated. Sulfur was predominant in the forms of thiophenic and inorganic sulfides in raw scrap tires. In the pyrolysis process, sulfur in organic forms was unstable and decomposed, leading to the sulfur release into tar and gases. At 673 and 773K, a considerable amount of sulfur was distributed in tar. Temperature increasing from 773 to 973K promoted tar decomposition and facilitated sulfur release into gases. At 1073K, the interactions between volatiles and char stimulated the formation of high-molecular-weight sulfur-containing compounds. After pyrolysis, almost half of the total content of sulfur in raw scrap tires still remained in the char and was mostly in the form of sulfides. Moreover, at temperatures higher than 873K, part of sulfur in the char was immobilized in the sulfates. In the pyrolysis gases, H2S was the main sulfur-containing gas. Increasing temperature stimulated the decomposition of organic polymers in scrap tires and more H2S was formed. Besides H2S, other sulfur-containing gases such as CH3SH, COS and SO2 were produced during the rapid pyrolysis of scrap tires. PMID:24238304

  7. Pyrolysis pretreatment of biomass for entrained-flow gasification

    The biomass for entrained-flow gasification needs to be pretreated to significantly increase its heating value and to make it more readily transportable. The pyrolysis pretreatment was conducted in a lab scale fixed-bed reactor; the reactor was heated to elevate the temperature at 5 °C/min before holding at the desired pyrolysis temperature for 1.5 h a fixed time. The effects of pyrolysis temperature on the yield, composition and heating value of the gaseous, liquid and solid products were determined. The pyrolysis removed most oxygenated constituents of rice straw while significantly increased its energy density. Meantime, it changes the physical properties of biomass powders. The results show that the angle of repose, the angle of internal friction of semi-char decrease obviously; the bulk density of semi-char is bigger than that of biomass. This could favor the feeding of biomass. Considering yield and heating value of the solid semi-char product and the feeding problem, the best pyrolysis temperature was 400 °C. The results of this study have confirmed the feasibility of employing pyrolyzed biomass for entrained-flow gasification; they are useful for the additional studies that will be necessary for designing an efficient biomass entrained-flow gasification system.

  8. Non-thermal radio frequency and static magnetic fields increase rate of hemoglobin deoxygenation in a cell-free preparation.

    David Muehsam

    Full Text Available The growing body of clinical and experimental data regarding electromagnetic field (EMF bioeffects and their therapeutic applications has contributed to a better understanding of the underlying mechanisms of action. This study reports that two EMF modalities currently in clinical use, a pulse-modulated radiofrequency (PRF signal, and a static magnetic field (SMF, applied independently, increased the rate of deoxygenation of human hemoglobin (Hb in a cell-free assay. Deoxygenation of Hb was initiated using the reducing agent dithiothreitol (DTT in an assay that allowed the time for deoxygenation to be controlled (from several min to several hours by adjusting the relative concentrations of DTT and Hb. The time course of Hb deoxygenation was observed using visible light spectroscopy. Exposure for 10-30 min to either PRF or SMF increased the rate of deoxygenation occurring several min to several hours after the end of EMF exposure. The sensitivity and biochemical simplicity of the assay developed here suggest a new research tool that may help to further the understanding of basic biophysical EMF transduction mechanisms. If the results of this study were to be shown to occur at the cellular and tissue level, EMF-enhanced oxygen availability would be one of the mechanisms by which clinically relevant EMF-mediated enhancement of growth and repair processes could occur.

  9. A comparison study on the deoxygenation of coal mine methane over coal gangue and coke under microwave heating conditions

    Highlights: • Microwave has great advantages of energy and time saving in CMM deoxygenation. • Microwave pretreatment results in graphitization of carbonaceous materials. • Coal gangue shows benefit in restricting CH4 decomposition compared to coke. • Under optimal conditions, there is no residual oxygen and CH4 is less than 2.2%. - Abstract: Microwave heating has great advantages in saving energy and time; in this study, it has been first successfully applied in the deoxidization process of coal mine methane (CMM), where carbon in coal gangue reacts with oxygen in CMM. Compared with traditional heating, microwave pretreatment resulted in rapid heating of coal gangue in CMM deoxygenation, which was attributable to the graphitization of carbonaceous materials. This prominent advantage of microwave heating can contribute to deoxygenation. In addition, deoxygenation effectiveness for both coke and coal gangue under microwave heating was investigated. It was discovered that coke acted as a catalyst to some extent to accelerate methane decomposition. However, this effect could be greatly restricted when coal gangue was used in the deoxygenation process because of its chemical inertness. Under optimal conditions (650 °C and 300 mL/min), there was no residual oxygen in the outlet gas, and methane loss was less than 2.2%

  10. UVC emitting phosphors obtained by spray pyrolysis

    The broadband inter-configurational (4f15d1→4f2) emission of Pr3+ doped in lanthanum orthophosphate (LaPO4) and in calcium pyrophosphate (Ca2P2O7) has been investigated under plasma excitation. The synthesis by spray pyrolysis at moderate temperature followed by a controlled annealing proves to be a very efficient way to produce good quality UVC emitting phosphor Ca1.92Pr0.04Na0.04P2O7 (α phase). The emission of this phosphor in the wavelength range 200-350 nm has been measured with a prototype device, which can be employed for anti-microbial testing. - Research Highlights: → The Pr3+ doped orthophosphate and pyrophosphate were synthesized by spray pyrolysis. → The dense particles present good quality UVC emitting (200-350 nm). → The prototype device can be employed for anti-microbial testing.

  11. Intramuscular deoxygenation during exercise in patients who have chronic anterior compartment syndrome of the leg

    Mohler, L. R.; Styf, J. R.; Pedowitz, R. A.; Hargens, A. R.; Gershuni, D. H.

    1997-01-01

    Currently, the definitive diagnosis of chronic compartment syndrome is based on invasive measurements of intracompartmental pressure. We measured the intramuscular pressure and the relative oxygenation in the anterior compartment of the leg in eighteen patients who were suspected of having chronic compartment syndrome as well as in ten control subjects before, during, and after exercise. Chronic compartment syndrome was considered to be present if the intramuscular pressure was at least fifteen millimeters of mercury (2.00 kilopascals) before exercise, at least thirty millimeters of mercury (4.00 kilopascals) one minute after exercise, or at least twenty millimeters of mercury (2.67 kilopascals) five minutes after exercise. Changes in relative oxygenation were measured with use of the non-invasive method of near-infrared spectroscopy. In all patients and subjects, there was rapid relative deoxygenation after the initiation of exercise, the level of oxygenation remained relatively stable during continued exercise, and there was reoxygenation to a level that exceeded the pre-exercise resting level after the cessation of exercise. During exercise, maximum relative deoxygenation in the patients who had chronic compartment syndrome (mean relative deoxygenation [and standard error], -290 +/- 39 millivolts) was significantly greater than that in the patients who did not have chronic compartment syndrome (-190 +/- 10 millivolts) and that in the control subjects (-179 +/- 14 millivolts) (p < 0.05 for both comparisons). In addition, the interval between the cessation of exercise and the recovery of the pre-exercise resting level of oxygenation was significantly longer for the patients who had chronic compartment syndrome (184 +/- 54 seconds) than for the patients who did not have chronic compartment syndrome (39 +/- 19 seconds) and the control subjects (33 +/- 10 seconds) (p < 0.05 for both comparisons).

  12. Microwave Heating Applied to Pyrolysis

    Fernandez, Yolanda; Arenillas, Ana; Menendez, J. Angel

    2011-01-01

    the MW pyrolysis as an original thermochemical process of materials is presented. This chapter comprises a general overview of the thermochemical and quantifying aspects of the pyrolysis process, including current application togethe with a compilation of the most frequently used materials

  13. Time resolved pyrolysis of char

    Egsgaard, Helge; Ahrenfeldt, Jesper; Henriksen, Ulrik Birk

    pyrolysis, and slow heating in direct combination with mass spectrometry, gas chromatography/mass spectrometry and flame ionization detection, respectively. Characteristic ions derived from the flash pyrolysis-gas chromatography/mass spectrometry data enable the release of volatiles to be time and, hence...

  14. Pyrolysis oil as diesel fuel

    Gros, S. [Wartsila Diesel International Ltd., Vaasa (Finland). Diesel Technology

    1996-12-31

    Wood waste pyrolysis oil is an attractive fuel alternative for diesel engine operation. The main benefit is the sustainability of the fuel. No fossil reserves are consumed. The fact that wood waste pyrolysis oil does not contribute to CO{sub 2} emissions is of utmost importance. This means that power plants utilising pyrolysis oil do not cause additional global warming. Equally important is the reduced sulphur emissions that this fuel alternative implies. The sulphur content of pyrolysis oil is extremely low. The high water content and low heating value are also expected to result in very low NO{sub x} emissions. Utilisation of wood waste pyrolysis oil in diesel engines, however, involves a lot of challenges and problems to be solved. The low heating value requires a new injection system with high capacity. The corrosive characteristics of the fluid also underline the need for new injection equipment materials. Wood waste pyrolysis oil contains solid particles which can clog filters and cause abrasive wear. Wood waste pyrolysis oil has proven to have extremely bad ignition properties. The development of a reliable injection system which is able to cope with such a fuel involves a lot of optimisation tests, redesign and innovative solutions. Successful single-cylinder tests have already been performed and they have verified that diesel operation on wood pyrolysis oil is technically possible. (orig.)

  15. Pyrolysis of methane by microwaves. Pt. 1

    The pyrolysis of methane and mixtures of argon-methane by microwaves (2,450 MHz) was investigated. The microwave plasma diagnostic study was performed using electrical probes, namely, the double floating probe technique. Parameters such as electric field strength and current densities were measured and from their relationship the electron temperature, electric conductivity, electron and ion densities were evaluated as function of gas pressure, microwave power input and distance of the probe from the microwave cavity. Various spectroscopic techniques were used for the measurement of temperatures in the microwave plasma; the 'reversal temperature' by measuring the intensities of the electronic vibrational bands of CN and OH molecules and 'rotational temperature' from the measured intensities of rotational OH lines. The 'rotational' as well as the 'reversal temperature' were found to be identical and this temperature was assumed to be the temperature of the gas in the microwave plasma. Energy balance calculation, based upon the electrical energy input and thermal losses, were performed in order to determine if steady state conditions existed in the microwave plasma. Emission and absorption spectroscopy were used for determining the active species formed in the pyrolysis of methane and also of mixtures of CH4-Ar, by the microwave plasma. (orig.)

  16. Effects of glutamine and hyperoxia on pulmonary oxygen uptake and muscle deoxygenation kinetics.

    Marwood, Simon; Bowtell, Joanna L

    2007-01-01

    The aim of the present study was to determine whether glutamine ingestion, which has been shown to enhance the exercise-induced increase in the tricarboxylic acid intermediate (TCAi) pool size, resulted in augmentation of the rate of increase in oxidative metabolism at the onset of exercise. In addition, the potential interaction with oxygen availability was investigated by completing exercise in both normoxic and hyperoxic conditions. Eight male cyclists cycled for 6 min at 70% VO2max following consumption of a drink (5 ml kg body mass(-1)) containing a placebo or 0.125 g kg body mass(-1) of glutamine in normoxic (CON and GLN respectively) and hyperoxic (HYP and HPG respectively) conditions. Breath-by-breath pulmonary oxygen uptake and continuous, non-invasive muscle deoxygenation (via near infrared spectroscopy: NIRS) data were collected throughout exercise. The time constant of the phase II component of pulmonary oxygen uptake kinetics was unchanged between trials (CON: 21.5 +/- 3.0 vs. GLN: 18.2 +/- 1.3 vs. HYP: 18.9 +/- 2.0 vs. HPG: 18.6 +/- 1.2 s). There was also no alteration of the kinetics of relative muscle deoxygenation as measured via NIRS (CON: 5.9 +/- 0.7 vs. GLN: 7.3 +/- 0.8 vs. HYP: 6.5 +/- 0.9 vs. HPG: 5.2 +/- 0.4 s). Conversely, the mean response time of pulmonary oxygen uptake kinetics was faster (CON: 33.4 +/- 1.2 vs. GLN: 29.8 +/- 2.3 vs. HYP: 33.2 +/- 2.6 vs. HPG: 31.6 +/- 2.6 s) and the time at which muscle deoxygenation increased above pre-exercise values was earlier (CON: 9.6 +/- 0.9 vs. GLN: 8.7 +/- 1.1 vs. HYP: 8.5 +/- 0.8 vs. HPG: 8.4 +/- 0.7 s) following glutamine ingestion. In normoxic conditions, plasma lactate concentration was lower following glutamine ingestion compared to placebo. Whilst the results of the present study provide some support for the present hypothesis, the lack of any alteration in the time constant of pulmonary oxygen uptake and muscle deoxygenation kinetics suggest that the normal exercise induced expansion of

  17. Validation Results for Core-Scale Oil Shale Pyrolysis

    Staten, Josh; Tiwari, Pankaj

    2015-03-01

    This report summarizes a study of oil shale pyrolysis at various scales and the subsequent development a model for in situ production of oil from oil shale. Oil shale from the Mahogany zone of the Green River formation was used in all experiments. Pyrolysis experiments were conducted at four scales, powdered samples (100 mesh) and core samples of 0.75”, 1” and 2.5” diameters. The batch, semibatch and continuous flow pyrolysis experiments were designed to study the effect of temperature (300°C to 500°C), heating rate (1°C/min to 10°C/min), pressure (ambient and 500 psig) and size of the sample on product formation. Comprehensive analyses were performed on reactants and products - liquid, gas and spent shale. These experimental studies were designed to understand the relevant coupled phenomena (reaction kinetics, heat transfer, mass transfer, thermodynamics) at multiple scales. A model for oil shale pyrolysis was developed in the COMSOL multiphysics platform. A general kinetic model was integrated with important physical and chemical phenomena that occur during pyrolysis. The secondary reactions of coking and cracking in the product phase were addressed. The multiscale experimental data generated and the models developed provide an understanding of the simultaneous effects of chemical kinetics, and heat and mass transfer on oil quality and yield. The comprehensive data collected in this study will help advance the move to large-scale in situ oil production from the pyrolysis of oil shale.

  18. Pyrolysis product distribution of waste newspaper in MSW

    Wu, Chao-Hsiung [Department of Environmental Engineering, Da-Yeh University, Chang-Hwa 515 (Taiwan); Chang, Ching-Yuan [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106 (Taiwan); Tseng, Chao-Heng [Department of Civil Engineering, National Taipei University of Technology, Taipei 106 (Taiwan); Lin, Jyh-Ping [Department of Environmental Engineering, Lan-Yang Institute of Technology, I-Lan 261 (Taiwan)

    2003-03-01

    Waste newspaper, one of the principal waste papers in Taiwan, was pyrolyzed with a thermogravimetric analysis (TGA) reaction system. The pyrolysis experiments were carried out in nitrogen environment at a constant heating rate of 5 Kmin{sup -1}. The pyrolysis products and the residues were collected and analyzed by gas chromatography and elemental analyzer, respectively. The major products investigated included non-hydrocarbons (H{sub 2}, CO, CO{sub 2}, and H{sub 2}O) and hydrocarbons (C{sub 1-3}, C{sub 4}, C{sub 5}, C{sub 6}, 1-ring, C{sub 10-12}, levoglucosan, C{sub 13-15}, and C{sub 16-18}). The cumulated masses and the instantaneous concentrations of pyrolysis products were obtained under the experimental conditions. The estimation of the mass of tar, yielded at various pyrolysis temperatures, was also made. The results of this study might be useful for the design of pyrolysis process as well as for determining the pyrolysis mechanisms of the newspaper.

  19. Slow-pyrolysis and -oxidation of different biomass fuel samples.

    Haykiri-Acma, Hanzade; Yaman, Serdar

    2006-01-01

    Pyrolysis and oxidation characteristics of some biomass samples such as almond shell, walnut shell, hazelnut shell, tobacco waste, and rapeseed were investigated using Thermogravimetric Analysis (TGA) technique under slow heating conditions (20 K/min) from ambient to 1173 K. Pyrolysis experiments were carried out under dynamic nitrogen atmosphere of 40 mL/min. Dry air was used at the same rate in the oxidation experiments. The rates of mass losses from the biomass samples regarding temperature were obtained from the Differential Thermogravimetric Analysis (DTG) curves, and these rates were interpreted according to the pyrolysis and oxidation characteristics of the biomass samples. Since the heating rate was relatively very slow, individual peaks on the DTG curves resulting from the pyrolysis or oxidation of the major constituents that forming the complex structure of the biomass samples could be survived and distinguished from the thermograms. The maximum rates of mass losses (dm/dt)max from the oxidation experiments were determined to be higher than those from the pyrolysis experiments. On the other hand, the (dm/dt)max values were determined at about 550 K for pyrolysis, whereas they were below 500 K in case of oxidation irrespective of the type of the biomass samples. PMID:16849135

  20. Thermal response of heat-resistant layer with pyrolysis

    Huang Haiming

    2012-01-01

    Full Text Available A model is developed for analyzing the thermal response of the heat-resistant layer composed of high silica fiber reinforced phenolic matrix composites(SiO2/P and aluminum, in which pyrolysis and phase transitions are exsited, such as melt, vaporization and sublimation. Based on this model, the thermal response of the heat-resistant layer with different SiO2/P thickness is calculated under a heat flux by using FORTRAN codes. As indicated in the results, the slope of temperature gets a sudden decline at the pyrolysis interface, which is due to the latent heat of pyrolysis; the thickness of heat-resistant layer has little influence on the heating-surface temperature, however, the back temperature may increase with the decreasing thickness; and the thermal conductivity of carbonized layer is very important to thermal response.

  1. Pyrolysis of hardwoods residues: on kinetics and chars characterization

    Della Rocca, P.A.; Cerrella, E.G.; Bonelli, P.R.; Cukierman, A.L. [Universidad de Buenos Aires (Argentina). PINMATE, Departamento de Industrias

    1999-11-01

    Evolution of chemical and textural-morphological features characterizing two native Argentinian hardwood species (Aspidosperma Quebracho Blanco Schlecht and Aspidosperma Australe), subjected to pyrolysis at different operating conditions, is analysed by several techniques. Surface areas of raw materials and pyrolysed samples are evaluated from physical adsorption measurements employing N{sub 2} at 77 K and CO{sub 2} at 298 K. The samples are also examined by optical and scanning electronic microscopy. Results point to significant feature changes, which are, in general, strongly affected by pyrolysis conditions, particularly temperature. Furthermore, kinetic measurements of wood pyrolysis are performed by non-isothermal thermogravimetric analysis, from ambient temperature up to 1123 K. A deactivation model reported in the literature, which predicts an increase of activation energy with reaction extent, successfully describes kinetic data for both species over the whole range of degradation temperatures. (author)

  2. Kinetics of scrap tyre pyrolysis under vacuum conditions

    Scrap tyre pyrolysis under vacuum is attractive because it allows easier product condensation and control of composition (gas, liquid and solid). With the aim of determining the effect of vacuum on the pyrolysis kinetics, a study has been carried out in thermobalance. Two data analysis methods have been used in the kinetic study: (i) the treatment of experimental data of weight loss and (ii) the deconvolution of DTG (differential thermogravimetry) curve. The former allows for distinguishing the pyrolysis of the three main components (volatile components, natural rubber and styrene-butadiene rubber) according to three successive steps. The latter method identifies the kinetics for the pyrolysis of individual components by means of DTG curve deconvolution. The effect of vacuum in the process is significant. The values of activation energy for the pyrolysis of individual components of easier devolatilization (volatiles and NR) are lower for pyrolysis under vacuum with a reduction of 12 K in the reaction starting temperature. The kinetic constant at 503 K for devolatilization of volatile additives at 0.25 atm is 1.7 times higher than that at 1 atm, and that corresponding to styrene-butadiene rubber at 723 K is 2.8 times higher. Vacuum enhances the volatilization and internal diffusion of products in the pyrolysis process, which contributes to attenuating the secondary reactions of the repolymerization and carbonization of these products on the surface of the char (carbon black). The higher quality of carbon black is interesting for process viability. The large-scale implementation of this process in continuous mode requires a comparison to be made between the economic advantages of using a vacuum and the energy costs, which will be lower when the technologies used for pyrolysis require a lower ratio between reactor volume and scrap tyre flow rate.

  3. Preparation of YBCO superconducting films by spray pyrolysis method

    The methodology for the preparation of YBCO superconducting films on Zr2O(Y) substrates by spray pyrolysis method is reported. The transition temperature of these films is superior than the boiling temperature of liquid 2N. Other critical parameters are similar to those reported by other authors using the same technique

  4. 温度对竹屑热解多联产产物特性的影响%Effect of temperature on characteristics products derived from bamboo chips pyrolysis based on pyrolytic polygeneration

    陈伟; 杨海平; 刘标; 李开志; 陈应泉; 李顺; 陈旭; 陈汉平

    2014-01-01

    Bamboo is one of the most important forestry resources, and a large amount of waste is produced during its utilization, such as bamboo chips and tailing. To improve the recycling of bamboo waste, pyrolysis technology for polygeneration was employed. The experiment was carried out in a fixed bed reactor at 250-950℃, and the effect of temperature on products yields, compositions and characteristics was investigated. Micro-GC (3000, Agilent, USA) and GC-MS (7890A/5975C, Agilent, USA) were used to analyze the compositions of bio-gas and bio-oil, respectively. The evolution of bio-char structure was studied with automatic adsorption equipment (ASAP 2020, Micromeritics, USA) via nitrogen adsorption at 77 K. The specific surface area was calculated from the adsorption isotherms using the Brunauer-Emmett-Teller (BET) equation. The pore size distribution was estimated by the Barrett-Joiner-Halenda (BJH) method from the desorption isotherms. In addition, the fractal theory was applied to characterize the fractal properties of pore structure of bio-char. With the temperature increasing, bio-char yield was decreased and bio-gas yield was increased significantly, while bio-oil yield was not changed much. Change of products yields was mainly due to the three components (hemicellulose, cellulose, and lignin) decomposing at different temperatures, and volatiles secondary cracking at high temperature. Bio-gas was mainly composed of H2, CH4, CO, and CO2. Cellulose and hemicellulose decomposed at lower temperature, which resulted that CO and CO2 were released. After the temperature increased over 450℃, lignin began to decompose, and the content of H2 rose sharply, while the content of CH4 rose slowly. After 750℃, volatiles secondary cracking intensified to release more H2. Liquid oil mainly consists of acetic acid, furfural, furan, ketone, aldehyde, and phenol. At 250℃, hemicellulose decomposed predominantly, which generated acetic acid, 2-furanmethanol, hydroxyacetone, and

  5. Direct upgrading of fast pyrolysis lignin vapor over the HZSM-5 catalyst

    Zhou, Guofeng; Jensen, Peter Arendt; Le, Duy M.;

    2016-01-01

    Lignin has been pyrolyzed in a continuous fast pyrolysis reactor and the vapor was subsequently upgraded in situ over a downstream, close coupled HZSM-5 catalyst in a fixed bed reactor. The effect of the catalyst temperature on the HZSM-5 upgrading of lignin derived pyrolysis vapor was investigat...

  6. Extent of pyrolysis impacts on fast pyrolysis biochar properties.

    Brewer, Catherine E; Hu, Yan-Yan; Schmidt-Rohr, Klaus; Loynachan, Thomas E; Laird, David A; Brown, Robert C

    2012-01-01

    A potential concern about the use of fast pyrolysis rather than slow pyrolysis biochars as soil amendments is that they may contain high levels of bioavailable C due to short particle residence times in the reactors, which could reduce the stability of biochar C and cause nutrient immobilization in soils. To investigate this concern, three corn ( L.) stover fast pyrolysis biochars prepared using different reactor conditions were chemically and physically characterized to determine their extent of pyrolysis. These biochars were also incubated in soil to assess their impact on soil CO emissions, nutrient availability, microorganism population growth, and water retention capacity. Elemental analysis and quantitative solid-state C nuclear magnetic resonance spectroscopy showed variation in O functional groups (associated primarily with carbohydrates) and aromatic C, which could be used to define extent of pyrolysis. A 24-wk incubation performed using a sandy soil amended with 0.5 wt% of corn stover biochar showed a small but significant decrease in soil CO emissions and a decrease in the bacteria:fungi ratios with extent of pyrolysis. Relative to the control soil, biochar-amended soils had small increases in CO emissions and extractable nutrients, but similar microorganism populations, extractable NO levels, and water retention capacities. Corn stover amendments, by contrast, significantly increased soil CO emissions and microbial populations, and reduced extractable NO. These results indicate that C in fast pyrolysis biochar is stable in soil environments and will not appreciably contribute to nutrient immobilization. PMID:22751053

  7. Optimal conditions for the catalytic and non-catalytic pyrolysis of water hyacinth

    Highlights: • Particle size, temperature and catalyst affect greatly the water hyacinth pyrolysis. • <200 μm is the optimal particle size for water hyacinth to produce syngas. • There are more porosity, surface area and crystalline at a higher temperature. • 900 °C is the best pyrolysis temperature for water hyacinth to produce syngas. • The syngas production can be greatly promoted by catalysts, and KCl is the best one. - Abstract: Water hyacinth pyrolysis was carried out in a quartz tube reactor. Different particle sizes, pyrolysis temperatures and catalysts were tested. The product fractional yields, gaseous products, surface morphology and crystal structure were analyzed in order to obtain the optimal pyrolysis condition for producing syngas (CO + H2) from water hyacinth. The results indicated that particle size had a significant impact on water hyacinth pyrolysis and among four particle sizes in this paper dp < 200 μm was the optimal particle size for syngas production. Moreover, active surface area, porosity level and crystalline materials increased as the temperature rose and the results showed that among five temperatures in this study 900 °C was the best pyrolysis temperature for producing syngas. In addition, the syngas production levels can be improved if a suitable catalyst is used. The best catalyst was KCl, followed by CaO and MgO

  8. Kinetics Analysis of Coconut Shell Pyrolysis

    LIU; Xue-mei; JIANG; Jian-chun; SUN; Kang; XU; Fan; XU; Yu

    2012-01-01

    [Objective] The paper aimed to study kinetics analysis of coconut shell pyrolysis. [Method] Thermo gravimetric analysis was used to study the pyrolysis characteristic of coconut shell at different pyrolysis rates (5, 10, 20 K/min). [Result] The pyrolysis process included 3 stages, water loss, pyrolysis, and thermal condensation. The pyrolysis process can be described through first-order reaction model. With the increasing pyrolysis rate, activation energy in the first stage rose, but activation energy in the second stage reduced. [Conclusion] The study provided theoretical basis for the promotion and application of biomass energy.

