WorldWideScience

Sample records for shell-and-tube heat exchanger

  1. PENGARUH PENGGUNAAN BAFFLE PADA SHELL-AND-TUBE HEAT EXCHANGER

    Ekadewi Anggraini Handoyo

    2001-01-01

    Shell-and-tube heat exchanger is a device commonly used to transfer heat. To enhance the heat transfer occurred and to support the tubes inside the shell, baffles are installed. Better heat transfer is obviously expected in a heat exchanger. A research is done to find out the effect of baffle used toward the effectiveness and pressure drop in heat exchanger. The result is that the effectiveness increases when the baffles are installed. Effectiveness increases as the spacing between the baffle...

  2. PENGARUH PENGGUNAAN BAFFLE PADA SHELL-AND-TUBE HEAT EXCHANGER

    Ekadewi Anggraini Handoyo

    2001-01-01

    Full Text Available Shell-and-tube heat exchanger is a device commonly used to transfer heat. To enhance the heat transfer occurred and to support the tubes inside the shell, baffles are installed. Better heat transfer is obviously expected in a heat exchanger. A research is done to find out the effect of baffle used toward the effectiveness and pressure drop in heat exchanger. The result is that the effectiveness increases when the baffles are installed. Effectiveness increases as the spacing between the baffles is smaller until certain spacing, and then it decreases. Abstract in Bahasa Indonesia : Shell-and-tube heat exchanger merupakan jenis alat penukar panas yang banyak digunakan. Untuk membuat perpindahan panas lebih baik dan untuk menyangga tube yang ada di dalam shell, maka sering dipasang baffle. Perpindahan panas yang lebih baik sangat diharapkan dalam suatu heat exchanger. Penelitian dilakukan untuk mengetahui pengaruh penggunaan baffle terhadap efektifitas dan penurunan tekanan dalam heat exchanger. Dari hasil penelitian didapat bahwa efektifitas meningkat dengan dipasangnya baffle. Efektifitas meningkat seiring dengan mengecilnya jarak antar baffle hingga suatu jarak tertentu, kemudian menurun. Kata kunci: penukar kalor, baffle, efektifitas.

  3. Design and economic optimization of shell and tube heat exchangers using Artificial Bee Colony (ABC) algorithm

    Sencan Sahin, Arzu, E-mail: sencan@tef.sdu.edu.tr [Department of Mechanical Education, Technical Education Faculty, Sueleyman Demirel University, 32260 Isparta (Turkey); Kilic, Bayram, E-mail: bayramkilic@hotmail.com [Bucak Emin Guelmez Vocational School, Mehmet Akif Ersoy University, Bucak (Turkey); Kilic, Ulas, E-mail: ulaskilic@mehmetakif.edu.tr [Bucak Emin Guelmez Vocational School, Mehmet Akif Ersoy University, Bucak (Turkey)

    2011-10-15

    Highlights: {yields} Artificial Bee Colony for shell and tube heat exchanger optimization is used. {yields} The total cost is minimized by varying design variables. {yields} This new approach can be applied for optimization of heat exchangers. - Abstract: In this study, a new shell and tube heat exchanger optimization design approach is developed. Artificial Bee Colony (ABC) has been applied to minimize the total cost of the equipment including capital investment and the sum of discounted annual energy expenditures related to pumping of shell and tube heat exchanger by varying various design variables such as tube length, tube outer diameter, pitch size, baffle spacing, etc. Finally, the results are compared to those obtained by literature approaches. The obtained results indicate that Artificial Bee Colony (ABC) algorithm can be successfully applied for optimal design of shell and tube heat exchangers.

  4. Design and economic optimization of shell and tube heat exchangers using Artificial Bee Colony (ABC) algorithm

    Highlights: → Artificial Bee Colony for shell and tube heat exchanger optimization is used. → The total cost is minimized by varying design variables. → This new approach can be applied for optimization of heat exchangers. - Abstract: In this study, a new shell and tube heat exchanger optimization design approach is developed. Artificial Bee Colony (ABC) has been applied to minimize the total cost of the equipment including capital investment and the sum of discounted annual energy expenditures related to pumping of shell and tube heat exchanger by varying various design variables such as tube length, tube outer diameter, pitch size, baffle spacing, etc. Finally, the results are compared to those obtained by literature approaches. The obtained results indicate that Artificial Bee Colony (ABC) algorithm can be successfully applied for optimal design of shell and tube heat exchangers.

  5. Performance of a shell-and-tube heat exchanger with spiral baffle plates

    In a conventional shell-and-tube heat exchanger, fluid contacts with tubes flowing up and down in a shell, therefore there is a defect in the heat transfer with tubes due to the stagnation portions. Fins are attached to the tubes in order to increase heat transfer efficiency, but there exists a limit. Therefore, it is necessary to improve heat exchanger performance by changing the fluid flow in the shell. In this study, a highly efficient shell-and-tube heat exchanger with spiral baffle plates is simulated three-dimensionally using a commercial thermal-fluid analysis code, CFX4.2. In this type of heat exchanger, fluid contacts with tubes flowing rotationally in the shell. It could improve heat exchanger performance considerably because stagnation portions in the shell could be removed. It is proved that the shell-and-tube heat exchanger with spiral baffle plates is superior to the conventional heat exchanger in terms of heat transfer

  6. Heat Transfer Enhancement of Shell and Tube Heat Exchanger Using Conical Tapes.

    Dhanraj S.Pimple; Shreeshail.B.H; Amar Kulkarni

    2014-01-01

    This paper provides heat transfer and friction factor data for single -phase flow in a shell and tube heat exchanger fitted with a helical tape insert. In the double concentric tube heat exchanger, hot air was passed through the inner tube while the cold water was flowed through the annulus. The influences of the helical insert on heat transfer rate and friction factor were studied for counter flow, and Nusselt numbers and friction factor obtained were compared with previous data ...

  7. Simulasi Performansi Heat Exchanger Type Shell And Tube Dengan Double Segmental Baffle Terhadap Helical Baffle

    Anggareza Adhitiya

    2013-12-01

    Full Text Available Pada heat exchanger type shell and tube, selain pengunaan baffle yang bertujuan untuk mengarahkan aliran pada sisi shell juga bertujuan untuk meningkatkan laju perpindahan panas yang terjadi antara fluida kerja dengan cara menimbulkan olakan aliran di sisi shell. Olakan –olakan ini nantinya yang akan mempengaruhi besarnya perpindahan panas dalam sisi shell. Pada kondisi standart baffle yang digunakan pada tugas akhir ini adalah jenis double segmental. Double segmental baffle mempunyai tingkat pressure drop yang cukup besar. sehingga perlu di ganti dengan baffle jenis helical yang mempunyai pressure drop yang lebih kecil. Untuk mengetahui performansi heat exchanger maka perlu adanya penelitian lebih lanjut simulasi numerik pada baffle heat exchanger type shell and tube. agar didapat pengaruh jenis baffle yang di gunakan terhadap karakteristik aliran dan perpindahan panas dari suatu heat exchanger type shell and tube. Tugas Akhir ini menggunakan program GAMBIT 2.4.6 untuk penggambaran geometri secara tiga dimensi dan program FLUENT 6.3.26 untuk mensimulasi aliran yang terjadi di dalam shell and tube heat exchanger. Pada software FLUENT 6.3.26 digunakan permodelan 3D Steady Flow dengan  memilih k – Epsilon RNG sebagai turbulence modeling serta mengaktifkan persamaan energy. Penelitian dilakukan dengan menggunakan dua variasi heat exchanger dengan jenis baffle yang berbeda .Heat exchanger type shell and tube dengan jenis double segmental baffle mempunyai nilai koefisien konveksi rata-rata = 218.408 w/m2.K. Sedangkan untuk helical baffle sebesar = 171.122 w/m2.K. Temperature outflow pada heat exchanger type shell and tube dengan jenis double segmental baffle = 306.7450K. Di ikuti dengan pressure drop sebesar = 2100 pascal Sedangkan untuk helical baffle mempunyai temperatur outflow sebesar = 307.0220K dengan pressure drop sebesar = 500 pascal.

  8. Thermoeconomic optimization of baffle spacing for shell and tube heat exchangers

    Eryener, Dogan [Department of Mechanical Engineering, Trakya University, Muh. Mim. Fak., 22030 Edirne (Turkey)

    2006-07-15

    Despite the importance of thermoeconomic analysis in shell and tube heat exchanger design, the determination of the optimum baffle spacing by using the thermoeconomic analysis is usually neglected. On the other hand, baffle spacing is one of the most important parameters used in the design of shell and tube heat exchangers, and there is no precise criterion for the determination of baffle spacing in the literature. In this study, thermoeconomic analysis is used to determine the optimum baffle spacing, accompanied by an example of such an optimization of baffle spacing for a shell and tube heat exchanger. The results of this example are then used to demonstrate how the optimum ratio of baffle spacing to shell diameter is determined precisely and affected by the varying values of the geometrical parameters. Finally, the results are compared to those obtained by classical approaches. (author)

  9. Thermoeconomic optimization of baffle spacing for shell and tube heat exchangers

    Despite the importance of thermoeconomic analysis in shell and tube heat exchanger design, the determination of the optimum baffle spacing by using the thermoeconomic analysis is usually neglected. On the other hand, baffle spacing is one of the most important parameters used in the design of shell and tube heat exchangers, and there is no precise criterion for the determination of baffle spacing in the literature. In this study, thermoeconomic analysis is used to determine the optimum baffle spacing, accompanied by an example of such an optimization of baffle spacing for a shell and tube heat exchanger. The results of this example are then used to demonstrate how the optimum ratio of baffle spacing to shell diameter is determined precisely and affected by the varying values of the geometrical parameters. Finally, the results are compared to those obtained by classical approaches

  10. Experimental investigation of shell-and-tube heat exchanger with a new type of baffles

    Wang, Yingshuang; Liu, Zhichun; Huang, Suyi; Liu, Wei; Li, Weiwei

    2011-07-01

    A shell-and-tube heat exchanger with new type of baffles, is designed, fabricated and tested. The experimental investigation for the proposed model and the original segmental baffle heat exchanger are conducted. The operation performances of the two heat exchangers are also compared. The results suggest that, under the same conditions, the overall performance of the new model is 20-30% more efficient than that of the segmental baffle heat exchanger.

  11. Experimental Study on Heat Transfer Characteristics of Shell and Tube Heat Exchanger Using Hitran Wire Matrix Turbulators As Tube Inserts.

    Manoj; A.M.Mulla

    2014-01-01

    Shell and tube heat exchangers are extensively used in boilers, oil coolers, pre-heaters, condensers etc. They are also having special importance in process application as well as refrigeration and air conditioning industries. The present paper emphasizes on heat transfer characteristics of shell and tube heat exchangers with the aid of hiTRAN wire matrix inserts is been studied. Investigations were made on effect of mass flow rate of water on heat transfer characteristics in ...

  12. Flow induced vibration in shell and tube heat exchangers

    Assessing heat exchanger designs, from the standpoint of flow induced vibration, is becoming increasingly important as shell side flow velocities are increased in a quest for better thermal performance. This paper reviews the state of the art concerning the main sources of vibration excitation, i.e. vortex shedding resonance, turbulent buffeting, fluidelastic instability and acoustic resonance, as well as the structural dynamics of the tubes. It is concluded that there are many areas which require further investigation but there are sufficient data available at present to design, with reasonable confidence, units that will be free from flow induced vibration. Topics which are considered to be key areas for further work are listed

  13. On the optimal design of shell and tube heat exchanger for nuclear applications

    In nuclear industry, heat exchanger plays an important role in the transfer of heat from reactor core, where heat is generated, to the ultimate heat sink UHS, and then is dissipated. The actual design of heat exchanger not only relies on thermohydraulic considerations but also on economical aspects and radiological safety considerations. For optimal design of heat exchanger for a specific application a compromise should be made for determining the important factors affecting the design. In this paper, an optimization model is presented for shell and tube heat exchanger, which could be considered as a tool for computer aided design. A case study is presented to explore the present adopted model. 3 figs

  14. Heatx : A computer program for rating and designing shell and tube heat exchangers

    A computer program was developed to be used as a quick tool for rating shell and tube heat exchangers or searching for their optimum design. It employs empirical relations for temperature differences across heat transfer lavers; the tube and shell fluids, the tube wall and the scale layers. The optimum design is achieved when the sum of the temperature differences approaches the logarithmic mean temperature difference provided that the user's prescribed pressure drop limits are satisfied. To accomplish this task, an iteration scheme was utilized. Sample problems of heat exchanger designs in which the shell fluid flows parallel to the tubes were cross checked using a coarse mesh computer code TRANSG [3]. Also a shell and tube heat exchanger with cross flow is rated. The results showed minor differences considering the purpose for which this method is intended

  15. Three-dimensional computer simulation of shell and tube heat exchangers

    A three dimensional, conservative, fully implicit, colocated control volume based calculation procedure is described for the simulation of shell side flow in shell and tube heat exchangers. The colocated method uses momentum interpolation to avoid an oscillatory pressure field, and incorporates a flexible boundary condition interface that permits the specification of a wide range of problems. The simulation of shell and tube heat exchangers is based on a distributed resistance method and employs a two-equation κ-ε turbulence model. Volume porosities and non homogeneous surface permeabilities account for the obstructions due to the tubes and arbitrary arrangement of baffles. Geometry generators for tubes, baffles and inlets have been created. Non-equilibrium wall functions (Launder and Spalding, 1974) are used to compute momentum and heat transfer coefficients close to plane surface walls. Various test problems presented include the driven cavity, a laminar backward facing step with heat transfer, a turbulent backward facing step with heat transfer, and turbulent sudden pipe expansion. Good agreement is obtained between the computations and experiments and the computations of other researchers. A No Tubes In Window (NTIW) heat exchanger simulation is compared with experimental data. This work forms a basis for studying the significance of geometry on the mixing and heat transfer process in shell and tube heat exchangers

  16. Design of portable shell and tube heat exchanger for a solar powered water distiller

    Full text: This study presents theoretical considerations and results of a portable shell and tube heat exchanger in a solar water distiller system. The device is composed of glass heat exchanger which served as a condenser for vapor condensing which were produced in black paint solar absorber. It is also composed of a tank for salt water source and a tank for produced distilled water. Shell and tube was designed and simulated using an implicit numerical scheme. Simulation results showed that accumulated mass water greatly depended on the inlet vapor temperature and volume, heat exchanger material, coolant water temperature and volume. Thus, changing the material from stainless steel to glass in the same condition (vapor temperature, vapor volume, coolant temperature and coolant volume); results comes to an acceptable range. These inexpensive shell and tube heat exchangers with 500 mm length, 19 mm Tube diameter, 100 mm and 200 mm Shell diameters respectively for stainless steel and Pyrex Glass permitted to produce 40 Liter/ day distilled water from vapor with 378 K inlet temperature in atmosphere pressure. If inlet pressure increases, vapor temperature will decline and thereupon, heat exchanger efficiency tangibility will increase. (author)

  17. Exergetic optimization of shell and tube heat exchangers using a genetic based algorithm

    Oezcelik, Yavuz [Ege University, Bornova, Izmir (Turkey). Engineering Faculty, Chemical Engineering Department

    2007-08-15

    In the computer-based optimization, many thousands of alternative shell and tube heat exchangers may be examined by varying the high number of exchanger parameters such as tube length, tube outer diameter, pitch size, layout angle, baffle space ratio, number of tube side passes. In the present study, a genetic based algorithm was developed, programmed, and applied to estimate the optimum values of discrete and continuous variables of the MINLP (mixed integer nonlinear programming) test problems. The results of the test problems show that the genetic based algorithm programmed can estimate the acceptable values of continuous variables and optimum values of integer variables. Finally the genetic based algorithm was extended to make parametric studies and to find optimum configuration of heat exchangers by minimizing the sum of the annual capital cost and exergetic cost of the shell and tube heat exchangers. The results of the example problems show that the proposed algorithm is applicable to find optimum and near optimum alternatives of the shell and tube heat exchanger configurations. (author)

  18. Internal heat transfer and pressure drop measurements in a variously baffled shell and tube heat exchanger

    Galindo, P.

    1984-06-01

    Heat transfer coefficients, pressure distributions, and fluid flow patterns on the shell side of shell and tube heat exchangers are discussed. The main focus was to quantify the effect of the size of the baffle window on the heat transfer coefficient, which was measured at each tube in the bundle and at three Reynolds numbers. Pressure drops were obtained by measuring detailed pressure distributions within the exchangers. The flow visualizations provided fluid flow patterns adjacent to the shell wall, to the baffle plates, and at each tube of the array. Performance comparisons among the exchangers were carried out holding the heat transfer surface area fixed together with either the pumping power, the mass flow rate, or the pressure drop. Numerical evaluations of commonly employed design procedures are presented using the present data as a means for rank ordering their validity. Tinker's design method provided the best predictions of the present heat transfer and pressure drop results, which are unaffected by leakage and bypass.

  19. Review of shell-and-tube heat exchanger fouling and corrosion in geothermal power plant service

    Ellis, P.F. II

    1983-12-01

    Heat exchangers for hot geofluid/working substance vaporizers for binary power plants are considered. A brief description of the physical test apparatus and the geofluid chemistry for each of the several heat exchanger tests is presented. The fouling data developed from these tests are summarized, in most cases presenting a mathematical expression for the increase in fouling factor with time. The materials performance data developed from these same tests are explored. The performance of shell-and-tube heat exchangers used as condensers and ancillary coolers in the power plant heat rejection system is considered.

  20. Investigation of a twisted-tube type shell-and-tube heat exchanger

    Danielsen, Sven Olaf

    2009-01-01

    This master thesis investigates twisted tube type shell-and-tube heat exchangers with emphasis on thermal-hydraulic characteristics, fouling and vibration properties. An extensive literature study has been carried out in order to map all published research reports written on the topic. The mapping of performed research shows that the available information is limited.Mathematical correlations for twisted tube thermal-hydraulic characteristics are extracted from the research reports found in th...

  1. Simulasi Performansi Heat Exchanger Type Shell And Tube Dengan Double Segmental Baffle Terhadap Helical Baffle

    Anggareza Adhitiya; Djatmiko Ichsani

    2013-01-01

    Pada heat exchanger type shell and tube, selain pengunaan baffle yang bertujuan untuk mengarahkan aliran pada sisi shell juga bertujuan untuk meningkatkan laju perpindahan panas yang terjadi antara fluida kerja dengan cara menimbulkan olakan aliran di sisi shell. Olakan –olakan ini nantinya yang akan mempengaruhi besarnya perpindahan panas dalam sisi shell. Pada kondisi standart baffle yang digunakan pada tugas akhir ini adalah jenis double segmental. Double segmental baffle mempunyai tingkat...

  2. Heat Transfer Enhancement of Shell and Tube Heat Exchanger Using Conical Tapes.

    Dhanraj S.Pimple

    2014-12-01

    Full Text Available This paper provides heat transfer and friction factor data for single -phase flow in a shell and tube heat exchanger fitted with a helical tape insert. In the double concentric tube heat exchanger, hot air was passed through the inner tube while the cold water was flowed through the annulus. The influences of the helical insert on heat transfer rate and friction factor were studied for counter flow, and Nusselt numbers and friction factor obtained were compared with previous data (Dittus 1930, Petukhov 1970, Moody 1944 for axial flows in the plain tube. The flow considered is in a low Reynolds number range between 2300 and 8800. A maximum percentage gain of 165% in heat transfer rate is obtained for using the helical insert in comparison with the plain tube.

  3. Optimization of a Finned Shell and Tube Heat Exchanger Using a Multi-Objective Optimization Genetic Algorithm

    Heidar Sadeghzadeh; Mehdi Aliehyaei; Marc A. Rosen

    2015-01-01

    Heat transfer rate and cost significantly affect designs of shell and tube heat exchangers. From the viewpoint of engineering, an optimum design is obtained via maximum heat transfer rate and minimum cost. Here, an analysis of a radial, finned, shell and tube heat exchanger is carried out, considering nine design parameters: tube arrangement, tube diameter, tube pitch, tube length, number of tubes, fin height, fin thickness, baffle spacing ratio and number of fins per unit length of tube. The...

  4. Thermal effectiveness of multiple shell and tube pass TEMA E heat exchangers

    Pignotti, A. (TECHNIT S.A., Buenos Aires (Argentina)); Tamborenea, P.I. (Fundacion Hermanos, Buenos Aires (Argentina))

    1988-02-01

    The thermal effectiveness of a TEMAE shell-and-tube heat exchanger, with one shell pass and an arbitrary number of tube passes, is determined under the usual simplifying assumptions of perfect transverse mixing of the shell fluid, no phase change, and temperature independence of the heat capacity rates and the heat transfer coefficient. A purely algebraic solution is obtained for the effectiveness as a functions of the heat capacity rate ratio and the number of heat transfer units. The case with M shell passes and N tube passes is easily expressed in terms of the single-shell-pass case.

  5. Maintenance experience with shell and tube type heat exchangers of Cirus

    Cirus is a 40 MWt research reactor. The reactor utilizes metallic natural uranium fuel cladded in aluminium, demineralized light water as primary coolant and heavy water as moderator. The primary coolant (PCW) and moderator (HW) both recirculate in two different closed loops and cooled by sea water (ultimate heat sink) flowing through shell and tube heat exchangers. There are six numbers of primary coolant/sea water (PCW/SW) and three numbers of heavy water/sea water (HW/SW) heat exchangers connected in parallel in two different loops. One heat exchanger remains stand-by in both systems to provide necessary redundancy for routine servicing and maintenance. The heat exchangers have rendered over 35 years of service. This paper describes maintenance experience with the above said heat exchangers, various problems encountered, ageing studies and various innovative changes/modifications incorporated to reduce the down time and maintenance efforts. 1 fig

  6. Shell side CFD analysis of a small shell-and-tube heat exchanger

    Ozden, Ender [Department of Mechanical Engineering, Middle East Technical University, 06531 Ankara (Turkey); Tari, Ilker, E-mail: itari@metu.edu.t [Department of Mechanical Engineering, Middle East Technical University, 06531 Ankara (Turkey)

    2010-05-15

    The shell side design of a shell-and-tube heat exchanger; in particular the baffle spacing, baffle cut and shell diameter dependencies of the heat transfer coefficient and the pressure drop are investigated by numerically modeling a small heat exchanger. The flow and temperature fields inside the shell are resolved using a commercial CFD package. A set of CFD simulations is performed for a single shell and single tube pass heat exchanger with a variable number of baffles and turbulent flow. The results are observed to be sensitive to the turbulence model selection. The best turbulence model among the ones considered is determined by comparing the CFD results of heat transfer coefficient, outlet temperature and pressure drop with the Bell-Delaware method results. For two baffle cut values, the effect of the baffle spacing to shell diameter ratio on the heat exchanger performance is investigated by varying flow rate.

  7. Shell side CFD analysis of a small shell-and-tube heat exchanger

    The shell side design of a shell-and-tube heat exchanger; in particular the baffle spacing, baffle cut and shell diameter dependencies of the heat transfer coefficient and the pressure drop are investigated by numerically modeling a small heat exchanger. The flow and temperature fields inside the shell are resolved using a commercial CFD package. A set of CFD simulations is performed for a single shell and single tube pass heat exchanger with a variable number of baffles and turbulent flow. The results are observed to be sensitive to the turbulence model selection. The best turbulence model among the ones considered is determined by comparing the CFD results of heat transfer coefficient, outlet temperature and pressure drop with the Bell-Delaware method results. For two baffle cut values, the effect of the baffle spacing to shell diameter ratio on the heat exchanger performance is investigated by varying flow rate.

  8. Velocity profiles between two baffles in a shell and tube heat exchanger

    Chang, Tae-Hyun; Lee, Chang-Hoan; Lee, Hae-Soo; Lee, Kwon-Soo

    2015-06-01

    Heat exchangers are extensively utilized for waste heat recovery, oil refining, chemical processing, and steam generation. In this study, velocity profiles are measured using a 3D particle image velocimetry (PIV) system betweentwo baffles in a shell and tube heat exchanger for parallel and counter flows. The PIV and computational fluid dynamics results show the occurrence of some strong vectors near the bottom. These vectors are assumed due to the clearance between the inner tubes and the front baffle. Therefore, the major parts of the vectors are moved out through the bottom opening of the rear baffle, and other vectors produce a large circle between the two baffles. Numerical simulations are conducted to investigate the effects of the baffle on the heat exchanger using the Fluent software. The k-ɛ turbulence model is employed to calculate the flows along the heat exchanger

  9. Development of a control system for shell and tube heat exchanger in Matlab simulink

    The main objective of this research is to develop a control system for heat exchanger so that the desired outlet temperature can be achieved by controlling the flow rate. For this purpose, shell and tube heat exchanger was chosen and modeled it by using its mathematical equations in MATLAB (Matrix Laboratory) Simulink and calculated the outlet temperature by NTU (Number of Transfer Units) effectiveness method. For the purpose of Control system, MPC (Model Predictive Controller) was used. This research will open a new way of Modeling Equations instead of transfer functions in MATLAB (Matrix Laboratory) Simulink. Using the model, it was developed; with controller, so as to manipulate the output temperature by simply controlling the flow rate. It can be justified weather the design of a new heat exchanger would be feasible or not for the specific requirements. At last this research is very helpful in Industries for the purpose of designing, development and control of new Heat Exchangers. (author)

  10. Minimizing shell-and-tube heat exchanger cost with genetic algorithms and considering maintenance

    Wildi-Tremblay, P.; Gosselin, L. [Universite Laval, Quebec (Canada). Dept. de genie mecanique

    2007-07-15

    This paper presents a procedure for minimizing the cost of a shell-and-tube heat exchanger based on genetic algorithms (GA). The global cost includes the operating cost (pumping power) and the initial cost expressed in terms of annuities. Eleven design variables associated with shell-and-tube heat exchanger geometries are considered: tube pitch, tube layout patterns, number of tube passes, baffle spacing at the centre, baffle spacing at the inlet and outlet, baffle cut, tube-to-baffle diametrical clearance, shell-to-baffle diametrical clearance, tube bundle outer diameter, shell diameter, and tube outer diameter. Evaluations of the heat exchangers performances are based on an adapted version of the Bell-Delaware method. Pressure drops constraints are included in the procedure. Reliability and maintenance due to fouling are taken into account by restraining the coefficient of increase of surface into a given interval. Two case studies are presented. Results show that the procedure can properly and rapidly identify the optimal design for a specified heat transfer process. (author)

  11. Experimental Investigation on Heat Transfer and Frictional Characteristics of Shell-and-tube Heat exchangers with Different Baffles and Tubes

    Wang, C.; Zhu, J. G.; Sang, Z. F.

