WorldWideScience

Sample records for silk gland fibroin

  1. Preparation of Porous Scaffolds from Silk Fibroin Extracted from the Silk Gland of Bombyx mori (B. mori

    Liangjun Zhu

    2012-06-01

    Full Text Available In order to use a simple and ecofriendly method to prepare porous silk scaffolds, aqueous silk fibroin solution (ASF was extracted from silk gland of 7-day-old fifth instar larvae of Bombyx mori (B. mori. SDS-page analysis indicated that the obtained fibroin had a molecular weight higher than 200 kDa. The fabrication of porous scaffolds from ASF was achieved by using the freeze-drying method. The pore of porous scaffolds is homogenous and tends to become smaller with an increase in the concentration of ASF. Conversely, the porosity is decreased. The porous scaffolds show impressive compressive strength which can be as high as 6.9 ± 0.4 MPa. Furthermore, ASF has high cell adhesion and growth activity. It also exhibits high ALP activity. This implies that porous scaffolds prepared from ASF have biocompatibility. Therefore, the porous scaffolds prepared in this study have potential application in tissue engineering due to the impressive compressive strength and biocompatibility.

  2. LIM-homeodomain transcription factor Awh is a key component activating all three fibroin genes, fibH, fibL and fhx, in the silk gland of the silkworm, Bombyx mori

    Kimoto, Mai; Tsubota, Takuya; Uchino, Keiro; Sezutsu, Hideki; Takiya, Shigeharu

    2015-01-01

    In the silkworm Bombyx mori, three fibroin genes, fibroin-heavy-chain (fibH), fibroin-light-chain (fibL) and fibrohexamerin (fhx), are coexpressed only in the posterior silk gland (PSG) cells, while the sericin genes encoding silk glue proteins are expressed in the middle silk gland (MSG) cells. Silk gland factor-2 (SGF-2) is a PSG-specific activator complex of fibH, composed of a LIM-homeodomain protein, Awh, and its cofactors, Ldb and Lcaf. We investigated whether SGF-2 can activate other f...

  3. LIM-homeodomain transcription factor Awh is a key component activating all three fibroin genes, fibH, fibL and fhx, in the silk gland of the silkworm, Bombyx mori.

    Kimoto, Mai; Tsubota, Takuya; Uchino, Keiro; Sezutsu, Hideki; Takiya, Shigeharu

    2015-01-01

    In the silkworm Bombyx mori, three fibroin genes, fibroin-heavy-chain (fibH), fibroin-light-chain (fibL) and fibrohexamerin (fhx), are coexpressed only in the posterior silk gland (PSG) cells, while the sericin genes encoding silk glue proteins are expressed in the middle silk gland (MSG) cells. Silk gland factor-2 (SGF-2) is a PSG-specific activator complex of fibH, composed of a LIM-homeodomain protein, Awh, and its cofactors, Ldb and Lcaf. We investigated whether SGF-2 can activate other fibroin genes using transgenic silkworms. The genes for Ldb and Lcaf were expressed ubiquitously in various tissues, while the gene for Awh was expressed strictly specific in PSG of the wild type silkworms. Misexpression of Awh in transgenic silkworms induced ectopic expression of fibL and fhx as well as fibH in MSG. Coincidently with the induction of fibL and fhx by Awh, binding of SGF-2 to the promoter of fibL and fhx was detected in vitro, and SGF-2 binds directly to the fhx core promoter. Ectopic expression of the fibroin genes was observed at high levels in the middle part of MSG. Moreover, fibL and fhx were induced in the anterior silk gland (ASG) of the transgenic silkworms, but fibH was not. These results indicate that Awh is a key activator of all three fibroin genes, and the activity is probably regulated in conjunction with additional factors. PMID:25449130

  4. Self-assembly of silk fibroin under osmotic stress

    Sohn, Sungkyun

    The supramolecular self-assembly behavior of silk fibroin was investigated using osmotic stress technique. In Chapter 2, a ternary phase diagram of water-silk-LiBr was constructed based on X-ray results on the osmotically stressed regenerated silk fibroin of Bombyx mori silkworm. Microscopic data indicated that silk I is a hydrated structure and a rough estimate of the number of water molecules lost by the structure upon converting from silk I to silk II has been made, and found to be about 2.2 per [GAGAGS] hexapeptide. In Chapter 3, wet-spinning of osmotically stressed, regenerated silk fibroin was performed, based on the prediction that the enhanced control over structure and phase behavior using osmotic stress method helps improve the physical properties of wet-spun regenerated silk fibroin fibers. The osmotic stress was applied in order to pre-structure the regenerated silk fibroin molecule from its original random coil state to more oriented state, manipulating the phase of the silk solution in the phase diagram before the start of spinning. Monofilament fiber with a diameter of 20 microm was produced. In Chapter 4, we investigated if there is a noticeable synergistic osmotic pressure increase between co-existing polymeric osmolyte and salt when extremely highly concentrated salt molecules are present both at sample subphase and stressing subphase, as is the case of silk fibroin self-assembly. The equilibration method that measures osmotic pressure relative to a reference with known osmotic pressure was introduced. Osmotic pressure of aqueous LiBr solution up to 2.75M was measured and it was found that the synergistic effect was insignificant up to this salt concentration. Solution parameters of stressing solutions and Arrhenius kinetics based on time-temperature relationship for the equilibration process were derived as well. In Chapter 5, self-assembly behavior of natural silk fibroin within the gland of Bombyx mori silkworm was investigated using osmotic

  5. Effect of degumming ph value on electrospining of silk fibroin

    Lu Shen-Zhou

    2014-01-01

    Full Text Available Regenerated silk fibroin fibers show properties dependent on the molecular weight of fibroin. The cocoon-degumming approaches had great impact on the degradation of silk fibroin. The effect of degumming pH value to electrospining of fibroin was studied in this paper. The viscosity and molecular weight of regenerated silk fibroin were studied using rheometer and gel electrophoresis. The results showed that the weaker the alkalinity of degumming reagent, there was the milder the effect on silk fibroin molecular. The fibroin fibers can be prepared by electrospining with low concentration of regenerated silk fibroin solution.

  6. Lithium-free processing of silk fibroin.

    Zheng, Zhaozhu; Guo, Shaozhe; Liu, Yawen; Wu, Jianbing; Li, Gang; Liu, Meng; Wang, Xiaoqin; Kaplan, David

    2016-09-01

    Silk fibroin protein was purified from Bombyx mori silkworm cocoons using a novel dialysis strategy to avoid fibroin aggregation and pre-mature formation of β-sheets. The degummed silk fibers were dissolved in Ajisawa's reagent, a mixture of CaCl2-EtOH-H2O, that is less expensive than lithium bromide. The dissolved solutions were dialyzed against either water or urea solution with a stepwise decrease in concentration. When the steps of 4 M-2 M-1 M-0 M urea (referred to as silk-TS-4210) were adopted, the purified silk fibroin had smaller aggregates (lithium bromide (silk-Li-0) method. Polyvinyl alcohol-emulsified silk microspheres generated using the purified solution had a similar size distribution and morphology when compared to lithium bromide dissolved solutions, while glycerol-blended silk films showed different mechanical properties. The silk-Li-0 generated films with the highest breaking strength (5.7 MPa ± 0.3) while the silk-TS-4210 had the highest extension at break (215.1% ± 12.5). The films prepared from silk-TS-4210 were cytocompatible to support the adhesion and proliferation of human mesenchymal stem cells, with improvements compared to the other samples likely due to the porous morphology of these films. PMID:27298185

  7. Silver nanoparticle containing silk fibroin bionanotextiles

    Calamak, Semih; Aksoy, Eda Ayse [Hacettepe University, Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy (Turkey); Erdogdu, Ceren; Sagıroglu, Meral [Hacettepe University, Department of Pharmaceutical Microbiology, Faculty of Pharmacy (Turkey); Ulubayram, Kezban, E-mail: ukezban@hacettepe.edu.tr [Hacettepe University, Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy (Turkey)

    2015-02-15

    Development of new generation bionanotextiles is an important growing field, and they have found applications as wound dressings, bandages, tissue scaffolds, etc. In this study, silver nanoparticle (AgNP) containing silk-based bionanotextiles were fabricated by electrospinning, and processing parameters were optimized and discussed in detail. AgNPs were in situ synthesized within fibroin nanofibers by UV reduction of silver ions to metallic silver. The influence of post-treatments via methanol treatment and glutaraldehyde (GA) vapor exhibited changes in the secondary structure of silk. Methanol treatment increased the tensile properties of fibers due to supported crystalline silk structure, while GA vapor promoted amorphous secondary structure. AgNP containing silk fibroin bionanotextiles had strong antibacterial activity against gram-positive Staphylococcus aureus and gram-negative Pseudomonas aeruginosa.

  8. Silver nanoparticle containing silk fibroin bionanotextiles

    Development of new generation bionanotextiles is an important growing field, and they have found applications as wound dressings, bandages, tissue scaffolds, etc. In this study, silver nanoparticle (AgNP) containing silk-based bionanotextiles were fabricated by electrospinning, and processing parameters were optimized and discussed in detail. AgNPs were in situ synthesized within fibroin nanofibers by UV reduction of silver ions to metallic silver. The influence of post-treatments via methanol treatment and glutaraldehyde (GA) vapor exhibited changes in the secondary structure of silk. Methanol treatment increased the tensile properties of fibers due to supported crystalline silk structure, while GA vapor promoted amorphous secondary structure. AgNP containing silk fibroin bionanotextiles had strong antibacterial activity against gram-positive Staphylococcus aureus and gram-negative Pseudomonas aeruginosa

  9. The effect of sterilization on silk fibroin biomaterial properties.

    Rnjak-Kovacina, Jelena; DesRochers, Teresa M; Burke, Kelly A; Kaplan, David L

    2015-06-01

    The effects of common sterilization techniques on the physical and biological properties of lyophilized silk fibroin sponges are described. Sterile silk fibroin sponges were cast using a pre-sterilized silk fibroin solution under aseptic conditions or post-sterilized via autoclaving, γ radiation, dry heat, exposure to ethylene oxide, or hydrogen peroxide gas plasma. Low average molecular weight and low concentration silk fibroin solutions could be sterilized via autoclaving or filtration without significant loses of protein. However, autoclaving reduced the molecular weight distribution of the silk fibroin protein solution, and silk fibroin sponges cast from autoclaved silk fibroin were significantly stiffer compared to sponges cast from unsterilized or filtered silk fibroin. When silk fibroin sponges were sterilized post-casting, autoclaving increased scaffold stiffness, while decreasing scaffold degradation rate in vitro. In contrast, γ irradiation accelerated scaffold degradation rate. Exposure to ethylene oxide significantly decreased cell proliferation rate on silk fibroin sponges, which was rescued by leaching ethylene oxide into PBS prior to cell seeding. PMID:25761231

  10. Silk fibroin microtubes for blood vessel engineering.

    Lovett, Michael; Cannizzaro, Christopher; Daheron, Laurence; Messmer, Brady; Vunjak-Novakovic, Gordana; Kaplan, David L

    2007-12-01

    Currently available synthetic grafts demonstrate moderate success at the macrovascular level, but fail at the microvascular scale (inner diameter). We report on the development of silk fibroin microtubes for blood vessel repair with several advantages over existing scaffold materials/designs. These microtubes were prepared by dipping straight lengths of stainless steel wire into aqueous silk fibroin, where the addition of poly(ethylene oxide) (PEO) enabled control of microtube porosity. The microtube properties were characterized in terms of pore size, burst strength, protein permeability, enzymatic degradation, and cell migration. Low porosity microtubes demonstrated superior mechanical properties in terms of higher burst pressures, but displayed poor protein permeability; whereas higher porosity tubes had lower burst strengths but increased permeability and enhanced protein transport. The microtubes also exhibited cellular barrier functions as low porosity tubes prevented outward migration of GFP-transduced HUVECs, while the high porosity microtubes allowed a few cells per tube to migrate outward during perfusion. When combined with the biocompatible and suturability features of silk fibroin, these results suggest that silk microtubes, either implanted directly or preseeded with cells, are an attractive biomaterial for microvascular grafts. PMID:17727944

  11. Ras1CA overexpression in the posterior silk gland improves silk yield

    Li Ma; Hanfu Xu; Jinqi Zhu; Sanyuan Ma; Yan Liu; Rong-Jing Jiang; Qingyou Xia; Sheng Li

    2011-01-01

    Sericulture has been greatly advanced by applying hybrid breeding techniques to the domesticated silkworm,Bombyx mori,but has reached a plateau during the last decades. For the first time,we report improved silk yield in a GAL4/UAS transgenic silkworm. Overexpression of the Ras1CA oncogene specifically in the posterior silk gland improved fibroin production and silk yield by 60%,while increasing food consumption by only 20%. Ras activation by Ras1CA overexpression in the posterior silk gland enhanced phosphorylation levels of Ras downstream effector proteins,up-regulated fibroin mRNA levels,increased total DNA content,and stimulated endoreplication. Moreover,Rasl activation increased cell and nuclei sizes,enriched subcellular organelles related to protein synthesis,and stimulated ribosome biogenesis for mRNA translation. We conclude that Rasl activation increases cell size and protein synthesis in the posterior silk gland,leading to silk yield improvement.

  12. Cytocompatibility of a silk fibroin tubular scaffold

    Wang, Jiannan, E-mail: wangjn@suda.edu.cn; Wei, Yali; Yi, Honggen; Liu, Zhiwu; Sun, Dan; Zhao, Huanrong

    2014-01-01

    Regenerated silk fibroin (SF) materials are increasingly used for tissue engineering applications. In order to explore the feasibility of a novel biomimetic silk fibroin tubular scaffold (SFTS) crosslinked by poly(ethylene glycol) diglycidyl ether (PEG-DE), biocompatibility with cells was evaluated. The novel biomimetic design of the SFTS consisted of three distinct layers: a regenerated SF intima, a silk braided media and a regenerated SF adventitia. The SFTS exhibited even silk fibroin penetration throughout the braid, forming a porous layered tube with superior mechanical, permeable and cell adhesion properties that are beneficial to vascular regeneration. Cytotoxicity and cell compatibility were tested on L929 cells and human umbilical vein endothelial cells (EA.hy926). DNA content analysis, scanning electron and confocal microscopies and MTT assay showed no inhibitory effects on DNA replication. Cell morphology, viability and proliferation were good for L929 cells, and satisfactory for EA.hy926 cells. Furthermore, the suture retention strength of the SFTS was about 23 N and the Young's modulus was 0.2–0.3 MPa. Collectively, these data demonstrate that PEG-DE crosslinked SFTS possesses the appropriate cytocompatibility and mechanical properties for use as vascular scaffolds as an alternative to vascular autografts. - Highlights: • A PEG-DE cross-linked small caliber porous silk fibroin tubular scaffold (SFTS) • PEG-DE cross-linked SF film had no inhibitory effect on DNA replication of cells. • Cells cultured on the SFTS showed good morphology, cell viability and proliferative activity. • SFTS would be beneficial to endothelialization. • SFTS had good suture retention strength and flexibility.

  13. Gelation behavior of Antheraea pernyi silk fibroin

    2010-01-01

    The sol-gel transition behavior of Antherae pernyi silk fibroin(Ap-SF) has not been systematically investigated.In this work,the influence of environmental temperature,pH,the concentration of Ap-SF,K+ and Ca2+ on the gelation time,and the structural changes of Ap-SF in sol-gel transformation were studied.The results indicated that the gelation time of the Ap-SF aqueous solution decreased with the increase of the Ap-SF concentration and environmental temperature.The sol-gel transformation of Ap-SF was much more rapid than that of Bombyx mori silk fibroin under the same conditions.The Ap-SF was sensitive to changes in the concentration of Ca2+ and K+.Upon gelation,the random coil structure of the Ap-SF was significantly transformed into the β-sheet structure.

  14. Orange IV stabilizes silk fibroin microemulsions

    Ferreira, A. V.; Volkov, Vadim; Abreu, Ana S; Azóia, Nuno G.; Botelho, C. M.; Paulo, Artur Cavaco

    2015-01-01

    Silk fibroin (SF) is a natural biopolymer that has been extensively studied in various applications due to its impressive mechanical properties and biocompatibility. Recently, SF-based particles have been proposed as controlled drug delivery systems. A new and efficient method to prepare SF microemulsions (SF-MEs) was developed by oil-in-water emulsions using high-pressure homogenization to promote emulsification. During SF-ME production, the secondary structure of SF changed to a more stable...

  15. Production of silk sericin/silk fibroin blend nanofibers

    Zhang Xianhua; Tsukada Masuhiro; Morikawa Hideaki; Aojima Kazuki; Zhang Guangyu; Miura Mikihiko

    2011-01-01

    Abstract Silk sericin (SS)/silk fibroin (SF) blend nanofibers have been produced by electrospinning in a binary SS/SF trifluoroacetic acid (TFA) solution system, which was prepared by mixing 20 wt.% SS TFA solution and 10 wt.% SF TFA solution to give different compositions. The diameters of the SS/SF nanofibers ranged from 33 to 837 nm, and they showed a round cross section. The surface of the SS/SF nanofibers was smooth, and the fibers possessed a bead-free structure. The average diameters o...

  16. Silk fibroin nanostructured materials for biomedical applications

    Mitropoulos, Alexander N.

    Nanostructured biopolymers have proven to be promising to develop novel biomedical applications where forming structures at the nanoscale normally occurs by self-assembly. However, synthesizing these structures can also occur by inducing materials to transition into other forms by adding chemical cross-linkers, changing pH, or changing ionic composition. Understanding the generation of nanostructures in fluid environments, such as liquid organic solvents or supercritical fluids, has not been thoroughly examined, particularly those that are based on protein-based block-copolymers. Here, we examine the transformation of reconstituted silk fibroin, which has emerged as a promising biopolymer due to its biocompatibility, biodegradability, and ease of functionalization, into submicron spheres and gel networks which offer applications in tissue engineering and advanced sensors. Two types of gel networks, hydrogels and aerogels, have small pores and large surface areas that are defined by their structure. We design and analyze silk nanoparticle formation using a microfluidic device while offering an application for drug delivery. Additionally, we provide a model and characterize hydrogel formation from micelles to nanoparticles, while investigating cellular response to the hydrogel in an in vitro cell culture model. Lastly, we provide a second model of nanofiber formation during near-critical and supercritical drying and characterize the silk fibroin properties at different drying pressures which, when acting as a stabilizing matrix, shows to improve the activity of entrapped enzymes dried at different pressures. This work has created new nanostructured silk fibroin forms to benefit biomedical applications that could be applied to other fibrous proteins.

  17. Controlling silk fibroin particle features for drug delivery

    Lammel, Andreas; Hu, Xiao; Park, Sang-Hyug; Kaplan, David L.; Scheibel, Thomas

    2010-01-01

    Silk proteins are a promising material for drug delivery due to their aqueous processability, biocompatibility, and biodegradability. A simple aqueous preparation method for silk fibroin particles with controllable size, secondary structure and zeta potential is reported. The particles were produced by salting out a silk fibroin solution with potassium phosphate. The effect of ionic strength and pH of potassium phosphate solution on the yield and morphology of the particles was determined. Se...

  18. Silk Fibroin Encapsulated Powder Reservoirs for Sustained Release of Adenosine

    Pritchard, Eleanor M.; Szybala, Cory; Boison, Detlev; Kaplan, David L.

    2010-01-01

    Due to its unique properties, silk fibroin was studied as a biodegradable polymer vehicle for sustained, local delivery of the anticonvulsant adenosine from encapsulated reservoirs. Silk is a biologically derived protein polymer that is biocompatible, mechanically strong and degrades to non-toxic products in vivo. To achieve local, sustained, controlled adenosine release from fully degradable implants, solid adenosine powder reservoirs were coated with silk fibroin. Material properties of the...

  19. A novel electrospun silk fibroin/hydroxyapatite hybrid nanofibers

    Ming, Jinfa, E-mail: jinfa.ming@gmail.com [National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123 (China); College of Textile and Clothing Engineering, Soochow University, Suzhou 215021 (China); Zuo, Baoqi, E-mail: bqzuo@suda.edu.cn [National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123 (China); College of Textile and Clothing Engineering, Soochow University, Suzhou 215021 (China)

    2012-11-15

    A novel electrospinning of silk fibroin/hydroxyapatite hybrid nanofibers with different composition ratios was performed with methanoic acid as a spinning solvent. The silk fibroin/hydroxyapatite hybrids containing up to 30% hydroxyapatite nanoparticles could be electrospun into the continuous fibrous structure. The electrospun silk fibroin/hydroxyapatite hybrid nanofibers showed bigger diameter and wider diameter distribution than pure silk fibroin nanofibers, and the average diameter gradually increased from 95 to 582 nm. At the same time, the secondary structure of silk fibroin/hydroxyapatite nanofibers was characterized by X-ray diffraction, Fourier transform infrared analysis, and DSC measurement. Comparing with the pure silk fibroin nanofibers, the crystal structure of silk fibroin was mainly amorphous structure in the hybrid nanofibers. X-ray diffraction results demonstrated the hydroxyapatite crystalline nature remained as evidenced from the diffraction planes (002), (211), (300), and (202) of the hydroxyapatite crystallites, which was also confirmed by Fourier transform infrared analysis. The thermal behavior of hybrid nanofibers exhibited the endothermic peak of moisture evaporation ranging from 86 to 113 Degree-Sign C, and the degradation peak at 286 Degree-Sign C appeared. The SF/HAp nanofibers mats containing 30% HAp nanoparticles showed higher breaking tenacity and extension at break for 1.1688 {+-} 0.0398 MPa and 6.55 {+-} 1.95%, respectively. Therefore, the electrospun silk fibroin/hydroxyapatite hybrid nanofibers should be provided potentially useful options for the fabrication of biomaterial scaffolds for bone tissue engineering. -- Highlights: Black-Right-Pointing-Pointer The novel SF/HAp nanofibers were directly prepared by electrospinning method. Black-Right-Pointing-Pointer The nanofiber diameter had significant related to the content of HAp. Black-Right-Pointing-Pointer The crystal structure of silk fibroin was mainly amorphous structure in

  20. A novel electrospun silk fibroin/hydroxyapatite hybrid nanofibers

    A novel electrospinning of silk fibroin/hydroxyapatite hybrid nanofibers with different composition ratios was performed with methanoic acid as a spinning solvent. The silk fibroin/hydroxyapatite hybrids containing up to 30% hydroxyapatite nanoparticles could be electrospun into the continuous fibrous structure. The electrospun silk fibroin/hydroxyapatite hybrid nanofibers showed bigger diameter and wider diameter distribution than pure silk fibroin nanofibers, and the average diameter gradually increased from 95 to 582 nm. At the same time, the secondary structure of silk fibroin/hydroxyapatite nanofibers was characterized by X-ray diffraction, Fourier transform infrared analysis, and DSC measurement. Comparing with the pure silk fibroin nanofibers, the crystal structure of silk fibroin was mainly amorphous structure in the hybrid nanofibers. X-ray diffraction results demonstrated the hydroxyapatite crystalline nature remained as evidenced from the diffraction planes (002), (211), (300), and (202) of the hydroxyapatite crystallites, which was also confirmed by Fourier transform infrared analysis. The thermal behavior of hybrid nanofibers exhibited the endothermic peak of moisture evaporation ranging from 86 to 113 °C, and the degradation peak at 286 °C appeared. The SF/HAp nanofibers mats containing 30% HAp nanoparticles showed higher breaking tenacity and extension at break for 1.1688 ± 0.0398 MPa and 6.55 ± 1.95%, respectively. Therefore, the electrospun silk fibroin/hydroxyapatite hybrid nanofibers should be provided potentially useful options for the fabrication of biomaterial scaffolds for bone tissue engineering. -- Highlights: ► The novel SF/HAp nanofibers were directly prepared by electrospinning method. ► The nanofiber diameter had significant related to the content of HAp. ► The crystal structure of silk fibroin was mainly amorphous structure in the hybrid nanofibers. ► The HAp crystals existing in the hybrid nanofibers were characterized

  1. Silk Fibroin for Flexible Electronic Devices.

    Zhu, Bowen; Wang, Hong; Leow, Wan Ru; Cai, Yurong; Loh, Xian Jun; Han, Ming-Yong; Chen, Xiaodong

    2016-06-01

    Flexible electronic devices are necessary for applications involving unconventional interfaces, such as soft and curved biological systems, in which traditional silicon-based electronics would confront a mechanical mismatch. Biological polymers offer new opportunities for flexible electronic devices by virtue of their biocompatibility, environmental benignity, and sustainability, as well as low cost. As an intriguing and abundant biomaterial, silk offers exquisite mechanical, optical, and electrical properties that are advantageous toward the development of next-generation biocompatible electronic devices. The utilization of silk fibroin is emphasized as both passive and active components in flexible electronic devices. The employment of biocompatible and biosustainable silk materials revolutionizes state-of-the-art electronic devices and systems that currently rely on conventional semiconductor technologies. Advances in silk-based electronic devices would open new avenues for employing biomaterials in the design and integration of high-performance biointegrated electronics for future applications in consumer electronics, computing technologies, and biomedical diagnosis, as well as human-machine interfaces. PMID:26684370

  2. ELECTROPHORETIC SEPARATION AND COMPARATIVE ANALYSIS OF SILK GLAND PROTEINS FROM BOMBYX AND PHILOSAMIA

    Muzafar A Bhat, Punyavathi and Manjunatha H Boregowda*

    2014-01-01

    A comparative analysis of protein extracted from different regions of silk glands in the Bombyx mori L. and Philosamia ricini Hutt was performed employing single-dimensional-electrophoresis technique. Notably, a protein extracted directly from the lumen of the middle silk gland yielded two discrete protein bands with molecular mass of 325 and 26 kDa representing fibroin heavy (H) and low (L) chains than whole silk gland of B. mori. Contrastingly, such differentiation in protein separation cou...

  3. Silk Fibroin as Edible Coating for Perishable Food Preservation

    Marelli, B.; Brenckle, M. A.; Kaplan, D. L.; Omenetto, F. G.

    2016-05-01

    The regeneration of structural biopolymers into micelles or nanoparticles suspended in water has enabled the design of new materials with unique and compelling properties that can serve at the interface between the biotic and the abiotic worlds. In this study, we leveraged silk fibroin quintessential properties (i.e. polymorphism, conformability and hydrophobicity) to design a water-based protein suspension that self-assembles on the surface of food upon dip coating. The water-based post-processing control of the protein polymorphism enables the modulation of the diffusion of gases through the silk fibroin thin membranes (e.g. O2 and CO2 diffusion, water vapour permeability), which is a key parameter to manage food freshness. In particular, an increased beta-sheet content corresponds to a reduction in oxygen diffusion through silk fibroin thin films. By using the dip coating of strawberries and bananas as proof of principle, we have shown that the formation of micrometre-thin silk fibroin membranes around the fruits helps the management of postharvest physiology of the fruits. Thus, silk fibroin coatings enhance fruits’ shelf life at room conditions by reducing cell respiration rate and water evaporation. The water-based processing and edible nature of silk fibroin makes this approach a promising alternative for food preservation with a naturally derived material.

  4. Silk Fibroin as Edible Coating for Perishable Food Preservation.

    Marelli, B; Brenckle, M A; Kaplan, D L; Omenetto, F G

    2016-01-01

    The regeneration of structural biopolymers into micelles or nanoparticles suspended in water has enabled the design of new materials with unique and compelling properties that can serve at the interface between the biotic and the abiotic worlds. In this study, we leveraged silk fibroin quintessential properties (i.e. polymorphism, conformability and hydrophobicity) to design a water-based protein suspension that self-assembles on the surface of food upon dip coating. The water-based post-processing control of the protein polymorphism enables the modulation of the diffusion of gases through the silk fibroin thin membranes (e.g. O2 and CO2 diffusion, water vapour permeability), which is a key parameter to manage food freshness. In particular, an increased beta-sheet content corresponds to a reduction in oxygen diffusion through silk fibroin thin films. By using the dip coating of strawberries and bananas as proof of principle, we have shown that the formation of micrometre-thin silk fibroin membranes around the fruits helps the management of postharvest physiology of the fruits. Thus, silk fibroin coatings enhance fruits' shelf life at room conditions by reducing cell respiration rate and water evaporation. The water-based processing and edible nature of silk fibroin makes this approach a promising alternative for food preservation with a naturally derived material. PMID:27151492

  5. Study on Electrospinning Silk Fibroin Solution

    LI Ni; QIN Xiao-hong; WANG Shan-yuan

    2007-01-01

    A new method of preparing silk fibroin (SF) solution used in the electerospinning was introduced in this paper. According to the method, SF was dissolved in the LiBr/CH2O2 solution directly at room temperature. The method was compared with the traditional method---SF was dissolved in CaCl2 ternary solution. The structure of SF films and the morphology of SF nanofibers were examined by attenuated total reflectance fourier transform intrared (ATR- FrlR) spectroscopy, Scanning electron microscope (SEM) and optical polarizing microscope. The result of this study shows that the new method is a faster, more convenient and high efficient way to get the SF solution and the characteristics of SF fibet made by the new method is much betty.

  6. Amorphous Silk Fibroin Membranes for Separation of CO2

    Aberg, Christopher M.; Patel, Anand K.; Gil, Eun Seok; Spontak, Richard J.; Hagg, May-Britt

    2009-01-01

    Amorphous silk fibroin has shown promise as a polymeric material derivable from natural sources for making membranes for use in removing CO2 from mixed-gas streams. For most applications of silk fibroin, for purposes other than gas separation, this material is used in its highly crystalline, nearly natural form because this form has uncommonly high tensile strength. However, the crystalline phase of silk fibroin is impermeable, making it necessary to convert the material to amorphous form to obtain the high permeability needed for gas separation. Accordingly, one aspect of the present development is a process for generating amorphous silk fibroin by treating native silk fibroin in an aqueous methanol/salt solution. The resulting material remains self-standing and can be prepared as thin film suitable for permeation testing. The permeability of this material by pure CO2 has been found to be highly improved, and its mixed-gas permeability has been found to exceed the mixed-gas permeabilities of several ultrahigh-CO2-permeable synthetic polymers. Only one of the synthetic polymers poly(trimethylsilylpropyne) [PTMSP] may be more highly permeable by CO2. PTMSP becomes unstable with time, whereas amorphous silk should not, although at the time of this reporting this has not been conclusively proven.

  7. Microdissection of black widow spider silk-producing glands.

    Jeffery, Felicia; La Mattina, Coby; Tuton-Blasingame, Tiffany; Hsia, Yang; Gnesa, Eric; Zhao, Liang; Franz, Andreas; Vierra, Craig

    2011-01-01

    Modern spiders spin high-performance silk fibers with a broad range of biological functions, including locomotion, prey capture and protection of developing offspring. Spiders accomplish these tasks by spinning several distinct fiber types that have diverse mechanical properties. Such specialization of fiber types has occurred through the evolution of different silk-producing glands, which function as small biofactories. These biofactories manufacture and store large quantities of silk proteins for fiber production. Through a complex series of biochemical events, these silk proteins are converted from a liquid into a solid material upon extrusion. Mechanical studies have demonstrated that spider silks are stronger than high-tensile steel. Analyses to understand the relationship between the structure and function of spider silk threads have revealed that spider silk consists largely of proteins, or fibroins, that have block repeats within their protein sequences. Common molecular signatures that contribute to the incredible tensile strength and extensibility of spider silks are being unraveled through the analyses of translated silk cDNAs. Given the extraordinary material properties of spider silks, research labs across the globe are racing to understand and mimic the spinning process to produce synthetic silk fibers for commercial, military and industrial applications. One of the main challenges to spinning artificial spider silk in the research lab involves a complete understanding of the biochemical processes that occur during extrusion of the fibers from the silk-producing glands. Here we present a method for the isolation of the seven different silk-producing glands from the cobweaving black widow spider, which includes the major and minor ampullate glands [manufactures dragline and scaffolding silk], tubuliform [synthesizes egg case silk], flagelliform [unknown function in cob-weavers], aggregate [makes glue silk], aciniform [synthesizes prey wrapping and egg

  8. Nanorheology of regenerated silk fibroin solution

    A Raghu; Sharath Ananthamurthy

    2008-06-01

    We have investigated the rheological properties of regenerated silk fibroin (RSF), a viscoelastic material at micro and nano length scales, by video microscopy. We describe here the principles and technique of video microscopy as a tool in such investigations. In this work, polystyrene beads were dispersed in the matrix of RSF polymer and the positions of the embedded beads diffusing were tracked using video microscopy. An optical tweezer was used to transport and locate the bead at any desired site within the micro-volume of the sample, to facilitate the subsequent free-bead video analysis. The position information of the beads was used to obtain the time dependant mean squared displacement (MSD) of the beads in the medium and hence to calculate the dynamic moduli of the medium. We present here the results of rheological measurements of the silk polymer network in solution over a frequency range, whose upper limit is the frame capture rate of our camera at full resolution. The technique is complementary to other microrheological techniques to characterize the material, but additionally enables one to characterize local inhomogeneities in the medium, features that get averaged out in bulk characterization procedures.

  9. Production of silk sericin/silk fibroin blend nanofibers

    Zhang Xianhua

    2011-01-01

    Full Text Available Abstract Silk sericin (SS/silk fibroin (SF blend nanofibers have been produced by electrospinning in a binary SS/SF trifluoroacetic acid (TFA solution system, which was prepared by mixing 20 wt.% SS TFA solution and 10 wt.% SF TFA solution to give different compositions. The diameters of the SS/SF nanofibers ranged from 33 to 837 nm, and they showed a round cross section. The surface of the SS/SF nanofibers was smooth, and the fibers possessed a bead-free structure. The average diameters of the SS/SF (75/25, 50/50, and 25/75 blend nanofibers were much thicker than that of SS and SF nanofibers. The SS/SF (100/0, 75/25, and 50/50 blend nanofibers were easily dissolved in water, while the SS/SF (25/75 and 0/100 blend nanofibers could not be completely dissolved in water. The SS/SF blend nanofibers could not be completely dissolved in methanol. The SS/SF blend nanofibers were characterized by Fourier transform infrared (FTIR spectroscopy, differential scanning calorimetry, and differential thermal analysis. FTIR showed that the SS/SF blend nanofibers possessed a random coil conformation and ß-sheet structure.

  10. Production of silk sericin/silk fibroin blend nanofibers

    Zhang, Xianhua; Tsukada, Masuhiro; Morikawa, Hideaki; Aojima, Kazuki; Zhang, Guangyu; Miura, Mikihiko

    2011-08-01

    Silk sericin (SS)/silk fibroin (SF) blend nanofibers have been produced by electrospinning in a binary SS/SF trifluoroacetic acid (TFA) solution system, which was prepared by mixing 20 wt.% SS TFA solution and 10 wt.% SF TFA solution to give different compositions. The diameters of the SS/SF nanofibers ranged from 33 to 837 nm, and they showed a round cross section. The surface of the SS/SF nanofibers was smooth, and the fibers possessed a bead-free structure. The average diameters of the SS/SF (75/25, 50/50, and 25/75) blend nanofibers were much thicker than that of SS and SF nanofibers. The SS/SF (100/0, 75/25, and 50/50) blend nanofibers were easily dissolved in water, while the SS/SF (25/75 and 0/100) blend nanofibers could not be completely dissolved in water. The SS/SF blend nanofibers could not be completely dissolved in methanol. The SS/SF blend nanofibers were characterized by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry, and differential thermal analysis. FTIR showed that the SS/SF blend nanofibers possessed a random coil conformation and ß-sheet structure.

  11. Preparation and characterization of blends containing silk fibroin and chitosan

    The aim of this study was to prepare and characterize blend membranes of silk fibroin and chitosan. Moreover, a conformation of fibroin to a more stable form induced by the addition of chitosan was verified. Blend membranes of fibroin/chitosan were prepared in different proportions and had their crystallinity, structural conformation and thermal stability characterized. The results of crystallographic analysis (XRD) indicated the tendency to higher structural organization caused by the addition of chitosan. FTIR showed that, mainly in a content of chitosan of only 25%, fibroin is present in a more stable form. Thermal analyzes indicate that fibroin is thermally stable and that when its proportion in the blend increases, the temperature in which the degradation is initiated also does so. (author)

  12. Study on improving antioxidant and antibacterial activities of silk fibroin by irradiation treatment

    The silk fibroin solutions were prepared in solvent system of CaCl2. CH3CH2OH. H2O (mole ratio = 1:2:8) followed dialysis against deionized water. The 3% silk fibroin solutions were irradiated under gamma Co-60 source with dose ranging from 0 to 50 kGy at Hanoi Irradiation Centre and bioactivities of the irradiated silk fibroin solutions were investigated with different radiation doses. The results indicated that the antioxidant and antibacterial activities of fibroin were much improved by gamma irradiation. Maximum value of DPPH radical scavenging activity was 70.4% for the solution of silk fibroin irradiated at 10 kGy. Silk fibroin solutions irradiated at doses higher than 10 kGy also exhibited rather high antibacterial activity against E. coli and S. aureus. In order to estimate the applicability of our irradiated fibroin, the silk fibroin solutions were lyophilized to obtain a pure fibroin powder, then their bio-activities were compared with those of commercial silk fibroin (Proteines De Soie/ Zijdeproteine, Bioflore, Canada). Our fibroin powder revealed higher antioxidant and antibacterial activities. The amino acid compositions of our irradiated fibroin were also higher than that of the commercial product. Thus, the irradiated silk fibroin can be used for further application in cosmetic and other related fields. (author)

  13. Surface Modification and Characterisation of Silk Fibroin Fabric Produced by the Layer-by-Layer Self-Assembly of Multilayer Alginate/Regenerated Silk Fibroin.