  9. Alkaline deoxygenated graphene oxide for supercapacitor applications: An effective green alternative for chemically reduced graphene

    Perera, Sanjaya D.; Mariano, Ruperto G.; Nijem, Nour; Chabal, Yves; Ferraris, John P.; Balkus, Kenneth J.

    2012-10-01

    Graphene is a promising electrode material for energy storage applications. The most successful method for preparing graphene from graphite involves the oxidation of graphite to graphene oxide (GO) and reduction back to graphene. Even though different chemical and thermal methods have been developed to reduce GO to graphene, the use of less toxic materials to generate graphene still remains a challenge. In this study we developed a facile one-pot synthesis of deoxygenated graphene (hGO) via alkaline hydrothermal process, which exhibits similar properties to the graphene obtained via hydrazine reduction (i.e. the same degree of deoxygenation found in hydrazine reduced GO). Moreover, the hGO formed freestanding, binder-free paper electrodes for supercapacitors. Coin cell type (CR2032) symmetric supercapacitors were assembled using the hGO electrodes. Electrochemical characterization of hGO was carried out using lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and ethylmethylimidazolium bis-(trifluoromethanesulfonyl)imide (EMITFSI) electrolytes. The results for the hGO electrodes were compared with the hydrazine reduced GO (rGO) electrode. The hGO electrode exhibits a energy density of 20 W h kg-1 and 50 W h kg-1 in LiTFSI and EMITFSI respectively, while delivering a maximum power density of 11 kW kg-1 and 14.7 kW kg-1 in LiTFSI and EMITFSI, respectively.

  10. Slow Pyrolysis of Cassava Wastes for Biochar Production and Characterization

    Nurhidayah Mohamed Noor

    2012-01-01

    Full Text Available Production of biochar from slow pyrolysis of biomass is a promising carbon negative procedure since it removes the net carbon dioxide in the atmosphere and produce recalcitrant carbon suitable for sequestration in soil. Biochar production can vary significantly with the pyrolysis parameter. This study investigated the impact of temperature and heating rate on the yield and properties of biochar derived from cassava plantations residues which are cassava stem (CS and cassava rhizome (CR. The pyrolysis temperatures ranged from 400°C to 600°C while the heating rate parameter was varied from 5°C/min to 25°C/min. The experiment was conducted using the lab scale slow pyrolysis system. The increment of temperature and heating rate of slow pyrolysis for both cassava wastes had raised the fixed carbon content of the biochar but decreased the biochar yield. More biochar was produced at lower temperature and lower heating rate. Temperature gave more influence on the biochar yield as compared to the heating rate parameter. The highest biochar yield of more than 35 mf wt. % can be obtained from both CS and CR at 400°C and heating rate of 5°C/min. From the proximate analysis, the results showed that cassava wastes contain high percentage of volatile matter which is more than 80 mf wt. %. Meanwhile, the biochar produced from cassava wastes contain high percentage of fixed carbon which is about 5−8 times higher than their raw samples. This suggested that, it is a good step to convert CS and CR into high carbon biochar via slow pyrolysis process that can substantially yield more biochar, up to 37 mf wt. % in this study. Since the fixed carbon content for both CS and CR biochar produced in any studied parameter were found to be more than 75 mf wt. %, it is suggested that biochar from cassava wastes is suitable for carbon sequestration.

  11. Flash pyrolysis fuel oil: BIO-POK

    Gust, S. [Neste Oy, Porvoo (Finland)

    1995-12-31

    Flash pyrolysis oil from Ensyn Tech., Canada and Union Fenosa, Spain was combusted with simple pressure atomisation equipment commonly used with light fuel oils in intermediate size (0.1-1 MW) boilers. With a number of modifications to the combustion system, carbon monoxide (CO) and nitrous oxide (NO{sub x}) could be reduced to acceptable levels: CO < 30 ppm and NO{sub x} < 140 ppm. Particulate emissions which were initially very high (Bacharach 4-5) were reduced (Bach. 2-3) by system changes but are still higher than from light fuel oil (Bach. <1). The modifications to the combustion system were: acid resistant progressive cavity pump, higher oil preheat temperature and higher oil pressure than for light fuel oils, refractory section between burner and boiler warmed up to at least 800 deg C. In addition, it was necessary to store pyrolysis oil samples under inert conditions to prevent oxidation and to rinse nozzles with alcohol after shutdown to prevent coking. The complexity and cost of these system modifications are considered to be too great for current grades of flash pyrolysis oil to be sold as a light fuel oil replacement. Improvements to fuel quality will be necessary. The main improvements are lowering of viscosity and improving of stability

  12. Quality improvement of pyrolysis oil from waste rubber by adding sawdust

    Highlights: • Rubber-pyrolysis oil is difficult to be fuel due to high proportion of PAHs. • The efficiency of pyrolysis was increased as the percentage of sawdust increased. • The adding of sawdust improved pyrolysis oil quality by reducing the PAHs content. • Adding sawdust reduced nitrogen/sulfur in oil and was easier to convert to diesel. - Abstract: This work was aimed at improving the pyrolysis oil quality of waste rubber by adding larch sawdust. Using a 1 kg/h stainless pyrolysis reactor, the contents of sawdust in rubber were gradually increased from 0%, 50%, 100% and 200% (wt%) during the pyrolysis process. Using a thermo-gravimetric (TG) analyzer coupled with Fourier transform infrared (FTIR) analysis of evolving products (TG–FTIR), the weight loss characteristics of the heat under different mixtures of sawdust/rubber were observed. Using the pyrolysis–gas chromatography (GC)–mass spectrometry (Py–GC/MS), the vapors from the pyrolysis processes were collected and the compositions of the vapors were examined. During the pyrolysis process, the recovery of the pyrolysis gas and its composition were measured in-situ at a reaction temperature of 450 °C and a retaining time of 1.2 s. The results indicated that the efficiency of pyrolysis was increased and the residual carbon was reduced as the percentage of sawdust increased. The adding of sawdust significantly improved the pyrolysis oil quality by reducing the polycyclic aromatic hydrocarbons (PAHs) and nitrogen and sulfur compounds contents, resulting in an improvement in the combustion efficiency of the pyrolysis oil

  13. Pyrolysis and dehalogenation of plastics from waste electrical and electronic equipment (WEEE): a review.

    Yang, Xiaoning; Sun, Lushi; Xiang, Jun; Hu, Song; Su, Sheng

    2013-02-01

    Plastics from waste electrical and electronic equipment (WEEE) have been an important environmental problem because these plastics commonly contain toxic halogenated flame retardants which may cause serious environmental pollution, especially the formation of carcinogenic substances polybrominated dibenzo dioxins/furans (PBDD/Fs), during treat process of these plastics. Pyrolysis has been proposed as a viable processing route for recycling the organic compounds in WEEE plastics into fuels and chemical feedstock. However, dehalogenation procedures are also necessary during treat process, because the oils collected in single pyrolysis process may contain numerous halogenated organic compounds, which would detrimentally impact the reuse of these pyrolysis oils. Currently, dehalogenation has become a significant topic in recycling of WEEE plastics by pyrolysis. In order to fulfill the better resource utilization of the WEEE plastics, the compositions, characteristics and dehalogenation methods during the pyrolysis recycling process of WEEE plastics were reviewed in this paper. Dehalogenation and the decomposition or pyrolysis of WEEE plastics can be carried out simultaneously or successively. It could be 'dehalogenating prior to pyrolysing plastics', 'performing dehalogenation and pyrolysis at the same time' or 'pyrolysing plastics first then upgrading pyrolysis oils'. The first strategy essentially is the two-stage pyrolysis with the release of halogen hydrides at low pyrolysis temperature region which is separate from the decomposition of polymer matrixes, thus obtaining halogenated free oil products. The second strategy is the most common method. Zeolite or other type of catalyst can be used in the pyrolysis process for removing organohalogens. The third strategy separate pyrolysis and dehalogenation of WEEE plastics, which can, to some degree, avoid the problem of oil value decline due to the use of catalyst, but obviously, this strategy may increase the cost of

  14. Characterization of bio-oil obtained from fruit pulp pyrolysis

    Ozbay, Nurguel [Bozueyuek Vocational School, Bilecik University, Bozueyuek, Bilecik (Turkey); Apaydin-Varol, Esin; Burcu Uzun, Basak [Department of Chemical Engineering, Anadolu University, Eskisehir (Turkey); Eren Puetuen, Ayse [Department of Chemical Engineering, Anadolu University, Eskisehir (Turkey)], E-mail: aeputun@anadolu.edu.tr

    2008-08-15

    Apricot pulps was pyrolyzed in a fixed-bed reactor under different pyrolysis conditions to determine the role of final temperature, sweeping gas flow rate and steam velocity on the product yields and liquid product composition with a heating rate of 5 deg. C/min. Final temperature range studied was between 300 and 700 deg. C and the highest liquid product yield was obtained at 550 deg. C. Liquid product yield increased significantly under nitrogen and steam atmospheres. For the optimum conditions, pyrolysis of peach pulp was furthermore studied. Liquid products obtained under the most suitable conditions were characterized by FTIR and {sup 1}H-NMR. In addition, gas chromatography/mass spectrophotometer was achieved on all pyrolysis oils. Characterization showed that bio-oil could be a potential source for synthetic fuels and chemical feedstock.

  15. Characterization of bio-oil obtained from fruit pulp pyrolysis

    Oezbay, Nurguel [Bozueyuek Vocational School, Bilecik University, Bozueyuek, Bilecik (Turkey); Apaydin-Varol, Esin; Burcu Uzun, Basak; Eren Puetuen, Ayse [Department of Chemical Engineering, Anadolu University, Eskisehir (Turkey)

    2008-08-15

    Apricot pulps was pyrolyzed in a fixed-bed reactor under different pyrolysis conditions to determine the role of final temperature, sweeping gas flow rate and steam velocity on the product yields and liquid product composition with a heating rate of 5{sup o}C/min. Final temperature range studied was between 300 and 700{sup o}C and the highest liquid product yield was obtained at 550{sup o}C. Liquid product yield increased significantly under nitrogen and steam atmospheres. For the optimum conditions, pyrolysis of peach pulp was furthermore studied. Liquid products obtained under the most suitable conditions were characterized by FTIR and {sup 1}H-NMR. In addition, gas chromatography/mass spectrophotometer was achieved on all pyrolysis oils. Characterization showed that bio-oil could be a potential source for synthetic fuels and chemical feedstock. (author)

  16. Mechanism of Xylan Pyrolysis by Py-GC/MS

    WANG Shu-rong; LIANG Tao; RU Bin; GUO Xiu-juan

    2013-01-01

    In order to investigate the decomposition behavior of hemicellulose,xylan was chosen as the representative of hemicellulose to study the fast pyrolysis on the combination system of analytical pyrolyzer and gas chromatograph coupled with mass spectrometer(Py-GC/MS).The main condensable products of xylan pyrolysis consisted of acids,aldehydes,and ketones; while gas products contained CO2,CO,CH4 and H2.Acetic acid and furfural were the most abundant products with the highest contents of 20.11% and 20.24% respectively.While furfural and acetic acid were formed competitively with residence time and temperature increases,the distribution of xylan pyrolysis products did not vary with the residence time and temperature,while the total content of several kinds of products changed a lot.According to the analysis of experimental data,a reaction pathway of xylan decomposition was deduced so as to illustrate the formation mechanism of main products.

  17. Characterization of bio-oil obtained from fruit pulp pyrolysis

    Apricot pulps was pyrolyzed in a fixed-bed reactor under different pyrolysis conditions to determine the role of final temperature, sweeping gas flow rate and steam velocity on the product yields and liquid product composition with a heating rate of 5 deg. C/min. Final temperature range studied was between 300 and 700 deg. C and the highest liquid product yield was obtained at 550 deg. C. Liquid product yield increased significantly under nitrogen and steam atmospheres. For the optimum conditions, pyrolysis of peach pulp was furthermore studied. Liquid products obtained under the most suitable conditions were characterized by FTIR and 1H-NMR. In addition, gas chromatography/mass spectrophotometer was achieved on all pyrolysis oils. Characterization showed that bio-oil could be a potential source for synthetic fuels and chemical feedstock

  18. Autothermal fluidized bed pyrolysis of Cuban pine sawdust

    Suarez, J.; Beaton, P. [University of the Orient, Santiago de Cuba (Cuba). Faculty of Mechanical Engineering; Zanzi, R.; Grimm, A. [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2006-06-15

    Oxidative pyrolysis of Cuban pine sawdust was investigated using an autothermal fluidized bed reactor. Biomass particles were fed continuously (8.13 Kg/h) in a bed, fluidized by air gas. Experiments were conduced at three different dimensionless air factors 1, 1.5, and 2 (defined as ratio of actual air flow rate to stoichiometric air flow rate). The various physical and chemical characteristics of the pyrolysis products acquired in these conditions were identified. The results indicated that (1) the operating temperature can be correlated with the air factor; (2) the higher air factor promotes high temperature and contributes to the secondary reactions, which lead to less liquid; (3) the physicochemical characterization of the pyrolysis products indicated that the air factor, in the range studied, does not have a notable influence in their properties; (4) the liquid and char products obtained may be a potentially valuable source of chemical feedstocks. (Author)

  19. Releasing behavior of chlorine and fluorine during agricultural waste pyrolysis

    The releasing behavior of chlorine (Cl) and fluorine (F) during agricultural waste pyrolysis was investigated using a fixed-bed pyrolysis system with pyrohydrolytic-ion chromatography and thermodynamic equilibrium calculation. Agricultural waste contains a large amount of Cl-bearing species, among which approximately 30% is easily released with biomass drying. During biomass pyrolysis, Cl-bearing species evolve out rapidly to the gas phase, and higher temperature is favorable for the releasing. The releasing process can be divided into two ranges: the fast evaporating range (200–600 °C) and slow evaporating range (600–1000 °C). F shows similar transforming behavior. However, higher temperature is preferred for the release. Thermodynamic simulation shows that Cl mainly exists as KCl(g) at higher temperatures (>600 °C) with some HCl(g) and K2Cl2(g) as intermediate species at lower temperatures (<600 °C), whereas F mainly releases as SiF4 at higher temperatures (>500 °C) with SF5Cl being the dominant F-bearing species at lower temperatures (<500 °C). - Highlights: • The releasing behavior of fluorine during biomass pyrolysis was first studied. • The proportions of Cl and F in different products were examined. • Experiment and simulation were conducted to study the in-depth mechanism

  20. Bio-oil from flash pyrolysis of agricultural residues

    Ibrahim, N.B.

    2012-08-15

    This thesis describes the production of bio-oils from flash pyrolysis of agricultural residues, using a pyrolysis centrifugal reactor (PCR). It has been the objective of the present work to investigate the influence of changed operation conditions on the yield of bio-oil, char and gas; as well as to investigate the composition and storage properties of some of the produced bio-oils. Mainly the influence of feedstock type (wheat straw, rice husk and pine wood), feedstock water content and reactor temperature on the yield of char, bio-oil and gas were investigated. The storage stability of bio-oils with respect to changes in viscosity, water content and pH were investigated for straw and pine wood oil at different temperature and residence times. Temperature plays a major role in the pyrolysis process and it determines to a high degree the fate of the final product yields and also product composition. Higher temperature favors the formation of pyrolysis gas while lower temperatures increase the yield of char. Liquid oil, however increases with temperature up to certain point and thereafter it decreases at still higher temperature due to secondary cracking of the primary products. The presence of moisture in the feed stock may also influences the pyrolysis process. The influence of reaction temperature and the moisture content on the flash pyrolysis product yield has been reported in Paper I (Chapter 2). It was observed that the presence of moisture in the wheat straw with different moisture levels of 1.5 wt. %, 6.2 wt. % and 15.0 wt. % have shown no significant effect on the pyrolysis product distribution. The fraction of bio-oil, char and gases produced from pyrolysis of straw were in the range of 40-60 wt. %, 18-50 wt. % and 5-22 wt. %, respectively, regardless of the straw moisture levels. The optimal reaction temperature for the production of bio-oil was around 525 deg. C to 550 deg. C for all straw moisture contents. It was investigated how differences in

  1. Impact of thermal pretreatment on the fast pyrolysis conversion of Southern Pine

    Tyler L. Westover; Manunya Phanphanich; Micael L. Clark; Sharna R. Rowe; Steven E. Egan; Christopher T Wright; Richard D. Boardman; Alan H. Zacher

    2013-01-01

    Background: Thermal pretreatment of biomass ranges from simple (nondestructive) drying to more severe treatments that cause devolatization, depolymerization and carbonization. These pretreatments have demonstrated promise for transforming raw biomass into feedstock material that has improved milling, handling, storage and conversion properties. In this work, southern pine material was pretreated at 120, 180, 230 and 270 degrees C, and then subjected to pyrolysis tests in a continuous-feed bubbling-fluid bed pyrolysis system. Results: High pretreatment temperatures were associated with lower specific grinding energies, higher grinding rates and lower hydrogen and oxygen contents. Higher pretreatment temperatures were also correlated with increased char production, decreased total acid number and slight decrease in the oxygen content of the pyrolysis liquid fraction. Conclusion: Thermal pretreatment has both beneficial and detrimental impacts on fast pyrolysis conversion of pine material to bio-oil, and the effect of thermal pretreatment on upgrading of pyrolysis bio-oil requires further attention.

  2. Comparative Study on the Pyrolysis Behaviors of Corn Stalk and Pine Sawdust Using TG-MS

    赵云鹏; 丁曼; 窦有权; 樊星; 王月伦; 魏贤勇

    2014-01-01

    The pyrolysis behaviors of corn stalk (CS) and pine sawdust (PS) were investigated with thermogravim-etry-mass spectroscopy (TG-MS). The peak temperature of PS was higher and the main decomposition region shifted to higher temperature compared with CS, which implied that the hemicellulose and cellulose of PS were more ther-mally stable than those of CS. However, the hemicellulose and cellulose of PS were more easily decomposed into gaseous products than those of CS during pyrolysis. The pyrolysis process of biomass can be described by a two-step independent first-order kinetic model. This fundamental study provides a basic insight into the biomass pyrolysis, which is beneficial for understanding the pyrolysis mechanism of biomass and developing an advanced thermal proc-ess for effective utilization of biomass.

  3. Pyrolysis of large wood particles: a study of shrinkage importance in simulations

    Michel Bellais; K.O. Davidsson; T. Liliedahl; K. Sjoestroem; J.B.C. Pettersson [Royal Institute of Technology, Stockholm (Sweden). Chemical Technology

    2003-08-01

    Shrinkage models have been developed and included in a model for the pyrolysis of large wood particles. Shrinkage is modelled in three different ways: uniform shrinkage, shrinking shell and shrinking cylinders. These models and a reference model without shrinkage are compared with experimental data for mass loss versus time during pyrolysis of birch cylinders at different temperatures. In the experiments a wood particle was introduced into a pyrolysis furnace held at constant temperature. The particle mass and volume were recorded using a balance and a video camera. Uniform shrinkage slows down the pyrolysis whereas shrinking shell and cylinder models enhance the pyrolysis rate. The effect was sufficiently small to be neglected given the uncertainty about some wood physical properties. 9 refs., 3 figs., 1 tab.

  4. 不同热解温度生物炭对 Cd(Ⅱ)的吸附特性%Adsorption of Cd(Ⅱ) Varies with Biochars Derived at Different Pyrolysis Temperatures

    王震宇; 刘国成; Monica Xing; 李锋民; 郑浩

    2014-01-01

    Ten biochars were prepared at different pyrolysis temperatures (300- 600℃) using peanut shells and Chinese medicine material residue as raw materials, and were characterized. Adsorption behavior of Cd(Ⅱ) on these biochars at different solution pHs, sorption times, and Cd(Ⅱ) concentrations was investigated. The C content, surface area, and aromaticity of the biochars increased with increasing pyrolysis temperature, while the amount of oxygen-containing functional groups decreased. In addition, the content of inorganic minerals (e. g. , Ca/ Mg carbonate or phosphate) was enriched, but their solubility was reduced with increasing pyrolysis temperature. As the solution pHs increased from 2. 0 to 6. 0, the amount of Cd(Ⅱ) adsorbed on the biochars gradually increased, and achieved the maximum at pH 6. 0. Adsorption processes could be divided into two stages: fast and slow sorption. The rate of Cd(Ⅱ) adsorption on these biochars was regulated by film and intraparticle diffusion, precipitation and ion exchange. With increasing temperature, the percentage of fast sorption to overall sorption of Cd(Ⅱ) gradually decreased. Sharp decrease of oxygen-containing functional groups and formation of insoluble crystalline minerals reduced the rate of fast sorption on the high-temperature biochars (≥500℃). For low-temperature biochars (≤400℃), precipitation and ion exchange were the dominant sorption mechanisms. For high-temperature biochars (≥500℃), more integrated π-conjugated aromatic structures enhanced the contribution of Cd-π interaction to the overall sorption, but the formation of phosphate and carbonate minerals probably weakened the sorption. These results will provide important information on screening biochars as engineered adsorbents to remove or immobilize Cd(Ⅱ) in contaminated water and soil.%以花生壳和中药渣为原料,分别于300、350、400、500、600℃下慢速热解制备生物炭,并表征其物理化学性质.研究不同 pH

  5. Study on Pyrolysis of Newly Developed Copolyester PETG by Pyrolysis-Gas Chromatography-Mass Spectrometry%裂解气相色谱-质谱法研究新型共聚酯PETG的热分解

    喻爱芳; 钱和生

    2004-01-01

    Poly (ethylene glycol-co-cyclohexane 1,4-dimethanol terephthalate) (PETG) is a newly developed copolyester. The thermal degradation of PETG was investigated by pyrolysis-gas chromatography/mass spectroscopy (PY-GC/MS). The pyrolytic gas of PETG at temperatures 300 C, 400 C ,500 C,600 C and 700 C were identified, respectively. The results showed that the pyrolysis products are very different at diferent pyrolysis temperature. At 600 C, the pyrolysis products of PETG were characteristic of PETG composition, which can be used to determine the polymer chemical structure.