    2010-03-01

    In this study, the heat transfer and tube frictional characteristics of the helixchangers (shell-and-tube heat exchanger with helical baffles) with spirally corrugated and smooth tubes and the conventional shell-and-tube heat exchanger with smooth tubes were experimentally obtained. The results show that the helixchangers with the spirally corrugated tube and the smooth tubes enhance the total heat transfer coefficient about 26% and 7% on the average than the segmental baffled heat exchanger. In the tube side, the spirally corrugated tube leads to about 28% average increase on convective heat transfer performance and about 24% average increase on pressure drop than the smooth tube, but its conversion efficiency is still higher. The helical baffle could enhance the shell-side condensation coefficient by 13%, and the spirally corrugated tube could help the helixchanger with it enhance remarkably the condensation performance by 53% than the segmental baffled heat exchanger.

  12. Performance evaluation of a shell and tube heat exchanger operated with oxide based nanofluids

    Shahrul, I. M.; Mahbubul, I. M.; Saidur, R.; Khaleduzzaman, S. S.; Sabri, M. F. M.

    2015-08-01

    This study is about the performance evaluation of a shell and tube heat exchanger operated with nanofluid. Thermal conductivity, viscosity, and density of the nanofluids were increased, but the specific heat of the nanofluids was decreased with increasing the concentrations of the particles. The convective heat transfer coefficient was found to be 2-15 % higher than that of water at 50 kg/min of both side fluid. Nevertheless, energy effectiveness has improved about 23-52 % for the above-mentioned nanofluids. As, energy effectiveness (?) is strongly depends on the density and specific heat of the operating fluids therefore, maximum ? has obtained for ZnO-W nanofluid and lowest found for SiO2-W nanofluid.

  13. CACHE: an extended BASIC program which computes the performance of shell and tube heat exchangers

    An extended BASIC program, CACHE, has been written to calculate steady state heat exchange rates in the core auxiliary heat exchangers, (CAHE), designed to remove afterheat from High-Temperature Gas-Cooled Reactors (HTGR). Computationally, these are unbaffled counterflow shell and tube heat exchangers. The computational method is straightforward. The exchanger is subdivided into a user-selected number of lengthwise segments; heat exchange in each segment is calculated in sequence and summed. The program takes the temperature dependencies of all thermal conductivities, viscosities and heat capacities into account providing these are expressed algebraically. CACHE is easily adapted to compute steady state heat exchange rates in any unbaffled counterflow exchanger. As now used, CACHE calculates heat removal by liquid weight from high-temperature helium and helium mixed with nitrogen, oxygen and carbon monoxide. A second program, FULTN, is described. FULTN computes the geometrical parameters required as input to CACHE. As reported herein, FULTN computes the internal dimensions of the Fulton Station CAHE. The two programs are chained to operate as one. Complete user information is supplied. The basic equations, variable lists, annotated program lists, and sample outputs with explanatory notes are included

  14. Numerical investigation on a novel shell-and-tube heat exchanger with plate baffles and experimental validation

    Highlights: • A novel shell-and-tube heat exchanger with plate baffles is proposed. • Heat transfer and pressure drop of computational calculations are studied. • Experimental method is carried out to verify the modeling approach. • Path lines, temperature field and pressure field are analyzed. - Abstract: A novel shell-and-tube heat exchanger with new plate baffles is proposed. It is numerically investigated in comparison with a shell-and-tube heat exchanger with rod baffles. Commercial softwares FLUENT 6.3 and GAMBIT 2.3 are adopted for modeling and computational calculations. The modeling approach is verified with experimental approach. The shell-side results of heat transfer, flow performance, and comprehensive performance are analyzed. The Nusselt number for the plate baffles heat exchanger is around 128–139% of that for the rod baffles heat exchanger. The pressure drop for the novel one is about 139–147% of that for the rod baffles heat exchanger. Overall, the novel plate baffles heat exchanger illustrates evidently higher comprehensive performance (115–122%) than the rod baffles one. The temperature field, pressure field, and path lines are analyzed to demonstrate the advantage of the novel shell-and-tube heat exchanger

  15. Effect of Segmental Baffles at Different Orientation on the Performances of Single Pass Shell and Tube Heat Exchanger

    Neeraj kumar

    2014-09-01

    Full Text Available In present work, experimentation of single pass, counter flow shell and tube heat exchanger containing segmental baffles at different orientations has been conducted to calculate some parameters (heat transfer rate and pressure drop at different Reynolds number in laminar flow. In the present work, an attempt has been made to study the effect of increase in Reynolds number at different angular orientation ? of the baffles. The range of ? vary from 0 to 45 (i.e 0, 15, 30 and 45 and Reynolds number ranges from 500 to 2000 (i.e 500, 1000, 1500 and 2000. A prototype model of shell and tube type heat exchanger has been fabricated to carry out the experiments. The experiments were performed to determine the effect of baffle orientation on the performance of shell and tube heat exchanger. Water is taken as the working fluid used in both shell and tubes. The objective of the present work is to predict the variation of heat transfer rate, LMTD, heat transfer coefficient, and pressure drop to the shell side with change in range of Reynolds number at different baffle orientations. Based on the experimental result it has been observed that the angular orientation of baffles and the Reynolds number effects the heat transfer rate and pressure drop in the shell and tube heat exchanger. The heat transfer rate increases up to 30 angular orientation of the baffles and after that there is a drop in heat transfer rate at ? = 45. The pressure drop to the shell sides decreases continuously from 0 to 45 which helps in reducing the pumping cost of the shell and tube heat exchanger.

  16. Comparison of shell-and-tube with plate heat exchangers for the use in low-temperature organic Rankine cycles

    Highlights: • Binary cycles for low-temperature heat sources are investigated. • Shell-and-tube and plate heat exchangers are modeled. • System optimization of the cycle variables and heat exchanger geometry. • ORCs with plate heat exchangers obtain in most cases higher efficiencies. - Abstract: Organic Rankine cycles (ORCs) can be used for electricity production from low-temperature heat sources. These ORCs are often designed based on experience, but this experience will not always lead to the most optimal configuration. The ultimate goal is to design ORCs by performing a system optimization. In such an optimization, the configuration of the components and the cycle parameters (temperatures, pressures, mass flow rate) are optimized together to obtain the optimal configuration of power plant and components. In this paper, the configuration of plate heat exchangers or shell-and-tube heat exchangers is optimized together with the cycle configuration. In this way every heat exchanger has the optimum allocation of heat exchanger surface, pressure drop and pinch-point-temperature difference for the given boundary conditions. ORCs with plate heat exchangers perform mostly better than ORCs with shell-and-tube heat exchangers, but one disadvantage of plate heat exchangers is that the geometry of both sides is the same, which can result in an inefficient heat exchanger. It is also shown that especially the cooling-fluid inlet temperature and mass flow have a strong influence on the performance of the power plant

  17. Experimental performance investigation of a shell and tube heat exchanger by exergy based sensitivity analysis

    Mert, Suha Orçun; Reis, Alper

    2016-06-01

    Heat exchangers are used extensively in many industrial branches, primarily so in chemical and energy sectors. They also have important household usage as they are used in central and local heating systems. Any betterment on heat exchangers will serve greatly in preserving our already dwindling and costly energy resources. Strong approach of exergy analysis -which helps find out where the first steps should be taken in determining sources of inefficiencies and how to remedy them- will be used as a means to this end. The maximum useful work that can be harnessed from systems relationships with its environment is defined as exergy. In this study, the inlet and outlet flow rate values of fluids and temperature of hot stream both on shell and tube parts of a shell-tube heat exchange system have been inspected and their effects on the exergy efficiency of this thermal system have been analyzed. It is seen that the combination of high tube side inlet temperature, low shell side flow rate and high tube side flow rate are found to be the optimum for this experimental system with reaching 75, 65, and 32 % efficiencies respectively. Selecting operating conditions suitable to this behavior will help to increase the overall efficiency of shell-tube heat exchange systems and cause an increment in energy conservation.

  18. CFD Analysis of Shell and Tube Heat Exchanger to Study the Effect of Baffle Cut on the Pressure Drop

    Avinash D Jadhav; Tushar A Koli

    2014-01-01

    The shell side design of a shell and tube heat exchanger; in particular the baffle spacing, baffle cut and shell diameter dependencies of the heat transfer coefficient and the pressure drop are investigated by numerically modelling a small heat exchanger. The flow and temperature fields inside the shell are resolved using a commercial CFD package. A set of CFD simulations is performed for a single shell and single tube pass heat exchanger with a variable number of baffles and turb...

  19. Optimum configuration of shell-and-tube heat exchangers for the use in low-temperature organic Rankine cycles

    Highlights: • Binary cycles for low-temperature heat sources are investigated. • Shell-and-tube heat exchangers are modeled. • System optimization of the cycle variables and shell-and-tube geometry. • 30°-tube configuration is optimal for single-phase heat exchangers. • 60°-tube configuration is optimal for two-phase heat exchangers. - Abstract: In this paper, a first step towards a system optimization of organic Rankine cycles (ORCs) is taken by optimizing the cycle parameters together with the configuration of shell-and-tube heat exchangers. In this way every heat exchanger has the optimum allocation of heat-exchanger surface, pressure drop and pinch-point-temperature difference for the given boundary conditions. Different tube configurations are investigated in this paper. It is concluded that the 30°-tube configurations should be used for the single-phase heat exchangers and the 60°-tube configuration for the two-phase heat exchangers. The performance of subcritical cycles can be strongly improved by adding a second pressure level. Recuperated cycles are only useful when the temperature of the heat source after the ORC should be relatively high

  20. Estimated Outlet Temperatures in Shell-and-Tube Heat Exchanger Using Artificial Neural Network Approach Based on Practical Data

    Hisham Hassan Jasim

    2013-01-01

    The objective of this study is to apply Artificial Neural Network for heat transfer analysis of shell-and-tube heat exchangers widely used in power plants and refineries. Practical data was obtained by using industrial heat exchanger operating in power generation department of Dura refinery. The commonly used Back Propagation (BP) algorithm was used to train and test networks by divided the data to three samples (training, validation and testing data) to give more approach data with actual ca...

  1. Fundamental basis and implementation of shell and tube heat exchanger project design: condenser and evaporator study

    Dalkilic, A. S.; Acikgoz, O.; Tapan, S.; Wongwises, S.

    2016-03-01

    A shell and tube heat exchanger is used as a condenser and an evaporator in this theoretical study. Parametric performance analyses for various actual refrigerants were performed using well-known correlations in open sources. Condensation and evaporation were occurred in the shell side while the water was flowing in the tube side of heat exchanger. Heat transfer rate from tube side was kept constant for condenser and evaporator design. Condensing temperatures were varied from 35 to 60 °C whereas evaporating temperatures were ranging from -15 to 10 °C for the refrigerants of R12, R22, R134a, R32, R507A, R404A, R502, R407C, R152A, R410A and R1234ZE. Variation of convective heat transfer coefficients of refrigerants, total heat transfer coefficients with Reynolds numbers and saturation temperatures were given as validation process considering not only fouling resistance and omission of it but also staggered (triangular) and line (square) arrangements. The minimum tube lengths and necessary pumping powers were calculated and given as case studies for the investigated refrigerants considering validation criteria. It was understood that refrigerant type, fouling resistance and arrangement type are one of the crucial issues regarding the determination of heat exchanger's size and energy consumption. Consequently, R32 and R152a were found to require the shortest tube length and lowest pumping power in the condenser, whereas R507 and R407C have the same advantages in the evaporator. Their heat transfer coefficients were also determined larger than others as expectedly.

  2. Experimental Study on Heat Transfer Characteristics of Shell and Tube Heat Exchanger Using Hitran Wire Matrix Turbulators As Tube Inserts.

    Manoj

    2014-06-01

    Full Text Available Shell and tube heat exchangers are extensively used in boilers, oil coolers, pre-heaters, condensers etc. They are also having special importance in process application as well as refrigeration and air conditioning industries. The present paper emphasizes on heat transfer characteristics of shell and tube heat exchangers with the aid of hiTRAN wire matrix inserts is been studied. Investigations were made on effect of mass flow rate of water on heat transfer characteristics in case of plain tube without inserts. When hiTRAN wire matrix tube inserts are used, which effectively increases the turbulence of tube side flow due to the hydrodynamic and thermal agitation of boundary layer in turns increases additional pressure drop is available in the system. This results in increase in the wall shear, reduced wall temperature which enhances substantial increase in tube side heat transfer characteristics. Heat and cooling processes streams is a standard operation in many industries this operation is often performed in heat exchangers where the heated or cold fluid flows under laminar conditions inside the tubes the mechanisms of under those flow conditions are complex poorly understood since they can involve both forced and natural convection making accurate prediction for heat exchanger. Heat transfer in laminar flow regimes is low by default but can be greatly increased by the use of passive heat transfer enhancement such as tube inserts. The present analysis the hiTRAN wire matrix turbulators were used and increased heat transfer characteristics as expected outcomes.

  3. Design of shell-and-tube heat exchangers when the fouling depends on local temperature and velocity

    Butterworth, D. [HTFS, Hyprotech, Didcot (United Kingdom)

    2002-07-01

    Shell-and-tube heat exchangers are normally designed on the basis of a uniform and constant fouling resistance that is specified in advance by the exchanger user. The design process is then one of determining the best exchanger that will achieve the thermal duty within the specified pressure drop constraints. It has been shown in previous papers [Designing shell-and-tube heat exchangers with velocity-dependant fouling, 34th US national Heat Transfer Conference, 20-22 August 2000, Pittsburg, PA; Designing shell-and-tube heat exchangers with velocity-dependant fouling, 2nd Int. Conf. on Petroleum and Gas Phase Behavior and Fouling, 27-31 August 2000, Copenhagen] that this approach can be extended to the design of exchangers where the design fouling resistance depends on velocity. The current paper briefly reviews the main findings of the previous papers and goes on to treat the case where the fouling depends also on the local temperatures. The Ebert-Panchal [Analysis of Exxon crude-oil, slip-stream coking data, Engineering Foundation Conference on Fouling Mitigation of Heat Exchangers, 18-23 June 1995, California] form of fouling rate equation is used to evaluate this fouling dependence. When allowing for temperature effects, it becomes difficult to divorce the design from the way the exchanger will be operated up to the point when the design fouling is achieved. However, rational ways of separating the design from the operation are proposed. (author)

  4. Selection and costing of heat exchangers. Shell-and-tube type

    1994-12-01

    ESDU 94042 extends the information in ESDU 92013 which, when a shell-and-tube exchanger is found appropriate and is costed, provides the results for a datum design with fixed average values of fluid pressure, tube diameter, shell length-to-diameter ratio, baffle pitch and for a particular shell type, and shell and tube materials. It provides factors derived from an analysis of manufacturer's data to be applied to the cost results from ESDU 92013 to account for variations in those parameters and features. Additional guidance on the configuration and use of shell-and-tube exchangers is given. The performance of the exchangers is calculated using the effectiveness-NTU method and graphs of those data are included for E-shells in series. The data are incorporated in ESDUpac A9213 which is a Fortran program that implements the selection and costing method of ESDU 92013. It is provided on disc in the software volume compiled to run under DOS with a user-friendly interface that prompts on screen for input data.

  5. Optimization of shell-and-tube heat exchangers conforming to TEMA standards with designs motivated by constructal theory

    Highlights: • A design method of heat exchangers motivated by constructal theory is proposed. • A genetic algorithm is applied and the TEMA standards are rigorously followed. • Three cases are studied to illustrate the advantage of the proposed design method. • The design method will reduce the total cost compared to two other methods. - Abstract: A modified optimization design approach motivated by constructal theory is proposed for shell-and-tube heat exchangers in the present paper. In this method, a shell-and-tube heat exchanger is divided into several in-series heat exchangers. The Tubular Exchanger Manufacturers Association (TEMA) standards are rigorously followed for all design parameters. The total cost of the whole shell-and-tube heat exchanger is set as the objective function, including the investment cost for initial manufacture and the operational cost involving the power consumption to overcome the frictional pressure loss. A genetic algorithm is applied to minimize the cost function by adjusting parameters such as the tube and shell diameters, tube length and tube arrangement. Three cases are studied which indicate that the modified design approach can significantly reduce the total cost compared to the original design method and traditional genetic algorithm design method

  6. Experimental Study of Inlet/Outlet Flow Characteristics in Tube-side of Shell and Tube Heat Exchanger

    The inlet/outlet flow in the tube-side of the shell and tube heat exchanger was experimentally measured to investigate the effect of the porous baffle on uniform flow distribution. A 1/3rd scale-downed model of a heat exchanger was used and particle image velocimetry was applied for measuring the instantaneous velocity vector fields. The absolute errors in the flow rate were calculated and compared for the tube-side with and without the porous baffle, by varying the flow rate from 60 to 90 LPM. The results revealed that the porous baffle can improve flow uniformity and reduce the absolute error in the flow rate of the model with the baffle by about 74%, compared to that without the baffle. This result can be used for improving the performance and design of the shell and tube heat exchanger

  7. Experimental Study of Inlet/Outlet Flow Characteristics in Tube-side of Shell and Tube Heat Exchanger

    Tu, Xin Cheng; Wang, Kai; Kim, Hyoung-Bum [Gyeongsang National University, Jinju (Korea, Republic of); Park, Seung-Ha [Donghwa Entec Co. Ltd., Busan (Korea, Republic of)

    2014-07-15

    The inlet/outlet flow in the tube-side of the shell and tube heat exchanger was experimentally measured to investigate the effect of the porous baffle on uniform flow distribution. A 1/3rd scale-downed model of a heat exchanger was used and particle image velocimetry was applied for measuring the instantaneous velocity vector fields. The absolute errors in the flow rate were calculated and compared for the tube-side with and without the porous baffle, by varying the flow rate from 60 to 90 LPM. The results revealed that the porous baffle can improve flow uniformity and reduce the absolute error in the flow rate of the model with the baffle by about 74%, compared to that without the baffle. This result can be used for improving the performance and design of the shell and tube heat exchanger.

  8. Design optimization of shell-and-tube heat exchangers using single objective and multiobjective particle swarm optimization

    The Particle Swarm Optimization (PSO) algorithm is used to optimize the design of shell-and-tube heat exchangers and determine the optimal feasible solutions so as to eliminate trial-and-error during the design process. The design formulation takes into account the area and the total annual cost of heat exchangers as two objective functions together with operating as well as geometrical constraints. The Nonlinear Constrained Single Objective Particle Swarm Optimization (NCSOPSO) algorithm is used to minimize and find the optimal feasible solution for each of the nonlinear constrained objective functions alone, respectively. Then, a novel Nonlinear Constrained Mult-objective Particle Swarm Optimization (NCMOPSO) algorithm is used to minimize and find the Pareto optimal solutions for both of the nonlinear constrained objective functions together. The experimental results show that the two algorithms are very efficient, fast and can find the accurate optimal feasible solutions of the shell and tube heat exchangers design optimization problem. (orig.)

  9. A new optimization approach for shell and tube heat exchangers by using electromagnetism-like algorithm (EM)

    Abed, Azher M.; Abed, Issa Ahmed; Majdi, Hasan Sh.; Al-Shamani, Ali Najah; Sopian, K.

    2016-02-01

    This study proposes a new procedure for optimal design of shell and tube heat exchangers. The electromagnetism-like algorithm is applied to save on heat exchanger capital cost and designing a compact, high performance heat exchanger with effective use of the allowable pressure drop (cost of the pump). An optimization algorithm is then utilized to determine the optimal values of both geometric design parameters and maximum allowable pressure drop by pursuing the minimization of a total cost function. A computer code is developed for the optimal shell and tube heat exchangers. Different test cases are solved to demonstrate the effectiveness and ability of the proposed algorithm. Results are also compared with those obtained by other approaches available in the literature. The comparisons indicate that a proposed design procedure can be successfully applied in the optimal design of shell and tube heat exchangers. In particular, in the examined cases a reduction of total costs up to 30, 29, and 56.15 % compared with the original design and up to 18, 5.5 and 7.4 % compared with other approaches for case study 1, 2 and 3 respectively, are observed. In this work, economic optimization resulting from the proposed design procedure are relevant especially when the size/volume is critical for high performance and compact unit, moderate volume and cost are needed.

  10. Design and Development of Shell and Tube Heat Exchanger for Harar Brewery Company Pasteurizer Application (Mechanical and Thermal Design)

    Dawit Bogale

    2014-01-01

    A heat exchanger is a device that is used to transfer thermal energy (enthalpy) between two or more fluids, between a solid surface and a fluid, or between solid particulates and a fluid, at different temperatures and in thermal contact[1].From different types of heat exchangers the shell and tube heat exchangers with straight tubes and single pass is to be under study. Here the redesign takes place because of temperature fluctuation at the 9th zone of the pasteurizer in the Harar Brewery Co...

  11. Shell side numerical analysis of a shell and tube heat exchanger considering the effects of baffle inclination angle on fluid flow using CFD

    Raj Karuppa Thundil R.; Ganne Srikanth

    2012-01-01

    In this present study, attempts were made to investigate the impacts of various baffle inclination angles on fluid flow and the heat transfer characteristics of a shell-and-tube heat exchanger for three different baffle inclination angles namely 0°,10° and 20°. The simulation results for various shell and tube heat exchangers, one with segmental baffles perpendicular to fluid flow and two with segmental baffles inclined to the direction of fluid flow are compared for their performance. ...

  12. Validation of the method for determination of the thermal resistance of fouling in shell and tube heat exchangers

    Highlights: • Heat recovery in a heat exchanger network (HEN). • A novel method for on-line determination of the thermal resistance of fouling is presented. • Details are developed for shell and tube heat exchangers. • The method was validated and sensibility analysis was carried out. • Developed approach allows long-term monitoring of changes in the HEN efficiency. - Abstract: A novel method for on-line determination of the thermal resistance of fouling in shell and tube heat exchangers is presented. It can be applied under the condition that the data on pressure, temperature, mass flowrate and thermophysical properties of both heat-exchanging media are continuously available. The calculation algorithm for use in the novel method is robust and ensures reliable determination of the thermal resistance of fouling even if the operating parameters fluctuate. The method was validated using measurement data retrieved from the operation records of a heat exchanger network connected with a crude distillation unit rated 800 t/h. Sensibility analysis of the method was carried out and the calculated values of the thermal resistance of fouling were critically reviewed considering the results of qualitative evaluation of fouling layers in the exchangers inspected during plant overhaul

  13. Thermal analysis of shell-side flow of shell-and tube heat exchanger using experimental and theoretical methods

    In this paper the thermal behavior of the shell-side flow of a shell-and-tu fe heat exchanger has been studied using theoretical and experimental methods. The experimental method Provided the effect of the major parameters of the shell-side flow on thermal energy exchange. In the numerical method, besides the effect of the major parameters, the effect of different geometric parameters and Re on thermal energy exchange in shell-side flow has been considered. Numerical analysis for six baffle spacings namely 0.20, 0.25, 0.33, 0.50, 0.66, and 1.0 of inside diameter of the shell and five baffle cuts namely 16%, 20%, 25%, 34%, and 46% of baffle diameter, have been carried out. In earlier numerical analyses, the repetition of an identical geometrical module of exchanger as a calculation domain has been studied. While in this work, as a new approach in current numerical analysis, the entire geometry of shell-and-tube heat exchanger including entrance and exit regions as a calculation domain has been chosen. The results show that the flow and heat profiles vary alternatively between baffles. A shell-and-tube heat exchanger of gas-liquid chemical reactor system has been used in the experimental method. Comparison of the numerical results show good agreement with experimental results of this research and other published experimental results over a wide rang of Reynolds numbers (1,000-1,000,000)

  14. Parametric study of gross flow maldistribution in a single-pass shell and tube heat exchanger in turbulent regime

    Highlights: • A potential means of reducing flow maldistribution in exchangers. • In turbulent flows, maldistribution is but only tube number. • A Gaussian function can also express flow maldistribution in the exchanger. -- Abstract: Uniform distribution of flow in tube bundle of shell and tube heat exchangers is an arbitrary assumption in conventional heat exchanger design. Nevertheless, in practice, flow maldistribution may be an inevitable occurrence which may have severe impacts on thermal and mechanical performance of heat exchangers i.e. fouling. The present models for flow maldistribution in the tube-side deal only with the maximum possible velocity deviation. Other flow maldistribution models propose and recommend the use of a probability distribution, e.g. Gaussian distribution. None of these, nevertheless, estimate quantitatively the number of tubes that suffer from flow maldistribution. This study presents a mathematical model for predicting gross flow maldistribution in the tube-side of a single-pass shell and tube heat exchanger. It can quantitatively estimate the magnitude of flow maldistribution and the number of tubes which have been affected. The validation of the resultant model has been confirmed when compared with similar study using computational fluid dynamics (CFD)

  15. CFD Analysis of Shell and Tube Heat Exchanger to Study the Effect of Baffle Cut on the Pressure Drop

    Avinash D Jadhav

    2014-07-01

    Full Text Available The shell side design of a shell and tube heat exchanger; in particular the baffle spacing, baffle cut and shell diameter dependencies of the heat transfer coefficient and the pressure drop are investigated by numerically modelling a small heat exchanger. The flow and temperature fields inside the shell are resolved using a commercial CFD package. A set of CFD simulations is performed for a single shell and single tube pass heat exchanger with a variable number of baffles and turbulent flow. The results are observed to be sensitive to the turbulence model selection. The best turbulence model among the ones considered is determined by comparing the CFD results of heat transfer coefficient, outlet temperature and pressure drop with the BellDelaware method results. For two baffle cut values, the effect of the baffle spacing to shell diameter ratio on the heat exchanger performance is investigated by varying flow rate.

  16. Effect of Segmental Baffles at Different Orientation on the Performances of Single Pass Shell and Tube Heat Exchanger

    Neeraj kumar; Dr. Pradeep kumar Jhinge

    2014-01-01

    In present work, experimentation of single pass, counter flow shell and tube heat exchanger containing segmental baffles at different orientations has been conducted to calculate some parameters (heat transfer rate and pressure drop) at different Reynolds number in laminar flow. In the present work, an attempt has been made to study the effect of increase in Reynolds number at different angular orientation “θ” of the baffles. The range of “θ” vary from 0° to 45° (i.e 0°, 15°, 30° and 45°) and...

  17. Optimization of a Finned Shell and Tube Heat Exchanger Using a Multi-Objective Optimization Genetic Algorithm

    Heidar Sadeghzadeh

    2015-08-01

    Full Text Available Heat transfer rate and cost significantly affect designs of shell and tube heat exchangers. From the viewpoint of engineering, an optimum design is obtained via maximum heat transfer rate and minimum cost. Here, an analysis of a radial, finned, shell and tube heat exchanger is carried out, considering nine design parameters: tube arrangement, tube diameter, tube pitch, tube length, number of tubes, fin height, fin thickness, baffle spacing ratio and number of fins per unit length of tube. The “Delaware modified” technique is used to determine heat transfer coefficients and the shell-side pressure drop. In this technique, the baffle cut is 20 percent and the baffle ratio limits range from 0.2 to 0.4. The optimization of the objective functions (maximum heat transfer rate and minimum total cost is performed using a non-dominated sorting genetic algorithm (NSGA-II, and compared against a one-objective algorithm, to find the best solutions. The results are depicted as a set of solutions on a Pareto front, and show that the heat transfer rate ranges from 3517 to 7075 kW. Also, the minimum and maximum objective functions are specified, allowing the designer to select the best points among these solutions based on requirements. Additionally, variations of shell-side pressure drop with total cost are depicted, and indicate that the pressure drop ranges from 3.8 to 46.7 kPa.