    Gaotian Shen

    Full Text Available Silk-based medical products have a long history of use as a material for surgical sutures because of their desirable mechanical properties. However, silk fibroin fabric has been reported to be haemolytic when in direct contact with blood. The layer-by-layer self-assembly technique provides a method for surface modification to improve the biocompatibility of silk fibroin fabrics. Regenerated silk fibroin and alginate, which have excellent biocompatibility and low immunogenicity, are outstanding candidates for polyelectrolyte deposition. In this study, silk fabric was degummed and positively charged to create a silk fibroin fabric that could undergo self-assembly. The multilayer self-assembly of the silk fibroin fabric was achieved by alternating the polyelectrolyte deposition of a negatively charged alginate solution (pH = 8 and a positively charged regenerated silk fibroin solution (pH = 2. Finally, the negatively charged regenerated silk fibroin solution (pH = 8 was used to assemble the outermost layer of the fabric so that the surface would be negatively charged. A stable structural transition was induced using 75% ethanol. The thickness and morphology were characterised using atomic force microscopy. The properties of the self-assembled silk fibroin fabric, such as the bursting strength, thermal stability and flushing stability, indicated that the fabric was stable. In addition, the cytocompatibility and haemocompatibility of the self-assembled silk fibroin fabrics were evaluated. The results indicated that the biocompatibility of the self-assembled multilayers was acceptable and that it improved markedly. In particular, after the self-assembly, the fabric was able to prevent platelet adhesion. Furthermore, other non-haemolytic biomaterials can be created through self-assembly of more than 1.5 bilayers, and we propose that self-assembled silk fibroin fabric may be an attractive candidate for anticoagulation applications and for promoting

  14. Correlation between fibroin amino acid sequence and physical silk properties.

    Fedic, Robert; Zurovec, Michal; Sehnal, Frantisek

    2003-09-12

    The fiber properties of lepidopteran silk depend on the amino acid repeats that interact during H-fibroin polymerization. The aim of our research was to relate repeat composition to insect biology and fiber strength. Representative regions of the H-fibroin genes were sequenced and analyzed in three pyralid species: wax moth (Galleria mellonella), European flour moth (Ephestia kuehniella), and Indian meal moth (Plodia interpunctella). The amino acid repeats are species-specific, evidently a diversification of an ancestral region of 43 residues, and include three types of regularly dispersed motifs: modifications of GSSAASAA sequence, stretches of tripeptides GXZ where X and Z represent bulky residues, and sequences similar to PVIVIEE. No concatenations of GX dipeptide or alanine, which are typical for Bombyx silkworms and Antheraea silk moths, respectively, were found. Despite different repeat structure, the silks of G. mellonella and E. kuehniella exhibit similar tensile strength as the Bombyx and Antheraea silks. We suggest that in these latter two species, variations in the repeat length obstruct repeat alignment, but sufficiently long stretches of iterated residues get superposed to interact. In the pyralid H-fibroins, interactions of the widely separated and diverse motifs depend on the precision of repeat matching; silk is strong in G. mellonella and E. kuehniella, with 2-3 types of long homogeneous repeats, and nearly 10 times weaker in P. interpunctella, with seven types of shorter erratic repeats. The high proportion of large amino acids in the H-fibroin of pyralids has probably evolved in connection with the spinning habit of caterpillars that live in protective silk tubes and spin continuously, enlarging the tubes on one end and partly devouring the other one. The silk serves as a depot of energetically rich and essential amino acids that may be scarce in the diet. PMID:12816957

  15. Study On Improving Antioxydant And Antibacterial Activities Of Silk Fibroin By Irradiation Treatment

    Silk fibroin at dry state and the solution of 3% were irradiated by Co-60 source at dose ranges 0 - 1000 kGy and 0 - 50 kGy respectively. The results showed that irradiation treatment for fibroin solution have higher effectiveness for improvement of some bio-activities of silk fibroin compared with dry state irradiation treatment due to remarkably reducing of irradiation doses. The antioxidant activity of fibroin was significantly increase by irradiation. The maximum value of DPPH radical scavenging activity was 70.4% when fibroin solution was irradiated at dose of 10 kGy. Irradiated fibroin solution also shown antibacterial activity against tested bacteria strains (E. coli, and S. aureus). In order to estimate the applicability of our irradiated fibroin, the silk fibroin solutions were lyophilized to obtain a pure fibroin powder, then their bio-activities were compared with those of commercial silk fibroin (Proteines De Soie/ Zijdeproteine, Bioflore, Canada). Our fibroin powder revealed higher antioxidant and antibacterial activities. The amino acid compositions of our irradiated fibroin were also higher than that of the commercial product. Thus, the irradiated silk fibroin can be used for further application in cosmetic and other related fields. (author)

  16. Orientational structure formation of silk fibroin with anisotropic properties in solutions

    Key words:silk fibroin, dissolution, solution's model systems, gelation, orientational crystallization, optical polarization, longitudinal stream, α - β transition, structure formation, phase transformations, relaxation, anisotropy of swelling and desorption, thermo- and biodegradation. Subjects of the inquiry: silk fibroin is the main subject of investigation. Fibroin's solutions were obtained on the base of water and organic solvents, containing salts. Comparative investigations were carried out by using biosolution - secretion of silkworm, solutions of silk sericin, cotton cellulose, methylcellulose, polystyrene and (co) polycrylonitrile. Aim of the inquiry: the elucidation of the regularities of silk fibroin anisotropic structures formation in the direct generation of orientational ordering in solutions taking into account of influences of its the molecular structures, configuration information, α - β conformational transformations, and development jointly using polarization-optical and hydrodynamic methods to control of structure formation. And also definition of possibility fields for use biopolymers anisotropic structure formation principles. Method of inquiry: birefringence, dispersion optical rotation, circular dichroism, polarization- ultramicroscope, ultracentrifuge, viscosimetry, potentiometry, differential thermal analysis, chromatography, x-ray analysis, spectroscopy. The results achieved and their novelty: the physical regularity amorphous-crystalline fibroin dissolutions in salt-containing solvents based on chains melting, distribution and redistribution were recognized; fibroin statistical parameters, molecular-mass and conformational characteristics were established; It was shown that fibroin molecules turned into fully uncoiled and oriented state with the breakdown decay of α-spiral chain sections by I type phase transition mechanism, but in oriented state with α-spiral conservation by II type transition; the presence of longitudinal field

  17. Silk fibroin based antibacterial bionanotextiles as wound dressing materials

    Çalamak, Semih [Hacettepe University, Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, 06100 Ankara (Turkey); Hacettepe University, Department of Nanotechnology and Nanomedicine, 06800 Ankara (Turkey); Erdoğdu, Ceren; Özalp, Meral [Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, 06100 Ankara (Turkey); Ulubayram, Kezban, E-mail: ukezban@hacettepe.edu.tr [Hacettepe University, Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, 06100 Ankara (Turkey); Hacettepe University, Department of Nanotechnology and Nanomedicine, 06800 Ankara (Turkey)

    2014-10-01

    New applications for medical biotextiles have been identified with the development of nanotechnological manufacturing technologies. Combination of nanotechnology and biotextile technology has resulted into a new field called bionanotextiles. Bionanotextiles are used in many areas which include wound dressings, bandages and tissue scaffolds. Silk fibroin (SF) from the cocoon of Bombyx mori, is one of the most favorable wound dressing materials due to its unique properties including biocompatibility, permeability, biodegradability, morphologic flexibility, and proper mechanical properties. The modification of antimicrobial properties of SFs can provide a barrier for bacterial penetration as wound dressing materials. In the present study, antibacterial polyethylenimine (PEI) (10, 20 and 30% (w/w)) was blended with SF and bionanotextiles were successfully fabricated by electrospinning. In addition, silk fibroin nanofibers were also functionalized with sulphate group in order to test whether they exhibit an antibacterial activity or not. Fibroin based bionanotextiles were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The cytotoxicity evaluations were carried out by L929 fibroblasts with MTT assay. The indirect cytotoxicity results demonstrate that all fibroin and PEI/fibroin extracts have no cytotoxicity on L929 cancer cell line. PEI/fibroin bionanotextiles showed strong antibacterial activities against gram positive Staphylococcus aureus and gram negative Pseudomonas aeruginosa. - Highlights: • Bionanotextiles are combination of nanotechnology and biotextile technology. • Bionanotextiles have good antibacterial activity against both of S. aureus and P. aeruginosa. • Antibacterial bionanotextiles are applicable to most of the infected wounds. • No cytotoxicity was observed on L929 cell line.

  18. Structural study on methacrylamide-grafted Tussah silk fibroin fibres.

    Pavoni, Eleonora; Tozzi, Silvia; Tsukada, Masuhiro; Taddei, Paola

    2016-07-01

    Tussah silk fibroin fibres were modified by grafting with methacrylamide (MAA), with weight gains ranging between 2.6% and 71.4%. Raman and IR spectroscopic analyses showed that upon grafting the fibres underwent slight conformational changes towards a more unordered state, due to the covalent and hydrogen bonds interactions occurring between the polymer (polyMAA) and the amorphous domains of silk fibres. To test the stability towards alkaline hydrolysis, the untreated and MAA-grafted silk fibres (weight gain of 71.4%) were immersed in NaOH 5% at 50°C for different times; the IR and Raman spectroscopic techniques were utilized to elucidate the degradation mechanism as well as the rearrangements of the fibres induced by the treatment. Upon hydrolysis, both the untreated and grafted fibres underwent an enrichment in β-sheet conformation, due to the preferential removal of the unordered domains. As a result of the covalent interactions with silk fibroin, the polymer increased its stability towards alkaline hydrolysis, since its complete solubilization was avoided and the transformation of its CONH2 groups into COO(-) and COOH was delayed. Vibrational spectroscopy proved to be a valid technique to investigate the mechanism and the effects of the hydrolytic attack, which are both fundamental to design new-generation silk-based materials. PMID:27032490

  19. Preparation and characterization of silk fibroin/HPMC blend film

    Shetty, G. Rajesha [Department of Physics, Govt. First Grade College Hiriadka, Udupi - 576113 (India); Kumar, R. Madhu; Rao, B. Lakshmeesha; Asha, S.; Sangappa, E-mail: syhalabhavi@yahoo.co.in [Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore - 574199 (India)

    2015-06-24

    In this work, the structural and mechanical stability of silk fibroin/Hydroxypropylmethyl cellulose (SF-HPMC) blend films were characterized by X-ray diffraction (XRD) and Universal Testing Machine (UTM). The results indicate that with the introduction of HPMC, the interactions between SF and HPMC results in improved crystallite size and increase in mechanical properties. The blend film obtained is more flexible compared to pure SF film.

  20. Silk fibroin gelation via non-solvent induced phase separation

    Kasoju, Naresh; Hawkins, N.; Pop-Georgievski, Ognen; Kubies, Dana; Vollrath, F.

    2016-01-01

    Roč. 4, č. 3 (2016), s. 460-473. ISSN 2047-4830 R&D Projects: GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : silk fibroin * non-solvent induced phase separation * desolvation Subject RIV: CE - Biochemistry Impact factor: 3.831, year: 2014

  1. Nanolayer Biomaterial Coatings of Silk Fibroin for Controlled Release

    Wang, Xianyan; Hu, Xiao; Daley, Andrea; Rabotyagova, Olena; Cebe, Peggy; Kaplan, David L.

    2007-01-01

    An all-aqueous, stepwise deposition process with silk fibroin protein for the assembly of nanoscale layered controlled release coatings was exploited. Model compounds, Rhodamine B, Even Blue and Azoalbumin, representing small molecule drugs and therapeutically relevant proteins were incorporated in the nanocoating process and their loading and release behavior was quantified. In addition, the structure and morphology of the coatings were characterized. Release studies in vitro showed that con...

  2. Silk Fibroin as Edible Coating for Perishable Food Preservation

    B. Marelli; M. A. Brenckle; Kaplan, D. L.; Omenetto, F. G.

    2016-01-01

    The regeneration of structural biopolymers into micelles or nanoparticles suspended in water has enabled the design of new materials with unique and compelling properties that can serve at the interface between the biotic and the abiotic worlds. In this study, we leveraged silk fibroin quintessential properties (i.e. polymorphism, conformability and hydrophobicity) to design a water-based protein suspension that self-assembles on the surface of food upon dip coating. The water-based post-proc...

  3. Analysis of proteome dynamics inside the silk gland lumen of Bombyx mori.

    Dong, Zhaoming; Zhao, Ping; Zhang, Yan; Song, Qianru; Zhang, Xiaolu; Guo, Pengchao; Wang, Dandan; Xia, Qingyou

    2016-01-01

    The silk gland is the only organ where silk proteins are synthesized and secreted in the silkworm, Bombyx mori. Silk proteins are stored in the lumen of the silk gland for around eight days during the fifth instar. Determining their dynamic changes is helpful for clarifying the secretion mechanism of silk proteins. Here, we identified the proteome in the silk gland lumen using liquid chromatography-tandem mass spectrometry, and demonstrated its changes during two key stages. From day 5 of the fifth instar to day 1 of wandering, the abundances of fibroins, sericins, seroins, and proteins of unknown functions increased significantly in different compartments of the silk gland lumen. As a result, these accumulated proteins constituted the major cocoon components. In contrast, the abundances of enzymes and extracellular matrix proteins decreased in the silk gland lumen, suggesting that they were not the structural constituents of silk. Twenty-five enzymes may be involved in the regulation of hormone metabolism for proper silk gland function. In addition, the metabolism of other non-proteinous components such as chitin and pigment were also discussed in this study. PMID:27102218

  4. Preparation and characterization of silk fibroin as a biomaterial with potential for drug delivery

    Zhang Hao

    2012-06-01

    Full Text Available Abstract Background Degummed silk fibroin from Bombyx mori (silkworm has potential carrier capabilities for drug delivery in humans; however, the processing methods have yet to be comparatively analyzed to determine the differential effects on the silk protein properties, including crystalline structure and activity. Methods In this study, we treated degummed silk with four kinds of calcium-alcohol solutions, and performed secondary structure measurements and enzyme activity test to distinguish the differences between the regenerated fibroins and degummed silk fibroin. Results Gel electrophoresis analysis revealed that Ca(NO32-methanol, Ca(NO32-ethanol, or CaCl2-methanol treatments produced more lower molecular weights of silk fibroin than CaCl2-ethanol. X-ray diffraction and Fourier-transform infrared spectroscopy showed that CaCl2-ethanol produced a crystalline structure with more silk I (α-form, type II β-turn, while the other treatments produced more silk II (β-form, anti-parallel β-pleated sheet. Solid-State 13C cross polarization and magic angle spinning-nuclear magnetic resonance measurements suggested that regenerated fibroins from CaCl2-ethanol were nearly identical to degummed silk fibroin, while the other treatments produced fibroins with significantly different chemical shifts. Finally, enzyme activity test indicated that silk fibroins from CaCl2-ethanol had higher activity when linked to a known chemotherapeutic drug, L-asparaginase, than the fibroins from other treatments. Conclusions Collectively, these results suggest that the CaCl2-ethanol processing method produces silk fibroin with biomaterial properties that are appropriate for drug delivery.

  5. Silk fibroin and sodium alginate blend: Miscibility and physical characteristics

    Agostini de Moraes, Mariana; Silva, Mariana Ferreira; Weska, Raquel Farias; Beppu, Marisa Masumi, E-mail: beppu@feq.unicamp.br

    2014-07-01

    Films of silk fibroin (SF) and sodium alginate (SA) blends were prepared by solution casting technique. The miscibility of SF and SA in those blends was evaluated and scanning electron microscopy (SEM) revealed that SF/SA 25/75 wt.% blends underwent microscopic phase separation, resulting in globular structures composed mainly of SF. X-ray diffraction indicated the amorphous nature of these blends, even after a treatment with ethanol that turned them insoluble in water. Thermal analyses of blends showed the peaks of degradation of pristine SF and SA shifted to intermediate temperatures. Water vapor permeability, swelling capacity and tensile strength of SF films could be enhanced by blending with SA. Cell viability remained between 90 and 100%, as indicated by in vitro cytotoxicity test. The SF/SA blend with self-assembled SF globules can be used to modulate structural and mechanical properties of the final material and may be used in designing high performance wound dressing. - Highlights: • Blend films of fibroin and alginate were prepared with microscopic phase separation; • Self-assembled globular microdomains were mainly composed by fibroin; • It was possible to obtain a film with better mechanical and physical properties; • Blend films of fibroin and alginate represent a novel material in biomaterials field.

  6. Interactions between fibroin and sericin proteins from Antheraea pernyi and Bombyx mori silk fibers.

    Du, Shan; Zhang, Jin; Zhou, Wei T; Li, Quan X; Greene, George W; Zhu, Hai J; Li, Jing L; Wang, Xun G

    2016-09-15

    Silkworm silk fibers are core-shell composites of fibroin and sericin proteins. Studying the interactions between fibroin and sericin is essential for understanding the properties of these composites. It is observed that compared to the domestic silk cocoon Bombyx mori (B. mori), the adhesion between fibroin and sericin from the wild silk cocoon, Antheraea pernyi (A. pernyi), is significantly stronger with a higher degree of heterogeneity. The adsorption of A. pernyi sericin on its fibroin is almost twice the value for B. mori sericin on fibroin, both showing a monolayer Langmuir adsorption. (1)H NMR and FTIR studies demonstrate on a molecular level the stronger interactions and the more intensive complex formation between A. pernyi fibroin and sericin, facilitated by the hydrogen bonding between glycine and serine. The findings of this study may help the design of composites with superior interfacial adhesion between different components. PMID:27314644

  7. Electrophoretic deposition of tetracycline modified silk fibroin coatings for functionalization of titanium surfaces

    Zhang, Zhen; Qu, Yinying; Li, Xiaoshuang; Zhang, Sheng; Wei, Qingsong; Shi, Yusheng; Chen, Lili

    2014-06-01

    Electrophoretic deposition has been widely used for the fabrication of functional coatings onto metal implant. A characteristic feature of this process is that positively charged materials migrate toward the cathode and can deposit on it. In this study, silk fibroin was decorated with tetracycline in aqueous solution to impart positive charge, and then deposited on negatively titanium cathode under certain electric field. The characterization of the obtained coatings indicated that the intermolecular hydrogen bonds formed between the backbone of silk fibroin and tetracycline molecular. In vitro biological tests demonstrated that osteoblast-like cells achieved acceptable cell affinity on the tetracycline cross-linked silk fibroin coatings, although greater cell viability was seen on pure silk fibroin coatings. The cationic silk fibroin coatings showed remarkable antibacterial activity against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria. Therefore, we concluded that electrophoretic deposition was an effective and efficient technique to prepare cationic silk fibroin coatings on the titanium surface and that cationic silk fibroin coatings with acceptable biocompatibility and antibacterial property were promising candidates for further loading of functional agents.

  8. Silk fibroin/pullulan blend films: Preparation and characterization

    Shivananda, C. S.; Rao, B. Lakshmeesha; Madhukumar, R.; Sarojini, B. K.; Somashekhar, R.; Asha, S.; Sangappa, Y.

    2016-05-01

    In this work silk fibroin/pullulan blend films have been prepared by solution casting method. The blend films were examined for structural, and thermal properties using X-ray diffraction (XRD), thermogravimatric (TGA) and differential scanning calorimetry (DSC) analysis. The XRD results indicate that with the introduction of pullulan, the interaction between SF and pullulan in the blend films induced the conformation transition of SF films and amorphous phase increases with increasing pullulan ratio. The thermal properties of the blend films were improved significantly in the blend films.

  9. Fibroin silk proteins from the nonmulberry silkworm Philosamia ricini are biochemically and immunochemically distinct from those of the mulberry silkworm Bombyx mori.

    Ahmad, Raies; Kamra, Anita; Hasnain, Seyed Ehtesham

    2004-03-01

    Silk proteins were isolated from the cocoons of the nonmulberry silkworm, Philosamia ricini. Three polypeptides of 97, 66, and 45 kDa were identified. The 66-kDa molecule represented sericin, whereas the 97-kDa and the 45-kDa polypeptides linked together through a disulfide bond constituted the fibroin protein. Antibodies raised against the 97-kDa P. ricini fibroin heavy chain reacted specifically with this molecule and did not recognize fibroin heavy chain from another nonmulberry silkworm, Antheraea assama or from the mulberry silkworm, Bombyx mori, suggesting the presence of P. ricini species-specific determinants in this heavy chain. Antibodies generated against fibroin light chain of P. ricini also showed similar reactivity pattern. Immunoblot analysis with proteins isolated from the silk glands of P. ricini at different stages of larval development showed that the expression of fibroin heavy chain was developmentally and spatially regulated. The protein was most abundant in the 5th instar larva, and could be detected in the middle and the posterior but not the anterior silk glands. The amino acid composition of the 97-kDa fibroin protein showed abundance of glutamic acid and did not contain (Gly-Ala)(n) motifs, a characteristic feature of B. mori fibroin heavy chain. Our study reveals significant differences between the nonmulberry silkworm P. ricini and the mulberry silkworm B. mori in the biochemical composition and immunochemical characteristics of fibroin heavy chain. These differences might be responsible for the differences seen in the quality of silk produced by these two silkworms. PMID:15068584

  10. Preparation and characterization of regenerated fiber from the aqueous solution of Bombyx mori cocoon silk fibroin

    Zhu Zhenghua [Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); Department of Application Engineering, ZheJiang Vocational College of Economic and Trade, HangZhou, ZheJiang 310018 (China); Imada, Takuzo [Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); Asakura, Tetsuo, E-mail: asakura@cc.tuat.ac.jp [Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan)

    2009-10-15

    The regenerated silk fibers with high strength and high biodegradability were prepared from the aqueous solution of Bombyx mori silk fibroin from cocoons with wet spinning method. Although the tensile strength of the regenerated silk fibroin fiber, 210 MPa is still half of the strength of native silk fiber, the diameter of the fiber is about 100 {mu}m which is suitable for monofilament of suture together with high biodegradability. The high concentration (30%, w/v) of the aqueous solution of the silk fibroin which corresponds to the high concentration in the middle silkgland of silkworm was obtained. This was performed by adjusting the pH of the aqueous solution to 10.4 which corresponds to pK{sub a} value of the OH group of Tyr residues in the silk fibroin. The mixed solvent, methanol/acetic acid (7:3 in volume ratio) was used as coagulant solvent for preparing the regenerated fiber. The structural change of silk fibroin fiber by stretching was monitored with both {sup 13}C solid state NMR and X-ray diffraction methods, indicating that the high strength of the fiber is related with the long-range orientation of the silk fibroin chain with {beta}-sheet structure.

  11. Preparation and characterization of regenerated fiber from the aqueous solution of Bombyx mori cocoon silk fibroin

    The regenerated silk fibers with high strength and high biodegradability were prepared from the aqueous solution of Bombyx mori silk fibroin from cocoons with wet spinning method. Although the tensile strength of the regenerated silk fibroin fiber, 210 MPa is still half of the strength of native silk fiber, the diameter of the fiber is about 100 μm which is suitable for monofilament of suture together with high biodegradability. The high concentration (30%, w/v) of the aqueous solution of the silk fibroin which corresponds to the high concentration in the middle silkgland of silkworm was obtained. This was performed by adjusting the pH of the aqueous solution to 10.4 which corresponds to pKa value of the OH group of Tyr residues in the silk fibroin. The mixed solvent, methanol/acetic acid (7:3 in volume ratio) was used as coagulant solvent for preparing the regenerated fiber. The structural change of silk fibroin fiber by stretching was monitored with both 13C solid state NMR and X-ray diffraction methods, indicating that the high strength of the fiber is related with the long-range orientation of the silk fibroin chain with β-sheet structure.

  12. Silk fibroin diaphragm-based fiber-tip Fabry-Perot pressure sensor.

    Cheng, Linghao; Wang, Cengzhong; Huang, Yunyun; Liang, Hao; Guan, Bai-Ou

    2016-08-22

    A miniature fiber-optic Fabry-Perot is built on the tip of a single mode fiber with a thin silk fibroin film as the diaphragm for pressure measurement. The silk fibroin film is regenerated from aqueous silk fibroin solution obtained by an environmentally benign fabrication process, which exhibits excellent optical and physicochemical properties, such as transparency in visible and near infrared region, membrane-forming ability, good adhesion, and high mechanical strength. The resulted Fabry-Perot pressure sensor is therefore highly biocompatible and shows good airtightness with a response of 12.3 nm/kPa in terms of cavity length change. PMID:27557238

  13. Novel silk fibroin films prepared by formic acid/hydroxyapatite dissolution method

    Bombyx mori silk fibroin from the silkworm was firstly found to be soluble in formic acid/hydroxyapatite system. The rheological behavior of silk fibroin solution was significantly influenced by HAp contents in dissolved solution. At the same time, silk fibroin nanofibers were observed in dissolved solution with 103.6 ± 20.4 nm in diameter. Moreover, the structure behavior of SF films prepared by formic acid/hydroxyapatite dissolution method was examined. The secondary structure of silk fibroin films was attributed to silk II structure (β-sheet), indicating that the hydroxyapatite contents in dissolved solution were not significantly affected by the structure of silk fibroin. The X-ray diffraction results exhibited obviously hydroxyapatite crystalline nature existing in silk fibroin films; however, when the hydroxyapatite content was 5.0 wt.% in dissolved solution, some hydroxyapatite crystals were converted to calcium hydrogen phosphate dehydrate in silk fibroin dissolution process. This result was also confirmed by Fourier transform infrared analysis and DSC measurement. In addition, silk fibroin films prepared by this dissolution method had higher breaking strength and extension at break. Based on these analyses, an understanding of novel SF dissolution method may provide an additional tool for designing and synthesizing advanced materials with more complex structures, which should be helpful in different fields, including biomaterial applications. - Highlights: • SF fibers were firstly successfully dissolved in FA/HAp solution. • The rheological behavior of SF solution was significantly influenced by HAp contents. • SF nanofibrils were observed in FA/HAp solution with 103.6 ± 20.4 nm in diameter. • SF films prepared by FA/HAp dissolution method had higher mechanical properties

  14. Inkjet Printing of Regenerated Silk Fibroin: From Printable Forms to Printable Functions.

    Tao, Hu; Marelli, Benedetto; Yang, Miaomiao; An, Bo; Onses, M Serdar; Rogers, John A; Kaplan, David L; Omenetto, Fiorenzo G

    2015-08-01

    A formulation of regenerated silk fibroin solution that can be easily functionalized and inkjet printed on numerous surfaces is developed. As an example, the inks can be printed on laboratory gloves that change color when exposed to bacteria. PMID:26079217

  15. Preparation and characterization of noble metal nanocolloids by silk fibroin in situ reduction

    CHEN; Wenxing(陈文兴); WU; Wen(吴雯); CHEN; Haixiang(陈海相); SHEN; Zhiquan(沈之荃)

    2003-01-01

    Noble metal nanocolloids are prepared from their precursors by in situ reduction of a silk fibroin solution at room temperature without any reducing agent. The mechanism, the effects of pH and the molar ratio of the reactants on the reduction reaction are studied by UV-Vis spectroscopy. The structure of the colloids is characterized by FT-IR, TEM and AFM. According to the TEM images, the gold-silk fibroin colloid is a nanostructured bioconjugate with novel core-shell, while the silver-silk fibroin colloid tends to be congregated as clusters having more than ten nanoparticles of silver-silk fibroin. The gold colloid is highly dispersed and stable while the silver colloid is less dispersed and stable than the gold colloid.

  16. Electromechanical response of silk fibroin hydrogel and conductive polycarbazole/silk fibroin hydrogel composites as actuator material.

    Srisawasdi, Thanida; Petcharoen, Karat; Sirivat, Anuvat; Jamieson, Alexander M

    2015-11-01

    Pure silk fibroin (SF) hydrogel and polycarbazole/silk fibroin (SF/PCZ) hydrogels were fabricated by solvent casting technique to evaluate electromechanical responses, dielectric properties, and cantilever deflection properties as functions of electric field strength, SF concentration, glutaraldehyde concentration, and PCZ concentration in the blends. Electromechanical properties were characterized in oscillatory shear mode at electric field strengths ranging from 0 to 600V/mm and at a temperature of 27°C. For both the pristine SF and SF/PCZ hydrogels, the storage modulus response (ΔG') and the storage modulus sensitivity (ΔG'/G'0) increased dramatically with increasing electric field strength. The pristine hydrogel possessed the highest storage modulus sensitivity value of 5.87, a relatively high value when compared with other previously studied electroactive polymers. With the addition of conductive PCZ in SF hydrogel, the storage modulus sensitivity and the relative dielectric constant decreased; the conductive polymer thus provided the softening effect under electric field. In the deflection response, the dielectrophoresis force and deflection distance increased monotonically with electric field strength, where the pure SF hydrogel showed the highest deflection distance and dielectrophoresis force. PMID:26249559

  17. Study On Degradation Of Silk Fibroin By Irradiation Treatment For Cosmetic And Pharmaceutical Applications

    As a kind of protein, silk fibroin is created with silkworm Bombyx mori in products of silk. The fibroin was irradiated using Co-60 gamma source and its degradability and solubility were investigated with various radiation doses to apply in pharmacy and cosmetic. Addition to the morphological changes of irradiated fibroin fibers shows that its mechanical properties were much influenced by the irradiation. Tensile strength and elongation at break of the silk fibroin significantly decreased with increasing of radiation dose up to 1000 kGy. The tensile strength and elongation at break of the irradiated fibroin at 1000 kGy reduced to 71% and 94% respectively in compared with non-irradiated one. The solubility of silk fibroin in both calcium chloride (CaCl2/C2H5OH/H2O=1:2:8) in mole ratio and distilled water were improved by the irradiation. UV spectrometry revealed the structure of silk fibroin was also changed by irradiation. (author)

  18. Fabrication of silk fibroin film using centrifugal casting technique for corneal tissue engineering.

    Lee, Min Chae; Kim, Dong-Kyu; Lee, Ok Joo; Kim, Jung-Ho; Ju, Hyung Woo; Lee, Jung Min; Moon, Bo Mi; Park, Hyun Jung; Kim, Dong Wook; Kim, Su Hyeon; Park, Chan Hum

    2016-04-01

    Films prepared from silk fibroin have shown potential as biomaterials in tissue engineering applications for the eye. Here, we present a novel process for fabrication of silk fibroin films for corneal application. In this work, fabrication of silk fibroin films was simply achieved by centrifugal force. In contrast to the conventional dry casting method, we carried out the new process in a centrifuge with a rotating speed of 4000 rpm, where centrifugal force was imposed on an aluminum tube containing silk fibroin solution. In the present study, we also compared the surface roughness, mechanical properties, transparency, and cell proliferation between centrifugal and dry casting method. In terms of surface morphology, films fabricated by the centrifugal casting have less surface roughness than those by the dry casting. For elasticity and transparency, silk fibroin films obtained from the centrifugal casting had favorable results compared with those prepared by dry casting. Furthermore, primary human corneal keratocytes grew better in films prepared by the centrifugal casting. Therefore, our results suggest that this new fabrication process for silk fibroin films offers important potential benefits for corneal tissue regeneration. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 508-514, 2016. PMID:25939800

  19. Development and characterization of silk fibroin coated quantum dots

    Nathwani, B. B.; Needham, C.; Mathur, A. B.; Meissner, K. E.

    2008-02-01

    Recent progress in the field of semiconductor nanocrystals or Quantum Dots (QDs) has seen them find wider acceptance as a tool in biomedical research labs. As produced, high quality QDs, synthesized by high temperature organometallic synthesis, are coated with a hydrophobic ligand. Therefore, they must be further processed to be soluble in water and to be made biocompatible. To accomplish this, the QDs are generally coated with a synthetic polymer (eg. block copolymers) or the hydrophobic surface ligands exchanged with hydrophilic material (eg. thiols). Advances in this area have enabled the QDs to experience a smooth transition from being simple inorganic fluorophores to being smart sensors, which can identify specific cell marker proteins and help in diagnosis of diseases such as cancer. In order to improve the biocompatibility and utility of the QDs, we report the development of a procedure to coat QDs with silk fibroin, a fibrous crystalline protein extracted from Bombyx Mori silkworm. Following the coating process, we characterize the size, quantum yield and two-photon absorption cross section of the silk coated QDs. Additionally, the results of biocompatibility studies carried out to compare the properties of these QD-silks with conventional QDs are presented. These natural polymer coatings on QDs could enhance the intracellular delivery and enable the use of these nanocrystals as an imaging tool for studying subcellular machinery at the molecular level.

  20. Research On Degradation Of Silk Fibroin By Combination Of Electron Beam Irradiation And Hydrothermal Processing

    Silk fibers and silk proteins have been demonstrated to be useful to apply in the textile industry, biomedical, cosmetics, pharmaceuticals. In this study, the effects of electron beam (EB) irradiation combined with hydrothermal processing to the solubility of silk fibroin and generation of soluble silk protein were investigated. The solubility of unirradiated and irradiated fibroin were greater than 80 % when hydrothermal degradation was performed in the sodium hydroxide solution at appropriate concentration of 0.05 M. However, the solubility of irradiated fibroin was greater than that of unirradiated sample. The protein content increased from 0.4617 to 0.6530 mg/mg when irradiation doses increased from 0 to 200 kGy, respectively. The molecular weight of protein was determined by SDS-PAGE method. The characteristics of silk protein were confirmed by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). (author)

  1. Artificial crawler model for texture analysis on silk fibroin scaffolds

    Texture plays an important role in computer vision tasks. Several methods of texture analysis are available. However, these methods are not capable of extracting rich detail in images. This paper presents a novel approach to image texture classification based on the artificial crawler model. Here, we propose a new rule of movement that moves artificial crawler agents not only toward higher intensities but also toward lower ones. This strategy is able of capturing more detail because the agents explore the peaks as well as the valleys. Thus, compared with the state-of-the-art method, this approach shows an increased discriminatory power. Experiments on the most well known benchmark demonstrate the superior performance of our approach. We also tested our approach on silk fibroin scaffold analysis, and results indicate that our method is consistent and can be applied in real-world situations. (paper)

  2. Silk fibroin porous scaffolds for nucleus pulposus tissue engineering

    Zeng, Chao; Yang, Qiang [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Tianjin Medical University, Tianjin 300070 (China); Zhu, Meifeng [The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China); Du, Lilong [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Tianjin Medical University, Tianjin 300070 (China); Zhang, Jiamin [The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China); Ma, Xinlong [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Xu, Baoshan, E-mail: xubaoshan99@126.com [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Wang, Lianyong, E-mail: wly@nankai.edu.cn [The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China)

    2014-04-01

    Intervertebral discs (IVDs) are structurally complex tissue that hold the vertebrae together and provide mobility to spine. The nucleus pulposus (NP) degeneration often results in degenerative IVD disease that is one of the most common causes of back and neck pain. Tissue engineered nucleus pulposus offers an alternative approach to regain the function of the degenerative IVD. The aim of this study is to determine the feasibility of porous silk fibroin (SF) scaffolds fabricated by paraffin-sphere-leaching methods with freeze-drying in the application of nucleus pulposus regeneration. The prepared scaffold possessed high porosity of 92.38 ± 5.12% and pore size of 165.00 ± 8.25 μm as well as high pore interconnectivity and appropriate mechanical properties. Rabbit NP cells were seeded and cultured on the SF scaffolds. Scanning electron microscopy, histology, biochemical assays and mechanical tests revealed that the porous scaffolds could provide an appropriate microstructure and environment to support adhesion, proliferation and infiltration of NP cells in vitro as well as the generation of extracellular matrix. The NP cell–scaffold construction could be preliminarily formed after subcutaneously implanted in a nude mice model. In conclusion, The SF porous scaffold offers a potential candidate for tissue engineered NP tissue. - Highlights: • Paraffin microsphere-leaching method is used to fabricate silk fibroin scaffold. • The scaffold has appropriate mechanical property, porosity and pore size • The scaffold supports growth and infiltration of nucleus pulposus cells. • Nucleus pulposus cells can secrete extracellular matrix in the scaffolds. • The scaffold is a potential candidate for tissue engineered nucleus pulposus.

  3. Silk fibroin gelation via non-solvent induced phase separation.

    Kasoju, Naresh; Hawkins, Nicholas; Pop-Georgievski, Ognen; Kubies, Dana; Vollrath, Fritz

    2016-03-01

    Tissue engineering benefits from novel materials with precisely tunable physical, chemical and mechanical properties over a broad range. Here we report a practical approach to prepare Bombyx mori silk fibroin hydrogels using the principle of non-solvent induced phase separation (NIPS). A combination of reconstituted silk fibroin (RSF) and methanol (non-solvent), with a final concentration of 2.5% w/v and 12.5% v/v respectively, maintained at 22 °C temperature turned into a hydrogel within 10 hours. Freeze-drying of this gel gave a foam with a porosity of 88%, a water uptake capacity of 89% and a swelling index of 8.6. The gelation kinetics and the loss tangent of the gels were investigated by rheometry. The changes in the morphology of the porous foams were visualized by SEM. The changes in RSF chemical composition and the relative fraction of its secondary structural elements were analyzed by ATR-FTIR along with Fourier self-deconvolution. And, the changes in the glass transition temperature, specific heat capacity and the relative fraction of crystallinity of RSF were determined by TM-DSC. Data suggested that RSF-water-methanol behaved as a polymer-solvent-non-solvent ternary phase system, wherein the demixing of the water-methanol phases altered the thermodynamic equilibrium of RSF-water phases and resulted in the desolvation and eventual separation of the RSF phase. Systematic analysis revealed that both gelation time and the properties of hydrogels and porous foams could be controlled by the ratios of RSF and non-solvent concentration as well as by the type of non-solvent and incubation temperature. Due to the unique properties we envisage that the herein prepared NIPS induced RSF hydrogels and porous foams can possibly be used for the encapsulation of cells and/or for the controlled release of both hydrophilic and hydrophobic drugs. PMID:26730413

  4. Self-assembly model, hepatocytes attachment and inflammatory response for silk fibroin/chitosan scaffolds

    Silk fibroin is an attractive natural fibrous protein for biomedical application due to its good biocompatibility and high tensile strength. Silk fibroin is apt to form a sheet-like structure during the freeze-drying process, which is not suitable for the scaffold of tissue engineering. In our former study, the adding of chitosan promoted the self-assembly of silk fibroin/chitosan (SFCS) into a three-dimensional (3D) homogeneous porous structure. In this study, a model of the self-assembly is proposed; furthermore, hepatocytes attachment and inflammatory response for the SFCS scaffold were examined. The rigid chain of chitosan may be used as a template for β-sheet formation of silk fibroin, and this may break the sheet structure of the silk fibroin scaffold and promote the formation of a 3D porous structure of the SFCS scaffold. Compared with the polylactic glycolic acid scaffold, the SFCS scaffold further facilitates the attachment of hepatocytes. To investigate the inflammatory response, SFCS scaffolds were implanted into the greater omentum of rats. From the results of implantation, we could demonstrate in vivo that the implantation of SFCS scaffolds resulted in only slight inflammation. Keeping the good histocompatibility and combining the advantages of both fibroin and chitosan, the SFCS scaffold could be a prominent candidate for soft tissue engineering, for example, in the liver.

  5. High-Q silk fibroin whispering gallery microresonator on a flexible chip

    Xu, Linhua; Zhao, Guangming; Liu, Zhiwen; Yang, Lan

    2016-01-01

    We have experimentally demonstrated on-chip all silk fibroin whispering gallery mode microresonator by using the molding and solution casting technique. The quality factors of the fabricated silk protein microresonators are up to 0.9*10^5. A high-sensitivity thermal sensor was realized in this silk fibroin microtoroid with the sensitivity of 1.17 nm/K, 8 times higher than previous WGM resonantor based thermal sensors. This opens the way to fabricate the biodegradable and biocompatible protein based microresonators on a flexible chip for biophotonics applications in vivo.

  6. Activation of the Ubiquitin Proteasome Pathway by Silk Fibroin Modified Chitosan Nanoparticles in Hepatic Cancer Cells

    Ming-Hui Yang; Tze-Wen Chung; Yi-Shan Lu; Yi-Ling Chen; Wan-Chi Tsai; Shiang-Bin Jong; Shyng-Shiou Yuan; Pao-Chi Liao; Po-Chiao Lin; Yu-Chang Tyan

    2015-01-01

    Silk fibroin (SF) is a protein with bulky hydrophobic domains and can be easily purified as sericin-free silk-based biomaterial. Silk fibroin modified chitosan nanoparticle (SF-CSNP), a biocompatible material, has been widely used as a potential drug delivery system. Our current investigation studied the bio-effects of the SF-CSNP uptake by liver cells. In this experiment, the characterizations of SF-CSNPs were measured by particle size analysis and protein assay. The average size of the SF-C...

  7. Optimization of the silk scaffold sericin removal process for retention of silk fibroin protein structure and mechanical properties

    Teh, Thomas K H; Toh, Siew-Lok; Goh, James C H, E-mail: dosgohj@nus.edu.s, E-mail: dostkh@nus.edu.s, E-mail: bietohsl@nus.edu.s [Division of Bioengineering, National University of Singapore (Singapore)

    2010-06-01

    In the process of removing sericin (degumming) from a raw silk scaffold, the fibroin structural integrity is often challenged, leading to mechanical depreciation. This study aims to identify the factors and conditions contributing to fibroin degradation during alkaline degumming and to perform an optimization study of the parameters involved to achieve preservation of fibroin structure and properties. The methodology involves degumming knitted silk scaffolds for various durations (5-90 min) and temperatures (60-100 {sup 0}C). Mechanical agitation and use of the refreshed solution during degumming are included to investigate how these factors contribute to degumming efficiency and fibroin preservation. Characterizations of silk fibroin morphology, mechanical properties and protein components are determined by scanning electron microscopy (SEM), single fiber tensile tests and gel electrophoresis (SDS-PAGE), respectively. Sericin removal is ascertained via SEM imaging and a protein fractionation method involving SDS-PAGE. The results show that fibroin fibrillation, leading to reduced mechanical integrity, is mainly caused by prolonged degumming duration. Through a series of optimization, knitted scaffolds are observed to be optimally degummed and experience negligible mechanical and structural degradation when subjected to alkaline degumming with mechanical agitation for 30 min at 100 {sup 0}C.