  6. Pyrolysis of superfine pulverized coal. Part 3. Mechanisms of nitrogen-containing species formation

    Highlights: • NH3 and NO formation mechanisms during superfine pulverized coal pyrolysis are investigated. • Influences of temperature, heating rate, particle size, atmosphere, and acid wash on the NH3 and NO formation are analyzed. • Transformations of nitrogen-containing structures in coal/char during pyrolysis are recognized through XPS observation. • Relationships among nitrogen-containing gaseous species during pyrolysis are discussed. - Abstract: With more stringent regulations being implemented, elucidating the formation mechanisms of nitrogen-containing species during the initial pyrolysis step becomes important for developing new NOx control strategies. However, there is a lack of agreement on the origins of NOx precursors during coal pyrolysis, in spite of extensive investigations. Hence, it is important to achieve a more precise knowledge of the formation mechanisms of nitrogen-contain species during coal pyrolysis. In this paper, pyrolysis experiments of superfine pulverized coal were performed in a fixed bed at low heating rates. The influences of temperature, coal type, particle size and atmosphere on the NH3 and NO evolution were discussed. There is a central theme to develop knowledge of the relationship between particle sizes and evolving behaviors of nitrogen-containing species. Furthermore, the catalytic role of inherent minerals in coal was proved to be effective on the partitioning of nitrogen during coal pyrolysis. In addition, the conversion pathways of heteroaromatic nitrogen structures in coal/char during pyrolysis were recognized through the X-ray photoelectron spectroscopy (XPS) analysis. Large quantities of pyridinic and quanternary nitrogen functionalities were formed during the thermal degradation. Finally, the relationships among the nitrogen-containing gaseous species during coal pyrolysis were discussed. In brief, a comprehensive picture of the volatile-nitrogen partitioning during coal pyrolysis is obtained in this work

  7. Effect of the substrate temperatures on the optical properties of the Cd0.22Zn0.78S thin films by spray pyrolysis method

    CdxZn1-xS films are of considerable interest for a variety of solar cell systems which CdS films have been demonstrated to be effective as large band gap window material of a heterojunction. Cd0.22Zn0.78S films have been deposited onto the glass substrates at different substrate temperatures of 250oC, 275oC and 300oC. The average optical transmittance all of the films was over 70% in the visible range. The optical absorption studies reveal that the transition is direct with band gap energy values between 3.012 and 3.095 eV. The optical constants such as refractive index and dielectric constant of the thin films were determined. The important changes in absorption edge, refractive index and dielectric constant were observed due to the substrate temperature. The refractive index dispersion curves of the films obey the single oscillator model and oscillator parameters changed with substrate temperature. The most significant result of the present study is to indicate that substrate temperature of the films can be used to modify in the optical constant of the Cd0.22Zn0.78S thin films. (Author)

  8. Pyrolysis of Spent Ion Exchange Resins

    Ion exchangers (IEX in international language) are used to remove radionuclides from the primary coolant in all nuclear power stations with a water cooling circuit. This is done by continuously removing a volume of coolant from the primary circuit and passing it through coolers, filters and the ion exchange beds. Cation and anion exchangers, in the form of coarse-grained resin beads in pressurized-water reactors and as finely ground powdered resins in boiling water reactors, are used. The trend for new power stations is to exploit all the possibilities for avoiding the generation of contaminated liquids and then to clean, as far as possible, the solutions that are nevertheless generated using ion exchange for it to be possible to dispose of them as non-radioactive waste. This relieves the burden on evaporator facilities, or means that these can even be dispensed with entirely. Regeneration is possible in principle, but little use is made of it. As the regeneration usual in conventional technologies is not employed in nuclear power stations, it is necessary to dispose of this material as radioactive waste. On the international level, a great number of processes are offered that are intended to meet the relevant national regulations, and these will be discussed in brief with their advantages and disadvantages. The aim is then to find a process which reduces the volume, yields an inert or mineralized product, works at temperatures of no more than approximately 600 deg. C and can be run in a simple facility. Originally, the pyrolysis process was developed to treat liquid organic waste from reprocessing. A typical application is the decomposition of spent solvent (TBP, tributyl phosphate, mixed with kerosene). In this process TBP is pyrolyzed together with calcium hydroxide in a fluidized bed facility at temperatures of around 500 deg. C, the calcium hydroxide reacts with the phosphate groups directly to form calcium pyrophosphate which contains all the radioactivity

  9. The Study of Kinetic Properties and Analytical Pyrolysis of Coconut Shells

    Mahir Said

    2015-01-01

    Full Text Available The kinetic properties of coconut shells during pyrolysis were studied to determine its reactivity in ground form. The kinetic parameters were determined by using thermogravimetric analyser. The activation energy was 122.780 kJ/mol. The pyrolysis products were analyzed using pyrolysis gas chromatography/mass spectrometry (Py-GC/MS. The effects of pyrolysis temperature on the distribution of the pyrolytic products were assessed in a temperature range between 673 K and 1073 K. The set time for pyrolysis was 2 s. Several compounds were observed; they were grouped into alkanes, acids, ethers and alcohols, esters, aldehydes and ketones, furans and pyrans, aromatic compounds, and nitrogen containing compounds. The product compositions varied with temperature in that range. The highest gas proportion was observed at high temperature while the acid proportion was observed to be highest in coconut shells, thus lowering the quality of bio-oil. It has been concluded that higher pyrolysis temperature increases the amount of pyrolysis products to a maximum value. It has been recommended to use coconut shell for production of gas, instead of production of bio-oil due to its high proportion of acetic acid.

  10. Seasonal Hypoxia on the Shelf and Shoaling of the Permanent Oxycline in the Open Sea: Two Faces of the Black Sea Deoxygenation

    Capet, Arthur; Stanev, Emil; Beckers, Jean-Marie; Grégoire, Marilaure

    2016-04-01

    The Black Sea is highly sensitive to external forcings and constitutes a natural laboratory to study the interplays of atmospheric warming and eutrophication on deoxygenation dynamics. Two decades of eutrophication were followed by a sudden reduction of nutrient loads in the late 1980s. Warm and cold air temperature cycles (5-10 years) follow atmospheric oscillation patterns, with a clear warming affecting the recent decades. On the Black Sea north western shelf (hypoxia occurs when summer stratification prevents atmospheric fluxes to compensate for the respiration of organic matter accumulated in the lower water column and the sediments. A former multidecadal 3D model study (1) indicated that current monitoring do not provide a satisfactorily assessment of hypoxia, (2) revealed the inertia due to the benthic accumulation of organic matter during eutrophication period and (3) estimated the nutrient reduction effort required in adaptation to atmospheric warming. In the open basin (120-2000m), the permanent interface between anoxic and oxic waters is subject to vertical migration as the ventilation ensured by dense water formation balances the respiration of sinking organic matter. The analysis of R/V casts and ARGO profiles revealed that the oxycline has shoaled from 140 to 90m between 1955 and present years, while the basin lost 36 % of its oxygen inventory. While the interactions between seasonal hypoxia on the shelf and the shoaling oxic interface in the open basin are not clear, both dynamics will face atmospheric warming and new industrial development of the lower danube watershed. We discuss the specific monitoring and modelling efforts required to assess the environmental and economical threat cast by further deoxygenation in the Black Sea.

  11. Novel technique for coal pyrolysis and hydrogenation product analysis. Final technical report

    Pfefferle, L.D.; Boyle, J.

    1993-03-15

    A microjet reactor coupled to a VUV photoionization time-of-flight mass spectrometer has been used to obtain species measurements during high temperature pyrolysis and oxidation of a wide range of hydrocarbon compounds ranging from allene and acetylene to cyclohexane, benzene and toluene. Initial work focused on calibration of the technique, optimization of ion collection and detection and characterization of limitations. Using the optimized technique with 118 nm photoionization, intermediate species profiles were obtained for analysis of the hydrocarbon pyrolysis and oxidation mechanisms. The ``soft`` ionization, yielding predominantly molecular ions, allowed the study of reaction pathways in these high temperature systems where both sampling and detection challenges are severe. Work has focused on the pyrolysis and oxidative pyrolysis of aliphatic and aromatic hydrocarbon mixtures representative of coal pyrolysis and hydropyrolysis products. The detailed mass spectra obtained during pyrolysis and oxidation of hydrocarbon mixtures is especially important because of the complex nature of the product mixture even at short residence times and low primary reactant conversions. The combustion community has advanced detailed modeling of pyrolysis and oxidation to the C4 hydrocarbon level but in general above that size uncertainties in rate constant and thermodynamic data do not allow us to a priori predict products from mixed hydrocarbon pyrolyses using a detailed chemistry model. For pyrolysis of mixtures of coal-derived liquid fractions with a large range of compound structures and molecular weights in the hundreds of amu the modeling challenge is severe. Lumped models are possible from stable product data.

  12. Comparison of the pyrolysis behavior of lignins from different tree species.

    Wang, Shurong; Wang, Kaige; Liu, Qian; Gu, Yueling; Luo, Zhongyang; Cen, Kefa; Fransson, Torsten

    2009-01-01

    Despite the increasing importance of biomass pyrolysis, little is known about the pyrolysis behavior of lignin--one of the main components of biomass--due to its structural complexity and the difficulty in its isolation. In the present study, we extracted lignins from Manchurian ash (Fraxinus mandschurica) and Mongolian Scots pine (Pinus sylvestris var. mongolica) using the Bjorkman procedure, which has little effect on the structure of lignin. Fourier transform infrared (FTIR) spectrometry was used to characterize the microstructure of the Bjorkman lignins, i.e., milled wood lignins (MWLs), from the different tree species. The pyrolysis characteristics of MWLs were investigated using a thermogravimetric analyzer, and the release of the main volatile and gaseous products of pyrolysis were detected by FTIR spectroscopy. During the pyrolysis process, MWLs underwent thermo-degradation over a wide temperature range. Manchurian ash MWL showed a much higher thermal degradation rate than Mongolian Scots pine MWL in the temperature range from 290-430 degrees C. High residue yields were achieved at 37 wt.% for Mongolian Scots pine MWL and 26 wt.% for Manchurian ash MWL. In order to further investigate the mechanisms of lignin pyrolysis, we also analyzed the FTIR profiles for the main pyrolysis products (CO(2), CO, methane, methanol, phenols and formaldehyde) and investigated the variation in pyrolysis products between the different MWLs. PMID:19393737

  13. Pyrolysis of furan in a microreactor

    Urness, Kimberly N.; Guan, Qi; Golan, Amir; Daily, John W.; Nimlos, Mark R.; Stanton, John F.; Ahmed, Musahid; Ellison, G. Barney

    2013-09-01

    A silicon carbide microtubular reactor has been used to measure branching ratios in the thermal decomposition of furan, C4H4O. The pyrolysis experiments are carried out by passing a dilute mixture of furan (approximately 0.01%) entrained in a stream of helium through the heated reactor. The SiC reactor (0.66 mm i.d., 2 mm o.d., 2.5 cm long) operates with continuous flow. Experiments were performed with a reactor inlet pressure of 100-300 Torr and a wall temperature between 1200 and 1600 K; characteristic residence times in the reactor are 60-150 μs. The unimolecular decomposition pathway of furan is confirmed to be: furan (+ M) rightleftharpoons α-carbene or β-carbene. The α-carbene fragments to CH2=C=O + HC≡CH while the β-carbene isomerizes to CH2=C=CHCHO. The formyl allene can isomerize to CO + CH3C≡CH or it can fragment to H + CO + HCCCH2. Tunable synchrotron radiation photoionization mass spectrometry is used to monitor the products and to measure the branching ratio of the two carbenes as well as the ratio of [HCCCH2]/[CH3C≡CH]. The results of these pyrolysis experiments demonstrate a preference for 80%-90% of furan decomposition to occur via the β-carbene. For reactor temperatures of 1200-1400 K, no propargyl radicals are formed. As the temperature rises to 1500-1600 K, at most 10% of the decomposition of CH2=C=CHCHO produces H + CO + HCCCH2 radicals. Thermodynamic conditions in the reactor have been modeled by computational fluid dynamics and the experimental results are compared to the predictions of three furan pyrolysis mechanisms. Uncertainty in the pressure-dependency of the initiation reaction rates is a possible a source of discrepancy between experimental results and theoretical predictions.

  14. Reaction pathways of propene pyrolysis.

    Qu, Yena; Su, Kehe; Wang, Xin; Liu, Yan; Zeng, Qingfeng; Cheng, Laifei; Zhang, Litong

    2010-05-01

    The gas-phase reaction pathways in preparing pyrolytic carbon with propene pyrolysis have been investigated in detail with a total number of 110 transition states and 50 intermediates. The structure of the species was determined with density functional theory at B3PW91/6-311G(d,p) level. The transition states and their linked intermediates were confirmed with frequency and the intrinsic reaction coordinates analyses. The elementary reactions were explored in the pathways of both direct and the radical attacking decompositions. The energy barriers and the reaction energies were determined with accurate model chemistry method at G3(MP2) level after an examination of the nondynamic electronic correlations. The heat capacities and entropies were obtained with statistical thermodynamics. The Gibbs free energies at 298.15 K for all the reaction steps were reported. Those at any temperature can be developed with classical thermodynamics by using the fitted (as a function of temperature) heat capacities. It was found that the most favorable paths are mainly in the radical attacking chain reactions. The chain was proposed with 26 reaction steps including two steps of the initialization of the chain to produce H and CH(3) radicals. For a typical temperature (1200 K) adopted in the experiments, the highest energy barriers were found in the production of C(3) to be 203.4 and 193.7 kJ/mol. The highest energy barriers for the production of C(2) and C were found 174.1 and 181.4 kJ/mol, respectively. These results are comparable with the most recent experimental observation of the apparent activation energy 201.9 +/- 0.6 or 137 +/- 25 kJ/mol. PMID:20082392

  15. Pyrolysis and volatilization of cocaine

    The increasing popularity of inhaling cocaine vapor prompted the present study, to determine cocaine's fate during this process. The free base of [3H]cocaine (1 microCi/50 mg) was added to a glass pipe, which was then heated in a furnace to simulate freebasing. Negative pressure was used to draw the vapor through a series of glass wool, ethanol, acidic, and basic traps. Air flow rate and temperature were found to have profound effects on the volatilization and pyrolysis of cocaine. At a temperature of 260 degrees C and a flow rate of 400 mL/min, 37% of the radioactivity remained in the pipe, 39% was found in the glass wool trap, and less than 1% in the remainder of the volatilization apparatus after a 10-min volatilization. Reducing the air flow rate to 100 mL/min reduced the amount of radioactivity collected in the glass wool trap to less than 10% of the starting material and increased the amount that remained in the pipe to 58%. GC/MS analysis of the contents of the glass wool trap after volatilization at 260 degrees C and a flow rate of 400 mL/min revealed that 60% of the cocaine remained intact, while approximately 6 and 2% of the starting material was recovered as benzoic acid and methylecgonidine, respectively. As the temperature was increased to 650 degrees C, benzoic acid and methylecgonidine accounted for 83 and 89% of the starting material, respectively, whereas only 2% of the cocaine remained intact. Quantitation of cocaine in the vapor during the course of volatilization revealed high concentrations during the first two min and low concentrations for the remaining time

  16. Lacking deoxygenation-linked interaction between cytoplasmic domain of band 3 and HbF from fetal red blood cells

    Weber, Roy E.

    2007-01-01

    Aim: Several of the red blood cell's metabolic and membrane functions display dependence on haemoglobin oxygenation. In adult human red cells, the increased glycolytic rate at low O2 tension results from binding of deoxygenated HbA at negatively charged, N-terminal, cytoplasmic domain of the...

  17. Study of the influence of substrate temperature on structural, optical, and electrical properties of Zn-doped MnIn2S4 thin films prepared by chemical spray pyrolysis

    Kennedy, A.; Viswanathan, K.; Pradeev raj, K.

    2016-08-01

    The Zn-doped MnIn2S4 thin films were deposited by chemical spray pyrolysis technique on a heated glass substrate using the aqueous solution of MnCl2, InCl3, (NH2)2CS and ZnCl2. The thin films were grown at different substrate temperatures ranging from 250-400 °C. The synthesized films were characterized by X-ray diffraction (XRD), energy dispersive analysis spectrum (EDS), field emission scanning electron microscope (FESEM), UV-Vis absorption spectroscopy and four probe method. The XRD analysis indicates Zn-doped MnIn2S4 thin films were polycrystalline in nature with a cubic spinel structure having (101) plane as the preferred orientation. The structural parameters like crystalline size (D), dislocation density (δ), strain (ε) and lattice distortion (LD) have been evaluated from XRD results. The energy dispersive analysis spectrum (EDS) predicts the presence of Mn, In, S and Zn in the film grown at 250 °C. The formation of the needle and spherical shaped grains was clearly observed from FE-SEM analysis. From the optical studies, it is analyzed that about (88%) of light transmission occurs in the Vis-IR regions. It is interesting to note that the structural homogeneity and crystallinity of the films has improved due to the decrease in the absorption coefficient (α) and extinction coefficient (K) with an increase in substrate temperature. The calculated optical band gap energies increase (1.51-1.74 eV) with an increase of substrate temperatures. The photoluminescence (PL) spectrum reveals the presence of well-defined band edge (<400 nm) and defect emissions in the wavelength region around 400-650 nm. Moreover, from electrical studies, the electrical resistivity decreases with increase in substrate temperature and a minimum electrical resistivity of 1.20 ×103 Ωm was obtained for the film coated at 400 °C. The high absorption coefficient (α) in the order of 104cm-1 and high transmittance (88%) of the films makes them an efficient absorber and a good window

  18. Pyrolysis and co-pyrolysis of Laminaria japonica and polypropylene over mesoporous Al-SBA-15 catalyst

    Lee, Hyung Won; Choi, Suek Joo; Park, Sung Hoon; Jeon, Jong-Ki; Jung, Sang-Chul; Kim, Sang Chai; Park, Young-Kwon

    2014-08-01

    The catalytic co-pyrolysis of a seaweed biomass, Laminaria japonica, and a typical polymer material, polypropylene, was studied for the first time. A mesoporous material Al-SBA-15 was used as a catalyst. Pyrolysis experiments were conducted using a fixed-bed reactor and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS). BET surface area, N2 adsorption-desorption isotherms, and NH3 temperature programmed desorption were measured to examine the catalyst characteristics. When only L. japonica was pyrolyzed, catalytic reforming slightly increased the gas yield and decreased the oil yield. The H2O content in bio-oil was increased by catalytic reforming from 42.03 to 50.32 wt% due to the dehydration reaction occurring on the acid sites inside the large pores of Al-SBA-15. Acids, oxygenates, mono-aromatics, poly aromatic hydrocarbons, and phenolics were the main components of the bio-oil obtained from the pyrolysis of L. japonica. Upon catalytic reforming over Al-SBA-15, the main oxygenate species 1,4-anhydro- d-galactitol and 1,5-anhydro- d-manitol were completely removed. When L. japonica was co-pyrolyzed with polypropylene, the H2O content in bio-oil was decreased dramatically (8.93 wt% in the case of catalytic co-pyrolysis), contributing to the improvement of the oil quality. A huge increase in the content of gasoline-range and diesel-range hydrocarbons in bio-oil was the most remarkable change that resulted from the co-pyrolysis with polypropylene, suggesting its potential as a transport fuel. The content of mono-aromatics with high economic value was also increased significantly by catalytic co-pyrolysis.

  19. Kinetic Study on Pyrolysis of Oil Palm Frond

    Soon, V. S. Y.; Chin, B. L. F.; Lim, A. C. R.

    2016-03-01

    The pyrolysis of oil palm frond is studied using thermogravimetric analysis (TGA) equipment. The present study investigates the thermal degradation behaviour and determination of the kinetic parameters such as the activation energy (EA ) and pre-exponential factor (A) values of oil palm frond under pyrolysis condition. The kinetic data is produced based on first order rate of reaction. In this study, the experiments are conducted at different heating rates of 10, 20, 30, 40 and 50 K/min in the temperature range of 323-1173 K under non-isothermal condition. Argon gas is used as an inert gas to remove any entrapment of gases in the TGA equipment.

  20. Recovery of energy from wood by pyrolysis and gasification

    Cousins, W.J.

    1976-01-01

    Thermal conversion processes are discussed. These include low temperature distillation of resins, pyrolysis and gasification. Some yield liquid fuels directly, but the more promising route is production of a gas mixture from the wood feedstock, followed by the synthesis of chemicals and fuels from the gas. The required end products, the scale of operation, and the costs of materials, all place restrictions on the type of process that is suitable for a particular situation. Experimental investigations into (a) the cracking of liquid pyrolysis products; and (b) the oxygen gasification of wood, are described. 22 references.

  1. Liquid hydrocarbon fuels obtained by the pyrolysis of soybean oils.

    Junming, Xu; Jianchun, Jiang; Yanju, Lu; Jie, Chen

    2009-10-01

    The pyrolysis reactions of soybean oils have been studied. The pyrolytic products were analyzed by GC-MS and FTIR and show the formation of olefins, paraffins, carboxylic acids and aldehydes. Several kinds of catalysts were compared. It was found that the amounts of carboxylic acids and aldehydes were significantly decreased by using base catalysts such as Na(2)CO(3) and K(2)CO(3). The low acid value pyrolytic products showed good cold flow properties and good solubility in diesel oil at low temperature. The results presented in this work have shown that the pyrolysis of soybean oils generates fuels that have chemical composition similar to petroleum based fuels. PMID:19464169

  2. Relative toxicity of pyrolysis products of some foams and fabrics

    Hilado, C. J.

    1976-01-01

    A limited number of foams and fabrics was evaluated in the course of developing test procedures for determining the relative toxicity of materials. The principal variable studied, heating rate, did not affect the relative ranking of the materials tested. Two pyrolysis test procedures using the same basic approach but employing different sample weights, chamber volumes, laboratory animals, heating rates, and upper temperature limits, resulted in identical rankings of relative toxicity. The data obtained show that modification of conventional flexible polyurethane foams with flame retardants to comply with California upholstered furniture flammability regulations seems to consistently reduce toxicity under pyrolysis conditions.

  3. Simulation of hydrocarbons pyrolysis in a fast-mixing reactor

    MG Ktalkherman; IG Namyatov

    2015-01-01

    Currently, thermal decomposition of hydrocarbons for the production of basic petrochemicals (ethylene, propyl-ene) is carried out in steam-cracking processes. Aside from the conventional method, under consideration are alternative ways purposed for process intensification. In the context of these activities, the method of high-temperature pyrolysis of hydrocarbons in a heat-carrier flow is studied, which differs from previous ones and is based on the ability of an ultra-short time of feedstock/heat-carrier mixing. This enables to study the pyrolysis process at high temperature (up to 1500 K) at the reactor inlet. A set of model experiments is conducted on the lab scale facility. Liquefied petroleum gas (LPG) and naphtha are used as a feedstock. The detailed data are obtain-ed on temperature and product distributions within a wide range of the residence time. A theoretical model based on the detailed kinetics of the process is developed, too. The effect of governing parameters on the pyrolysis process is analyzed by the results of the simulation and experiments. In particular, the optimal temperature is detected which corresponds to the maximum ethylene yield. Product yields in our experiments are compared with the similar ones in the conventional pyrolysis method. In both cases (LPG and naphtha), ethylene selectivity in the fast-mixing reactor is substantial y higher than in current technology.

  4. ANALYSIS OF VOLATILE PRODUCTS FROM THE SLOW PYROLYSIS OF COAL

    The report gives results of a study of the evolution of volatile matter from coals of various rank during fixed-and fluid-bed pyrolysis. The pyrolyses were performed at temperatures ranging from 400 to 1000 C and with heating rates ranging from 1.5 to 6.0 C/s. Effects of equilibr...

  5. [Components of oil sludge and their influence on pyrolysis behaviors].

    Song, Wei; Liu, Jian-Guo; Nie, Yong-Feng

    2008-07-01

    Based on property analysis of oil sludge and its main components (mineral oil and minerals), pyrolysis process and releasing behavior of non-condensed gas of oil sludge and its main components were studied by thermogravimetric analysis-fourier transform infrared spectroscopy (TG-FTIR) and tubular resistance furnace, respectively. The results indicated that, (1) Oil sludge was characterized as relatively high heating value (15 422.41 kJ/kg), higher mineral content (61.57%) mainly composed of quartz. Mineral oil component had good thermal conversion property and adhered close with mineral in oil sludge. (2) Pyrolysis process of oil sludge included 5 stages: water volatilization and gas desorption (50-180 degrees C), light oil volatilization (180-370 degrees C), heavy oil pyrolysis (370-500 degrees C), semi-coke charring (500-600 degrees C) and mineral decomposition (higher than 600 degrees C). (3) Minerals influenced oil pyrolysis by surface function and enhancing heating conductivity, meanwhile minor elements in mineral oil could bring mineral decomposition temperature down. (4) Minerals affected the releasing behavior of non-condensed gas from mineral oil pyrolysis and resulted in lower total production and higher H2 production. PMID:18828401

  6. Co-pyrolysis of lignite and sugar beet pulp

    Today, worldwide studies have been undertaken on the biomass usage and co-conversion of biomass and coal to seek out alternative fuels for supplying energy in an environmental friendly way. The objective of this work is to study co-pyrolysis of lignite and sugar beet pulp in 50/50 (wt./wt.) ratio of blend pellets, to elucidate their thermal behaviour under pyrolysis conditions and to assess major decomposition products in terms of their yields. A special chamber, which has enabled very fast heating rates, was used in the pyrolysis experiments carried at 600 deg. C. The results were interpreted in the light of liquid, solid and gaseous yields, resulting from thermal decomposition, and kinetics of thermogravimetric analysis. Proximate volatile matter and ash contents of the blends were different compared to those found by using individual values. Sugar beet pulp decomposed faster within a relatively narrow temperature range than lignite and underwent a significant shrinkage during pyrolysis. It was found that the chars left behind after the flash pyrolysis of these pellets at 600 deg. C have substantial amounts of volatile matter that would evolve upon further heating.

  7. Study on the Pyrolysis Behavior of Polycarbosilane

    CHEN Wenyi; ZHOU Jian

    2015-01-01

    The pyrolysis behavior of polycarbosilane (PCS) and chemical reaction mechanism during the pyrolysis process were studied by thermogravimetric-mass spectrometry (TG-MS) combined with X-ray diffraction and infrared spectroscopic analysis methods. The experimental results indicate that the main gas phase products generated during pyrolysis of PCS in nitrogen atmosphere include H2, -CH3 and CH4. The heating rate has a large effect on the pyrolysis process of PCS, the lower heating rate releases more small molecule gases and gets bigger rate of pyrolysis mass loss, demonstrating that the lower heating rate is beneifcial to fully pyrolysis of PCS and obtain ceramics products with better microstructure.

  8. Influence of Adjuvant Therapy in Cancer Survivors on Endothelial Function and Skeletal Muscle Deoxygenation

    Ederer, Austin K.; Didier, Kaylin D.; Reiter, Landon K.; Brown, Michael; Hardy, Rachel; Caldwell, Jacob; Black, Christopher D.; Larson, Rebecca D.; Ade, Carl J.