  18. A study on the development of fouling analysis technique for shell-and-tube heat exchangers

    Fouling of heat exchangers is generated by water-borne deposits, commonly known as foulants including particulate matter from the air, migrated corrosion produces; silt, clays, and sand suspended in water; organic contaminants; and boron based deposits in plants. The fouling is known to interfere with normal flow characteristics and reduce thermal efficiencies of heat exchangers. This paper describes the fouling analysis technique developed in this study which can analyze the thermal performance for heat exchangers and estimate the future fouling variations. To develop the fouling analysis technique for heat exchangers, fouling factor was introduced based on the ASME O and M codes and TEMA standards. For the purpose of verifying the fouling analysis technique, the fouling analyses were performed for four heat exchangers in several nuclear power plants; two residual heat removal heat exchangers of the residual heat removal system and two component cooling water heat exchangers of the component cooling water system

  19. Design evaluation of flow-induced vibrations for a large shell and tube type nuclear heat exchanger

    Increased flow requirements for a large sized shell and tube type nuclear heat exchanger during advanced stage of manufacturing required re-evaluation of the Design to withstand flow-induced vibrations and suggest suitable Design alternatives within the constraints imposed at this advanced stage of manufacturing. Detailed flow-induced vibration analysis was done and two design alternatives offered. The first one consisted in attaching a wire-netted grid mounted alongside the baffle supports and the second considered removal of tubes from the vibration prone double span window region, which was counter-checked for heat-transfer adequacy requirement. Of the two alternatives, the second one was accepted due to its easy application at the advanced manufacturing stage. While the application of the wire-netted grid was not considered in the specific case, this might find application wherever the vibration prone double span tubes cannot be removed due to heat transfer requirements of Design

  20. Numerical simulation of heat transfer enhancement in shell side of shell-and-tube heat exchanger with leading type shutter baffles

    For overcoming the contradiction between the performance improvement and fluid flow resistance increase in shell-and-tube heat exchanger, a new concept of 'Sideling Flow' in shell side is presented, and a type of new high efficiency energy saving shell-and-tube heat exchanger with leading type shutter baffles in shell side, sideling flow heat exchanger is invented. Besides, the 'Field Synergy Principle' is adopted to analyze its heat transfer enhancement mechanism, and it is indicated that there is the perfect synergy between the velocity field and temperature grads field in shell side of this type of new heat exchanger. Effects of the structure parameters on the fluid flow and heat transfer are investigated through numerical simulation, and the numerical results are in good agreement with the experimental data. (authors)

  1. A new design approach for shell-and-tube heat exchangers using imperialist competitive algorithm (ICA) from economic point of view

    Highlights: ► A new shell and tube heat exchanger optimization design approach is developed. ► Design optimization is performed using imperialist competitive optimization (ICA) algorithm. ► The capital investment, annual cost and consequently total cost are minimized by applying ICA technique. ► Proposed a quick approach to optimal design of heat exchangers with very low run time. - Abstract: Cost minimization of shell-and-tube heat exchangers is a key objective. Traditional design approaches besides being time consuming, do not guarantee the reach of an economically optimal solution. So, in this research, a new shell and tube heat exchanger optimization design approach is developed based on imperialist competitive algorithm (ICA). The ICA algorithm has some good features in reaching to the global minimum in comparison to other evolutionary algorithms. In present study, ICA technique has been applied to minimize the total cost of the equipment including capital investment and the sum of discounted annual energy expenditures related to pumping of shell and tube heat exchanger by varying various design variables such as tube length, tube outer diameter, pitch size and baffle spacing. Based on proposed method, a full computer code was developed for optimal design of shell and tube heat exchangers and different test cases are solved by it to demonstrate the effectiveness and accuracy of the proposed algorithm. Finally the results are compared to those obtained by literature approaches. The obtained results indicate that the ICA algorithm can be successfully applied for optimal design of shell and tube heat exchangers with higher accuracy in less computational time

  2. Two-phase flow on the shell-side of a segmentally baffled shell-and-tube heat exchanger

    This paper reviews work carried out at the National Engineering Laboratory, UK., related to pressure drop flow patterns and phase distribution on the shell-side of segmentally baffled shell-and-tube heat exchangers. The experimental work reported was carried out using air/water mixtures in model exchangers of rectangular cross section with tube nests containing approximately 40 tubes. Data were obtained on crossflow pressure drop and on the pressure drop attributable to the windows. In certain configurations the void fraction and flow pattern maps were obtained. The geometric conditions examined related to configurations appropriate to operation as condensers and boilers. Correlations for pressure drop and void fraction were developed and flow pattern maps obtained

  3. Design and Development of Shell and Tube Heat Exchanger for Harar Brewery Company Pasteurizer Application (Mechanical and Thermal Design

    Dawit Bogale

    2014-10-01

    Full Text Available A heat exchanger is a device that is used to transfer thermal energy (enthalpy between two or more fluids, between a solid surface and a fluid, or between solid particulates and a fluid, at different temperatures and in thermal contact[1].From different types of heat exchangers the shell and tube heat exchangers with straight tubes and single pass is to be under study. Here the redesign takes place because of temperature fluctuation at the 9th zone of the pasteurizer in the Harar Brewery Company. Thermal and mechanical design is run in order to optimize the output temperature of the cold fluid at the last heat exchanger in which it is sprayed on the beer ready for customer use. In thermal design part geometry optimization is done through trial and error. And for Mechanical design part the natural frequency& vortex shedding of different components of heat exchangers are investigated through governing equations of vibrations under dynamic fluid with in tubes. Using computational fluid dynamics (CFD the heat transfer of the two fluid is investigated using FEM simulation software’s Gambit1.3 and Fluent 6.1and the performance of the STHEx determined in terms of variables such as pressure, temperature, flow rate, energy input/output, mass flow rate and mass transfer rate that are of particular interest in STHEx analysis.

  4. Ageing studies on shell and tube type heat exchangers at Cirus based on field experience and inservice inspection

    Cirus is a 40 MWt research reactor located at Trombay, Bombay and commissioned in the year 1960. The reactor uses metallic natural uranium as fuel, demineralized (DM) light water as primary coolant, heavy water as moderator and sea water as secondary coolant. A set of 13 nos. of shell and tube type heat exchangers are used in the main systems for rejecting heat to sea. The heat exchangers are vertically mounted, conforming to TEMA Class R and 70:30 Cu-Ni tubes on sea water side. End covers are made of Si-bronze. The heat exchangers have given satisfactory service for over 33 years. In the initial years, problems such as fouling on sea water side and failure of a few tubes near the sea water entry zones were experienced. Subsequently, the maintenance work greatly reduced after carrying out certain modifications in the operations and maintenance procedures. In-service inspection carried out and the maintenance experience suggest that performance of the heat exchangers may be rated as satisfactory. Deformation of some components, damage to tubes on the DM water side, cracking of heavy water heat exchanger shell (SS type 347) due to intergranular stress corrosion cracking (IGSCC) etc. have been observed. An attempt is made to discuss the experience. (author). 2 refs., 3 tabs., 3 figs

  5. Impacto ecolgico de los Intercambiadores de calor de tubo y coraza / Ecological impact of Shell and tube heat exchangers

    Maida Brbara, Reyes Rodrguez; Jorge Laureano, Moya Rodrguez; Oscar Miguel, Cruz Fonticiella.

    2015-04-01

    Full Text Available Los intercambiadores de calor de tubo y coraza son de los equipos ms importantes en la industria. Su diseo termodinmico se basa en el coeficiente global de transferencia de calor y la cada de presin total. En 2007 se estableci una nueva propiedad termodinmica denominada "Entransa", que expre [...] sa la capacidad de un cuerpo de transferir calor. A la prdida de esa capacidad se le denomina "Disipacin de Entransa". Para evaluar el impacto ecolgico de las mquinas trmicas, Angulo-Brown cre en 1991 la llamada funcin ecolgica. En el presente trabajo se combin la disipacin de entransa con la funcin ecolgica y se cre una nueva expresin para evaluar el impacto ambiental de los intercambiadores de calor. Se realiz adems la optimizacin muti-objetivo de estos equipos. Fueron utilizadas como funciones objetivo la funcin ecolgica y el costo. Para realizar la optimizacin se utiliz el mtodo de los Algoritmos Genticos. Abstract in english Shell and tube heat exchangers are ones the most important equipment in the industry. Their thermodynamic design is based on the global heat transference coefficient and the pressure drop. In 2007 was settled a new thermodynamic property denominated "Entransy", which expresses the capacity of a body [...] to transfer heat. The loss of this capacity is denominated "Entransy Dissipation". For evaluating the ecological impact of thermal machines, Angulo-Brown created in 1991 the "ecological function". In this paper the"entransy dissipation" and the ecological function were combined and a new expression for evaluating the ecological impact of shell and tube heat exchangers was created. A multi-objective optimization of this equipment wasalso realized. The ecological function and the cost wereused as objective functions. For carry out the optimization the method of the Genetic Algorithms was used.

  6. Plugging margin evaluation considering the fouling of shell-and-tube heat exchanger

    As operating time of heat exchangers progresses, fouling generated by water-borne deposits increases, number of tube plugging increases, and thermal performance decreases. The fouling and plugging of tubes are known to interfere with normal flow characteristics and reduce thermal efficiencies of heat exchangers. This paper describes the plugging margin evaluation method which can reflect the current fouling level developed in this study. To develop the plugging margin evaluation methods for heat exchangers, fouling factor was introduced based on the ASME O and M codes and TEMA standards. For the purpose of verifying the plugging margin evaluation methods, the fouling and plugging margin evaluations were performed for a component cooling heat exchanger in a nuclear power plant

  7. Estimated Outlet Temperatures in Shell-and-Tube Heat Exchanger Using Artificial Neural Network Approach Based on Practical Data

    Hisham Hassan Jasim

    2013-01-01

    Full Text Available The objective of this study is to apply Artificial Neural Network for heat transfer analysis of shell-and-tube heat exchangers widely used in power plants and refineries. Practical data was obtained by using industrial heat exchanger operating in power generation department of Dura refinery. The commonly used Back Propagation (BP algorithm was used to train and test networks by divided the data to three samples (training, validation and testing data to give more approach data with actual case. Inputs of the neural network include inlet water temperature, inlet air temperature and mass flow rate of air. Two outputs (exit water temperature to cooling tower and exit air temperature to second stage of air compressor were taken in ANN.150 sets of data were generated in different days by the reference heat exchanger model to training the network. Regression between desired target and prediction ANN output for training , validation, testing and all samples show reasonably values are equal to one (R=1 . 50 sets of data were generated to test the network and compare between desired and predicated exit temperature (water temp. and air temp. show a good agreement ( .

  8. Techno-economic optimization of a shell and tube heat exchanger by genetic and particle swarm algorithms

    Highlights: • Calculating pressure drop and heat transfer coefficient by Delaware method. • The accuracy of the Delaware method is more than the Kern method. • The results of the PSO are better than the results of the GA. • The optimization results suggest that yields the best and most economic optimization. - Abstract: The use of genetic and particle swarm algorithms in the design of techno-economically optimum shell-and-tube heat exchangers is demonstrated. A cost function (including costs of the heat exchanger based on surface area and power consumption to overcome pressure drops) is the objective function, which is to be minimized. Selected decision variables include tube diameter, central baffles spacing and shell diameter. The Delaware method is used to calculate the heat transfer coefficient and the shell-side pressure drop. The accuracy and efficiency of the suggested algorithm and the Delaware method are investigated. A comparison of the results obtained by the two algorithms shows that results obtained with the particle swarm optimization method are superior to those obtained with the genetic algorithm method. By comparing these results with those from various references employing the Kern method and other algorithms, it is shown that the Delaware method accompanied by genetic and particle swarm algorithms achieves more optimum results, based on assessments for two case studies

  9. Influence of Ionic Fluid in Counter flow in Shell and Tube Heat Exchanger

    N.D.Shirgire

    2014-07-01

    Full Text Available An Ionanofluids are a new and innovative class of heat transfer fluids which exhibit fascinating thermo physical properties compared to their base ionic liquids. In this paper (1-Butyl-3-methylimidazolium chloride (BmimCLionic fluid is used comparison with Distilled Water. Distilled Water is non Ionic form in nature, so, results using (BmimCLis Overall good efficient in heat transfer device, were obtained with experimental work results on thermal conductivity and heat capacity,. As compared to (BmimCL those of their base ionic liquids such as (mineral oils and ethylene glycol etc are less thermophysical properties . as coolants in heat exchanger are also used to access their feasibility and performance in heat transfer devices.

  10. Enhancement of Performance of Shell and Tube Heat Exchanger Using Pertinent Leakage Flow Between Baffle and Tube Bundles

    Hap, Nguyen Van; Lee, Geun Sik [Ulsan University, Ulsan (Korea, Republic of)

    2015-03-15

    In this study, the effects of the leakage flow between the baffle and tube bundles on the performance of a shell and tube heat exchanger (STHE) were examined using the commercial software ANSYS FLUENT v.14. A computational fluid dynamics model was developed for a small STHE with five different cases for the ratio of the leakage cross-sectional area to the baffle cross-sectional area, ranging from 0 to 40%, in order to determine the optimum leakage flow corresponding to the maximum outlet temperature. Using fixed tube wall and inlet temperatures for the shell side of the STHE, the flow and temperature fields were calculated by increasing the Reynolds number from 4952 to 14858. The present results showed that the outlet temperature, pressure drop, and heat transfer coefficient were strongly affected by the leakage flow, as well as the Reynolds number. In contrast with a previous researchers finding that the leakage flow led to simultaneous decreases in the pressure drop and heat transfer rate, the present study found that the pertinent leakage flow provided momentum in the recirculation zone near the baffle plate and thus led to the maximum outlet temperature, a small pressure drop, and the highest heat transfer rate. The optimum leakage flow was shown in the case with a ratio of 20% among the five different cases.

  11. Enhancement of Performance of Shell and Tube Heat Exchanger Using Pertinent Leakage Flow Between Baffle and Tube Bundles

    In this study, the effects of the leakage flow between the baffle and tube bundles on the performance of a shell and tube heat exchanger (STHE) were examined using the commercial software ANSYS FLUENT v.14. A computational fluid dynamics model was developed for a small STHE with five different cases for the ratio of the leakage cross-sectional area to the baffle cross-sectional area, ranging from 0 to 40%, in order to determine the optimum leakage flow corresponding to the maximum outlet temperature. Using fixed tube wall and inlet temperatures for the shell side of the STHE, the flow and temperature fields were calculated by increasing the Reynolds number from 4952 to 14858. The present results showed that the outlet temperature, pressure drop, and heat transfer coefficient were strongly affected by the leakage flow, as well as the Reynolds number. In contrast with a previous researchers finding that the leakage flow led to simultaneous decreases in the pressure drop and heat transfer rate, the present study found that the pertinent leakage flow provided momentum in the recirculation zone near the baffle plate and thus led to the maximum outlet temperature, a small pressure drop, and the highest heat transfer rate. The optimum leakage flow was shown in the case with a ratio of 20% among the five different cases.

  12. Investigation of the effects of baffle orientation, baffle cut and fluid viscosity on shell side pressure drop and heat transfer coefficient in an e-type shell and tube heat exchanger

    Mohammadi, Koorosh

    2011-01-01

    The commercial CFD code FLUENT is used to determine the effect of baffle orientation and baffle cut as well as viscosity of the working fluid on the shell-side heat transfer and pressure drop of a shell and tube heat exchanger. The shell and tube heat exchangers considered follow the TEMA standards. The investigation has been completed in three stages: 1. The shell and tube heat exchanger consists of 660 plain tubes with fixed outside diameter which are arranged in a triangular layout. Hor...

  13. The modelling of particle build up in shell-and-tube heat exchangers due to process cooling water / Christiaan Jacob Ghyoot

    Ghyoot, Christiaan Jacob

    2013-01-01

    Sasol Limited experiences extremely high particulate fouling rates inside shell-and-tube heat exchangers that utilize process cooling water. The water and foulants are obtained from various natural and process sources and have irregular fluid properties. The fouling eventually obstructs flow on the shell side of the heat exchanger to such an extent that the tube bundles have to be replaced every nine months. Sasol requested that certain aspects of this issue be addressed. To...

  14. Shell side numerical analysis of a shell and tube heat exchanger considering the effects of baffle inclination angle on fluid flow using CFD

    Raj Karuppa Thundil R.

    2012-01-01

    Full Text Available In this present study, attempts were made to investigate the impacts of various baffle inclination angles on fluid flow and the heat transfer characteristics of a shell-and-tube heat exchanger for three different baffle inclination angles namely 0°,10° and 20°. The simulation results for various shell and tube heat exchangers, one with segmental baffles perpendicular to fluid flow and two with segmental baffles inclined to the direction of fluid flow are compared for their performance. The shell side design has been investigated numerically by modeling a small shell-and-tube heat exchanger. The study is concerned with a single shell and single side pass parallel flow heat exchanger. The flow and temperature fields inside the shell are studied using non-commercial CFD software tool ANSYS CFX 12.1. For a given baffle cut of 36 %, the heat exchanger performance is investigated by varying mass flow rate and baffle inclination angle. From the CFD simulation results, the shell side outlet temperature, pressure drop, recirculation near the baffles, optimal mass flow rate and the optimum baffle inclination angle for the given heat exchanger geometry are determined.

  15. A new method to calculate pressure drop and shell-side heat transfer coefficient in a shell-and-tube heat exchanger

    A new method to calculate pressure drop (Δp) and shell-side heat transfer coefficient (h sub(c)) in a shell-and-tube heat exchanger with segmental baffles is presented. The method is based on the solution of the equations of conservation of mass and momentum between two baffles. The calculated distributions of pressure and velocities given respectively, Δp and h sub(c). The values of Δp and h sub(c) are correlated for a given geometry whit the shell side fluid properties and flow rate. The calculated and experimental results agree very well for a U-Tube heat exchanger. (Author)

  16. A study on the development of plugging margin evaluation method reflected the fouling of a shell-and-tube heat exchanger

    As operating time of heat exchangers progresses, fouling generated by water-borne deposits and the number of plugged tubes increase and thermal performance decreases. Both fouling and tube plugging are known to interfere with normal flow characteristics and to reduce thermal efficiencies of heat exchangers. The heat exchangers of domestic nuclear power plants have been analyzed in terms of the heat flux and heat transfer coefficient at test conditions as a means of heat exchanger management. Except for the fouling level generated in operation of heat exchangers, also, all of the tubes of heat exchangers have been replaced when the number of plugged tubes exceeds the plugging criteria based on design performance sheet. This paper describes the plugging margin evaluation method reflected the fouling of shell-and-tube heat exchangers, which can evaluate the thermal performance for heat exchangers, estimate the further fouling variations, and reflect the current fouling level. To identify the effectiveness of the developed method, the fouling and plugging margin evaluations were performed for a component cooling heat exchanger in a nuclear power plant

  17. A study on development of a plugging margin evaluation method taking into account the fouling of shell-and tube heat exchangers

    As the operating time of heat exchangers progresses, fouling caused by water-borne deposits and the number of plugged tubes increase and thermal performance decreases. Both fouling and tube plugging are known to interfere with normal flow characteristics and to reduce thermal efficiencies of heat exchangers. The heat exchangers of Korean nuclear power plants have been analyzed in terms of heat transfer rate and overall heat transfer coefficient as a means of heat exchanger management. Except for fouling resulting from the operation of heat exchangers, all the tubes of heat exchangers have been replaced when the number of plugged tubes exceeded the plugging criteria based on design performance sheet. This paper describes a plugging margin evaluation method taking into account the fouling of shell-and-tube heat exchangers. The method can evaluate thermal performance, estimate future fouling variation, and consider current fouling level in the calculation of plugging margin. To identify the effectiveness of the developed method, fouling and plugging margin evaluations were performed at a component cooling heat exchanger in a Korean nuclear power plant

  18. Shell-side single-phase flows and heat transfer in shell-and-tube heat exchangers, 2

    Attention is focused on flows and heat transfer around a tube bundle located near the inlet nozzle in segmentally baffled tubular heat exchangers. A finite-difference analysis is performed to determine flow patterns, local heat ransfer coefficients, and pressure drops across a tube bundle. They are found to agree within a reasonable accuracy with experimental data. Particular attention is directed to the effects of the diameter of an inlet nozzle on flow patterns and local heat transfer coefficients. A noteworthy finding is that, with the use of a relatively large inlet nozzle whose diameter is roughly half of the shell diameter, the variation of local heat transfer coefficient in a tube bundle is contained in a tolerable range of 30 per cent. (author)

  19. Shell-side single-phase flows and heat transfer in shell-and-tube heat exchangers, 3

    An experimental investigation is performed to find the axial and circumferential distribution of local heat transfer coefficients around a tube bundle in segmentally turbular heat exchangers. The variation in the axial distribution of the heat transfer coefficient is found to be negligible compared with that of circumferential distribution or that within the tube bundle. Local heat transfer coefficients are sensitive to the ratio of the inlet nozzle diameter to the shell diameter in the inlet nozzle region of the tube bundle, while they remain invariant in the center region. No remarkable decrease of local heat transfer coefficients in the window zone is observed, so it is considered that there isn't any effective recirculation zones at the edge there. The normalization of the circumferential heat transfer coefficient using its averaged value keeps the distribution pattern unchanged with the Reynolds number, the ratio of inlet nozzle diameter to shell diameter and location of the tube within the bundle. These normalized values are assumed to agree with those of a tube bank of two dimensional array, with reasonable accuracy. (author)

  20. A study on the development of fouling and plugging margin evaluation methods for shell-and-tube heat exchangers

    As operating time of heat exchangers progresses, fouling generated by water-borne deposits increases and thermal performance decreases. The fouling is known to interfere with normal flow characteristics and reduce thermal efficiencies of heat exchangers. The heat exchangers of nuclear power plants have been analyzed in terms of the heat flux and heat transfer coefficient at test conditions based on the ASME OM-S/G-Part 2 as a means of heat exchanger management. It is hard to estimate the heat performance trend and to establish the future management plan. This paper describes the fouling evaluation method which can evaluate the thermal performance for heat exchangers and estimate the future fouling variations and the plugging margin evaluation method which can reflect the current fouling level developed in this study. To develop the fouling and plugging margin evaluation methods for heat exchangers, fouling factor was introduced based on the ASME O and M codes and TEMA standards. For the purpose of verifying the two evaluation methods, the fouling and plugging margin evaluations were performed for a component cooling heat exchanger in a nuclear power plant

  1. DESIGN OF HELICAL BAFFLE IN SHELL AND TUBE HEAT EXCHANGER WITH USING COPPER OXIDE(II) NANO PARTICLE

    R.N.S.V.Ramakanth

    2015-01-01

    Heat exchangers being one of the most important heat & mass transfer apparatus in industries like oil refining, chemical engineering, electric power generation etc. are designed with preciseness for optimum performance and lo ng service life. This paper experimental inve stgation of helical baffle heat exchanger using the Kern method with varied shell side flow rates. This is a proven method used in counter flow design of Hea...

  2. Impacto ecológico de los Intercambiadores de calor de tubo y coraza; Ecological impact of Shell and tube heat exchangers

    Maida Bárbara Reyes Rodríguez

    2015-04-01

    Full Text Available Los intercambiadores de calor de tubo y coraza son de los equipos más importantes en la industria. Su diseño termodinámico se basa en el coeficiente global de transferencia de calor y la caída de presión total. En 2007 se estableció una nueva propiedad termodinámica denominada “Entransía”, que expresa la capacidad de un cuerpo de transferir calor. A la pérdida de esa capacidad se le denomina “Disipación de Entransía”. Para evaluar el impacto ecológico de las máquinas térmicas, Angulo-Brown creó en 1991 la llamada función ecológica. En el presente trabajo se combinó la disipación de entransía con la función ecológica y se creó una nueva expresión para evaluar el impacto ambiental de los intercambiadores de calor. Se realizó además la optimización muti-objetivo de estos equipos. Fueron utilizadas como funciones objetivo la función ecológica y el costo. Para realizar la optimización se utilizó el método de los Algoritmos Genéticos.Shell and tube heat exchangers are ones the most important equipment in the industry. Their thermodynamic design is based on the global heat transference coefficient and the pressure drop. In 2007 was settled a new thermodynamic property denominated “Entransy”, which expresses the capacity of a body to transfer heat. The loss of this capacity is denominated “Entransy Dissipation”. For evaluating the ecological impact of thermal machines, Angulo-Brown created in 1991 the “ecological function”. In this paper the“entransy dissipation” and the ecological function were combined and a new expression for evaluating the ecological impact of shell and tube heat exchangers was created. A multi-objective optimization of this equipment wasalso realized. The ecological function and the cost wereused as objective functions. For carry out the optimization the method of the Genetic Algorithms was used.

  3. Evaluation of Nutritional and Physical Properties of Watermelon Juice during the Thermal Processing by Using Alumina Nano-fluid in a Shell and Tube Heat Exchanger

    Farinaz Saremnejad Namini

    2015-09-01

    Full Text Available Background and Objectives: Thermal processing is an effective method in preventing microbial spoilage but high heat transfer in a long time process that leads to quality loss and increased energy consumption. Also it is important to consider sensitive nature of food products during the thermal processing. Due to the nano-fluids' unique thermo–physical properties compared with the conventional fluids (steam and hot water, their use in various industries to enhance the efficiency of equipment and energy optimization has increased. Materials and Methods: The effects of alumina–water nano-fluids (0, 2, and 4% concentrations on some nutritional properties (lycopene and vitamin C content, and some physical properties (color, pH and TSS of watermelon juice treated by high temperature–short time (75, 80, and 85°C for 15, 30, and 45 seconds in a shell and tube heat exchanger were evaluated. Results: In compared with water, process time reduced by 24.88% and 51.63% for 2% and 4% nano-fluids, respectively. It had a significant effect on improving the properties of watermelon juice (P<0.05. Under the treatment conditions (75°C and 15s, with 0, 2, and 4% nano-fluids, 81.15, 84.81, and 91.28% of lycopene and 61.11, 63.70 and 67.04% of vitamin C were maintained, respectively. &DeltaE* values for the fruit juices processed with 0, 2 and 4% nano-fluids were 3.26, 2.21 and 1.14, respectively. Also pH and TSS changed in the range of 5.58–5.82 and 9.00–9.40%, respectively. Conclusions: The results showed that qualitative and nutritional properties of watermelon juices processed with nano-fluids in terms of lycopene and vitamin C retention, and color were, respectively, 9.89, 6.18 and 50.38% better than the samples processed with water.