  8. Research on degradation of silk fibroin by combination of electron beam irradiation and hydrothermal processing

    Silk fibers and silk proteins have been demonstrated to be useful to apply in the textile industry, biomedical, cosmetics, pharmaceuticals. In this study, the effects of electron beam (EB) irradiation combined with hydrothermal processing to the solubility of silk fibroin and generation of soluble silk protein were investigated. The solubility of unirradiated and irradiated fibroin samples were greater than 80 % when hydrothermal degradation was performed in the sodium hydroxide solution at an appropriate concentration of 0.05 M. However, the solubility of irradiated fibroin was greater than that of unirradiated sample. The soluble silk protein content increased from 0.462 to 0.653 mg protein/mg silk fibroin when irradiation doses increased from 0 to 200 kGy, respectively. The molecular weight of protein was determined by SDS-PAGE method. The characteristics of silk protein were confirmed by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). (author)

  9. Effect of Na2CO3 degumming concentration on LiBr-formic acid-silk fibroin solution properties

    Liu Zhi

    2016-01-01

    Full Text Available Salt-acid system has been proved to be of high efficiency for silk fibroin dissolution. Using salt-acid system to dissolve silk, native silk fibrils can be preserved in the regenerated solution. Increasing experiments indicate that acquirement of silk fibrils in solution is strongly associated with the degumming process. In this study, the effect of sodium carbonate degumming concentration on solution properties based on lithium bromide-formic acid dissolution system was systematically investigated. Results showed that the morphology transformation of silk fibroin in solution from nanospheres to nanofibrils is determined by sodium carbonate concentration during the degumming process. Solutions containing different silk fibroin structure exhibited different rheological behaviors and different electrospinnability, leading to different electrospun nanofibre properties. The results have guiding significance for preparation and application of silk fibroin solutions.

  10. Tyrosinase-Mediated Construction of a Silk Fibroin/Elastin Nanofiber Bioscaffold.

    Hong, Yanqing; Zhu, Xueke; Wang, Ping; Fu, Haitian; Deng, Chao; Cui, Li; Wang, Qiang; Fan, Xuerong

    2016-04-01

    Elastin has characteristics of elasticity, biological activity, and mechanical stability. In the present work, tyrosinase-mediated construction of a bioscaffold with silk fibroin and elastin was carried out, aiming at developing a novel medical biomaterial. The efficiency of enzymatic oxidation of silk fibroin and the covalent reaction between fibroin and elastin were examined by spectrophotometry, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and size exclusion chromatography (SEC). The properties of composite air-dried and nanofiber scaffolds were investigated. The results reveal that elastin was successfully bonded to silk fibroins, resulting in an increase in molecular weight of fibroin proteins. ATR-FTIR spectra indicated that tyrosinase treatment impacted the conformational structure of fibroin-based membrane. The thermal behaviors and mechanical properties of the tyrosinase-treated scaffolds were also improved compared with the untreated group. NIH/3T3 cells exhibited optimum densities when grown on the nanofiber scaffold, implying that the nanofiber scaffold has enhanced biocompatibility compared to the air-dried scaffold. A biological nanofiber scaffold constructed from tyrosinase-treated fibroin and elastin could potentially be utilized in biomedical applications. PMID:26679706

  11. Silk Fibroin Aqueous-Based Adhesives Inspired by Mussel Adhesive Proteins.

    Burke, Kelly A; Roberts, Dane C; Kaplan, David L

    2016-01-11

    Silk fibroin from the domesticated silkworm Bombyx mori is a naturally occurring biopolymer with charged hydrophilic terminal regions that end-cap a hydrophobic core consisting of repeating sequences of glycine, alanine, and serine residues. Taking inspiration from mussels that produce proteins rich in L-3,4-dihydroxyphenylalanine (DOPA) to adhere to a variety of organic and inorganic surfaces, the silk fibroin was functionalized with catechol groups. Silk fibroin was selected for its high molecular weight, tunable mechanical and degradation properties, aqueous processability, and wide availability. The synthesis of catechol-functionalized silk fibroin polymers containing varying amounts of hydrophilic polyethylene glycol (PEG, 5000 g/mol) side chains was carried out to balance silk hydrophobicity with PEG hydrophilicity. The efficiency of the catechol functionalization reaction did not vary with PEG conjugation over the range studied, although tuning the amount of PEG conjugated was essential for aqueous solubility. Adhesive bonding and cell compatibility of the resulting materials were investigated, where it was found that incorporating as little as 6 wt % PEG prior to catechol functionalization resulted in complete aqueous solubility of the catechol conjugates and increased adhesive strength compared with silk lacking catechol functionalization. Furthermore, PEG-silk fibroin conjugates maintained their ability to form β-sheet secondary structures, which can be exploited to reduce swelling. Human mesenchymal stem cells (hMSCs) proliferated on the silks, regardless of PEG and catechol conjugation. These materials represent a protein-based approach to catechol-based adhesives, which we envision may find applicability as biodegradable adhesives and sealants. PMID:26674175

  12. Sonication induced silk fibroin cryogels for tissue engineering applications

    Kadakia, P. U.; Jain, E.; Hixon, K. R.; Eberlin, C. T.; Sell, S. A.

    2016-05-01

    In this study, we report a method to form macroporous silk fibroin (SF) scaffolds through a combination of ultrasonication followed by cryogelation at subzero temperatures. The resultant sonication induced SF cryogels encompassed larger pore sizes (151 ± 56 μm) and higher mechanical stability (127.15 ± 24.71 kPa) than their hydrogel counterparts made at room temperature. Furthermore, the addition of dopants like Manuka honey and bone char in SF cryogels did not affect cryogel synthesis but decreased the pore size in a concentration dependent manner. With no crack propagation at 50% strain and promising stability under cyclic loads, mineralization and cellular infiltration potential were analyzed for bone tissue engineering purposes. Although the scaffolds showed limited mineralization, encouraging cellular infiltration results yield promise for other tissue engineering applications. The use of mild processing conditions, a simplistic procedure, and the lack of organic solvents or chemical cross-linkers renders the combination of sonication and cryogelation as an attractive fabrication technique for 3D SF macroporous scaffolds.

  13. Fabrication of silk fibroin nanoparticles for controlled drug delivery

    A novel solution-enhanced dispersion by supercritical CO2 (SEDS) was employed to prepare silk fibroin (SF) nanoparticles. The resulting SF nanoparticles exhibited a good spherical shape, a smooth surface, and a narrow particle size distribution with a mean particle diameter of about 50 nm. The results of X-ray powder diffraction, thermo gravimetry-differential scanning calorimetry, and Fourier transform infrared spectroscopy analysis of the SF nanoparticles before and after ethanol treatment indicated conformation transition of SF nanoparticles from random coil to β-sheet form and thus water insolubility. The MTS assay also suggested that the SF nanoparticles after ethanol treatment imposed no toxicity. A non-steroidal anti-inflammatory drug, indomethacin (IDMC), was chosen as the model drug and was encapsulated in SF nanoparticles by the SEDS process. The resulting IDMC–SF nanoparticles, after ethanol treatment, possessed a theoretical average drug load of 20%, an actual drug load of 2.05%, and an encapsulation efficiency of 10.23%. In vitro IDMC release from the IDMC–SF nanoparticles after ethanol treatment showed a significantly sustained release over 2 days. These studies of SF nanoparticles indicated the suitability of the SF nanoparticles prepared by the SEDS process as a biocompatible carrier to deliver drugs and also the feasibility of using the SEDS process to reach the goal of co-precipitation of drug and SF as composite nanoparticles for controlled drug delivery.

  14. Improvements of anticoagulant activities of silk fibroin films with fucoidan

    2008-01-01

    Fucoidan (FC),an effective anticoagulant constituent extracted from brown algae,was introduced into silk fibroin (SF) for improving its blood compatibility.The SF and SF/FC blend films were characterized by attenuated total reflectance Fourier-transform infrared (ATR-FTIR),X-ray photoelectron spectroscopy (XPS),scanning electron microscopy (SEM) and dynamic contact angle determinator (CA).The in vitro anticoagulant activities of the films were evaluated by activated partial thromboplastin time (APTT),thrombin time (TT) and prothrombin time (PT) measurements.The endothelial cell attachment and proliferation viability on the film were assessed by micropipette aspiration technique and MTT assay,respectively.The testing results indicated that the introduction of FC increased the roughness,hydrophilicity and sulfate component of the film surface without impeding the formation of β-sheet conformation in SF.More important,FC brought excellent anticoagulant activity and better endothelial cell affinity to SF.The SF/FC blend film was hopeful to be used as blood-contacting biomaterials.

  15. Controlling silk fibroin microspheres via molecular weight distribution

    Zeng, Dong-Mei; Pan, Jue-Jing; Wang, Qun; Liu, Xin-Fang; Wang, Hui [National Engineering Laboratory for Modern Silk, College for Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123 (China); Zhang, Ke-Qin, E-mail: kqzhang@suda.edu.cn [National Engineering Laboratory for Modern Silk, College for Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123 (China); Research Center of Cooperative Innovation for Functional Organic/Polymer Material Micro/Nanofabrication, Soochow University, Suzhou, Jiangsu 215123 (China)

    2015-05-01

    Silk fibroin (SF) microspheres were produced by salting out SF solution via the addition of potassium phosphate buffer solution (K{sub 2}HPO{sub 4}–KH{sub 2}PO{sub 4}). The morphology, size and polydispersity of SF microspheres were adjusted by changing the molecular weight (MW) distribution and concentration of SF, as well as the ionic strength and pH of the buffer solution. Changing the conditions under which the SF fiber dissolved in the Lithium Boride (LiBr) solution resulted in altering the MW distribution of SF solution. Under optimal salting-out conditions (ionic strength > 0.7 M and pH > 7) and using a smaller and narrower SF MW distribution, SF microspheres with smoother shapes and more uniform sizes were produced. Meanwhile, the size and polydispersity of the microspheres increased when the SF concentration was increased from 0.25 mg/mL to 20 mg/mL. The improved SF microspheres, obtained by altering the distribution of molecular weight, have potential in drug and gene delivery applications. - Highlights: • MW distribution was changed by applying different dissolving methods of SF fiber. • Smaller and narrower MW distribution improves the quality of SF microspheres. • Size and polydispersity of microspheres increase as SF concentration increases. • Improved SF microspheres have potential in drug and gene delivery applications.

  16. Controlling silk fibroin microspheres via molecular weight distribution

    Silk fibroin (SF) microspheres were produced by salting out SF solution via the addition of potassium phosphate buffer solution (K2HPO4–KH2PO4). The morphology, size and polydispersity of SF microspheres were adjusted by changing the molecular weight (MW) distribution and concentration of SF, as well as the ionic strength and pH of the buffer solution. Changing the conditions under which the SF fiber dissolved in the Lithium Boride (LiBr) solution resulted in altering the MW distribution of SF solution. Under optimal salting-out conditions (ionic strength > 0.7 M and pH > 7) and using a smaller and narrower SF MW distribution, SF microspheres with smoother shapes and more uniform sizes were produced. Meanwhile, the size and polydispersity of the microspheres increased when the SF concentration was increased from 0.25 mg/mL to 20 mg/mL. The improved SF microspheres, obtained by altering the distribution of molecular weight, have potential in drug and gene delivery applications. - Highlights: • MW distribution was changed by applying different dissolving methods of SF fiber. • Smaller and narrower MW distribution improves the quality of SF microspheres. • Size and polydispersity of microspheres increase as SF concentration increases. • Improved SF microspheres have potential in drug and gene delivery applications

  17. Synthesis and characterization of dense membranes of silk fibroin with glycerin

    The addition of plasticizers seeks improvements in mechanical properties of dense membranes of silk fibroin with possible interactions by hydrogen bonds. The aim of the present study was to produce and characterize dense membranes of silk fibroin containing glycerin in two different concentrations. The characterization of the membranes was performed from scanning electron microscopy (SEM), mechanical traction tests, infrared spectroscopy (FTIR-ATR) and X-ray diffraction (XRD). The results indicated that the addition of glycerin allowed obtaining homogeneous and more crystalline membranes and improved their properties of elongation. (author)

  18. Silks produced by insect labial glands

    Sehnal, František; Sutherland, T.

    Austin: Landes Bioscience, 2008 - (Scheibel, T.), s. 106-120 ISBN 978-1-58706-316-9 R&D Projects: GA AV ČR IAA5007402 Institutional research plan: CEZ:AV0Z50070508 Keywords : silks * Insect * labial glands Subject RIV: ED - Physiology

  19. Enzymatic degradation behavior and cytocompatibility of silk fibroin-starch-chitosan conjugate membranes

    Baran, Erkan T., E-mail: erkantur@metu.edu.tr; Tuzlakoglu, Kadriye, E-mail: kadriye@dep.uminho.pt; Mano, Joao F., E-mail: jmano@dep.uminho.pt; Reis, Rui L., E-mail: rgreis@dep.uminho.pt

    2012-08-01

    The objective of this study was to investigate the influence of silk fibroin and oxidized starch conjugation on the enzymatic degradation behavior and the cytocompatability of chitosan based biomaterials. The tensile stress of conjugate membranes, which was at 50 Megapascal (MPa) for the lowest fibroin and starch composition (10 weight percent (wt.%)), was decreased significantly with the increased content of fibroin and starch. The weight loss of conjugates in {alpha}-amylase was more notable when the starch concentration was the highest at 30 wt.%. The conjugates were resistant to the degradation by protease and lysozyme except for the conjugates with the lowest starch concentration. After 10 days of cell culture, the proliferation of osteoblast-like cells (SaOS-2) was stimulated significantly by higher fibroin compositions and the DNA synthesis on the conjugate with the highest fibroin (30 wt.%) was about two times more compared to the native chitosan. The light microscopy and the image analysis results showed that the cell area and the lengths were decreased significantly with higher fibroin/chitosan ratio. The study proved that the conjugation of fibroin and starch with the chitosan based biomaterials by the use of non-toxic reductive alkylation crosslinking significantly improved the cytocompatibility and modulated the biodegradation, respectively. - Highlights: Black-Right-Pointing-Pointer Silk fibroin, starch and chitosan conjugates were prepared by reductive alkylation. Black-Right-Pointing-Pointer The enzymatic biodegradation and the cytocompatibility of conjugates were tested. Black-Right-Pointing-Pointer The conjugate with 30% starch composition was degraded by {alpha}-amylase significantly. Black-Right-Pointing-Pointer Higher starch composition in conjugates prevented protease and lysozyme degradation. Black-Right-Pointing-Pointer Fibroin incorporation effectively increased the cell proliferation of conjugates.

  20. Rheological and Mechanical Behavior of Silk Fibroin Reinforced Waterborne Polyurethane

    Yongzhen Tao

    2016-03-01

    Full Text Available Waterborne polyurethane (WPU is a versatile and environment-friendly material with growing applications in both industry and academia. Silk fibroin (SF is an attractive material known for its structural, biological and hemocompatible properties. The SF reinforced waterborne polyurethane (WPU is a promising scaffold material for tissue engineering applications. In this work, we report synthesis and characterization of a novel nanocomposite using SF reinforced WPU. The rheological behaviors of WPU and WPU-SF dispersions with different solid contents were investigated with steady shear and dynamic oscillatory tests to evaluate the formation of the cross-linked gel structure. The average particle size and the zeta potential of WPU-SF dispersions with different SF content were examined at 25 °C to investigate the interaction between SF and WPU. FTIR, SEM, TEM and tensile testing were performed to study the effects of SF content on the structural morphology and mechanical properties of the resultant composite films. Experimental results revealed formation of gel network in the WPU dispersions at solid contents more than 17 wt %. The conjugate reaction between the WPU and SF as well as the hydrogen bond between them helped in dispersing the SF powder into the WPU matrix as small aggregates. Addition of SF to the WPU also improved the Young’s modulus from 0.30 to 3.91 MPa, tensile strength from 0.56 to 8.94 MPa, and elongation at break from 1067% to 2480%, as SF was increased up to 5 wt %. Thus, significant strengthening and toughening can be achieved by introducing SF powder into the WPU formulations.

  1. Preparation and water absorption of cross-linked chitosan/silk fibroin blend films

    Natural polymer blend films composed of chitosan and silk fibroin were prepared by varying the ratio of chitosan to silk fibroin, with and without glutaraldehyde as a crosslinking agent. The effects of the ratio of chitosan to silk fibroin and crosslinking agent on swelling behavior of the blend films were studied. For the swelling behavior, the blend films exhibited a dramatic change in the degree of swelling when immersed in acidic solutions. The degree of swelling of the films increased as the chitosan content increased; the blend film with 80% chitosan content had the maximum degree of swelling. It appeared that crosslinking had occurred in the blend films which helped the films to retain their three dimensional structure. In addition, FTIR spectra of the films showed evidence of hydrogen bonding interaction between chitosan and silk fibroin. For the effect of salt type, the films were immersed in various types of aqueous salt solutions, viz NaCl, LiCl, CaCl2, AlCl3, and FeCl3. The films immersed in AlCl3 and FeCl3 aqueous solutions gave the maximum degree of swelling. The effects of AlCl3 and FeCl3 concentrations on swelling behavior were also investigated. It was found that the maximum degree of swelling of the films occurred at 1.0 x 10-2 M of AlCl3 and FeCl3 aqueous solutions. (author)

  2. A dry powder formulation from silk fibroin microspheres as a topical auto-gelling device.

    Faragò, Silvio; Lucconi, Giulia; Perteghella, Sara; Vigani, Barbara; Tripodo, Giuseppe; Sorrenti, Milena; Catenacci, Laura; Boschi, Alessandra; Faustini, Massimo; Vigo, Daniele; Chlapanidas, Theodora; Marazzi, Mario; Torre, Maria Luisa

    2016-06-01

    With the aim of establishing the formulation of a new hydrophilic auto-gelling medical device for biomedical applications, fibroin-based microspheres were prepared. The proposed microspheres were produced by a cost-effective and industrially scalable technique, such as the spray-drying. Spray-dried silk fibroin microspheres were obtained and the effects of different hydrophilic polymer on the process yield, microsphere morphology and conformation transition of fibroin were evaluated. The final auto-gelling formulations were obtained by adding calcium gluconate (as a calcium source for alginate crosslinking) to the prepared microspheres and tested by an in vitro gelling test. This study showed that the combination of fibroin with sodium alginate and poloxamer produced the most promising auto-gelling formulation for specific biomedical applications, such as the treatment of pressure ulcers. PMID:25757645

  3. Effects of sterilization methods on the physical, chemical, and biological properties of silk fibroin membranes.

    de Moraes, Mariana Agostini; Weska, Raquel Farias; Beppu, Marisa Masumi

    2014-05-01

    Silk fibroin has been widely explored for many biomedical applications, due to its biocompatibility and biodegradability. Sterilization is a fundamental step in biomaterials processing and it must not jeopardize the functionality of medical devices. The aim of this study was to analyze the influence of different sterilization methods in the physical, chemical, and biological characteristics of dense and porous silk fibroin membranes. Silk fibroin membranes were treated by several procedures: immersion in 70% ethanol solution, ultraviolet radiation, autoclave, ethylene oxide, and gamma radiation, and were analyzed by scanning electron microscopy, Fourier-transformed infrared spectroscopy (FTIR), X-ray diffraction, tensile strength and in vitro cytotoxicity to Chinese hamster ovary cells. The results indicated that the sterilization methods did not cause perceivable morphological changes in the membranes and the membranes were not toxic to cells. The sterilization methods that used organic solvent or an increased humidity and/or temperature (70% ethanol, autoclave, and ethylene oxide) increased the silk II content in the membranes: the dense membranes became more brittle, while the porous membranes showed increased strength at break. Membranes that underwent sterilization by UV and gamma radiation presented properties similar to the nonsterilized membranes, mainly for tensile strength and FTIR results. PMID:24259492

  4. Modulated Degradation of Transient Electronic Devices through Multilayer Silk Fibroin Pockets.

    Brenckle, Mark A; Cheng, Huanyu; Hwang, Sukwon; Tao, Hu; Paquette, Mark; Kaplan, David L; Rogers, John A; Huang, Yonggang; Omenetto, Fiorenzo G

    2015-09-16

    The recent introduction of transient, bioresorbable electronics into the field of electronic device design offers promise for the areas of medical implants and environmental monitors, where programmed loss of function and environmental resorption are advantageous characteristics. Materials challenges remain, however, in protecting the labile device components from degradation at faster than desirable rates. Here we introduce an indirect passivation strategy for transient electronic devices that consists of encapsulation in multiple air pockets fabricated from silk fibroin. This approach is investigated through the properties of silk as a diffusional barrier to water penetration, coupled with the degradation of magnesium-based devices in humid air. Finally, silk pockets are demonstrated to be useful for controlled modulation of device lifetime. This approach may provide additional future opportunities for silk utility due to the low immunogenicity of the material and its ability to stabilize labile biotherapeutic dopants. PMID:26305434

  5. Effect of the sterilization method on the properties of Bombyx mori silk fibroin films

    George, Karina A. [Queensland Eye Institute, 41 Annerley Road, South Brisbane, Queensland 4101 (Australia); Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland 4059 (Australia); Shadforth, Audra M.A. [Queensland Eye Institute, 41 Annerley Road, South Brisbane, Queensland 4101 (Australia); Chirila, Traian V., E-mail: traian.chirila@qei.org.au [Queensland Eye Institute, 41 Annerley Road, South Brisbane, Queensland 4101 (Australia); Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia, 4072 (Australia); Faculty of Health Sciences, University of Queensland, Herston, Queensland 4006 (Australia); Faculty of Science and Engineering, Queensland University of Technology, Brisbane, Queensland 4001 (Australia); Laurent, Matthieu J. [Queensland Eye Institute, 41 Annerley Road, South Brisbane, Queensland 4101 (Australia); Ecole Superieure d' Ingenieurs de Luminy (ESIL), Universite de la Mediterranee Aix-Marseille II, Luminy case 925 13288, Marseille, Cedex 09 (France); Stephenson, Sally-Anne [Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland 4059 (Australia); Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4001 (Australia); Edwards, Grant A. [Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia, 4072 (Australia); Madden, Peter W. [Queensland Eye Institute, 41 Annerley Road, South Brisbane, Queensland 4101 (Australia); Faculty of Health Sciences, University of Queensland, Herston, Queensland 4006 (Australia); and others

    2013-03-01

    We have compared the effects of different sterilization techniques on the properties of Bombyx mori silk fibroin thin films with the view to subsequent use for corneal tissue engineering. The transparency, tensile properties, corneal epithelial cell attachment and degradation of the films were used to evaluate the suitability of certain sterilization techniques including gamma-irradiation (in air or nitrogen), steam treatment and immersion in aqueous ethanol. The investigations showed that gamma-irradiation, performed either in air or in a nitrogen atmosphere, did not significantly alter the properties of films. The films sterilized by gamma-irradiation or by immersion in ethanol had a transparency greater than 98% and tensile properties comparable to human cornea and amniotic membrane, the materials of choice in the reconstruction of ocular surface. Although steam-sterilization produced stronger, stiffer films, they were less transparent, and cell attachment was affected by the variable topography of these films. It was concluded that gamma-irradiation should be considered to be the most suitable method for the sterilization of silk fibroin films, however, the treatment with ethanol is also an acceptable method. - Highlights: Black-Right-Pointing-Pointer The effects of four methods of sterilization on the properties of silk fibroin films were investigated. Black-Right-Pointing-Pointer Steam treatment leads to stiffer films but to lower transparency and variable surface topography. Black-Right-Pointing-Pointer Degradation of fibroin is enhanced in the films that were gamma-irradiated. Black-Right-Pointing-Pointer The effects on mechanical properties are explained through changes in both primary and secondary structure of fibroin. Black-Right-Pointing-Pointer Gamma-irradiation and immersion in aqueous ethanol are suggested as preferred methods of sterilization.

  6. Effect of the sterilization method on the properties of Bombyx mori silk fibroin films

    We have compared the effects of different sterilization techniques on the properties of Bombyx mori silk fibroin thin films with the view to subsequent use for corneal tissue engineering. The transparency, tensile properties, corneal epithelial cell attachment and degradation of the films were used to evaluate the suitability of certain sterilization techniques including gamma-irradiation (in air or nitrogen), steam treatment and immersion in aqueous ethanol. The investigations showed that gamma-irradiation, performed either in air or in a nitrogen atmosphere, did not significantly alter the properties of films. The films sterilized by gamma-irradiation or by immersion in ethanol had a transparency greater than 98% and tensile properties comparable to human cornea and amniotic membrane, the materials of choice in the reconstruction of ocular surface. Although steam-sterilization produced stronger, stiffer films, they were less transparent, and cell attachment was affected by the variable topography of these films. It was concluded that gamma-irradiation should be considered to be the most suitable method for the sterilization of silk fibroin films, however, the treatment with ethanol is also an acceptable method. - Highlights: ► The effects of four methods of sterilization on the properties of silk fibroin films were investigated. ► Steam treatment leads to stiffer films but to lower transparency and variable surface topography. ► Degradation of fibroin is enhanced in the films that were gamma-irradiated. ► The effects on mechanical properties are explained through changes in both primary and secondary structure of fibroin. ► Gamma-irradiation and immersion in aqueous ethanol are suggested as preferred methods of sterilization.

  7. The Micropillar Structure on Silk Fibroin Film Influence Intercellular Connection Mediated by Nanotubular Structures

    Renchuan You

    2014-06-01

    Full Text Available Tunneling nanotubes are important membrane channels for cell-to-cell communication. In this study, we investigated the effect of the microenvironment on nanotubular structures by preparing a three-dimensional silk fibroin micropillar structure. In previous reports, tunneling nanotubes were described as stretched membrane channels between interconnected cells at their nearest distance. They hover freely in the cell culture medium and do not contact with the substratum. Interestingly, the micropillars could provide supporting points for nanotubular connection on silk fibroin films, where nanotubular structure formed a stable anchor at contact points. Consequently, the extension direction of nanotubular structure was affected by the micropillar topography. This result suggests that the hovering tunneling nanotubes in the culture medium will come into contact with the raised roadblock on the substrates during long-distance extension. These findings imply that the surface microtopography of biomaterials have an important influence on cell communication mediated by tunneling nanotubes.

  8. Comparing the properties of Bombyx mori silk cocoons against sericin-fibroin regummed biocomposite sheets.

    Morin, Alexander; Alam, Parvez

    2016-08-01

    This paper considers the utility of sericin, a degumming waste product, in the regumming of Bombyx mori silk fibroin fibres to form sericin-fibroin biocomposites. Regummed biocomposites have a chemical character that is somewhat closer to fibroin than sericin, though sericin presence is confirmed through FT-IR spectroscopy. Using direct measurements we further find the weight fractions of sericin in the regummed biocomposites and the native cocoons differ by only 5%. Mechanically, B. mori cocoons exhibit brittle stress-strain characteristics, failing at strengths of X̅= 16.6MPa and at strains of X̅= 13%. Contrarily, aligning fibroin fibres to a unidirectional axis in the regummed biocomposites causes them to exhibit characteristics of strain hardening, which is itself a typical characteristic of silk fibre pulled in tension. Though they are half as strong (X̅= 7.2MPa), regummed biocomposites are able to absorb five times more mechanical energy (X̅= 5.6MJm(-3)) than the B. mori cocoons (X̅= 1.1MJm(-3)) and are furthermore able to elongate to more than ten times (X̅= 180%) that of the native cocoons prior to failure. Our research shows that degummed B. mori cocoons can be regummed into sheets that have potential for use as load bearing engineering biocomposites. PMID:27157746

  9. Effect of silk fibroin nanofibers containing silver sulfadiazine on wound healing

    Jeong L; Kim MH; Jung JY; Min BM; Park WH

    2014-01-01

    Lim Jeong,1 Min Hee Kim,1 Ju-Young Jung,2 Byung Moo Min,3 Won Ho Park1 1Department of Advanced Organic Materials and Textile System Engineering, 2College of Veterinary Medicine, Chungnam National University, Daejeon, 3Department of Oral Biochemistry, School of Dentistry, Seoul National University, Seoul, South Korea Background: One of the promising applications of silk fibroin (SF) in biomedical engineering is its use as a scaffolding material for skin regeneration. The purpose of this study...

  10. Preparation and water absorption of cross-linked chitosan/silk fibroin blend films

    Suesat, Jantip; Rujiravanit, Ratana [Chulalongkorn University, The Petroleum and Petrochemical College, Bangkok (Thailand); Jamieson, Alexander M. [Case Western Reserve Univ., Department of Macromolecular Science, Cleveland (United States); Tokura, Seiichi [Kansai Univ., Faculty of Engineering, Osaka (Japan)

    2001-03-01

    Natural polymer blend films composed of chitosan and silk fibroin were prepared by varying the ratio of chitosan to silk fibroin, with and without glutaraldehyde as a crosslinking agent. The effects of the ratio of chitosan to silk fibroin and crosslinking agent on swelling behavior of the blend films were studied. For the swelling behavior, the blend films exhibited a dramatic change in the degree of swelling when immersed in acidic solutions. The degree of swelling of the films increased as the chitosan content increased; the blend film with 80% chitosan content had the maximum degree of swelling. It appeared that crosslinking had occurred in the blend films which helped the films to retain their three dimensional structure. In addition, FTIR spectra of the films showed evidence of hydrogen bonding interaction between chitosan and silk fibroin. For the effect of salt type, the films were immersed in various types of aqueous salt solutions, viz NaCl, LiCl, CaCl{sub 2}, AlCl{sub 3}, and FeCl{sub 3}. The films immersed in AlCl{sub 3} and FeCl{sub 3} aqueous solutions gave the maximum degree of swelling. The effects of AlCl{sub 3} and FeCl{sub 3} concentrations on swelling behavior were also investigated. It was found that the maximum degree of swelling of the films occurred at 1.0 x 10{sup -2} M of AlCl{sub 3} and FeCl{sub 3} aqueous solutions. (author)

  11. Silk fibroin nanoparticles for drug delivery purposes : stabilization, incorporation and release design

    Ferreira, A. V.; Volkov, Vadim; Vasconcelos, Andreia; Abreu, Aana S.; Botelho, C. M.; Paulo, Artur Cavaco

    2014-01-01

    Silk Fibroin (SF) has been extensively studied for various applications due to its impressive mechanical properties and biocompatibility. Recently, SF based-particles have been proposed as controlled drug delivery systems. A new and efficient method was developed to prepare SF nanoparticles (SF-NPs) by high pressure homogenization (HPH) emulsification, in oil-in-water emulsions (o/w). During the NPs production by HPH emulsification process, the secondary SF structure changed from ran...

  12. Effect of Methanol Treatment on Regenerated Silk Fibroin Microparticles Prepared by the Emulsification-Diffusion Technique

    Yodthong Baimark; Prasong Srihanam

    2009-01-01

    Silk Fibroin (SF) microparticles containing hollow structure were prepared by a water-in-oil emulsion solvent diffusion method without any surfactants. Aqueous SF solution and ethyl acetate were used as water and oil phases, respectively. Influences of SF concentration and post methanol treatment on microparticle characteristics were investigated. All microparticles contained open hollow structures. Microparticle sizes increased with the SF concentration. Conformation of SF microparticles det...

  13. Effect of freezing methods on the properties of lyophilized porous silk fibroin membranes

    Raquel Farias Weska; Wellington Carlos Vieira Jr.; Grínia Michelle Nogueira; Marisa Masumi Beppu

    2009-01-01

    Silk fibroin is a fibrous protein that has been extensively studied for application in the biomedical field, and has been used as a scaffold for bone tissue engineering. Biomaterials made of proteins are prone to physical and chemical degradation during storage; lyophilization, a drying method that consists of freezing and drying steps, is known to promote minimal changes in structure and biological activity of biomaterials. This study evaluates the effect of freezing methods on the propertie...

  14. Chemically cross-linked silk fibroin hydrogel with enhanced elastic properties, biodegradability, and biocompatibility

    Park, Won Ho

    2016-01-01

    Min Hee Kim, Won Ho Park Department of Advanced Organic Materials and Textile Engineering System, Chungnam National University, Daejeon, Korea Abstract: In this study, the synthesis of silk fibroin (SF) hydrogel via chemical cross-linking reactions of SF due to gamma-ray (γ-ray) irradiation was investigated, as were the resultant hydrogel’s properties. Two different hydrogels were investigated: physically cross-linked SF hydrogel and chemically cross-linked SF hydrogel i...

  15. Facile fabrication of the porous three-dimensional regenerated silk fibroin scaffolds

    In the present work, we report a new facile method to fabricate porous three-dimensional regenerated silk fibroin (RSF) scaffolds through n-butanol- and freezing-induced conformation transition and phase separation. The effects of RSF concentration, freezing temperature and n-butanol addition on the microstructure, the secondary structures of silk fibroin and apparent mechanical properties of the RSF scaffolds were investigated by SEM, 13C CP-MAS NMR spectra and mechanical testing, respectively. By adjusting the RSF concentration and n-butanol addition, the pore size of the scaffold could be controlled in the range from of 10 μm to 350 μm with 84%–98% of porosity. The tensile strength of the wet scaffold reached the maximum of 755.2 ± 33.6 kPa when the concentration of RSF solution was increased to 15% w/w. Moreover, post-treatment with ethanol further induced conformation transition of RSF from random coil or helix to β-sheet. The porous scaffolds prepared by this facile and energy-saving method with good biocompatibility will have great potential for application in tissue engineering. Highlights: • A new facile and energy-saving method to fabricate porous silk fibroin scaffolds; • Freeze-drying step (a typical high energy consuming process) is unnecessary; • Morphology and mechanical properties of scaffolds were easily controlled; • Ethanol post-treatment can be used to tune the degradation behavior

  16. Facile fabrication of the porous three-dimensional regenerated silk fibroin scaffolds

    Cao, Zhengbing; Wen, Jianchuan [State Key Laboratory of Molecular Engineering of Polymers, Advanced Materials Laboratory, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China); Yao, Jinrong, E-mail: yaoyaojr@fudan.edu.cn [State Key Laboratory of Molecular Engineering of Polymers, Advanced Materials Laboratory, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China); Chen, Xin [State Key Laboratory of Molecular Engineering of Polymers, Advanced Materials Laboratory, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China); Ni, Yusu [Otology and Skull Base Surgery Department, Eye and ENT Hospital of Fudan University, Shanghai 200031 (China); Shao, Zhengzhong [State Key Laboratory of Molecular Engineering of Polymers, Advanced Materials Laboratory, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China)

    2013-08-01

    In the present work, we report a new facile method to fabricate porous three-dimensional regenerated silk fibroin (RSF) scaffolds through n-butanol- and freezing-induced conformation transition and phase separation. The effects of RSF concentration, freezing temperature and n-butanol addition on the microstructure, the secondary structures of silk fibroin and apparent mechanical properties of the RSF scaffolds were investigated by SEM, {sup 13}C CP-MAS NMR spectra and mechanical testing, respectively. By adjusting the RSF concentration and n-butanol addition, the pore size of the scaffold could be controlled in the range from of 10 μm to 350 μm with 84%–98% of porosity. The tensile strength of the wet scaffold reached the maximum of 755.2 ± 33.6 kPa when the concentration of RSF solution was increased to 15% w/w. Moreover, post-treatment with ethanol further induced conformation transition of RSF from random coil or helix to β-sheet. The porous scaffolds prepared by this facile and energy-saving method with good biocompatibility will have great potential for application in tissue engineering. Highlights: • A new facile and energy-saving method to fabricate porous silk fibroin scaffolds; • Freeze-drying step (a typical high energy consuming process) is unnecessary; • Morphology and mechanical properties of scaffolds were easily controlled; • Ethanol post-treatment can be used to tune the degradation behavior.

  17. Antihypertensive effects of silk fibroin hydrolysate by alcalase and purification of an ACE inhibitory dipeptide.

    Zhou, Fengjuan; Xue, Zhaohui; Wang, Jiehua

    2010-06-01

    Silk fibroin, which is normally discarded as an industrial byproduct in clothing plants, was hydrolyzed with alcalase. Angiotensin I converting enzyme (ACE) inhibitory activities of the silk fibroin hydrolysates (SFH) were investigated, and the hydrolysate with hydrolysis degree of 17% exhibited the highest ACE inhibitory activity. At the tested 600 mg/kg.d and 1200 mg/kg x d doses, SFH significantly lowered blood pressure of spontaneously hypertensive rats (SHR) after chronic oral administration. SFH was further purified using consecutive chromatographic methods on Sephadex G-15 column and reverse phase high-performance liquid chromatography (RP-HPLC) on an octadecylsilane column. After its purity was confirmed by analytical RP-HPLC and capillary electrophoresis, one ACE inhibitory dipeptide was isolated, and its molecular mass and amino acid sequence were determined as 238.2 Da and Gly-Tyr, respectively, by LC-ESI/MS. The results of this study suggest that silk fibroin byproducts have the possibility to become an effective source for ACE inhibitory peptides. PMID:20481470

  18. Coimmobilization of Naringinases on Silk Fibroin Nanoparticles and Its Application in Food Packaging

    Min-Hui Wu

    2013-01-01

    Full Text Available Bombyx mori silk fibroin is a macromolecular biopolymer with remarkable biocompatibility. It was degummed and subjected to a series of treatments, including dissolution and dialysis, to yield an aqueous solution of silk fibroin, which was introduced rapidly into excess acetone to produce crystalline silk fibroin nanoparticles (SFNs, which were conjugated covalently with naringinase using glutaraldehyde as the cross-linking reagent. The SFN naringinases are easily recovered by centrifugation and can be used repeatedly. Naringinase is a bienzyme consisting of α-L-rhamnosidase and flavonoid-β-glucosidase. The enzyme activity and its kinetics were similar to those of the native form, and the optimum reactive temperature for both is 55°C. In our study, centrifugation allowed the separation of enzyme and substrate; after eight cycles the SFN naringinases retained >70% residual activity. The highly efficient processing technology and the use of SFN as a novel vector for a bienzyme have great potential for research and the development of food processing such as the debittering of naringin-containing juices.

  19. Influence of Layer-by-Layer Polyelectrolyte Deposition and EDC/NHS Activated Heparin Immobilization onto Silk Fibroin Fabric

    M. Fazley Elahi

    2014-04-01

    Full Text Available To enhance the hemocompatibility of silk fibroin fabric as biomedical material, polyelectrolytes architectures have been assembled through the layer-by-layer (LbL technique on silk fibroin fabric (SFF. In particular, 1.5 and 2.5 bilayer of oppositely charged polyelectrolytes were assembled onto SFF using poly(allylamine hydrochloride (PAH as polycationic polymer and poly(acrylic acid (PAA as polyanionic polymer with PAH topmost. Low molecular weight heparin (LMWH activated with 1-ethyl-3-(dimethylaminopropyl carbodiimide hydrochloride (EDC and N-hydroxysuccinimide (NHS was then immobilized on its surface. Alcian Blue staining, toluidine blue assay and X-ray photoelectron spectroscopy (XPS confirmed the presence of heparin on modified SFF surfaces. The surface morphology of the modified silk fibroin fabric surfaces was characterized by scanning electron microscopy (SEM and atomic force microscopy (AFM, and obtained increased roughness. Negligible hemolytic effect and a higher concentration of free hemoglobin by a kinetic clotting time test ensured the improved biological performance of the modified fibroin fabric. Overall, the deposition of 2.5 bilayer was found effective in terms of biological and surface properties of the modified fibroin fabric compared to 1.5 bilayer self-assembly technique. Therefore, this novel approach to surface modification may demonstrate long term patency in future in vivo animal trials of small diameter silk fibroin vascular grafts.

  20. In vitro and in vivo research on using Antheraea pernyi silk fibroin as tissue engineering tendon scaffolds

    In this paper, the feasibility of using Antheraea pernyi silk fibroin as tissue engineering tendon scaffold was investigated in vitro and in vivo, respectively, utilizing tenocytes and animal model. The animal model used here was an adult New Zealand White rabbit with a 15-mm gap defect in both sides of the Achilles tendon. The Achilles tendon defects in one side of hind legs were repaired using the braided A. pernyi silk fibroin scaffold in experimental group (n = 24), while the other side left untreated as negative group (n = 24). The recovery of the defect tendons were evaluated postoperatively at the 2nd, 6th, 12th, and 16th week using macroscopic, histological, immunohistochemical, scanning electron micrograph and biomechanical test techniques. In vitro results examined by scanning electron micrograph showed that A. pernyi silk fibroin promote the adhesion and propagation of the tenocytes. In vivo, at 16 weeks after implantation, morphological results showed that neo-tendons were formed, and bundles of collagen fibers in the neo-tendons were uniform and well oriented. Immunohistochemical results showed that collagen type in the regenerated tendons was predominantly type I. The maximum load of regenerated tendon at 16 weeks reached 55.46% of the normal tendon values. Preliminary, we concluded that A. pernyi silk fibroin promoted the recovery of Achilles tendon defect of rabbit and the application of A. pernyi silk fibroin as tissue engineering tendon scaffold is feasible.