    2016-01-01

    The cardiotoxic effects of adjuvant cancer treatments (i.e., chemotherapy and radiation treatment) have been well documented, but the effects on peripheral cardiovascular function are still unclear. We hypothesized that cancer survivors i) would have decreased resting endothelial function; and ii) altered muscle deoxygenation response during moderate intensity cycling exercise compared to cancer-free controls. A total of 8 cancer survivors (~70 months post-treatment) and 9 healthy controls completed a brachial artery FMD test, an index of endothelial-dependent dilation, followed by an incremental exercise test up to the ventilatory threshold (VT) on a cycle ergometer during which pulmonary V˙O2 and changes in near-infrared spectroscopy (NIRS)-derived microvascular tissue oxygenation (TOI), total hemoglobin concentration ([Hb]total), and muscle deoxygenation ([HHb] ≈ fractional O2 extraction) were measured. There were no significant differences in age, height, weight, and resting blood pressure between cancer survivors and control participants. Brachial artery FMD was similar between groups (P = 0.98). During exercise at the VT, TOI was similar between groups, but [Hb]total and [HHb] were significantly decreased in cancer survivors compared to controls (P < 0.01) The rate of change for TOI (ΔTOIΔ/V˙O2) and [HHb] (Δ[HHb]/ΔV˙O2) relative to ΔV˙O2 were decreased in cancer survivors compared to controls (P = 0.02 and P = 0.03 respectively). In cancer survivors, a decreased skeletal muscle microvascular function was observed during moderate intensity cycling exercise. These data suggest that adjuvant cancer therapies have an effect on the integrated relationship between O2 extraction, V˙O2 and O2 delivery during exercise. PMID:26807572

  9. Deoxygenation of methanol with carbon monoxide over Fe/ZSM-5 catalysts

    Mahay, A.; Lemay, G.; Adnot, A.; Szoeghy, I.M.; Kaliaguine, S.

    1987-02-01

    Deoxygenation is a process of interest in the upgrading of various feedstocks including liquids derived from biomass. Wood liquefaction techniques, especially by pyrolytic processes, yield highly oxygenated products. Two catalytic routes have been proposed for deoxygenation of pyrolytic oils, namely, hydrotreatment with H/sub 2/ or CO + H/sub 2/ over HDS-type catalysts, and dehydration or decarboxylation over zeolite-type acid catalysts. It is proposed in this work to add to the zeolite catalyst a water-gas shift (WGS) function. Over such a bifunctional catalyst it is proposed to feed an oxygenate compound in a stream of carbon monoxide. In such a process, oxygen will be eliminated as CO/sub 2/ rather than H/sub 2/O, and if the WGS active catalyst possesses some hydrogenation properties under the operating conditions, the molecular hydrogen generated by WGS may be reincorporated into the growing hydrocarbon chains. The zeolite component selected is ZSM-5 due to its shape-selectivity properties for the formation of gasoline-range hydrocarbons and its resistance toward coke building. Iron oxide has been chosen as the second component of this dual function catalyst. Another important aspect of this study is the development of a new method for the deposition of iron on ZSM-5. The authors propose to employ ferrocene, which has smaller dimensions than the pore diameter of ZSM-5. Moreover, this type of compound also offers the possibility of controlling the location of iron on the support. A bulky radical, like the dibenzoyl radical, can be added effectively as a substituent on the cyclopentadienyl rings. The large size of this new complex would prevent the diffusion of the organometallic compound into the pores, and consequently, it would allow fixing the iron on only the external surface of the ZSM-5 grains. 37 references.

  10. Influence of Adjuvant Therapy in Cancer Survivors on Endothelial Function and Skeletal Muscle Deoxygenation.

    Austin K Ederer

    Full Text Available The cardiotoxic effects of adjuvant cancer treatments (i.e., chemotherapy and radiation treatment have been well documented, but the effects on peripheral cardiovascular function are still unclear. We hypothesized that cancer survivors i would have decreased resting endothelial function; and ii altered muscle deoxygenation response during moderate intensity cycling exercise compared to cancer-free controls. A total of 8 cancer survivors (~70 months post-treatment and 9 healthy controls completed a brachial artery FMD test, an index of endothelial-dependent dilation, followed by an incremental exercise test up to the ventilatory threshold (VT on a cycle ergometer during which pulmonary V̇O2 and changes in near-infrared spectroscopy (NIRS-derived microvascular tissue oxygenation (TOI, total hemoglobin concentration ([Hb]total, and muscle deoxygenation ([HHb] ≈ fractional O2 extraction were measured. There were no significant differences in age, height, weight, and resting blood pressure between cancer survivors and control participants. Brachial artery FMD was similar between groups (P = 0.98. During exercise at the VT, TOI was similar between groups, but [Hb]total and [HHb] were significantly decreased in cancer survivors compared to controls (P < 0.01 The rate of change for TOI (ΔTOIΔ/V̇O2 and [HHb] (Δ[HHb]/ΔV̇O2 relative to ΔV̇O2 were decreased in cancer survivors compared to controls (P = 0.02 and P = 0.03 respectively. In cancer survivors, a decreased skeletal muscle microvascular function was observed during moderate intensity cycling exercise. These data suggest that adjuvant cancer therapies have an effect on the integrated relationship between O2 extraction, V̇O2 and O2 delivery during exercise.

  11. Can nitrogen cycle feedbacks lead to runaway denitrification and deoxygenation of the ocean?

    Weber, T. S.; Deutsch, C. A.

    2014-12-01

    Over millennial timescales, the oceanic reservoir of fixed nitrogen (N) is regulated by a balance between N loss in sediments and low oxygen (O2) waters, and N2-fixation by diazotrophic phytoplankton. The two processes are coupled by selection for diazotrophs under N-limited conditions that arise from denitrification, although the spatial scale of this coupling is debated. A strong local coupling has been argued against because the export of newly fixed N would boost nearby denitrification rates, stimulating further N2-fixation in overlying water, resulting in runaway N loss and deoxygenation of the ocean. Using a global ocean circulation model with a prognostic ecosystem and biogeochemical cycles, we show that no such runaway feedback arises. Even when the majority of N2-fixation occurs directly above suboxic zones, N sources and sinks quickly reach a stable equilibrium without widespread N depletion. Taking a systems dynamics approach, we derive a "feedback factor" (f) for the interaction of N inputs and losses, which depends on the stoichiometry of diazotroph biomass, ventilation of the tropical thermocline, and upwelling rate of denitrified waters. Under modern conditions of ocean circulation and O2 solubility, f is much lower than 1 - the value that separates stable and runaway amplification of a system response - and the oceanic N reservoir is remarkably insensitive to spatial proximity of N sources and sinks, as might accompany the alleviation of diazotroph Fe-limitation. Based on these parameters, we identify climatic conditions that might push the system into a runaway feedback regime, allowing for periods of catastrophic N loss and deoxygenation during Earth's history.

  12. Vacuum Pyrolysis and Related ISRU Techniques

    Cardiff, Eric H.; Pomeroy, Brian R.; Banks, Ian S.; Benz, Alexis

    2007-01-01

    A number of ISRU-related techniques have been developed at NASA Goddard Space Flight Center. The focus of the team has been on development of the vacuum pyrolysis technique for the production of oxygen from the lunar regolith. However, a number of related techniques have also been developed, including solar concentration, solar heating of regolith, resistive heating of regolith, sintering, regolith boiling, process modeling, parts manufacturing, and instrumentation development. An initial prototype system was developed to vaporize regolith simulants using a approx. l square meter Fresnel lens. This system was successfully used to vaporize quantities of approx. lg, and both mass spectroscopy of the gasses produced and Scanning Electron Microscopy (SEM) of the slag were done to show that oxygen was produced. Subsequent tests have demonstrated the use of a larger system With a 3.8m diameter reflective mirror to vaporize the regolith. These results and modeling of the vacuum pyrolysis reaction have indicated that the vaporization of the oxides in the regolith will occur at lower temperature for stronger vacuums. The chemical modeling was validated by testing of a resistive heating system that vaporized quantities of approx. 10g of MLS-1A. This system was also used to demonstrate the sintering of regolith simulants at reduced temperatures in high vacuum. This reduction in the required temperature prompted the development of a small-scale resistive heating system for application as a scientific instrument as well as a proof-of principle experiment for oxygen production.

  13. Performance of rotary kiln reactor for the elephant grass pyrolysis.

    De Conto, D; Silvestre, W P; Baldasso, C; Godinho, M

    2016-10-01

    The influence of process conditions (rotary speed/temperature) on the performance of a rotary kiln reactor for non-catalytic pyrolysis of a perennial grass (elephant grass) was investigated. The product yields, the production of non-condensable gases as well as the biochar properties were evaluated. The maximum H2 yield was close to that observed for catalytic pyrolysis processes, while the bio-oil yield was higher than reported for pyrolysis of other biomass in rotary kiln reactors. A H2/CO ratio suitable for Fischer-Tropsch synthesis (FTS) was obtained. The biochars presented an alkaline pH (above 10) and interesting contents of nutrients, as well as low electrical conductivity, indicating a high potential as soil amendment. PMID:27367811

  14. Experimental investigation of flash pyrolysis oil droplet combustion

    Ibrahim, Norazana; Jensen, Peter A.; Dam-Johansen, Kim;

    2013-01-01

    The aim of this work is to investigate and compare the combustion behaviour of a single droplet of pyrolysis oil derived from wheat straw and heavy fossil oil in a single droplet combustion chamber. The initial oil droplet diameters were in between 500 μm to 2500 μm. The experiments were performed...... at a temperature ranging between 1000 and 1400°C with an initial gas velocity of 1.6 m/s and oxygen concentration of 3%. The evolution of combustion of bio-oil droplets was recorded by a digital video camera. It was observed that the combustion behaviour of pyrolysis oil droplet differ from the heavy oil in terms...... both of ignition, devolatilisation and char oxidation. The pyrolysis oil is more difficult to ignite and has a shorter devolatilisation time and a longer char oxidation time. Copyright © 2013, AIDIC Servizi S.r.l....

  15. Specialists' workshop on fast pyrolysis of biomass

    1980-01-01

    This workshop brought together most of those who are currently working in or have published significant findings in the area of fast pyrolysis of biomass or biomass-derived materials, with the goal of attaining a better understanding of the dominant mechanisms which produce olefins, oxygenated liquids, char, and tars. In addition, background papers were given in hydrocarbon pyrolysis, slow pyrolysis of biomass, and techniques for powdered-feedstock preparation in order that the other papers did not need to introduce in depth these concepts in their presentations for continuity. In general, the authors were requested to present summaries of experimental data with as much interpretation of that data as possible with regard to mechanisms and process variables such as heat flux, temperatures, partial pressure, feedstock, particle size, heating rates, residence time, etc. Separate abstracts have been prepared of each presentation for inclusion in the Energy Data Base. (DMC)

  16. Experimental investigation of flash pyrolysis oil droplet combustion

    Ibrahim, Norazana; Jensen, Peter A.; Dam-Johansen, Kim; Hamid, Mohd.K.A.; Kasmani, Rafiziana M.; Ali, Roshafima R.; Hasbullah, Hasrinah

    2013-01-01

    at a temperature ranging between 1000 and 1400°C with an initial gas velocity of 1.6 m/s and oxygen concentration of 3%. The evolution of combustion of bio-oil droplets was recorded by a digital video camera. It was observed that the combustion behaviour of pyrolysis oil droplet differ from the heavy......The aim of this work is to investigate and compare the combustion behaviour of a single droplet of pyrolysis oil derived from wheat straw and heavy fossil oil in a single droplet combustion chamber. The initial oil droplet diameters were in between 500 μm to 2500 μm. The experiments were performed...... oil in terms both of ignition, devolatilisation and char oxidation. The pyrolysis oil is more difficult to ignite and has a shorter devolatilisation time and a longer char oxidation time. Copyright © 2013, AIDIC Servizi S.r.l....

  17. Effect of annealing temperature on the structural–microstructural and electrical characteristics of thallium bearing HTSC films prepared by chemical spray pyrolysis technique

    K K Verma; R S Tiwari; O N Srivastava

    2005-04-01

    In order to get good quality reproducible films of Tl : HTSC system, we have studied the different annealing conditions to finally achieve the optimized annealing condition. In the present investigation, Tl–Ca–Ba–Cu–O superconducting films have been prepared on YSZ (100) and MgO (100) single crystal substrates via precursor route followed by thallination. The post deposition heat treatments of the precursor films were carried out for various annealing temperatures (870°C, 890°C) and durations (1 and 2 min). The optimized thallination procedure occurred at 870°C for 2 min into good quality films with c ( = 0) ∼ 103 K for YSZ and c ( = 0) ∼ 98 K for MgO substrates, respectively. Further we have correlated the structural/microstructural characteristics of the films.

  18. Bio-Fuel Production Assisted with High Temperature Steam Electrolysis

    Grant Hawkes; James O' Brien; Michael McKellar

    2012-06-01

    Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oil and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model

  19. Rapid and slow pyrolysis of pistachio shell: effect of pyrolysis conditions on the product yields and characterization of the liquid product

    Putun, Ayse E. [Department of Chemical Engineering, Anadolu University, Eskisehir 26470, (Turkey); Ozbay, Nurgul [Bozuyuk Vocational School, Anadolu University, Bozuyuk/Bilecik, (Turkey); Varol, Esin Apaydin; Uzun, Basak B.; Ates, Fuda [Department of Chemical Engineering, Anadolu University, Eskisehir 26470, (Turkey)

    2006-10-30

    This study reports the experimental results for the pyrolysis of pistachio shell under different conditions in a tubular reactor under a nitrogen flow. For the different conditions of pyrolysis temperature, nitrogen flow rate and heating rate, pyrolysis temperature of 773 K gave the highest bio-oil yield with a value of 27.7% when the heating rate and carrier gas flow rate were chosen as 300 K min{sup -1} and 100 cm{sup 3} min{sup -1}, respectively. Column chromatography was applied to this bio-oil and its subfractions were characterized by elemental analysis, FT-IR and 1H-NMR. Aliphatic subfraction was conducted to gas chromatography-mass spectroscopy for further characterization. The results for the characterization show that using pistachio shell as a renewable source to produce valuable liquid products is applicable via pyrolysis. (Author)

  20. Fabrication of Transparent Conductive Zinc Oxide Co-Doped with Fluorine and Zirconium Thin Solid Films by Ultrasonic Chemical Pyrolysis: Effects of Precursor Solution Aging and Substrate Temperature

    Luis Castañeda

    2013-01-01

    Full Text Available Highly transparent, conducting zinc oxide [ZnO] thin films co-doped with fluorine and zirconium have been deposited on glass substrates by the ultrasonic chemical spraying technique. The effects of aging of the starting solution and substrate temperature on the structural, morphological, and electrical properties of the ZnO:F:Zr films have been studied. The resistivity of the films decreases with the aging time of the starting solution until the seventeenth day reaching a minimum of about 1.2×10−2 Ω cm and then increases. Though all the samples are of polycrystalline hexagonal wurtzite type and grow preferentially with (002 plane parallel to the substrate, their morphology depends strongly on the aging time of the reaction solution. The optical transmittance of all the films remained around 80% in the visible spectral range. These highly transparent, low resistive thin films are expected to be highly useful as transparent electrodes in the fabrication of thin film solar cells.

  1. Development of a high-performance, coal-fired power generating system with a pyrolysis gas and char-fired high-temperature furnace

    Shenker, J.

    1995-11-01

    A high-performance power system (HIPPS) is being developed. This system is a coal-fired, combined-cycle plant that will have an efficiency of at least 47 percent, based on the higher heating value of the fuel. The original emissions goal of the project was for NOx and SOx to each be below 0.15 lb/MMBtu. In the Phase 2 RFP this emissions goal was reduced to 0.06 lb/MMBtu. The ultimate goal of HIPPS is to have an all-coal-fueled system, but initial versions of the system are allowed up to 35 percent heat input from natural gas. Foster Wheeler Development Corporation is currently leading a team effort with AlliedSignal, Bechtel, Foster Wheeler Energy Corporation, Research-Cottrell, TRW and Westinghouse. Previous work on the project was also done by General Electric. The HIPPS plant will use a high-Temperature Advanced Furnace (HITAF) to achieve combined-cycle operation with coal as the primary fuel. The HITAF is an atmospheric-pressure, pulverized-fuel-fired boiler/air heater. The HITAF is used to heat air for the gas turbine and also to transfer heat to the steam cycle. its design and functions are very similar to conventional PC boilers. Some important differences, however, arise from the requirements of the combined cycle operation.

  2. Development of advanced technologies for biomass pyrolysis

    Xu, Ran

    The utilization of biomass resources as a renewable energy resource is of great importance in responding to concerns over the protection of the environment and the security of energy supply. This PhD research focuses on the investigation of the conversion of negative value biomass residues into value-added fuels through flash pyrolysis. Pyrolysis Process Study. A pilot plant bubbling fluidized bed pyrolyzer has been set up and extensively used to thermally crack various low or negative value agricultural, food and biofuel processing residues to investigate the yields and quality of the liquid [bio-oil] and solid (bio-char] products. Another novel aspect of this study is the establishment of an energy balance from which the thermal self-sustainability of the pyrolysis process can be assessed. Residues such as grape skins and mixture of grape skins and seeds, dried distiller's grains from bio-ethanol plants, sugarcane field residues (internal bagasse, external and whole plant) have been tested. The pyrolysis of each residue has been carried out at temperatures ranging from 300 to 600°C and at different vapor residence times, to determine its pyrolysis behavior including yields and the overall energy balance. The thermal sustainability of the pyrolysis process has been estimated by considering the energy contribution of the product gases and liquid bio-oll in relation to the pyrolysis heat requirements. The optimum pyrolysis conditions have been identified in terms of maximizing the liquid blo-oil yield, energy density and content of the product blo-oil, after ensuring a self-sustainable process by utilizing the product gases and part of char or bio-oil as heat sources. Adownflow pyrolyzer has also been set up. Preliminary tests have been conducted using much shorter residence times. Bio-oil Recovery. Bio-oil recovery from the pyrolysis unit includes condensation followed by demisting. A blo-oil cyclonic condensing system is designed A nearly tangential entry forces

  3. Polycyclic aromatic hydrocarbon formation under simulated coal seam pyrolysis conditions

    Liu Shuqin; Wang Yuanyuan; Wang Caihong; Bao Pengcheng; Dang Jinli

    2011-01-01

    Coal seam pyrolysis occurs during coal seam fires and during underground coal gasification.This is an important source of polycyclic aromatic hydrocarbon (PAH) emission in China.Pyrolysis in a coal seam was simulated in a tubular furnace.The 16 US Environmental Protection Agency priority controlled PAHs were analyzed by HPLC.The effects of temperature,heating rate,pyrolysis atmosphere,and coal size were investigated.The results indicate that the 3-ring PAHs AcP and AcPy are the main species in the pyrolysis gas.The 2-ring NaP and the 4-ring Pyr are also of concern.Increasing temperature caused the total PAH yield to go through a minimum.The lowest value was obtained at the temperature of 600 ℃ Higher heating rates promote PAH formation,especially formation of the lower molecular weight PAHs.The typical heating rate in a coal seam,5 ℃/min,results in intermediate yields of PAHs.The total PAHs yield in an atmosphere of N2 is about 1.81 times that seen without added N2,which indicates that an air flow through the coal seam accelerates the formation of PAHs.An increase in coal particle size reduces the total PAHs emission but promotes the formation of 5- and 6-ring PAHs.

  4. Total condensable effluents yield in slow pyrolysis of bagasse briquettes

    Brossard, L.E.; Penedo, M. [Universidade de Oriente, Dept. of Chemical Engineering, Santiago de Cuba (Cuba); Cortez, L.A.B.; Bezzon, G.; Olivares, E. [University of Campinas (UNICAMP), Interdisciplinary Energy Planning Center (NIPE), Campinas, SP (Brazil)

    2000-07-01

    A full 2{sup 3} experimental factorial design approach was applied to obtain a mathematical model relating the total condensable effluents in slow pyrolysis of bagasse briquettes to three independent variables. These were apparent density of pressed bagasse briquettes (231 and 371 kg/m{sup 3}), highest pyrolysis temperature (400 and 450degC) and residence time at highest pyrolysis temperature (0 and 30 min). Detailed data processing to obtain a model as well as the model's statistical evaluation are shown. The conclusions are that the studied response depends on all three factors, although it is believed that the particular conditions of the pyrolysis installation used could be the cause of the significant result found for the residence time variable. It is inferred that measurable amounts of very low boiling organic compounds are present in the bagasse's liquid effluents. These volatile substances should require effluents' cooling devices working at temperatures well below 0degC. (Author)

  5. Co-pyrolysis of coal with organic solids

    Straka, P.; Buchtele, J. [Inst. of Rock Structure and Mechanics, Prague (Czechoslovakia)

    1995-12-01

    The co-pyrolysis of high volatile A bituminous coal with solid organic materials (proteins, cellulose, polyisoprene, polystyrene, polyethylene-glycolterephtalate-PEGT) at a high temperature conditions was investigated. Aim of the work was to evaluate, firstly, the changes of the texture and of the porous system of solid phase after high temperature treatment in presence of different types of macromolecular solids, secondly, properties and composition of the tar and gas. Considered organic solids are important waste components. During their co-pyrolysis the high volatile bituminous coal acts as a hydrogen donor in the temperature rank 220-480{degrees}C. In the rank 500- 1000{degrees}C the solid phase is formed. The co-pyrolysis was carried out at heating rate 3 K/min. It was found that an amount of organic solid (5-10%) affects important changes in the optical texture forms of solid phase, in the pore distribution and in the internal surface area. Transport large pores volume decreases in presence of PEGT, polystyrene and cellulose and increases in presence of proteins and polyisoprene. (image analysis measurements show that the tendency of coal to create coarse pores during co-pyrolysis is very strong and increases with increasing amount of organic solid in blend). An addition of considered materials changes the sorption ability (methylene blue test, iodine adsorption test), moreover, the reactivity of the solid phase.

  6. Extreme warming, photic zone euxinia and sea level rise during the Paleocene/Eocene Thermal Maximum on the Gulf of Mexico Coastal Plain; connecting marginal marine biotic signals, nutrient cycling and ocean deoxygenation

    Sluijs, A.; van Roij, L.; Harrington, G. J.; Schouten, S.; Sessa, J. A.; LeVay, L. J.; Reichart, G.-J.; Slomp, C. P.

    2013-12-01

    The Paleocene/Eocene Thermal Maximum (PETM, ~56 Ma) was a ~200 kyr episode of global warming, associated with massive injections of 13C-depleted carbon into the ocean-atmosphere system. Although climate change during the PETM is relatively well constrained, effects on marine oxygen and nutrient cycling remain largely unclear. We identify the PETM in a sediment core from the US margin of the Gulf of Mexico. Biomarker-based paleotemperature proxies (MBT/CBT and TEX86) indicate that continental air and sea surface temperatures warmed from 27-29 °C to ~35 °C, although variations in the relative abundances of terrestrial and marine biomarkers may have influenced the record. Vegetation changes as recorded from pollen assemblages supports profound warming. Lithology, relative abundances of terrestrial vs. marine palynomorphs as well as dinoflagellate cyst and biomarker assemblages indicate sea level rise during the PETM, consistent with previously recognized eustatic rise. The recognition of a maximum flooding surface during the PETM changes regional sequence stratigraphic interpretations, which allows us to exclude the previously posed hypothesis that a nearby fossil found in PETM-deposits represents the first North American primate. Within the PETM we record the biomarker isorenieratane, diagnostic of euxinic photic zone conditions. A global data compilation indicates that deoxygenation occurred in large regions of the global ocean in response to warming, hydrological change, and carbon cycle feedbacks, particularly along continental margins, analogous to modern trends. Seafloor deoxygenation and widespread anoxia likely caused phosphorus regeneration from suboxic and anoxic sediments. We argue that this fuelled shelf eutrophication, as widely recorded from microfossil studies, increasing organic carbon burial along continental margins as a negative feedback to carbon input and global warming. If properly quantified with future work, the PETM offers the opportunity to

  7. Valorization of raspberry seed cake by flash and slow pyrolysis: Product yield and characterization of the liquid and solid fraction

    Smets, Koen; Schreurs, Sonja; Carleer, Robert; Yperman, Jan

    2014-01-01

    The valorization of raspberry seed cake by flash and slow pyrolysis is investigated in this study. During flash pyrolysis, temperature significantly affects the yield and properties of the products. The highest liquid yield (53.6 wt%) is found at 450 degrees C. This liquid has a water content (26.2 wt%), a HHV (18.6 MJ/kg) and a pH-value (3.2) that are comparable to those of pyrolysis liquids produced by flash pyrolysis of lignocellulosic biomass. In terms of added-value chemicals, levoglucos...

  8. Flash pyrolysis fuel oil: bio-pok

    Gust, S. [Neste Oy, Porvoo (Finland)

    1997-12-01

    Samples of flash pyrolysis liquid produced by Union Fenosa, Spain from pine and straw and samples produced by Ensyn of Canada from mixed hardwoods were combusted with simple pressure atomization equipment commonly used with light fuel oils in intermediate size (0.1-1 MW) boilers. With a number of modifications to the combustion system, carbon monoxide (CO) and nitrous oxide (NO{sub x}) could be reduced to acceptable levels: CO < 30 ppm and NO{sub x} < 140 ppm. Particulate emissions which were initially very high (Bacharach 4-5) were reduced (Bach. 2-3) by system improvements but are still higher than from light fuel oil (Bach. <1). The modifications to the combustion system were: refractory section between burner and boiler, acid resistant progressive cavity pump, higher liquid preheat temperature and higher pressure than for light fuel oils. The main problems with pyrolysis liquids concerns their instability or reactivity. At temperatures above 100 deg C they begin to coke, their viscosity increases during storage and oxygen from air causes skin formation. This requires that special handling procedures are developed for fuel storage, delivery and combustion systems. (orig.)