  4. Automatizacin y optimizacin del diseo de intercambiadores de calor de tubo y coraza mediante el mtodo de Taborek / Automatization and optimization of shell and tube heat exchangers design using the method of Taborek

    Maida Brbara, Reyes-Rodrguez; Jorge-Laureano, Moya-Rodrguez; Oscar-Miguel, Cruz-Fonticiella; Eduardo-Miguel, Frvida-Donstevez; Jos-Alberto, Velzquez-Prez.

    2014-04-01

    Full Text Available Los intercambiadores de calor del tipo de coraza y tubo constituyen la parte ms importante de los equipos de transferencia de calor sin combustin en las plantas de procesos qumicos. Existen en la literatura numerosos mtodos para el diseo de Intercambiadores de calor de tubo y coraza. Entre los [...] ms conocidos se encuentran el Mtodo de Kern, el Mtodo de Bell Delaware, el Mtodo de Tinker, el Mtodo de Wills and Johnston y el Mtodo de Taborek. El presente trabajo tiene como objetivo describir y automatizar el mtodo de Taborek. Se realiza adems la optimizacin del Costo del Intercambiador de Calor mediante el mtodo de Recocido Simulado y el mtodo de los algoritmos genticos. Se puede concluir que la optimizacin por ambos mtodos arroja resultados similares, disminuyendo apreciablemente el costo del intercambiador optimizado. Abstract in english Shell and tube heat exchangers are the most important equipment for heat transfer without combustion in plants of chemical processes.There are many methods for designing shell and tube heat exchangers in literature. Among the most known are the Kerns Method, the Method of Bell Delaware, the Method [...] of Tinker, the Method of Wills and Johnston and the Method of Taborek. The objective of this paper is to describe and automate the Taboreks method. It is also realized and optimization of the heat exchanger cost using the genetic algorithm and Simulated Annealing. It can be concluded that the optimization using both methods conduces to similar results, diminishing considerably the optimized exchanger cost

  5. Effectiveness: N(sub TU) relationships for the design and performance evaluation of additional shell-and-tube heat exchanger geometries

    1988-11-01

    This Data Item 88021, an addition to the Sub-series on Heat Transfer, complements ESDU 86018 by extending the range of configurations covered there and in particular considering the effect of using small numbers of baffles for E- and J-shells and the use of J-shells in series. It also explores the limitations of the assumptions associated with the effectiveness - N(sub TU) method and shows where those assumptions break down. The curves presented for each exchanger geometry show the locus of designs for which a temperature cross may occur and the locus of 95 percent heat transfer effectiveness which indicates the region of uneconomic design. The method assumes a linear temperature/enthalpy relationship (constant specific heat capacity) for both streams. It applies to boiling or condensing flow of a single component with no temperature change, or boiling and condensing flow of a mixture that is always two-phase. It excludes conditions in which transition from single- to two-phase flow occurs. However, by use of average property values, it is possible to extend the method to apply to cases where there is some variation of physical and thermodynamic properties with temperature.

  6. Effect of the sequence of tube rolling in a tube bundle of a shell and tube heat exchanger on the stress-deformed state of the tube sheet

    Tselishchev, M. F.; Plotnikov, P. N.; Brodov, Yu. M.

    2015-11-01

    Rolling the tube sheet of a heat exchanger with U-shaped tubes, as exemplified by the vapor cooler GP-24, was simulated. The simulation was performed using the finite element method with account of elas- tic-plastic properties of the tube and tube sheet materials. The simulation consisted of two stages; at the first stage, maximum and residual contact stress in the conjunction of a separate tube and the tube sheet was determined using the "equivalent sleeve" model; at the second stage, the obtained contact stress was applied to the hole surface in the tube sheet. Thus, different tube rolling sequences were simulated: from the center to the periphery of the tube sheet and from the periphery to the center along a spiral line. The studies showed that the tube rolling sequence noticeably influences the value of the tube sheet residual deflection for the same rolling parameters of separate tubes. Residual deflection of the tube sheet in different planes was determined. It was established that the smallest residual deflection corresponds to the tube rolling sequence from the periphery to the center of the tube sheet. The following dependences were obtained for different rolling sequences: maximum deformation of the tube sheet as a function of the number of rolled tubes, residual deformation of the tube sheet along its surface, and residual deflection of the tube sheet as a function of the rotation angle at the periphery. The preferred sequence of tube rolling for minimizing the tube sheet deformation is indicated.

  7. Improving heat transfer efficiency of shell and tube evaporators of marine refrigerating installations

    Bukin Vladimir Grigorievich

    2013-04-01

    Full Text Available The results of investigations to determine the heat transfer of refrigerant R410A in shell and tube evaporators of marine refrigerating installations are presented. The effect of surface configuration and oil concentration on the nucleate boiling on heat transfer coefficients of different surfaces is investigated. The results of the study allow making a conclusion that the use of tubes with the developed surface geometry provides increase in heat transfer coefficient. It is advisable to replace the standard fins tubes of marine flooded shell and tube evaporator with tubes with enhanced surfaces.

  8. Evaluation of Nutritional and Physical Properties of Watermelon Juice during the Thermal Processing by Using Alumina Nano-fluid in a Shell and Tube Heat Exchanger

    Farinaz Saremnejad Namini; Mehdi Jafari; Mohammad Ziaiifar; Morad Rashidi

    2015-01-01

    Background and Objectives: Thermal processing is an effective method in preventing microbial spoilage but high heat transfer in a long time process that leads to quality loss and increased energy consumption. Also it is important to consider sensitive nature of food products during the thermal processing. Due to the nano-fluids' unique thermo–physical properties compared with the conventional fluids (steam and hot water), their use in various industries to enhance the efficiency of equipment ...

  9. Automatización y optimización del diseño de intercambiadores de calor de tubo y coraza mediante el método de Taborek//Automatization and optimization of shell and tube heat exchangers design using the method of Taborek

    Maida Bárbara Reyes‐Rodríguez

    2014-01-01

    Full Text Available Los intercambiadores de calor del tipo de coraza y tubo constituyen la parte más importante de los equipos de transferencia de calor sin combustión en las plantas de procesos químicos. Existen en la literatura numerosos métodos para el diseño de Intercambiadores de calor de tubo y coraza. Entre los más conocidos se encuentran el Método de Kern, el Método de Bell Delaware, el Método de Tinker, elMétodo de Wills and Johnston y el Método de Taborek. El presente trabajo tiene como objetivo describir y automatizar el método de Taborek. Se realiza además la optimización del Costo del Intercambiador de Calor mediante el método de Recocido Simulado y el método de los algoritmos genéticos. Se puede concluir que la optimización por ambos métodos arroja resultados similares, disminuyendoapreciablemente el costo del intercambiador optimizado.Palabras claves: optimización, intercambiadores de calor, método de Taborek, algoritmos genéticos.______________________________________________________________________________AbstractShell and tube heat exchangers are the most important equipment for heat transfer without combustion in plants of chemical processes.There are many methods for designing shell and tube heat exchangers in literature. Among the most known are the Kern´s Method, the Method of Bell Delaware, the Method ofTinker, the Method of Wills and Johnston and the Method of Taborek. The objective of this paper is to describe and automate the Taborek´s method. It is also realized and optimization of the heat exchanger cost using the genetic algorithm and Simulated Annealing. It can be concluded that the optimization usingboth methods conduces to similar results, diminishing considerably the optimized exchanger cost.Key words: optimization, Heat Exchangers, Taborek, Genetic Algorithms.

  10. The enhancement of steam condensation heat transfer in a horizontal shell and tube condenser by addition of ammonia

    Philpott, Chris; Deans, Joe [Auckland Univ., Dept. of Mechanical Engineering, Auckland (New Zealand)

    2004-08-01

    This paper reports on the rates of condensation heat transfer for weak ammonia-water mixtures in a horizontal, shell and tube condenser. It is shown that for inlet ammonia concentrations in the range 0.2-0.9 wt.% the average condensation heat transfer for the condenser was enhanced by up to 14%. Furthermore, local enhancement of the condensation heat transfer of up to 34% occurred at local bulk vapour concentrations between 0.2 and 2 wt.% ammonia. This enhancement was caused by the Marangoni effect which produced a disturbed, turbulent banded condensate film and a corresponding drop in the thermal resistance of the condensate film. (Author)

  11. Heat Exchanger

    A liquid metal heated tube and shell heat exchanger where straight tubes extend between upper and lower tube sheets. In order to prevent thermal stress problems, one tube sheet is fixed to the shell, and the other tube sheet is sealed to the shell by means of a flexible bellows. In the event of a catastrophic bellows failure, a housing that utilizes a packing gland sliding seal is used to enclose and back-up the bellows. Also, a key and slot arrangement is provided for preventing relative rotation between the shell and tube sheet which could damage the bellows and cause failure thereof. This exchanger is seen to be of use in sodium cooled reactors between the liquid sodium circuit on the steam generator

  12. Design of heat exchangers by numerical methods

    Differential equations describing the heat tranfer in shell - and tube heat exchangers are derived and solved numerically. The method of ΔT sub(lm) is compared with the proposed method in cases where the specific heat at constant pressure, Cp and the overall heat transfer coefficient, U, vary with temperature. The error of the method of ΔT sub (lm) for the computation of the exchanger lenght is less than + 10%. However, the numerical method, being more accurate and at the same time easy to use and economical, is recommended for the design of shell-and-tube heat exchangers. (Author)

  13. Boiling heat-transfer coefficient variation for R407C inside horizontal tubes of a refrigerating vapour-compression plant's shell-and-tube evaporator

    Torrella, Enrique [Department of Applied Thermodynamics, Camino de Vera, 14, Polytechnic University of Valencia, E-46022 Valencia (Spain); Navarro-Esbri, Joaquin; Cabello, Ramon [Department of Technology, Campus de Riu Sec,University Jaume I, E-12071 Castellon (Spain)

    2006-03-01

    The present paper presents experimental results obtained from a refrigerating vapour-compression plant's shell-and-tube (1-2) evaporator working with R407C. Several tests have been carried out to study the influence of the evaporating pressure and the refrigerant's mass flow rate on the refrigerant's boiling heat-transfer coefficient inside horizontal tubes. This work has been performed by analyzing the variations of the evaporator's overall thermal-resistance, computed using the effectiveness-NTU method, considering the influence of pressure drops and glide at the evaporator, and finally transferring the results and conclusions to the boiling heat-transfer coefficient. It has been observed that the variations of the boiling heat-transfer coefficient show a dependence on the evaporating temperature and the refrigerant's mass-flow rate, which has been analyzed in the test range. [Author].

  14. Chapter 11. Heat Exchangers

    Rafferty, Kevin D.; Culver, Gene

    1998-01-01

    Most geothermal fluids, because of their elevated temperature, contain a variety of dissolved chemicals. These chemicals are frequently corrosive toward standard materials of construction. As a result, it is advisable in most cases to isolate the geothermal fluid from the process to which heat is being transferred. The task of heat transfer from the geothermal fluid to a closed process loop is most often handled by a plate heat exchanger. The two most common types used in geothermal applications are: bolted and brazed. For smaller systems, in geothermal resource areas of a specific character, downhole heat exchangers (DHEs) provide a unique means of heat extraction. These devices eliminate the requirement for physical removal of fluid from the well. For this reason, DHE-based systems avoid entirely the environmental and practical problems associated with fluid disposal. Shell and tube heat exchangers play only a minor role in low-temperature, direct-use systems. These units have been in common use in industrial applications for many years and, as a result, are well understood. For these reasons, shell and tube heat exchangers will not be covered in this chapter.

  15. Optimization of a Shell and Tube Condenser using Numerical Method

    Pradeep Wagh

    2015-07-01

    Full Text Available The purpose of this study was to investigate the effect of installation of the tube external surfaces, their parameter and variable in a shell-and-tube condenser. Variation of heat transfer coefficient with each variable of shell and tube condenser was measured each test. The optimization tube outside diameter size was analyzed and use extended surface area attached tube with tube material and tube layout and arrangement (Number of tube a triangular or hexagonal arrangement on shell-and tube condenser. The computer programming was used to get faster output in less time. Results suggest that mean heat transfer coefficient in variable condition were mainly at velocity is fixed. And also average additional surfaces and tube layout and the arrangement comparison with the quantity of the heat transfer.

  16. Delaware Method Improvement for the Shell and Tubes Heat Exchanger Design

    Miguel Toledo-Velázquez; Pedro Quinto-Diez; Juan C. Alzelmetti-Zaragoza; Sergio R. Galvan; Juan Abugaber-Francis; Arturo Reyes-León

    2014-01-01

    In this paper the Delaware Method published in 1963 is analyzed and upgraded with using correction factors which take into account the undesirable currents of the mean flow. However, this method presents graphically these correction factors which imply an impediment to fulfill the software calculations. Thus, the equations corresponding to the correction factor equations and a Fortran 77 numerical program were established. This system is given to explore ...

  17. Computation of two-dimensional isothermal flow in shell-and-tube heat exchangers

    A computational procedure is outlined whereby two-dimensional isothermal shell-side flow distributions can be calculated for tube bundles having arbitrary boundaries and flow blocking devices, such as sealing strips, defined in arbitrary locations. The procedure is described in some detail and several computed results are presented to illustrate the robustness and generality of the method

  18. Study on flow-induced vibration and anti-vibration measures of nuclear heat exchanger

    Nuclear heat exchanger is the important equipment of nuclear power plant. Shell-and-tube is the ordinary style used in heat exchanger structure. Unreasonable design will make tubes vibrate and maybe lead tubes broken. Then the running safety of nuclear power plant is influenced. The flow-induced vibration mechanism is studied. Based on structure characteristic of shell-and-tube heat exchange, the failure modes of heat exchange caused by flow-induced vibration are analyzed roundly. Specific approaches are presented to prevent nuclear heat exchange from vibration. (authors)

  19. Studi Numerik Pengaruh Baffle Inclination Pada Alat Penukar Kalor Tipe Shell And Tube Terhadap Aliran Fluida Dan Perpindahan Panas

    Rezky Fadil Arnaw; Bambang Arip Dwiyantoro

    2014-01-01

    Heat exchanger atau alat penukar kalor merupakan suatu peralatan yang digunakan untuk memindahkan sejumlah energi dalam bentuk panas dari satu fluida ke fluida yang lain. Perpindahan panas tersebut terjadi dari suatu fluida yang suhunya lebih tinggi ke fluida lain yang suhunya lebih rendah. Pada tugas akhir ini akan dilakukan penelitian tentang pengaruh baffle inclination terhadap aliran fluida dan perpindahan panas pada alat penukar kalor tipe shell and tube. Dalam penelitian ini akan dilaku...

  20. Flow and vibration analysis to upgrade a CANDU heat exchanger

    This paper presents an example to illustrate the use of two-dimensional flow calculations to optimize the location of sealing strips and rods in a shell-and-tube heat exchanger. This is done to minimize flow maldistribution and potential flow-induced vibration damage without significantly de-rating the unit. The calculations are carried out for an existing design

  1. Studying the Thermal and Hydraulic Characteristics of a Shell-and-Tube Water Heater Equipped with Dimpled Heat-Transfer Tubes to Enhance Heat Transfer

    Balunov, B. F.; Gotovskii, M. A.; Permyakov, V. A.; Permyakov, K. V.; Shcheglov, A. A.; Il'in, V. A.; Saikova, E. N.; Sal'nikov, V. V.

    2008-01-01

    Results of a thermal-hydraulic investigation of a steam-water heater equipped with dimpled heat-transfer tubes are presented. It is shown that heat transfer on the internal dimpled surface has risen by 60% with their drag increased by a factor of 2.1.

  2. Experimental Investigation Of Heat Transfer Characteristics Of Nanofluid Using Parallel Flow, Counter Flow And Shell And Tube Heat Exchanger

    Dharmalingam R.

    2015-12-01

    Full Text Available Ch?odzenie jest niezb?dne dla w?a?ciwego funkcjonowania i niezawodno?ci r?norodnych produktw, jak urz?dzenia elektroniczne, komputery, samochody, systemy laserowe wielkiej mocy, itp. W sytuacji wzrostu obci??enia cieplnego i strumieni ciep?a wytwarzanych przez urz?dzenia przemys?owe, ch?odzenie jest jednym z najwa?niejszych wyzwa? wyst?puj?cych w r?nych ga??ziach przemys?u, transporcie, mikroelektronice, itp. P?ynami, ktre zwykle s? u?ywane do odprowadzania ciep?a z tych urz?dze? s? woda, glikol etylenowy i oleje. Nanop?yny, opracowane w ostatnim czasie, wykazuj? generalnie lepsze charakterystyki przewodnictwa cieplnego ni? woda. Przedstawiona praca stanowi podsumowanie bada? do?wiadczalnych nad wymuszonym, konwekcyjnym odprowadzaniem ciep?a i charakterystykami przep?ywu nanop?ynu sk?adaj?cego si? z wody i cz?steczek Al2O3 (w 1% st??eniu obj?to?ciowym w warunkach laminarnego przep?ywu wsp?pr?dowego i przeciwpr?dowego w p?aszczowych i rurowych wymiennikach ciep?a. W przedstawionych badaniach u?yto cz?stek Al2O3 o ?rednicy ok. 50 nm. Wybrano trzy r?ne pr?dko?ci przep?ywu masy, opisano wyniki eksperymentw. Wyniki te wskazuj?, ?e ca?kowity wsp?czynnik odprowadzania ciep?a i bezwymiarowa liczba Nusselta nanop?ynu s?, przy tej samej pr?dko?ci przep?ywu masy i temperaturze na wlocie, nieznacznie wy?sze, ni? dla samego p?ynu bazowego. Z wynikw do?wiadczalnych wynika, ?e ca?kowity wsp?czynnik odprowadzania ciep?a wzrasta wraz z pr?dko?ci? przep?ywu masy. Pokazano, ?e gdy wzrasta pr?dko?? przep?ywu masy, ca?kowity wsp?czynnik odprowadzania ciep?a wraz z bezwymiarow? liczb? Nusselta ostatecznie wzrastaj?, niezale?nie od kierunku przep?ywu. Stwierdzono tak?e, ?e ze wzrostem pr?dko?ci przep?ywu masy warto?? LMTD (?redniej logarytmicznej r?nicy temperatur ostatecznie maleje, niezale?nie od kierunku przep?ywu.

  3. Optimasi Desain Heat Exchanger dengan Menggunakan Metode Particle Swarm Optimization

    Rifnaldi Veriyawan; Totok Ruki Biyanto

    2014-01-01

    Industri proses terutama perminyakan adalah salah satu industri membutuhkan energi panas dengan jumlah kapasitas besar. Dengan berjalan perkembangan teknologi dibutuhkannya proses perpindahan panas dalam jumlah besar. Tetapi dengan besarnya penukaran panas yang diberikan maka besar pula luas permukaan. Dibutuhkannya optimasi pada desain heat exchanger terutama shell-and-tube¬. Dalam tugas akhir ini, Algoritma particle swarm optimization (PSO) digunakan untuk mengoptimasikan nilai koefesien pe...

  4. On turbulence modelling of industrial heat exchanger flows

    The present research is focussed on the prediction of shell-side flow in shell-and-tube heat exchangers. In order to simplify the analysis, the flow field is divided into three regions: (a) the tube-free region, away from the shell, baffles and tubes, (b) the tube-filled region, and (c) the near-wall region. The flow within each region is modelled separately, but the solutions within consecutive regions must be matched near the corresponding boundaries. (author)

  5. The Optimum Selection and Drawing Output Program Development of Shell and Tube Type Oil Cooler

    Lee, Y. B.; Kim, T. S.; Ko, J. M [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2007-07-01

    Shell and Tube type Oil Cooler is widely used for hydraulic presses, die casting machines, generation equipments, machine tools and construction heavy machinery. Temperature of oil in the hydraulic system changes viscosity and thickness of oil film. They have a bad effect to performance and lubrication of hydraulic machinery, so it is important to know exactly the heat exchanging efficiency of oil cooler for controlling oil temperature. But most Korean manufacturers do not have test equipment for oil cooler, so they cannot carry out the efficiency test of oil cooler and it is impossible to verify its performance. This paper includes information of construction of necessary utilities for oil cooler test and design and manufacture of test equipment. One can select the optimum product by obtaining performance data through tests of various kinds of oil coolers. And also the paper developed a program which can be easily used for design of 2D and 3D drawings of oil cooler.

  6. Application of intensified heat transfer for the retrofit of heat exchanger network

    Highlights: → Novel design approach for the retrofit of HEN based on intensified heat transfer. → Development of a mathematical model to evaluate shell-and-tube heat exchanger performances. → Identification of the most appropriate heat exchangers requiring heat transfer enhancements in the heat exchanger network. -- Abstract: A number of design methods have been proposed for the retrofit of heat exchanger networks (HEN) during the last three decades. Although considerable potential for energy savings can be identified from conventional retrofit approaches, the proposed solutions have rarely been adopted in practice, due to significant topology modifications required and resulting engineering complexities during implementation. The intensification of heat transfer for conventional shell-and-tube heat exchangers can eliminate the difficulties of implementing retrofit in HEN which are commonly restricted by topology, safety and maintenance constraints, and includes high capital costs for replacing equipment and pipelines. This paper presents a novel design approach to solve HEN retrofit problems based on heat transfer enhancement. A mathematical model has been developed to evaluate shell-and-tube heat exchanger performances, with which heat-transfer coefficients and pressure drops for both fluids in tube and shell sides are obtained. The developed models have been compared with the Bell-Delaware, simplified Tinker and Wills-Johnston methods and tested with the HTRI (registered) and HEXTRAN (registered) software packages. This demonstrates that the new model is much simpler but can give reliable results in most cases. For the debottlenecking of HEN, four heuristic rules are proposed to identify the most appropriate heat exchangers requiring heat transfer enhancements in the HEN. The application of this new design approach allows a significant improvement in energy recovery without fundamental structural modifications to the network.

  7. Multidimensional numerical modeling of heat exchangers

    Sha, W. T.; Yang, C. I.; Kao, T. T.; Cho, S. M.

    A comprehensive, multidimensional, thermal-hydraulic model is developed for the analysis of shell-and-tube heat exchangers for liquid-metal services. For the shellside fluid, the conservation equations of mass, momentum, and energy for continuum fluids are modified using the concept of porosity, surface permeability and distributed resistance to account for the blockage effects due to the presence of heat-transfer tubes, flow baffles/shrouds, the support plates, etc. On the tubeside, the heat-transfer tubes are connected in parallel between the inlet and outlet plenums, and tubeside flow distribution is calculated based on the plenum-to-plenum pressure difference being equal for all tubes. It is assumed that the fluid remains single-phase on the shell side and may undergo phase-change on the tube side, thereby simulating the conditions of Liquid Metal Fast Breeder Reactor (LMFBR) intermediate heat exchangers (IHX) and steam generators (SG).

  8. Multidimensional numerical modeling of heat exchangers

    A comprehensive, multidimensional, thermal-hydraulic model is developed for the analysis of shell-and-tube heat exchangers for liquid-metal services. For the shellside fluid, the conservation equations of mass, momentum, and energy for continuum fluids are modified using the concept of porosity, surface permeability and distributed resistance to account for the blockage effects due to the presence of heat-transfer tubes, flow baffles/shrouds, the support plates, etc. On the tubeside, the heat-transfer tubes are connected in parallel between the inlet and outlet plenums, and tubeside flow distribution is calculated based on the plenum-to-plenum pressure difference being equal for all tubes. It is assumed that the fluid remains single-phase on the shell side and may undergo phase-change on the tube side, thereby simulating the conditions of Liquid Metal Fast Breeder Reactor (LMFBR) intermediate heat exchangers (IHX) and steam generators (SG)

  9. Thermal hydraulic design of intermediate heat exchanger

    Intermediate heat exchanger (IHX) is a very important component of Fast Breeder Reactor because it forms the boundary between radioactive primary sodium and non-radioactive secondary sodium. IHX of the 500 MWe Prototype Fast Breeder Reactor is a shell and tube heat exchanger with primary sodium flowing on the shell side. Cross flow heat transfer at the primary sodium entrance demands unequal secondary flow distribution in various tubes to ensure good safety margin in structural design. This paper brings out details of thermal hydraulic studies to arrive at a suitable secondary flow distribution and choice of a suitable flow distribution device to achieve the same. Application of two-dimensional analysis with computer code THYC-2D has been brought out. (author). 5 refs., 14 figs., 2 tabs

  10. Heat exchanger

    Heat exchangers for use in uranium enrichment plant are subject to particularly stringent safety requirements and should be capable of being repaired and maintained quickly. It is proposed to improve a heat exchanger which has a roller type of design consisting of heat exchanger tubes arranged around a core tube, which are connected together in tube floors. According to the invention the tube floors are connected solidly to the outer jacket (possibly via intermadiate pieces), while the heat exchanger tubes end at the side near the inside of the jacket in the tube floors. Manufacture can be further simplified if core tube, roller and outer jacket which are solidly connected form a compact unit. (UWI)

  11. Predicted and measured velocity distribution in a model heat exchanger

    This paper presents a comparison between numerical predictions, using the porous media concept, and measurements of the two-dimensional isothermal shell-side velocity distributions in a model heat exchanger. Computations and measurements were done with and without tubes present in the model. The effect of tube-to-baffle leakage was also investigated. The comparison was made to validate certain porous media concepts used in a computer code being developed to predict the detailed shell-side flow in a wide range of shell-and-tube heat exchanger geometries

  12. Predicted and measured velocity distributions in a model heat exchanger

    This paper presents a comparison between numerical predictions, using the porous media concept, and measurements of the two-dimensional isothermal shell-side velocity distributions in a model heat exchanger. Computations and measurements were done with and without tubes present in the model. The effect of tube-to-baffle leakage was also investigated. The comparison was made to validate certain porous media concepts used in a computer code being developed to predict the detailed shell-side flow in a wide range of shell-and-tube heat exchanger geometries

  13. Evaluation Methodology for Advance Heat Exchanger Concepts Using Analytical Hierarchy Process

    Piyush Sabharwall; Eung Soo Kim

    2012-07-01

    The primary purpose of this study is to aid in the development and selection of the secondary/process heat exchanger (SHX) for power production and process heat application for a Next Generation Nuclear Reactors (NGNR). The potential options for use as an SHX are explored such as shell and tube, printed circuit heat exchanger. A shell and tube (helical coiled) heat exchanger is a recommended for a demonstration reactor because of its reliability while the reactor design is being further developed. The basic setup for the selection of the SHX has been established with evaluation goals, alternatives, and criteria. This study describes how these criteria and the alternatives are evaluated using the analytical hierarchy process (AHP).