  1. Bioconjugation of neutral protease on silk fibroin nanoparticles and application in the controllable hydrolysis of sericin.

    Zhu, Lin; Hu, Ren-Ping; Wang, Hai-Yan; Wang, Yuan-Jing; Zhang, Yu-Qing

    2011-09-28

    Bombyx mori silk fibroin is a protein-based macromolecular biopolymer with remarkable biocompatibility. Silk fiber was degummed and subjected to a series of treatments, including dissolution and dialysis, to yield an aqueous solution of silk fibroin, which was introduced rapidly into excess acetone to produce crystalline silk fibroin nanoparticles (SFNs). The SFNs were conjugated covalently with a neutral protease (NP) using glutaraldehyde as the cross-linking reagent. The objective of this study was to determine the optimal conditions for biosynthesis of the SFN-NP bioconjugates. First, SFN-NP was obtained by covalent cross-linking of SFN and NP at an SFN/NP ratio of 5-8 mg:1 IU with 0.75% glutaraldehyde for 6 h at 25 °C. When adding 50 IU of the enzyme, the residual activity of biological conjugates was increased to 31.45%. Studies on the enzyme activity of SFN-NP and its kinetics showed that the stability of SFN-NP bioconjugates was greater than that of the free enzyme, the optimum reactive temperature range was increased by 5-10 °C, and the optimum pH value range was increased to 6.5-8.0. Furthermore, the thermal stability was improved to some extent. A controlled hydrolysis test using the poorly water-soluble protein sericin as a substrate and SFN-NP as the enzyme showed that the longer the reaction time (within 1 h), the smaller the molecular mass (<30 kDa) is of the sericin peptide produced. The SFN-NP bioconjugate is easily recovered by centrifugation and can be used repeatedly. The highly efficient processing technology and the use of SFN as a novel vector for a protease has great potential for research and the development of food processing. PMID:21846144

  2. Incorporation of Human Recombinant Tropoelastin into Silk Fibroin Membranes with the View to Repairing Bruch’s Membrane

    Audra M. A. Shadforth

    2015-09-01

    Full Text Available Bombyx mori silk fibroin membranes provide a potential delivery vehicle for both cells and extracellular matrix (ECM components into diseased or injured tissues. We have previously demonstrated the feasibility of growing retinal pigment epithelial cells (RPE on fibroin membranes with the view to repairing the retina of patients afflicted with age-related macular degeneration (AMD. The goal of the present study was to investigate the feasibility of incorporating the ECM component elastin, in the form of human recombinant tropoelastin, into these same membranes. Two basic strategies were explored: (1 membranes prepared from blended solutions of fibroin and tropoelastin; and (2 layered constructs prepared from sequentially cast solutions of fibroin, tropoelastin, and fibroin. Optimal conditions for RPE attachment were achieved using a tropoelastin-fibroin blend ratio of 10 to 90 parts by weight. Retention of tropoelastin within the blend and layered constructs was confirmed by immunolabelling and Fourier-transform infrared spectroscopy (FTIR. In the layered constructs, the bulk of tropoelastin was apparently absorbed into the initially cast fibroin layer. Blend membranes displayed higher elastic modulus, percentage elongation, and tensile strength (p < 0.01 when compared to the layered constructs. RPE cell response to fibroin membranes was not affected by the presence of tropoelastin. These findings support the potential use of fibroin membranes for the co-delivery of RPE cells and tropoelastin.

  3. Bioactive macro/micro porous silk fibroin/Nano-sized calcium phosphate scaffolds with potential for bone tissue engineering applications

    Yan, Leping; Correia, Joana Silva; Correia, C; Caridade, S. G.; Fernandes, E. M.; Sousa, R.A.; Mano, J.F.; Oliveira, Joaquim M.; de Oliveira, A. L.; Reis, R.L.

    2013-01-01

    Aim: The development of novel silk/nano-sized calcium phosphate (silk/nano-CaP) scaffolds with highly dispersed CaP nanoparticles in the silk fibroin (SF) matrix for bone tissue engineering. Materials & methods: Nano-CaP was incorporated in a concentrated aqueous SF solution (16 wt.%) by using an in situ synthesis method. The silk/nano-CaP scaffolds were then prepared through a combination of salt-leaching/ lyophilization approaches. Results: The CaP particles presented good affin...

  4. Activation of the Ubiquitin Proteasome Pathway by Silk Fibroin Modified Chitosan Nanoparticles in Hepatic Cancer Cells

    Ming-Hui Yang

    2015-01-01

    Full Text Available Silk fibroin (SF is a protein with bulky hydrophobic domains and can be easily purified as sericin-free silk-based biomaterial. Silk fibroin modified chitosan nanoparticle (SF-CSNP, a biocompatible material, has been widely used as a potential drug delivery system. Our current investigation studied the bio-effects of the SF-CSNP uptake by liver cells. In this experiment, the characterizations of SF-CSNPs were measured by particle size analysis and protein assay. The average size of the SF-CSNP was 311.9 ± 10.7 nm, and the average zeta potential was +13.33 ± 0.3 mV. The SF coating on the SF-CSNP was 6.27 ± 0.17 μg/mL. Moreover, using proteomic approaches, several proteins involved in the ubiquitin proteasome pathway were identified by analysis of differential protein expressions of HepG2 cell uptake the SF-CSNP. Our experimental results have demonstrated that the SF-CSNP may be involved in liver cancer cell survival and proliferation.

  5. Activation of the ubiquitin proteasome pathway by silk fibroin modified chitosan nanoparticles in hepatic cancer cells.

    Yang, Ming-Hui; Chung, Tze-Wen; Lu, Yi-Shan; Chen, Yi-Ling; Tsai, Wan-Chi; Jong, Shiang-Bin; Yuan, Shyng-Shiou; Liao, Pao-Chi; Lin, Po-Chiao; Tyan, Yu-Chang

    2015-01-01

    Silk fibroin (SF) is a protein with bulky hydrophobic domains and can be easily purified as sericin-free silk-based biomaterial. Silk fibroin modified chitosan nanoparticle (SF-CSNP), a biocompatible material, has been widely used as a potential drug delivery system. Our current investigation studied the bio-effects of the SF-CSNP uptake by liver cells. In this experiment, the characterizations of SF-CSNPs were measured by particle size analysis and protein assay. The average size of the SF-CSNP was 311.9 ± 10.7 nm, and the average zeta potential was +13.33 ± 0.3 mV. The SF coating on the SF-CSNP was 6.27 ± 0.17 μg/mL. Moreover, using proteomic approaches, several proteins involved in the ubiquitin proteasome pathway were identified by analysis of differential protein expressions of HepG2 cell uptake the SF-CSNP. Our experimental results have demonstrated that the SF-CSNP may be involved in liver cancer cell survival and proliferation. PMID:25588218

  6. Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles

    Electrospun silk fibroin (SF) scaffolds provide large surface area, high porosity, and interconnection for cell adhesion and proliferation and they may replace collagen for many tissue engineering applications. Despite such advantages, electrospun SF scaffolds are still limited as bone tissue replacement due to their low mechanical strengths. While enhancement of mechanical strengths by incorporating inorganic ceramics into polymers has been demonstrated, electrospinning of a mixture of SF and inorganic ceramics such as hydroxyapatite is challenging and less studied due to the aggregation of ceramic particles within SF. In this study, we aimed to enhance the mechanical properties of electrospun SF scaffolds by uniformly dispersing hydroxyapatite (HAp) nanoparticles within SF nanofibers. HAp nanoaprticles were modified by γ-glycidoxypropyltrimethoxysilane (GPTMS) for uniform dispersion and enhanced interfacial bonding between HAp and SF fibers. Optimal conditions for electrospinning of SF and GPTMS-modified HAp nanoparticles were identified to achieve beadless nanofibers without any aggregation of HAp nanoparticles. The MTT and SEM analysis of the osteoblasts-cultured scaffolds confirmed the biocompatibility of the composite scaffolds. The mechanical properties of the composite scaffolds were analyzed by tensile tests for the scaffolds with varying contents of HAp within SF fibers. The mechanical testing showed the peak strengths at the HAp content of 20 wt.%. The increase of HAp content up to 20 wt.% increased the mechanical properties of the composite scaffolds, while further increase above 20 wt.% disrupted the polymer chain networks within SF nanofibers and weakened the mechanical strengths. - Highlights: • Electrospun composite silk fibroin scaffolds were mechanically-reinforced. • GPTMS enhanced hydroxyapatite distribution in silk fibroin nanofibers. • Mechanical property of composite scaffolds increased up to 20% of hydroxyapatite. • Composite

  7. Effect of Sodium Carbonate Concentrations on the Formation and Mechanism of Regenerated Silk Fibroin Nanofibers by Electrospinning

    Hao Dou

    2014-01-01

    Full Text Available Degumming is the first process for the preparation of all silk-based products. In this paper, effect of sodium carbonate concentrations for silk degumming on the formation of electrospun silk fibroin nanofibers was investigated and the reason for the silk electrospinning process was explained for the first time by differences from the microstructure of regenerated silk fibroin. With increasing the sodium carbonate concentration, microstructure both in the aqueous solutions and in the electrospinning solutions transformed from nanofibrils to nanoparticles, leading to obvious changes on rheological property; electrospinning solutions with nanofibrils behaved like the native silk dope and owned remarkably higher viscosity than the solutions with nanoparticles showing very low viscosity. More interestingly, nanofibrils favored the formation of silk nanofibers with ease, and even nanofibers could be electrospun at concentration 2%. However, nanoparticles were completely unable to generate nanofibers at high spinning concentration 8%. Importance of sodium carbonate concentrations is heavily emphasized for impacting the microstructure types and further influencing the electrospinning performance of regenerated silk. Hence, sodium carbonate concentrations provide a controllable choice for the preparation of silk-based electrospun biomaterials with desired properties.

  8. Thermal Properties of Silk Fibroin Using Fast Scanning Calorimetry

    Cebe, Peggy; Partlow, Benjamin; Kaplan, David; Wurm, Andreas; Zhuravlev, Evgeny; Schick, Christoph

    We performed fast scanning chip-based calorimetry of silk protein using the Mettler Flash DSC1. We suggest the methodology by which to obtain quantitative information on the very first scan to high temperature, including the melting endotherm of the beta pleated sheets. For proteins, this first scan is the most important one, because the crystalline secondary structural features, the beta pleated sheets, melt after the first heating and cannot be thermally reintroduced. To obtain high quality data, the samples must be treated to drying and enthalpy relaxation sequences. The heat flow rates in heating and cooling must be corrected for asymmetric heat loses. We evaluate methods to obtain an estimate of the sample mass, finally choosing internal calibration using the known heat capacity increment at the glass transition. We report that even heating at rates of 2000 K/s, thermal degradation of silk cannot be totally avoided, though it can be minimized. Using a set of nineteen samples, we successfully determine the liquid state heat capacity of silk as: Cpliquid (T) = (1.98 +0.06) J/gK + T (6.82 +1.4) x10-4 J/gK2. Methods for estimation of the sample mass will be presented and compared. National Science Foundation, Polymers Program DMR-1206010; DAAD; Tufts Faculty Supported Leave.

  9. Novel eatable silk fibroin gels containing salbutamol sulphate for dysphagic and geriatric patients

    Dixit Anil Satyanarayana

    2012-01-01

    Full Text Available The purpose of this research work is to prepare novel eatable gel formulations with suitable rheological characteristics, which provide a means of administering salbutamol sulphate to dysphagic and geriatric patients. Gels prepared using a natural polymer silk fibroin of different concentrations was subjected for in vitro characterization. The effect of concentration of the solution on gelation time, viscosity, and drug release was studied. FTIR and DSC spectra reveal that the drug was found compatible with silk fibroin. TGA curves showed weight loss as the temperature increased. Formulations F3, F4, F6, and F9 had thin, nectar like, honey like, and spoon thick viscosity range respectively, which is considered suitable for dysphagia patients as given by National Dysphagia Diet Task Force. Formulations showed shear thinning pseudoplastic behavior. Based on the concentration and viscosity of the polymer, formulation F9 was found to sustain the release of drug up to 90 min (99.4 ± 0.5%, whereas F3 showed release within 5 min (99.2 ± 2.0%. Mechanism of drug release was found to be anomalous transport. All formulations were found stable after 6 months when kept at refrigerated temperature (4°C - 8°C and room temperature. It can be concluded that the salbutamol sulphate gels prepared are suitable as vehicles for dysphagic patients.

  10. High-affinity integration of hydroxyapatite nanoparticles with chemically modified silk fibroin

    Hydroxyapatite (HA)-based nanocomposites were prepared by a co-precipitation method with silk fibroin (SF) serving as organic matrix. Silk fibroin was chemically modified with an alkali solution or an enzyme attempting to improve the interface between the mineral and the organic matrix. The influences of the alkali and enzyme pretreatments on microstructure and physicochemical properties of HA-SF composite were examined and compared. The results reveal that both the two kinds of pretreatments facilitate the formation of highly ordered three-dimensional porous network throughout the composites, increase the microhardness of the composite, and promote the preferential growth of HA crystallites along c-axis. Among all the as-prepared samples, the composite containing the enzyme pretreated SF shows desirable hierarchical microstructure with higher degree of organization and more uniform pore size distribution. Due to the enzyme pretreatment, HA crystallites undergo obvious changes in morphology from rod-like to whisker-like and in crystal growth towards more apparent epitaxy along c-axis. The alkali pretreatment induces the stronger chemical interactions between HA and SF and thus to strengthen the inorganic-organic interfacial adhesion. The newly developed HA-SF composites are expected to be attractive biomedical materials for bone repair and remodeling

  11. Chemically cross-linked silk fibroin hydrogel with enhanced elastic properties, biodegradability, and biocompatibility

    Kim MH

    2016-06-01

    Full Text Available Min Hee Kim, Won Ho Park Department of Advanced Organic Materials and Textile Engineering System, Chungnam National University, Daejeon, Korea Abstract: In this study, the synthesis of silk fibroin (SF hydrogel via chemical cross-linking reactions of SF due to gamma-ray (γ-ray irradiation was investigated, as were the resultant hydrogel’s properties. Two different hydrogels were investigated: physically cross-linked SF hydrogel and chemically cross-linked SF hydrogel irradiated at different doses of γ-rays. The effects of the irradiation dose and SF concentration on the hydrogelation of SF were examined. The chemically cross-linked SF hydrogel was compared with the physically cross-linked one with regard to secondary structure and gel strength. Furthermore, the swelling behavior, crystallinity, and biodegradation of the SF hydrogels were characterized. To assay cell proliferation, the cell viability of human mesenchymal stem cells on the lyophilized SF hydrogel scaffolds was evaluated, and no significant cytotoxicity against human mesenchymal stem cells was observed. Keywords: silk fibroin, hydrogels, biodegradation rate, gamma irradiation, cross-linking

  12. Contribution to the ultrastructural study of silk-excretion cells and autoradiographic analysis of intracellular fibroin transport in Bombyx mori L

    It is much easier to study the mechanisms involved in the synthesis and exportation of extracellular proteins in the biological material chosen is highly differentiated. The silk-excretion gland of the silkworm is ideal in this respect because during the larva period, especially at the end of the 5th and last stage, the cells at the rear (excreting tube) synthesize and export massive quantities of a single protein: fibroin. These phenomena were explored by a cytological study carried out mainly by electron microscopy and autoradiography. The results obtained are given. They relate first of all to the morphological development of the secretion tube cells from the end of the 4th larva stage to the spinning of the cocoon, and contribute new information on the cell changes during the 4th slough and the end of the 5th age. They also concern intracellular fibroin transport which is proved to take place through the Golgi apparatus, and finally the possible role of the microtubules and microfilaments in fibroin transport and secretion. On this last point the results so far constitute only, a preliminary approach which justifie no final conclusions; they merely suggest that the microfilaments of the apical region are involved in the secretion process

  13. Fibroin and sericin from Bombyx mori silk stimulate cell migration through upregulation and phosphorylation of c-Jun.

    Celia Martínez-Mora

    Full Text Available Wound healing is a biological process directed to the restoration of tissue that has suffered an injury. An important phase of wound healing is the generation of a basal epithelium able to wholly replace the epidermis of the wound. A broad range of products derived from fibroin and sericin from Bombyx mori silk are used to stimulate wound healing. However, so far the molecular mechanism underlying this phenomenon has not been elucidated. The aim of this work was to determine the molecular basis underlying wound healing properties of silk proteins using a cell model. For this purpose, we assayed fibroin and sericin in a wound healing scratch assay using MDA-MB-231 and Mv1Lu cells. Both proteins stimulated cell migration. Furthermore, treatment with sericin and fibroin involved key factors of the wound healing process such as upregulation of c-Jun and c-Jun protein phosphorylation. Moreover, fibroin and sericin stimulated the phosphorylation of ERK 1/2 and JNK 1/2 kinases. All these experiments were done in the presence of specific inhibitors for some of the cell signalling pathways referred above. The obtained results revealed that MEK, JNK and PI3K pathways are involved in fibroin and sericin stimulated cells migration. Inhibition of these three kinases prevented c-Jun upregulation and phosphorylation by fibroin or sericin. Fibroin and sericin were tested in the human keratinocyte cell line, HaCaT, with similar results. Altogether, our results showed that fibroin and sericin initiate cell migration by activating the MEK, JNK and PI3K signalling pathways ending in c-Jun activation.

  14. Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide

    Bai Liqiang [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Park, Hangzhou 310018 (China); Zhu Liangjun; Min Sijia [College of Animal Sciences, Zhejiang University, Hangzhou 310029 (China); Liu Lin; Cai Yurong [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Park, Hangzhou 310018 (China); Yao Juming [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Park, Hangzhou 310018 (China)], E-mail: yaoj@zstu.edu.cn

    2008-03-15

    The Bombyx mori silk fibroin films (SFFs) were modified by a Cecropin B (CB) antimicrobial peptide, (NH{sub 2})-NGIVKAGPAIAVLGEAAL-CONH{sub 2}, using the carbodiimide chemistry method. In order to avoid the dissolution of films during the modification procedure, the SFFs were first treated with 60% (v/v) ethanol aqueous solution, resulting a structural transition from unstable silk I to silk II. The investigation of modification conditions showed that the surface-modified SFFs had the satisfied antimicrobial activity and durability when they were activated by EDC.HCl/NHS solution followed by a treatment in CB peptide/PBS buffer (pH 6.5 or 8) solution at ambient temperature for 2 h. Moreover, the surface-modified SFFs showed the smaller contact angle due to the hydrophilic antimicrobial peptides coupled on the film surface, which is essential for the cell adhesion and proliferation. AFM results indicated that the surface roughness of SFFs was considerably increased after the modification by the peptides. The elemental composition analysis results also suggested that the peptides were tightly coupled to the surface of SFFs. This approach may provide a new option to engineer the surface-modified implanted materials preventing the biomaterial-centered infection (BCI)

  15. Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide

    Bai, Liqiang; Zhu, Liangjun; Min, Sijia; Liu, Lin; Cai, Yurong; Yao, Juming

    2008-03-01

    The Bombyx mori silk fibroin films (SFFs) were modified by a Cecropin B ( CB) antimicrobial peptide, (NH 2)-NGIVKAGPAIAVLGEAAL-CONH 2, using the carbodiimide chemistry method. In order to avoid the dissolution of films during the modification procedure, the SFFs were first treated with 60% (v/v) ethanol aqueous solution, resulting a structural transition from unstable silk I to silk II. The investigation of modification conditions showed that the surface-modified SFFs had the satisfied antimicrobial activity and durability when they were activated by EDC·HCl/NHS solution followed by a treatment in CB peptide/PBS buffer (pH 6.5 or 8) solution at ambient temperature for 2 h. Moreover, the surface-modified SFFs showed the smaller contact angle due to the hydrophilic antimicrobial peptides coupled on the film surface, which is essential for the cell adhesion and proliferation. AFM results indicated that the surface roughness of SFFs was considerably increased after the modification by the peptides. The elemental composition analysis results also suggested that the peptides were tightly coupled to the surface of SFFs. This approach may provide a new option to engineer the surface-modified implanted materials preventing the biomaterial-centered infection (BCI).

  16. Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide

    The Bombyx mori silk fibroin films (SFFs) were modified by a Cecropin B (CB) antimicrobial peptide, (NH2)-NGIVKAGPAIAVLGEAAL-CONH2, using the carbodiimide chemistry method. In order to avoid the dissolution of films during the modification procedure, the SFFs were first treated with 60% (v/v) ethanol aqueous solution, resulting a structural transition from unstable silk I to silk II. The investigation of modification conditions showed that the surface-modified SFFs had the satisfied antimicrobial activity and durability when they were activated by EDC.HCl/NHS solution followed by a treatment in CB peptide/PBS buffer (pH 6.5 or 8) solution at ambient temperature for 2 h. Moreover, the surface-modified SFFs showed the smaller contact angle due to the hydrophilic antimicrobial peptides coupled on the film surface, which is essential for the cell adhesion and proliferation. AFM results indicated that the surface roughness of SFFs was considerably increased after the modification by the peptides. The elemental composition analysis results also suggested that the peptides were tightly coupled to the surface of SFFs. This approach may provide a new option to engineer the surface-modified implanted materials preventing the biomaterial-centered infection (BCI)

  17. Potential of inherent RGD containing silk fibroin-poly (Є-caprolactone) nanofibrous matrix for bone tissue engineering.

    Bhattacharjee, Promita; Kundu, Banani; Naskar, Deboki; Kim, Hae-Won; Bhattacharya, Debasis; Maiti, T K; Kundu, S C

    2016-02-01

    The current study deals with the fabrication and characterization of blended nanofibrous scaffolds of tropical tasar silk fibroin of Antheraea mylitta and poly (Є-caprolactone) to act as an ideal scaffold for bone regeneration. The use of poly (Є-caprolactone) in osteogenesis is well-recognized. At the same time, the osteoconductive nature of the non-mulberry tasar fibroin is also established due to its internal integrin binding peptide RGD (Arg-Gly-Asp) sequences, which enhance cellular interaction and proliferation. Considering that the materials have the required and favorable properties, the blends are formed using an equal volume ratio of fibroin (2 and 4 wt%) and poly (Є-caprolactone) solution (10 wt%) to fabricate nanofibers. The nanofibers possess an average diameter of 152 ± 18 nm (2 % fibroin/PCL) and 175 ± 15 nm (4% fibroin/PCL). The results of Fourier transform infrared spectroscopy substantiates the preservation of the secondary structure of the fibroin in the blends indicating the structural stability of the neo-matrix. With an increase in the fibroin percentage, the hydrophobicity and thermal stability of the matrices as measured from melting temperature Tm (using DSC) decrease, while the mechanical strength is improved. The blended nanofibrous scaffolds are biodegradable, and support the viability and proliferation of human osteoblast-like cells as observed through scanning electron and confocal microscopes. Alkaline phosphatase assay indicates the cell proliferation and the generation of the neo-bone matrix. Taken together, these findings illustrate that the silk-poly (Є-caprolactone) blended nanofibrous scaffolds have an excellent prospect as scaffolding material in bone tissue engineering. PMID:26174955

  18. Strong composite films with layered structures prepared by casting silk fibroin-graphene oxide hydrogels.

    Huang, Liang; Li, Chun; Yuan, Wenjing; Shi, Gaoquan

    2013-05-01

    Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 ± 16 MPa and a failure strain of 1.8 ± 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 ± 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets. PMID:23538717

  19. On the growth morphous of capillaries and tissue in porous silk fibroin films

    Lun BAI; Bao-qi ZUO; Guo-ping GUAN; Li-xing DAI; Yong-zhen CHEN; Zheng-yu ZHOU; Jian-mei XU; Zhen-yu WU

    2008-01-01

    In this study, the porous silk fibroin film (PSFF) is implanted into the body of a rat. Ten days later, the growing state of the capillaries in the material was observed, and the growing law of the capillaries in porous material is discussed to better understand the growing state of the peripheral tissue and cells around the material. The fact that the PSFF creates a beneficial environment for the growth of the capillaries in the tissue is confirmed, and the good growing states of the new skeleton muscle and the hypodermal tissue are also observed. This pro-vides basic experimental results for the design of the PSFFs, which is a new medical biomaterial.

  20. Preparation of wound dressing of polyvinyl alcohol/silk fibroin hydrogels by gamma radiation

    Poly vinylalcohol/silk fibroin (PVA/SF) hydrogels were prepared by γ-radiation. The preparation conditions such as absorbed doses and PVA/SF concentrations were investigated. When exposed to γ -radiation, PVA/SF was crosslinked to yield high water absorption materials with water content of 100 - 1000% of their dried weight depending on the preparation conditions. The crosslinked density seems to be the main factor governing the swelling of these gels. The swelling behaviors in NaCl aqueous solutions were also investigated. The swelling of PVA/SF hydrogels decreases when exposed to electrolyte solution. With an increase of absorbed dose, the gel fraction of PVA/SF increases

  1. Facile method to prepare silk fibroin/hyaluronic acid films for vascular endothelial growth factor release.

    Zhou, Juan; Zhang, Bin; Liu, Xunwei; Shi, Lijun; Zhu, Jun; Wei, Daixu; Zhong, Jian; Sun, Gang; He, Dannong

    2016-06-01

    A facile approach was proposed to prepare silk fibroin (SF) and hyaluronic acid (HA) composite films from aqueous solution without crosslinking or any post treatment. Only by controlling the HA content and film formation temperature during the film casting, the HA/SF films with different composition were prepared. The films were then characterized by structural characteristics, thermal stability, morphology, water stability, water absorption, mechanical properties. After immersing in water for 24h, all of the films showed good structural integrity. The degradation rate of the HA/SF films in protease XIV can be controlled by changing the film formation temperature and HA content. Decreasing the temperature and adding HA resulted in the rapid release of VEGF (vascular endothelial growth factor) from the HA/SF films. Overall, the 5% HA/SF films formed at 37°C with more rapid VEGF release exhibited great potential in drug delivery, especially when the rapid vascularization was needed. PMID:27083373

  2. Preparation of Biodegradable Silk Fibroin/Alginate Blend Films for Controlled Release of Antimicrobial Drugs

    Yaowalak Srisuwan

    2013-01-01

    Full Text Available Silk fibroin (SF/alginate blend films have been prepared for controlled release of tetracycline hydrochloride, an antimicrobial model drug. The blend films were analysed by Fourier transform infrared (FTIR spectroscopy, scanning electron microscopy (SEM, and UV-vis spectroscopy. The functional groups of the SF/alginate blends were monitored from their FTIR spectra. The homogeneity of the blend films was observed from SEM images. The dissolution and film transparency of the blend films depended on the SF/alginate blend ratio. The in vitro drug release profile of the blend films was determined by plotting the cumulative drug release versus time. It was found that the drug release significantly decreased as the SF/alginate blend ratio increased. The results demonstrated that the SF/alginate blend films should be a useful controlled-release delivery system for water-soluble drugs.

  3. Tuning the Refractive Index and Optical Band Gap of Silk Fibroin Films by Electron Irradiation

    S. Asha

    2015-01-01

    Full Text Available The Bombyx mori silk fibroin (SF films were prepared by solution casting method and effects of electron beam on the optical properties and optical constants of the films have been studied by using UV-Visible spectrophotometer. Optical properties like optical band gap Eg, refractive index n, extinction coefficient k, optical conductivity σopt, and dielectric constants ε∗ of virgin and electron irradiated films were determined by using UV-Visible absorption and transmission spectra. It was found that the reduction in optical band gap and increase in refractive index with increasing radiation dosage was observed. It is also observed from results that there is increase in dielectric constants with increasing photon energy. The observed optical changes have been tried to be correlated with the structural changes, revealed through FT-IR spectroscopy. The present study is quite important for tailoring the optical responses of SF films as per specific requirements.

  4. Mineralization of HA crystals regulated by terephthaloyl chloride-modified silk fibroin films

    Rong Li; Guang Mei Chen; Xin Lan Ma; Qiao Yan Chen; Ge Wen Xu; Yi Ping Huang

    2011-01-01

    Terephthaloyl chloride (DB)-modified silk fibroin (SF) films were immersed into 1.5 times simulated body fluid (1.5 SBF) to regulate the mineralization of hydroxyapatite (HA) crystals at about 36.5 ℃ for 24 h. UV was used to prove that the new bonds form between the DB and SF. The structure and morphology of the SF/HA were investigated by FTIR, ICP, XRD and SEM. The results showed that the apatite deposited on the matrix of SF mainly was HA. HA was self-assembled on the matrix of SF and formed three-dimensional framework when the weight ratio of DB/SF was 0.30. The content of DB affected the structure and morphology of the apatite composites deposited on the SF films.

  5. Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration.

    Oliveira Barud, H G; Barud, Hernane da S; Cavicchioli, Maurício; do Amaral, Thais Silva; de Oliveira Junior, Osmir Batista; Santos, Diego M; Petersen, Antonio Luis de Oliveira Almeida; Celes, Fabiana; Borges, Valéria Matos; de Oliveira, Camila I; de Oliveira, Pollyanna Francielli; Furtado, Ricardo Andrade; Tavares, Denise Crispim; Ribeiro, Sidney J L

    2015-09-01

    Bacterial cellulose (BC) and silk fibroin (SF) are natural biopolymers successfully applied in tissue engineering and biomedical fields. In this work nanocomposites based on BC and SF were prepared and characterized by scanning electron microscopy (SEM), infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). In addition, the investigation of cytocompatibility was done by MTT, XTT and Trypan Blue dye technique. Cellular adhesion and proliferation were detected additionally. The evaluation of genotoxicity was realized by micronucleus assay. In vitro tests showed that the material is non-cytotoxic or genotoxic. SEM images revealed a greater number of cells attached at the BC/SF:50% scaffold surface than the pure BC one, suggesting that the presence of fibroin improved cell attachment. This could be related to the SF amino acid sequence that acts as cell receptors facilitating cell adhesion and growth. Consequently, BC/SF:50% scaffolds configured an excellent option in bioengineering depicting its potential for tissue regeneration and cultivation of cells on nanocomposites. PMID:26005138

  6. Fabrication and characterization of silk fibroin-derived curcumin nanoparticles for cancer therapy

    Vishal Gupta

    2009-05-01

    Full Text Available Vishal Gupta1, Abraham Aseh1,3, Carmen N Ríos1, Bharat B Aggarwal2, Anshu B Mathur11Department of Plastic Surgery; 2Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA; 3School of Pharmacy, Texas Southern University, Houston, TX, USAAbstract: Biologically derived nanoparticles (<100 nm were fabricated for local and sustained therapeutic curcumin delivery to cancer cells. Silk fibroin (SF and chitosan (CS polymers were blended noncovalently to encapsulate curcumin in various proportions of SF and CS (75:25, 50:50, and 25:75 SF:CS or pure SF at two concentrations (0.1% w/v and 10% w/v using the devised capillary-microdot technique. Curcumin-polymer conjugates were frozen, lyophilized, crystallized, suspended in phosphate-buffered saline for characterization, and tested for efficacy against breast cancer cells. All nanoparticle formulations except 0.1% w/v 50:50 SFCS were less than 100 nm in size as determined with the transmission electron microscopy. The entrapment and release of curcumin over eight days was highest for SF-derived nanoparticles as compared to all SFCS blends. The uptake and efficacy of SF-coated curcumin was significantly higher (p < 0.001 than SFCS-coated curcumin in both low and high Her2/neu expressing breast cancer cells. Interestingly, the uptake of curcumin was highest for the high Her2/neu expressing breast cancer cells when delivered with a 10% w/v SF coating as compared to other formulations. In conclusion, SF-derived curcumin nanoparticles show higher efficacy against breast cancer cells and have the potential to treat in vivo breast tumors by local, sustained, and long-term therapeutic delivery as a biodegradable system.Keywords: biodegradable, nanoparticles, curcumin, silk fibroin, breast cancer cells

  7. Regulation of Silk Genes by Hox and Homeodomain Proteins in the Terminal Differentiated Silk Gland of the Silkworm Bombyx mori

    Shigeharu Takiya

    2016-05-01

    Full Text Available The silk gland of the silkworm Bombyx mori is a long tubular organ that is divided into several subparts along its anteroposterior (AP axis. As a trait of terminal differentiation of the silk gland, several silk protein genes are expressed with unique regional specificities. Most of the Hox and some of the homeobox genes are also expressed in the differentiated silk gland with regional specificities. The expression patterns of Hox genes in the silk gland roughly correspond to those in embryogenesis showing “colinearity”. The central Hox class protein Antennapedia (Antp directly regulates the expression of several middle silk gland–specific silk genes, whereas the Lin-1/Isl-1/Mec3 (LIM-homeodomain transcriptional factor Arrowhead (Awh regulates the expression of posterior silk gland–specific genes for silk fiber proteins. We summarize our results and discuss the usefulness of the silk gland of Bombyx mori for analyzing the function of Hox genes. Further analyses of the regulatory mechanisms underlying the region-specific expression of silk genes will provide novel insights into the molecular bases for target-gene selection and regulation by Hox and homeodomain proteins.

  8. In situ synthesis and photoluminescence of QD-CdS on silk fibroin fibers at room temperature

    A convenient room-temperature bioinspired technique has been developed to synthesize hybrid nanocomposites consisting of well-dispersed CdS quantum dots (QD) and the substrate silk fibroin fibers (SFF). The biomaterial SFF provides both a supporting substrate and functional sites for the in situ generation of QD-CdS, which is supported by FTIR and PL measurements. The solid QD-CdS/SFF nanocomposites could be useful in photocatalyst, novel luminescence and photoelectron transfer devices. The QD-CdS/silk fibroin (SF) colloid, in which SF acts as both an inherent biocompatibilizer and an efficient passivator of trap sites on the QD-CdS surface, is also available for some potential applications in the biological fields. The bioinspired method and relevant ideas could extend to fabricating other functional hybrid materials

  9. Study of the effects of different sterilization methods on the properties of dense and porous silk fibroin membranes

    Silk fibroin has been widely explored for many biomedical applications, due to its biocompatibility and biodegradability. Sterilization is a fundamental step in biomaterials processing, and it must not alter in a negative way the functionality of medical devices. The aim of this study was to analyze the influence of different sterilization methods in the physical and chemical characteristics of dense silk fibroin membranes. Dense fibroin membranes were sterilized by ultraviolet radiation, 70% ethanol, autoclave, ethylene oxide and gamma radiation, and were analyzed by SEM, FTIR-ATR and XRD. The results for sterilization indicated that the methods didn't cause degradation of the membranes, but the methods that used organic solvent, or increase of humidity and/or temperature (70% ethanol, autoclave and ethylene oxide) altered the molecular conformation of fibroin, increasing the proportion of β-sheet structure, what indicates an increase of crystallinity. This effect may be positive when a slower degradation of the membranes is desired, depending on the application as a bio material. (author)

  10. Fibroin and Sericin from Bombyx mori Silk Stimulate Cell Migration through Upregulation and Phosphorylation of c-Jun

    Celia Martínez-Mora; Anna Mrowiec; Eva María García-Vizcaíno; Antonia Alcaraz; José Luis Cenis; Francisco José Nicolás

    2012-01-01

    Wound healing is a biological process directed to the restoration of tissue that has suffered an injury. An important phase of wound healing is the generation of a basal epithelium able to wholly replace the epidermis of the wound. A broad range of products derived from fibroin and sericin from Bombyx mori silk are used to stimulate wound healing. However, so far the molecular mechanism underlying this phenomenon has not been elucidated. The aim of this work was to determine the molecular bas...

  11. Square Wave Voltammetric Label-free Determination of the Natural Protein Material Silk Fibroin

    MA Ming-Ming; SONG Jun-Feng

    2008-01-01

    The electrochemical behavior of silk fibroin(SF)was investigated by cyclic voltammetry and square wave voltammetry in 0.01 mol/L HCI for the first time.Within the potential scan range of 0.0 to1.2 V(vs.SCE),two oxi-dative peaks at 0.91 V(Pa,1)and 0.43 V(Pa,2)as well as one reductive peak at 0.24 V(Pc)were observed on cyclic voltammogram at scan rate of 0.2 V/s.The peak current of the peak Pa,1 was linear with SF concentration in the range of 5.8×10-8 to 1.1×10-6 mol/L,with the limit of detection 3.0×10-8 mol/L(SIN=3).The proposed method was of high selectivity without the interferences from the coexisting substances such as another natural protein material sericin and other small molecular substances.It was applied to the determination of SF in raw silk liquid samples without any pre-separation and pre-purification.

  12. Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films.

    Luan, Xi-Ying; Wang, Yong; Duan, Xiang; Duan, Qiao-Yan; Li, Ming-Zhong; Lu, Shen-Zhou; Zhang, Huan-Xiang; Zhang, Xue-Guang

    2006-12-01

    Silk fibroin of the silkworm Bombyx mori has been studied extensively, while the research on Antheraea pernyi silk fibroin (A. pernyi SF) in biomaterials is only at an early stage. In this study, the attachment, morphology, growth and phenotype of human bone marrow derived mesenchymal stem cells (hBMSCs) cultured on the regenerated A. pernyi SF films were studied in vitro. The results indicated that the attachment of hBMSCs on the regenerated A. pernyi SF films was almost the same as that on the collagen films. MTT and cell counting analyses demonstrated that the growth of hBMSCs on the regenerated A. pernyi SF films was better than that on controls. Moreover, electron scanning microscopy and fluorescence-activated cell sorting assays showed that the regenerated A. pernyi SF supported hBMSCs growth and functional maintenance compared with the controls. These data suggest that the regenerated A. pernyi SF, like Bombyx mori silk fibroin (B. mori SF) and collagen, can support hBMSCs attachment, growth and phenotypic maintenance, and has better biocompatibilities for hBMSCs in vitro culture. PMID:18458403

  13. Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films

    Luan Xiying [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Wang Yong [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Duan Xiang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Duan Qiaoyan [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Li Mingzhong [School of Materials Engineering, Suzhou University, Suzhou 215006 (China); Lu Shenzhou [School of Materials Engineering, Suzhou University, Suzhou 215006 (China); Zhang Huanxiang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Zhang Xueguang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China)

    2006-12-15

    Silk fibroin of the silkworm Bombyx mori has been studied extensively, while the research on Antheraea pernyi silk fibroin (A. pernyi SF) in biomaterials is only at an early stage. In this study, the attachment, morphology, growth and phenotype of human bone marrow derived mesenchymal stem cells (hBMSCs) cultured on the regenerated A. pernyi SF films were studied in vitro. The results indicated that the attachment of hBMSCs on the regenerated A. pernyi SF films was almost the same as that on the collagen films. MTT and cell counting analyses demonstrated that the growth of hBMSCs on the regenerated A. pernyi SF films was better than that on controls. Moreover, electron scanning microscopy and fluorescence-activated cell sorting assays showed that the regenerated A. pernyi SF supported hBMSCs growth and functional maintenance compared with the controls. These data suggest that the regenerated A. pernyi SF, like Bombyx mori silk fibroin (B. mori SF) and collagen, can support hBMSCs attachment, growth and phenotypic maintenance, and has better biocompatibilities for hBMSCs in vitro culture.

  14. Human Dental Pulp Stem Cells and Gingival Fibroblasts Seeded into Silk Fibroin Scaffolds Have the Same Ability in Attracting Vessels

    Woloszyk, Anna; Buschmann, Johanna; Waschkies, Conny; Stadlinger, Bernd; Mitsiadis, Thimios A.