  9. Optimization of fuel recovery through the stepwise co-pyrolysis of palm shell and scrap tire

    Highlights: • The co-pyrolysis of palm shell and scrap tire was studied. • The effect of stepwise co-pyrolysis temperature was investigated. • Co-pyrolysis successfully improved the quantity and quality of product yields. • Stepwise co-pyrolysis slightly increased oil and gas, and decreased char. • The co-pyrolysis of 50% biomass and 50% scrap tire is recommended. - Abstract: This study optimized the use of biomass waste to generate fuel through co-pyrolysis. In this paper, the effects of stepwise co-pyrolysis temperature and different ratios between palm shells and scrap tires in feedstock were studied to observe any improvements in the quantity and quality of the liquid yield and its byproduct. The ratio of palm shells and scrap tires varied at 100:0, 75:25, 50:50, 25:75, and 0:100. The experiment was conducted in a fixed-bed reactor. The study was divided into two scenarios. The first scenario was performed at the optimum temperature of 500 °C with a reaction time of 60 min. In the second scenario, the temperature was set at 500 °C for 60 min before the temperature was increased to 800 °C with a high heating rate. After the temperature reached 800 °C, the condition was maintained for approximately 45 min. Results showed that an increase in the liquid and gas yields was achieved when the temperature increased after optimum conditions. Increased yield was also obtained when the proportion of scrap tire was increased in the feedstock. Several other important findings are discussed in this paper, including the phases of pyrolysis oil, features of the liquid product, and characteristics of the byproducts. All products from both scenarios were analyzed by various methods to understand their fuel characteristics

  10. Phenols from pyrolysis and co-pyrolysis of tobacco biomass components.

    Kibet, Joshua K; Khachatryan, Lavrent; Dellinger, Barry

    2015-11-01

    Phenol and its derivatives (phenol, o-, m-, p-cresols, catechol, hydroquinone, methoxy substituted phenols, etc. referred to as phenolic compounds or phenols) are well-known toxicants that exist in the environment and affect both human and natural ecosystems. This study explores quantitatively the yields of phenolic compounds from the thermal degradation (pyrolysis and oxidative pyrolysis) of common tobacco biomass components (lignin, tyrosine, ethyl cellulose, sodium alginate, and laminarin) as well as some mixtures (lignin/tyrosine, ethyl cellulose/tyrosine and sodium alginate/tyrosine) considered important in high temperature cooking, tobacco smoking, and forest fires. Special attention has been given to binary mixtures including those containing tyrosine-pyrolysis of binary mixtures of tyrosine with lignin and ethyl cellulose results in significant reductions in the yields of majority phenols relative to those from the thermal degradation of tyrosine. These results imply that the significant reductions of phenol yields in mixtures are not only dependent upon the mass fractions of the components but also the synergetic inhibition effect of biomass components on the thermal degradation of tyrosine. A mechanistic description of this phenomenon is suggested. The results may also be implied in tobacco industry that the cigarette paper (as ethyl cellulose derivative) may play a critical role in reducing the concentration of phenolic compounds released during tobacco burning. PMID:26091866

  11. Pyrolysis polygeneration of pine nut shell: Quality of pyrolysis products and study on the preparation of activated carbon from biochar.

    Chen, Dengyu; Chen, Xiaojuan; Sun, Jun; Zheng, Zhongcheng; Fu, Kexin

    2016-09-01

    A lab-scale pyrolysis reactor was utilized to investigate the effect of pyrolysis temperature (300-700°C) on the yield, quality, and energy distribution of products issued from the pyrolysis polygeneration of pine nut shells. Afterward, activated carbon was prepared from biochar using the steam activation method. Pyrolysis temperatures ranging from 500 to 600°C were found to be optimal in inducing products with improved properties, such as higher heating values of non-condensable gas, lower water content and elevated heating values of bio-oil, and substantial fixed carbon content and greater specific surface area of biochar. In addition, it was noticed that the activation conditions had a significant effect on the yield and adsorption performance of the activated carbon. As a result, activated carbon with elevated specific surface area reaching 1057.8m(2)/g was obtained at the optimal conditions of 850°C activation temperature, 80min activation time, and 1.5 steam/biochar ratio. PMID:27289053

  12. A Novel Energy-Efficient Pyrolysis Process: Self-pyrolysis of Oil Shale Triggered by Topochemical Heat in a Horizontal Fixed Bed

    Sun, You-Hong; Bai, Feng-Tian; Lü, Xiao-Shu; Li, Qiang; Liu, Yu-Min; Guo, Ming-Yi; Guo, Wei; Liu, Bao-Chang

    2015-02-01

    This paper proposes a novel energy-efficient oil shale pyrolysis process triggered by a topochemical reaction that can be applied in horizontal oil shale formations. The process starts by feeding preheated air to oil shale to initiate a topochemical reaction and the onset of self-pyrolysis. As the temperature in the virgin oil shale increases (to 250-300°C), the hot air can be replaced by ambient-temperature air, allowing heat to be released by internal topochemical reactions to complete the pyrolysis. The propagation of fronts formed in this process, the temperature evolution, and the reaction mechanism of oil shale pyrolysis in porous media are discussed and compared with those in a traditional oxygen-free process. The results show that the self-pyrolysis of oil shale can be achieved with the proposed method without any need for external heat. The results also verify that fractured oil shale may be more suitable for underground retorting. Moreover, the gas and liquid products from this method were characterised, and a highly instrumented experimental device designed specifically for this process is described. This study can serve as a reference for new ideas on oil shale in situ pyrolysis processes.

  13. Pyrolysis oil from carbonaceous solid wastes in Malaysia

    The agro-industrial sector of Malaysia produces a huge amount of oil palm and paddy rice. These generate a significant amount of renewable biomass solid wastes in the forms of oil palm shell and rice husk. Apart from this a huge quantity of scrap tyre is generated from the country's faster increasing usage of transportation vehicles like motorcycle, car, bus and lorries. These wastes are producing pollution and disposal problems affecting the environment. Besides energy is not recovered efficiently from these waste resources. From the elemental composition and thermogravimetric analysis (TGA) studies of the wastes, it appeared that the wastes could be used for pyrolysis liquid oil production. Pyrolysis at present is deemed to be a potential method for the conversion of carbonaceous solid wastes into upgraded liquid products which can either be tried for liquid fuel or value-added chemical. A fluidized bed bench scale fast pyrolysis system was employed for this thermochemical conversion process of solid wastes. Silica sand was used as fluidized bed material and nitrogen gas as the fluidising medium. The products obtained were liquid oil, solid char and gas. The liquid oil and solid char were collected separately while the gas was flared. The maximum liquid product yield was found to vary with feedstock material fluidized bed temperature. The maximum liquid product yield was found to be 58, 53 and 40 wt. % of biomass fed at fluidized bed temperature at 500, 525 and 4500C respectively for oil palm shell, scrap tyre and rice husk. The solid char yield was 25, 36 and 53 wt. % of biomass fed at the condition of maximum liquid product yield for oil palm shell, scrap tyre and rice husk respectively. The oil products were subjected to FTIR, GC and GC/MS analysis for their group composition and detailed chemical compositions. The pyrolysis oil from scrap tyre was found to contain highest percentage of pure hydrocarbons (25 wt. % of total feed) with esters and oxygenated

  14. Exploratory studies on fast pyrolysis oil upgrading

    Mahfud, Farchad Husein

    2007-01-01

    Pyrolysis oil is a dark brown liquid which can be produced in high yield from different kind of biomass sources by means of fast pyrolysis. Pyrolysis oil is considered as a promising second generation energy carrier and may play an important role in the future of "biobased economies". The energy con

  15. Influence of Pyrolysis Parameters on the Performance of CMSM

    Marta C. Campo

    2009-01-01

    Full Text Available Carbon hollow fiber membranes have been prepared by pyrolysis of a P84/S-PEEK blend. Proximate analysis of the precursor was performed using thermogravimetry (TGA, and a carbon yield of approximately 40% can be obtained. This study aimed at understanding the influence of pyrolysis parameters—end temperature, quenching effect, and soaking time—on the membrane properties. Permeation experiments were performed with N2, He, and CO2. Scanning electron microscopy (SEM has been done for all carbon hollow fibers. The highest permeances were obtained for the membrane submitted to an end temperature of 750°C and the highest ideal selectivities for an end temperature of 700°C. In both cases, the membranes were quenched to room temperature.

  16. NMR analysis of the physical change of oil shales during in situ pyrolysis at different temperatures%油页岩不同温度原位热解物性变化核磁共振分析

    李广友; 马中良; 郑家锡; 鲍芳; 郑伦举

    2016-01-01

    油页岩原位热解过程中产生的孔隙和裂缝的连通程度是制约转化后的油页岩油气能否原位可采的关键要素,而常规岩石物性测试手段无法全覆盖测定油页岩层内不同级别的孔隙及裂缝.利用核磁共振仅对岩石孔隙流体有响应可以识别刻画不同级别孔、缝的优势,根据核磁共振分析岩石物性的方法和相关参数模型,开展了模拟地下500 m原位加热到不同反应温度后的油页岩热解系列样品的核磁共振测试.结果表明,不同转化温度原位开采过程中,油页岩的孔隙度演变可以分为3个阶段,250~350℃时逐渐增大,350~400℃时略有减小,400℃之后大幅增大;渗透率在400℃之前变化不大,400~450℃渗透率提高了2个数量级,500℃时改善更为可观,提高了4个数量级.油页岩原位干馏开采需要400℃以上的高温,而实际地下开采大尺度的油页岩受热均一性较差,可能大部分区域温度达不到400℃,可以采取升到更高的温度并延长加热时间或加热前对油页岩层进行储层压裂改造,以改善油页岩层的物性,提高油页岩原位开采油气采收率.%The connectivity between pores and fissures during in situ oil shale pyrolysis is an important element which controls shale oil and gas recoverable amount. However, conventional petrophysical testing methods can not cover all levels of pores and fissures in oil shales. Nuclear magnetic resonance ( NMR) can show fluids in core pores and fissures, hence can be used to identify different levels of pores and fissures. We carried out NMR tests with oil shale samples by simulating the same conditions as 500 m underground and heating the samples to different temperatures. Results showed that the porosity of oil shales change according to temperature during in situ exploitation. Porosity increases from 250 to 350 ℃, decreases slightly from 350 to 400 ℃, and then increases again after 400 ℃. Permeability remains

  17. Co-pyrolysis of low rank coals and biomass: Product distributions

    Soncini, Ryan M; Means, Nicholas C; Weiland, Nathan T

    2013-10-01

    Pyrolysis and gasification of combined low rank coal and biomass feeds are the subject of much study in an effort to mitigate the production of green house gases from integrated gasification combined cycle (IGCC) systems. While co-feeding has the potential to reduce the net carbon footprint of commercial gasification operations, the effects of co-feeding on kinetics and product distributions requires study to ensure the success of this strategy. Southern yellow pine was pyrolyzed in a semi-batch type drop tube reactor with either Powder River Basin sub-bituminous coal or Mississippi lignite at several temperatures and feed ratios. Product gas composition of expected primary constituents (CO, CO{sub 2}, CH{sub 4}, H{sub 2}, H{sub 2}O, and C{sub 2}H{sub 4}) was determined by in-situ mass spectrometry while minor gaseous constituents were determined using a GC-MS. Product distributions are fit to linear functions of temperature, and quadratic functions of biomass fraction, for use in computational co-pyrolysis simulations. The results are shown to yield significant nonlinearities, particularly at higher temperatures and for lower ranked coals. The co-pyrolysis product distributions evolve more tar, and less char, CH{sub 4}, and C{sub 2}H{sub 4}, than an additive pyrolysis process would suggest. For lignite co-pyrolysis, CO and H{sub 2} production are also reduced. The data suggests that evolution of hydrogen from rapid pyrolysis of biomass prevents the crosslinking of fragmented aromatic structures during coal pyrolysis to produce tar, rather than secondary char and light gases. Finally, it is shown that, for the two coal types tested, co-pyrolysis synergies are more significant as coal rank decreases, likely because the initial structure in these coals contains larger pores and smaller clusters of aromatic structures which are more readily retained as tar in rapid co-pyrolysis.

  18. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert

    2010-05-03

    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  19. Product Characterization and Kinetics of Biomass Pyrolysis in a Three-Zone Free-Fall Reactor

    Natthaya Punsuwan

    2014-01-01

    Full Text Available Pyrolysis of biomass including palm shell, palm kernel, and cassava pulp residue was studied in a laboratory free-fall reactor with three separated hot zones. The effects of pyrolysis temperature (250–1050°C and particle size (0.18–1.55 mm on the distribution and properties of pyrolysis products were investigated. A higher pyrolysis temperature and smaller particle size increased the gas yield but decreased the char yield. Cassava pulp residue gave more volatiles and less char than those of palm kernel and palm shell. The derived solid product (char gave a high calorific value of 29.87 MJ/kg and a reasonably high BET surface area of 200 m2/g. The biooil from palm shell is less attractive to use as a direct fuel, due to its high water contents, low calorific value, and high acidity. On gas composition, carbon monoxide was the dominant component in the gas product. A pyrolysis model for biomass pyrolysis in the free-fall reactor was developed, based on solving the proposed two-parallel reactions kinetic model and equations of particle motion, which gave excellent prediction of char yields for all biomass precursors under all pyrolysis conditions studied.

  20. Catalytic oxidative pyrolysis of spent organic ion exchange resins from nuclear power plants

    The spent IX resins from nuclear power reactors are highly active solid wastes generated during operations of nuclear reactors. Catalytic oxidative pyrolysis of these resins can lead to high volume reduction of these wastes. Low temperature pyrolysis of transition metal ion loaded IX resins in presence of nitrogen was carried out in order to optimize catalyst composition to achieve maximum weight reduction. Thermo gravimetric analysis of the pyrolysis residues was carried out in presence of air in order to compare the oxidative characteristics of transition metal oxide catalysts. Copper along with iron, chromium and nickel present in the spent IX resins gave the most efficient catalyst combination for catalytic and oxidative pyrolysis of the residues. During low temperature catalytic pyrolysis, 137Cesium volatility was estimated to be around 0.01% from cationic resins and around 0.1% from anionic resins. During oxidative pyrolysis at 700 degC, nearly 10 to 40% of 137Cesium was found to be released to off gases depending upon type of resin and catalyst loaded on to it. The oxidation of pyrolytic residues at 700 degC gave weight reduction of 15% for cationic resins and 93% for anionic resins. Catalytic oxidative pyrolysis is attractive for reducing weight and volume of spent cationic resins from PHWRs and VVERs. (author)

  1. Pyrolysis products of uncoated printing and writing paper of MSW

    Wu, C.; Chang, C.; Tseng, C. [Da-Yeh University, Chang-Hwa (Taiwan)

    2002-04-01

    Uncoated printing and writing paper, one of the principal waste papers in Taiwan, was pyrolyzed with a thermogravimetric analysis (TGA) reaction system. The pyrolysis experiments were carried out in nitrogen environment at a constant heating rate of 5 K min{sup -1}. The gaseous products and the residues were collected at room temperature (300 K) and analyzed by gas chromatography (GC) and elemental analyzer, respectively. The major gaseous products investigated included non-hydrocarbons (H{sub 2}, CO, CO{sub 2} and H{sub 2}O) and hydrocarbons (C{sub 1-3}, C{sub 4}, C{sub 5}, C{sub 6}, 1-ring, C{sub 10-12}, levoglucosan, C{sub 13=15} and C{sub 16-18}). The cumulated masses and the instantaneous gases were about 10.46 and 0.49% at 623 K, 33.68 and 0.89% at 700 K, 64.52 and 1.05% at 788 K, and 79-10. and 1.63% and 938 K, respectively. The estimation of the mass of tar, yielded at various pyrolysis temperatures was also made. The results of this study might be useful for the design of pyrolysis process as well as for determining the pyrolysis mechanisms of the uncoated printing and writing paper. 23 refs., 1 fig., 6 tabs.

  2. Pyrolysis of a waste from the grinding of scrap tyres

    Fernandez, A.M. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain); Barriocanal, C., E-mail: carmenbr@incar.csic.es [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain); Alvarez, R. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer The pyrolysis of reinforcing fibres obtained from scrap tyres has been studied. Black-Right-Pointing-Pointer The results have been compared to scrap tyre granules. Black-Right-Pointing-Pointer A higher temperature is needed for the total decomposition of the fibres. Black-Right-Pointing-Pointer More compounds with heteroatoms (O, N) were found in the oil from the fibres. Black-Right-Pointing-Pointer Chars from the fibres exhibit lower BET surface and mesopore volume. - Abstract: The fibres that are used to reinforce tyres can be recovered as a waste in the process of grinding of scrap tyres. In this paper beneficiation through pyrolysis is studied since the fibres are made up of polymers with a small amount of rubber because the latter is difficult to separate. The experiments were performed at three temperatures (400, 550 and 900 Degree-Sign C) in a horizontal oven. The three products - gas, oil and char - obtained from the pyrolysis were investigated. The composition of the gas was analyzed by means of gas chromatography. The oil was studied by gas chromatography and infrared spectroscopy. The char porous structure was determined by N{sub 2} adsorption. In addition, the topography of the chars was studied by means of scanning electron microscopy (SEM). The products resulting from the pyrolysis of the fibres were compared with those obtained from scrap rubber.

  3. Pyrolysis of a waste from the grinding of scrap tyres

    Highlights: ► The pyrolysis of reinforcing fibres obtained from scrap tyres has been studied. ► The results have been compared to scrap tyre granules. ► A higher temperature is needed for the total decomposition of the fibres. ► More compounds with heteroatoms (O, N) were found in the oil from the fibres. ► Chars from the fibres exhibit lower BET surface and mesopore volume. - Abstract: The fibres that are used to reinforce tyres can be recovered as a waste in the process of grinding of scrap tyres. In this paper beneficiation through pyrolysis is studied since the fibres are made up of polymers with a small amount of rubber because the latter is difficult to separate. The experiments were performed at three temperatures (400, 550 and 900 °C) in a horizontal oven. The three products – gas, oil and char – obtained from the pyrolysis were investigated. The composition of the gas was analyzed by means of gas chromatography. The oil was studied by gas chromatography and infrared spectroscopy. The char porous structure was determined by N2 adsorption. In addition, the topography of the chars was studied by means of scanning electron microscopy (SEM). The products resulting from the pyrolysis of the fibres were compared with those obtained from scrap rubber.

  4. Experiments and stochastic simulations of lignite coal during pyrolysis and gasification

    Highlights: ► Lignite pyrolysis and gasification has been conducted in a semi batch reactor. ► The objective is to understand mechanism of syngas evolution during pyrolysis. ► Stochastic simulations of lignite pyrolysis were conducted using Gillespie algorithm. ► First order, single step mechanism failed to fit cumulative yield of hydrogen. ► Evolution of hydrogen via pyrolysis of gaseous hydrocarbon following bridges scission. -- Abstract: Lignite pyrolysis and gasification has been conducted in a semi batch reactor at reactor temperatures of 800–950 °C in 50 °C intervals. CO2 has been used as the gasifying agent for gasification experiments. The objective of this investigation is to understand the mechanism of syngas evolution during pyrolysis and to unravel the effect of CO2 on pyrolysis mechanism. Stochastic simulations of lignite pyrolysis have been conducted using Gillespie algorithm. Two reaction mechanisms have been used in the simulations; first order, single step mechanism and the FLASHCHAIN mechanism. The first order single step mechanism was successful in fitting cumulative yield of CO2, CO, CH4 and other hydrocarbons (CnHm). The first order, single step failed to fit the cumulative yield of hydrogen, which suggests a more complex mechanism for hydrogen evolution. Evolution of CO2, CO, CH4, CnHm and H2 flow rates has been monitored. The only effect of CO2 on pyrolysis mechanism is promotion of reverse water gas shift reaction for the experiments described here. Methane evolution extended for slightly longer time than other hydrocarbons and hydrogen evolution extended for a slightly longer time than methane. This indicated the evolution of hydrogen via further pyrolysis of aliphatic hydrocarbon. It is also suggested that this step occurs in series after aliphatic hydrocarbons evolution by bridges scission.

  5. Thallium Isotopes Tracking Mn-Oxide Burial - A Proxy for Deoxygenation During Oceanic Anoxic Event 2

    Ostrander, C.; Owens, J. D.; Nielsen, S.

    2015-12-01

    Thallium (Tl) is proving to be a useful paleoredox proxy given that the Tl isotope composition of seawater is highly dependent on the magnitude of manganese (Mn) oxide burial in the ocean. In turn, Mn oxides require oxygen at the sediment-water interface to precipitate, linking the Tl isotope cycle to ocean oxygenation. Currently, the marine residence time of Tl is ~20kyrs and the Tl isotope composition of seawater is invariant, which suggests Tl isotopes could be a global tracer of marine Mn-oxide burial. Importantly, recent research suggests sediments deposited under a euxinic water column faithfully record the Tl isotope value of the overlying oxic water column (e.g. Black Sea and Cariaco Basin). Therefore, analysis of organic-rich black shales may prove useful in evaluating the seawater Tl isotope composition of past oceans and, hence, large-scale burial of Mn-oxides and the extent of bottom water ocean oxygenation. A logical test for this proxy is during the well-studied Cenomanian-Turonian boundary event termed Oceanic Anoxic Event 2 (OAE-2) at ~94 Ma. It is known that the global extent of anoxia and euxinia increased during this event, however, to what extent global bottom water deoxygenation occured is unconstrained. If deep water deoxygenation occurred, it would be hypothesized that Mn-oxide precipitation would decrease, resulting in a positive Tl isotope excursion during OAE-2. We have analyzed the Tl isotope composition of organic-rich black shales from Site 1258 of the Ocean Drilling Program (ODP) spanning the period before, during, and after OAE-2. Based on Fe redox proxies, the entire section is euxinic and thus no Mn-oxides are present (i.e. no local redox changes). Before the event, Tl isotope compositions are similar or slightly heavier than modern seawater values. Just prior to the onset of OAE-2, a positive shift occurs and is maintained until recovery, slightly before the termination of the event. The shift to heavier values and subsequent

  6. Deactivation in Continuous Deoxygenation of C18-Fatty Feedstock over Pd/Sibunit

    Madsen, Anders Theilgaard; Rozmysłowicz, Bartosz; Mäki-Arvela, Päivi;

    2013-01-01

    Catalytic continuous deoxygenation of stearic acid, ethyl stearate and tristearin without any solvents was investigated using Pd/Sibunit as a catalyst in a trickle bed reactor at 300 °C. The main emphasis was to investigate the effect of gas atmosphere and catalyst deactivation. In addition to...... relative ratios between stearic acid, ethyl stearate and tristearin conversions to alkanes after 3 days time-on-stream were 2.8/2.3/1.0, respectively using 5 % H2/Ar as a gas atmosphere, whereas rapid catalyst deactivation occurred with all substrates under H2-lacking atmosphere. The spent catalyst......’s specific surface area profile along the downward reactor was maximum in the middle of the catalyst beds with the highest pore shrinking in the beginning and at the end of the reactor catalyst segments in the case of stearic acid and tristearin deoxygenation whereas that decreased consecutively as ethyl...

  7. Kinetic Study of the Pyrolysis of Waste Printed Circuit Boards Subject to Conventional and Microwave Heating

    Chunyuan Ma; Chao Zhao; Qingluan Ma; Zhen Liu; Wenlong Wang; Jing Sun

    2012-01-01

    This paper describes a kinetic study of the decomposition of waste printed circuit boards (WPCB) under conventional and microwave-induced pyrolysis conditions. We discuss the heating rates and the influence of the pyrolysis on the thermal decomposition kinetics of WPCB. We find that the thermal degradation of WPCB in a controlled conventional thermogravimetric analyzer (TGA) occurred in the temperature range of 300 °C–600 °C, where the main pyrolysis of organic matter takes place along wi...

  8. Thermo-Catalytic Pyrolysis of Waste Plastics from End of Life Vehicle

    Miskolczi Norbert; Czégény Zsuzsanna

    2016-01-01

    Pyrolysis of waste plastics is widely used recycling method. Owing to the end-of-life vehicles regulations, 95% of passenger cars and vehicles must reused/recovered after the dismantling. Pyrolysis of waste polyethylene and polypropylene obtained from end-of-life vehicles was investigated in a continuously stirred batch reactor using 500 and 600°C temperatures. To ensure the pyrolysis reactions the tested catalysts (5% of ZSM-5, HZSM-5, Ni-ZSM-5 and Fe-ZSM-5) were added directly to the mixtur...

  9. Spherical YAG:Ce3+ Phosphor Particles Prepared by Spray Pyrolysis

    Qi Faxin; Wang Haibo; Zhu Xianzhong

    2005-01-01

    Spherical YAG:Ce3+ phosphor particles with narrow size distribution were prepared by spray pyrolysis. The effects of the concentration of solution, the flow rate of carrier gas and the annealing temperature on the phosphor morphology were studied. The productivity of precursor particles shows a trend of drop after rising with the increase of concentration. Raising the flow rate of nitrogen can improve the productivity of the precursor particles. Phosphor prepared by spray pyrolysis has obviously higher emission intensity than that synthesized by solid state reaction, spray pyrolysis makes Ce3+ ions well distributed in the crystal lattice as the luminescent centers, and phosphor particles have regular sphericity and narrow size distribution.