  14. Plate type heat exchanger for Reaktor TRIGA PUSPATI

    The PUSPATI TRIGA reactor (RTP) reached its first criticality status on 28 June 1982 with an installed capacity of 1 MW. After 26 years in operation, the ageing process has set in and many systems in the reactor need maintenance and replacement. Among these systems, the more critical one is the heat exchanger system. Currently, the shell and tube type heat exchanger is being used. It has been observed that the performance of the heat exchanger has dropped significantly over the years. Visual inspections indicate that the tubes are corroded or even to the extent of being totally blocked. With this in mind and also with the setting up of the new Nuclear Power Division, whose mission includes upgrading the present reactor to 3 MW, the heat exchanger system is essential and a critical component. Literature indicates that the use of plate type exchangers are more efficient than the current shell and tube type. This paper will look into the engineering and safety aspects of using the plate type heat exchanger to the current TRIGA PUSPATI reactor. (Author)

  15. Design study of plastic film heat exchanger

    Guyer, E. C.; Brownell, D. L.

    1986-02-01

    This report presents the results of an effort to develop and design a unique thermoplastic film heat exchanger for use in an industrial heat pump evaporator system and other energy recovery applications. The concept for the exchanger is that of individual heat exchange elements formed by two adjoining and freely hanging plastic films. Liquid flows downward in a regulated fashion between the films due to the balance of hydrostatic and frictional forces. The fluid stream on the outside of film may be a free-falling liquid film, a condensing gas, or a noncondensing gas. The flow and structural principles are similar to those embodied in an earlier heat exchange system developed for use in waste water treatment systems (Sanderson). The design allows for high heat transfer rates while working within the thermal and structural limitations of thermoplastic materials. The potential of this new heat exchanger design lies in the relatively low cost of plastic film and the high inherent corrosion and fouling resistance. This report addresses the selection of materials, the potential heat transf er performance, the mechanical design and operation of a unit applied in a low pressure steam recovery system, and the expected selling price in comparison to conventional metallic shell and tube heat exchangers.

  16. Heat exchanger

    Thurley, J.

    1975-11-06

    This heat exchanger, which heats and evaporates a working fluid with the combustion gases of a burner by a heat exchange fluid, is meant to improve the efficiency considerably by including the container containing the heat exchange fluid, as the radiated heat of the burner, which is otherwise lost, is used in this way. As the hottest parts of the burner and the adjacent distribution channel for the combustion gas are cooled by the heat exchange fluid, the cladding of the burner in fire-resisting material becomes unnecessary. The weight and cost are reduced, and the life of the burner and the accesibility of all parts are improved. A horizontal square outer container contains a similar inner container open at the top of half the length and width of the outer container. The two communicating containers are filled to half their height with the primary medium. An upper and lower chamber, both fed axially with fuel, form the burner together with a connected coaxial turbulence chamber. The greater part (of the burner) and the connected horizontal distribution channel are below the level of the cooling primary. The pipe bundle has the combustion gases, rising from the lower distribution channel and the primary fluid heated by these gases flowing through it and is heated by them, where the secondary medium evaporates. The waste gases rising from the primary medium leave the outer container by two chimney openings at the top of the outer container. The maximum heat emitted per hour is stated to be about 100 million KJoules - compared to about 72 million KJoules according to the previous state of technology. The 180kw approx. of blower power previously required to produce the second output is reduced to about 110kw.

  17. Heat transfer enhancement in cross-flow heat exchanger using vortex generator

    Fouling is very serious problem in heat exchanger because it rapidly deteriorates the performance of heat exchanger. Cross-flow heat exchanger with vortex generators is developed, which enhance heat transfer and reduce fouling. In the present heat exchanger, shell and baffle are removed from the conventional shell-and-tube heat exchanger. The naphthalene sublimation technique is employed to measure the local heat transfer coefficients. The experiments are performed for single circular tube, staggered array tube bank and in-line array tube bank with and without vortex generators. Local and average Nusselt numbers of single tube and tube bank with vortex generator are investigated and compared to those of without vortex generator

  18. Various methods to improve heat transfer in exchangers

    Pavel, Zitek; Vaclav, Valenta

    2015-05-01

    The University of West Bohemia in Pilsen (Department of Power System Engineering) is working on the selection of effective heat exchangers. Conventional shell and tube heat exchangers use simple segmental baffles. It can be replaced by helical baffles, which increase the heat transfer efficiency and reduce pressure losses. Their usage is demonstrated in the primary circuit of IV. generation MSR (Molten Salt Reactors). For high-temperature reactors we consider the use of compact desk heat exchangers, which are small, which allows the integral configuration of reactor. We design them from graphite composites, which allow up to 1000°C and are usable as exchangers: salt-salt or salt-acid (e.g. for the hydrogen production). In the paper there are shown thermo-physical properties of salts, material properties and principles of calculations.

  19. The Computation And Analysis Of The Correction Factor Of Heat Transfer Coefficient For The Kartini Reactor S Heat Exchanger

    The computation and analysis of the heat transfer coefficient correction factor the shell and tube type of the Kartini reactor's heat exchanger (HE) has been carried out. The computation of the correction factor was done by measuring of the actual dimension of HE. As known that the shell and tube type of the Kartini reactor's has been opera-ted for more than 15 years. Due to the scraping and rusting occur at the buffle, the total heat transfer coefficient correction factor Ft was decrease. At the later computation, it is found that it's value is 0,4669 or differ of 0,1331 compared to the prediction standard value. So far, if the rusting and scraping of the secondary water coolant to the buffle is linear to the earlier HE's operation time, it is predicted that the function of the buffle will crisis approximately in the year of 2002/2003 or 7,5 years again

  20. A Numerical Algorithm and a Graphical Method to Size a Heat Exchanger

    Berning, Torsten

    2011-01-01

    This paper describes the development of a numerical algorithm and a graphical method that can be employed in order to determine the overall heat transfer coefficient inside heat exchangers. The method is based on an energy balance and utilizes the spreadsheet application software Microsoft Excel......TM. The application is demonstrated in an example for designing a single pass shell and tube heat exchanger that was developed in the Department of Materials Technology of the Norwegian University of Science and Technology (NTNU) where water vapor is superheated by a secondary oil cycle. This approach can...... be used to reduce the number of hardware iterations in heat exchanger design....

  1. Deposition of dairy protein-containing fluids on heat exchange surfaces.

    Rakes, P A; Swartzel, K R; Jones, V A

    1986-12-01

    The deposition behavior of milk and dairy protein model systems under turbulent flow conditions (Re > 66,700) was observed in the heating sections of a tubular ultra-high temperature processing unit. This phenomenon was monitored via thermal resistance of the deposit in four segments in each of two shell-and-tube heat exchangers. Model systems were comprised of mixtures of sodium caseinate, whey proteins, salts, lactose, and fat. Fouling rates varied with type of milk protein, heater wall temperature, and location in the heat exchangers. The relationship between deposition rate in the heat exchanger and protein denaturation kinetics was also examined. PMID:20568219

  2. State-of-the-art survey of joinability of materials for OTEC heat exchangers

    Beaver, R. J.

    1978-12-01

    Literature and industrial sources were surveyed to assess, on the basis of apparent economics and reliability, the joinability of both shell-and-tube and compact ocean thermal energy conversion (OTEC) heat exchangers. A no-leak requirement is mandatory to prevent mixing seawater and the ammonia working fluid. The operating temperature range considered is 7 to 28/sup 0/C (45 to 82/sup 0/F). Materials evaluated were aluminum, titanium, copper--nickel, AL-6X austenitic stainless steel, singly and in combination with steel and concrete. Many types of welding and brazing processes, roller expansion, magnaforming, O-ring sealing, and adhesive bonding were considered. The automatic gas tungsten-arc welding process and explosion welding processes are the only two joining processes that now appear to offer the high reliability required of no-leak shell-and-tube heat exchangers. Of these two processes, the gas tungsten-arc welding process appears to be the more economically attractive.

  3. Numerical simulation of flow field in shellside of heat exchanger in nuclear power plant

    Heat exchanger is the important equipment of nuclear power plant. Numerical simulation can give the detail information inside the heat exchange, and has been an effective research method. The geometric structure of shell-and-tube heat exchanger is very complex and it is difficult to simulate the whole flow field presently. According to the structure characteristics of the heat exchanger, a periodic whole-section calculation model was presented. The numerical simulation of flow field in shellside of heat exchange of a nuclear power plant was done by using this model. The results of simulation show that heat transfer in the periodic section of the heat exchange is uniform, the heat transfer is enhanced by using baffles in heat exchange, and frictional resistance is primary from the effect of segmental baffles. (authors)

  4. Segmented heat exchanger

    Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  5. Heat pipe array heat exchanger

    Reimann, Robert C. (Lafayette, NY)

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  6. Effectiveness of evolutionary algorithms for optimization of heat exchangers

    Highlights: • Design optimization of shell and tube heat exchangers. • Comparing performance of three evolutionary optimization algorithms. • Conducting comprehensive simulations for design optimization. • Cuckoo search demonstrates the best performance. - Abstract: This paper comprehensively investigates performance of evolutionary algorithms for design optimization of shell and tube heat exchangers (STHX). Genetic algorithm (GA), firefly algorithm (FA), and cuckoo search (CS) method are implemented for finding the optimal values for seven key design variables of the STHX model. ∊-NTU method and Bell-Delaware procedure are used for thermal modeling of STHX and calculation of shell side heat transfer coefficient and pressure drop. The purpose of STHX optimization is to maximize its thermal efficiency. Obtained results for several simulation optimizations indicate that GA is unable to find permissible and optimal solutions in the majority of cases. In contrast, design variables found by FA and CS always lead to maximum STHX efficiency. Also computational requirements of CS method are significantly less than FA method. As per optimization results, maximum efficiency (83.8%) can be achieved using several design configurations. However, these designs are bearing different dollar costs. Also it is found that the behavior of the majority of decision variables remains consistent in different runs of the FA and CS optimization processes

  7. Online performance assessment of heat exchanger using artificial neural networks

    C. Ahilan, S. Kumanan, N. Sivakumaran

    2011-09-01

    Full Text Available Heat exchanger is a device in which heat is transferred from one medium to another across a solid surface. The performance of heat exchanger deteriorates with time due to fouling on the heat transfer surface. It is necessary to assess periodically the heat exchanger performance, in order to maintain at high efficiency level. Industries follow adopted practices to monitor but it is limited to some degree. Online monitoring has an advantage to understand and improve the heat exchanger performance. In this paper, online performance monitoring system for shell and tube heat exchanger is developed using artificial neural networks (ANNs. Experiments are conducted based on full factorial design of experiments to develop a model using the parameters such as temperatures and flow rates. ANN model for overall heat transfer coefficient of a design/ clean heat exchanger system is developed using a feed forward back propagation neural network and trained. The developed model is validated and tested by comparing the results with the experimental results. This model is used to assess the performance of heat exchanger with the real/fouled system. The performance degradation is expressed using fouling factor (FF, which is derived from the overall heat transfer coefficient of design system and real system. It supports the system to improve the performance by asset utilization, energy efficient and cost reduction interms of production loss.

  8. An experimental and numerical study of a jetfire stop material and a new helical flow heat exchanger

    Austegard, Anders

    1997-12-31

    This thesis consists of two parts. Part 1: Experimental and numerical study of jetfire stop, and Part 2: Experimental and numerical study of a new kind of shell and tube heat exchanger with helical flow on shell side. Part 1 describes the development of the model for simulation of the temperature development through Viking jetfirestop. A simulation program is developed that calculates the temperature development through Viking jetfire stop. In the development of the model, measurements of reaction energy, pyrolysis and heat conductivity at low temperatures are made. The conductivity at higher temperatures and when pyrolysis reactions are going on is estimated experimentally and by numerical calculations. Full-scale jet fire test and small-scale xenon lamp experiments are made to test the simulation model. Part 2 contains the development of a model that simulate the fluid flow and heat transfer in a helical flow shell and tube heat exchanger. It consists of the development of a porosity model and a model for pressure drop and heat transfer as well as experiments in non-standard tube layouts. Results from the simulation program are compared with experiments on a helical flow shell and tube heat exchanger. There is a separate appendix volume. 62 refs., 152 figs., 22 tabs.

  9. Multidimensional numerical modeling of heat exchanges

    A comprehensive, multidimensional, thermal-hydraulic model is developed for the analysis of shell-and-tube heat exchanges for liquid metal services. For the shellside fluid, the conservation equations of mass, momentum and energy for continuum fluids are modified using the concept of porosity, surface premeability and distributed resistance to account for the blockage effects due to the presence of heat transfer tubes, flow baffles/shrouds, the support plates, etc. On the tubeside, heat transfer tubes are connected in parallel between the inlet and outlet plenums, and tubeside flow distribution is calculated based on the plenum-to-plenum pressure difference being equal for all tubes. It is assumed that the fluid remains single-phased on the shell side and may undergo phase-change in the tube side, thereby simulating the conditions of Liquid Metal Fast Breeder Reaction (LMFBR) intermediate heat exchanges (IHX) and steam generators (SG). The analytical model predictions are compared with three sets of test data (one for IHX and two for SG) and favorable results are obtained, thus providing a limited validation of the model

  10. Materials experience and selection for nuclear materials production reactor heat exchangers

    The primary coolant systems for the heavy-water nuclear materials production reactors at the Savannah River Site are coupled to the secondary coolant systems through shell and tube heat exchangers. The head, shell, and tube sheets of these heat exchangers are fabricated from AISI Type 304 grades of austenitic stainless steel. The 8,957 tubes in each heat exchanger were originally fabricated from Type 304 stainless steel, but service experience has lead to the use of Sea Cure tubing in newer systems. The design includes double tube sheets, core rods, and 33,410 square feet of heat transfer surface. Tubes are rolled into the tube sheets and seal welded after rolling. The tubes contain Type 304 stainless steel rods which are positioned in the center of each tube axis to increase the fraction of the cooling water contacting the heat transfer surface. Each reactor utilizes twelve heat exchangers; thus the 120+ reactor-years of operating experience provide approximately 1,440 heat exchanger-years of service. Fatigue, stress corrosion cracking, crevice corrosion, and pitting have been observed during the service life. This paper describes the observed degradation processes and uses the operational experience to recommend materials for the Heavy Water -- New Production Reactor (HW-NPR)

  11. Woven heat exchanger

    Piscitella, R.R.

    1984-07-16

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  12. A Simple Tubesheet Layout Program for Heat Exchangers

    S. Murali

    2008-01-01

    Full Text Available The development of tubesheet layout program for shell and tube heat exchangers is presented in this study. Program is written in AutoLISP language, which provides standard tubesheet layout drawing as per standard codes and non standard tubsheet in AutoCAD Environment. The program computes the optimal number of tube count and lays out drawing with respecting constraints, including the shell ID, number of passes, center to center distance of tubes and tube outer diameter. Tubesheet layout drawing can be used as template for actual tubesheet. Furthermore the program is validated with open literature and shown good agreement with it. Besides the tubesheet for Heat exchangers this method can be extended to the tube counts of sheave plates and perforated plates of distillation column and Cooling Towers.

  13. Optimasi Desain Heat Exchanger dengan Menggunakan Metode Particle Swarm Optimization

    Rifnaldi Veriyawan

    2014-09-01

    Full Text Available Industri proses terutama perminyakan adalah salah satu industri membutuhkan energi panas dengan jumlah kapasitas besar. Dengan berjalan perkembangan teknologi dibutuhkannya proses perpindahan panas dalam jumlah besar. Tetapi dengan besarnya penukaran panas yang diberikan maka besar pula luas permukaan. Dibutuhkannya optimasi pada desain heat exchanger terutama shell-and-tube¬. Dalam tugas akhir ini, Algoritma particle swarm optimization (PSO digunakan untuk mengoptimasikan nilai koefesien perpindahan panas keseluruhan dengan mendapatkan nilai terbaik. Perumusan fungsi tujuan nilai perpindahan panas keseluruhan (U, dan luas permukaan (A yang digunakan untuk mencari nilai fungsi objektif pada PSO. Partikel dalam PSO menyatakan sebagai posisi atau solusi dari hasil optimasi didapatnya nilai perpindahan panas maksimal dengan luas permukaan dan pressure drop dibawah data desain atau datasheet. Partikel tersebut dalam pemodelan berupa rentang nilai minimal dan maksimal dari diameter luar diantara (do dan jumlah baffle (Nb. Dari hasil optimasi pada tiga HE didapatkan nilai U dan A secara berturut-turut; HE E-1111 472 W/m2C dan 289 m2 ;pada HE E-1107 174 W/m2C dan 265 m2 ; dan HE E-1102 618 W/m2C dan 574 m2. Nilai perpindahan panas keseluruhan yang telah dioptimasi sesuai dengan fungsi objektif dapat dikatakan HE shell-and-tube mencapai titik optimal.

  14. Parallel tube heat exchanger

    An improved heat exchanger for use in liquid metal cooled nuclear reactors, is described, which consists of a bundle of spaced, parallel tube assemblies for immersion in a primary heat exchange fluid. Each assembly defines flow and counterflow paths for a secondary heat exchange fluid in successive passes. Insulation reduces heat transfer between the flows of successive passes. (U.K.)

  15. Creep-fatigue damage evaluation of sodium to air heat exchanger in sodium test loop facility

    Highlights: ? A sodium test loop facility, STELLA, has two heat exchangers; AHX and DHX. ? Full 3D FE analyses for sodium-to-air heat exchanger (AHX) were performed. ? Stress levels at tubesheet joints based on full 3D analyses were not severe. ? Creep-fatigue damage was evaluated as per elevated temperature codes. ? ASME Section III Subsection NH was more conservative than RCC-MRx for AHX. - Abstract: A high temperature design and evaluation of creep-fatigue damage for a sodium-to-air heat exchanger, AHX, has been conducted according to the recent versions of the high temperature design codes based on a full three-dimensional finite element analysis. AHX is a shell- and tube-type heat exchanger with 36 helical tubes, and has an outer diameter of 1.59 m and height of 6.5 m. AHX was installed in a sodium test loop facility, STELLA (Sodium integral effect test loop for safety simulation and assessment) recently constructed at the KAERI site. The materials of the shell and tube in AHX are 304SS and 316SS, respectively. Evaluations of creep-fatigue damage based on 3D finite element analyses were conducted at several critical locations of AHX according to the recent elevated temperature design codes of ASME-NH and RCC-MR, and the evaluation results of the two codes were compared. Based on the high temperature damage evaluation, the AHX design has been finalized, and fabrication of the component was conducted.

  16. Appendix to the thesis an experimental and numerical study of a jetfire stop material and a new helical flow heat exchanger

    Austegard, Anders

    1997-12-31

    This thesis consists of two parts. Part 1: Experimental and numerical study of jetfire stop, and Part 2: Experimental and numerical study of a new kind of shell and tube heat exchanger with helical flow on shell side. Part 1 describes the development of the model for simulation of the temperature development through Viking jetfirestop. A simulation program is developed that calculates the temperature development through Viking jetfirestop. In the development of the model, measurements of reaction energy, pyrolysis and heat conductivity at low temperatures are made. The conductivity at higher temperatures and when pyrolysis reactions are going on is estimated experimentally and by numerical calculations. Full-scale jet fire test and small-scale xenon lamp experiments are made to test the simulation model. Part 2 contains the development of a model that simulate the fluid flow and heat transfer in a helical flow shell and tube heat exchanger. It consists of the development of a porosity model and a model for pressure drop and heat transfer as well as experiments in non-standard tube layouts. Results from the simulation program are compared with experiments on a helical flow shell and tube heat exchanger. This is a separate appendix volume, including computer codes and simulated results. 316 figs., 11 tabs.

  17. Studi Numerik Pengaruh Baffle Inclination Pada Alat Penukar Kalor Tipe Shell And Tube Terhadap Aliran Fluida Dan Perpindahan Panas

    Rezky Fadil Arnaw

    2014-09-01

    Full Text Available Heat exchanger atau alat penukar kalor merupakan suatu peralatan yang digunakan untuk memindahkan sejumlah energi dalam bentuk panas dari satu fluida ke fluida yang lain. Perpindahan panas tersebut terjadi dari suatu fluida yang suhunya lebih tinggi ke fluida lain yang suhunya lebih rendah. Pada tugas akhir ini akan dilakukan penelitian tentang pengaruh baffle inclination terhadap aliran fluida dan perpindahan panas pada alat penukar kalor tipe shell and tube. Dalam penelitian ini akan dilakukan tiga variasi sudut baffle inclination yaitu 0º, 10° dan 20° dengan besar laju aliran massa yang divariasikan yaitu sebesar 0.5 kg/s, 1 kg/s dan 2 kg/s. Tipe baffle yang digunakan adalah single segmental baffle dengan baffle cut sebesar 36% dan menggunakan arah aliran jenis parallel. Hasil analisa simulasi menunjukkan bahwa laju aliran massa yang meningkat akan menyebabkan kenaikan pressure drop yang cukup drastis dan penurunan temperatur outlet. Alat penukar kalor dengan baffle inclination 0° memiliki nilai perpindahan panas terbaik jika dibandingkan dengan baffle inclination 10° dan 20°.

  18. Direct fired heat exchanger

    Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

    1986-01-01

    A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

  19. Heat Exchanger Design Options and Tritium Transport Study for the VHTR System

    Chang H. Oh; Eung S. Kim

    2008-09-01

    This report presents the results of a study conducted to consider heat exchanger options and tritium transport in a very high temperature reactor (VHTR) system for the Next Generation Nuclear Plant Project. The heat exchanger options include types, arrangements, channel patterns in printed circuit heat exchangers (PCHE), coolant flow direction, and pipe configuration in shell-and-tube designs. Study considerations include: three types of heat exchanger designs (PCHE, shell-and-tube, and helical coil); single- and two-stage unit arrangements; counter-current and cross flow configurations; and straight pipes and U-tube designs in shell-and-tube type heat exchangers. Thermal designs and simple stress analyses were performed to estimate the heat exchanger options, and the Finite Element Method was applied for more detailed calculations, especially for PCHE designs. Results of the options study show that the PCHE design has the smallest volume and heat transfer area, resulting in the least tritium permeation and greatest cost savings. It is theoretically the most reliable mechanically, leading to a longer lifetime. The two-stage heat exchanger arrangement appears to be safer and more cost effective. The recommended separation temperature between first and second stages in a serial configuration is 800oC, at which the high temperature unit is about one-half the size of the total heat exchanger core volume. Based on simplified stress analyses, the high temperature unit will need to be replaced two or three times during the plant’s lifetime. Stress analysis results recommend the off-set channel pattern configuration for the PCHE because stress reduction was estimated at up to 50% in this configuration, resulting in a longer lifetime. The tritium transport study resulted in the development of a tritium behavior analysis code using the MATLAB Simulink code. In parallel, the THYTAN code, previously performed by Ohashi and Sherman (2007) on the Peach Bottom data, was revived and verified. The 600 MWt VHTR core input file developed in preparation for the transient tritium analysis of VHTR systems was replaced with the original steady-state inputs for future calculations. A Finite Element Method analysis was performed using COMSOL Multiphysics software to accurately predict tritium permeation through the PCHE type heat exchanger walls. This effort was able to estimate the effective thickness for tritium permeations and develop a correlation for general channel configurations, which found the effective thickness to be much shorter than the average channel distance because of dead spots on the channel side.

  20. Dynamic friction modelling in heat exchanger tube simulations

    A force-balance friction model has been developed to describe dynamic friction phenomena in multi-degree of freedom vibration systems and validated for a two degree-of-freedom (2dof) lumped mass vibration system. It has been implemented into VIBIC, a finite element code for the vibration of beams with intermittent contact, to improve the prediction of tube wear rate in the simulation of shell-and-tube heat exchangers. The friction model has been tailored for VIBIC for various kinds of supports: circular, semi-circular scallop-bar, and arbitrary flat-bar supports. Simulations for single fuel pin vibration have been compared with experimental data on wear work rate for different test conditions, gaps and preloads

  1. Design of a Sulfur-trioxide Decomposer Exchanging Heat between N2 and Sulfuric-acid

    The High Temperature Gas Cooled Reactor (HTGR) with outlet coolant temperature up to 950 .deg. C is considered as an efficient reactor to be coupled with thermo-chemical SI(Sulfur Iodine) cycle for the hydrogen production. The small scale test loop of 10kW capacity was installed at Korea Atomic Energy Research Institute (KAERI) facility to confirm the integrity of the sulfur-trioxide decomposer, one of the key components, under actual HTGR operating conditions In this paper, the sulfur-trioxide decomposer was simulated with a chemical process simulator. A standard shell-and-tube heat exchanger model in the simulator was chosen for the simulation

  2. 46 CFR 59.10-20 - Patches in shells and tube sheets.

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Patches in shells and tube sheets. 59.10-20 Section 59... 59.10-20 Patches in shells and tube sheets. (a) Unreinforced openings in the shells or drums of... vessels are met. (b) Portions of tube sheets which have deteriorated may be renewed by replacing...

  3. Wound tube heat exchanger

    Ecker, Amir L. (Duncanville, TX)

    1983-01-01

    What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

  4. Microplate Heat Exchanger Project

    National Aeronautics and Space Administration — We propose a microplate heat exchanger for cryogenic cooling systems used for continuous flow distributed cooling systems, large focal plane arrays, multiple...

  5. Optimization of Heat Exchangers

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics (pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger design.

  6. Optimization of Heat Exchangers

    Ivan Catton

    2010-10-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  7. Heat transfer in tube bundles of heat exchangers with flow baffles induced forced mixing

    Thermal analysis of shell-and-tube heat exchangers is being investigated through geometric modeling of the unit configuration in addition to considering the heat transfer processes taking place within the tube bundle. The governing equations that characterize the heat transfer from the shell side fluid to the tube side fluid across the heat transfer tubewalls are indicated. The equations account for the heat transfer due to molecular conduction, turbulent thermal diffusion, and forced fluid mixing among various shell side fluid channels. The analysis, though general in principle, is being applied to the Clinch River Breeder Reactor Plant-Intermediate Heat Exchanger, which utilizes flow baffles appropriately designed for induced forced fluid mixing in the tube bundle. The results of the analysis are presented in terms of the fluid and tube wall temperature distributions of a non-baffled and baffled tube bundle geometry. The former case yields axial flow in the main bundle region while the latter is associated with axial/cross flow in the bundle. The radial components of the axial/cross flow yield the necessary fluid mixing that results in reducing the thermal unbalance among the heat transfer to the allowable limits. The effect of flow maldistribution, present on the tube or shell sides of the heat exchangers, in altering the temperature field of tube bundles is also noted

  8. Nature's Heat Exchangers.

    Barnes, George

    1991-01-01

    Discusses the heat-transfer systems of different animals. Systems include heat conduction into the ground, heat transferred by convection, heat exchange in lizards, fish and polar animals, the carotid rete system, electromagnetic radiation from animals and people, and plant and animal fiber optics. (MDH)

  9. Active microchannel heat exchanger

    Tonkovich, Anna Lee Y. (Pasco, WA) [Pasco, WA; Roberts, Gary L. (West Richland, WA) [West Richland, WA; Call, Charles J. (Pasco, WA) [Pasco, WA; Wegeng, Robert S. (Richland, WA) [Richland, WA; Wang, Yong (Richland, WA) [Richland, WA

    2001-01-01

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  10. High pressure ceramic heat exchanger. Phase I: deadhead experimental verification. [For externally fired gas turbines

    1979-02-20

    A recognized alternative for firing gas turbines with ash bearing fuels is the externally fired cycle. An essential component for such a cycle is a gas-to-gas heat exchanger capable of tolerating temperatures up to 2300/sup 0/F. Shell and tube heat exchangers having extended surface geometry have been developed for low pressure applications. Several units are presently in industrial service as air-preheaters for high temperature forge furnaces. The ability of the basic heat exchanger technology to withstand typical industrial gas turbine pressures was confirmed in the laboratory several years ago. In order to interest prospective manufacturers or users of the exhaust fired cycle, a pressure retention verification test emerged as an essential step. The execution and results of such an experiment are described.