    2016-01-01

    Neovascularization is one of the most important processes during tissue repair and regeneration. Current healing approaches based on the use of biomaterials combined with stem cells in critical-size bone defects fail due to the insufficient implant vascularization and integration into the host tissues. Therefore, here we studied the attraction, ingrowth, and distribution of blood vessels from the chicken embryo chorioallantoic membrane into implanted silk fibroin scaffolds seeded with either human dental pulp stem cells or human gingival fibroblasts. Perfusion capacity was evaluated by non-invasive in vivo Magnetic Resonance Imaging while the number and density of blood vessels were measured by histomorphometry. Our results demonstrate that human dental pulp stem cells and gingival fibroblasts possess equal abilities in attracting vessels within silk fibroin scaffolds. Additionally, the prolonged in vitro pre-incubation period of these two cell populations favors the homogeneous distribution of vessels within silk fibroin scaffolds, which further improves implant survival and guarantees successful healing and regeneration. PMID:27148078

  15. Spermine-modified Antheraea pernyi silk fibroin as a gene delivery carrier

    Yu Y

    2016-03-01

    Full Text Available Yanni Yu,1 Yongpei Hu,1 Xiufang Li,1 Yu Liu,1 Mingzhong Li,1 Jicheng Yang,2 Weihua Sheng2 1National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 2Cell and Molecular Biology Institute, College of Medicine, Soochow University, Suzhou, People’s Republic of China Abstract: The development of a novel cationized polymer used as a gene delivery carrier that can conveniently and effectively transfect cells resulting in a stably expressed target gene remains a challenge. Antheraea pernyi silk fibroin (ASF is a cytocompatible and biodegradable natural polymer, and it possesses Arg–Gly–Asp sequences but a negative charge. In order to render ASF amenable to packaging plasmid DNA (pDNA, spermine was used to modify ASF to synthesize cationized ASF (CASF, which was used as a gene delivery carrier. CASF was characterized using trinitrobenzene sulfonic acid assay, the zeta potential determination, and a Fourier transform infrared analysis, and the results of these characterizations indicated that the –NH2 in spermine effectively reacts with the –COOH in the side chains of ASF. Spermine grafted to the side chains of ASF resulted in the conversion of the negative charge of ASF to a positive charge. CASF packaged pDNA and formed CASF/pDNA complexes, which exhibited spherical morphology with average particle sizes of 215–281 nm and zeta potential of approximately +3.0 mV to +3.2 mV. The results of the MTT assay, confocal laser scanning microscopy, and flow cytometry analysis in a human endothelial cell line revealed that CASF/pDNA complexes exhibited lower cytotoxicity and higher transfection efficiency compared to the pDNA complexes of polyethyleneimine. These results indicate that our synthesized CASF, a cationized polymer, is a potential gene delivery carrier with the advantages of biodegradability and low cytotoxicity. Keywords: silk fibroin, spermine, cationized polymer, gene delivery

  16. Silks produced by insect labial glands

    Sehnal, František; Sutherland, T.

    2008-01-01

    Roč. 2, č. 4 (2008), s. 145-153. ISSN 1933-6896 R&D Projects: GA MŠk ME 907 Institutional research plan: CEZ:AV0Z50070508 Keywords : silk * proteinaceous polymers * alfa-helices Subject RIV: ED - Physiology Impact factor: 0.875, year: 2008 http://www.landesbioscience.com/journals/prion/article/7489

  17. Carbonic anhydrase generates a pH gradient in Bombyx mori silk glands.

    Domigan, L J; Andersson, M; Alberti, K A; Chesler, M; Xu, Q; Johansson, J; Rising, A; Kaplan, D L

    2015-10-01

    Silk is a protein of interest to both biological and industrial sciences. The silkworm, Bombyx mori, forms this protein into strong threads starting from soluble silk proteins using a number of biochemical and physical cues to allow the transition from liquid to fibrous silk. A pH gradient has been measured along the gland, but the methodology employed was not able to precisely determine the pH at specific regions of interest in the silk gland. Furthermore, the physiological mechanisms responsible for the generation of this pH gradient are unknown. In this study, concentric ion selective microelectrodes were used to determine the luminal pH of B. mori silk glands. A gradient from pH 8.2 to 7.2 was measured in the posterior silk gland, with a pH 7 throughout the middle silk gland, and a gradient from pH 6.8 to 6.2 in the beginning of the anterior silk gland where silk processing into fibers occurs. The small diameter of the most anterior region of the anterior silk gland prevented microelectrode access in this region. Using a histochemical method, the presence of active carbonic anhydrase was identified in the funnel and anterior silk gland of fifth instar larvae. The observed pH gradient collapsed upon addition of the carbonic anhydrase inhibitor methazolamide, confirming an essential role for this enzyme in pH regulation in the B. mori silk gland. Plastic embedding of whole silk glands allowed clear visualization of the morphology, including the identification of four distinct epithelial cell types in the gland and allowed correlations between silk gland morphology and silk stages of assembly related to the pH gradient. B. mori silk glands have four different epithelial cell types, one of which produces carbonic anhydrase. Carbonic anhydrase is necessary for the mechanism that generates an intraluminal pH gradient, which likely regulates the assembly of silk proteins and then the formation of fibers from soluble silk proteins. These new insights into native silk

  18. Comparison of the in vitro and in vivo degradations of silk fibroin scaffolds from mulberry and nonmulberry silkworms

    Degradation behavior is very important in the field of silk-based biomaterials. Mulberry and nonmulberry silk fibroins are structurally and functionally distinguishable; however, no studies have examined the differences in the degradation behaviors of silk materials from various silkworm species. In this study, Ca(NO3)2 was used as a uniform solvent to obtain regenerated mulberry and nonmulberry (Antheraea pernyi and Antheraea yamamai) silk fibroin (SF) solutions, and the degradation behaviors of various SF scaffolds were examined. In vitro and in vivo results demonstrated that regenerated mulberry SF scaffolds exhibited significantly higher mass loss and free amino acid content release than did nonmulberry SF scaffolds. The differences in the primary structures and condensed structures between mulberry and nonmulberry SF contributed to the significant difference in degradation rates, in which the characteristic (–Ala–)n repeats, compact crystal structure and high α-helix and β-sheet contents make nonmulberry SF more resistant than mulberry SF to enzymatic degradation. Moreover, the Antheraea pernyi and Antheraea yamamai SFs possess similar primary structures and condensed structures, although a slight difference in degradation was observed; this difference might depend on the differences in molecular weight following the regeneration process. The results indicate that the original sources of SF significantly influence the degradation rates of SF-based materials; therefore, the original sources of SF should be fully considered for preparing tissue engineering scaffolds with matched degradation rates. (paper)

  19. Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering

    Electrospinning of fibrous scaffolds containing nano-hydroxyapatite (nHAp) embedded in a matrix of functional biomacromolecules offers an attractive route to mimicking the natural bone tissue architecture. Functional fibrous substrates will support cell attachment, proliferation and differentiation, while the role of HAp is to induce cells to secrete extracellular matrix (ECM) for mineralization to form bone. Electrospinning of biomaterials composed of polyhydroxybutyrate-co-(3-hydroxyvalerate) with 2% valerate fraction (PHBV), nano-hydroxyapatite (nHAp), and Bombyx mori silk fibroin essence (SF), Mw = 90KDa, has been achieved for nHAp and SF solution concentrations of 2 (w/vol) % each and 5 (w/vol) % each. The structure and properties of the nanocomposite fibrous membranes were investigated by means of Scanning Electron Microscopy in combination with Energy Dispersive X-Ray Analysis (SEM/EDX), Fourier Transformed Infrared Spectroscopy (FT-IR), uniaxial tensile and compressive mechanical testing, degradation tests and in vitro bioactivity tests. SEM images showed smooth, uniform and continuous fibre deposition with no bead formation, and fibre diameters of between 10 and 15 μm. EDX and FT-IR confirmed the presence of nHAp and SF. After one month in deionised water, tests showed less than 2% weight loss with the samples retaining their fibrous morphology, confirming that this material biodegrades slowly. After 28 days of immersion in Simulated Body Fluid (SBF) an apatite layer was visible on the surface of the fibres, proving their bioactivity. Preliminary in vitro biological assessment showed that after 1 and 3 days in culture, cells were attached to the fibres, retaining their morphology while presenting a flattened appearance and elongated shape on the surface of fibres. Young's modulus was found to increase from 0.7 kPa (± 0.33 kPa) for electrospun samples of PHBV only to 1.4 kPa (± 0.54 kPa) for samples with 2 (w/vol) % each of nHAp and SF. Samples

  20. Gelatin modified ultrathin silk fibroin films for enhanced proliferation of cells.

    Yang, Luyuan; Yaseen, Mohammed; Zhao, Xiubo; Coffey, Paul; Pan, Fang; Wang, Yuming; Xu, Hai; Webster, John; Lu, Jian R

    2015-04-01

    Silk fibroin (SF) films were modified with gelatin (G) to explore if such SF/G films could enhance the surface biocompatibility of silk as cell growth biomaterials. Ultrathin films were coated from aqueous SF solutions pre-mixed with different amounts of G. It was found that the SF/G blended films after methanol treatment were highly stable in physiological conditions. The incorporation of G smoothed the surface morphology of the SF/G films formed. Surface-exposed RGD sequences were successfully identified on the SF/G films through specific recognition of an integrin-mimicking peptide (bearing the sequence of CWDDGWLC). Cell culture experiments with 3T3 fibroblasts demonstrated that SF/G films with 1.2-20% (w/w) G gave clear improvement in promoting cell attachment and proliferation over pure SF films. Films containing 10-20% (w/w) of G showed cell attachment and growth even superior to the pure G films. The differences as observed from this study suggest that due to the lack of mechanical strength associated with its high solubility, G could not work alone as a cell growth scaffold. The enhanced cellular responses from the blended SF/G films must result from improvement in film stability arising from SF and in cytocompatibility arising from G. The results thus indicate the potential of the SF/G blends in tissue engineering and biomedical engineering where physical and biological properties could be manipulated via mixing either as bulk biomaterials or for coating purposes. PMID:25784671

  1. Preparation and characterization of blends containing silk fibroin and chitosan;Obtencao e caracterizacao de blendas de fibroina de seda e quitosana

    Moraes, Mariana A. de; Nogueira, Grinia M.; Weska, Raquel F.; Beppu, Marisa M., E-mail: beppu@feq.unicamp.b [Universidade Estadual de Campinas (FEQ/UNICAMP), SP (Brazil). Faculdade de Engenharia Quimica

    2009-07-01

    The aim of this study was to prepare and characterize blend membranes of silk fibroin and chitosan. Moreover, a conformation of fibroin to a more stable form induced by the addition of chitosan was verified. Blend membranes of fibroin/chitosan were prepared in different proportions and had their crystallinity, structural conformation and thermal stability characterized. The results of crystallographic analysis (XRD) indicated the tendency to higher structural organization caused by the addition of chitosan. FTIR showed that, mainly in a content of chitosan of only 25%, fibroin is present in a more stable form. Thermal analyzes indicate that fibroin is thermally stable and that when its proportion in the blend increases, the temperature in which the degradation is initiated also does so. (author)

  2. Enhanced Fibroblast Cellular Ligamentization Process to Polyethylene Terepthalate Artificial Ligament by Silk Fibroin Coating.

    Jiang, Jia; Ai, Chengchong; Zhan, Zufeng; Zhang, Peng; Wan, Fang; Chen, Jun; Hao, Wei; Wang, Yaxian; Yao, Jinrong; Shao, Zhengzhong; Chen, Tianwu; Zhou, Liang; Chen, Shiyi

    2016-04-01

    Artificial ligaments utilized in reconstruction of anterior cruciate ligament (ACL) are usually made of polyethylene terepthalate (PET) because of its good mechanical properties in vivo. However, it was found that the deficiencies in hydrophilicity and biocompatibility of PET hindered the process of ligamentization. Therefore, surface modification of the PET is deemed as a solution in resolving such problem. Silk fibroin (SF), which is characterized by good biocompatibility and low immunogenicity in clinical applications, was utilized to prepare a coating on the PET ligament (PET+SF) in this work. At first, decrease of hydrophobicity and appearance of amino groups were found on the surface of artificial PET ligament after coating with SF. Second, mouse fibroblasts were cultured on the two different kinds of ligament in order to clarify the possible effect of SF coating. It was proved that mouse fibroblasts display better adhesion and proliferation on PET+SF than PET ligament according to the results of several technical methods including SEM observation, cell adhesive force and spread area test, and mRNA analysis. Meanwhile, methylthiazolyldiphenyl-tetrazolium bromide and DNA content tests showed that biocompatibility of PET+SF is better than PET ligament. In addition, collagen deposition tests also indicated that the quantity of collagen in PET+SF is higher than PET ligament. Based on these results, it can be concluded that SF coating is suggested to be an effective approach to modify the surface of PET ligament and enhance the "ligamentization" process in vivo accordingly. PMID:26526301

  3. Flexible organic light emitting diodes fabricated on biocompatible silk fibroin substrate

    Liu, Yuqiang; Xie, Yuemin; Liu, Yuan; Song, Tao; Zhang, Ke-Qin; Liao, Liangsheng; Sun, Baoquan

    2015-10-01

    Flexible and biodegradable electronics are currently under extensive investigation for biocompatible and environmentally-friendly applications. Synthetic plastic foils are widely used as substrates for flexible electronics. But typical plastic substrates such as polyethylene naphthalate (PEN) could not be degraded in a natural bio-environment. A great demand still exists for a next-generation biocompatible and biodegradable substrate for future application. For example, electronic devices can be potentially integrated into the human body. In this work, we demonstrate that the biocompatible and biodegradable natural silk fibroin (SF) films embedded with silver nanowires (AgNWs) mesh could be employed as conductive transparent substrates to fabricate flexible organic light emitting diodes (OLEDs). Compared with commercial PEN substrates coated with indium tin oxide, the AgNWs/SF composite substrates exhibit a similar sheet resistance of 12 Ω sq-1, a lower surface roughness, as well as a broader light transmission range. Flexible OLEDs based on AgNWs/SF substrates achieve a current efficiency of 19 cd A-1, demonstrating the potential of the flexible AgNWs/SF films as conductive and transparent substrates for next-generation biodegradable devices.

  4. Electrospun silk fibroin-hydroxybutyl chitosan nanofibrous scaffolds to biomimic extracellular matrix.

    Zhang, Kuihua; Qian, Yongfang; Wang, Hongsheng; Fan, Linpeng; Huang, Chen; Mo, Xiumei

    2011-01-01

    Silk fibroin (SF)-hydroxybutyl chitosan (HBC) blend nanofibrous scaffolds were fabricated using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and trifluoroacetic acid (TFA) as solvents to biomimic the native ECM by electrospinning. SEM results showed that the average nanofibrous diameter increased when the content of HBC was raised from 20% to 100%. Whereas water contact angle measurements confirmed that SF/HBC nanofibrous scaffolds with different weight ratios were of good hydrophilicity. Both the tensile strength and the elongation at break were improved obviously when the weight ratio of SF to HBC was 20:80. (13)C-NMR clarified that SF and HBC molecules existed in H-bond interactions, but HBC did not induce SF conformation to transform from random coil form to β-sheet structure. Moreover, the use of genipin vapour not only induced conformation of SF to convert from random coil to β-sheet structure but also acted as a cross-linking agent for SF and HBC. Cell viability studies demonstrated that SF/HBC nanofibrous scaffolds presented good cellular compatibility. Thus, electrospun SF/HBC blended nanofibres may provide an ideal biomimic tissue-engineering scaffold. PMID:20615313

  5. Fabrication and characterization of curcumin-loaded silk fibroin/P(LLA-CL) nanofibrous scaffold

    Lian, Yuan; Zhan, Jian-Chao; Zhang, Kui-Hua; Mo, Xiu-Mei

    2014-12-01

    Curcumin exhibited excellent properties including antioxidant, antiinflammatory, antiviral, antibacterial, antifungal, anticancer, and anticoagulant activities. In this study, curcumin was incorporated into silk fibroin (SF)/poly(L-lactic acid- co-e-caprolactone) (P(LLA-CL)) nanofibrous scaffolds via electrospinning, and changes brought about by raising the curcumin content were observed: SEM images showed that the average nanofibrous diameter decreased at the beginning and then increased, and the nanofibers became uniform; FTIR showed that the conformation of SF transforming from random coil form to β-sheet structure had not been induced, while SF conformation converted to β-sheet after being treated with 75% ethanol vapor; XRD results confirmed that the crystal structure of (P(LLA-CL)) had been destroyed; The mechanical test illustrated that nanofibrous scaffolds still maintained good mechanical properties. Further, curcumin-loaded nanofibrous scaffolds were evaluated for drug release, antioxidant and antimicrobial activities in vitro. The results showed that curcumin presented a sustained release behavior from nanofibrous scaffolds and maintained its free radical scavenging ability, and such scaffolds could effectively inhibit S. aureus growth (> 95%). Thus, curcumin-loaded SF/P(LLA-CL) nanofibrous scaffolds might be potential candidates for wound dressing and tissue engineering scaffolds.

  6. Mechanism of Conformational Transition of Silk Fibroin in Alcohol-water Mixtures

    Ma Lin; He Weiren; Huang Aimin; Li Lishuo; Wei Qiaona; Huang Zilun

    2011-01-01

    Circular dichroism, intrinsic fluorescence of protein and exogenous fluorescence probe of 8-anilino-l-naphtha-lenesulfonic acid hemimagnesium salt (ANS) was used to investigate the mechanism of conformational change of silk fibroin (SF) in aqueous alcohol including methanol and ethanol. The conformational transition of SF from ran-dom coil to β-sheet was found to be of a close relationship with the microstructure of the solvent. The alcohol-water mixture at low concentration had little effect on the solvation of the peptide unit, as the inherent water structure was conserved. At high alcohol concentration, the transition from the tetrahedral-like water structure to the chain-like alcohol structure in the mixtures induced a β-sheet conformation of SF, as a result of the formation of intramolecu-lar hydrogen bond between the peptide units in order to eliminate the thermodynamic unfavorite from the contact to the solvent molecules. Meanwhile, the aggregating of hydrophobic side chains was decreased by the alcohol via the destruction of hydrogen bond network of water by alcohol and the binding of alcohol to hydrophobic group.

  7. Flexible organic light emitting diodes fabricated on biocompatible silk fibroin substrate

    Flexible and biodegradable electronics are currently under extensive investigation for biocompatible and environmentally-friendly applications. Synthetic plastic foils are widely used as substrates for flexible electronics. But typical plastic substrates such as polyethylene naphthalate (PEN) could not be degraded in a natural bio-environment. A great demand still exists for a next-generation biocompatible and biodegradable substrate for future application. For example, electronic devices can be potentially integrated into the human body. In this work, we demonstrate that the biocompatible and biodegradable natural silk fibroin (SF) films embedded with silver nanowires (AgNWs) mesh could be employed as conductive transparent substrates to fabricate flexible organic light emitting diodes (OLEDs). Compared with commercial PEN substrates coated with indium tin oxide, the AgNWs/SF composite substrates exhibit a similar sheet resistance of 12 Ω sq−1, a lower surface roughness, as well as a broader light transmission range. Flexible OLEDs based on AgNWs/SF substrates achieve a current efficiency of 19 cd A−1, demonstrating the potential of the flexible AgNWs/SF films as conductive and transparent substrates for next-generation biodegradable devices. (paper)

  8. Study of synthesis of nano-hydroxyapatite using a silk fibroin template

    Wang Jing; Yu Feng; Qu Lijie; Meng Xiangcai [Provincial Key Laboratory of Biomaterials, Jiamusi University, Jiamusi 154007 (China); Wen, G [School of Materials Science and Engineering, Harbin Institute of Technology, Heilongjiang Province 150001 (China)

    2010-08-01

    Nano-hydroxyapatite (HA) was directly synthesized on a silk fibroin (SF) template using the property of SF being soluable in a concentrated CaCl{sub 2} solution as a HA source of calcium at pH 7.4 and room temperature. The microstructure and bonding state were investigated by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry-thermogravimetry analysis (DSC-TG) and transmission electron microscopy (TEM). The results indicated that the HA crystals were poorly crystallized with a rod-like shape of 20-60 nm length and 10-20 nm diameter. Strong molecular interactions and chemical bonds might be present between SF and HA. There were other nucleation sites such as carbonyl (-C-O) and amine (-N-H-) groups on SF molecules besides the carboxyl (-COOH) and hydroxyl (-OH) groups previously reported. During the formation of HA, the coordination action between specific functional groups on SF and calcium ions (Ca{sup 2+}) played an important role. The crystallinity of HA was improved and had an orientation growth along (0 0 2) at the presence of SF, resulting in a structure similar to natural bone. It was concluded that SF could regulate the structure and morphology of HA effectively. (communication)

  9. Three dimensional poly(ε-caprolactone) and silk fibroin nanocomposite fibrous matrix for artificial dermis.

    Lee, Jung Min; Chae, Taesik; Sheikh, Faheem A; Ju, Hyung Woo; Moon, Bo Mi; Park, Hyun Jung; Park, Ye Ri; Park, Chan Hum

    2016-11-01

    Ideal dermal substitutes should have comparable physicochemical and biological properties to the natural skin tissue. In this study, we report a novel strategy to "engineer" controlled 3D nanocomposite fibrous matrix of poly(ε-caprolactone) (PCL) and silk fibroin (SF) for an artificial dermis application. Using a custom-designed cold-plate electrospinning and automatic magnet agitation system, up to 6mm of the thickness was achieved resulting from the accumulation of ice crystal layers on the PCL nanofibers surface-modified with the SF particles. The sacrificed ice crystals induced interconnected macro-pores ranging from tens to hundreds μm. The agitation system introduced uniform distribution of the SF protein within/on the nanofibers, preventing the particles from precipitation and agglomeration. NIH 3T3 fibroblasts proliferated in vitro on the PCL and PCL/SF scaffolds for 7days, but there was no statistical difference between the groups. Conversely, In vivo rat model studies revealed that the wound healing rate and collagen deposition increased with the SF content within the nanocomposites. The unique 3D construct with the PCL/SF nanocomposite fibers provided desirable spatial cues, surface topography, and surface chemistry for the native cells to infiltrate into the scaffolds. The wound healing potential of the nanocomposites was comparable to the commercial Matriderm® artificial dermis. PMID:27524077

  10. Preparation of electrospun silk fibroin fiber mats as bone scaffolds: a preliminary study

    In the present contribution, electrospinning (e-spinning) was used to fabricate ultra-fine fibers of silk fibroin (SF) from cocoons of indigenous Thai silkworms (Nang-Lai) and Chinese/Japanese hybrid silkworms (DOAE-7). The effects of solution concentration (i.e., 10-40% (w/v) in 85% (v/v) formic acid) and applied electrostatic field strength (EFS; 10, 15 and 20 kV/10 cm) on morphology and size of the electrospun (e-spun) SF products were investigated by scanning electron microscopy. The average diameter of the resulting e-spun SF fibers was found to increase with an increase in both the solution concentration and the EFS value. Specifically, the average diameter of the e-spun SF fibers from Nang-Lai SF solutions ranged between 217 and 610 nm, while that of the fibers from DOAE-7 SF solutions ranged between 183 and 810 nm. The potential for use of the e-spun SF fiber mats as bone scaffolds was assessed with mouse osteoblast-like cells (MC3T3-E1) in which the cells appeared to adhere and proliferate well on their surface

  11. Direct electrochemistry and electrocatalysis of heme-proteins in regenerated silk fibroin film

    A biocompatible silk fibroin (SF) film provided a feasible microenvironment for heme-proteins to direct electron transfer on graphite electrodes (GE). Myoglobin (Mb), hemoglobin (Hb), horseradish peroxidase (HRP), and catalase (Cat) incorporated in SF films exhibited a pair of well-defined, nearly reversible cyclic voltammetric peaks, corresponding to the reaction of hemeFe (III) + e → hemeFe (II). The formal potential (E 0), the apparent coverage (Γ) and the electron transfer rate constant (k s) of four proteins in SF films were evaluated by analyzing the cyclic voltammograms (CVs) of heme-proteins. The formal potential was pH dependent, suggesting that proton ion was involved in the reaction. Ultraviolet visible (UV-vis) spectra and reflectance absorbance infrared (RAIR) spectra indicated that heme-proteins in SF films were not grossly denatured. The structure of heme-proteins-SF films was investigated using scanning electron microscopy (SEM) and RAIR. It indicated that there existed intermolecular interaction between heme-proteins and SF and this governed their different morphology in SF films. Hydrogen peroxide and nitric oxide were catalytically reduced by the heme-proteins in SF films, showing the potential applicability of the heme-proteins-SF films as the new type of biosensors based on the protein film voltammetry

  12. Fabrication and characterization of bioactive silk fibroin/wollastonite composite scaffolds

    Composite scaffolds of silk fibroin (SF) with bioactive wollastonite were prepared by freeze-drying. X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy analysis showed that random coil and β-sheet structure co-existed in the SF scaffold. The mechanical performance, surface hydrophilicity and water-uptake capacity of the composite scaffolds were improved compared with those of pure SF scaffold. The bioactivity of the composite scaffold was evaluated by soaking in a simulated body fluid (SBF), and formation of a hydroxycarbonate apatite (HCA) layer was determined by FT-IR and XRD. The results showed that the SF/wollastonite composite scaffold was bioactive as it induced the formation of HCA on the surface of the composite scaffold after soaking in SBF for 5 days. In vitro cell attachment and proliferation tests showed that the composite scaffold was a good matrix for the growth of L929 mouse fibroblast cells. Consequently, the incorporation of wollastonite into the SF scaffold can enhance both the mechanical strength and bioactivity of the scaffold, which suggests that the SF/wollastonite composite scaffold may be a potential biomaterial for tissue engineering.

  13. Cartilage Tissue Engineering with Silk Fibroin Scaffolds Fabricated by Indirect Additive Manufacturing Technology

    Chih-Hao Chen

    2014-03-01

    Full Text Available Advanced tissue engineering (TE technology based on additive manufacturing (AM can fabricate scaffolds with a three-dimensional (3D environment suitable for cartilage regeneration. Specifically, AM technology may allow the incorporation of complex architectural features. The present study involves the fabrication of 3D TE scaffolds by an indirect AM approach using silk fibroin (SF. From scanning electron microscopic observations, the presence of micro-pores and interconnected channels within the scaffold could be verified, resulting in a TE scaffold with both micro- and macro-structural features. The intrinsic properties, such as the chemical structure and thermal characteristics of SF, were preserved after the indirect AM manufacturing process. In vitro cell culture within the SF scaffold using porcine articular chondrocytes showed a steady increase in cell numbers up to Day 14. The specific production (per cell basis of the cartilage-specific extracellular matrix component (collagen Type II was enhanced with culture time up to 12 weeks, indicating the re-differentiation of chondrocytes within the scaffold. Subcutaneous implantation of the scaffold-chondrocyte constructs in nude mice also confirmed the formation of ectopic cartilage by histological examination and immunostaining.

  14. The biocompatibility of silk fibroin and acellular collagen scaffolds for tissue engineering in the ear

    Recent experimental studies have shown the suitability of silk fibroin scaffold (SFS) and porcine-derived acellular collagen I/III scaffold (ACS) as onlay graft materials for tympanic membrane perforation repair. The aims of this study were to further characterize and evaluate the in vivo biocompatibility of SFS and ACS compared with commonly used materials such as Gelfoam and paper in a rat model. The scaffolds were implanted in subcutaneous (SC) tissue and middle ear (ME) cavity followed by histological and otoscopic evaluation for up to 26 weeks. Our results revealed that SFS and ACS were well tolerated and compatible in rat SC and ME tissues throughout the study. The tissue response adjacent to the implants evaluated by histology and otoscopy showed SFS and ACS to have a milder tissue response with minimal inflammation compared to that of paper. Gelfoam gave similar results to SFS and ACS after SC implantation, but it was found to be associated with pronounced fibrosis and osteoneogenesis after ME implantation. It is concluded that SFS and ACS both were biocompatible and could serve as potential alternative scaffolds for tissue engineering in the ear. (paper)

  15. Effect of sterilization on structural and material properties of 3-D silk fibroin scaffolds.

    Hofmann, Sandra; Stok, Kathryn S; Kohler, Thomas; Meinel, Anne J; Müller, Ralph

    2014-01-01

    The development of porous scaffolds for tissue engineering applications requires the careful choice of properties, as these influence cell adhesion, proliferation and differentiation. Sterilization of scaffolds is a prerequisite for in vitro culture as well as for subsequent in vivo implantation. The variety of methods used to provide sterility is as diverse as the possible effects they can have on the structural and material properties of the three-dimensional (3-D) porous structure, especially in polymeric or proteinous scaffold materials. Silk fibroin (SF) has previously been demonstrated to offer exceptional benefits over conventional synthetic and natural biomaterials in generating scaffolds for tissue replacements. This study sought to determine the effect of sterilization methods, such as autoclaving, heat-, ethylene oxide-, ethanol- or antibiotic-antimycotic treatment, on porous 3-D SF scaffolds. In terms of scaffold morphology, topography, crystallinity and short-term cell viability, the different sterilization methods showed only few effects. Nevertheless, mechanical properties were significantly decreased by a factor of two by all methods except for dry autoclaving, which seemed not to affect mechanical properties compared to the native control group. These data suggest that SF scaffolds are in general highly resistant to various sterilization treatments. Nevertheless, care should be taken if initial mechanical properties are of interest. PMID:24013025

  16. Fabrication and Intermolecular Interactions of Silk Fibroin/Hydroxybutyl Chitosan Blended Nanofibers

    Xiu-Mei Mo

    2011-03-01

    Full Text Available The native extracellular matrix (ECM is composed of a cross-linked porous network of multifibril collagens and glycosaminoglycans. Nanofibrous scaffolds of silk fibroin (SF and hydroxybutyl chitosan (HBC blends were fabricated using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP and trifluoroacetic acid (TFA as solvents to biomimic the native ECM via electrospinning. Scanning electronic microscope (SEM showed that relatively uniform nanofibers could be obtained when 12% SF was blended with 6% HBC at the weight ratio of 50:50. Meanwhile, the average nanofibrous diameter increased when the content of HBC in SF/HBC blends was raised from 20% to 100%. Fourier transform infrared spectra (FTIR and 13C nuclear magnetic resonance (NMR showed SF and HBC molecules existed in hydrogen bonding interactions but HBC did not induce conformation of SF transforming from random coil form to β-sheet structure. X-ray diffraction (XRD confirmed the different structure of SF/HBC blended nanofibers from both SF and HBC. Thermogravimetry-Differential thermogravimetry (TG-DTG results demonstrated that the thermal stability of SF/HBC blend nanofibrous scaffolds was improved. The results indicated that the rearrangement of HBC and SF molecular chain formed a new structure due to stronger hydrogen bonding between SF and HBC. These electrospun SF/HBC blended nanofibers may provide an ideal tissue engineering scaffold and wound dressing.

  17. Conformation Transition and Thermal Properties Study of Silk Fibroin and Poly (ε-Caprolactone Blends

    M. Srisa-Ard

    2008-01-01

    Full Text Available In this study, influence of intermolecular interactions between Silk Fibroin (SF and Poly (ε-Caprolactone (PCL in homogeneous blend form on SF conformation changes and thermal properties of the blends was investigated and discussed. The SF/PCL blends were prepared by solution blending and precipitating method, respectively. Dimethylsulfoxide and isopropanol were used as a solvent and a non-solvent, respectively. The blends were characterized by Fourier Transform Infrared Spectroscopy (FTIR, Differential Scanning Calorimetry (DSC, Thermo Gravimetry (TG and Scanning Electron Microscopy (SEM. Conformation transition of SF component from β-sheet to random coil forms can be induced by blending with PCL. Melting temperature and heat of melting of the PCL decreased as increasing the SF ratio. Thermal stability of the SF can be enhanced by blending with PCL. FTIR, DSC and TG results suggested that intermolecular hydrogen bonds were formed between SF and PCL molecules in the blends. Homogeneous morphology of blends was illustrated by SEM micrographs.

  18. Biocompatibility studies of silk fibroin-based artificial nerve grafts in vitro and in vivo

    2007-01-01

    Silk fibroin (SF) has been used extensively in the biomedical field including tissue engineering for the generation of artificial bones, skins or ligaments. We have previously reported on good in vitro biocompatibility of SF fibers with peripheral nerve tissues and cells. In the present study, we developed a novel design of the SF-based artificial nerve graft (SF graft) which was composed of a SF-nerve guidance conduit (NGC) inserted with SF fibers. MTT assay was performed to determine the cytotoxicity of the SF-NGC extract fluid on the cultured L929 cells derived from an immortalized mouse fibroblast cell line. In addition, this SF graft was implanted into adult rats for bridging a 10-mm long sciatic nerve defect. The following-up experiments at initial stage (1-4 week) of nerve regeneration including routine blood tests and histochemical investigation were conducted to evaluate the in vivo biocompatibility of the SF graft with peripheral nerves. The results demonstrated that the SF-NGC graft was biocompatible with the surrounding tissues and cells due to its low inflammatory potential with a grade O under the U. S. Pharmacopeia guidelines and it was generally suitable to a certain degree for bridging peripheral nerve defects in virtue of supporting Schwann cell adherence, expansion and migration. Therefore the SF graft is a promising alternative to classical autografts for peripheral nerve repair.

  19. Immobilization of acetylcholinesterase via biocompatible interface of silk fibroin for detection of organophosphate and carbamate pesticides

    Xue, Rui; Kang, Tian-Fang; Lu, Li-Ping; Cheng, Shui-Yuan

    2012-06-01

    An amperometric biosensor for the detection of organophosphate and carbamate pesticides was developed based on the immobilization of acetylcholinesterase (AChE) on regenerated silk fibroin (SF) matrix by non-covalent adsorption. SF and AChE were coated sequentially on the surface of the glassy carbon electrode (GCE) which was modified with multiwall carbon nanotube (MWNTs). The obtained biosensor was denoted as AChE-SF/MWNTs/GCE. The atomic force microscopy images showed that the SF matrix provided a more homogeneous interface for the AChE immobilization. The aggregation of immobilizing AChE was therefore avoided. The cyclic voltammogram of thiocholine at this biosensor exhibited a well defined oxidation peak at 0.667 V (vs. SCE). The inhibition rate of methyl parathion to the immobilized AChE was proportional to the logarithm of the concentration of methyl parathion over the range of the concentration of methyl parathion from 3.5 × 10-6 to 2.0 × 10-3 M with a detection limit of 5.0 × 10-7 M. Similarly, the linearly response range of carbaryl was from 1.0 × 10-7 to 3.0 × 10-5 M with a detection limit of 6.0 × 10-8 M. The experimental results indicate that AChE not only can be immobilized steadily on the SF matrix, but also the bioactivity of immobilizing AChE can be preserved effectively.

  20. Antheraea pernyi silk fibroin for targeted gene delivery of VEGF165-Ang-1 with PEI

    Vascularization is a crucial challenge in tissue engineering. One solution for this problem is to implant scaffolds that contain functional genes that promote vascularization by providing angiogenic growth factors via a gene delivery carrier. Poly(ethylenimine) (PEI) is a gene delivery carrier with high transfection efficiency but with cytotoxicity. To solve this problem, we utilized Antheraea pernyi silk fibroin (ASF), which has favorable cytocompatibility and biodegradability, RGD sequences and a negative charge, in conjunction with PEI, as the delivery vector for vascular endothelial growth factor (VEGF) 165-angiopoietin-1 (Ang-1) dual gene simultaneous expression plasmid, creating an ASF/PEI/pDNA complex. The results suggested that the zeta potential of the ASF/PEI/pDNA complex was significantly lower than that of the PEI/pDNA complex. Decreased nitrogen and increased oxygen on the surface of the complex demonstrated that the ASF had successfully combined with the surface of the PEI/pDNA. Furthermore, the complexes resisted digestion by nucleic acid enzymes and degradation by serum. L929 cells were cultured and transfected in vitro and improved cytotoxicity was found when the cells were transfected with ASF/PEI/pDNA compared with PEI/pDNA. In addition, the transfection efficiency and VEGF secretion increased. In general, this study provides a novel method for decreasing the cytotoxicity of PEI gene delivery vectors and increasing transfection efficiency of angiogenesis-related genes. (paper)

  1. Synthesis and characterization of dense membranes of silk fibroin with glycerin;Sintese e caracterizacao de membranas densas de fibroina de seda com glicerina

    Silva, Mariana F.; Moraes, Mariana A. de; Weska, Raquel F.; Nogueira, Grinia M.; Beppu, Marisa M., E-mail: beppu@feq.unicamp.b [Universidade Estadual de Campinas (FEQ/UNICAMP), SP (Brazil). Faculdade de Engenharia Quimica

    2009-07-01

    The addition of plasticizers seeks improvements in mechanical properties of dense membranes of silk fibroin with possible interactions by hydrogen bonds. The aim of the present study was to produce and characterize dense membranes of silk fibroin containing glycerin in two different concentrations. The characterization of the membranes was performed from scanning electron microscopy (SEM), mechanical traction tests, infrared spectroscopy (FTIR-ATR) and X-ray diffraction (XRD). The results indicated that the addition of glycerin allowed obtaining homogeneous and more crystalline membranes and improved their properties of elongation. (author)

  2. Effect of Strongly Alkaline Electrolyzed Water on Silk Degumming and the Physical Properties of the Fibroin Fiber.

    Ting-Ting Cao

    Full Text Available Strongly alkaline electrolyzed water (SAEW was prepared by electrolysis of tap water in a laboratory-made water electrolyzer. The pH of stored SAEW was stable for more than one month. The hardness of the electrolyzed water was 30% lower and the Na(+ concentration was 18% higher than those of the tap water. Silkworm cocoon shells were boiled in pH 11.50 SAEW at a ratio of 1∶40∼80 (W/V for 20 min and the sericin layers around the silk fibroin fibers were removed completely. The tensile properties and thermal decomposition temperature of a single filament of silk fibroin obtained by the SAEW method were almost the same as those for the fiber obtained by the neutral soap, and much higher than those for the fiber obtained by Na2CO3 degumming. The results demonstrate that SAEW is an environmentally friendly and pollution-free silk degumming agent that allows highly efficient, low cost recovery of sericin.

  3. Thin films of silk fibroin and its blend with chitosan strongly promote biofilm growth of Synechococcus sp. BDU 140432.

    Kaushik, Sharbani; Sarma, Mrinal K; Thungon, Phurpa Dema; Santhosh, Mallesh; Goswami, Pranab

    2016-10-01

    The activating role of different polymer thin films coated over polystyrene support on the Synechococcus sp. biofilm growth was examined concurrently by measuring biofilm florescence using a dye and by measuring cell density in the isolated biofilm. Compared to blank (no coating), the increase in biofilm formation (%) on silk, chitosan, silk-chitosan (3:2) blend, polyaniline, osmium, and Nafion films were 27.73 (31.16), 21.55 (23.74), 37.21 (38.34), 5.35 (8.96), 6.70 (6.55) and (nil), respectively with corresponding cell density (%) shown in the parentheses. This trend of biofilm formation on the films did not significantly vary for Escherichia coli and Lactobacillus plantarum strains. The films of 20 residues long each of glycine-alanine repeat peptide, which mimics a silk fibroin motif, and a hydrophobic glycine-valine repeat peptide, increased the biofilm growth by 13.53 % and 26.08 %, respectively. Silk and blend films showed highest adhesion unit (0.48-0.49), adhesion rate ((4.2-4.8)×10(-6), m/s) and Gibbs energy of adhesion (-8.5 to -8.6kT) with Synechococcus sp. The results confirmed interplay of electrostatic and hydrophobic interaction between cell-surface and polymer films for promoting rapid biofilm growth. This study established that the thin films of silk and the blend (3:2) promote rapid biofilm growth for all the tested microorganisms. PMID:27393887

  4. Tunable Structures and Properties of Electrospun Regenerated Silk Fibroin Mats Annealed in Water Vapor at Different Times and Temperatures

    Xiangyu Huang

    2014-01-01

    Full Text Available Regenerated silk fibroin (SF mats were fabricated using electrospinning technique, followed by mild water vapor annealing to effectively tune the structures and improve the mechanical properties of the mats at different annealing times and temperatures. The breaking strength and the breaking energy of the mats treated with water vapor at 65°C for 12 h reached 6.0 MPa and 171.7 J/kg, respectively. The conformational transition of the SF mats was significantly influenced by the treating temperature, while the influence of time was comparatively limited. The influence is consistent with the time-temperature equivalent principle and would be helpful for the preparation of water-vapor-annealed silk-based biomaterials for various applications.