  10. Exploratory studies on fast pyrolysis oil upgrading

    Mahfud, Farchad Husein

    2007-01-01

    Pyrolysis oil is a dark brown liquid which can be produced in high yield from different kind of biomass sources by means of fast pyrolysis. Pyrolysis oil is considered as a promising second generation energy carrier and may play an important role in the future of "biobased economies". The energy content of pyrolysis oil is approximately half of fossil crude. Just like for crude oil, further reprocessing is necessary to arranged pyrolysis oil as fuel in e.g. combustion engines. This thesis des...

  11. Multicomponent ceramic powder generation by spray pyrolysis

    This paper reports that the authors examined methods for controlling the morphology and microstructure of ceramic particles produced by spray pyrolysis. A variety of materials were examined including SrTiO3 and BaTiO3 and the oxides of Al, Mg, Zn, Pd, V, Mo, and Bi. The morphology of the particles was influenced by using colloidal precursors in combination with molecular precursors for particle generation. Slow drying rates obtained by using high relative humidities and controlled axial temperature gradients did not influence particle morphology for the systems and conditions studied. The microstructure of Al2O3, Bi2O3, V2O5, and PdO particles was controlled by varying the temperature to provide nanocrystalline or single-crystal particles. Evaporation and condensation of volatile species such as MoO3 and V2O5 dramatically modified particle microstructure and morphology

  12. Methods and apparatuses for preparing upgraded pyrolysis oil

    Brandvold, Timothy A; Baird, Lance Awender; Frey, Stanley Joseph

    2013-10-01

    Methods and apparatuses for preparing upgraded pyrolysis oil are provided herein. In an embodiment, a method of preparing upgraded pyrolysis oil includes providing a biomass-derived pyrolysis oil stream having an original oxygen content. The biomass-derived pyrolysis oil stream is hydrodeoxygenated under catalysis in the presence of hydrogen to form a hydrodeoxygenated pyrolysis oil stream comprising a cyclic paraffin component. At least a portion of the hydrodeoxygenated pyrolysis oil stream is dehydrogenated under catalysis to form the upgraded pyrolysis oil.

  13. Enhancing the Activity of Pd on Carbon Nanofibers for Deoxygenation of Amphiphilic Fatty Acid Molecules through Support Polarity

    Gosselink, R.W.; Xia, W.; Muhler, M.; Jong, de K.P.; Bitter, J.H.

    2013-01-01

    The influence of support polarity on Pd/CNF for the deoxygenation of fatty acids was studied. Catalysts with a low (O/C = 3.5 × 10–2 at/at from X-ray photoelectron spectroscopy (XPS)) and a high (O/C = 5.9 × 10–2 at/at from XPS) amount of oxygen containing groups on the support were prepared. The la

  14. Tuning the Selectivity in Deoxygenation of Triglycerides Aimed at the production of Renewable Feedstocks for Ethylene Production

    Kubička, D.; Horáček, J.; Kaluža, Luděk

    Jerusalem : -, 2009, s. 424. ISBN N. [EuropaCat IX: "Catalysis for Sustainable World". Salamanca (ES), 30.08.2009-04.09.2009] R&D Projects: GA MPO FT-TA3/074 Institutional research plan: CEZ:AV0Z40720504 Keywords : deoxygenation * NiMo catalysts * biofuel Subject RIV: CC - Organic Chemistry http://www.certh.gr/577CC7CC.en.aspx

  15. Pyrolysis, combustion and gasification characteristics of miscanthus and sewage sludge

    Highlights: • Pyrolysis, combustion and gasification characteristics of miscanthus and sewage sludge. • We evaluate the temperature range for different process. • Product gas compositions during gasification at different temperature ranges. • Appropriate temperature range assessed for gasification with efficient carbon conversion. • Kinetic constant estimation using Friedman and Coats and Redfern method. - Abstract: The energetic conversion of biomass into syngas is considered as reliable energy source. In this context, biomass (miscanthus) and sewage sludge have been investigated. A simultaneous thermal analyzer and mass spectrometer was used for the characterization of samples and identified the volatiles evolved during the heating of the sample up to 1100 °C under combustion and gasification conditions. The TG and DTA results were discussed in argon, oxygen, steam and steam blended gas atmospheres. Different stages of pyrolysis, combustion and gasification of the samples have been examined. It was shown that the combustion and gasification of char were occurred in two different temperature zones. The DTA–MS profile of the sample gives information on combustion and gasification process of the samples (ignition, peak combustion and burnout temperatures) and gases released (H2, O2, CO and CO2). The results showed that the different processes were mainly dependent on temperature. The evolution of the gas species was consistent with the weight loss of the samples during pyrolysis, combustion and gasification process. The effect of the ambiences during pyrolysis, combustion and gasification of the samples were reported. The appropriate temperature range to the sludge and miscanthus gasification was evaluated. The kinetic parameters of the biomass and sewage sludge were estimated for TGA using two models based on first-order reactions with distributed activation energies. The presence of ash in the biomass char was more influential during the gasification

  16. Kinetic modeling of solid yields formation in the fast pyrolysis of mahogany wood

    Wijayanti, W.; Sasongko, M. N.

    2016-03-01

    There have been many research of biomass pyrolysis not only in heat transfer point of view but also in chemical reaction point of view. In the present study, the rate of reaction (kinetic rate) formation of solid yield was calculated by varying the pyrolysis temperature that gives a chance of 250 °C, 350 °C, 450 °C, 500 °C, 600 °C, 700 °C, until 800°C with heating rate around 700 °C/hour. The heating rate used was the fast pyrolysis in which the heating rate for heating furnaces takes place quickly. Pyrolysis was accomplished by direct pyrolysis process in which each process was conducted at the certain pyrolysis temperature variation that took over 3 hours. Biomass used was mahogany wood, while the inert gas used to hold in order to avoid combustion was nitrogen gas. The decreasing of solid yields formation obtained was used to calculate the kinetic rate of the pyrolysis process. It was calculated by using the similar Arrhenius equation that considering the temperature changes during the process and the decreasing mass of solid yield formation occurred. The kinetic rate results showed the decomposition of biomass occurs tended in two stages, namely a stage of water evaporation and degradation of biomass solid yield coal followed by a stage of constant formation. The decomposition is expressed by the magnitude of the rate of reaction at 25˚C-517˚C temperature range with a reaction rate constant k1 = 2151.67 exp (-2141/Tp). While at pyrolysis temperatures above 517˚C, the reaction rate constant is expressed with k2 = 32.20 exp (-127.8 / Tp).

  17. Fixed-bed pyrolysis of hazelnut shell: a study on mass transfer limitations on product yields and characterization of the pyrolysis oil

    Kockar, O.M.; Onay, O.; Putun, A.E.; Putun, E.

    2000-12-01

    Fixed-bed slow and fast pyrolysis experiments have been conducted on a sample of hazelnut shell. The experiments were performed in two different pyrolysis reactors, a fixed-bed Heinze and a well-swept fixed-bed tubular retort, to investigate the effects of fast pyrolysis on the mass transfer limitations. The effects of heating rate, pyrolysis temperature, particle size, and sweep gas velocity on the pyrolysis product yields and chemical compositions have been investigated. In a Heinze retort, the maximum oil yield of 22.5% was obtained in a sweeping gas atmosphere (100 cm{sup 3}/min N{sub 2}) at the particle size range of 0.85 < D{sub p} < 1.8 mm, pyrolysis temperature of 550 deg C, and heating rate of 7 deg C/min. In a well-swept fixed-bed reactor, the maximum oil yield of 34% was obtained in a sweeping gas atmosphere, with a heating rate of 300 deg C/min. The chemical characterization has shown that the oil obtained from hazelnut shell can be used as a renewable fuel and chemical feedstock. (Author)

  18. Experimental and Modelling Studies of Biomass Pyrolysis

    Ka Leung Lam; Adetoyese Olajire Oyedu~; Chi Wai Hui

    2012-01-01

    The analysis on the feedstock pyrolysis characteristic and the impacts of process parameters on pyrolysis outcomes can assist in the designing, operating and optimizing pyrolysis processes. This work aims to utilize both experimental and modelling approaches to perform the analysis on three biomass feedstocks--wood sawdust, bamboo shred and Jatropha Curcas seed cake residue, and to provide insights for the design_and operation of pyro-lysis processes. For the experimental part, the study investigated the effect of heating rate, final pyrolysis tempera- ture and sample size on pyrolysis using common thermal analysis techniques. For the modelling part, a transient mathematical model that integrates the feedstock characteristic from the experimental study was used to simulate the pyrolysis progress of selected biomass feedstock particles for reactor scenarios. The model composes of several sub-models that describe pyrolysis kinetic and heat flow, particle heat transfer, particle shrinking and reactor opera-tion. With better understanding of the effects of process conditions and feedstock characteristics on pyrolysis through both experimental and modelling studies, this work discusses on the considerations of and interrelation between feedstock size, pyrolysis energy usage, processing time and product quality for the design and operation of pyrolysis processes.

  19. Production, properties and utilisation of pyrolysis oil

    Sipilae, K.; Oasmaa, A.; Arpiainen, V.; Solantausta, Y.; Leppaemaeki, E.; Kuoppala, E.; Levander, J.; Kleemola, J.; Saarimaeki, P. [VTT Energy, Jyvaeskylae (Finland). Energy Production Technologies

    1997-12-01

    In this project VTT Energy co-ordinates the EU JOULE Project `Biofuel oil for power plants and boilers` supporting the development projects of Finnish enterprises, and participates in the Pyrolysis Project of IEA Bioenergy Agreement. Presently two pyrolysis devices with capacities of 150 g/h and 1 kg/h are used for the project. Hot gas filtering tests by using one ceramic candle equipment have been carried out with the 1 kg/h device for pyrolysis oil. The solids and alkali contents of the product oil were reduced clearly. Suitable conditions are being defined for continuous hot gas filtering. A PDU device of 20 kg/h is being commissioned. The main aim of the chemical characterisation of pyrolysis oil was to develop as simple a method as possible for differentiating pyrolysis oils and for finding correlations between the characteristics and behaviour of pyrolysis oils. Pyrolysis oils produced from various raw materials (hardwood, pine, straw) were analysed and compared with each other. VTT Energy participates in the pyrolysis network (EU/PYNE) of EU, the aim of which is to collect and disseminate research results of pyrolysis studies, i.e., through a journal with a wide circulation. VTT also participates in the pyrolysis activity of IEA (PYRA), the other partners being Great Britain, EU, Canada and the United States. I.e., quality criteria and improvement, occupational safety and pyrolysis kinetics are discussed in IEA/PYRA

  20. Microwave pyrolysis for conversion of materials to energy : A review

    Full text: The disposal of wastes in Malaysia is becoming a serious problem in many industrialized and public sectors. This is due to the high production of waste such as municipal solid waste, sludge from waste water treatment plants, agricultural waste and other used non-biodegradable products such as plastics and tyres. These wastes although are reused as compost, fuel, recycled and so on, there are still abundant left. These leftovers pose problems such as heavy metal leaching, leachates, green house gas emissions and mosquito breeding grounds. The disposal cost of these wastes sometimes can be costly at up to RM 2,200/ ton such as petroleum sludge by Kualiti Alam. Several methods have been used to convert these residues to energy via thermal treatment such as combustion, incineration and gasification. However, pyrolysis becomes one of the popular methods as the alternative to the wastes disposal recently. Not only energy (as gas) is produced, by-products such as chemical feedstock and solid absorbent can be produced. The use of microwave for pyrolysis, although relatively new for waste treatment, has several advantages compared to conventional heating. This includes easy control of the heating process, time saving, higher heating efficiency, etc. Tyre microwave pyrolysis plant in UK is known as the earliest plant using microwave technology to breakdown polymer in used tyres. Since 1990s, there are many patents for microwave pyrolysis. The processes are based on microwave pyrolysis of waste include coffee hulls, wood, coal, sewage sludge, hospital waste, plastic wastes, corn cobs and rice straw. The most important factors influencing the yield of product during the pyrolysis is temperature in range from 500 to 1000 degree Celsius according to product preference. High temperature favors gas products; whereas lower temperature favors liquid products. Comparatively, microwave pyrolysis produced gas with higher hydrogen and carbon monoxide (syngas) content compared

  1. Catalytic pyrolysis of olive mill wastewater sludge

    Abdellaoui, Hamza

    From 2008 to 2013, an average of 2,821.4 kilotons/year of olive oil were produced around the world. The waste product of the olive mill industry consists of solid residue (pomace) and wastewater (OMW). Annually, around 30 million m3 of OMW are produced in the Mediterranean area, 700,000 m3 year?1 in Tunisia alone. OMW is an aqueous effluent characterized by an offensive smell and high organic matter content, including high molecular weight phenolic compounds and long-chain fatty acids. These compounds are highly toxic to micro-organisms and plants, which makes the OMW a serious threat to the environment if not managed properly. The OMW is disposed of in open air evaporation ponds. After evaporation of most of the water, OMWS is left in the bottom of the ponds. In this thesis, the effort has been made to evaluate the catalytic pyrolysis process as a technology to valorize the OMWS. The first section of this research showed that 41.12 wt. % of the OMWS is mostly lipids, which are a good source of energy. The second section proved that catalytic pyrolysis of the OMWS over red mud and HZSM-5 can produce green diesel, and 450 °C is the optimal reaction temperature to maximize the organic yields. The last section revealed that the HSF was behind the good fuel-like properties of the OMWS catalytic oils, whereas the SR hindered the bio-oil yields and quality.

  2. Study on the pyrolysis behavior of Shendong Shangwan coal and its macerals concentrate

    Hua-lin LIN; Ke-jian LI; Xu-wen ZHANG

    2013-01-01

    The pyrolysis characteristics of Shendong Shangwan coal and its macerals concentrate were investigated using thermogravimetry (TG) coupled with mass spectrometry (MS).The evolved gases were analyzed online by MS spectroscopy.The results of TG/DTG (derivative thermogravimetry) show ths vitrinite concentrate has greater weight loss rate and higher volatile yield than the other two samples.More light hydrocarbons C1-C5 are released from the vitrinite concentrate than from the Shendong Shangwan coal and inertinite concentrated in the process of pyrolysis.Three samples have similar shape curves of evolved gases of C2-C5 with different intensities.When the pyrolysis temperature was lower than 418 ℃,the amount of C6H6 evolved in the process of pyrolysis of inertinite concentrated was higher than that of raw coal and vitrinite concentrate.As the temperature rising,the production rate of C6H6 increased.Below 672 ℃,C6H6 evolution rate of vitrinite concentrate was far greater than the other two samples; the main evolution temperature range of C7H8 was 400 ℃ to 700 ℃ for the three samples.The amount of H2 and H2O released first increased and then decreased with the temperature increase while more H2 released for pyrolysis of inertinite concentrated and more H2O released for the pyrolysis of vitrinite concentrate.

  3. Fast pyrolysis of rape seed in a well-swept fixed-bed reactor

    Onay, O.; Beis, S.H.; Kockar, O.M. [Department of Chemical Engineering, Anadolu University, 26470, Eskisehir (Turkey)

    2001-04-01

    Fixed-bed fast pyrolysis experiments have been conducted on a sample of rape seed to determine particularly the effects of pyrolysis temperature, particle size, heating rate and sweep gas flow rate on the pyrolysis yields and their chemical compositions. The maximum oil yield of 68% was obtained at the final pyrolysis temperature of 550C, particle size range of 0.6-0.85 mm, with a heating rate of 300C min{sup -1} and a sweep gas flow rate of 100 cm{sup 3} min{sup -1} (N{sub 2}) in a well-swept fixed-bed reactor. Chromatographic and spectroscopic studies on the pyrolytic oil showed that the oil obtained from rape seed can be used as a renewable fuel and chemical feedstock.

  4. Correlation Between Pyrolysis Atmosphere and Carbon Molecular Sieve Membrane Performance Properties

    Kiyono, Mayumi

    2011-01-01

    Carbon molecular sieve (CMS) membranes have attractive separation performance properties, greatly exceeding an "upper bound" trade-off curve of polymeric membrane performance. CMS membranes are prepared by pyrolyzing polymers, well above their glass transition temperatures. Multiple factors, such as polymer precursor and pyrolysis protocol, are known to affect the separation performance. In this study, a correlation observed between pyrolysis atmosphere and CMS separation performance properties is discussed. Specifically, oxygen exposure during the pyrolysis process is the focus. The theory and details of the oxygen exposure and development of a new CMS preparation method using oxygen as a "dopant" will be described with a strong correlation observed with separation performance for CMS membranes prepared with various polymer precursors. In addition, study of possible mass transfer limitations on the oxygen "doping" process will be described to clarify the basis for the equilibrium-based interpretation of doping data. The method is also explored by changing the pyrolysis temperature. © 2011 Elsevier B.V.

  5. Alkaline deoxygenated graphene oxide as adsorbent for cadmium ions removal from aqueous solutions.

    Liu, Jun; Du, Hongyan; Yuan, Shaowei; He, Wanxia; Yan, Pengju; Liu, Zhanhong

    2015-01-01

    Alkaline deoxygenated graphene oxide (aGO) was prepared through alkaline hydrothermal treatment and used as adsorbent to remove Cd(II) ions from aqueous solutions for the first time. The characterization results of transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and Fourier transform infrared (FT-IR) spectra indicate that aGO was successfully synthesized. The batch adsorption experiments showed that the adsorption kinetics could be described by the pseudo-second-order kinetic model, and the isotherms equilibrium data were well fitted with the Langmuir model. The maximum adsorption capacity of Cd(II) on aGO was 156 mg/g at pH 5 and T=293 K. The adsorption thermodynamic parameters indicated that the adsorption process was a spontaneous and endothermic reaction. The mainly adsorption mechanism speculated from FT-IR results may be attributed to the electrostatic attraction between Cd2+ and negatively charged groups (-CO-) of aGO and cation-π interaction between Cd2+ and the graphene planes. The findings of this study demonstrate the potential utility of the nanomaterial aGO as an effective adsorbent for Cd(II) removal from aqueous solutions. PMID:26038925

  6. Acute exercise increases oxygenated and deoxygenated hemoglobin in the prefrontal cortex.

    Giles, Grace E; Brunyé, Tad T; Eddy, Marianna D; Mahoney, Caroline R; Gagnon, Stephanie A; Taylor, Holly A; Kanarek, Robin B

    2014-11-12

    Both acute and chronic exercise is consistently associated with a number of benefits to physical and mental health, including cardiovascular function, body weight, mood, and cognition. Near-infrared spectroscopy is an ideal method to measure changes in oxygenated and deoxygenated hemoglobin (O2Hb and dHb) levels in the prefrontal cortex (PFC) during exercise, to better understand the locus of such changes in affective and cognitive processes. The present study tracked time-dependent changes in O2Hb and dHb levels in the PFC as a function of parametrically manipulated target exercise intensity. Near-infrared spectroscopy was conducted as regular exercisers completed a 30-min bout of exercise with one of three target intensities: 52% (low condition), 68% (moderate condition), or 84% (high condition) of age-adjusted maximum heart rate. Heart rate data confirmed that the participants reached their goal intensities immediately, after 10 min, or after 20 min, respectively. Data showed that O2Hb and dHb levels in the PFC increased as a function of both exercise load and duration. An 84%>68%>52% difference was evident after 18 min of cycling for O2Hb and after 23 min of cycling for dHb. The present results add to the growing body of literature showing that at submaximal levels, increasing exercise intensities reliably promote prefrontal cerebral oxygenation. PMID:25275640

  7. Spray pyrolysis of CZTS nanoplatelets.

    Exarhos, S; Bozhilov, K N; Mangolini, L

    2014-10-01

    We demonstrate that copper-zinc-tin-sulphide nanoplatelets can be directly grown onto a molybdenum-coated substrate using spray pyrolysis starting from a mixture of metal thiocarbamates precursors. The structure and phase purity of the nanoplatelets is discussed in detail. PMID:25119262

  8. Features of carborane-4 pyrolysis

    A phenomenological mathematical model, describing experiments on carborane disappearance and formation of condensate at 900-1700 K, was suggested. The concept of pyrolysis as interaction of electron-deficient carborane isomers and its derivatives was substantiated. The structure of electron-deficient isomer of carborane-4 was ascertained

  9. An experimental and modeling investigation of particle production by spray pyrolysis using a laminar flow aerosol reactor

    The influence of operating parameters on the morphology of particles prepared by spray pyrolysis was investigated using a temperature-graded laminar flow aerosol reactor. Experimentally, zirconia particles were prepared by spray pyrolysis using an aqueous solution of zirconyl hydroxide chloride. Hollow particles were formed if the reactor temperature was high, the temperature gradient was too large, the flow rate of carrier gas was high, and the initial solute concentration was low. A numerical simulation of the pyrolysis process was developed using a combination of two previous models. The simulation results compared well with the experimental results. (c) 2000 Materials Research Society

  10. Production of bio-oil from biomass: slow pyrolysis of rapeseed (Brassica napus L.) in a fixed-bed reactor

    Onay, O. [Anadolu University (Turkey). Faculty of Engineering

    2003-09-01

    Rapeseed (Brassica napus L.) pyrolysis experiments were performed in a fixed-bed reactor. The effects of heating rate, final pyrolysis temperature, particle size, and pyrolysis atmosphere on pyrolysis product yields and chemical compositions have been investigated. The maximum oil yield of 51.7% was obtained at a pyrolysis temperature of 550{sup o}C with particle sizes in the range of +0.6 to 1.8 mm in a sweeping gas atmosphere (100 cm{sup 3} min{sup -1} N{sub 2}) and a heating rate of 30{sup o}C min{sup -1}. The chemical characterization has shown that the oil obtained from rapeseed may be potentially valuable as fuels and chemical feedstocks. (author)

  11. Investigating the potential for a self-sustaining slow pyrolysis system under varying operating conditions

    Crombie, Kyle; MASEK, Ondrej

    2014-01-01

    This work aimed to investigate the impact of highest treatment temperature (HTT), heating rate, carrier gas flow rate and feedstock on the composition and energy content of pyrolysis gas to assess whether a self-sustained system could be achieved through the combustion of the gas fraction alone, leaving other co-products available for alternative high-value uses. Calculations based on gas composition showed that the pyrolysis process could be sustained by the energy contained within the pyrol...

  12. Study of the experimental conditions of the co-pyrolysis of rice husk and plastic wastes

    Costa, Paula; Pinto, Filomena; Miranda, Miguel; André, Rui Neto

    2014-01-01

    The main objective of this study is to access the technical and economical viability of using pyrolysis technology applied to the rice production main wastes to produce bio-fuels to substitute fossil fuels and electricity consumption during rice milling processes. Therefore, it was studied the effect of operating conditions (reaction temperature, initial pressure and reaction time) on products yields and quality, as well as the possible synergetic effects that may occur during the pyrolysis o...