  11. Nuclear heat exchangers

    This paper presents general design features and characteristics of nuclear heat exchangers including nuclear steam generators. In particular, the heat exchangers in the pressurized light or heavy water reactor and the liquid metal fast breeder reactor plants, and their thermal and hydraulic characteristics are discussed in detail

  12. Heat exchangers: operation problems

    The main operation problems for heat exchangers are fouling, corrosion, vibrations and mechanical resistance. Fouling and corrosion lead to an over dimensioning, energy consumption increase, corroded pieces change, shutdown costs. Vibrations are taken in account during the dimensioning phase of the heat exchangers. Mechanical resistance problems are, for the classical ones, described in regulation texts. (A.B.). 5 figs., 4 tabs

  13. Evaluation of ORC modules performance adopting commercial plastic heat exchangers

    Highlights: • Application of plastic heat exchangers in Organic Rankine Cycle module. • Low temperature heat recovery. • Design of a 20 kW regenerative ORC adopting commercial plastic heat exchangers. • Electricity cost comparable with ORC modules with typical carbon steel components. • Economic benefit from plastic evaporator adoption with corrosive heat source media. - Abstract: In this paper the possible replacement of conventional metallic heat exchangers with plastic components is investigated with reference to low size Organic Rankine Cycles, aiming at a reduction of the plant investment cost. A thermodynamic optimization of a 20 kW regenerative ORC plant, representative of a low temperature (<140 °C) heat recovery application, has been carried out according to the presently available data for plastic shell and tubes heat exchangers offered on the market. N-heptane was selected as the working fluid, thanks to the capability to operate within the pressure limits for evaporation and condensation processes imposed by the adoption of plastic components. Finally, the potential economic benefit of the plastic solution in comparison with conventional heat exchangers made of carbon steel was evaluated for the whole plant; the case of enhanced materials adoption, which is mandatory for the evaporator in presence of corrosive heat source media, was also considered. It turns out that advantages of the proposed solution become appreciable whenever the presence of corrosive heat source media requires the use of materials other than carbon steel. For instance, for a plant availability of 5000 h/year and discount rate of 10%, we obtain a cost of the produced electricity of 94.8 $/MW h, 95.4 $/MW h, 101.5 $/MW h, and 118.9 $/MW h respectively for plastic, carbon steel, stainless steel and titanium solutions

  14. Heat and mass exchanger

    Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

    2011-06-28

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  15. Support for heat exchangers

    The very large heat exchangers which are typical of many nuclear power plants place great demands on their supports. The support here described is for a vertical heat exchanger. A convex Lubrit plate allows a certain amount of transverse and rotational movement of the heat exhanger relative to the foundation. Taps engaging in the support surface of the heat exchanger and between the support box and the concrete foundation ensure that relative movement is restricted to those surfaces where it is intended. A steel box structure embedded in the concrete foundation dissipates heat transferred through the support system and avoids overheating the concrete. Horizontal stays support the heat exchanger against the concrete walls. (JIW)

  16. Thermoelectric heat exchange element

    Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

    2007-08-14

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  17. Damping in heat exchanger tube bundles. A review

    Damping is a major concern in the design and operation of tube bundles with loosely supported tubes in baffles for process shell and tube heat exchangers and steam generators which are used in nuclear, process and power generation industries. System damping has a strong influence on the amplitude of vibration. Damping depends upon the mechanical properties of the tube material, geometry of intermediate supports and the physical properties of shell-side fluid. Type of tube motion, number of supports, tube frequency, vibration amplitude, tube mass or diameter, side loads, support thickness, higher modes, shell-side temperature etc., affect damping in tube bundles. The importance of damping is further highlighted due to current trend of larger exchangers with increased shell-side velocities in modern units. Various damping mechanisms have been identified (Friction damping, Viscous damping, Squeeze film damping, Support damping. Two-Phase damping, and very recent-Thermal damping), which affect the performance of process exchangers and steam generators with respect to flow induced vibration design, including standard design guidelines. Damping in two-phase flow is very complex and highly void fraction, and flow-regime dependent. The current paper focuses on the various known damping mechanisms subjected to both single and two-phase cross-flow in process heat exchangers and steam generators and formulates the design guidelines for safer design. (author)

  18. Overall heat transfer coefficient and pressure drop in a typical tubular exchanger employing alumina nano-fluid as the tube side hot fluid

    Kabeel, A. E.; Abdelgaied, Mohamed

    2015-08-01

    Nano-fluids are used to improve the heat transfer rates in heat exchangers, especially; the shell-and-tube heat exchanger that is considered one of the most important types of heat exchangers. In the present study, an experimental loop is constructed to study the thermal characteristics of the shell-and-tube heat exchanger; at different concentrations of Al2O3 nonmetallic particles (0.0, 2, 4, and 6 %). This material concentrations is by volume concentrations in pure water as a base fluid. The effects of nano-fluid concentrations on the performance of shell and tube heat exchanger have been conducted based on the overall heat transfer coefficient, the friction factor, the pressure drop in tube side, and the entropy generation rate. The experimental results show that; the highest heat transfer coefficient is obtained at a nano-fluid concentration of 4 % of the shell side. In shell side the maximum percentage increase in the overall heat transfer coefficient has reached 29.8 % for a nano-fluid concentration of 4 %, relative to the case of the base fluid (water) at the same tube side Reynolds number. However; in the tube side the maximum relative increase in pressure drop has recorded the values of 12, 28 and 48 % for a nano-material concentration of 2, 4 and 6 %, respectively, relative to the case without nano-fluid, at an approximate value of 56,000 for Reynolds number. The entropy generation reduces with increasing the nonmetallic particle volume fraction of the same flow rates. For increase the nonmetallic particle volume fraction from 0.0 to 6 % the rate of entropy generation decrease by 10 %.

  19. Heat exchanger design handbook

    Thulukkanam, Kuppan

    2013-01-01

    Completely revised and updated to reflect current advances in heat exchanger technology, Heat Exchanger Design Handbook, Second Edition includes enhanced figures and thermal effectiveness charts, tables, new chapter, and additional topics--all while keeping the qualities that made the first edition a centerpiece of information for practicing engineers, research, engineers, academicians, designers, and manufacturers involved in heat exchange between two or more fluids.See What's New in the Second Edition: Updated information on pressure vessel codes, manufacturer's association standards A new c

  20. Three-dimensional numerical modeling of heat exchangers

    A comprehensive, multi-dimensional, thermal-hydraulic model is developed for the analysis of shell and tube heat exchangers for liquid metal services. For the shell-side fluid, the conservation equations of mass, momentum and energy for continuum fluids are modified using the concept of porosity, surface permeability and distributed resistance to account for the blockage effects due to the presence of heat transfer tubes, flow baffles/shrouds, tube support plates, etc. On the tube side, the heat transfer tubes are connected in parallel between the inlet and outlet plenums, and tube-side flow distribution is calculated based on the plenum-to-plenum pressure difference being equal for all tubes. It is assumed that the fluid remains single-phased on the shell side and may undergo phase-change on the tube side, thereby simulating the conditions of Liquid Metal Fast Breeder Reactor (LMFBR) intermediate heat exchangers (IHX) and steam generators (SG). The analytical model predictions are compared with three sets of test data (one for IHX and two for SG, and favorable results are obtained, thus providing a limited validation of the model

  1. Radial flow heat exchanger

    Valenzuela, Javier (Hanover, NH)

    2001-01-01

    A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

  2. Counterflow Regolith Heat Exchanger

    Zubrin, Robert; Jonscher, Peter

    2013-01-01

    A problem exists in reducing the total heating power required to extract oxygen from lunar regolith. All such processes require heating a great deal of soil, and the heat energy is wasted if it cannot be recycled from processed material back into new material. The counterflow regolith heat exchanger (CoRHE) is a device that transfers heat from hot regolith to cold regolith. The CoRHE is essentially a tube-in-tube heat exchanger with internal and external augers attached to the inner rotating tube to move the regolith. Hot regolith in the outer tube is moved in one direction by a right-hand - ed auger, and the cool regolith in the inner tube is moved in the opposite direction by a left-handed auger attached to the inside of the rotating tube. In this counterflow arrangement, a large fraction of the heat from the expended regolith is transferred to the new regolith. The spent regolith leaves the heat exchanger close to the temperature of the cold new regolith, and the new regolith is pre-heated close to the initial temperature of the spent regolith. Using the CoRHE can reduce the heating requirement of a lunar ISRU system by 80%, reducing the total power consumption by a factor of two. The unique feature of this system is that it allows for counterflow heat exchange to occur between solids, instead of liquids or gases, as is commonly done. In addition, in variants of this concept, the hydrogen reduction can be made to occur within the counterflow heat exchanger itself, enabling a simplified lunar ISRU (in situ resource utilization) system with excellent energy economy and continuous nonbatch mode operation.

  3. Second-Law based thermodynamic analysis of a novel heat exchanger

    He, Y.L.; Lei, Y.G.; Tao, W.Q.; Zhang, J.F.; Chu, P.; Li, R. [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University (China)

    2009-01-15

    In the present investigation, second-law based thermodynamics analysis was applied to a new heat exchanger with helical baffles. The helical baffles are designed as quadrant ellipses and each baffle occupies one quadrant of the cross-section of the shell side. Experimental tests were carried out with cold water in the tube side with a constant flow rate, and hot oil on the shell side with flow rate range from 4-24 m{sup 3}/h. The temperatures and pressures for the inlet and outlet of both sides were measured. The heat transfer, pressure drop, entropy generation, and exergy loss of the new heat exchanger were investigated and compared with the results for a conventional shell-and-tube heat exchanger with segmental baffles. The computed results indicated that both the entropy generation number and exergy losses of the new heat exchanger design are lower than those of the heat exchanger with segmental baffles, which means that the novel heat exchanger has a higher efficiency than the heat exchanger with segmental baffles, from the second-law based thermodynamics viewpoint. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  4. Development of multi-dimensional thermal hydraulic analysis code AMADEUS for intermediate heat exchanger and hydraulic modeling in crossflow field

    A multi-dimensional thermal hydraulic analysis code AMADEUS has been developed for the shell-and-tube type Intermediate Heat Exchanger (IHX) of Fast Breeder Reactor. The code was characterized with incorporating an advanced porous body model: the dynamic porous body model taking into consideration the recirculating flow region behind the tubes to enhance accuracy in simulating momentum and pressure field. The advantage of the dynamic porous body model was demonstrated through the comparison between experiments and calculations. And it was indicated that the dynamic porous body model was applicable to the detailed assessment of the IHX thermal hydraulic design. (author)

  5. Method to design shell-side pressure drop constrained tubular heat exchangers

    In shell and tube heat exchangers, the triple segmental baffle arrangement has been infrequently used, even though the potential of this baffle system for high thermal effectiveness with low pressure drop is generally known. This neglect seems to stem from the lack of published design guidelines on the subject. Lately, however, with the rapid growth in the size of nuclear heat exchangers, the need to develop unconventional baffling pattern has become increasingly important. A method to utilize effectively the triple segmental concept to develop economical designs is presented herein. The solution technique given in this paper is based on a flow model named ''Piecewise Continuous Cosine Model.'' The solution procedure easily lends itself to detailed analysis to determine safety against flow-induced vibrations. 20 refs

  6. Vibration damping of heat exchanger tube bundles in two-phase flow

    Two-phase flow exists in many shell-and-tube heat exchangers such as condensers, evaporators and nuclear steam generators. To avoid flow-induced vibration problems, it is necessary to have some information on tube damping mechanisms. This report pertains to the development of a model to formulate damping in two-phase cross-flow. This formulation is based on information available in the literature and particularly on the results of a recently completed experimental program. The compilation of a data base, the development of a semi-empirical model and the formulation of design guidelines are discussed in this report. The calculation of heat exchanger tube damping in two-phase cross-flow is illustrated by an example

  7. Heat exchanger restart evaluation

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4A was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the identified tube. The leaking tube was removed and examined metallurgically to determine the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized

  8. Heat exchanger restart evaluation

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4kA was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized herein

  9. Preliminary Evaluation of PGSFR DHR Heat Exchangers Performance Using STELLA-1 Facility

    Hong, Jonggan; Eoh, Jae-Hyuk; Yeom, Sujin; Lee, Jewhan; Kim, Tae-Joon; Hwang, Inkoo; Cho, Chungho; Kim, Jong-Man; Cho, Youngil; Jung, Min-Hwan; Gam, Da-Young; Jeong, Ji-Young [Korean Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The STELLA program for PGSFR decay heat removal (DHR) performance demonstration is in progress at KAERI. As the first phase of the program, the STELLA-1 facility has been constructed and separate effect tests for heat exchangers of DHRS have been conducted. Two kinds of heat exchangers including a shell-and-tube type sodium-to-sodium heat exchanger (DHX) and a helical-tube type sodium-to-air heat exchanger (AHX) were tested for design codes V-V, e.g. SHXSA and AHXSA. In this paper, firstly, overall characteristics of the STELLA-1 facility are described briefly. Secondly, the performance tests of the DHX and AHX rely on a steady-state result of a heat transfer experiment. Thus experimental procedures to obtain the steady-state result are described and steady-state conditions for the heat exchanger performance test are clearly defined. Lastly, experimental results and calculation results obtained from the design codes are also compared as a preliminary work for the design code V-V. The PGSFR DHR heat exchangers performance was experimentally demonstrated using the STELLA-1 facility, and the experimental results and the prediction of the design code were compared as a preliminary work for the design code V-V. The experimental results of the DHX and AHX were in good agreement with the estimation of the SHXSA and AHXSA codes, respectively.

  10. Modular heat exchanger

    A heat exchanger for use in nuclear reactors is disclosed which includes a heat exchange tube bundle formed from similiar modules each having a hexagonal shroud containing a large number of thermally conductive tubes which are connected with inlet and outlet headers at opposite ends of each module, the respective headers being adapted for interconnection with suitable inlet and outlet manifold means. In order to adapt the heat exchanger for operation in a high temperature and high pressure environment and to provide access to all tube ports at opposite ends of the tube bundle, a spherical tube sheet is arranged in sealed relation across the chamber with an elongated duct extending outwardly therefrom to provide manifold means for interconnection with the opposite end of the tube bundle

  11. Tube vibration in industrial size test heat exchanger

    Tube vibration data from tests of a specially built and instrumented, industrial-type, shell-and-tube heat exchanger are reported. The heat exchanger is nominally 0.6 m (2 ft) in dia and 3.7 m (12 ft) long. Both full tube and no-tubes-in-window bundles were tested for inlet/outlet nozzles of different sizes and with the tubes supported by seven, equally-spaced, single-segmental baffles. Prior to water flow testing, natural frequencies and damping of representative tubes were measured in air and water. Flow testing was accomplished by increasing the flow rates in stepwise fashion and also by sweeping through a selected range of flow rates. The primary variables measured and reported are tube accelerations and/or displacements and pressure drop through the bundle. Tests of the full tube bundle configuration revealed tube rattling to occur at intermediate flow rates, and fluidelastic instability, with resultant tube impacting, to occur when the flow rate exceeded a threshold level; principally, the four-span tubes were involved in the regions immediately adjacent to the baffle cut. For the range of flow rates tested, fluidelastic instability was not achieved in the no-tubes-in-window bundle; in this configuration the tubes are supported by all seven baffles and are, therefore, stiffer

  12. Creep-fatigue damage evaluation of sodium to air heat exchanger in sodium test loop facility

    Lee, Hyeong-Yeon, E-mail: hylee@kaeri.re.kr [Korea Atomic Energy Research Institute, Deadeok-daero 989-111, Yusong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Jong-Bum [Korea Atomic Energy Research Institute, Deadeok-daero 989-111, Yusong-gu, Daejeon 305-353 (Korea, Republic of); Park, Hong-Yune [AD-Solution Co., Ltd., 1101 Hanjin Officetel 535-5, Bongmyoung-dong Yusong-gu, Daejeon 305-301 (Korea, Republic of)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer A sodium test loop facility, STELLA, has two heat exchangers; AHX and DHX. Black-Right-Pointing-Pointer Full 3D FE analyses for sodium-to-air heat exchanger (AHX) were performed. Black-Right-Pointing-Pointer Stress levels at tubesheet joints based on full 3D analyses were not severe. Black-Right-Pointing-Pointer Creep-fatigue damage was evaluated as per elevated temperature codes. Black-Right-Pointing-Pointer ASME Section III Subsection NH was more conservative than RCC-MRx for AHX. - Abstract: A high temperature design and evaluation of creep-fatigue damage for a sodium-to-air heat exchanger, AHX, has been conducted according to the recent versions of the high temperature design codes based on a full three-dimensional finite element analysis. AHX is a shell- and tube-type heat exchanger with 36 helical tubes, and has an outer diameter of 1.59 m and height of 6.5 m. AHX was installed in a sodium test loop facility, STELLA (Sodium integral effect test loop for safety simulation and assessment) recently constructed at the KAERI site. The materials of the shell and tube in AHX are 304SS and 316SS, respectively. Evaluations of creep-fatigue damage based on 3D finite element analyses were conducted at several critical locations of AHX according to the recent elevated temperature design codes of ASME-NH and RCC-MR, and the evaluation results of the two codes were compared. Based on the high temperature damage evaluation, the AHX design has been finalized, and fabrication of the component was conducted.

  13. Heat exchange apparatus

    Degtiarenko, Pavel V.

    2003-08-12

    A heat exchange apparatus comprising a coolant conduit or heat sink having attached to its surface a first radial array of spaced-apart parallel plate fins or needles and a second radial array of spaced-apart parallel plate fins or needles thermally coupled to a body to be cooled and meshed with, but not contacting the first radial array of spaced-apart parallel plate fins or needles.

  14. Heat exchanger vibration

    The heat exchangers of various types are common items of plant in the generation and transmission of electricity. The amount of attention given to the flow-induced vibrations of heat exchangers by designers is usually related to the operational history of similar items of plant. Consequently, if a particular design procedure yields items of plant which behave in a satisfactory manner during their operational life, there is little incentive to improve or refine the design procedure. On the other hand, failures of heat exchangers clearly indicate deficiencies in the design procedures or in the data available to the designer. When such failures are attributable to flow-induced vibrations, the identification of the mechanisms involved is a prime importance. Ideally, basic research work provides the background understanding and the techniques necessary to be able to identify the important mechanisms. In practice, the investigation of a flow-induced vibration problem may identify the presence of mechanisms but may not be able to quantify their effects adequately. In these circumstances the need for additional work is established and the objectives of the research programme emerge. The purpose of this paper is to outline the background to the current research programme at C.E.R.L. on heat exchanger vibration

  15. Cleaning and Heat Transfer in Heat Exchanger with Circulating Fluidized Beds

    Kang, Ho Keun; Ahn, Soo Whan; Choi, Jong Woong; Lee, Byung Chang

    2010-06-01

    Fluidized bed type heat exchangers are known to increase the heat transfer and prevent the fouling. For proper design of circulating fluidized bed heat exchanger it is important to know the effect of design and operating parameters on the bed to the wall heat transfer coefficient. The present experimental and numerical study was conducted to investigate the effects of circulating solid particles on the characteristics of fluid flow, heat transfer and cleaning effect in the fluidized bed vertical shell and tube type heat exchanger with counterflow, at which a variety of solid particles such as glass (3 mmF), aluminum (2˜3 mmF), steel (2˜2.5 mmF), copper (2.5 mmF) and sand (2˜4 mmF) were used in the fluidized bed with a smooth tube. Seven different solid particles have the same volume, and the effects of various parameters such as water flow rates, particle diameter, materials and geometry were investigated. The present experimental and numerical results showed that the flow velocity range for collision of particles to the tube wall was higher with heavier density solid particles, and the increase in heat transfer was in the order of sand, copper, steel, aluminum, and glass. This behaviour might be attributed to the parameters such as surface roughness or particle heat capacity. Fouling examination using 25,500 ppm of ferric oxide (Fe2O3) revealed that the tube inside wall is cleaned by a mild and continuous scouring action of fluidized solid particles. The fluidized solid particles not only keep the surface clean, but they also break up the boundary layer improving the heat transfer coefficient even at low fluid velocities.

  16. Electrostatic enhancement of heat transfer in gas-to-gas heat exchangers. Final report, June 1987-March 1991

    Ohadi, M.M.

    1991-06-01

    Basic study of electrohydrodynamic (EHD) enhancement of heat transfer in heat exchangers has been the subject of an experimental investigation in the project. The authors efforts over the three-year project time period can be categorized into three consecutive phases. In phase I, EHD heat transfer enhancements and pressure drop characteristics for conventional pipe flows as a function of electric field potential, field polarity and number of electrodes (single or double configurations), and flow regime (Reynolds number ranging from fully laminar to fully turbulent conditions) were studied. Study of heat transfer enhancements and pressure drop characteristics in a shell-and-tube, gas-to-gas heat exchanger were performed in Phase II of the project. To address the applicability of EHD technique under operating conditions of gas-fired equipment, the role of various working fluid properties were studied in Phase III of the project. Specifically, effects of working fluid humidity, temperature, pressure, and impurity level on magnitude and nature of the EHD heat transfer enhancements were studied. A maximum of 322% heat transfer enhancement with only 112% increase in pressure drops was achieved under simultaneous excitation of the tube and shell sides of the heat exchanger in the study. With optimized electric and flow field parameters much higher enhancements can be expected.

  17. Electrostatic enhancement of heat transfer in a gas-to-gas heat exchanger. Final report, July 1991-June 1992

    Ohadi, M.M.; Ansari, A.I.

    1992-07-01

    This is the final report on the last phase of a four-year GRI-sponsored experimental effort on heat transfer enhancement in gas-to-gas heat exchangers utilizing the electrostatic (or electrohydrodynamic, EHD) technique. The feasibility of the technique and the role of various controlling parameters for basic pipe flows and in a double-pipe heat exchanger were addressed in the first three phases of the project. In the current, and last, phase the feasibility of the electrostatic technique as a compound heat transfer augmentation methodology and its use in multi-tube heat exchangers was investigated. The compound enhancement experiments were performed on a commercially available finned tube by performing experiments on a micro-finned tube in the presence of electric field. Next, to address some of the practical problems that may be associated with the EHD technique, a multi-tube shell-and-tube heat exchanger was designed, fabricated, and experimentally tested. It is demonstrated that the EHD effect when used in conjunction with a low-fin or enhanced tube can yield additional enhancements to the already enhanced configuration as much as 80% in the present experiments technique.

  18. ASME code considerations for the compact heat exchanger

    Nestell, James [MPR Associates Inc., Alexandria, VA (United States); Sham, Sam [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-31

    The mission of the U.S. Department of Energy (DOE), Office of Nuclear Energy is to advance nuclear power in order to meet the nation's energy, environmental, and energy security needs. Advanced high temperature reactor systems such as sodium fast reactors and high and very high temperature gas-cooled reactors are being considered for the next generation of nuclear reactor plant designs. The coolants for these high temperature reactor systems include liquid sodium and helium gas. Supercritical carbon dioxide (sCO₂), a fluid at a temperature and pressure above the supercritical point of CO₂, is currently being investigated by DOE as a working fluid for a nuclear or fossil-heated recompression closed Brayton cycle energy conversion system that operates at 550°C (1022°F) at 200 bar (2900 psi). Higher operating temperatures are envisioned in future developments. All of these design concepts require a highly effective heat exchanger that transfers heat from the nuclear or chemical reactor to the chemical process fluid or the to the power cycle. In the nuclear designs described above, heat is transferred from the primary to the secondary loop via an intermediate heat exchanger (IHX) and then from the intermediate loop to either a working process or a power cycle via a secondary heat exchanger (SHX). The IHX is a component in the primary coolant loop which will be classified as "safety related." The intermediate loop will likely be classified as "not safety related but important to safety." These safety classifications have a direct bearing on heat exchanger design approaches for the IHX and SHX. The very high temperatures being considered for the VHTR will require the use of very high temperature alloys for the IHX and SHX. Material cost considerations alone will dictate that the IHX and SHX be highly effective; that is, provide high heat transfer area in a small volume. This feature must be accompanied by low pressure drop and mechanical reliability and robustness. Classic shell and tube designs will be large and costly, and may only be appropriate in steam generator service in the SHX where boiling inside the tubes occurs. For other energy conversion systems, all of these features can be met in a compact heat exchanger design. This report will examine some of the ASME Code issues that will need to be addressed to allow use of a Code-qualified compact heat exchanger in IHX or SHX nuclear service. Most effort will focus on the IHX, since the safety-related (Class A) design rules are more extensive than those for important-to-safety (Class B) or commercial rules that are relevant to the SHX.

  19. Heat exchanger with removable orifice

    A nuclear reactor steam generator heat exchanger is described which has orifices in the entrance openings of the heat exchange tubes which, although securely fastened to the tubes, can be easily removed by remote handling equipment. (U.K.)