  5. Radiation degradation of silk

    Ishida, Kazushige; Kamiishi, Youichi [Textile Research Institute of Gunma, Kiryu, Gunma (Japan); Takeshita, Hidefumi; Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Silk fibroin powder was prepared from irradiated silk fibroin fiber by means of only physical treatment. Silk fibroin fiber irradiated with an accelerated electron beam in the dose range of 250 - 1000 kGy was pulverized by using a ball mill. Unirradiated silk fibroin fiber was not pulverized at all. But the more irradiation was increased, the more the conversion efficiency from fiber to powder was increased. The conversion efficiency of silk fibroin fiber irradiated 1000 kGy in oxygen was 94%. Silk fibroin powder shows remarkable solubility, which dissolved 57% into water of ambient temperature. It is a very interesting phenomenon that silk fibroin which did not treat with chemicals gets solubility only being pulverized. In order to study mechanism of solubilization of silk fibroin powder, amino acid component of soluble part of silk fibroin powder was analyzed. The more irradiation dose up, the more glycine or alanine degraded, but degradation fraction reached bounds about 50%. Other amino acids were degraded only 20% even at the maximum. To consider crystal construction of silk fibroin, it is suggested that irradiation on silk fibroin fiber selectively degrades glycine and alanine in amorphous region, which makes it possible to pulverize and to dissolve silk fibroin powder. (author)

  6. A novel electrospinning approach to fabricate high strength aqueous silk fibroin nanofibers.

    Singh, B N; Panda, N N; Pramanik, K

    2016-06-01

    The present paper describes a rapid method of producing concentrated aqueous regenerated Bombyx mori silk fibroin (RSF) solution by applying mild shearing under forced dehumidified air and generation of electrospun SF nanofibers from concentrated solution with high mechanical strength using free liquid surface electrospinning machine. The shear induced concentrating mechanism favoured the electrospinning process by enhancing the viscosity (>2.43Pas as onset for electrospinning) and decreasing the surface tension of the solution (40.1-37.7mN/m). Shearing reduced the β-turns and random coil molecular conformation and thereby, intensified the β-sheet content from 16.9% to 34% which is the minimum content needed to commence RSF nanofibers formation. Subsequently, electrospun nanofibrous mats were produced from different batches of concentrated SF solutions (15-21wt%). Among the concentrated RSF, 17wt% RSF solution was the most favourable concentration producing electrospun nanofibrous mat having lowest average fiber diameters of 183±55nm and good tensile strength. The mechanical strength of the nanofibrous sheet was further improved by cross-linking with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride and N-hydroxysuccinimide (EDC+NHS) which might be due to enhancement of β-sheet content. These nanofibers exhibited 17.57±1.13MPa ultimate tensile strength, 12.48±1.46% tensile strain at break and 37.7% increase in root mean square surface roughness which is favourable feature for cell adhesion and neo-tissue formation. PMID:26905467

  7. Fabrication and characterization of silk fibroin/bioactive glass composite films

    Composite films of silk fibroin (SF) with nano bioactive glass (NBG) were prepared by the solvent casting method, and the structures and properties of the composite films were characterized. Fourier transform infrared (FT-IR) spectroscopy analysis shows that the random coil and β-sheet structure co-exist in the SF films. Results of field emission scanning electron microscope (FESEM) indicate that the NBG particles are uniformly dispersed in the SF films. The measurements of the water contact angles suggest that the incorporation of NBG into SF can improve the hydrophilicity of the composites. The bioactivity of the composite films was evaluated by soaking in 1.5 times simulated body fluid (1.5 × SBF), and formation of a hydroxycarbonate apatite (HCA) layer was determined by XRD and FESEM. The results show that the SF/NBG composite film is bioactive as it induces the formation of HCA on the surface of the composite film after soaking in 1.5 × SBF for 7 days. In vitro osteoblasts attachment and proliferation tests show that the composite film is a good matrix for the growth of osteoblasts. Consequently, the incorporation of NBG into the SF film can enhance both the bioactivity and biocompatibility of the film, which suggests that the SF/NBG composite film may be a potential biomaterial for bone tissue engineering. - Highlights: ► The incorporation of NBG into SF can improve the hydrophilicity of the SF/NBG composite films. ► The SF/NBG composite films show the better bioactivity than the pure SF film. ► The SF/NBG composite films facilitate cell growth and promote cell proliferation and differentiation.

  8. Immobilization of acetylcholinesterase via biocompatible interface of silk fibroin for detection of organophosphate and carbamate pesticides

    Xue Rui [College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124 (China); Kang Tianfang, E-mail: kangtf@yahoo.cn [College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124 (China); Lu Liping; Cheng Shuiyuan [College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124 (China)

    2012-06-01

    An amperometric biosensor for the detection of organophosphate and carbamate pesticides was developed based on the immobilization of acetylcholinesterase (AChE) on regenerated silk fibroin (SF) matrix by non-covalent adsorption. SF and AChE were coated sequentially on the surface of the glassy carbon electrode (GCE) which was modified with multiwall carbon nanotube (MWNTs). The obtained biosensor was denoted as AChE-SF/MWNTs/GCE. The atomic force microscopy images showed that the SF matrix provided a more homogeneous interface for the AChE immobilization. The aggregation of immobilizing AChE was therefore avoided. The cyclic voltammogram of thiocholine at this biosensor exhibited a well defined oxidation peak at 0.667 V (vs. SCE). The inhibition rate of methyl parathion to the immobilized AChE was proportional to the logarithm of the concentration of methyl parathion over the range of the concentration of methyl parathion from 3.5 Multiplication-Sign 10{sup -6} to 2.0 Multiplication-Sign 10{sup -3} M with a detection limit of 5.0 Multiplication-Sign 10{sup -7} M. Similarly, the linearly response range of carbaryl was from 1.0 Multiplication-Sign 10{sup -7} to 3.0 Multiplication-Sign 10{sup -5} M with a detection limit of 6.0 Multiplication-Sign 10{sup -8} M. The experimental results indicate that AChE not only can be immobilized steadily on the SF matrix, but also the bioactivity of immobilizing AChE can be preserved effectively.

  9. In vitro biocompatibility evaluation of silk-fibroin/polyurethane membrane with cultivation of HUVECs

    Zhou, Mei; Wang, Wei-Ci; Liao, Yong-Gui; Liu, Wen-Qi; Yu, Miao; Ouyang, Chen-Xi

    2014-03-01

    In order to investigate the in vitro biocompatibility of a novel polyurethane (PU) membrane modified by incorporation of superfine silk-fibroin powder (SFP), which was prepared for small-diameter vascular grafts, with the cultivation of human umbilical vein endothelial cells (HUVECs), PU and SFP were mixed with the ratios of 9:1, 7:3, 5:5, 3:7 (PU:SFP) to make four composite materials. Unmodified PU and polytetrafluoroethylene (PTFE) were added as control groups. CCK-8 assay was used to evaluate the cytotoxicity of these biomaterials. Data were processed using SPSS, and P < 0.05 was considered to be statistically significant. Adherence and spreading of HUVECs on the surface of specimens was observed using direct contact cultivation. The toxicity ratings of the novel composites were grade 0-1, which is in the acceptable range. In all the experimental groups except control, SFP/PU with ratio of 1:9 had the least cytotoxicity property, and more content of SFP in the composite showed no improvement of the biocompatibility. HUVECs strongly attached to and grew on the surface of the biomaterials, and proliferated rapidly. The proliferation ability increased with increased proportion of SFP; however the cell quantity on the surface of the materials decreased when the proportion of SFP was equal to or larger than that of PU in the composite. It is concluded that this novel material has excellent cellular affinity with no cytotoxicity to HUVECs. Adding SFP gives PU better biocompatibility, while further research on optimum blend ratios is still needed.

  10. Assessment of freestanding membranes prepared from Antheraea pernyi silk fibroin as a potential vehicle for corneal epithelial cell transplantation

    Freestanding membranes created from Bombyx mori silk fibroin (BMSF) offer a potential vehicle for corneal cell transplantation since they are transparent and support the growth of human corneal epithelial (HCE) cells. Fibroin derived from the wild silkworm Antheraea pernyi (APSF) might provide a superior material by virtue of containing putative cell-attachment sites that are absent from BMSF. Thus we have investigated the feasibility of producing transparent, freestanding membranes from APSF and have analysed the behaviour of HCE cells on this material. No significant differences in cell numbers or phenotype were observed in short term HCE cell cultures established on either fibroin. Production of transparent freestanding APSF membranes, however, proved to be problematic as cast solutions of APSF were more prone to becoming opaque, displayed significantly lower permeability and were more brittle than BMSF-membranes. Cultures of HCE cells established on either membrane developed a normal stratified morphology with cytokeratin pair 3/12 being immuno-localized to the superficial layers. We conclude that while it is feasible to produce transparent freestanding membranes from APSF, the technical difficulties associated with this biomaterial, along with an absence of enhanced cell growth, currently favour the continued development of BMSF as a preferred vehicle for corneal cell transplantation. Nevertheless, it remains possible that refinement of techniques for processing APSF might yet lead to improvements in the handling properties and performance of this material. (paper)

  11. Relationship between rheology and electro-spinning performance of regenerated silk fibroin prepared using different degumming methods

    Kim, Hyun Ju; Um, In Chul

    2014-05-01

    Electro-spun silk fibroin (SF) has been studied for biomedical applications because of its good biocompatibility, cyto-compatibility, and simple fabrication method. SF is obtained by a degumming process and the degumming method can affect the degree of molecular degradation of SF during the degumming process. In the present study, the effect of the degumming method on the rheology and electro-spinning performance of a silk solution was examined. In addition, the relationship between the rheology and electrospinnability was investigated. Regardless of the degumming method, all silk formic acid solutions exhibited almost Newtonian fluid behavior. The order of the viscosity of the silk solution was as follows: HTHP method > acid method > soap/soda method. An analysis of the correlation between the viscosity and electrospun morphology showed that the viscosity played a key role in determining the electro-spun morphology, and the critical viscosity for good fiber formation without beads in electro-spinning exists between 0.13 and 0.20 Pa·s. The viscosity also determines the maximum electro-spinning rate of the SF formic acid solution. The morphology and diameter of the electro-spun fiber were almost unaffected by the electro-spinning rate of the SF solution.

  12. Optimization and evaluation of silk fibroin-chitosan freeze-dried porous scaffolds for cartilage tissue engineering application.

    Vishwanath, Varshini; Pramanik, Krishna; Biswas, Amit

    2016-05-01

    Silk fibroin/chitosan blend has been reported to be an attractive biomaterial that provides a 3D porous structure with controllable pore size and mechanical property suitable for tissue engineering applications. However, there is no systematic study for optimizing the ratio of silk fibroin (SF) and chitosan (CS) which seems to influence the scaffold property to a great extent. The present research, therefore, investigates the effect of blend ratio of SF and CS on scaffold property and establishes the optimum value of blend ratio. Among the various blends, the scaffolds with blend ratio of SF/CS (80:20) were found to be superior. The scaffold possesses pore size in the range 71-210 μm and porosity of 82.2 ± 1.3%. The compressive strength of the scaffold was measured as 190 ± 0.2 kPa. The cell supportive property of the scaffold in terms of cell attachment, cell viability, and proliferation was confirmed by cell culture study using mesenchymal stem cells derived from umbilical cord blood. Furthermore, the assessment of glycosaminoglycan secretion on the scaffolds indicates its potentiality toward cartilage tissue regeneration. PMID:26830046

  13. Expression of the Japanese oak silkworm Antheraea yamamai fibroin gene in the domesticated silkworm Bombyx mori

    Isao Kobayashi; Katsura Kojima; Hideki Sezutsu; Keiro Uchino; Toshiki Tamura

    2009-01-01

    To understand the evolutionary conservation of the gene expression mechanism and secretion machinery between Antheraea and Bombyx fibroins, we introduced the genomic A. yamamai fibroin gene into the domesticated silkworm, B. mori. The spliced A. yamamai fibroin mRNA appeared only in the posterior region of the silk gland of the transgenic silkworm, suggesting that the functions of the fibroin promoter region and the splicing machinery are conserved between these two species. The A. yamamai fibroin protein was detected in the lumen of the silk gland of the transgenic silkworm, albeit at lower levels compared with the B. mori-type fibroin. We found a strong degeneration of the posterior region of the silk gland of the transgenic silkworm. As a result, the cocoon shell weight was much lower in the transgenic silkworm than in the non-transgenic line. These results indicate that the promoter function and splicing machinery are well conserved between A. yamamai and B. mori but that the secretion mechanism of fibroin is diversified between the two.

  14. Tissue-specific transcription enhancement of the fibroin gene characterized by cell-free systems.

    Suzuki, Y.; Tsuda, M.; Takiya, S; Hirose, S; Suzuki, E; Kameda, M; Ninaki, O

    1986-01-01

    Six cell-free extracts have been used to characterize the nature of DNA signals and trans-acting factors responsible for the transcription enhancement of the Bombyx mori fibroin gene. The upstream element of the fibroin gene involved in the enhancement can be divided into two regions. The proximal region, -72 to -32, is recognized as a common enhancing signal by all B. mori extracts from the posterior silk gland, the middle silk gland, the ovarian tissue, and an embryonic cell line. It is wea...

  15. Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering.

    Paşcu, Elena I; Stokes, Joseph; McGuinness, Garrett B

    2013-12-01

    Electrospinning of fibrous scaffolds containing nano-hydroxyapatite (nHAp) embedded in a matrix of functional biomacromolecules offers an attractive route to mimicking the natural bone tissue architecture. Functional fibrous substrates will support cell attachment, proliferation and differentiation, while the role of HAp is to induce cells to secrete extracellular matrix (ECM) for mineralization to form bone. Electrospinning of biomaterials composed of polyhydroxybutyrate-co-(3-hydroxyvalerate) with 2% valerate fraction (PHBV), nano-hydroxyapatite (nHAp), and Bombyx mori silk fibroin essence (SF), Mw=90KDa, has been achieved for nHAp and SF solution concentrations of 2 (w/vol) % each and 5 (w/vol) % each. The structure and properties of the nanocomposite fibrous membranes were investigated by means of Scanning Electron Microscopy in combination with Energy Dispersive X-Ray Analysis (SEM/EDX), Fourier Transformed Infrared Spectroscopy (FT-IR), uniaxial tensile and compressive mechanical testing, degradation tests and in vitro bioactivity tests. SEM images showed smooth, uniform and continuous fibre deposition with no bead formation, and fibre diameters of between 10 and 15 μm. EDX and FT-IR confirmed the presence of nHAp and SF. After one month in deionised water, tests showed less than 2% weight loss with the samples retaining their fibrous morphology, confirming that this material biodegrades slowly. After 28 days of immersion in Simulated Body Fluid (SBF) an apatite layer was visible on the surface of the fibres, proving their bioactivity. Preliminary in vitro biological assessment showed that after 1 and 3 days in culture, cells were attached to the fibres, retaining their morphology while presenting a flattened appearance and elongated shape on the surface of fibres. Young's modulus was found to increase from 0.7 kPa (±0.33 kPa) for electrospun samples of PHBV only to 1.4 kPa (±0.54 kPa) for samples with 2 (w/vol) % each of nHAp and SF. Samples prepared with

  16. Treatment of Silk Fibroin with Poly(ethylene glycol for the Enhancement of Corneal Epithelial Cell Growth

    Shuko Suzuki

    2015-05-01

    Full Text Available A silk protein, fibroin, was isolated from the cocoons of the domesticated silkworm (Bombyx mori and cast into membranes to serve as freestanding templates for tissue-engineered corneal cell constructs to be used in ocular surface reconstruction. In this study, we sought to enhance the attachment and proliferation of corneal epithelial cells by increasing the permeability of the fibroin membranes and the topographic roughness of their surface. By mixing the fibroin solution with poly(ethylene glycol (PEG of molecular weight 300 Da, membranes were produced with increased permeability and with topographic patterns generated on their surface. In order to enhance their mechanical stability, some PEG-treated membranes were also crosslinked with genipin. The resulting membranes were thoroughly characterized and compared to the non-treated membranes. The PEG-treated membranes were similar in tensile strength to the non-treated ones, but their elastic modulus was higher and elongation lower, indicating enhanced rigidity. The crosslinking with genipin did not induce a significant improvement in mechanical properties. In cultures of a human-derived corneal epithelial cell line (HCE-T, the PEG treatment of the substratum did not improve the attachment of cells and it enhanced only slightly the cell proliferation in the longer term. Likewise, primary cultures of human limbal epithelial cells grew equally well on both non-treated and PEG-treated membranes, and the stratification of cultures was consistently improved in the presence of an underlying culture of irradiated 3T3 feeder cells, irrespectively of PEG-treatment. Nevertheless, the cultures grown on the PEG-treated membranes in the presence of feeder cells did display a higher nuclear-to-cytoplasmic ratio suggesting a more proliferative phenotype. We concluded that while the treatment with PEG had a significant effect on some structural properties of the B. mori silk fibroin (BMSF membranes, there were

  17. Electrospinning-aligned and random polydioxanone-polycaprolactone-silk fibroin-blended scaffolds: geometry for a vascular matrix

    Extracellular matrices are arranged with a specific geometry based on tissue type and mechanical stimulus. For blood vessels in the body, preferential alignment of fibers is in the direction of repetitive force. Electrospinning is a controllable process which can result in fiber alignment and randomization depending on the parameters utilized. In this study, arterial grafts composed of polycaprolactone (PCL), polydioxanone (PDO) and silk fibroin in blends of 100:0 and 50:50 for both PCL:silk and PDO:silk were investigated to determine if fibers could be controllably aligned using a mandrel rotational speed ranging from 500 to 8000 revolutions per minute (RPM). Results revealed that large- and small-diameter mandrels produced different degrees of fiber alignment based on a fast Fourier transform of scanning electron microscope images. Uniaxial tensile testing further demonstrated scaffold anisotropy through changes in peak stress, modulus and strain at break at mandrel rotational speeds of 500 and 8000 RPM, causing peak stress and modulus for PCL to increase 5- and 4.5-fold, respectively, as rotational speed increased. Additional mechanical testing was performed on grafts using dynamic compliance, burst strength and longitudinal strength displaying that grafts electrospun at higher rotational rates produced stiffer conduits which had lower compliance and higher burst strength compared to the lower mandrel rotational rate. Scaffold properties were found to depend on several parameters in the electrospinning process: mandrel rotational rate, polymer type, and mandrel size. Vascular scaffold design under anisotropic conditions provided interesting insights and warrants further investigation.

  18. Electrospinning-aligned and random polydioxanone-polycaprolactone-silk fibroin-blended scaffolds: geometry for a vascular matrix

    McClure, M J; Sell, S A; Bowlin, G L [Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284 (United States); Ayres, C E; Simpson, D G, E-mail: glbowlin@vcu.ed [Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 (United States)

    2009-10-15

    Extracellular matrices are arranged with a specific geometry based on tissue type and mechanical stimulus. For blood vessels in the body, preferential alignment of fibers is in the direction of repetitive force. Electrospinning is a controllable process which can result in fiber alignment and randomization depending on the parameters utilized. In this study, arterial grafts composed of polycaprolactone (PCL), polydioxanone (PDO) and silk fibroin in blends of 100:0 and 50:50 for both PCL:silk and PDO:silk were investigated to determine if fibers could be controllably aligned using a mandrel rotational speed ranging from 500 to 8000 revolutions per minute (RPM). Results revealed that large- and small-diameter mandrels produced different degrees of fiber alignment based on a fast Fourier transform of scanning electron microscope images. Uniaxial tensile testing further demonstrated scaffold anisotropy through changes in peak stress, modulus and strain at break at mandrel rotational speeds of 500 and 8000 RPM, causing peak stress and modulus for PCL to increase 5- and 4.5-fold, respectively, as rotational speed increased. Additional mechanical testing was performed on grafts using dynamic compliance, burst strength and longitudinal strength displaying that grafts electrospun at higher rotational rates produced stiffer conduits which had lower compliance and higher burst strength compared to the lower mandrel rotational rate. Scaffold properties were found to depend on several parameters in the electrospinning process: mandrel rotational rate, polymer type, and mandrel size. Vascular scaffold design under anisotropic conditions provided interesting insights and warrants further investigation.

  19. Construction of engineering adipose-like tissue in vivo utilizing human insulin gene-modified umbilical cord mesenchymal stromal cells with silk fibroin 3D scaffolds.

    Li, Shi-Long; Liu, Yi; Hui, Ling

    2015-12-01

    We evaluated the use of a combination of human insulin gene-modified umbilical cord mesenchymal stromal cells (hUMSCs) with silk fibroin 3D scaffolds for adipose tissue engineering. In this study hUMSCs were isolated and cultured. HUMSCs infected with Ade-insulin-EGFP were seeded in fibroin 3D scaffolds with uniform 50-60 µm pore size. Silk fibroin scaffolds with untransfected hUMSCs were used as control. They were cultured for 4 days in adipogenic medium and transplanted under the dorsal skins of female Wistar rats after the hUMSCs had been labelled with chloromethylbenzamido-1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (CM-Dil). Macroscopical impression, fluorescence observation, histology and SEM were used for assessment after transplantation at 8 and 12 weeks. Macroscopically, newly formed adipose tissue was observed in the experimental group and control group after 8 and 12 weeks. Fluorescence observation supported that the formed adipose tissue originated from seeded hUMSCs rather than from possible infiltrating perivascular tissue. Oil red O staining of newly formed tissue showed that there was substantially more tissue regeneration in the experimental group than in the control group. SEM showed that experimental group cells had more fat-like cells, whose volume was larger than that of the control group, and degradation of the silk fibroin scaffold was greater under SEM observation. This study provides significant evidence that hUMSCs transfected by adenovirus vector have good compatibility with silk fibroin scaffold, and adenoviral transfection of the human insulin gene can be used for the construction of tissue-engineered adipose. PMID:23509085

  20. Comparative proteomic analysis of the silkworm middle silk gland reveals the importance of ribosome biogenesis in silk protein production.

    Li, Jian-ying; Ye, Lu-peng; Che, Jia-qian; Song, Jia; You, Zheng-ying; Yun, Ki-chan; Wang, Shao-hua; Zhong, Bo-xiong

    2015-08-01

    The silkworm middle silk gland (MSG) is the sericin synthesis and secretion unique sub-organ. The molecular mechanisms of regulating MSG protein synthesis are largely unknown. Here, we performed shotgun proteomic analysis on the three MSG subsections: the anterior (MSG-A), middle (MSG-M), and posterior (MSG-P) regions. The results showed that more strongly expressed proteins in the MSG-A were involved in multiple processes, such as silk gland development and silk protein protection. The proteins that were highly expressed in the MSG-M were enriched in the ribosome pathway. MSG-P proteins with stronger expression were mainly involved in the oxidative phosphorylation and citrate cycle pathways. These results suggest that the MSG-M is the most active region in the sericin synthesis. Furthermore, comparing the proteome of the MSG with the posterior silk gland (PSG) revealed that the specific and highly expressed proteins in the MSG were primarily involved in the ribosome and aminoacyl-tRNA biosynthesis pathways. These results indicate that silk protein synthesis is much more active as a result of the enhancement of translation-related pathways in the MSG. These results also suggest that enhancing ribosome biogenesis is important to the efficient synthesis of silk proteins. PMID:26051239

  1. Proteome identification of the silkworm middle silk gland.

    Li, Jian-Ying; Ye, Lu-Peng; Che, Jia-Qian; Song, Jia; You, Zheng-Ying; Wang, Shao-Hua; Zhong, Bo-Xiong

    2016-03-01

    To investigate the functional differentiation among the anterior (A), middle (M), and posterior (P) regions of silkworm middle silk gland (MSG), their proteomes were characterized by shotgun LC-MS/MS analysis with a LTQ-Orbitrap mass spectrometer. To get better proteome identification and quantification, triplicate replicates of mass spectrometry analysis were performed for each sample. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (Vizcaíno et al., 2014) [1] via the PRIDE partner repository (Vizcaino, 2013) [2] with the dataset identifier PXD003371. The peptide identifications that were further processed by PeptideProphet program in Trans-Proteomic Pipeline (TPP) after database search with Mascot software were also available in .XML format files. Data presented here are related to a research article published in Journal of Proteomics by Li et al. (2015) [3]. PMID:26937469

  2. SURFACE MODIFICATION OF BLEND FILMS COMPOSED OF SILK FIBROIN AND POLY(ETHYLENE GLYCOL) MACROMER AND THEIR IN VITRO ANTITHROMBOGENICITY

    Hua-xin Sun; Song Wang; He-sun Zhu

    2004-01-01

    In order to improve the blood compatibility of silk fibroin (SF), poly(ethylene glycol) macromer (PEGM) in different amounts was added to the SF film to incorporate C=C group into the surface of blend films which were then modified by SO2 gas plasma treatment. ATR-FITR and XPS were used to analyze the chemical change which had occurred on the film's surface. When the content of sulfur on the surface of blend films surpasses 1.59%, the antithrombogenicity of plasma treated films increases remarkably due to surface sulfonation. This result implies that SF with blend of PEGM after SO2 plasma treatment have potential use for making blood-contacting biomaterials.

  3. An implantable and controlled drug-release silk fibroin nanofibrous matrix to advance the treatment of solid tumour cancers.

    Xie, Maobin; Fan, Dejun; Chen, Yufeng; Zhao, Zheng; He, Xiaowen; Li, Gang; Chen, Aizheng; Wu, Xiaojian; Li, Jiashen; Li, Zhi; Hunt, John A; Li, Yi; Lan, Ping

    2016-10-01

    The development of more effective cancer therapeutic strategies are still critically required. The maximization of the therapeutic effect in combination with avoiding the severe side effects on normal tissues when using chemotherapy drugs is still an urgent problem that requires improvements urgently. Here we provide implantable and controllable drug-release that utilises silk fibroin (SF) as a nanofibrous drug delivery system (DDS) for cancer treatment. A nanofibrous structure with controllable fibre diameter (curcumin (CM)-SF nanofibrous matrix had a superior anti-cancer potential when the concentration was >5 μg/mL. The mechanism could be explained by the cell cycle being held in the S phase. The toxic effect on normal cells (NCM460) was minimized by using a treatment concentration range (5-20 μg/mL). Implantation of this DDS into the tumour site inhibited the growth of solid tumour; this offers an alternative approach for novel cancer therapy. PMID:27376557

  4. Design and Characterization of a Silk-Fibroin-Based Drug Delivery Platform Using Naproxen as a Model Drug

    Tatyana Dyakonov

    2012-01-01

    Full Text Available The objective of this proof-of-concept study was to develop a platform for controlled drug delivery based on silk fibroin (SF and to explore the feasibility of using SF in oral drug delivery. The SF-containing matrixes were prepared via spray-drying and film casting, and the release profile of the model drug naproxen sodium was evaluated. Attenuated total reflectance Fourier transform infrared spectroscopy (FTIR has been used to observe conformational changes in SF- and drug-containing compositions. SF-based films, spray-dried microparticles, and matrixes loaded with naproxen were prepared. Both FTIR spectra and in vitro dissolution data demonstrated that SF β-sheet conformation regulates the release profile of naproxen. The controlled release characteristics of the SF-containing compositions were evaluated as a function of SF concentration, temperature, and exposure to dehydrating solvents. The results suggest that SF may be an attractive polymer for use in controlled drug delivery systems.

  5. Semi-interpenetrating polymer networks composed of silk fibroin and poly(ethylene glycol) for wound dressing

    Semi-interpenetrating polymer networks (SIPNs) composed of silk fibroin (SF) and poly(ethylene glycol) (PEG) were prepared by photopolymerization of a PEG macromer in the presence of SF to improve the mechanical properties of SF sponge as wound dressing. The morphological structure of the SF/PEG SIPNs was observed to be composed of an interconnected microporous surface and a cross-sectional area. SF/PEG SIPNs showed non-cytotoxicity evaluated by a cell proliferation method using L929 fibroblasts. Wound contraction treated with SF/PEG SIPNs sponges was faster than that of Vaseline gauze as a control. Histological observation confirmed that the deposition of collagen in the dermis was organized by covering the wound area with SF/PEG SIPNs. The above results indicated that SF/PEG SIPNs could be used as wound dressing

  6. High performance pentacene organic field-effect transistors consisting of biocompatible PMMA/silk fibroin bilayer dielectric

    Pentacene organic field-effect transistors (OFETs) based on single- or double-layer biocompatible dielectrics of poly(methyl methacrylate) (PMMA) and/or silk fibroin (SF) are fabricated. Compared with those devices based on single PMMA or SF dielectric or SF/PMMA bilayer dielectric, the OFETs with biocompatible PMMA/SF bilayer dielectric exhibit optimal performance with a high field-effect mobility of 0.21 cm2/Vs and a current on/off ratio of 1.5×104. By investigating the surface morphology of the pentacene active layer through atom force microscopy and analyzing the electrical properties, the performance enhancement is mainly attributed to the crystallization improvement of the pentacene and the smaller interface trap density at the dielectric/organic interface. Meanwhile, a low contact resistance also indicates that a good electrode/organic contact is formed, thereby assisting the performance improvement of the OFET

  7. Semi-interpenetrating polymer networks composed of silk fibroin and poly(ethylene glycol) for wound dressing

    Kweon, HaeYong; Yeo, Joo-hong; Lee, Kwang-gill [Applied Sericulture and Apiculture Division, National Institute of Agricultural Science and Technology, Suwon 441100 (Korea, Republic of); Lee, Hyun Chul; Na, Hee Sam [Department of Microbiology and Research Institute of Medical Sciences, Chonnam National University Medical School, Kwangju (Korea, Republic of); Won, Young Ho [Department of Dermatology, Chonnam National University Medical School, Kwangju (Korea, Republic of); Cho, Chong Su [School of Agricultural Biotechnology, Seoul National University, Seoul 151742 (Korea, Republic of)], E-mail: chocs@plaza.snu.ac.kr

    2008-09-01

    Semi-interpenetrating polymer networks (SIPNs) composed of silk fibroin (SF) and poly(ethylene glycol) (PEG) were prepared by photopolymerization of a PEG macromer in the presence of SF to improve the mechanical properties of SF sponge as wound dressing. The morphological structure of the SF/PEG SIPNs was observed to be composed of an interconnected microporous surface and a cross-sectional area. SF/PEG SIPNs showed non-cytotoxicity evaluated by a cell proliferation method using L929 fibroblasts. Wound contraction treated with SF/PEG SIPNs sponges was faster than that of Vaseline gauze as a control. Histological observation confirmed that the deposition of collagen in the dermis was organized by covering the wound area with SF/PEG SIPNs. The above results indicated that SF/PEG SIPNs could be used as wound dressing.

  8. Composite biocompatible hydroxyapatite-silk fibroin coatings for medical implants obtained by Matrix Assisted Pulsed Laser Evaporation

    The aim of this study was to obtain biomimetic inorganic-organic thin films as coatings for metallic medical implants. These contain hydroxyapatite, the inorganic component of the bony tissues, and a natural biopolymer - silk fibroin - added in view to induce the surface functionalization. Hydroxyapatite (HA), silk fibroin (FIB) and composite HA-FIB films were obtained by Matrix Assisted Pulsed Laser Evaporation (MAPLE) in order to compare their physical and biological performances as coatings on metallic prostheses. We used an excimer laser source (KrF*, λ = 248 nm, τ = 25 ns) operated at 10 Hz repetition rate. Coatings were deposited on quartz, Si and Ti substrates and then subjected to physical (FTIR, XRD, AFM, SEM) analyses, correlated with the results of the cytocompatibility in vitro tests. The hybrid films were synthesized from frozen targets of aqueous suspensions with 3:2 or 3:4 weight ratio of HA:FIB. An appropriate stoichiometric and functional transfer was obtained for 0.4-0.5 J/cm2 laser fluence. FTIR spectra of FIB and HA-FIB films exhibited distinctive absorption maxima, in specific positions of FIB random coil form: 1540 cm-1 amide II, 1654 cm-1 amide I, 1243 cm-1 amide III, while the peak from 1027 cm-1 appeared only for HA and composite films. Osteosarcoma SaOs2 cells cultured 72 h on FIB and HA-FIB films showed increased viability, good spreading and normal cell morphology. The well-elongated, flattened cells are a sign of an appropriate interaction with the MAPLE FIB and composite HA-FIB coatings.

  9. Composite biocompatible hydroxyapatite-silk fibroin coatings for medical implants obtained by Matrix Assisted Pulsed Laser Evaporation

    Miroiu, F.M., E-mail: marimona.miroiu@inflpr.ro [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania); Socol, G.; Visan, A.; Stefan, N.; Craciun, D.; Craciun, V.; Dorcioman, G.; Mihailescu, I.N. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania); Sima, L.E.; Petrescu, S.M. [Institute of Biochemistry, Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest (Romania); Andronie, A.; Stamatin, I. [3Nano-SAE Alternative Energy Sources-University of Bucharest, Faculty of Physics, 409 Atomistilor Street, RO-77125, Magurele-Ilfov (Romania); Moga, S.; Ducu, C. [University of Pitesti, Targul din Vale Str, no. 1, 110040 Pitesti (Romania)

    2010-05-25

    The aim of this study was to obtain biomimetic inorganic-organic thin films as coatings for metallic medical implants. These contain hydroxyapatite, the inorganic component of the bony tissues, and a natural biopolymer - silk fibroin - added in view to induce the surface functionalization. Hydroxyapatite (HA), silk fibroin (FIB) and composite HA-FIB films were obtained by Matrix Assisted Pulsed Laser Evaporation (MAPLE) in order to compare their physical and biological performances as coatings on metallic prostheses. We used an excimer laser source (KrF*, {lambda} = 248 nm, {tau} = 25 ns) operated at 10 Hz repetition rate. Coatings were deposited on quartz, Si and Ti substrates and then subjected to physical (FTIR, XRD, AFM, SEM) analyses, correlated with the results of the cytocompatibility in vitro tests. The hybrid films were synthesized from frozen targets of aqueous suspensions with 3:2 or 3:4 weight ratio of HA:FIB. An appropriate stoichiometric and functional transfer was obtained for 0.4-0.5 J/cm{sup 2} laser fluence. FTIR spectra of FIB and HA-FIB films exhibited distinctive absorption maxima, in specific positions of FIB random coil form: 1540 cm{sup -1} amide II, 1654 cm{sup -1} amide I, 1243 cm{sup -1} amide III, while the peak from 1027 cm{sup -1} appeared only for HA and composite films. Osteosarcoma SaOs2 cells cultured 72 h on FIB and HA-FIB films showed increased viability, good spreading and normal cell morphology. The well-elongated, flattened cells are a sign of an appropriate interaction with the MAPLE FIB and composite HA-FIB coatings.

  10. Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs.

    Das, Sanskrita; Pati, Falguni; Choi, Yeong-Jin; Rijal, Girdhari; Shim, Jin-Hyung; Kim, Sung Won; Ray, Alok R; Cho, Dong-Woo; Ghosh, Sourabh

    2015-01-01

    Bioprinting has exciting prospects for printing three-dimensional (3-D) tissue constructs by delivering living cells with appropriate matrix materials. However, progress in this field is currently extremely slow due to limited choices of bioink for cell encapsulation and cytocompatible gelation mechanisms. Here we report the development of clinically relevant sized tissue analogs by 3-D bioprinting, delivering human nasal inferior turbinate tissue-derived mesenchymal progenitor cells encapsulated in silk fibroin-gelatin (SF-G) bioink. Gelation in this bioink was induced via in situ cytocompatible gelation mechanisms, namely enzymatic crosslinking by mushroom tyrosinase and physical crosslinking via sonication. Mechanistically, tyrosinases oxidize the accessible tyrosine residues of silk and/or gelatin into reactive o-quinone moieties that can either condense with each other or undergo nonenzymatic reactions with available amines of both silk and gelatin. Sonication alters the hydrophobic interaction and accelerates self-assembly of silk fibroin macromolecules to form β-sheet crystals, which physically crosslink the hydrogel. However, sonication has no effect on the conformation of gelatin. The effect of optimized rheology, secondary conformations of silk-gelatin bioink, temporally controllable gelation strategies and printing parameters were assessed to achieve maximum cell viability and multilineage differentiation of the encapsulated human nasal inferior turbinate tissue-derived mesenchymal progenitor cells. This strategy offers a unique path forward in the direction of direct printing of spatially customized anatomical architecture in a patient-specific manner. PMID:25242654

  11. Surface modification of silk fibroin fibers with poly(methyl methacrylate) and poly(tributylsilyl methacrylate) via RAFT polymerization for marine antifouling applications

    Buga, Mihaela-Ramona [National Research and Development Institute for Cryogenics and Isotopic Technologies, ICIT Rm. Valcea, 240050 Rm. Valcea, Uzinei 4, CP7, Raureni, Valcea (Romania); Zaharia, Cătălin, E-mail: zaharia.catalin@gmail.com [Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7, Gh. Polizu Street, Sector 1, 011061 Bucharest (Romania); Bălan, Mihai [National Research and Development Institute for Cryogenics and Isotopic Technologies, ICIT Rm. Valcea, 240050 Rm. Valcea, Uzinei 4, CP7, Raureni, Valcea (Romania); Bressy, Christine [Université de Toulon, MAPIEM, EA 4323, 83957 La Garde (France); Ziarelli, Fabio [Fédération des Sciences Chimiques de Marseille, CNRS-FR1739, Spectropole, 13397 Marseille (France); Margaillan, André [Université de Toulon, MAPIEM, EA 4323, 83957 La Garde (France)

    2015-06-01

    In this study, silk fibroin surface containing hydroxyl and aminogroups was firstly modified using a polymerizable coupling agent 3-(trimethoxysilyl) propyl methacrylate (MPS), in order to induce vinyl groups onto the fiber surface. The reversible addition–fragmentation chain transfer (RAFT)-mediated polymerization of methyl methacrylate (MMA) and tributylsilyl methacrylate (TBSiMA) through the immobilized vinyl bond on the silk fibroin surface in the presence of 2-cyanoprop-2-yl dithiobenzoate (CPDB) as chain-transfer agent and 2,2′-azobis(isobutyronitrile) (AIBN) as initiator was conducted in toluene solution at 70 °C for 24 h. The structure and properties of the modified fiber were characterized by Fourier Transform Infrared Spectroscopy, {sup 13}C, {sup 29}Si Nuclear Magnetic Resonance (NMR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), confirming the presence of the coupling molecule and the methacrylate groups onto the silk fibroin fiber surface. Molecular weight distributions were assessed by triple detection size exclusion chromatography (TD-SEC) in order to verify the livingness of the polymerization. - Highlights: • SF surface containing hydroxyl and amino groups was firstly modified with MPS. • RAFT polymerizations of MMA and TBSiMA were studied. • TD-SEC was used to verify the livingness of the RAFT polymerization. • The grafted polymer chains enhance the thermal stability of the SF fibers. • The grafted fibers could be potentially promising candidates as antifouling agents.