  13. On-Line Analysis and Kinetic Behavior of Arsenic Release during Coal Combustion and Pyrolysis.

    Shen, Fenghua; Liu, Jing; Zhang, Zhen; Dai, Jinxin

    2015-11-17

    The kinetic behavior of arsenic (As) release during coal combustion and pyrolysis in a fluidized bed was investigated by applying an on-line analysis system of trace elements in flue gas. This system, based on inductively coupled plasma optical emission spectroscopy (ICP-OES), was developed to measure trace elements concentrations in flue gas quantitatively and continuously. Obvious variations of arsenic concentration in flue gas were observed during coal combustion and pyrolysis, indicating strong influences of atmosphere and temperature on arsenic release behavior. Kinetic laws governing the arsenic release during coal combustion and pyrolysis were determined based on the results of instantaneous arsenic concentration in flue gas. A second-order kinetic law was determined for arsenic release during coal combustion, and the arsenic release during coal pyrolysis followed a fourth-order kinetic law. The results showed that the arsenic release rate during coal pyrolysis was faster than that during coal combustion. Thermodynamic calculations were carried out to identify the forms of arsenic in vapor and solid phases during coal combustion and pyrolysis, respectively. Ca3(AsO4)2 and Ca(AsO2)2 are the possible species resulting from As-Ca interaction during coal combustion. Ca(AsO2)2 is the most probable species during coal pyrolysis. PMID:26488499

  14. Characterization of char from slow pyrolysis of sewage sludge.

    Xu, Wen-Ying; Wu, Di

    2016-01-01

    The effects of final pyrolysis temperature Tend from 300 ºC to 550 ºC, heating rates β of 2 ºC/min, 3 ºC/min and 5 ºC/min, retention time RT from 45 min to 90 min, and the moisture content MC from 0 to 70% on characteristics of the pyrolysis char from sewage sludge were investigated using a tube furnace in this study. The resulting chars were characterized by sorption of nitrogen (surface area and pore volume). Their adsorption characteristics were evaluated via iodine value and methylene blue value. Either the pore structures or adsorption characteristics depend on the pyrolysis processing and moisture content of the sludge precursors. In terms of iodine value and surface area of the char, Tend of 450 ºC, RT of 75 min and β of 3 ºC/min proved the optimum combination of pyrolysis parameters. The chars have an undeveloped mesopore and macropore structure and a developed micropore structure. The sodium phenoxide adsorption equilibrium data fit well with the Langmuir model of adsorption, suggesting monolayer coverage of sodium phenoxide molecules at the surface of the char. Its adsorption mechanism is mainly physical in nature, enhanced by chemisorption. PMID:27191557

  15. Pyrolysis of thermally thick wood particles - experiments and mathematical modelling

    Moeller Andersen, S.; Thaaning Pedersen, S.; Goebel, B.; Houbak, N.; Henriksen, Ulrik [MEK - DTU, Kgs. Lyngby (Denmark); Dall Bentzen, J. [COWI a/s, Kgs. Lyngby (Denmark)

    2005-07-01

    A simple, dynamic, l-dimensional model describing heating, drying and pyrolysis of thermally thick wood particles with a l-dimensional geometry has been developed and implemented. The model output is the dynamic evolution of both the char yield and the amount of volatiles. The model is developed in such a simple and accessible way, that it easily can be implemented in a larger model for dimensioning and optimisation of applications where pyrolysis is a part of the overall process as for instance gasification. Experiments using a Thermo Gravimetric Analyser (TGA), built so pieces of wood can be fed into a hot atmosphere instantaneously, have been used to observe the influence of various parameters like temperature and size and wood types on the pyrolysis process. Results from the model have been compared with results from the experiments. The comparison showed good accordance when both wood particles with a well-defined geometry (a cylinder) and when beds of wood chips and wood pellets, respectively, were pyrolyzed. The model has proven that transport of heat to the wood; internal transport and accumulation of heat inside the wood and kinetics of pyrolysis are all important parameters. (au)

  16. A steady state model of agricultural waste pyrolysis: A mini review.

    Trninić, M; Jovović, A; Stojiljković, D

    2016-09-01

    Agricultural waste is one of the main renewable energy resources available, especially in an agricultural country such as Serbia. Pyrolysis has already been considered as an attractive alternative for disposal of agricultural waste, since the technique can convert this special biomass resource into granular charcoal, non-condensable gases and pyrolysis oils, which could furnish profitable energy and chemical products owing to their high calorific value. In this regard, the development of thermochemical processes requires a good understanding of pyrolysis mechanisms. Experimental and some literature data on the pyrolysis characteristics of corn cob and several other agricultural residues under inert atmosphere were structured and analysed in order to obtain conversion behaviour patterns of agricultural residues during pyrolysis within the temperature range from 300 °C to 1000 °C. Based on experimental and literature data analysis, empirical relationships were derived, including relations between the temperature of the process and yields of charcoal, tar and gas (CO2, CO, H2 and CH4). An analytical semi-empirical model was then used as a tool to analyse the general trends of biomass pyrolysis. Although this semi-empirical model needs further refinement before application to all types of biomass, its prediction capability was in good agreement with results obtained by the literature review. The compact representation could be used in other applications, to conveniently extrapolate and interpolate these results to other temperatures and biomass types. PMID:27281226

  17. Molten salt pyrolysis of milled beech wood using an electrostatic precipitator for oil collection

    Heidi S. Nygård

    2015-07-01

    Full Text Available A tubular electrostatic precipitator (ESP was designed and tested for collection of pyrolysis oil in molten salt pyrolysis of milled beech wood (0.5-2 mm. The voltage-current (V-I characteristics were studied, showing most stable performance of the ESP when N2 was utilized as inert gas. The pyrolysis experiments were carried out in FLiNaK and (LiNaK2CO3 over the temperature range of 450-600 ℃. The highest yields of pyrolysis oil were achieved in FLiNaK, with a maximum of 34.2 wt% at 500 ℃, followed by a decrease with increasing reactor temperature. The temperature had nearly no effect on the oil yield for pyrolysis in (LiNaK2CO3 (19.0-22.5 wt%. Possible hydration reactions and formation of HF gas during FLiNaK pyrolysis were investigated by simulations (HSC Chemistry software and measurements of the outlet gas (FTIR, but no significant amounts of HF were detected.

  18. Chaos Transfer in Fluidized Beds Accompanied with Biomass Pyrolysis

    唐松涛; 李定凯; 吕子安; 沈幼庭

    2003-01-01

    Experiments of biomass pyrolysis were carried out in a fiuidized bed, and dynamic signals of pressure and temperature were recorded. Correlation dimension was employed to characterize the chaotic behavior of pressure and temperature signals. Both pressure and temperature signals exhibit chaotic behavior, and the chaotic behavior of temperature signals is always weaker than that of pressure signals. Chaos transfer theory was advanced to explain the above phenomena. The discussion on the algorithm of the correlation dimension shows that the distance definition based on rhombic neighborhood is a better choice than the traditional one based on spherical neighborhood. The former provides a satisfactory result in a much shorter time.

  19. Pyrolysis of textile wastes. Part 1. Kinetics and yields

    Miranda, R.; Sosa Blanco, C.; Bustos-Martinez, D. [Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Quimicas, Chemical Engineering Department, Pedro de Alba Ave., Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon, Mexico 66450 (Mexico); Vasile, C. [Physical Chemistry Laboratory, Romanian Academy, ' Petru Poni' Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania)

    2007-10-15

    Thermal behavior of textile waste was studied by thermogravimetry at different heating rates and also by semi-batch pyrolysis. It was shown that the onset temperature of mass loss is within 104-156 C and the final reaction temperature is within 423-500 C. The average mass loss is 89.5%. There are three DTG peaks located at the temperature ranges of 135-309, 276-394 and 374-500 C, respectively. The first two might be associated either with decomposition of the hemicellulose and cellulose or with different processes of cellulose decomposition. The third peak is possibly associated to a synthetic polymer. At a temperature of 460 C, the expected amount of volatiles of this waste is within 85-89%. The kinetic parameters of the individual degradation processes were determined by using a parallel model. Their dependence on the heating rate was also established. The pyrolysis rate is considered as the sum of the three reaction rates. The pyrolysis in a batch reactor at 700 C and nitrogen flow of 60 ml/min produces 72 wt.% of oil, 13.5 wt.% of gas and 12.5 wt.% of char. The kinetic parameters of the first peak do not vary with heating rate, while those of the second and the third peak increase and decrease, respectively, with an increasing heating rate, proving the existence of complex reaction mechanisms for both cases. (author)

  20. Thermochemical behavior of tris(2-butoxyethyl) phosphate (TBEP) during co-pyrolysis with biomass.

    Qian, Ting-Ting; Li, De-Chang; Jiang, Hong

    2014-09-16

    Co-pyrolysis of plastic waste and wood biomass to recover valuable chemicals is a cost-effective waste-recycling technology. However, widely used organophosphate ester additives in plastic, such as tris(2-butoxyethyl) phosphate (TBEP), can form diverse phosphorus (P)-containing species. These P-containing compounds can pose new environmental challenges when the biochar is reused. In this study, a mixture of TBEP and lignin was used to simulate the feedstock of plastic waste and wood biomass, and the thermochemical behavior of TBEP in slow pyrolysis (20 K min(-1)) and fast pyrolysis at 400-600 °C was investigated. The results show that low temperature in fast pyrolysis favors the enrichment of P in char. Up to 76.6% of initial P in the feedstock is retained in the char resulting from 400 °C, while only 51% is retained in the char from 600 °C. Slow pyrolysis favors the formation of stable P species regardless of the temperature; only 7% of the P retained in the char is extractable from char from slow pyrolysis, while 20-40% of P can be extracted from char resulting from fast pyrolysis. The addition of CaCl2 and MgCl2 can significantly increase the fraction of P retained in the char by the formation of Ca, Mg-P compounds. Online TG-FTIR-MS analysis suggests that TBEP undergoes decomposition through different temperature-dependent pathways. The P-containing radicals react with the aromatic rings produced by the pyrolysis of lignin to form Ar-P species, which is an important factor influencing the distribution and stabilization of P in char. PMID:25154038

  1. Effects of torrefaction on hemicellulose structural characteristics and pyrolysis behaviors.

    Wang, Shurong; Dai, Gongxin; Ru, Bin; Zhao, Yuan; Wang, Xiaoliu; Zhou, Jinsong; Luo, Zhongyang; Cen, Kefa

    2016-10-01

    The effects of torrefaction on hemicellulose characteristics and its pyrolysis behaviors were studied in detail. The oxygen content decreased significantly after torrefaction, leading to the increase of high heating value. Two-dimensional perturbation correlation analysis based on diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was performed to characterize the structural evolutions. It was found the dehydration of hydroxyls and the dissociation of branches were the main reactions at low torrefaction temperature. When the temperature further increased, the depolymerization of hemicellulose and the fragmentation of monosaccharide residues occurred. The distributed activation energy model with double Gaussian functions based on reaction-order model was used to investigate the pyrolysis kinetics. The results showed that torrefaction enhanced the activation energy for degradation reactions while lowered that for condensation reactions, and increased the devolatilization contribution of condensation reactions. Besides, torrefaction decreased the yields of typical pyrolytic products, such as acids, furans, alicyclic ketones and so on. PMID:27469091

  2. Fines in fluidized bed silane pyrolysis

    Hsu, G.; Hogle, R.; Rohatgi, N.; Morrison, A.

    1984-01-01

    Silicon deposition on silicon seed particles by silane pyrolysis in a fluidized-bed reactor is investigated as a low-cost, high-throughput method to produce high-purity polysilicon for solar-cell applications. Studies of fines, particles 0.1-10 microns diam, initiated from homogeneous decomposition in the reactor were conducted using 2 and 6-in-diam fluidized beds. The studies show functional dependences of fines elutriation on silane feed concentration, temperature, gas velocity, and bubble size. The observation that the fines elutriation is generally below 10 percent of the silicon-in-silane feed is attributed to scavenging by large particles in an environment of less free space for homogeneous nucleation. Preliminary results suggest that, with proper conditions and distributor design, high-silane-concentration (over 50 percent SiH4 in H2) feed may be used.

  3. Valorization of Rhizoclonium sp. algae via pyrolysis and catalytic pyrolysis.

    Casoni, Andrés I; Zunino, Josefina; Piccolo, María C; Volpe, María A

    2016-09-01

    The valorization of Rhizoclonium sp. algae through pyrolysis for obtaining bio-oils is studied in this work. The reaction is carried out at 400°C, at high contact time. The bio-oil has a practical yield of 35% and is rich in phytol. Besides, it is simpler than the corresponding to lignocellulosic biomass due to the absence of phenolic compounds. This property leads to a bio-oil relatively stable to storage. In addition, heterogeneous catalysts (Al-Fe/MCM-41, SBA-15 and Cu/SBA-15), in contact with algae during pyrolysis, are analyzed. The general trend is that the catalysts decrease the concentration of fatty alcohols and other high molecular weight products, since their mild acidity sites promote degradation reactions. Thus, the amount of light products increases upon the use of the catalysts. Particularly, acetol concentration in the bio-oils obtained from the catalytic pyrolysis with SBA-15 and Cu/SBA-15 is notably high. PMID:27253478

  4. Dissolved phosphorus speciation of flash carbonization, slow pyrolysis, and fast pyrolysis biochars

    Pyrolysis of waste biomass is a promising technology to produce sterile and renewable organic phosphorus fertilizers. Systematic studies are necessary to understand how different pyrolysis platforms influence the chemical speciation of dissolved (bioavailable) phosphorus. This study employed solut...

  5. Moringa oleifera Lam. (Moringaceae grown in Nigeria: In vitro antisickling activity on deoxygenated erythrocyte cells

    Olufunmilayo E Adejumo

    2012-01-01

    Full Text Available Context: Traditional medicine, which is more available and affordable for the poor uses medicinal plants for the treatment and management of various ailments, including the sickle cell disease (SCD. About 24 million Nigerians are carriers of this sickled cell gene, while approximately 2.4 million are SCD patients. Moringa oleifera Lam. (Moringaceae possesses high nutritional value and has been used in folklore medicine to treat various ailments related to pain and inflammation. Chemical, pharmacological and pharmacognostical applications of Moringa oleifera have been reported. Objective: This study investigated the antisickling potential of polar and non-polar extracts of the seed, flower and leaf of Moringa oleifera for the first time. Materials and Methods: Using crude methanol extract, aqueous extract, ethyl acetate and butanol, the in vitro antisickling activities of Moringa oleifera fractions, were evaluated using erythrocyte cells deoxygenated with 2% sodium metabisulphite. p-Hydroxybenzoic acid and normal saline were employed as positive and negative controls. Results: Phytochemical screening revealed the presence of saponins, free anthraquinones, and alkaloids. Extracts of the seed and flower demonstrated a higher (P<0.05 antisickling activity in comparison to the leaf extract. The leaf extract, as well as those of the seed and flower, equally demonstrated a (P<0.05 reversal of sickled erythrocytes. Discussions and Conclusions: These findings suggest that Moringa oleifera may play a role in the management of SCD, by incorporation of its fractions into recipes. More extensive biological evaluations and further studies will be necessary for the chemical characterization of the antisickling principles.

  6. Construction of a Labview controlled pyrolysis unit for coupling to a Pyrola 85 pyrolysis chamber

    Östman, Marcus; Näsström, Elin

    2012-01-01

    Pyrolysis is the process of molecular decomposition in an inert environment using heat. It is possible to fragment large molecules, such as polymers, by pyrolysis and separate the fragments directly in a GC. This makes it possible to form complex sample fingerprints that can be used in various applications, for example in forensic science. In this project, a malfunctioning Pyrola 85 pyrolysis unit was fixed by measuring the voltage signals from the photo diode during pyrolysis in a Labview pr...

  7. Modelling of pyrolysis of peat and biomass under combustion and gasification; Pyrolyysimalli turpeen ja biomassan poltolle ja kaasutukselle

    Raiko, R.; Haukka, P.; Vehmaan-Kreula, M. [Tampere Univ. of Technology (Finland). Energy and Process Technology

    1997-10-01

    In the model developed during the research the chemical kinetics of pyrolysis is described with `the two competing reactions model`. Heat transfer in particle consists of convection and conduction. With the help of the model all the kinetic parameters of the two pyrolysis reactions are fitted with measured values. Also simple correlations for pyrolysis of peat under fluidized bed and pulverised flame conditions are given. The effect of the heating rate can be taken into account by using two competing Arrhenius-type reactions. In this model pyrolysis is modelled by using two reactions; one for the low temperature level and the other for the high temperature level. Both of these reactions consume the same unreacted fuel and this model is able to describe the pyrolysis at different temperature levels. Pyrolysis takes place in the heating stage of the particle before heterogeneous combustion and therefore temperature and density profiles inside the particle have to be solved simultaneously. The energy and mass balance equations of the particle form a set of partial differential equations (PDE), which is solved numerically by using so called method of lines, by converting PDE into a set of ordinary differential equations (ODE). The final solution of ODEs is received by using LSODE algorithm of Hindmash. An user friendly interface for the pyrolysis model is programmed by using Visual Basic enabling convenient variation of the conditions and observation of the results

  8. Pyrolysis of polyolefins for increasing the yield of monomers’ recovery

    Highlights: ► Thermal and catalytic pyrolysis of mixed polyolefins in fluidized bed has been studied. ► We tested applicability of a commercial Ziegler–Natta catalyst (Z–N: TiCl4/MgCl2). ► The catalyst has a strong influence on product distribution, increasing gas fraction. ► At 650 °C the monomer generation increased by 55% when the catalyst was used. ► We showed the concept of treatment of mixed polyolefins without a need of separation. - Abstract: Pyrolysis of plastic waste is an alternative way of plastic recovery and could be a potential solution for the increasing stream of solid waste. The objective of this work was to increase the yield the gaseous olefins (monomers) as feedstock for polymerization process and to test the applicability of a commercial Ziegler–Natta (Z–N): TiCl4/MgCl2 for cracking a mixture of polyolefins consisted of 46% wt. of low density polyethylene (LDPE), 30% wt. of high density polyethylene (HDPE) and 24% wt. of polypropylene (PP). Two sets of experiments have been carried out at 500 and 650 °C via catalytic pyrolysis (1% of Z–N catalyst) and at 650 and 730 °C via only-thermal pyrolysis. These experiments have been conducted in a lab-scale, fluidized quartz-bed reactor of a capacity of 1–3 kg/h at Hamburg University. The results revealed a strong influence of temperature and presence of catalyst on the product distribution. The ratios of gas/liquid/solid mass fractions via thermal pyrolysis were: 36.9/48.4/15.7% wt. and 42.4/44.7/13.9% wt. at 650 and 730 °C while via catalytic pyrolysis were: 6.5/89.0/4.5% wt. and 54.3/41.9/3.8% wt. at 500 and 650 °C, respectively. At 650 °C the monomer generation increased by 55% up to 23.6% wt. of total pyrolysis products distribution while the catalyst was added. Obtained yields of olefins were compared with the naphtha steam cracking process and other potentially attractive processes for feedstock generation. The concept of closed cycle material flow for polyolefins has

  9. Catalytic Fast Pyrolysis: A Review

    Theodore Dickerson

    2013-01-01

    Full Text Available Catalytic pyrolysis is a promising thermochemical conversion route for lignocellulosic biomass that produces chemicals and fuels compatible with current, petrochemical infrastructure. Catalytic modifications to pyrolysis bio-oils are geared towards the elimination and substitution of oxygen and oxygen-containing functionalities in addition to increasing the hydrogen to carbon ratio of the final products. Recent progress has focused on both hydrodeoxygenation and hydrogenation of bio-oil using a variety of metal catalysts and the production of aromatics from bio-oil using cracking zeolites. Research is currently focused on developing multi-functional catalysts used in situ that benefit from the advantages of both hydrodeoxygenation and zeolite cracking. Development of robust, highly selective catalysts will help achieve the goal of producing drop-in fuels and petrochemical commodities from wood and other lignocellulosic biomass streams. The current paper will examine these developments by means of a review of existing literature.

  10. CO-PYROLYSIS OF POLYPROPYLENE WITH PETROLEUM OF BACIA DE CAMPOS

    DE ASSUMPÇÃO, Luiz Carlos Fonte Nova; MARQUES, Mônica Regina da Costa; CARBONELL, Montserrat Motas

    2009-01-01

    Full Text Available In this study, the process of co-pyrolysis of polypropylene (PP residues with gas-oil was evaluated, varying thetemperature and the amount of polypropylene fed to the reactor. The polypropylene samples and gas-oil weresubmitted to the thermal co-pyrolysis in an inert atmosphere, varying the temperature and the amount of PP.The influence of the gas-oil was evaluated carrying the co-pyrolysis in the absence of PP. The pyrolysed liquidsproduced by this thermal treatment were characterized by modified gaseous chromatography in order toevaluate the yield in the range of distillation of diesel. As a result, the increase of PP amount lead to a reductionin the yield of the pyrolytic liquid and to an increase of the amount of solid generated. The effect of temperatureincrease showed an inverse result. The results show that plastic residue co-pyrolysys is a potential method forchemical recycling of plastic products.

  11. Model-free pyrolysis kinetics of sunflower seed and its de-oiled cake

    Sunflower seed wastes from oil production are a potential biomass source for bio- energy production due to extensive and excessive oil production from sunflower seeds. Considering global energy requirement, pyrolysis seems a promising route for utilisation of such industrial biomass wastes. To develop, scale-up and operate pyrolysis plants efficiently, a fundamental understanding of pyrolysis behaviour and kinetics is essential. In this study, sunflower seeds and their waste cakes after extraction were evaluated as a potential biomass feedstock in pyrolysis process. In order to enlighten pyrolytic degradation behaviours, samples were pyrolysed under dynamic conditions from room temperature to 1000 °C using multiple heating rates. The main degradation regimes of the structures were characterized by high weight loss rates. Reaction kinetics was investigated with respect to conversion degree. It is anticipated that this study will be beneficial in optimizing the thermochemical processes, which may be utilize industrial biomass wastes. (full text)

  12. Slow pyrolysis of prot, alkali and dealkaline lignins for production of chemicals.

    Biswas, Bijoy; Singh, Rawel; Kumar, Jitendra; Khan, Adnan Ali; Krishna, Bhavya B; Bhaskar, Thallada

    2016-08-01

    Effect of different lignins were studied during slow pyrolysis. Maximum bio-oil yield of 31.2, 34.1, and 29.5wt.% was obtained at 350, 450 and 350°C for prot lignin, alkali lignin and dealkaline lignin respectively. Maximum yield of phenolic compounds 78%, 80% and 92% from prot lignin, alkali and dealkaline lignin at 350, 450 and 350°C. The differences in the pyrolysis products indicated the source of lignins such as soft and hard wood lignins. The biochar characterisation revealed that the various ether linkages were broken during pyrolysis and lignin was converted into monomeric substituted phenols. Bio-oil showed that the relative contents of each phenolic compound changes significantly with pyrolysis temperature and also the relative contents of each compound changes with different samples. PMID:26873286

  13. Pyrolysis of Barks from Three Japanese Softwood

    Umemura, Aki; Enomoto, Ryohei; Kounosu, Taku; Orihashi, Ken; Kato, Yoshiaki; Kojima, Yasuo

    2014-01-01

    Along with Japanese cedar bark, fir bark and Japanese larch bark were pyrolyzed to estimate the possibility of utilizing these softwood barks as resources for fine chemicals by comparing the pyrolysis product compositions. The three softwood barks contained higher ash content and yielded lower amount of volatiles when compared with cedar heartwood. The major pyrolysis products from their barks were similar to those previously reported from softwood trunks. Levoglucosan was a major pyrolysis p...

  14. Thermal and catalytic pyrolysis of plastic waste

    Débora Almeida; Maria de Fátima Marques

    2016-01-01

    Abstract The amount of plastic waste is growing every year and with that comes an environmental concern regarding this problem. Pyrolysis as a tertiary recycling process is presented as a solution. Pyrolysis can be thermal or catalytical and can be performed under different experimental conditions. These conditions affect the type and amount of product obtained. With the pyrolysis process, products can be obtained with high added value, such as fuel oils and feedstock for new products. Zeolit...

  15. Characteristics and synergistic effects of co-pyrolysis of yinning coal and poplar sawdust

    Zhu Shenghua

    2016-01-01

    Full Text Available Co-process of biomass and coal is perceived as a way to enhance the energy utilization by virtue of the integrated and interactive effects between different types of carbonaceous fuels. The purpose of this study was to investigate the co-pyrolysis characteristics of Yining coal and poplar sawdust, and to determine whether there is any synergistic effect in pyrolytic product yields. The coal was blended with sawdust at a mass fraction of 9:1, 7:3, 5:5, 3:7 and 1:9 respectively. The change of char yields, maximum weight loss rate and the corresponding temperature of different coal/sawdust blends during pyrolysis were compared by thermogravimetric analysis (TG. The total tar yields during separate coal, sawdust as well as their blends pyrolysis were acquired from the low temperature aluminum retort distillation test. By compare the experimental and theoretical value of the char yields from TG and tar yields from carbonization test, it was observed that co-pyrolysis of coal/sawdust blends produced less char and tar than the total amount produced by separate coal and sawdust pyrolysis. The different product distribution suggested that there was synergy effect in gas product yields. The co-pyrolysis of demineralized and devolatilized sawdust with coal indicated that the ash in the sawdust was the main contributor to the synergistic effect.

  16. Biomass pyrolysis/gasification for product gas production: the overall investigation of parametric effects

    The conventional biomass pyrolysis/gasification process for production of medium heating value gas for industrial or civil applications faces two disadvantages, i.e. low gas productivity and the accompanying corrosion of downstream equipment caused by the high content of tar vapour contained in the gas phase. The objective of this paper is to overcome these disadvantages, and therefore, the effects of the operating parameters on biomass pyrolysis are investigated in a laboratory setup based on the principle of keeping the heating value of the gas almost unchanged. The studied parameters include reaction temperature, residence time of volatile phase in the reactor, physico-chemical pretreatment of biomass particles, heating rate of the external heating furnace and improvement of the heat and mass transfer ability of the pyrolysis reactor. The running temperature of a separate cracking reactor and the geometrical configuration of the pyrolysis reactor are also studied. However, due to time limits, different types of catalysts are not used in this work to determine their positive influences on biomass pyrolysis behaviour. The results indicate that product gas production from biomass pyrolysis is sensitive to the operating parameters mentioned above, and the product gas heating value is high, up to 13-15 MJ/N m3

  17. Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels

    The pyrolytic conversion of chlorella algae to liquid fuel precursor in presence of a catalyst (Na2CO3) has been studied. Thermal decomposition studies of the algae samples were performed using TGA coupled with MS. Liquid oil samples were collected from pyrolysis experiments in a fixed-bed reactor and characterized for water content and heating value. The oil composition was analyzed by GC-MS. Pretreatment of chlorella with Na2CO3 influences the primary conversion of chlorella by shifting the decomposition temperature to a lower value. In the presence of Na2CO3, gas yield increased and liquid yield decreased when compared with non-catalytic pyrolysis at the same temperatures. However, pyrolysis oil from catalytic runs carries higher heating value and lower acidity. Lower content of acids in the bio-oil, higher aromatics, combined with higher heating value show promise for production of high-quality bio-oil from algae via catalytic pyrolysis, resulting in energy recovery in bio-oil of 40%. -- Highlights: → The pyrolytic catalytic conversion of chlorella algae to liquid fuel precursor. → Na2CO3 as a catalyst for the primary conversion of chlorella. → Pyrolysis oil from catalytic runs carries higher heating value and lower acidity. → High-quality bio-oil from algae via catalytic pyrolysis with energy recovery in bio-oil of 40%.