  20. Heat exchanger tube tool

    Certain types of heat-exchangers have tubes opening through a tube sheet to a manifold having an access opening offset from alignment with the tube ends. A tool for inserting a device, such as for inspection or repair, is provided for use in such instances. The tool is formed by a flexible guide tube insertable through the access opening and having an inner end provided with a connector for connection with the opening of the tube in which the device is to be inserted, and an outer end which remains outside of the chamber, the guide tube having adequate length for this arrangement. A flexible transport hose for internally transporting the device slides inside of the guide tube. This hose is long enough to slide through the guide tube, into the heat-exchanger tube, and through the latter to the extent required for the use of the device. The guide tube must be bent to reach the end of the heat-exchanger tube and the latter may be constructed with a bend, the hose carrying anit-friction elements at interspaced locations along its length to make it possible for the hose to negotiate such bends while sliding to the location where the use of the device is required

  1. Mathematical programming model for heat exchanger design through optimization of partial objectives

    Highlights: • Rigorous design of shell-and-tube heat exchangers according to TEMA standards. • Division of the problem into sets of equations that are easier to solve. • Selected heuristic objective functions based on the physical behavior of the problem. • Sequential optimization approach to avoid solutions stuck in local minimum. • The results obtained with this model improved the values reported in the literature. - Abstract: Mathematical programming can be used for the optimal design of shell-and-tube heat exchangers (STHEs). This paper proposes a mixed integer non-linear programming (MINLP) model for the design of STHEs, following rigorously the standards of the Tubular Exchanger Manufacturers Association (TEMA). Bell–Delaware Method is used for the shell-side calculations. This approach produces a large and non-convex model that cannot be solved to global optimality with the current state of the art solvers. Notwithstanding, it is proposed to perform a sequential optimization approach of partial objective targets through the division of the problem into sets of related equations that are easier to solve. For each one of these problems a heuristic objective function is selected based on the physical behavior of the problem. The global optimal solution of the original problem cannot be ensured even in the case in which each of the sub-problems is solved to global optimality, but at least a very good solution is always guaranteed. Three cases extracted from the literature were studied. The results showed that in all cases the values obtained using the proposed MINLP model containing multiple objective functions improved the values presented in the literature

  2. A chaotic quantum-behaved particle swarm approach applied to optimization of heat exchangers

    Particle swarm optimization (PSO) method is a population-based optimization technique of swarm intelligence field in which each solution called particle flies around in a multidimensional problem search space. During the flight, every particle adjusts its position according to its own experience, as well as the experience of neighboring particles, using the best position encountered by itself and its neighbors. In this paper, a new quantum particle swarm optimization (QPSO) approach combined with Zaslavskii chaotic map sequences (QPSOZ) to shell and tube heat exchanger optimization is presented based on the minimization from economic view point. The results obtained in this paper for two case studies using the proposed QPSOZ approach, are compared with those obtained by using genetic algorithm, PSO and classical QPSO showing the best performance of QPSOZ. In order to verify the capability of the proposed method, two case studies are also presented showing that significant cost reductions are feasible with respect to traditionally designed exchangers. Referring to the literature test cases, reduction of capital investment up to 20% and 6% for the first and second cases, respectively, were obtained. Therefore, the annual pumping cost decreased markedly 72% and 75%, with an overall decrease of total cost up to 30% and 27%, respectively, for the cases 1 and 2, respectively, showing the improvement potential of the proposed method, QPSOZ. - Highlights: ? Shell and tube heat exchanger is minimized from economic view point. ? A new quantum particle swarm optimization (QPSO) combined with Zaslavskii chaotic map sequences (QPSOZ) is proposed. ? Reduction of capital investment up to 20% and 6% for the first and second cases was obtained. ? Annual pumping cost decreased 72% and 75%, with an overall decrease of total cost up to 30% and 27% using QPSOZ.

  3. Operational experience and failure analysis of primary coolant heat exchangers of Cirus

    Cirus is a 40 MWt research reactor located at the Bhabha Atomic Research Centre, Bombay. The reactor utilizes metallic natural uranium fuel cladded in aluminium and the fuel assemblies are cooled by demineralized light water recirculated in a closed loop. The primary coolant rejects the heat to sea water. Six floating head, shell and tube type heat exchangers (five in service and one stand by) are installed on the suction side of primary coolant pumps with primary coolant flowing through shell side and seawater through the tubes. There are two passes on shell side and four passes on tube side. The shell is made of copper bearing carbon steel and tubes of 70:30 cupronickel. Channel and cover are made of silicon bronze. Tubes bundles are identical and interchangeable. The heat exchangers were designed in accordance with the standards of the Tubular Exchanger Manufacturers Association (TEMA) for class R heat exchanger. This paper describes thirty five years of experience with primary coolant heat exchangers, performance evaluation, ageing studies and analysis of damage suffered by tubes in shell entrance region. 6 refs., 1 fig

  4. Experimental investigation on performances of trisection helical baffled heat exchangers for oil/water–water heat transfer

    Highlights: • Oil/water–water heat transfer performance tests of different schemes were conducted. • 12–28° incline angled helical baffle heat exchangers and segment one were studied. • Smaller incline angle is, higher are the shell side ho, Δpo and comprehensive index. • Both ho and ho/Δpo of 12° helical scheme are 50% higher than those of segment one. • Correlations formulae of shell side Nuo and Euzo for cothSTHXs are presented. - Abstract: The trisection helical baffled shell-and-tube heat exchangers have structural features of more suitable to the equilateral triangular tube layouts and less baffle parts. In particular the circumferential overlap trisection helical baffled shell-and-tube heat exchangers are of anti-shortcut structure that accommodates one row tubes in each circumferential overlapped zone between adjacent baffles for dampening shortcut leakage. The performance tests were conducted on both oil–water and water–water heat transfer in heat exchangers with equilateral triangle tube layout of 16 tubes including five helical baffle schemes with incline angles of 12°, 16°, 20°, 24°, 28° and a segmental baffled one for comparison. The test results show that both the shell side heat transfer coefficient ho and pressure drop Δpo increase but the comprehensive index ho/Δpo decreases with the increase of the mass flow rate of all schemes; and that the shell side heat transfer coefficient, pressure drop and the comprehensive index ho/Δpo decrease with the increase of the baffle incline angle at certain mass flow rate, except that the curves of comprehensive index ho/Δpo of 12° and 16° helical baffle schemes are almost coincide. The average values of shell side heat transfer coefficient, the comprehensive index ho/Δpo of the 12° helical baffled scheme are about 50% higher than those of the segmental one with almost same pressure drop. The correlation equations for shell side Nusselt number and axial Euler number are presented varying with axial Reynolds number, Prandtl number and helical baffle incline angle

  5. Bifunctional thermoelectric tube made of tilted multilayer material as an alternative to standard heat exchangers.

    Takahashi, Kouhei; Kanno, Tsutomu; Sakai, Akihiro; Tamaki, Hiromasa; Kusada, Hideo; Yamada, Yuka

    2013-01-01

    Enormously large amount of heat produced by human activities is now mostly wasted into the environment without use. To realize a sustainable society, it is important to develop practical solutions for waste heat recovery. Here, we demonstrate that a tubular thermoelectric device made of tilted multilayer of Bi(0.5)Sb(1.5)Te3/Ni provides a promising solution. The Bi(0.5)Sb(1.5)Te3/Ni tube allows tightly sealed fluid flow inside itself, and operates in analogy with the standard shell and tube heat exchanger. We show that it achieves perfect balance between efficient heat exchange and high-power generation with a heat transfer coefficient of 4.0 kW/m(2)K and a volume power density of 10 kW/m(3) using low-grade heat sources below 100C. The Bi(0.5)Sb(1.5)Te3/Ni tube thus serves as a power generator and a heat exchanger within a single unit, which is advantageous for developing new cogeneration systems in factories, vessels, and automobiles where cooling of excess heat is routinely carried out. PMID:23511347

  6. Process heat transfer principles, applications and rules of thumb

    Serth, Robert W

    2014-01-01

    Process Heat Transfer is a reference on the design and implementation of industrial heat exchangers. It provides the background needed to understand and master the commercial software packages used by professional engineers in the design and analysis of heat exchangers. This book focuses on types of heat exchangers most widely used by industry: shell-and-tube exchangers (including condensers, reboilers and vaporizers), air-cooled heat exchangers and double-pipe (hairpin) exchangers. It provides a substantial introduction to the design of heat exchanger networks using pinch technology, the mos

  7. A computer program for designing fin-and-tube heat exchanger for EGR cooler application

    Syaiful, Marwan, M. A.; Tandian, N. P.; Bae, M.

    2016-03-01

    EGR (exhaust gas recirculation) cooler is a kind of heat exchanger that is used to cool exhaust gas recirculation prior to be mixed with fresh air in an intake manifold of vehicle in order to obtain good reduction of NOxemissions. A fin-and-tube heat exchanger is more preferred as an EGR cooler than a shell-and-tube heat exchanger in this study due to its compactness. Manually designing many configurations of fin-and-tube heat exchanger for EGR cooler application consumes a lot of time and is high cost. Therefore, a computer aided design process of EGR cooler is required to overcome this problem. The EGR cooler design process was started by arranging the sequences of calculation algorithm in a computer program. A cooling media for this EGR cooler is air. The design is based on the effectiveness-number transfer unit (NTU) method. The EGR cooler design gives the geometry, heat transfer surface area, heat transfer coefficient and pressure drop of the EGR cooler. Comparison of the EGR cooler Nusselt number obtained in this study and that reported in literature shows less than 6.2% discrepancy.

  8. Counterflow Regolith Heat Exchanger Project

    National Aeronautics and Space Administration — The counterflow regolith heat exchanger (CoRHE) is a device that transfers heat from hot regolith to cold regolith. The CoRHE is essentially a tube-in-tube heat...

  9. Cryogenic regenerative heat exchangers

    Ackermann, Robert A

    1997-01-01

    An in-depth survey of regenerative heat exchangers, this book chronicles the development and recent commercialization of regenerative devices for cryogenic applications. Chapters cover historical background, concepts, practical applications, design data, and numerical solutions, providing the latest information for engineers to develop advanced cryogenic machines. The discussions include insights into the operation of a regenerator; descriptions of the cyclic and fluid temperature distributions in a regenerator; data for various matrix geometries and materials, including coarse and fine bronze, stainless steel-woven wire mesh screens, and lead spheres; and unique operating features of cryocoolers that produce deviations from ideal regenerator theory.

  10. Dynamic characteristics of heat exchanger tubes vibrating in a tube support plate inactive mode

    Tubes in shell-and-tube heat exchangers, including nuclear plant steam generators, derive their support from longitudinally positioned tube support plates (TSPs). Typically there is a clearance between the tube and TSP hole. Depending on design and fabrication tolerances, the tube may or may not contact all of the TSPs. Noncontact results in an inactive TSP which can lead to detrimental flow induced tube vibrations under certain conditions dependent on the resulting tube-TSP interaction dynamics and the fluid excitation forces. The purpose of this study is to investigate the tube-TSP interaction dynamics. Results of an experimental study of damping and natural frequency as functions of tube-TSP diametral clearance and TSP thickness are reported. Calculated values of damping ratio and frequency of a tube vibrating within an inactive TSP are also presented together with a comparison of calculated and experimetnal quantities

  11. Dynamic characteristics of heat exchanger tubes vibrating in a tube support plate inactive mode

    Tubes in shell-and-tube heat exchangers, including nuclear plant steam generators, derive their support from longitudinally positioned tube support plates (TSPs). Typically, there is a clearance between the tube and TSP hole. Depending on design and fabrication tolerances, the tube may or may not contact all of the TSPs. Non-contact results in an inactive TSP which can lead to detrimental flow-induced tube vibrations under certain conditions dependent on the resulting tube-TSP interaction dynamics and the fluid excitation forces. The purpose of this study is to investigate the tube-TSP interaction dynamics. Results of an experimental study of damping and natural frequency as functions of tube-TSP diametral clearance and TSP thickness are reported. Calculated values damping ratio and frequency of a tube vibrating within an inactive TSP are also presented together with a comparison of calculated and experimental quantities

  12. Dynamic characteristics of heat exchanger tubes vibrating in a tube support plate inactive mode

    Tubes in shell-and-tube heat exchangers, including nuclear plant steam generators, derive their support from longitudinally positioned tube support plates (TSPs). Typically there is a clearance between the tube and TSP hole. Depending on design and fabrication tolerances, the tube may or may not contact all of the TSPs. Noncontact results in an inactive TSP which can lead to detrimental flow induced tube vibrations under certain conditions dependent on the resulting tube-TSP interaction dynamics and the fluid excitation forces. The purpose of this study is to investigate the tube-TSP interaction dynamics. Results of an experimental study of damping and natural frequency as functions of tube-TSP diametral clearance and TSP thickness are reported. Calculated values of damping ratio and frequency of a tube vibrating within an inactive TSP are also presented together with a comparison of calculated and experimental quantities

  13. Dynamic characteristics of heat exchanger tubes vibrating in a tube support plate inactive mode

    Tubes in shell-and-tube heat exchangers, including nuclear plant steam generators, derive their support from longitudinally positioned tube support plates (TSPs). Typically there is a clearance between the tube and TSP hole. Depending on design and fabrication tolerances, the tube may or may not contract all of the TSPs. Noncontact results in an inactive TSP which can lead to detrimental flow induced tube vibrations under certain conditions dependent on the resulting tube-TSP interaction dynamics and the fluid excitation forces. The purpose of this study is to investigate the tube-TSP interaction dynamics. Results of an experimental study of damping and natural frequency as functions of tube-TSP diametral clearance and TSP thickness are reported. Calculated values of damping ratio and frequency of a tube vibrating within an inactive TSP are also presented together with a comparison of calculated and experimental quantities

  14. Implementation of a Modular Hands-on Learning Pedagogy: Student Attitudes in a Fluid Mechanics and Heat Transfer Course

    Burgher, J. K.; Finkel, D.; Adesope, O. O.; Van Wie, B. J.

    2015-01-01

    This study used a within-subjects experimental design to compare the effects of learning with lecture and hands-on desktop learning modules (DLMs) in a fluid mechanics and heat transfer class. The hands-on DLM implementation included the use of worksheets and one of two heat exchangers: an evaporative cooling device and a shell and tube heat…

  15. Heat exchanger performance monitoring guidelines

    Fouling can occur in many heat exchanger applications in a way that impedes heat transfer and fluid flow and reduces the heat transfer or performance capability of the heat exchanger. Fouling may be significant for heat exchanger surfaces and flow paths in contact with plant service water. This report presents guidelines for performance monitoring of heat exchangers subject to fouling. Guidelines include selection of heat exchangers to monitor based on system function, safety function and system configuration. Five monitoring methods are discussed: the heat transfer, temperature monitoring, temperature effectiveness, delta P and periodic maintenance methods. Guidelines are included for selecting the appropriate monitoring methods and for implementing the selected methods. The report also includes a bibliography, example calculations, and technical notes applicable to the heat transfer method

  16. Shell-side distribution and the influence of inlet conditions in a model of a disc-and-doughnut heat exchanger

    Founti, M. A.; Vardis, C.; Whitelaw, J. H.

    1985-09-01

    Measurements of wall pressure and of three orthogonal velocity components with their corresponding fluctuations are reported for two systems of alternating and equi-spaced doughnut and disc baffles axisymmetrically located in a water turbulent pipe flow, simulating the isothermal shell-side flow in shell and tube heat exchangers. The influence of inlet Reynolds number and of asymmetric inlet flow conditions was studied for two geometries. The velocity field was dominated by the pressure gradient and the flow around each individual baffle was influenced by the relative position of its neighbouring baffles.

  17. Heat exchange assembly

    Lowenstein, Andrew; Sibilia, Marc; Miller, Jeffrey; Tonon, Thomas S.

    2004-06-08

    A heat exchange assembly comprises a plurality of plates disposed in a spaced-apart arrangement, each of the plurality of plates includes a plurality of passages extending internally from a first end to a second end for directing flow of a heat transfer fluid in a first plane, a plurality of first end-piece members equaling the number of plates and a plurality of second end-piece members also equaling the number of plates, each of the first and second end-piece members including a recessed region adapted to fluidly connect and couple with the first and second ends of the plate, respectively, and further adapted to be affixed to respective adjacent first and second end-piece members in a stacked formation, and each of the first and second end-piece members further including at least one cavity for enabling entry of the heat transfer fluid into the plate, exit of the heat transfer fluid from the plate, or 180.degree. turning of the fluid within the plate to create a serpentine-like fluid flow path between points of entry and exit of the fluid, and at least two fluid conduits extending through the stacked plurality of first and second end-piece members for providing first fluid connections between the parallel fluid entry points of adjacent plates and a fluid supply inlet, and second fluid connections between the parallel fluid exit points of adjacent plates and a fluid discharge outlet so that the heat transfer fluid travels in parallel paths through each respective plate.

  18. Heat exchanger repair

    There are two ways to rapir heater tubes in tubular heat exchangers, partial replacement of tubes and a technique called sleeving. In the former case, the defective tube section is cut out, removed, and replaced by a new section butt welded to the old piece of tube which remained in place. In the sleeving technique, a tube sleeve is slid into the defective tube and, after expansion, welded to the original tube. In this case, the welding technique employed is not laser welding, as is often maintained in the literature, but TIG pulsation welding. The results of preliminary tests and the qualification of both processes are outlined in the article; an account is given also of the replacement of the tube sections when repairing condensate coolers. (orig.)

  19. Next Generation Microchannel Heat Exchangers

    Ohadi, Michael; Dessiatoun, Serguei; Cetegen, Edvin

    2013-01-01

    In Next Generation Microchannel Heat Exchangers, the authors’ focus on the new generation highly efficient heat exchangers and presentation of novel data and technical expertise not available in the open literature.  Next generation micro channels offer record high heat transfer coefficients with pressure drops much less than conventional micro channel heat exchangers. These inherent features promise fast penetration into many mew markets, including high heat flux cooling of electronics, waste heat recovery and energy efficiency enhancement applications, alternative energy systems, as well as applications in mass exchangers and chemical reactor systems. The combination of up to the minute research findings and technical know-how make this book very timely as the search for high performance heat and mass exchangers that can cut costs in materials consumption intensifies.

  20. Preliminary Thermal Stress Analysis for Intermediate Heat Exchanger of Prototype SFR

    They are a shell-and-tube type heat exchanger with counter-current flow heat exchanger mechanism. Each IHX is rated at 98.175 MWt to accommodate the core heat load of 392.6 MWt. For the interactive heat exchange within the IHX, the secondary sodium (non-radioactive sodium) of 324 .deg. C goes into the IHX inner cylinder from a steam generator and the primary sodium (radioactive sodium) of 545 .deg. C enters into the outside of tube bundle from the hot pool. Due to the temperature difference between the primary sodium and secondary sodium, the thermal expansion differences inevitably occurs so that it is necessary to introduce a bellows so as to absorb the thermal expansion. In this study, we investigated a problem for the structural integrity of the IHX which is conceptually designed by using the thermal and structural analysis. In addition we proposed acceptable design concept, and confirmed its structural integrity following the same procedure. In this paper, the structural integrity about the conceptual design of IHX was reviewed and the design should be changed because of its high stress concentration in the upper tubesheet. In new design, the maximum stress decreases up to a reasonable level in virtue of the thermal shield cylinder to protect the heat transfer from the upper tubesheet to IHX inner cylinder. Also, the design requirement of a bellows for accommodating the thermal expansion of the IHX was developed

  1. Preliminary issues associated with the next generation nuclear plant intermediate heat exchanger design.

    Natesan, K.; Moisseytsev, A.; Majumdar, S.; Shankar, P. S.; Nuclear Engineering Division

    2007-04-05

    The Next Generation Nuclear Plant (NGNP), which is an advanced high temperature gas reactor (HTGR) concept with emphasis on production of both electricity and hydrogen, involves helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas turbine inlet temperature of 900-1000 C. In the indirect cycle system, an intermediate heat exchanger is used to transfer the heat from primary helium from the core to the secondary fluid, which can be helium, nitrogen/helium mixture, or a molten salt. The system concept for the vary high temperature reactor (VHTR) can be a reactor based on the prismatic block of the GT-MHR developed by a consortium led by General Atomics in the U.S. or based on the PBMR design developed by ESKOM of South Africa and British Nuclear Fuels of U.K. This report has made a preliminary assessment on the issues pertaining to the intermediate heat exchanger (IHX) for the NGNP. Two IHX designs namely, shell and tube and compact heat exchangers were considered in the assessment. Printed circuit heat exchanger, among various compact heat exchanger (HX) designs, was selected for the analysis. Irrespective of the design, the material considerations for the construction of the HX are essentially similar, except may be in the fabrication of the units. As a result, we have reviewed in detail the available information on material property data relevant for the construction of HX and made a preliminary assessment of several relevant factors to make a judicious selection of the material for the IHX. The assessment included four primary candidate alloys namely, Alloy 617 (UNS N06617), Alloy 230 (UNS N06230), Alloy 800H (UNS N08810), and Alloy X (UNS N06002) for the IHX. Some of the factors addressed in this report are the tensile, creep, fatigue, creep fatigue, toughness properties for the candidate alloys, thermal aging effects on the mechanical properties, American Society of Mechanical Engineers (ASME) Code compliance information, and performance of the alloys in helium containing a wide range of impurity concentrations. A detailed thermal hydraulic analysis, using a model developed at ANL, was performed to calculate heat transfer, temperature distribution, and pressure drop inside both printed circuit and shell-and-tube heat exchangers. The analysis included evaluation of the role of key process parameters, geometrical factors in HX designs, and material properties. Calculations were performed for helium-to-helium, helium-to-helium/nitrogen, and helium-to-salt HXs. The IHX being a high temperature component, probably needs to be designed using ASME Code Section III, Subsection NH, assuming that the IHX will be classified as a class 1 component. With input from thermal hydraulic calculations performed at ANL, thermal conduction and stress analyses for both compact and shell-and-tube HXs were performed.

  2. Heat exchanger leakage problem location

    Hej?k, Ji?; Jcha, Miroslav

    2012-04-01

    Recent compact heat exchangers are very often assembled from numerous parts joined together to separate heat transfer fluids and to form the required heat exchanger arrangement. Therefore, the leak tightness is very important property of the compact heat exchangers. Although, the compact heat exchangers have been produced for many years, there are still technological problems associated with manufacturing of the ideal connection between the individual parts, mainly encountered with special purpose heat exchangers, e.g. gas turbine recuperators. This paper describes a procedure used to identify the leakage location inside the prime surface gas turbine recuperator. For this purpose, an analytical model of the leaky gas turbine recuperator was created to assess its performance. The results obtained are compared with the experimental data which were acquired during the recuperator thermal performance analysis. The differences between these two data sets are used to indicate possible leakage areas.

  3. Heat exchanger leakage problem location

    Jcha Miroslav

    2012-04-01

    Full Text Available Recent compact heat exchangers are very often assembled from numerous parts joined together to separate heat transfer fluids and to form the required heat exchanger arrangement. Therefore, the leak tightness is very important property of the compact heat exchangers. Although, the compact heat exchangers have been produced for many years, there are still technological problems associated with manufacturing of the ideal connection between the individual parts, mainly encountered with special purpose heat exchangers, e.g. gas turbine recuperators. This paper describes a procedure used to identify the leakage location inside the prime surface gas turbine recuperator. For this purpose, an analytical model of the leaky gas turbine recuperator was created to assess its performance. The results obtained are compared with the experimental data which were acquired during the recuperator thermal performance analysis. The differences between these two data sets are used to indicate possible leakage areas.

  4. Heat pipes in modern heat exchangers

    Heat pipes are very flexible systems with regard to effective thermal control. They can easily be implemented as heat exchangers inside sorption and vapour-compression heat pumps, refrigerators and other types of heat transfer devices. Their heat transfer coefficient in the evaporator and condenser zones is 103-105 W/m2 K, heat pipe thermal resistance is 0.01-0.03 K/W, therefore leading to smaller area and mass of heat exchangers. Miniature and micro heat pipes are welcomed for electronic components cooling and space two-phase thermal control systems. Loop heat pipes, pulsating heat pipes and sorption heat pipes are the novelty for modern heat exchangers. Heat pipe air preheaters are used in thermal power plants to preheat the secondary-primary air required for combustion of fuel in the boiler using the energy available in exhaust gases. Heat pipe solar collectors are promising for domestic use. This paper reviews mainly heat pipe developments in the Former Soviet Union Countries. Some new results obtained in USA and Europe are also included

  5. Experimental research on heat transfer in a coupled heat exchanger

    Liu Yin; Ma Jing; Zhou Guang-Hui; Guan Ren-Bo

    2013-01-01

    The heat exchanger is a devise used for transferring thermal energy between two or more different temperatures. The widespreadly used heat exchanger can only achieve heat exchange between two substances. In this paper, a coupled heat exchanger is proposed, which includes a finned heat exchanger and a double pipe heat exchanger, for multiple heat exchange simultaneously. An experiment is conducted, showing that the average heating capacity increases more tha...

  6. Multidimensional Thermal-Hydraulic Analysis for Decay Heat Exchanger of PGSFR

    Hong, Jonggan; Yoon, Jung; Kim, Dehee; Lee, Tae-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The decay heat exchanger (DHX) of PGSFR is a shell-and-tube type counter-current flow sodium heat exchanger, and each unit is designed for the rated thermal power of 1.0 MWt, which is corresponding to the nominal design capacity of a single passive decay heat removal system (PDHRS) and active decay heat removal system (ADHRS) loops. The DHX unit is fully immersed in the cold sodium pool region and removes the system heat load sufficiently and reliably during the temperature transient. In this work, a multidimensional thermal-hydraulic analysis for the DHX was carried out numerically and the numerical results were compared with the calculated results of the 1-D DHX design code to verify the reliability of the design code. In addition, an influence of the cold pool sodium which flows into the shell-side of the DHX through the shell outlet was evaluated. The SHXSA code was conservative in calculating the pressure drop of the shell-side which is our major concern in designing the natural circulation of the decay heat removal system. It was revealed that the buffer region is needed to reduce the thermal stress in the lower tubesheet by the inflow of the cold pool sodium.

  7. Multidimensional Thermal-Hydraulic Analysis for Decay Heat Exchanger of PGSFR

    The decay heat exchanger (DHX) of PGSFR is a shell-and-tube type counter-current flow sodium heat exchanger, and each unit is designed for the rated thermal power of 1.0 MWt, which is corresponding to the nominal design capacity of a single passive decay heat removal system (PDHRS) and active decay heat removal system (ADHRS) loops. The DHX unit is fully immersed in the cold sodium pool region and removes the system heat load sufficiently and reliably during the temperature transient. In this work, a multidimensional thermal-hydraulic analysis for the DHX was carried out numerically and the numerical results were compared with the calculated results of the 1-D DHX design code to verify the reliability of the design code. In addition, an influence of the cold pool sodium which flows into the shell-side of the DHX through the shell outlet was evaluated. The SHXSA code was conservative in calculating the pressure drop of the shell-side which is our major concern in designing the natural circulation of the decay heat removal system. It was revealed that the buffer region is needed to reduce the thermal stress in the lower tubesheet by the inflow of the cold pool sodium

  8. High Temperature Heat Exchanger Project

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  9. Experimental and theoretical analysis of the local condensation heat transfer in a plate heat exchanger

    Plate heat exchanger (PHE) are today widely used in industrial heat transfer applications due to their good thermal performance, modest space requirement, easy accessibility to all areas and their lower capital and operating costs as compared to shell-and-tube heat exchangers. Although authoritative models for the design of PHE used as condensers are missing, the number of applications where a PHE is operating as a condenser increases. On the way to a reliable model based on physical approaches for the prediction of heat transfer and pressure drop during the condensation process inside a PHE, the flow and heat interactions as well as their dependence on the geometrical parameters of the corrugated plates and the operating conditions must be studied in detail. In this work the stepwise procedure for the fundamental construction of such a model is described. An experimental setup was built to analyze the characteristics of the two-phase-flow in PHE. A single gap, consisting of two transparent corrugated plates, was tested with a two-phase flow of air/water and also with boiling refrigerant R365mfc. Flow pattern maps were constructed for plates with corrugation angles of 27 and 63 degrees relative to the direction of flow. Investigations of the local heat transfer coefficients and the pressure drop were done with the same plates. The measurement of the local heat transfer coefficients was carried out by the use of the 'Temperature Oscillation InfraRed Thermography' (TOIRT) method. Based on these results three main flow patterns are defined: film flow, bubbly flow and slug flow. For each of the three flow patterns an own model for the heat transfer and pressure drop mechanism are developed and the heat transfer coefficient and the friction factor is calculated with different equations depending on the actual steam quality, mass flow and geometrical parameters by means of a flow pattern map. The theory of the flow pattern based prediction models is proved with own experimental data. The measurements were carried out with an experimental setup in a technical scale. The refrigerant cycle works with R134a as refrigerant and involves two PHEs, used as condenser and evaporator, and a 55 kWel compressor for the compression of the vapor phase. The setup allows the measurement of quasi-local heat transfer coefficients inside the PHEs. Additional heat exchangers assure saturated vapor at the inlet and saturated liquid at the outlet of the condenser.