  12. Surface modification of silk fibroin fibers with poly(methyl methacrylate) and poly(tributylsilyl methacrylate) via RAFT polymerization for marine antifouling applications

    In this study, silk fibroin surface containing hydroxyl and aminogroups was firstly modified using a polymerizable coupling agent 3-(trimethoxysilyl) propyl methacrylate (MPS), in order to induce vinyl groups onto the fiber surface. The reversible addition–fragmentation chain transfer (RAFT)-mediated polymerization of methyl methacrylate (MMA) and tributylsilyl methacrylate (TBSiMA) through the immobilized vinyl bond on the silk fibroin surface in the presence of 2-cyanoprop-2-yl dithiobenzoate (CPDB) as chain-transfer agent and 2,2′-azobis(isobutyronitrile) (AIBN) as initiator was conducted in toluene solution at 70 °C for 24 h. The structure and properties of the modified fiber were characterized by Fourier Transform Infrared Spectroscopy, 13C, 29Si Nuclear Magnetic Resonance (NMR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), confirming the presence of the coupling molecule and the methacrylate groups onto the silk fibroin fiber surface. Molecular weight distributions were assessed by triple detection size exclusion chromatography (TD-SEC) in order to verify the livingness of the polymerization. - Highlights: • SF surface containing hydroxyl and amino groups was firstly modified with MPS. • RAFT polymerizations of MMA and TBSiMA were studied. • TD-SEC was used to verify the livingness of the RAFT polymerization. • The grafted polymer chains enhance the thermal stability of the SF fibers. • The grafted fibers could be potentially promising candidates as antifouling agents

  13. Bio-hybrid silk fibroin/calcium phosphate/PLGA nanocomposite scaffold to control the delivery of vascular endothelial growth factor

    Farokhi, Mehdi, E-mail: mehdi13294@yahoo.com [Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mottaghitalab, Fatemeh, E-mail: fatemeh.motaghi@gmail.com [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University (TMU), Tehran (Iran, Islamic Republic of); Shokrgozar, Mohammad Ali, E-mail: mashokrgozar@pasteur.ac.ir [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of); Ai, Jafar, E-mail: jafar_ai@tums.ac.ir [Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Hadjati, Jamshid; Azami, Mahmoud [Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2014-02-01

    This study investigated the efficacy of bio-hybrid silk fibroin/Calcium phosphate/PLGA nanocomposite scaffold as vascular endothelial growth factor (VEGF) delivery system. The scaffold was fabricated using freeze-drying and electrospinning. Here, we highlight the structural changes of the scaffold using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and differential scanning calorimetry (DSC). The uniform dispersion of calcium phosohate (CaP) powder within silk fibroin (SF) solution was also confirmed using Zeta potential analysis. Moreover, good biocompatibility of osteoblast cells next to the scaffold was approved by cell adhesion, proliferation and alkaline phosphatase production. The release profile of VEGF during 28 days has established the efficacy of the scaffold as a sustained delivery system. The bioactivity of the released VEGF was maintained about 83%. The histology analysis has shown that the new bone tissue formation happened in the defected site after 10 weeks of implantation. Generally, our data showed that the fabricated scaffold could be considered as an effective scaffold for bone tissue engineering applications. - Highlights: • Silk fibroin/calcium phosphate/PLGA scaffold was successfully fabricated using freeze-drying and electrospinning. • The scaffold could control the release of VEGF during 28 days. • The bioactivity of electrospun VEGF was above 80%. • VEGF loaded scaffold could induce bone regeneration after 10 weeks in rabbit.

  14. Bio-hybrid silk fibroin/calcium phosphate/PLGA nanocomposite scaffold to control the delivery of vascular endothelial growth factor

    This study investigated the efficacy of bio-hybrid silk fibroin/Calcium phosphate/PLGA nanocomposite scaffold as vascular endothelial growth factor (VEGF) delivery system. The scaffold was fabricated using freeze-drying and electrospinning. Here, we highlight the structural changes of the scaffold using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and differential scanning calorimetry (DSC). The uniform dispersion of calcium phosohate (CaP) powder within silk fibroin (SF) solution was also confirmed using Zeta potential analysis. Moreover, good biocompatibility of osteoblast cells next to the scaffold was approved by cell adhesion, proliferation and alkaline phosphatase production. The release profile of VEGF during 28 days has established the efficacy of the scaffold as a sustained delivery system. The bioactivity of the released VEGF was maintained about 83%. The histology analysis has shown that the new bone tissue formation happened in the defected site after 10 weeks of implantation. Generally, our data showed that the fabricated scaffold could be considered as an effective scaffold for bone tissue engineering applications. - Highlights: • Silk fibroin/calcium phosphate/PLGA scaffold was successfully fabricated using freeze-drying and electrospinning. • The scaffold could control the release of VEGF during 28 days. • The bioactivity of electrospun VEGF was above 80%. • VEGF loaded scaffold could induce bone regeneration after 10 weeks in rabbit

  15. Silk formation mechanisms in the larval salivary glands of Apis mellifera (Hymenoptera: Apidae)

    Elaine C M Silva-Zacarin; Regina L M Silva De Moraes; S R Taboga

    2003-12-01

    The mechanism of silk formation in Apis mellifera salivary glands, during the 5th instar, was studied. Larval salivary glands were dissected and prepared for light and polarized light microscopy, as well as for scanning and transmission electron microscopy. The results showed that silk formation starts at the middle of the 5th instar and finishes at the end of the same instar. This process begins in the distal secretory portion of the gland, going towards the proximal secretory portion; and from the periphery to the center of the gland lumen. The silk proteins are released from the secretory cells as a homogeneous substance that polymerizes in the lumen to form compact birefringent tactoids. Secondly, the water absorption from the lumen secretion, carried out by secretory and duct cells, promotes aggregation of the tactoids that form a spiral-shape filament with a zigzag pattern. This pattern is also the results of the silk compression in the gland lumen and represents a high concentration of macromolecularly well-oriented silk proteins.

  16. Cloning and expression of Bombyx mori silk gland elongation factor 1gamma in Escherichia coli.

    Kamiie, Katsuyoshi; Nomura, Yoshitaka; Kobayashi, Satoru; Taira, Hideharu; Kobayashi, Kohmei; Yamashita, Tetsuro; Kidou, Shin-ichiro; Ejiri, Shin-ichiro

    2002-03-01

    Elongation factor 1 (EF-1) from the silk gland of Bombyx mori consists of alpha-, beta-, gamma-, and delta-subunits. EF-1alpha GTP catalyzes the binding of aminoacyl-tRNA to ribosomes concomitant with the hydrolysis of GTP. EF-1betagammadelta catalyzes the exchange of EF-1alpha-bound GDP for exogenous GTP and stimulates the EF-1alpha-dependent binding of aminoacyl-tRNA to ribosomes. EF-1gamma cDNA, which contains an open reading frame (ORF) encoding a polypeptide of 423 amino acid residues, was amplified and cloned by PCR from a silk gland cDNA library. The calculated molecular mass and predicted pI of the product were 48,388 Da and 5.84, respectively. The silk gland EF-1gamma shares 67.3% amino acid identity with Artemia salina EF-lgamma. The N-terminal domain (amino acid residues 1-211) of silk gland EF-lgamma is 29.3% identical to maize glutathione S-transferase. We demonstrated that silk gland EF-lgamma bound to glutathione Sepharose, suggesting that the N-terminal domain of EF-1gamma may have the capacity to bind to glutathione. PMID:12005049

  17. Enhanced bone formation in electrospun poly(l-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide.

    Shao, Weili; He, Jianxin; Sang, Feng; Wang, Qian; Chen, Li; Cui, Shizhong; Ding, Bin

    2016-05-01

    To engineer bone tissue, it is necessary to provide a biocompatible, mechanically robust scaffold. In this study, we fabricated an ultrafine nanofiber scaffold by electrospinning a blend of poly(l-lactic-co-glycolic acid), tussah silk fibroin, and graphene oxide (GO) and characterized its morphology, biocompatibility, mechanical properties, and biological activity. The data indicate that incorporation of 10wt.% tussah silk and 1wt.% graphene oxide into poly(l-lactic-co-glycolic acid) nanofibers significantly decreased the fiber diameter from 280 to 130nm. Furthermore, tussah silk and graphene oxide boosted the Young's modulus and tensile strength by nearly 4-fold and 3-fold, respectively, and significantly enhanced adhesion, proliferation in mouse mesenchymal stem cells and functionally promoted biomineralization-relevant alkaline phosphatase (ALP) and mineral deposition. The results indicate that composite nanofibers could be excellent and versatile scaffolds for bone tissue engineering. PMID:26952489

  18. Silk fibroin nanoparticles constitute a vector for controlled release of resveratrol in an experimental model of inflammatory bowel disease in rats

    Lozano-Pérez, Antonio Abel; Rodriguez-Nogales, Alba; Ortiz-Cullera, Víctor; Algieri, Francesca; Garrido-Mesa, José; Zorrilla, Pedro; Rodriguez-Cabezas, M Elena; Garrido-Mesa, Natividad; Utrilla, M Pilar; De Matteis, Laura; de la Fuente, Jesús Martínez; Cenis, José Luis; Gálvez, Julio

    2014-01-01

    Purpose We aimed to evaluate the intestinal anti-inflammatory properties of silk fibroin nanoparticles, around 100 nm in size, when loaded with the stilbene compound resveratrol, in an experimental model of rat colitis. Methods Nanoparticles were loaded with resveratrol by adsorption. The biological effects of the resveratrol-loaded nanoparticles were tested both in vitro, in a cell culture of RAW 264.7 cells (mouse macrophages), and in vivo, in the trinitrobenzenesulfonic acid model of rat colitis, when administered intracolonically. Results The resveratrol liberation in 1× phosphate-buffered saline (PBS; pH 7.4) was characterized by fast liberation, reaching the solubility limit in 3 hours, which was maintained over a period of 80 hours. The in vitro assays revealed immunomodulatory properties exerted by these resveratrol-loaded nanoparticles since they promoted macrophage activity in basal conditions and inhibited this activity when stimulated with lipopolysaccharide. The in vivo experiments showed that after evaluation of the macroscopic symptoms, inflammatory markers, and intestinal barrier function, the fibroin nanoparticles loaded with resveratrol had a better effect than the single treatments, being similar to that produced by the glucocorticoid dexamethasone. Conclusion Silk fibroin nanoparticles constitute an attractive strategy for the controlled release of resveratrol, showing immunomodulatory properties and intestinal anti-inflammatory effects. PMID:25285004

  19. Silk fibroin film from golden-yellow Bombyx mori is a biocomposite that contains lutein and promotes axonal growth of primary neurons.

    Pistone, Assunta; Sagnella, Anna; Chieco, Camilla; Bertazza, Gianpaolo; Varchi, Greta; Formaggio, Francesco; Posati, Tamara; Saracino, Emanuela; Caprini, Marco; Bonetti, Simone; Toffanin, Stefano; Di Virgilio, Nicola; Muccini, Michele; Rossi, Federica; Ruani, Giampiero; Zamboni, Roberto; Benfenati, Valentina

    2016-05-01

    The use of doped silk fibroin (SF) films and substrates from Bombyx mori cocoons for green nanotechnology and biomedical applications has been recently highlighted. Cocoons from coloured strains of B. mori, such as Golden-Yellow, contain high levels of pigments that could have a huge potential for the fabrication of SF based biomaterials targeted to photonics, optoelectronics and neuroregenerative medicine. However, the features of extracted and regenerated SF from cocoons of B. mori Golden-Yellow strain have never been reported. Here we provide a chemophysical characterization of regenerated silk fibroin (RSF) fibers, solution, and films obtained from cocoons of a Golden-Yellow strain of B. mori, by SEM, (1) H-NMR, HPLC, FT-IR, Raman and UV-Vis spectroscopy. We found that the extracted solution and films from B. mori Golden-Yellow fibroin displayed typical Raman spectroscopic and optical features of carotenoids. HPLC-analyses revealed that lutein was the carotenoid contained in the fiber and RSF biopolymer from yellow cocoons. Notably, primary neurons cultured on yellow SF displayed a threefold higher neurite length than those grown of white SF films. The results we report pave the way to expand the potential use of yellow SF in the field of neuroregenerative medicine and provide green chemistry approaches in biomedicine. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 287-299, 2016. PMID:26756916

  20. Hox transcription factor Antp regulates sericin-1 gene expression in the terminal differentiated silk gland of Bombyx mori

    Kimoto, Mai; Tsubota, Takuya; Uchino, Keiro; Sezutsu, Hideki; Takiya, Shigeharu

    2014-01-01

    Hox genes are well-known master regulators in developmental morphogenesis along the anteroposterior axis of animals. However, the molecular mechanisms by which Hox proteins regulate their target genes and determine cell fates are not fully understood. The silk gland of Bombyx mori is a tubular tissue divided into several subparts along the anteroposterior axis, and the silk genes are expressed with specific patterns. The sericin-1 gene (ser1) is expressed in the middle silk gland (MSG) with s...

  1. Antimicrobial and antioxidant surface modification toward a new silk-fibroin (SF)-L-Cysteine material for skin disease management

    Nogueira, Frederico; Granadeiro, Luíza; Mouro, Claudia; Gouveia, Isabel C.

    2016-02-01

    A novel dressing material - silk fibroin fabric (SF)-L-Cysteine (L-Cys) - is here developed to be used as standard treatment for atopic dermatitis (AD), which combines comfort, thermic, and tensile strength properties of silk materials with antioxidant and antimicrobial effects of L-Cys. A careful understanding about the linking strategies is needed in order not to compromise the bioavailability of L-Cys and deplenish its bioactivity. Durability was also addressed through washing cycles and compared with hospital requirements, according to international Standard EN ISO 105-C06:2010. The present research also analyze the interactions between Staphylococcus aureus and SF-L-Cys under simulating conditions of AD and demonstrated the effectiveness of a double covalent grafting, with the importance of SF tyrosine (Tyr) covalent linkage with L-Cys (SF-g-L-Cys/Tyr-g-L-Cys) even after several washing cycles, twenty five, whereas for a disposable application a single covalent mechanism of grafting L-Cys proved to be sufficient (SF-g-L-Cys). Results showed effective antimicrobial activities exhibiting higher inhibition ratios of 98.65% for SF-g-L-Cys after 5 washing cycles, whereas 97.55% for SF-g-L-Cys/Tyr-g-L-Cys after 25 washing cycles, both at pH 9.5 grafting strategy. Furthermore, it is also reported a non-protumoral effect of L-Cys. A new advance is herein achieved at the world of medical antimicrobial textiles tailored to address wound moisture environment and exudate self-cleaning, which may open novel applications as complementary therapy for AD disease.

  2. 丝素蛋白-氧化石墨烯共混薄膜热处理红外光谱研究%Study on Structure Variation of Silk Fibroin-Graphene Oxide Composite Film During Heat Treatment by FTIR

    2015-01-01

    Recently, silk fibroin-graphene oxide composites were studied, which showed that graphene oxide can improve mechanical properties of silk fibroin greatly. In this research, Fourier transform infrared microspectroscopy was used for in-suit examination of the heat treatment process of the silk fibroin-graphene oxide composite film. Secondary structures of the pure silk fibroin film and the silk fibroin-graphene oxide composite film containing 10%graphene oxide before and after the heat treatment were analyzed. Effect of graphene oxide and heat treatment on secondary structures of silk fibroin was discussed.%近些年,人们开始对丝素蛋白-氧化石墨烯这一体系进行了研究,发现氧化石墨烯可以大大提高丝素蛋白的力学性能。在本实验中,利用显微红外对丝素蛋白-氧化石墨烯共混薄膜的热处理过程进行了在线研究。通过对丝素蛋白酰胺 I 区的分峰拟合,分析了热处理前后纯丝素蛋白薄膜和含有10%氧化石墨烯的丝素蛋白共混薄膜中丝素蛋白二级结构的转变,初步解释了共混薄膜中氧化石墨烯和热处理对丝素蛋白二级结构的影响。

  3. Development of novel electrospun nanofibrous scaffold from P. ricini and A. mylitta silk fibroin blend with improved surface and biological properties

    Biomaterials that stimulate cell attachment and proliferation without any surface modification (e.g. RGD coating) provide potent and cost effective scaffold for regenerative medicine. This study assessed the physico-chemical properties and cell supportive potential of a silk fibroin blend scaffold derived from eri (Philosamia ricini) and tasar (Antheraea mylitta) silk (ET) respectively by electrospinning process. The scanning electron microscopy and transmission electron microscopy study found that the fiber diameters are in 200 to 800 nm range with flat morphology. The porosity of ET scaffold is found to be 79 ± 5% with majority of pore diameter between 2.5 to 5 nm. Similarly, Bombyx mori (BM) silk fibroin and gelatin nanofibrous scaffolds were prepared and taken as control. The ultimate tensile strength of the ET and BM scaffold are found to be 1.83 ± 0.13 MPa and 1.47 ± 0.10 MPa respectively. The measured contact angle (a measure of hydrophilicity) for ET (54.7° ± 1.8°) is found to be lower than BM (62° ± 2.3°). The ability to deposit apatite over ET is comparable to that of BM nanofibers. All the scaffolds were seeded with cord blood derived mesenchymal stem cells (hMSCs) and cultured for 14 days in vitro. The immunofluorescence study reveals enhanced cell attachment with higher metabolic activity for MSCs grown over ET than BM and gelatin. The ET scaffold also demonstrated expression of higher amount cell adhesion molecules (CD29/CD44) and higher proliferation rate than BM and gelatin as confirmed by MTT assay, DNA content estimation assay, flow cytometry study and SEM study. Overall, it may be concluded that ET scaffold may have potential in developing bone tissue grafts for clinical applications in the future. - Highlights: • We have fabricated eri–tasar blended electrospun silk fibroin nanofiber with superior surface property. • The hydrophilicity is higher than the silk fibroin nanofiber derived from Bombyx mori (BM). • The nanofibrous

  4. Development of novel electrospun nanofibrous scaffold from P. ricini and A. mylitta silk fibroin blend with improved surface and biological properties

    Panda, N.; Bissoyi, A.; Pramanik, K.; Biswas, A., E-mail: amitb79@gmail.com

    2015-03-01

    Biomaterials that stimulate cell attachment and proliferation without any surface modification (e.g. RGD coating) provide potent and cost effective scaffold for regenerative medicine. This study assessed the physico-chemical properties and cell supportive potential of a silk fibroin blend scaffold derived from eri (Philosamia ricini) and tasar (Antheraea mylitta) silk (ET) respectively by electrospinning process. The scanning electron microscopy and transmission electron microscopy study found that the fiber diameters are in 200 to 800 nm range with flat morphology. The porosity of ET scaffold is found to be 79 ± 5% with majority of pore diameter between 2.5 to 5 nm. Similarly, Bombyx mori (BM) silk fibroin and gelatin nanofibrous scaffolds were prepared and taken as control. The ultimate tensile strength of the ET and BM scaffold are found to be 1.83 ± 0.13 MPa and 1.47 ± 0.10 MPa respectively. The measured contact angle (a measure of hydrophilicity) for ET (54.7° ± 1.8°) is found to be lower than BM (62° ± 2.3°). The ability to deposit apatite over ET is comparable to that of BM nanofibers. All the scaffolds were seeded with cord blood derived mesenchymal stem cells (hMSCs) and cultured for 14 days in vitro. The immunofluorescence study reveals enhanced cell attachment with higher metabolic activity for MSCs grown over ET than BM and gelatin. The ET scaffold also demonstrated expression of higher amount cell adhesion molecules (CD29/CD44) and higher proliferation rate than BM and gelatin as confirmed by MTT assay, DNA content estimation assay, flow cytometry study and SEM study. Overall, it may be concluded that ET scaffold may have potential in developing bone tissue grafts for clinical applications in the future. - Highlights: • We have fabricated eri–tasar blended electrospun silk fibroin nanofiber with superior surface property. • The hydrophilicity is higher than the silk fibroin nanofiber derived from Bombyx mori (BM). • The nanofibrous

  5. The ESR signals in silk fibroin and wool keratin under both the effect of UV-irradiation and without any external effects and the formation of free radicals.

    Mamedov, Sh V; Aktas, B; Cantürk, M; Aksakal, B; Alekperov, V; Bülbül, F; Yilgin, R; Aslanov, R B

    2002-08-01

    ESR studies have been done on natural and UV-irradiated silk fibroins and wool keratins at the temperature range of -196 degrees C to 20 C. The intensities of ESR signals obtained from the irradiated samples at -196 C remarkably increase with respect to those of natural samples. While the signals mainly consist of triplet peaks at -196 C. a doublet arises around the room temperatures. For the first time, at room temperature without any external effect the complicated ESR spectra of fibrous proteins (wool keratin and silk fibroin) whose components are as follows have been observed: (1) (for white wool keratin) a central doublet with deltaHm = 1.1 mT and g = 2.0075; deltaHm = 5mT and g = 2.1911; (2) a wide peak with deltaHm approximately 66 mT and g approximately 2.1575; (3) the 'sulfur' peak given in the literature with deltaHm = 2.2 mT and g = 2.0218; (4) the signal with deltaHm = 0.6 mT and g = 2.0065, and for silk fibroin, (a) a very wide signal with deltaHm approximately 70 mT and g approximately 2.084; (b) a very sharp signal with deltaHm approximately 1.1 mT and g approximately 2.01; and (c) relatively narrower signal with deltaHm approximately 5 mT and g approximately 2.336. It has been shown by recombination kinetic method that 30-50% of the free radicals formed by UV-irradiation do not undergo recombination up to 220 degrees C and 15 degrees C for silk libroin and wool keratin, respectively, even they keep their concentration constant for long period of time (weeks, months, even longer). In this article, considering above-mentioned results, the mechanism of signals observed in natural wool keratin and silk fibroin without any external effects is examined. We can briefly explain the role of the subject of the article, by considering fibrous proteins and some applications of the reactions by free radical occurring in these proteins tinder the effects of different factors in medicine and biology and the important role of oxidation and the other kinds of

  6. Nano-scaled hydroxyapatite/silk fibroin sheets support osteogenic differentiation of rat bone marrow mesenchymal cells

    A novel biomaterial that was composed of nano-scaled sintered hydroxyapatite (HAp) and silk fibroin (SF) was fabricated. We cultured rat marrow mesenchymal cells (MMCs) on this biomaterial (nano-HAp/SF sheet), on bare SF sheets, and on tissue culture polystyrene (TCPS) dishes as controls, then evaluated cell adhesion, proliferation, and differentiation of the MMCs. After 1 h of culture, a large number of viable cells were observed on the nano-HAp/SF sheets in comparison to the controls. In addition, after 3 h of culture, the morphology of the cells on the nano-HAp/SF sheets was quite different from that on the SF sheets. MMCs extrude their cytoplasmic processes to nano-HAp particles and are well attached to the sheets. After 14 days of culture, under osteogenic conditions, the alkaline phosphatase (ALP) activity and bone-specific osteocalcin secretion of the cells on nano-HAp/SF sheets were higher than were those on the controls. These results indicated that the surface of the nano-HAp/SF sheets is covered with appropriate HAp crystal for MMC adhesion/proliferation and that the sheets effectively support the osteogenic differentiation of MMCs. Therefore, the nano-HAp/SF sheet is an effective biomaterial that is applicable in bone reconstruction surgery

  7. Electrophoretic-deposited novel ternary silk fibroin/graphene oxide/hydroxyapatite nanocomposite coatings on titanium substrate for orthopedic applications

    Li, Ming; Xiong, Pan; Mo, Maosong; Cheng, Yan; Zheng, Yufeng

    2016-09-01

    The combination of graphene oxide (GO) with robust mechanical property, silk fibroin (SF) with fascinating biological effects and hydroxyapatite (HA) with superior osteogenic activity is a competitive approach to make novel coatings for orthopedic applications. Herein, the feasibility of depositing ternary SF/GO/HA nanocomposite coatings on Ti substrate was firstly verified by exploiting electrophoretic nanotechnology, with SF being used as both a charging additive and a dispersion agent. The surface morphology, microstructure and composition, in vitro hemocompatibility and in vitro cytocompatibility of the resulting coatings were investigated by SEM, Raman, FTIR spectra and biocompatibility tests. Results demonstrated that GO, HA and SF could be co-deposited with a uniform, smooth thin-film morphology. The hemolysis rate analysis and the platelet adhesion test indicated good blood compatibility of the coatings. The human osteosarcoma MG63 cells displayed well adhesion and proliferation behaviors on the prepared coatings, with enhanced ALP activities. The present study suggested that SF/GO/HA nanocomposite coatings could be a promising candidate for the surface functionalization of biomaterials, especially as orthopedic implant coating.

  8. Electrophoretic-deposited novel ternary silk fibroin/graphene oxide/hydroxyapatite nanocomposite coatings on titanium substrate for orthopedic applications

    Li, Ming; Xiong, Pan; Mo, Maosong; Cheng, Yan; Zheng, Yufeng

    2016-06-01

    The combination of graphene oxide (GO) with robust mechanical property, silk fibroin (SF) with fascinating biological effects and hydroxyapatite (HA) with superior osteogenic activity is a competitive approach to make novel coatings for orthopedic applications. Herein, the feasibility of depositing ternary SF/GO/HA nanocomposite coatings on Ti substrate was firstly verified by exploiting electrophoretic nanotechnology, with SF being used as both a charging additive and a dispersion agent. The surface morphology, microstructure and composition, in vitro hemocompatibility and in vitro cytocompatibility of the resulting coatings were investigated by SEM, Raman, FTIR spectra and biocompatibility tests. Results demonstrated that GO, HA and SF could be co-deposited with a uniform, smooth thin-film morphology. The hemolysis rate analysis and the platelet adhesion test indicated good blood compatibility of the coatings. The human osteosarcoma MG63 cells displayed well adhesion and proliferation behaviors on the prepared coatings, with enhanced ALP activities. The present study suggested that SF/GO/HA nanocomposite coatings could be a promising candidate for the surface functionalization of biomaterials, especially as orthopedic implant coating.

  9. Fabrication and characterization of layered chitosan/silk fibroin/nano-hydroxyapatite scaffolds with designed composition and mechanical properties.

    Zhou, Ting; Wu, Jingjing; Liu, Jiaoyan; Luo, Ying; Wan, Ying

    2015-08-01

    Chitosan/nano-hydroxyapatite (HA) composites were first prepared and then used together with chitosan and silk fibroin (SF) to produce a type of four-layer porous scaffold that is potentially applicable for articular cartilage repair. The bottom layer of the scaffold was built with the chitosan/HA composite and the other three layers of the scaffold were fabricated using chitosan/SF composites in which the content of the chitosan and SF was altered in a mutually reversed trend. The so-produced chitosan/SF/HA scaffolds were further crosslinked using tripolyphosphate to achieve enhanced mechanical properties. Interconnected porous microstructures throughout the scaffolds were constructed using a temperature gradient processing technique, and the resultant scaffolds were endowed with graded pore-sizes and porosities as well as porous interface zones between contiguous layers without visual clefts. The compressive modulus and stress at 10% strain of the scaffolds in wet state showed a gradient-changed trend which partially mimics the compressive mechanical properties of an articular cartilage matrix. Cell culture on some chitosan/SF/HA scaffolds for a period of time of up to 14 d showed that the scaffolds were able to well support the growth and infiltration of cells, suggesting that the presently developed chitosan/SF/HA scaffolds have promising potential for articular cartilage repair. PMID:26225911

  10. Silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells

    Sawatjui, Nopporn [Biomedical Sciences, Graduate School, Khon Kaen University, Khon Kaen 40002 (Thailand); Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Damrongrungruang, Teerasak [Department of Oral Diagnosis, Faculty of Dentistry, Khon Kaen University, Khon Kaen 40002 (Thailand); Leeanansaksiri, Wilairat [Stem Cell Therapy and Transplantation Research Group, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); School of Microbiology, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Jearanaikoon, Patcharee [Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Hongeng, Suradej [Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400 (Thailand); Limpaiboon, Temduang, E-mail: temduang@kku.ac.th [Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2015-07-01

    Tissue engineering is becoming promising for cartilage repair due to the limited self-repair capacity of cartilage tissue. We previously fabricated and characterized a three-dimensional silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid (SF–GCH) scaffold and showed that it could promote proliferation of human bone marrow mesenchymal stem cells (BM-MSCs). This study aimed to evaluate its biological performance as a new biomimetic material for chondrogenic induction of BM-MSCs in comparison to an SF scaffold and conventional pellet culture. We found that the SF–GCH scaffold significantly enhanced the proliferation and chondrogenic differentiation of BM-MSCs compared to the SF scaffold and pellet culture in which the production of sulfated glycoaminoglycan was increased in concordance with the up-regulation of chondrogenic-specific gene markers. Our findings indicate the significant role of SF–GCH by providing a supportive structure and the mimetic cartilage environment for chondrogenesis which enables cartilage regeneration. Thus, our fabricated SF–GCH scaffold may serve as a potential biomimetic material for cartilage tissue engineering. - Highlights: • SF–GCH scaffold enhances proliferation and chondrogenic differentiation of BM-MSCs. • SF–GCH acts as a supportive and biomimetic material for BM-MSC chondrogenesis. • SF–GCH is a potential biomimetic scaffold suitable for cartilage tissue engineering.

  11. The anticoagulant ability of ferulic acid and its applications for improving the blood compatibility of silk fibroin

    Wang Song; Gao Zhen; Chen Xiaomeng; Lian Xiaojie; Zhu Hesun [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Zheng Jun; Sun Lizhong [Department of Cardiac Surgery, Cardiovascular Institute and Fu Wai Hospital, CAMS and PUMC, Beijing 100037 (China)], E-mail: wangsongbit@hotmail.com

    2008-12-15

    The hemocompatibility of silk fibroin (SF) was improved with ferulic acid (FA) by graft polymerization. Ferulic acid is an active ingredient of many Chinese herbal medicines, such as Chuanxiong (Rhizoma ligustici wallichii), Danggui (Angelica sinensis) and Awei (Asafoetida giantfennel), which have been used to treat cardiovascular diseases by Chinese physicians for thousands of years. The inhibitory functions of FA on blood coagulation and erythrocyte agglutination were first characterized by a Lee-White test tube method and a micropipette technique, respectively. Then, FA was immobilized on SF by graft polymerization and the surface composition of modified SF was characterized by attenuated total reflectance Fourier-transform infrared (ATR-FTIR), x-ray photoelectron spectroscopy (XPS) and optical microscopy. The anticoagulant activity of modified SF was assessed, respectively, by in vitro clotting time measurements on a photo-optical clot detection instrument and with the Lee-White test tube method. The test results indicated that in comparison to untreated SF, the anticoagulant activity of modified SF has been improved significantly. Moreover, the SF surface composition is altered by FA but its {beta}-sheet conformation is not disturbed.

  12. Silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells

    Tissue engineering is becoming promising for cartilage repair due to the limited self-repair capacity of cartilage tissue. We previously fabricated and characterized a three-dimensional silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid (SF–GCH) scaffold and showed that it could promote proliferation of human bone marrow mesenchymal stem cells (BM-MSCs). This study aimed to evaluate its biological performance as a new biomimetic material for chondrogenic induction of BM-MSCs in comparison to an SF scaffold and conventional pellet culture. We found that the SF–GCH scaffold significantly enhanced the proliferation and chondrogenic differentiation of BM-MSCs compared to the SF scaffold and pellet culture in which the production of sulfated glycoaminoglycan was increased in concordance with the up-regulation of chondrogenic-specific gene markers. Our findings indicate the significant role of SF–GCH by providing a supportive structure and the mimetic cartilage environment for chondrogenesis which enables cartilage regeneration. Thus, our fabricated SF–GCH scaffold may serve as a potential biomimetic material for cartilage tissue engineering. - Highlights: • SF–GCH scaffold enhances proliferation and chondrogenic differentiation of BM-MSCs. • SF–GCH acts as a supportive and biomimetic material for BM-MSC chondrogenesis. • SF–GCH is a potential biomimetic scaffold suitable for cartilage tissue engineering

  13. Mimicked cartilage scaffolds of silk fibroin/hyaluronic acid with stem cells for osteoarthritis surgery: Morphological, mechanical, and physical clues.

    Jaipaew, Jirayut; Wangkulangkul, Piyanun; Meesane, Jirut; Raungrut, Pritsana; Puttawibul, Puttisak

    2016-07-01

    Osteoarthritis is a critical disease that comes from degeneration of cartilage tissue. In severe cases surgery is generally required. Tissue engineering using scaffolds with stem cell transplantation is an attractive approach and a challenge for orthopedic surgery. For sample preparation, silk fibroin (SF)/hyaluronic acid (HA) scaffolds in different ratios of SF/HA (w/w) (i.e., 100:0, 90:10, 80:20, and 70:30) were formed by freeze-drying. The morphological, mechanical, and physical clues were considered in this research. The morphological structure of the scaffolds was observed by scanning electron microscope. The mechanical and physical properties of the scaffolds were analyzed by compressive and swelling ratio testing, respectively. For the cell experiments, scaffolds were seeded and cultured with human umbilical cord-derived mesenchymal stem cells (HUMSCs). The cultured scaffolds were tested for cell viability, histochemistry, immunohistochemistry, and gene expression. The SF with HA scaffolds showed regular porous structures. Those scaffolds had a soft and elastic characteristic with a high swelling ratio and water uptake. The SF/HA scaffolds showed a spheroid structure of the cells in the porous structure particularly in the SF80 and SF70 scaffolds. Cells could express Col2a, Agg, and Sox9 which are markers for chondrogenesis. It could be deduced that SF/HA scaffolds showed significant clues for suitability in cartilage tissue engineering and in surgery for osteoarthritis. PMID:27127042

  14. Composite biodegradable biopolymer coatings of silk fibroin - Poly(3-hydroxybutyric-acid-co-3-hydroxyvaleric-acid) for biomedical applications

    Miroiu, Floralice Marimona; Stefan, Nicolaie; Visan, Anita Ioana; Nita, Cristina; Luculescu, Catalin Romeo; Rasoga, Oana; Socol, Marcela; Zgura, Irina; Cristescu, Rodica; Craciun, Doina; Socol, Gabriel

    2015-11-01

    Composite silk fibroin-poly(3-hydroxybutyric-acid-co-3-hydroxyvaleric-acid) (SF-PHBV) biodegradable coatings were grown by Matrix Assisted Pulsed Laser Evaporation on titanium substrates. Their physico-chemical properties and particularly the degradation behavior in simulated body fluid at 37 °C were studied as first step of applicability in local controlled release for tissue regeneration applications. SF and PHBV, natural biopolymers with excellent biocompatibility, but different biodegradability and tensile strength properties, were combined in a composite to improve their properties as coatings for biomedical uses. FTIR analyses showed the stoichiometric transfer from targets to coatings by the presence in the spectra of the main absorption maxima characteristic of both polymers. XRD investigations confirmed the FTIR results showing differences in crystallization behavior with respect to the SF and PHBV content. Contact angle values obtained through wettability measurements indicated the MAPLE deposited coatings were highly hydrophilic; surfaces turning hydrophobic with the increase of the PHBV component. Degradation assays proved that higher PHBV contents resulted in enhanced resistance and a slower degradation rate of composite coatings in SBF. Distinct drug-release schemes could be obtained by adjusting the SF:PHBV ratio to controllably tuning the coatings degradation rate, from rapid-release formulas, where SF predominates, to prolonged sustained ones, for larger PHBV content.

  15. Nature-Derived Aloe Vera Gel Blended Silk Fibroin Film Scaffolds for Cornea Endothelial Cell Regeneration and Transplantation.

    Kim, Do Kyung; Sim, Bo Ra; Khang, Gilson

    2016-06-22

    The goal of this study was to fabricate an appropriate replacement for cadaveric corneas to overcome a shortage of cadaveric corneas for transplantation. In this study, we fabricated transparent ultrathin film scaffolds with nature-derived aloe vera (AV) gel and silk fibroin (SF) for corneal endothelial cells (CECs). The scaffolds were subjected to analysis of transparency and contact angle using field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy to determine their physical and chemical properties. FESEM images revealed that the critical morphology of CECs was formed on the AV gel in the blend with SF rather than in the scaffold with SF alone. The cell proliferation, phenotype, and specific gene marker expressions for CECs were determined by MTT assays, immunofluorescence, and reverse transcription polymerase chain reactions. Incorporation of a small amount of AV gel increased the cell viability and maintained its functions well. The scaffolds were easily handled for transplantation into rabbit eyes with small incisions and examined by their transparency after transplantation and histological staining. The scaffolds attached to the surface of the corneal stroma and integrated with surrounding corneal tissue without a significant inflammatory reaction. These results indicate that AV blended SF film scaffolds might be a suitable substitute for alternative corneal grafts for transplantation. PMID:27243449

  16. Electrospun and woven silk fibroin/poly(lactic-co- glycolic acid nerve guidance conduits for repairing peripheral nerve injury

    Ya-ling Wang

    2015-01-01

    Full Text Available We have designed a novel nerve guidance conduit (NGC made from silk fibroin and poly(lactic-co-glycolic acid through electrospinning and weaving (ESP-NGCs. Several physical and biological properties of the ESP-NGCs were assessed in order to evaluate their biocompatibility. The physical properties, including thickness, tensile stiffness, infrared spectroscopy, porosity, and water absorption were determined in vitro. To assess the biological properties, Schwann cells were cultured in ESP-NGC extracts and were assessed by morphological observation, the MTT assay, and immunohistochemistry. In addition, ESP-NGCs were subcutaneously implanted in the backs of rabbits to evaluate their biocompatibility in vivo. The results showed that ESP-NGCs have high porosity, strong hydrophilicity, and strong tensile stiffness. Schwann cells cultured in the ESP-NGC extract fluids showed no significant differences compared to control cells in their morphology or viability. Histological evaluation of the ESP-NGCs implanted in vivo indicated a mild inflammatory reaction and high biocompatibility. Together, these data suggest that these novel ESP-NGCs are biocompatible, and may thus provide a reliable scaffold for peripheral nerve repair in clinical application.

  17. Electrospun and woven silk fibroin/poly(lactic-co-glycolic acid) nerve guidance conduits for repairing peripheral nerve injury.

    Wang, Ya-Ling; Gu, Xiao-Mei; Kong, Yan; Feng, Qi-Lin; Yang, Yu-Min

    2015-10-01

    We have designed a novel nerve guidance conduit (NGC) made from silk fibroin and poly(lactic-co-glycolic acid) through electrospinning and weaving (ESP-NGCs). Several physical and biological properties of the ESP-NGCs were assessed in order to evaluate their biocompatibility. The physical properties, including thickness, tensile stiffness, infrared spectroscopy, porosity, and water absorption were determined in vitro. To assess the biological properties, Schwann cells were cultured in ESP-NGC extracts and were assessed by morphological observation, the MTT assay, and immunohistochemistry. In addition, ESP-NGCs were subcutaneously implanted in the backs of rabbits to evaluate their biocompatibility in vivo. The results showed that ESP-NGCs have high porosity, strong hydrophilicity, and strong tensile stiffness. Schwann cells cultured in the ESP-NGC extract fluids showed no significant differences compared to control cells in their morphology or viability. Histological evaluation of the ESP-NGCs implanted in vivo indicated a mild inflammatory reaction and high biocompatibility. Together, these data suggest that these novel ESP-NGCs are biocompatible, and may thus provide a reliable scaffold for peripheral nerve repair in clinical application. PMID:26692862

  18. Anti-EGFR-iRGD recombinant protein conjugated silk fibroin nanoparticles for enhanced tumor targeting and antitumor efficiency

    Bian, Xinyu; Wu, Puyuan; Sha, Huizi; Qian, Hanqing; Wang, Qing; Cheng, Lei; Yang, Yang; Yang, Mi; Liu, Baorui

    2016-01-01

    In this study, we report a novel kind of targeting with paclitaxel (PTX)-loaded silk fibroin nanoparticles conjugated with iRGD–EGFR nanobody recombinant protein (anti-EGFR-iRGD). The new nanoparticles (called A-PTX-SF-NPs) were prepared using the carbodiimide-mediated coupling procedure and their characteristics were evaluated. The cellular cytotoxicity and cellular uptake of A-PTX-SF-NPs were also investigated. The results in vivo suggested that NPs conjugated with the recombinant protein exhibited more targeting and anti-neoplastic property in cells with high EGFR expression. In the in vivo antitumor efficacy assay, the A-PTX-SF-NPs group showed slower tumor growth and smaller tumor volumes than PTX-SF-NPs in a HeLa xenograft mouse model. A real-time near-infrared fluorescence imaging study showed that A-PTX-SF-NPs could target the tumor more effectively. These results suggest that the anticancer activity and tumor targeting of A-PTX-SF-NPs were superior to those of PTX-SF-NPs and may have the potential to be used for targeted delivery for tumor therapies.