  18. Effects of coal drying on the pyrolysis and in-situ gasification characteristics of lignite coals

    Highlights: • Effect of coal drying on lignite pyrolysis was studied by TG-MS and a novel reactor. • Coal type, final temperature and heating method had key effects during pyrolysis. • We developed a new method to study morphological changes during char gasification. • It initially showed shrinking particle mode, and then changed to shrinking core mode. • Insignificant steam deactivation of char was verified by the active sites mechanism. - Abstract: Pyrolysis behaviors of two lignite coals with different drying conditions were determined by a thermogravimetric analyzer coupled with mass spectrometer (TG-MS) and a high-frequency furnace. An in-situ heating stage microscope was adopted to observe the morphological changes during char-CO2 gasification process. It is concluded that the effects of moisture contents in coals on the gaseous release process during coal pyrolysis mainly depend on coal type, final pyrolysis temperature and heating method. The in-situ heating stage experiments indicate that the shrinking particle mode is suitable to illustrate the gasification reaction mechanism in the initial and midterm reaction stages of all the lignite char samples. Although drying conditions have significant effects on coal pyrolysis process under rapid heating, these dewatering conditions result in little noticeable reactivity loss of the char during the subsequent char-CO2 gasification reaction. The measuring results of catalytic active sites can well explain the similar reactivity of lignite coals with different drying conditions

  19. Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo.

    Chen, Dengyu; Zhou, Jianbin; Zhang, Qisheng

    2014-10-01

    Effects of heating rate on slow pyrolysis behaviors, kinetic parameters, and products properties of moso bamboo were investigated in this study. Pyrolysis experiments were performed up to 700 °C at heating rates of 5, 10, 20, and 30 °C/min using thermogravimetric analysis (TGA) and a lab-scale fixed bed pyrolysis reactor. The results show that the onset and offset temperatures of the main devolatilization stage of thermogravimetry/derivative thermogravimetry (TG/DTG) curves obviously shift toward the high-temperature range, and the activation energy values increase with increasing heating rate. The heating rate has different effects on the pyrolysis products properties, including biochar (element content, proximate analysis, specific surface area, heating value), bio-oil (water content, chemical composition), and non-condensable gas. The solid yields from the fixed bed pyrolysis reactor are noticeably different from those of TGA mainly because the thermal hysteresis of the sample in the fixed bed pyrolysis reactor is more thorough. PMID:25063973

  20. Application of pyrolysis process in processing of mixed food wastes

    Grycová Barbora

    2016-03-01

    Full Text Available The food industry produces large amounts of solid and also liquid wastes. Different waste materials and their mixtures were pyrolysed in the laboratory pyrolysis unit to a final temperature of 800°C with a 10 minute delay at the final temperature. After the pyrolysis process of the selected wastes a mass balance of the resulting products, off-line analysis of the pyrolysis gas and evaluation of solid and liquid products were carried out. The highest concentration of methane, hydrogen and carbon monoxide were analyzed during the 4th gas sampling at a temperature of approx. 720–780°C. The concentration of hydrogen was measured in the range from 22 to 40 vol.%. The resulting iodine numbers of samples CHFO, DS, DSFW reach values that indicate the possibility of using them to produce the so-called “disposable sorbents” in wastewater treatment. The WC condensate can be directed to further processing and upgrading for energy use.

  1. Thermal and chemical effects of turkey feathers pyrolysis.

    Kluska, Jacek; Kardaś, Dariusz; Heda, Łukasz; Szumowski, Mateusz; Szuszkiewicz, Jarosław

    2016-03-01

    This study examines the thermal and chemical effects of the pyrolysis of turkey feathers. Research of feathers pyrolysis is important because of their increasing production and difficulties of their utilization. The experiments were carried out by means of thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and two pyrolytic reactors. The experimental investigation indicated that the feather material liquefies at temperatures between 210 and 240°C. This liquefaction together with the agglomeration of various dispersed and porous elements of the feathers into larger droplets leads to the volume reduction. Moreover, this work presents characteristics of the composition of the solid, liquid and gaseous products of turkey feathers pyrolysis at different temperatures. The higher heating value (HHV) of gaseous products in temperature 900°C equals 19.28 MJ/Nm(3) making the gases suitable for use as a fuel. The thermochemical conversion of turkey feathers leads to the formation of poisonous compounds such as hydrogen cyanide (HCN) in the liquid (0.13%) and gaseous (88 mg/Nm(3)) products. The phenomenon of liquefaction of feathers is important because it can lead to rapid degradation of the walls of reactors, and the formation of deposits. PMID:26783100

  2. Multisteps Global Kinetic Analysis of MSW Slow Pyrolysis

    Dwi Aries Himawanto

    2013-12-01

    Full Text Available The goal of this research is to find relationships between single components slow pyrolysis characteristics and mixed component slow pyrolysis characteristics of segregated municipal solid wastes (MSW. The material of this research consists of organic wastes (bamboo wastes and banana leaves wastes and inorganic wastes (styrofoam wastes and snack wrapping wastes. The materials which used to study were the unprosessing waste. The samples were collected, dried and crushed until passing 20 mesh shieves then characterized in self manufactured macro balance. The thermogravimetry analyses were done to find the MSW slow pyrolysis characteristics. The 20 gram sample was placed in the furnace whose temperature is increased with 10 0C/min heating rate until reached 400 0 final temperature and held for 30 minutes before the sample is cooled into room temperature. One hundred ml/min nitrogen introduced from the bottom of furnace as a swept gas. The results of the research show that the global kinetic method could be used to predict the MSW single component activation energy but it should be modified to calculate the mixed sample activation energy . The predictive activation energy values which calculated based on weighed sum of single component have 18.5 % deviations if compared with experimental result.

  3. A Novel Energy-Efficient Pyrolysis Process: Self-pyrolysis of Oil Shale Triggered by Topochemical Heat in a Horizontal Fixed Bed

    Sun, You-Hong; Bai, Feng-Tian; Lü, Xiao-Shu; Li, Qiang; Liu, Yu-Min; Guo, Ming-Yi; Guo, Wei; Liu, Bao-Chang

    2015-01-01

    This paper proposes a novel energy-efficient oil shale pyrolysis process triggered by a topochemical reaction that can be applied in horizontal oil shale formations. The process starts by feeding preheated air to oil shale to initiate a topochemical reaction and the onset of self-pyrolysis. As the temperature in the virgin oil shale increases (to 250–300°C), the hot air can be replaced by ambient-temperature air, allowing heat to be released by internal topochemical reactions to complete the ...

  4. Biocrude Production through Pyrolysis of Used Tyres

    Osayi, Julius I.; Sunny Iyuke; Ogbeide, Samuel E.

    2014-01-01

    A review of the pyrolysis process of used tyre as a method of producing an alternative energy source is presented in this paper. The study reports the characteristics of used tyre materials and methods of recycling, types and principles of pyrolysis, the pyrolysis products and their composition, effects of process parameters, and kinetic models applied to pyrolysis. From publications, the proximate analysis of tyre rubber shows that it is composed of about 28.6 wt.% fixed carbon, 62 wt.% vola...

  5. Thermal and catalytic pyrolysis of plastic waste

    Débora Almeida

    2016-02-01

    Full Text Available Abstract The amount of plastic waste is growing every year and with that comes an environmental concern regarding this problem. Pyrolysis as a tertiary recycling process is presented as a solution. Pyrolysis can be thermal or catalytical and can be performed under different experimental conditions. These conditions affect the type and amount of product obtained. With the pyrolysis process, products can be obtained with high added value, such as fuel oils and feedstock for new products. Zeolites can be used as catalysts in catalytic pyrolysis and influence the final products obtained.

  6. Production of phenol-rich bio-oil during catalytic fixed-bed and microwave pyrolysis of palm kernel shell.

    Omoriyekomwan, Joy Esohe; Tahmasebi, Arash; Yu, Jianglong

    2016-05-01

    Catalytic fixed-bed and microwave pyrolysis of palm kernel shell using activated carbon (AC) and lignite char (LC) as catalysts and microwave receptors are investigated. The effects of process parameters including temperature and biomass:catalyst ratio on the yield and composition of pyrolysis products were studied. The addition of catalyst increased the bio-oil yield, but decreased the selectivity of phenol in fixed-bed. Catalytic microwave pyrolysis of PKS significantly enhanced the selectivity of phenol production. The highest concentration of phenol in bio-oil of 64.58 %(area) and total phenolics concentration of 71.24 %(area) were obtained at 500°C using AC. Fourier transform infrared spectroscopy (FTIR) results indicated that concentration of OH, CH, CO and CO functional groups in char samples decreased after pyrolysis. Scanning electron microscopy (SEM) analysis clearly indicated the development of liquid phase in biomass particles during microwave pyrolysis, and the mechanism is also discussed. PMID:26890793

  7. Catalytic pyrolysis of black-liquor lignin by co-feeding with different plastics in a fluidized bed reactor.

    Zhang, Huiyan; Xiao, Rui; Nie, Jianlong; Jin, Baosheng; Shao, Shanshan; Xiao, Guomin

    2015-09-01

    Catalytic co-pyrolysis of black-liquor lignin and waste plastics (polyethylene, PE; polypropylene PP; polystyrene, PS) was conducted in a fluidized bed. The effects of temperature, plastic to lignin ratio, catalyst and plastic types on product distributions were studied. Both aromatic and olefin yields increased with increasing PE proportion. Petrochemical yield of co-pyrolysis of PE and lignin was LOSA-1 > spent FCC > Gamma-Al2O3 > sand. The petrochemical yield with LOSA-1 is 43.9% which is more than two times of that without catalyst. The feedstock for co-pyrolysis with lignin is polystyrene > polyethylene > polypropylene. Catalytic co-pyrolysis of black-liquor lignin with PS produced the maximum aromatic yield (55.3%), while co-pyrolysis with PE produced the maximum olefin yield (13%). PMID:26011693

  8. Thermochemical conversion of Phellinus pomaceus via supercritical fluid extraction and pyrolysis processes

    Highlights: • Phellinus pomaceus were converted to liquid and gas products. • Supercritical fluid extraction and pyrolysis processes were used in this research. • 60, 72 and 90 different types of compounds were identified by GC–MS. - Abstract: Thermochemical conversion processes such as supercritical fluid extraction and pyrolysis are used for producing biofuel from biomass. Supercritical fluid extraction process under supercritical conditions is the thermally disruption process of the lignocellulose or other organic materials at 250–400 °C temperature range under high pressure (4–5 MPa). Pyrolysis method is the process of decomposition of the organic materials with heat in the inert atmosphere or vacuum nature between high temperatures (350–800 °C). Two thermochemical processes, supercritical fluid extraction and slow pyrolysis, were used to produce bio-oils and biochars from Phellinus pomaceus. Supercritical fluid extraction trials were performed in a cylindrical reactor (75 mL) in organic solvents (acetone, ethanol) under supercritical conditions with (calcium hydroxide, sodium carbonate) and without catalyst at the temperatures of 250, 270 and 290 °C. Pyrolysis experiments were performed in a fixed-bed tubular reactor without and with same catalysts used in liquefaction at the temperatures of 400, 500 and 600 °C with constant heating rate (40 °C/min). The effects of process variables including temperature and catalyst on product yields were investigated. Product yields and composition of bio-oils were evaluated and compared for supercritical fluid extraction and pyrolysis. The produced liquids at 290 °C in supercritical liquefaction and at 500 °C in pyrolysis were analyzed and characterized by elemental, GC–MS and FT-IR. 60 and 72 different types of compounds that were identified by GC–MS obtained in acetone and ethanol respectively whereas pyrolysis liquids had 90 different types of compounds. Bio-oils from supercritical liquefaction

  9. Production and Characterization of Bio-Char from the Pyrolysis of Empty Fruit Bunches

    Mohamad A. Sukiran

    2011-01-01

    Full Text Available Problem statement: The palm oil industry generates an abundance of oil palm biomass such as the Empty Fruit Bunch (EFB, shell, frond, trunk and Palm Oil Mill Effluent (POME. For 88 million tones of Fresh Fruit Bunch (FFB processed in 2008, the amount of oil palm biomass was more than 26 million tones. Studies about production of bio-char from oil palm biomass are still lacking in Malaysia. So, this study was aimed to: (i determine the effect of pyrolysis temperatures on bio-char yield (ii characterize the bio-char obtained under different pyrolysed temperatures. Approach: In this study, pyrolysis of EFB was conducted using a fluidized fixed bed reactor. The effect of pyrolysis temperatures on bio-char yield was investigated. The pyrolysis temperature used ranged from 300-700°C. The elemental analysis, calorific value, surface area and total pore volume of the bio-char were determined. Results: The highest bio char yield of 41.56% was obtained at an optimum pyrolysis temperature of 300°C with particle size of 91-106 μm and the heating rate of 30°C min-1. The calorific values of bio-char ranged from 23-26 MJ kg-1. Conclusion: It was found that the bio-char products can be characterized as carbon rich, high calorific value and potential solid biofuels.

  10. The biosynthesis of GDP-L-colitose: C-3 deoxygenation is catalyzed by a unique coenzyme B6-dependent enzyme.

    Beyer, Noelle; Alam, Jenefer; Hallis, Tina M; Guo, Zhihong; Liu, Hung-wen

    2003-05-14

    l-Colitose (1) is a 3,6-dideoxyhexose found in the O-antigen of gram-negative lipopoly-saccharides. While the biosynthesis of many deoxysugars have previously been investigated, l-colitose is distinct in that it originates from GDP-d-mannose. In contrast, other 3,6-dideoxyhexoses arise from CDP-d-glucose. Therefore, the enzymes involved in the l-colitose biosynthetic pathway must be specifically tailored to utilize such a modified substrate. The mode for deoxygenation at C-3 of colitose is of particular interest because this conversion in other naturally occurring 3,6-dideoxyhexoses requires a pair of enzymes, E1 and E3, acting in concert. Interestingly, no E3 equivalent was identified in the five open reading frames of the col biosynthetic gene cluster from Yersinia pseudotuberculosis IVA. However, the gene product of colD showed moderate similarity with the E1 gene (ddhC/ascC) of the ascarylose pathway (27% identity and 42% similarity). Because E1 is a pyridoxamine 5'-phosphate (PMP)-dependent enzyme, it was thought that ColD might also utilize PMP. Indeed, turnover was observed during incubation of ColD with substrate in the presence of excess PMP, but not with pyridoxal 5'-phosphate (PLP). However, the rate of product formation increased by more than 40-fold when l-glutamate was included in the PLP incubation. The formation of alpha-ketoglutarate as a byproduct under these conditions clearly indicated that ColD functions as a transaminase, recognizing both PMP and PLP. In this paper, we propose a novel biosynthetic route for colitose, including the unprecedented C-3 deoxygenation performed solely by ColD. The utilization of PMP in a dehydration reaction is rare, but the combined deoxygenation-transamination activity makes ColD a unique enzyme. PMID:12733868

  11. Initial Stages of the Pyrolysis of Polyethylene.

    Popov, Konstantin V; Knyazev, Vadim D

    2015-12-10

    An experimental study of the kinetics of the initial stages of the pyrolysis of high-density polyethylene (PE) was performed. Quantitative yields of gas-phase products (C1-C8 alkanes and alkenes) and functional groups within the remaining polyethylene melt (methyl, vinyl, vinylene, vinylidene, and branching sites) were obtained as a function of time (0-20 min) at five temperatures in the 400-440 °C range. Gas chromatography and NMR ((1)H and (13)C) were used to detect the gas- and condensed-phase products, respectively. Modeling of polyethylene pyrolysis was performed, with the primary purpose of determining the rate constants of several critical reaction types important at the initial pyrolysis stages. Detailed chemical mechanisms were created (short and extended mechanisms) and used with both the steady-state approximation and numerical integration of the differential kinetic equations. Rate constants of critical elementary reactions (C-C backbone scission, two kinds of H-atom transfer, radical addition to the double bond, and beta-scission of tertiary alkyl radicals) were adjusted, resulting in an agreement between the model and the experiment. The values of adjusted rate constants are in general agreement with those of cognate reactions of small molecules in the gas phase, with the exception of the rate constants of the backbone C-C scission, which is found to be approximately 1-2 orders of magnitude lower. This observation provides tentative support to the hypothesis that congested PE melt molecular environment impedes the tumbling motions of separating fragments in C-C bond scission, thus resulting in less "loose" transition state and lower rate constant values. Sensitivity of the calculations to selected uncertainties in model properties was studied. Values and estimated uncertainties of four combinations of rate constants are reported as derived from the experimental results via modeling. The dependence of the diffusion-limited rate constant for radical

  12. Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions

    Malghani, S; G. Gleixner; Trumbore, SE, Reichstein, M.

    2013-01-01

    Bio-char, biomass that has been deliberately charred to slow its rate of decomposition, has been proposed as an amendment with the potential to sequester carbon and improve certain soil properties. Slow pyrolysis (temperature ≤500°C) and hydrothermal carbonization (low temperature, high pressure) are two efficient methods to produce bio-char with high yield and are applicable to a broad range of feedstocks. Chars made using slow pyrolysis (PC) and hydrothermal carbonization (HTC) of the same ...

  13. CATALYTIC FAST PYROLYSIS OF CELLULOSE MIXED WITH SULFATED TITANIA TO PRODUCE LEVOGLUCOSENONE: ANALYTICAL PY-GC/MS STUDY

    Qiang Lu,

    2012-05-01

    Full Text Available Sulfated titania (SO42-/TiO2 was prepared and used for catalytic fast pyrolysis of cellulose to produce levoglucosenone (LGO, a valuable anhydrosugar product. Analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS technique was employed in this study to achieve the catalytic fast pyrolysis of cellulose and on-line analysis of the pyrolysis vapors. Experiments were performed to investigate the effects of several factors on the LGO production, i.e. pyrolysis temperature, cellulose/catalyst ratio, TiO2 crystal type, and pyrolysis time. The results indicated that the SO42-/TiO2 catalyst lowered the initial cellulose decomposition temperature and altered the pyrolytic product significantly. Levoglucosan (LG was the most abundant product in the non-catalytic process, while levoglucosenone (LGO was the major product in the catalytic process. The maximal LGO yield was obtained at the set pyrolysis temperature of 400 °C, while the highest LGO content was obtained at 350 °C, with the peak area% over 50%. In addition, the SO42-/TiO2 (anatase was confirmed the best catalyst for the LGO production.

  14. Pyrolysis Characteristics and Kinetics of Methyl Oleate Based on TG-FTIR Method

    Wang Xuechun; Fang Jianhua; Chen Boshui; Wang Jiu; Wu Jiang

    2015-01-01

    The thermal decomposition characteristics of methyl oleate were preliminarily investigated under nitrogen atmo-sphere by a thermogravimetric analyzer when the ester was heated at a heating rate of 10℃/min from room temperature to 600℃. Furthermore, the pyrolytic and kinetic characteristics of methyl oleate were intensively studied at different heating rates. The gaseous species obtained during thermal decomposition were also identiifed by the TG-FTIR coupling analysis. The results showed that the pyrolysis of methyl oleate proceeded in three stages, viz. the drying stage, the main pyrolysis stage and the residual pyrolysis stage. The initial decomposition temperature, the maximum weight loss temperature, the peak decomposition temperature and the rate of maximum weight loss of methyl oleate increased with the increasing heat-ing rates. Gaseous CO, CO2 and H2O were the typical decomposition products from pyrolysis of methyl oleate. In addition, a kinetic model for thermal decomposition of methyl oleate was built up based on the experimental results using the Coats-Redfern integral method and the multiple-linear regression method. The activation energy, the pre-exponential factor, the reaction order and the kinetic equation for thermal decomposition of methyl oleate were obtained. Comparison of the ex-perimental data with the calculated ones and analysis of statistical errors of pyrolysis ratios demonstrated that the kinetic model was reliable for studying the pyrolysis of methyl oleate. Finally, the kinetic compensation effect between the pre-exponential factors and the activation energy in the pyrolysis of methyl oleate was also conifrmed.

  15. Modeling and simulation of combined pyrolysis and reduction zone for a downdraft biomass gasifier

    This paper simulates the behavior of a global fixed bed biomass gasification reactor. The pyrolysis zone and reduction zone models are combined to simulate the global process of biomass gasification. The volatiles and gases released from the pyrolysis zone were assumed to crack into equivalent amounts of CO, CH4 and H2O. It is considered that the volatiles and gases leave the pyrolysis zone instantaneously and enter the reduction zone as initial gas concentrations. The numerical method applied is a Runge-Kutta fourth order method for solution of the pyrolysis zone model and finite differences for the reduction zone model to solve numerically the coupled ordinary differential equations. Simulations are performed for the varying pyrolysis temperature with a heating rate of 25 K/min and constant temperature of 1400 K as the initial reduction zone temperature at the same time. The simulation results for the temperature and concentrations of the gaseous species are in good agreement with published experimental data

  16. Ecosystem Resilience to Ocean Deoxygenation and Acidification: Lessons from Contrasting Mass Extinction Events

    Sepulveda, J.; Alegret, L.; Kasprak, A. H.; Whiteside, J. H.; Haddad, E.; Cao, C.; Summons, R. E.

    2012-12-01

    -calcifying organisms) than transient events of acidification and productivity change (K-Pg scenario). Since ocean deoxygenation and acidification are projected to increase in the near future, our work provides information for predicting potential changes in marine ecosystems.

  17. Effect of Catalytic Pyrolysis Conditions Using Pulse Current Heating Method on Pyrolysis Products of Wood Biomass

    Sensho Honma

    2014-01-01

    Full Text Available The influence of catalysts on the compositions of char and pyrolysis oil obtained by pyrolysis of wood biomass with pulse current heating was studied. The effects of catalysts on product compositions were analyzed using GC-MS and TEM. The compositions of some aromatic compounds changed noticeably when using a metal oxide species as the catalyst. The coexistence or dissolution of amorphous carbon and iron oxide was observed in char pyrolyzed at 800°C with Fe3O4. Pyrolysis oil compositions changed remarkably when formed in the presence of a catalyst compared to that obtained from the uncatalyzed pyrolysis of wood meal. We observed a tendency toward an increase in the ratio of polyaromatic hydrocarbons in the pyrolysis oil composition after catalytic pyrolysis at 800°C. Pyrolysis of biomass using pulse current heating and an adequate amount of catalyst is expected to yield a higher content of specific polyaromatic compounds.

  18. Effect of catalytic pyrolysis conditions using pulse current heating method on pyrolysis products of wood biomass.

    Honma, Sensho; Hata, Toshimitsu; Watanabe, Takashi

    2014-01-01

    The influence of catalysts on the compositions of char and pyrolysis oil obtained by pyrolysis of wood biomass with pulse current heating was studied. The effects of catalysts on product compositions were analyzed using GC-MS and TEM. The compositions of some aromatic compounds changed noticeably when using a metal oxide species as the catalyst. The coexistence or dissolution of amorphous carbon and iron oxide was observed in char pyrolyzed at 800 °C with Fe3O4. Pyrolysis oil compositions changed remarkably when formed in the presence of a catalyst compared to that obtained from the uncatalyzed pyrolysis of wood meal. We observed a tendency toward an increase in the ratio of polyaromatic hydrocarbons in the pyrolysis oil composition after catalytic pyrolysis at 800 °C. Pyrolysis of biomass using pulse current heating and an adequate amount of catalyst is expected to yield a higher content of specific polyaromatic compounds. PMID:25614894

  19. A study of paint sludge deactivation by pyrolysis reactions

    L.A.R. Muniz

    2003-03-01

    Full Text Available The production of large quantities of paint sludge is a serious environmental problem. This work evaluates the use of pyrolysis reaction as a process for deactivating paint sludge that generates a combustible gas phase, a solvent liquid phase and an inert solid phase. These wastes were classified into three types: water-based solvent (latex resin and solvents based on their resins (alkyd and polyurethane. An electrically heated stainless steel batch reactor with a capacity of 579 mL and a maximum pressure of 30 atm was used. Following the reactor, a flash separator, which was operated at atmospheric pressure, partially condensed and separated liquid and gas products. Pressure and temperature were monitored on-line by a control and data acquisition system, which adjusted the heating power supplied to the pyrolysis reactor. Reactions followed an experimental design with two factors (reaction time and temperature and three levels (10, 50 and 90 minutes; 450, 550 and 650°C. The response variables were liquid and solid masses and net heat of combustion. The optimal operational range for the pyrolysis process was obtained for each response variable. A significant reduction in total mass of solid waste was obtained.

  20. CHARACTERIZATION OF BIO-OIL FROM PALM KERNEL SHELL PYROLYSIS

    R. Ahmad

    2014-12-01

    Full Text Available Pyrolysis of palm kernel shell in a fixed-bed reactor was studied in this paper. The objectives were to investigate the effect of pyrolysis temperature and particle size on the products yield and to characterize the bio-oil product. In order to get the optimum pyrolysis parameters on bio-oil yield, temperatures of 350, 400, 450, 500 and 550 °C and particle sizes of 212–300 µm, 300–600 µm, 600µm–1.18 mm and 1.18–2.36 mm under a heating rate of 50 °C min-1 were investigated. The maximum bio-oil yield was 38.40% at 450 °C with a heating rate of 50 °C min-1 and a nitrogen sweep gas flow rate of 50 ml min-1. The bio-oil products were analysed by Fourier transform infra-red spectroscopy (FTIR and gas chromatography–mass spectroscopy (GCMS. The FTIR analysis showed that the bio-oil was dominated by oxygenated species. The phenol, phenol, 2-methoxy- and furfural that were identified by GCMS analysis are highly suitable for extraction from the bio-oil as value-added chemicals. The highly oxygenated oils need to be upgraded in order to be used in other applications such as transportation fuels.