  19. 多孔丝素材料组织相容性的初步研究%A preliminary study on the histocompatibility of silk fibroin

    陆艳; 赵霞; 邵正中; 曹正兵; 蔡丽慧

    2011-01-01

    背景:丝素蛋白支架材料被植入生物体内后会发生降解且无法完全与宿主组织分离,这类材料生物相容性的研究大多为体外实验,其体内的组织相容性和降解过程的研究结果仍不充分.目的:初步观察多孔丝素材料的体内组织相容性.方法:将多孔丝素支架埋藏于SD大鼠背部皮下,术后2,4,6,8周分别取材,对伤口局部及材料情况大体观察,然后材料切片苏木精-伊红染色行组织学观察.结果与结论:动物伤口愈合良好,多孔丝素表面形成极薄的纤维包裹,周围组织反应轻微.组织切片见炎细胞浸润,以巨噬细胞为主,支架材料边缘孔隙内有成纤维细胞和毛细血管长入.8周时材料边缘部分可见支架结构崩解现象,而材料内部变化不大.结果显示组织细胞可以沿多孔丝素支架表面贴附生长,提示支架材料具有较好的组织相容性.%BACKGROUND: As one kind of naturally occurring polymers, silk fi broin has been widely used in tissue engeering research,which can be made into different forms for application. Scientists find many difficulties in histocompatibility study of silk fibroin,because it is made of protein and biodegradable. And there are few reports on the study on histocompatibility of silk fibroin.OBJECTIVE: To perform a preliminary in vivo study on the histocompatibility of silk fibroin.METHODS: Porous silk fibroin scaffolds were buried into the subcutaneous part of the back of SD rats. At 4, 6, 8 weeks afteroperation, general observation and histological examination were performed.RESULTS AND CONCLUSION: The wounds healed up well after operation. Only thin connective tissue wrap was found on silkfibroin scaffold. Macrophages were observed in tissue section, and fibroblasts and capillary vessels could grow into the porespaces. We found the border of the scaffolds break down at 8 weeks postoperatively, while the inside part remained as it was.Porous silk fibroin scaffold shows

  20. ToF-SIMS Characterization of Silk Fibroin and Polypyrrole Composite Actuators

    Bradshaw, Nathan P.; Severt, Sean Y.; Wang, Zhaoying; Fengel, Carly V.; Larson, Jesse D.; Zhu, Zihua; Murphy, Amanda; Leger, Janelle M.

    2015-08-31

    Biocompatible materials capable of controlled actuation under biologically relevant conditions are in high demand for use in a number of biomedical applications. Recently, we demonstrated that a composite material composed of silk biopolymer and the conducting polymer poly(pyrrole) can bend under an applied voltage using a simple bilayer device. Here we present further characterization of these bilayer actuators using time of flight secondary ion mass spectrometry, and provide clarification on the mechanism of actuation and factors affecting device performance and stability. We will discuss the results of this study in the context of strategies for optimization of device performance.

  1. DNA Synthesis in the Giant Nuclei of Insects - Control Machinery and Structures Observed in the Silk-Producing Gland of Bombyx Mori

    The existence in many insect organs of giant nuclei without visible chromosomes raises the question of possible homologies between the chromatin structures of these nuclei and those of polytene nuclei or common euploid cells. Studies have been made of the nuclei in the silk-producing gland of Bombyx mori. The DNA synthesis is cyclic. During the third stage there are three successive synthesis cycles, which appear to be relatively autonomous in the individual nuclei. For more than 24 hours after moulting, however, synthesis is greatly reduced; moulting factors thus cause synchronization of all the nuclei. This leads to the conclusion that the triggering of a synthesis cycle is controlled by general factors external to the cell. At the end of larval development, DNA synthesis is suspended at the moment when large-scale secretion of silk begins. Evaluation of the pool of endogenic precursors of DNA shows that it is considerably reduced at the end of the DNA synthesis period. The hypothesis proposed is that large-scale synthesis of fibroin requires polarization of the metabolism, hence the depletion of the nucleotide pool and the end of DNA synthesis. DNA synthesis within a single nucleus is to some extent asynchronic. In particular, a well-defined, delayed-synthesis structure visible only in the female seems to be a possible homologue of a sex chromosome. Other asynchronisms are also apparent, though less clearly. Functional studies thus allow the supposition that in the giant nucleus replication units retain an individuality comparable to that of a polytene chromosome. These observations together lead to the conclusion that a nucleus in the silk-producing gland has physiological and structural characteristics similar to those of a polytene nucleus, differing from it essentially in the lesser degree of condensation of its structures. (author)

  2. Entrapment of both glucose oxidase and peroxidase in regenerated silk fibroin membraneCharacterization of the membrane structure and its application to an amperometric glucose sensor employing methylene green as an electron transfer mediato.

    Liu, Y; Liu, H; Qian, J; Deng, J; Yu, T

    1996-04-01

    Two enzmyes, glucose oxidase and peroxidase, were for the first time simultaneously immobilized in regenerated silk fibroin membrane. The structure and morphology of the regenerated silk fibroin membrane containing both glucose oxidase and peroxidase were investigated with IR spectra and SEM. The bienzymes do not change the structures of the regenerated silk fibroin in the membrane, which has an islands-sea structure. For the first time, an amperometric methylene green mediating sensor for glucose based on co-immobilization of both glucose oxidase and peroxidase in regenerated silk fibroin was constructed. Cyclic voltammetry and amperometry were used to test the suitability of methylene green shuttling electrons between peroxidase and the glassy carbon electrode. The bienzyme-based system offers fast response and high sensitivity of the sensor to glucose. The effects of pH, temperature, and the concentration of the mediator on the response current were evaluated, and the dependence of the Michaelis-Menten constant K(m)(app) on the concentration of the mediator was investigated. PMID:15045461

  3. A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering.

    Shao, Weili; He, Jianxin; Han, Qiming; Sang, Feng; Wang, Qian; Chen, Li; Cui, Shizhong; Ding, Bin

    2016-10-01

    To engineer bone tissue, a scaffold with good biological properties should be provided to approximate the hierarchical structure of collagen fibrils in natural bone. In this study, we fabricated a novel scaffold consisting of multilayer nanofiber fabrics (MLNFFs) by weaving nanofiber yarns of polylactic acid (PLA) and Tussah silk fibroin (TSF). The yarns were fabricated by electrospinning, and we found that spinnability, as well as the mechanical properties of the resulting scaffold, was determined by the ratio between polylactic acid and Tussah silk fibroin. In particular, a 9:1 mixture can be spun continuously into nanofiber yarns with narrow diameter distribution and good mechanical properties. Accordingly, woven scaffolds based on this mixture had excellent mechanical properties, with Young's modulus 417.65MPa and tensile strength 180.36MPa. For nonwoven scaffolds fabricated from the same materials, the Young's modulus and tensile strength were 2- and 4-fold lower, respectively. Woven scaffolds also supported adhesion and proliferation of mouse mesenchymal stem cells, and promoted biomineralization via alkaline phosphatase and mineral deposition. Finally, the scaffolds significantly enhanced the formation of new bone in damaged femoral condyle in rabbits. Thus, the scaffolds are potentially suitable for bone tissue engineering because of biomimetic architecture, excellent mechanical properties, and good biocompatibility. PMID:27287159

  4. Silk fibroin/sodium alginate composite nano-fibrous scaffold prepared through thermally induced phase-separation (TIPS) method for biomedical applications

    Zhang, Haiping, E-mail: zhp9810_a@163.com; Liu, Xiaotian, E-mail: xtianliu@126.com; Yang, Mingying, E-mail: yangm@zju.edu.cn; Zhu, Liangjun, E-mail: ljzhu@zju.edu.cn

    2015-10-01

    To mimic the natural fibrous structure of the tissue extracellular matrix, a nano-fibrous silk fibroin (SF)/sodium alginate (SA) composite scaffold was fabricated by a thermally-induced phase-separation method. The effects of SF/SA ratio on the structure and the porosity of the composite scaffolds were examined. Scanning electron microscopy and porosity results showed that the 5SF/1SA and 3SF/1SA scaffolds possessed an excellent nano-fibrous structure and a porosity of more than 90%. Fourier transform infrared, X-ray diffraction, and differential scanning calorimetry results indicated the physical interaction between SF and SA molecules and their good compatibility in the 5SF/1SA and 3SF/1SA scaffolds, whereas they showed less compatibility in the 1SF/1SA scaffold. Cell culture results showed that MG-63 cells can attach and grow well on the surface of the SF/SA scaffolds. The nano-fibrous SF/SA scaffold can be potentially used in tissue engineering. - Highlights: • We fabricate a nano-fibrous silk fibroin (SF)/sodium alginate (SA) composite scaffold. • The scaffold was prepared through a thermally induced phase separation method. • SF molecules are physically interacted with SA molecules. • Good molecular compatibility can be found in 5SF/1SA and 3SF/1SA scaffolds. • The nano-fibrous SF/SA scaffold is biocompatible.

  5. Genome editing of BmFib-H gene provides an empty Bombyx mori silk gland for a highly efficient bioreactor.

    Ma, Sanyuan; Shi, Run; Wang, Xiaogang; Liu, Yuanyuan; Chang, Jiasong; Gao, Jie; Lu, Wei; Zhang, Jianduo; Zhao, Ping; Xia, Qingyou

    2014-01-01

    Evolution has produced some remarkable creatures, of which silk gland is a fascinating organ that exists in a variety of insects and almost half of the 34,000 spider species. The impressive ability to secrete huge amount of pure silk protein, and to store proteins at an extremely high concentration (up to 25%) make the silk gland of Bombyx mori hold great promise to be a cost-effective platform for production of recombinant proteins. However, the extremely low production yields of the numerous reported expression systems greatly hindered the exploration and application of silk gland bioreactors. Using customized zinc finger nucleases (ZFN), we successfully performed genome editing of Bmfib-H gene, which encodes the largest and most abundant silk protein, in B. mori with efficiency higher than any previously reported. The resulted Bmfib-H knocked-out B. mori showed a smaller and empty silk gland, abnormally developed posterior silk gland cells, an extremely thin cocoon that contain only sericin proteins, and a slightly heavier pupae. We also showed that removal of endogenous Bmfib-H protein could significantly increase the expression level of exogenous protein. Furthermore, we demonstrated that the bioreactor is suitable for large scale production of protein-based materials. PMID:25359576

  6. New application of silk protein

    Gunma prefecture is famous for sericulture and silk textile industry district in Japan. In Gunma prefecture, some kinds of new generation silk as high performance and high quality silk were developed. These silk are used not only for the new textile materials but also for new industrial materials. New application of silk protein, fibroin and sericin, is considered. (author)

  7. New application of silk protein

    Kamiishi, Youichi [Textile Research Institute of Gunma, Kiryu, Gunma (Japan)

    2000-03-01

    Gunma prefecture is famous for sericulture and silk textile industry district in Japan. In Gunma prefecture, some kinds of new generation silk as high performance and high quality silk were developed. These silk are used not only for the new textile materials but also for new industrial materials. New application of silk protein, fibroin and sericin, is considered. (author)

  8. In vitro and in vivo studies on the cytotoxicity of irradiated silk fibroin against mouse melanoma tumor cell

    The physicochemical properties of proteins can be altered by irradiation. But, it is rarely that the researches on the functional properties of irradiated proteins have been reported. Fibroin is a fibrous protein derived from silkworm Bombyx mori and has been suggested as a biomaterial for biomedical application. Therefore, fibroin was selected as a model protein and was examined with the irradiation effects on the cytotoxicity of fibroin on tumor cell. The cytotoxicity of fibroin against mouse melanoma cell (B16BL6) showed a significant increase dependent upon the increase of irradiation dose. And also, the splenocyte proliferation activities of fibroin were increased by gamma irradiation. In addition, the oral administration of irradiated fibroin significantly increased the inhibition rate of tumor growth in tumor-bearing mouse model. The reason might be due to the change of protein structure by gamma irradiation and is being studied. From these result, it could be concluded that the irradiated fibroin might be a potential candidate as a valuable product in food and medical industry.

  9. Genome editing of BmFib-H gene provides an empty Bombyx mori silk gland for a highly efficient bioreactor

    Ma, Sanyuan; Shi, Run; Wang, Xiaogang; Liu, Yuanyuan; Chang, Jiasong; Gao, Jie; Lu, Wei; Zhang, Jianduo; ZHAO, PING; Xia, Qingyou

    2014-01-01

    Evolution has produced some remarkable creatures, of which silk gland is a fascinating organ that exists in a variety of insects and almost half of the 34,000 spider species. The impressive ability to secrete huge amount of pure silk protein, and to store proteins at an extremely high concentration (up to 25%) make the silk gland of Bombyx mori hold great promise to be a cost-effective platform for production of recombinant proteins. However, the extremely low production yields of the numerou...

  10. When inordinate tissue growth is beneficial: Improving silk production by increasing silk gland size

    Xavier Bellés

    2011-01-01

    @@ Some 5000 years ago, the legendary Chinese emperor Huang-Ti ordered his wife, Hsi-Ling-Shi, to find out what was damaging his mulberry trees.HsiLing-Shi found white worms eating the mulberry leaves and spinning shiny cocoons.She accidentally dropped a cocoon into her tea cup and saw a delicate, slender thread unwind itself from the cocoon.The young princess had discovered silk [1, 2].

  11. Comparative transcriptome analyses on silk glands of six silkmoths imply the genetic basis of silk structure and coloration

    Dong, Yang; Dai, Fangyin; Ren, Yandong; Liu, Hui; Chen, Lei; Yang, Pengcheng; Liu, Yanqun; LI, XIN; Wang, Wen; Xiang, Hui

    2015-01-01

    Background Silk has numerous unique properties that make it a staple of textile manufacturing for several thousand years. However, wider applications of silk in modern have been stalled due to limitations of traditional silk produced by Bombyx mori. While silk is commonly produced by B. mori, several wild non-mulberry silkmoths--especially members of family Saturniidae--produce silk with superior properties that may be useful for wider applications. Further utilization of such silks is hamper...

  12. Fabrication of freestanding silk fibroin films containing Ag nanowires/NaYF4:Yb,Er nanocomposites with metal-enhanced fluorescence behavior.

    Zhao, Bing; Qi, Ning; Zhang, Ke-Qin; Gong, Xiao

    2016-06-01

    Solar cells containing upconversion nanoparticles (UCNPs) used as a power source in biomedical nanosystems have attracted great interest. However, such solar cells further need to be developed because their substrate materials should be biocompatible, flexible and highly luminescent. Here, we report that freestanding silk fibroin (SF) films containing a mesh of silver nanowires (AgNWs) and β-NaYF4:Yb,Er nanocrystals with metal-enhanced fluorescence behavior can be fabricated. The freestanding composite films exhibit properties such as good optical transparency, conductivity and flexibility. Furthermore, they show significantly enhanced upconversion fluorescence due to surface plasmon polaritons (SPPs) of AgNWs compared to the SF-UCNP films without AgNWs. The freestanding composite films with metal-enhanced fluorescence behavior show great promise for future applications in self-powered nanodevices such as cardiac pacemakers, biosensors and nanorobots. PMID:27210511

  13. Biocompatibility of plasma-treated poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanofiber mats modified by silk fibroin for bone tissue regeneration.

    Unalan, Irem; Colpankan, Oylum; Albayrak, Aylin Ziylan; Gorgun, Cansu; Urkmez, Aylin Sendemir

    2016-11-01

    The objective of this study was to produce biocompatible plasma-treated and silk-fibroin (SF) modified poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofiber mats. The mats were plasma-treated using O2 or N2 gas to increase their hydrophilicity followed by SF immobilization for the improvement of biocompatibility. Contact angle measurements and SEM showed increased hydrophilicity and no disturbed morphology, respectively. Cell proliferation assay revealed that SF modification together with N2 plasma (PS/N2) promoted higher osteoblastic (SaOs-2) cell viability. Although, O2 plasma triggered more mineral formation on the mats, it showed poor cell viability. Consequently, the PS/N2 nanofiber mats would be a potential candidate for bone tissue engineering applications. PMID:27524087

  14. Silk fibroin immobilization on poly(ethylene terephthalate) films: Comparison of two surface modification methods and their effect on mesenchymal stem cells culture

    Silk fibroin (SF) has played a curial role for the surface modification of conventional materials to improve the biocompatibility, and SF modified poly(ethylene terephthalate) (PET) materials have potential applications on tissue engineering such as artificial ligament, artificial vessel, artificial heart valve sewing cuffs dacron and surgical mesh engineering. In this work, SF was immobilized onto PET film via two different methods: 1) plasma pretreatment followed by SF dip coating (PET-SF) and 2) plasma-induce acrylic acid graft polymerization and subsequent covalent immobilization of SF on PET film (PET-PAA-SF). It could be found that plasma treatment provided higher surface roughness which was suitable for further SF dip coating, while grafted poly(acrylic acid) (PAA) promised the covalent bonding between SF and PAA. ATR-FTIR adsorption band at 3284 cm−1, 1623 cm−1 and 1520 cm−1 suggested the successful introduction of SF onto PET surface, while the amount of immobilized SF of PET-SF was higher than PET-PAA-SF according to XPS investigation (0.29 vs 0.23 for N/C ratio). Surface modified PET film was used as substrate for mesenchymal stem cells (MSCs) culture, the cells on PET-SF surface exhibited optimum density compared to PET-PAA-SF according to CCK-8 assays, which indicated that plasma pretreatment followed by SF dip coating was a simple and effective way to prepare biocompatible PET surface. Highlights: ► Silk fibroins were immobilized onto PET films with or without the linker of PAA. ► Various techniques were performed to characterize the modified surfaces ► Plasma treatment followed by SF dip coating introduced more SF onto PET films. ► Compare to PET-PAA-SF, PET-SF has better biocompatibility base on MSCs culture

  15. Removal of copper ions from aqueous solution by adsorption onto novel polyelectrolyte film-coated nanofibrous silk fibroin non-wovens

    Zhou, Weitao, E-mail: weitao_zhou@yahoo.com [Key Laboratory of Functional Textiles, The Education Department of Henan Province, Zhongyuan University of Technology, Zhengzhou 450007 (China); Huang, Haitao [School of Textile, Henan Institute of Engineering, Zhengzhou 451191 (China); Du, Shan [Australian Future Fibers Research and Innovation Centre for Frontier Materials, Deakin University, Geelong, VIC 3217 (Australia); Huo, Yingdong; He, Jianxin [Key Laboratory of Functional Textiles, The Education Department of Henan Province, Zhongyuan University of Technology, Zhengzhou 450007 (China); Cui, Shizhong, E-mail: snowballer@163.com [Key Laboratory of Functional Textiles, The Education Department of Henan Province, Zhongyuan University of Technology, Zhengzhou 450007 (China)

    2015-08-01

    Graphical abstract: - Highlights: • Polyethylenimine coated silk fibroin nanofibrous nonwovens were fabricated. • The characteristics such as the fiber shape and porous structure were well maintained. • The structure and adsorption properties were studied. The adsorption property for copper ions is good. - Abstract: In this approach, polyelectrolyte film-coated nanofibrous silk fibroin (SF) nonwovens were prepared from the alternate deposition of positively charged polyethylenimine (PEI) and negatively charged SF using electrostatic layer-by-layer (LBL) self-assembled technology. The composite membranes were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectrometer. The SF-PEI multilayer-assembled nanofibers (less than five layers) were fine and uniform with the fiber diameter from 400 nm to 600 nm, and had very large surface area and high porosity (more than 70%). The amino groups of PEI were proved to be deposited onto SF nonwovens, which granted the coated nonwovens with potential applicability for copper ions adsorption. The PEI films coated SF substrate showed much higher copper ions adsorption capacity than that of ethanol treated SF nanofibers. Adding the number of PEI coated could enhance the Cu{sup 2+} adsorption capacity significantly. The maximum milligrams per gram of copper ions adsorbed reached 59.7 mg/g when the SF substrate was coated with 5 bilayers of SF-PEI. However, the copper ions adsorption capacity had no obvious change as the number of PEI continued to increase. These results suggest potential for PEL film-coated nanofibrous nonwovens as a new adsorbent for metal ions.

  16. Removal of copper ions from aqueous solution by adsorption onto novel polyelectrolyte film-coated nanofibrous silk fibroin non-wovens

    Graphical abstract: - Highlights: • Polyethylenimine coated silk fibroin nanofibrous nonwovens were fabricated. • The characteristics such as the fiber shape and porous structure were well maintained. • The structure and adsorption properties were studied. The adsorption property for copper ions is good. - Abstract: In this approach, polyelectrolyte film-coated nanofibrous silk fibroin (SF) nonwovens were prepared from the alternate deposition of positively charged polyethylenimine (PEI) and negatively charged SF using electrostatic layer-by-layer (LBL) self-assembled technology. The composite membranes were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectrometer. The SF-PEI multilayer-assembled nanofibers (less than five layers) were fine and uniform with the fiber diameter from 400 nm to 600 nm, and had very large surface area and high porosity (more than 70%). The amino groups of PEI were proved to be deposited onto SF nonwovens, which granted the coated nonwovens with potential applicability for copper ions adsorption. The PEI films coated SF substrate showed much higher copper ions adsorption capacity than that of ethanol treated SF nanofibers. Adding the number of PEI coated could enhance the Cu2+ adsorption capacity significantly. The maximum milligrams per gram of copper ions adsorbed reached 59.7 mg/g when the SF substrate was coated with 5 bilayers of SF-PEI. However, the copper ions adsorption capacity had no obvious change as the number of PEI continued to increase. These results suggest potential for PEL film-coated nanofibrous nonwovens as a new adsorbent for metal ions

  17. Silk fibroin nanoparticles constitute a vector for controlled release of resveratrol in an experimental model of inflammatory bowel disease in rats

    Lozano-Pérez AA

    2014-09-01

    Full Text Available Antonio Abel Lozano-Pérez,1 Alba Rodriguez-Nogales,2 Víctor Ortiz-Cullera,1 Francesca Algieri,2 José Garrido-Mesa,2 Pedro Zorrilla,2 M Elena Rodriguez-Cabezas,2 Natividad Garrido-Mesa,2 M Pilar Utrilla,2 Laura De Matteis,3 Jesús Martínez de la Fuente,3 José Luis Cenis,1 Julio Gálvez2 1Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, Murcia, Spain; 2Centro de Investigaciones Biomédicas en Red – Enfermedades Hepáticas y Digestivas, Department of Pharmacology, ibs Granada, Center for Biomedical Research, University of Granada, Granada, Spain; 3Instituto de Nanociencia de Aragón, Universidad de Zaragoza, Zaragoza, Spain Purpose: We aimed to evaluate the intestinal anti-inflammatory properties of silk fibroin nanoparticles, around 100 nm in size, when loaded with the stilbene compound resveratrol, in an experimental model of rat colitis. Methods: Nanoparticles were loaded with resveratrol by adsorption. The biological effects of the resveratrol-loaded nanoparticles were tested both in vitro, in a cell culture of RAW 264.7 cells (mouse macrophages, and in vivo, in the trinitrobenzenesulfonic acid model of rat colitis, when administered intracolonically.Results: The resveratrol liberation in 1× phosphate-buffered saline (PBS; pH 7.4 was characterized by fast liberation, reaching the solubility limit in 3 hours, which was maintained over a period of 80 hours. The in vitro assays revealed immunomodulatory properties exerted by these resveratrol-loaded nanoparticles since they promoted macrophage activity in basal conditions and inhibited this activity when stimulated with lipopolysaccharide. The in vivo experiments showed that after evaluation of the macroscopic symptoms, inflammatory markers, and intestinal barrier function, the fibroin nanoparticles loaded with resveratrol had a better effect than the single treatments, being similar to that produced by the glucocorticoid dexamethasone. Conclusion: Silk

  18. Enhancement of osseointegration of polyethylene terephthalate artificial ligament by coating of silk fibroin and depositing of hydroxyapatite

    Jiang J

    2014-09-01

    Full Text Available Jia Jiang,1,2 Fang Wan,1 Jianjun Yang,1 Wei Hao,3 Yaxian Wang,3 Jinrong Yao,3 Zhengzhong Shao,3 Peng Zhang,1 Jun Chen,1 Liang Zhou,4 Shiyi Chen11Fudan University Sports Medicine Center and Department of Sports Medicine and Arthroscopy Surgery, Huashan Hospital, 2State Key Laboratory of Molecular Engineering of Polymers, 3Laboratory of Advanced Materials, National Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, People’s Republic of China; 4Department of Forest Products, Anhui Agricultural University, Hefei Anhui Province, People’s Republic of ChinaBackground: Application of artificial ligament in anterior cruciate ligament reconstruction is one of the research focuses of sports medicine but the biological tendon–bone healing still remains a problem. The preliminary study of hydroxyapatite (HAP coating on the polyethylene terephthalate (PET surface could effectively induce the osteoblast differentiation, but the tendon–bone healing was still not stable. As a green synthesis process, the biomimetic mineralization can simulate the natural bone growth in vitro and in vivo.Methods: HAP crystals were grown under the guide of silk fibroin (SF PET surface by biomimetic route. Several techniques including scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy were utilized for proving the introduction of both SF and HAP. The viability and osseointegration of bone marrow stromal cells on the surface of three kinds of ligament, including PET group (non-coating group, PET+SF group (SF-coating group, and PET+SF+HAP group (combined HAP- and SF-coating group, were analyzed by CCK-8 assays and alkaline phosphatase (ALP detection. Seventy-two mature male New Zealand rabbits were randomly divided into three groups. Among them, 36 rabbits were sacrificed for mechanical testing, and

  19. Progress of electrospun silk fibroin based scaffolds for tissue engineering%静电纺丝素蛋白及其应用于组织工程的研究进展

    黄继伟; 张锋; 左保齐

    2011-01-01

    The researches related to electrospinning of silk, including electrospim solvents, blends, and electrospin device are reviewed, and the application of electrospun silk fibroin based scaffolds in tissue engineering is introduced.%从丝素蛋白静电纺丝的溶剂开发、共混纺丝及纺丝装置3个方面回顾了丝素蛋白静电纺丝的研究进展,重点介绍了静电纺丝素蛋白微纳米纤维支架材料在组织工程领域的应用研究.

  20. Study of the effects of different sterilization methods on the properties of dense and porous silk fibroin membranes;Estudo dos efeitos de diferentes metodos de esterilizacao nas propriedades de membranas densas de fibroina de seda

    Weska, Raquel F.; Moraes, Mariana A. de; Beppu, Marisa M., E-mail: raquelweska@terra.com.b [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Quimica

    2009-07-01

    Silk fibroin has been widely explored for many biomedical applications, due to its biocompatibility and biodegradability. Sterilization is a fundamental step in biomaterials processing, and it must not alter in a negative way the functionality of medical devices. The aim of this study was to analyze the influence of different sterilization methods in the physical and chemical characteristics of dense silk fibroin membranes. Dense fibroin membranes were sterilized by ultraviolet radiation, 70% ethanol, autoclave, ethylene oxide and gamma radiation, and were analyzed by SEM, FTIR-ATR and XRD. The results for sterilization indicated that the methods didn't cause degradation of the membranes, but the methods that used organic solvent, or increase of humidity and/or temperature (70% ethanol, autoclave and ethylene oxide) altered the molecular conformation of fibroin, increasing the proportion of beta-sheet structure, what indicates an increase of crystallinity. This effect may be positive when a slower degradation of the membranes is desired, depending on the application as a bio material. (author)

  1. Differential binding of the Bombyx silk gland-specific factor SGFB to its target DNA sequence drives posterior-cell-restricted expression.

    Horard, B; Julien, E; Nony, P; Garel, A; Couble, P

    1997-01-01

    The gene encoding the silk protein P25 in Bombyx mori is expressed in the posterior silk gland (PSG) cells and repressed in the middle silk gland (MSG) cells. To identify the factors involved in this transcription-dependent spatial restriction, we examined the P25 chromatin in PSG and MSG nuclei by DNase I-aided ligation-mediated PCR and analyzed the expression of various P25-lacZ constructs in biolistically treated silk glands. P25 promoter activation depends on two cis-acting elements. One ...

  2. Recognition of signal peptide by protein translocation machinery in middle silk gland of silkworm Bombyx mori

    Xiuyang Guo; Yi Zhang; Xue Zhang; Shengpeng Wang; Changde Lu

    2008-01-01

    To investigate the functions of signal peptide in protein secretion in the middle silk gland of silkworm Bombyx mori,a series of recombinant Autographa californica multiple nucleopolyhedroviruses containing enhanced green fluorescent protein (egfp) gene,led by sericin-1 promoter and mutated signal peptide coding sequences,were constructed by region-deletions or single amino acid residue deletions.The recombinant Autographa californica multiple nucleopolyhedroviruses were injected into the hemocoele of newly ecdysed fifth-instar silkworm larvae.The expression and secretion of EGFP in the middle silk gland were examined by fluorescence microscopy and Western blot analysis.Results showed that even with a large part (up to 14 amino acid residues) of the ser-1 signal peptide deleted,the expressed EGFP could still be secreted into the cavity of the silk gland.Western blot analysis showed that shortening of the signal peptide from the C-terminal suppressed the maturation of pro-EGFP to EGFP.When 8 amino acid residues were deleted from the C-terminal of the signal peptide (mutant 13 aa),the secretion of EGFP was incomplete,implicating the importance of proper coupling of the h-region and c-region.The deletion of amino acid residue(s) in the h-region did not affect the secretion of EGFP,indicating that the recognition of signal peptide by translocation machinery was mainly by a structural domain,but not by special amino acid residue(s).Furthermore,the deletion of Arg2 or replacement with Asp in the n-region of the signal peptide did not influence secretion of EGFP,suggesting that a positive charge is not crucial.

  3. Some autophagic and apoptotic features of programmed cell death in the anterior silk glands of the silkworm, Bombyx mori.

    Goncu, Ebru; Parlak, Osman

    2008-11-01

    Programmed cell death has been subdivided into two major groups: apoptosis and autophagic cell death. The anterior silk gland of Bombyx mori degenerates during larval-pupal metamorphosis. Our findings indicate that two types of programmed cell death features are observed during this physiological process. During the prepupal period, pyknosis of the nucleus, cell detachment,and membrane blebbing occur and they are the first signs of programmed cell death in the anterior silk glands. According to previous studies, all of these morphological appearances are common for both cell-death types. Autophagy features are also exhibited during the prepupal period. Levels of one of the lysosomal marker enzymes-acid phosphatase-are high during this period then decrease gradually. Vacuole formation begins to appear first at the basal surface of the cell, then expands to the apical surface just before the larval pupal ecdysis. After larval-pupal ecdysis, DNA fragmentation, which is the obvious biochemical marker of apoptosis, is detected in agarose gel electrophoresis, which also shows that caspase-like enzyme activities occur during the programmed cell death process of the anterior silk glands. Apoptosis and autophagic cell death interact with each other during the degeneration process of the anterior silk gland in Bombyx mori and this interaction occurs at a late phase of cell death. We suggest that apoptotic cell death only is not enough for whole gland degeneration and that more effective degeneration occurs with this cooperation. PMID:18838861

  4. 丝素共混膜在化妆品保湿效果评价中的应用初探%The Preliminary Study on Application of Silk Fibroin in Moisturizing Efficacy Evaluation of Cosmetics

    李晓芹; 郑利; 倪梦嘉

    2013-01-01

    MMV and TEWL on sile fibroin were applied for assessing the moisturizing efficacy of cosmetics with different glycerol content cosmetics, which were determined by skin moisture content tester and water loss tester, respectively. Instead of human skin, silk fibroin was utilized in moisturizing efficacy evaluation of cosmetics. The purpose of this experiment was to explore the value of of silk fibroin in moisturizing efficacy evaluation of cosmetics and give a guidance on the appropriate percentage of moisturizing ingredients. The results showed that the silk fibroin model system and human body studies have similar trends, which provides the possibility of surrogate experimental evaluation for cosmetic moisturizing effect.%利用皮肤水分含量测试仪和水分散失测定仪,对添加不同质量分数甘油的保湿化妆品作用前后丝素共混膜的水分含量值(MMV)和经表皮水分散失值(TEWL)进行测定,以人体试验为参比,创造性地探索丝素共混膜在化妆品保湿效果评价中的应用价值,并对保湿类化妆品中保湿剂的最佳添加量做出指导.结果发现,丝素共混膜模拟体系的试验结果和人体试验具有相似的趋势,以其作为化妆品保湿效果评价的人体替代试验具有一定的可能性.

  5. Critical electrolyte concentration of silk gland chromatin of the sugarcane borer Diatraea saccharalis, induced using agrochemicals.

    Santos, S A; Fermino, F; Moreira, B M T; Araujo, K F; Falco, J R P; Ruvolo-Takasusuki, M C C

    2014-01-01

    The sugarcane borer Diatraea saccharalis is widely known as the main pest of sugarcane crop, causing increased damage to the entire fields. Measures to control this pest involve the use of chemicals and biological control with Cotesia flavipes wasps. In this study, we evaluated the insecticides fipronil (Frontline; 0.0025%), malathion (Malatol Bio Carb; 0.4%), cipermetrina (Galgotrin; 10%), and neem oil (Natuneem; 100%) and the herbicide nicosulfuron (Sanson 40 SC; 100%) in the posterior region silk glands of 3rd- and 5th-instar D. saccharalis by studying the variation in the critical electrolyte concentration (CEC). Observations of 3rd-instar larvae indicated that malathion, cipermetrina, and neem oil induced increased chromatin condensation that may consequently disable genes. Tests with fipronil showed no alteration in chromatin condensation. With the use of nicosulfuron, there was chromatin and probable gene decompaction. In the 5th-instar larvae, the larval CEC values indicated that malathion and neem oil induced increased chromatin condensation. The CEC values for 5th-instar larvae using cipermetrina, fipronil, and nicosulfuron indicated chromatin unpacking. These observations led us to conclude that the quantity of the pesticide does not affect the mortality of these pests, can change the conformation of complexes of DNA, RNA, and protein from the posterior region of silk gland cells of D. saccharalis, activating or repressing the expression of genes related to the defense mechanism of the insect and contributing to the selection and survival of resistant individuals. PMID:25299111

  6. Effect of Processing on Silk-Based Biomaterials: Reproducibility and Biocompatibility

    Wray, Lindsay S.; Hu, Xiao; Gallego, Jabier; Georgakoudi, Irene; Omenetto, Fiorenzo G.; Schmidt, Daniel; Kaplan, David L.

    2011-01-01

    Silk fibroin has been successfully used as a biomaterial for tissue regeneration. In order to prepare silk fibroin biomaterials for human implantation a series of processing steps are required to purify the protein. Degumming to remove inflammatory sericin is a crucial step related to biocompatibility and variability in the material. Detailed characterization of silk fibroin degumming is reported. The degumming conditions significantly affected cell viability on the silk fibroin material and ...

  7. Response of human mesenchymal stem cells to intrafibrillar nanohydroxyapatite content and extrafibrillar nanohydroxyapatite in biomimetic chitosan/silk fibroin/nanohydroxyapatite nanofibrous membrane scaffolds

    Lai GJ

    2015-01-01

    Full Text Available Guo-Jyun Lai,1,* KT Shalumon,1,* Jyh-Ping Chen1,2 1Department of Chemical and Materials Engineering, 2Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan, Republic of China *These authors contributed equally to this work Abstract: Incorporation of nanohydroxyapatite (nHAP within a chitosan (CS/silk fibroin (SF nanofibrous membrane scaffold (NMS may provide a favorable microenvironment that more closely mimics the natural bone tissue physiology and facilitates enhanced osteogensis of the implanted cell population. In this study, we prepared pristine CS/SF NMS, composite CS/SF/nHAP NMS containing intrafibrillar nHAP by in situ blending of 10% or 30% nHAP before the electrospinning step, and composite CS/SF/nHAP NMS containing extrafibrillar nHAP by depositing 30% nHAP through alternative soaking surface mineralization. We investigated the effect of the incorporation of HAP nanoparticles on the physicochemical properties of pristine and composite NMS. We confirmed the presence of ~30 nm nHAP in the composite nanofibrous membranes by thermogravimetry analysis (TGA, X-ray diffraction (XRD, and scanning electron microscopy (SEM, either embedded in or exposed on the nanofiber. Nonetheless, the alternative soaking surface mineralization method drastically influenced the mechanical properties of the NMS with 88% and 94% drop in Young’s modulus and ultimate maximum stress. Using in vitro cell culture experiments, we investigated the effects of nHAP content and location on proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells (hMSCs. The proliferation of hMSCs showed no significant difference among pristine and composite NMS. However, the extent of osteogenic differentiation of hMSCs was found to be positively correlated with the content of nHAP in the NMS, while its location within the nanofiber played a less significant role. In vivo experiments were carried

  8. Electron beam induced water-soluble silk fibroin nanoparticles as a natural antioxidant and reducing agent for a green synthesis of gold nanocolloid

    Wongkrongsak, Soraya; Tangthong, Theeranan; Pasanphan, Wanvimol

    2016-01-01

    The research proposes a novel water-soluble silk fibroin nanoparticles (WSSF-NPs) created by electron beam irradiation. In this report, we demonstrate the effects of electron beam irradiation doses ranging from 1 to 30 kGy on the molecular weight (MW), nanostructure formation, antioxidant activity and reducing power of the WSSF-NPs. Electron beam-induced degradation of SF causing MW reduction from 250 to 37 kDa. Chemical characteristic functions of SF still remained after exposing to electron beam. The WSSF-NPs with the MW of 37 kDa exhibited spherical morphology with a nanoscaled size of 40 nm. Antioxidant activities and reducing powers were investigated using 2,2-diphenyl-1-picrylhryl free radical (DPPH•) scavenging activity and ferric reducing antioxidant power (FRAP) assays, respectively. The WSSF-NPs showed greater antioxidant activity and reducing power than non-irradiated SF. By increasing their antioxidant and reducing power efficiencies, WSSF-NPs potentially created gold nanocolloid. WSSF-NPs produced by electron beam irradiation would be a great merit for the uses as a natural antioxidant additive and a green reducing agent in biomedical, cosmetic and food applications.

  9. Amperometric biosensor based on tyrosinase immobilized onto multiwalled carbon nanotubes-cobalt phthalocyanine-silk fibroin film and its application to determine bisphenol A

    Yin Huanshun [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong (China); Zhou Yunlei; Xu Jing [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Ai Shiyun, E-mail: ashy@sdau.edu.cn [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Cui Lin [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Zhu Lusheng, E-mail: lushzhu@sdau.edu.cn [College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong (China)

    2010-02-05

    An amperometric bisphenol A (BPA) biosensor was fabricated by immobilizing tyrosinase on multiwalled carbon nanotubes (MWNTs)-cobalt phthalocyanine (CoPc)-silk fibroin (SF) composite modified glassy carbon electrode (GCE). In MWNTs-CoPc-SF composite film, SF provided a biocompatible microenvironment for the tyrosinase to retain its bioactivity, MWNTs possessed excellent inherent conductivity to enhance the electron transfer rate and CoPc showed good electrocatalytic activity to electrooxidation of BPA. The cyclic voltammogram of BPA at this biosensor exhibited a well defined anodic peak at 0.625 V. Compared with bare GCE, the oxidation signal of BPA significantly increased; therefore, this oxidation signal was used to determine BPA. The effect factors were optimized and the electrochemical parameters were calculated. The possible oxidation mechanism was also discussed. Under optimum conditions, the oxidation current was proportional to BPA concentration in the range from 5.0 x 10{sup -8} to 3.0 x 10{sup -6} M with correlation coefficient of 0.9979 and detection limit of 3.0 x 10{sup -8} M (S/N = 3). The proposed method was successfully applied to determine BPA in plastic products and the recovery was in the range from 95.36% to 104.39%.

  10. Amperometric biosensor based on tyrosinase immobilized onto multiwalled carbon nanotubes-cobalt phthalocyanine-silk fibroin film and its application to determine bisphenol A

    An amperometric bisphenol A (BPA) biosensor was fabricated by immobilizing tyrosinase on multiwalled carbon nanotubes (MWNTs)-cobalt phthalocyanine (CoPc)-silk fibroin (SF) composite modified glassy carbon electrode (GCE). In MWNTs-CoPc-SF composite film, SF provided a biocompatible microenvironment for the tyrosinase to retain its bioactivity, MWNTs possessed excellent inherent conductivity to enhance the electron transfer rate and CoPc showed good electrocatalytic activity to electrooxidation of BPA. The cyclic voltammogram of BPA at this biosensor exhibited a well defined anodic peak at 0.625 V. Compared with bare GCE, the oxidation signal of BPA significantly increased; therefore, this oxidation signal was used to determine BPA. The effect factors were optimized and the electrochemical parameters were calculated. The possible oxidation mechanism was also discussed. Under optimum conditions, the oxidation current was proportional to BPA concentration in the range from 5.0 x 10-8 to 3.0 x 10-6 M with correlation coefficient of 0.9979 and detection limit of 3.0 x 10-8 M (S/N = 3). The proposed method was successfully applied to determine BPA in plastic products and the recovery was in the range from 95.36% to 104.39%.