  10. Experimental and theoretical analysis of the local condensation heat transfer in a plate heat exchanger

    Grabenstein, V.; Kabelac, S.

    2012-11-01

    Plate heat exchanger (PHE) are today widely used in industrial heat transfer applications due to their good thermal performance, modest space requirement, easy accessibility to all areas and their lower capital and operating costs as compared to shell-and-tube heat exchangers. Although authoritative models for the design of PHE used as condensers are missing, the number of applications where a PHE is operating as a condenser increases. On the way to a reliable model based on physical approaches for the prediction of heat transfer and pressure drop during the condensation process inside a PHE, the flow and heat interactions as well as their dependence on the geometrical parameters of the corrugated plates and the operating conditions must be studied in detail. In this work the stepwise procedure for the fundamental construction of such a model is described. An experimental setup was built to analyze the characteristics of the two-phase-flow in PHE. A single gap, consisting of two transparent corrugated plates, was tested with a two-phase flow of air/water and also with boiling refrigerant R365mfc. Flow pattern maps were constructed for plates with corrugation angles of 27 and 63 degrees relative to the direction of flow. Investigations of the local heat transfer coefficients and the pressure drop were done with the same plates. The measurement of the local heat transfer coefficients was carried out by the use of the "Temperature Oscillation InfraRed Thermography" (TOIRT) method. Based on these results three main flow patterns are defined: film flow, bubbly flow and slug flow. For each of the three flow patterns an own model for the heat transfer and pressure drop mechanism are developed and the heat transfer coefficient and the friction factor is calculated with different equations depending on the actual steam quality, mass flow and geometrical parameters by means of a flow pattern map. The theory of the flow pattern based prediction models is proved with own experimental data. The measurements were carried out with an experimental setup in a technical scale. The refrigerant cycle works with R134a as refrigerant and involves two PHEs, used as condenser and evaporator, and a 55 kWel compressor for the compression of the vapor phase. The setup allows the measurement of quasi-local heat transfer coefficients inside the PHEs. Additional heat exchangers assure saturated vapor at the inlet and saturated liquid at the outlet of the condenser.

  11. Aplicacin del Mtodo de la Colonia de Hormigas Mixto a la optimizacin de intercambiadores de calor de tubo y coraza / Application of the Mixed Ant Colony Method to the optimization of tube and shell heat exchangers

    Maida-Brbara, Reyes-Rodrguez; Jorge-Laureano, Moya-Rodrguez; Sergio-Ramn, Prez-Len; Gonzalo, Npoles-Ruiz.

    2014-08-01

    Full Text Available Los procesos de transferencia de calor son uno de los problemas ms importantes a resolver en el campo de la Ingeniera. Entre los equipos ms usados en la industria para realizar la transferencia de calor estn los intercambiadores de calor de tubo y coraza. En el presente trabajo se desarrolla el [...] procedimiento para la optimizacin del diseo de estos equipos utilizando el mtodo de Kern y aplicando el algoritmo de la colonia de hormigas. Se aplica el mismo a tres ejemplos concretos y los resultados obtenidos se comparan con los obtenidos aplicando otros mtodos de la inteligencia artificial. Se optimizan los principales parmetros geomtricos de los intercambiadores de calor de tubo y coraza para lograr un menor costo de los mismos. Se demuestra la eficacia del nuevo procedimiento MACO (Mixed Ant Colony Optimization), en el proceso de optimizacin desde el punto de vista econmico utilizando diferentes casos de estudios. Abstract in english Heat transfer processes are one of the most important problems to be solved in the field of Engineering. Among the most widely used equipment for heat transfer in the industry are the shell and tube heat exchangers. This paper develops the procedure for optimizing the design of shell and tube heat e [...] xchangers using the method of Kern and applying the ant colony algorithm. The procedure has been applied to three specific examples and the results obtained are compared with those obtained by applying other methods of artificial intelligence. The main geometric parameters of shell and tube heat exchangers are optimized, to achieve a lower cost of the exchanger. The efficacy of the new procedure MACO (Mixed Ant Colony Optimization) for the optimization process from economically point of view was demonstrated, using different case studies.

  12. Review of Current Experience on Intermediate Heat Exchanger (IHX) and A Recommended Code Approach

    The purpose of the ASME/DOE Gen IV Task 7 Part I is to review the current experience on various high temperature reactor intermediate heat exchanger (IHX) concepts. There are several different IHX concepts that could be envisioned for HTR/VHTR applications in a range of temperature from 850C to 950C. The concepts that will be primarily discussed herein are: (1) Tubular Helical Coil Heat Exchanger (THCHE); (2) Plate-Stamped Heat Exchanger (PSHE); (3) Plate-Fin Heat Exchanger (PFHE); and (4) Plate-Machined Heat Exchanger (PMHE). The primary coolant of the NGNP is potentially subject to radioactive contamination by the core as well as contamination from the secondary loop fluid. To isolate the radioactivity to minimize radiation doses to personnel, and protect the primary circuit from contamination, intermediate heat exchangers (IHXs) have been proposed as a means for separating the primary circuit of the NGNP (Next Generation Nuclear Plant) or other process heat application from the remainder of the plant. This task will first review the different concepts of IHX that could be envisioned for HTR/VHTR applications in a range of temperature from 850 to 950 C. This will cover shell-and-tube and compact designs (including the platefin concept). The review will then discuss the maturity of the concepts in terms of design, fabricability and component testing (or feedback from experience when applicable). Particular attention will be paid to the feasibility of developing the IHX concepts for the NGNP with operation expected in 2018-2021. This report will also discuss material candidates for IHX applications and will discuss specific issues that will have to be addressed in the context of the HTR design (thermal aging, corrosion, creep, creep-fatigue, etc). Particular attention will be paid to specific issues associated with operation at the upper end of the creep regime.

  13. Review of Current Experience on Intermediate Heat Exchanger (IHX) and A Recommended Code Approach

    Duane Spencer; Kevin McCoy

    2010-02-02

    The purpose of the ASME/DOE Gen IV Task 7 Part I is to review the current experience on various high temperature reactor intermediate heat exchanger (IHX) concepts. There are several different IHX concepts that could be envisioned for HTR/VHTR applications in a range of temperature from 850C to 950C. The concepts that will be primarily discussed herein are: (1) Tubular Helical Coil Heat Exchanger (THCHE); (2) Plate-Stamped Heat Exchanger (PSHE); (3) Plate-Fin Heat Exchanger (PFHE); and (4) Plate-Machined Heat Exchanger (PMHE). The primary coolant of the NGNP is potentially subject to radioactive contamination by the core as well as contamination from the secondary loop fluid. To isolate the radioactivity to minimize radiation doses to personnel, and protect the primary circuit from contamination, intermediate heat exchangers (IHXs) have been proposed as a means for separating the primary circuit of the NGNP (Next Generation Nuclear Plant) or other process heat application from the remainder of the plant. This task will first review the different concepts of IHX that could be envisioned for HTR/VHTR applications in a range of temperature from 850 to 950 C. This will cover shell-and-tube and compact designs (including the platefin concept). The review will then discuss the maturity of the concepts in terms of design, fabricability and component testing (or feedback from experience when applicable). Particular attention will be paid to the feasibility of developing the IHX concepts for the NGNP with operation expected in 2018-2021. This report will also discuss material candidates for IHX applications and will discuss specific issues that will have to be addressed in the context of the HTR design (thermal aging, corrosion, creep, creep-fatigue, etc). Particular attention will be paid to specific issues associated with operation at the upper end of the creep regime.

  14. Simulations of thermal-hydraulic processes in heat exchangers- station of the cogeneration power plant

    Studovic, M.; Stevanovic, V.; Ilic, M.; Nedeljkovic, S. [Faculty of Mechanical Engineering of Belgrade (Croatia)

    1995-12-31

    Design of the long district heating system to Belgrade (base load 580 MJ/s) from Thermal Power Station `Nikola Tesla A`, 30 km southwest from the present gas/oil burning boilers in New Belgrade, is being conducted. The mathematical model and computer code named TRP are developed for the prediction of the design basis parameters of heat exchangers station, as well as for selection of protection devices and formulation of operating procedures. Numerical simulations of heat exchangers station are performed for various transient conditions: up-set and abnormal. Physical model of multi-pass, shell and tube heat exchanger in the station represented is by unique steam volume, and with space discretised nodes both for water volume and tube walls. Heat transfer regimes on steam and water side, as well as hydraulic calculation were performed in accordance with TEMA standards for transient conditions on both sides, and for each node on water side. Mathematical model is based on balance equations: mass and energy for lumped parameters on steam side, and energy balances for tube walls and water in each node. Water mass balance is taken as boundary/initial condition or as specified control function. The physical model is proposed for (s) heat exchangers in the station and (n) water and wall volumes. Therefore, the mathematical model consists of 2ns+2, non-linear differential equations, including equations of state for water, steam and tube material, and constitutive equations for heat transfer on steam and water side, solved by the Runge-Kutt method. Five scenarios of heat exchangers station behavior have been simulated with the TRP code and obtained results are presented. (author)

  15. Heat exchanger with ceramic elements

    Corey, John A. (North Troy, NY)

    1986-01-01

    An annular heat exchanger assembly includes a plurality of low thermal growth ceramic heat exchange members with inlet and exit flow ports on distinct faces. A mounting member locates each ceramic member in a near-annular array and seals the flow ports on the distinct faces into the separate flow paths of the heat exchanger. The mounting member adjusts for the temperature gradient in the assembly and the different coefficients of thermal expansion of the members of the assembly during all operating temperatures.

  16. Heat exchanger using graphite foam

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  17. Cost effective heat exchanger network design with mixed materials of construction

    This paper presents a simple methodology for cost estimation of a near optimal heat exchanger network, which comprises mixed materials of construction. In traditional pinch technology and mathematical programming it is usually assumed that all heat exchangers in a network obey a single cost model. This implies that all heat exchangers in a network are of the same type and use the same materials of construction (an assumption that is unwarranted). The method introduced in this article enables the designer to decomposes the total cost of a heat exchanger into two elements, namely cost of the tubes and cost of the shell, thereby predict a more reliable cost for the network. By subsequent use of the binary variables and evaluation of the physical conditions of the streams, one can assign the streams to pass either through shell or tubes. Whereby, shell and tubes can be of different materials and therefore different cost models can be applied. Another advantage of the approach is that the pressure drop in each side of the exchanger (shell or tubes) can be assessed leading to more accurate evaluation of corresponding heat transfer coefficient for each individual stream. Finally an objective function (total cost) can be defined based on mixed materials of construction and different values of heat transfer coefficients. The proposed model has been utilized in three different case studies and the results are compared with those of a commercially available software (Super Target). The comparison shows reductions of more than 17% and 14% in total annual costs in the two cases, and 2.5% reduction in third, confirming the fact that more accurate evaluation of heat transfer coefficient for each individual stream can lead to better network design

  18. Heat exchanger fouling and corrosion

    Fouling of heat transfer surfaces introduces perhaps the major uncertainty into the design and operation of heat exchange equipment. After a brief description of the various types of fouling the chapter goes on to review the current theories of fouling including the turbulent burst theory. Fouling in equipment involving boiling and evaporation is often more severe than in single phase heat exchangers and moreover, in aqueous systems, is frequently associated with corrosion. The reasons for this are identified and illustrated by reference to corrosion in nuclear power plant steam generators. Finally the modification of heat transfer and pressure drop characteristics by fouling layers is briefly reviewed

  19. Damping of heat exchanger tubes

    Damping information is required for flow-induced vibration analyses of heat exchangers. There are several possible energy dissipation mechanisms that contribute to overall tube damping, including structural damping, friction damping, tube-to-fluid viscous damping and squeeze-film damping. These mechanisms and their relative contribution to overall tube damping are discussed. The approach is to identify the more important energy dissipation mechanisms and to formulate them in terms of heat exchanger tube parameters. This will give the designer a method to evaluate overall tube damping. The results of recent measurements on a simple two-span heat exchanger tube, on tube bundles in two-phase cross-flow, and on real heat exchangers in the field are disscussed

  20. Fluidised bed heat exchangers

    Problems that have arisen during the initial stages of development of fluidised bed boilers in which heat transfer surfaces are immersed in fluidised solids are discussed. The very high heat transfer coefficients that are obtained under these conditions can be exploited to reduce the total heat transfer surface to a fraction of that in normal boilers. However, with the high heat flux levels involved, tube stressing becomes more important and it is advantageous to use smaller diameter tubes. One of the initial problems was that the pumping power absorbed by the fluidised bed appeared to be high. The relative influence of the fluidising velocity (and the corresponding bed area), tube diameter, tube spacing, heat transfer coefficient and bed temperature on pumping power and overall cost was determined. This showed the importance of close tube packing and research was undertaken to see if this would adversely affect the heat transfer coefficient. Pressure operation also reduces the pumping power. Fouling and corrosion tests in beds burning coal suggest that higher temperatures could be reached reliably and cost studies show that, provided the better refractory metals are used, the cost of achieving higher temperatures is not unduly high. It now remains to demonstrate at large scale that the proposed systems are viable and that the methods incorporated to overcome start up and part lead running problems are satisfactory. The promising role of these heat transfer techniques in other applications is briefly discussed

  1. Heat exchanger and related methods

    Turner, Terry D.; McKellar, Michael G.

    2015-12-22

    Heat exchangers include a housing having an inlet and an outlet and forming a portion of a transition chamber. A heating member may form another portion of the transition chamber. The heating member includes a first end having a first opening and a second end having a second opening larger than the first opening. Methods of conveying a fluid include supplying a first fluid into a transition chamber of a heat exchanger, supplying a second fluid into the transition chamber, and altering a state of a portion of the first fluid with the second fluid. Methods of sublimating solid particles include conveying a first fluid comprising a material in a solid state into a transition chamber, heating the material to a gaseous state by directing a second fluid through a heating member and mixing the first fluid and the second fluid.

  2. Effect of Channel Configurations for Tritium Transfer in Printed Circuit Heat Exchangers

    The Next Generation Nuclear Plant (NGNP), a very High temperature Gas-Cooled Reactor (VHTR) concept, will provide the first demonstration of a closed-loop Brayton cycle at a commercial scale of a few hundred megawatts electric and hydrogen production. The power conversion system (PCS) for the NGNP will take advantage of the significantly higher reactor outlet temperatures of the VHTR to provide higher efficiencies than can be achieved in the current generation of light water reactors. Besides demonstrating a system design that can be used directly for subsequent commercial deployment, the NGNP will demonstrate key technology elements that can be used in subsequent advanced power conversion systems for other Generation IV reactors. In anticipation of the design, development and procurement of an advanced power conversion system for the NGNP, the system integration of the NGNP and hydrogen plant was initiated to identify the important design and technology options that must be considered in evaluating the performance of the proposed NGNP. In the VHTR system, an intermediate heat exchanger (IHX), which transfers heat from the reactor core to the electricity or hydrogen production system is one key component, and its effectiveness is directly related to the system overall efficiency. In the VHTRs, the gas fluids used for coolant generally have poor heat transfer capability, so it requires very large surface area for a given condition. For this reason, a compact heat exchanger (CHE), which is widely used in industry especially for gasto-gas or gas-to-liquid heat exchange is considered as a potential candidate for an IHX replacing the classical shell and tube type heat exchanger. A compact heat exchanger is arbitrary referred to be a heat exchanger having a surface area density greater than 700 m2/m3. The compactness is usually achieved by fins and micro-channels, and leads to the enormous heat transfer enhancement and size reduction. The surface area density is the total heat transfer area divided by the volume of the heat exchanger. In the case of PCHE units, the heat transfer surface area density may be as high as 2,500 m2/m3. This high compactness implies an appreciable reduction in material reducing cost. In this study, heat transfer and tritium penetration analyses have been performed for two different channel configurations of the PCHE; (1) standard and (2) off-set. One of the goals of this study was to determine whether offsetting the hot and cold streams would significantly reduce the tritium flux, and whether or not it would affect the heat transfer significantly.

  3. Effect of channel configurations for tritium transfer in printed circuit heat exchangers

    The Next Generation Nuclear Plant (NGNP), a very High temperature Gas-Cooled Reactor (VHTR) concept, will provide the first demonstration of a closed-loop Brayton cycle at a commercial scale of a few hundred megawatts electric and hydrogen production. The power conversion system (PCS) for the NGNP will take advantage of the significantly higher reactor outlet temperatures of the VHTR to provide higher efficiencies than can be achieved in the current generation of light water reactors. Besides demonstrating a system design that can be used directly for subsequent commercial deployment, the NGNP will demonstrate key technology elements that can be used in subsequent advanced power conversion systems for other Generation IV reactors. In anticipation of the design, development and procurement of an advanced power conversion system for the NGNP, the system integration of the NGNP and hydrogen plant was initiated to identify the important design and technology options that must be considered in evaluating the performance of the proposed NGNP. In the VHTR system, an intermediate heat exchanger (IHX), which transfers heat from the reactor core to the electricity or hydrogen production system is one key component, and its effectiveness is directly related to the system overall efficiency. In the VHTRs, the gas fluids used for coolant generally have poor heat transfer capability, so it requires very large surface area for a given condition. For this reason, a compact heat exchanger (CHE), which is widely used in industry especially for gas-to-gas or gas-to-liquid heat exchange is considered as a potential candidate for an IHX replacing the classical shell and tube type heat exchanger. A compact heat exchanger is arbitrary referred to be a heat exchanger having a surface area density greater than 700 m2/m3. The compactness is usually achieved by fins and micro-channels, and leads to the enormous heat transfer enhancement and size reduction. The surface area density is the total heat transfer area divided by the volume of the heat exchanger. In the case of PCHE units, the heat transfer surface area density may be as high as 2,500 m2/m3. This high compactness implies an appreciable reduction in material reducing cost. In this study, heat transfer and tritium penetration analyses have been performed for two different channel configurations of the PCHE; (1) standard and (2) off-set. One of the goals of this study was to determine whether offsetting the hot and cold streams would significantly reduce the tritium flux, and whether or not it would affect the heat transfer significantly. (author)

  4. Adaptive predictive control of laboratory heat exchanger

    Bobl, Vladimr; Kubal?k, Marek; Dostl, Petr; Novk, Jakub

    2014-01-01

    Heat exchange belongs to the class of basic thermal processes which occur in a range of industrial technologies, particularly in the energetic, chemical, polymer and rubber industry. The process of heat exchange is often implemented by through-flow heat exchangers. It is apparent that for an exact theoretical description of dynamics of heat exchange processes it is necessary to use partial differential equations. Heat exchange is namely a process with distributed parameters. It is also necess...

  5. Heat Exchangers Analysis

    S.C. Pang

    2013-01-01

    Full Text Available Current research performs mathematics correlations between engine speed, coolant flow, vehicle speed and driving gear. A step-by-step procedure is described to obtain the engine cooling system parameters mathematically (include a CFD model. After obtaining the parameters, the thermal equilibrium of engine cooling system is studied thoroughly. The study of thermal equilibrium provides some insights on how to reduce engine cooling load and when the interference of cooling fan is required. A segmented spread sheet model is developed in order to explain the phenomenon which air flow driven by uniform ram air could dissipate higher amount of heat flow than air flow driven by cooling fan. The segmentation analysis concluded that minimum mCp fluid is switched to coolant when the air flow is concentrated at small portion of area.

  6. Heat exchanger staybolt acceptance criteria

    The structural integrity demonstration of the primary coolant piping system includes evaluating the structural capacity of each component against a large break or equivalent Double-Ended Guillotine Break. A large break at the inlet or outlet heads of the heat exchangers would occur if the restraint members of the heads become inactive. The structural integrity of the heads is demonstrated by showing the redundant capacity of the staybolts to restrain the head at design conditions and under seismic loadings. The Savannah River Site heat exchanger head is attached to the tubesheet by 84 staybolts. Access to the staybolts is limited due to a welded seal cap over the staybolts. An ultrasonic testing (UT) inspection technique to provide an in-situ examination of the staybolts has recently been developed at SRS. Examination of the staybolts will be performed to ensure their service condition and configuration is within acceptance limits. An acceptance criteria methodology has been developed to disposition flaws reported in the staybolt inspections while ensuring adequate restraint capacity of the staybolts to maintain integrity of the heat exchanger heads against collapse. The methodology includes an approach for the baseline and periodic inspections of the staybolts. The heat exchanger head is analyzed with a three-dimensional finite element model. The restraint provided by the staybolts is evaluated for several postulated cases of inactive or missing staybolts. Evaluation of specific, inactive staybolt configurations based on the UT results can be performed with the finite element model and fracture methodology in this report

  7. Heat exchanger with oscillating flow

    Scotti, Stephen J. (Inventor); Blosser, Max L. (Inventor); Camarda, Charles J. (Inventor)

    1993-01-01

    Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.

  8. Flow distribution analysis in nuclear heat exchangers with application to CRBRP-IHX

    The shell side flow distribution of a shell-and-tube heat exchanger, in which the shell side fluid moves downwards in an axial/cross flow combination dictated by the design of the flow baffles, is examined. Depending on the degree of overlapping and perforation of the baffles, the magnitude of the cross flow component can be controlled in a manner compatible with the unit design. Axial/cross flow field would yield a relatively small pressure drop on the shell side, and in the meantime it creates sufficient fluid mixing to minimize any thermal unbalance among the heat transfer tubes. Such requirements are essential in the design of nuclear heat exchangers similar to the CRBRP-IHX. The present flow distribution analysis utilizes two models: The lumped model and the detailed model. The lumped model employs an overall flow distribution and pressure drop approach to determine the magnitudes of the axial and cross flow components as a function of the baffle overlapping and baffle perforation. The detailed model utilizes more of a fundamental approach in solving the governing equations for the conservation of mass and momentum of a turbulent flowing fluid in a nodal mesh. The mesh incorporates distributed resistances resulting from the presence of the heat transfer tubes and the flow baffles in the tube bundle. The model employs a modified version of the computer code VARR II tailored specifically to the analysis of the shell side flow of heat exchangers. The results of both models are indicated and compared with emphasis on demonstrating the influence of the baffle overlapping and baffle perforation on the flow field and the pressure distribution

  9. Chemical maintenance of heat exchangers and condensers for prevention of corrosion and fouling [Paper No.: VI B-6

    The present paper describes the various types of corrosion, viz., inlet local and malignant impingement attacks, biofouling, sand erosion, etc. to which condenser tubes of the heat exchangers of the nuclear power plants are susceptible. Mention is also made to the effects of under deposit differential oxygen cell attack, leading to general wastage/pitting corrosion of heat exchanger shells and tubes outer surfaces because of stagnant conditions. Regular and systematic monitoring of water chemistry parameters helps in formulation of remedial measures whenever necessary; the data obtained from the improved maintenance methods serve as useful feed back. In the present paper these aspects of chemical maintenance are illustrated by reference to two methods commonly employed in pre-treatment of condenser cooling water/process water used in heat exchangers. Ferrous sulphate is added to condenser cooling water for promoting the formation of protective coating on inside surfaces of condenser tubes. In addition, inhibitors are also employed for corrosion prevention. Chlorine is injected as biocide in the process water/condenser cooling water to remove biogrowth which would seriously interfere with the efficiency of heat transfer. In both instances treatment schedules and treatment levels are constantly kept under review for efficient management. (author)

  10. Shellside flow-induced tube vibration in typical heat exchanger configurations: Overview of a research program

    Halle, H.; Chenoweth, J. M.; Wambsganss, M. W.

    A comprehensive research program is being conducted to develop the necessary criteria to assist designers and operators of shell-and-tube heat exchangers to avoid detrimental flow-induced tube vibration. This paper presents an overview of the insights gained from shellside water-flow testing on a horizontal, industrial-sized test exchanger that can be configured in many ways using interchangeable tube bundles and replaceable nozzles. Nearly 50 different configurations have been tested representing various combinations of triangular, square, rotated-triangular, and rotated-square tubefield layouts; odd and even numbers of crosspasses; and both single- and double-segmental baffles with different cut sizes and orientations. The results are generally consistent with analytical relationships that predict tube vibration response by the combined reinforcing effect of the vibration mode shape and flow velocity distribution. An understanding of the vibration and instability performance is facilitated by recognizing that the excitation is induced by three separate, though sometimes interacting, flow conditions. These are the crossflows that generate classic fluidelastic instabilities in the interior of the tube bundle, the entrance and exit bundle flow from and into the shell nozzles, and the localized high velocity bypass and leakage stream flows. The implications to design and/or possible field remedies to avoid vibration problems are discussed.

  11. Development of Design Criteria for Fluid Induced Structural Vibration in Steam Generators and Heat Exchangers

    Catton, Ivan; Dhir, Vijay K.; Alquaddoomi, O.S.; Mitra, Deepanjan; Adinolfi, Pierangelo

    2004-03-26

    OAK-B135 Flow-induced vibration in heat exchangers has been a major cause of concern in the nuclear industry for several decades. Many incidents of failure of heat exchangers due to apparent flow-induced vibration have been reported through the USNRC incident reporting system. Almost all heat exchangers have to deal with this problem during their operation. The phenomenon has been studied since the 1970s and the database of experimental studies on flow-induced vibration is constantly updated with new findings and improved design criteria for heat exchangers. In the nuclear industry, steam generators are often affected by this problem. However, flow-induced vibration is not limited to nuclear power plants, but to any type of heat exchanger used in many industrial applications such as chemical processing, refrigeration and air conditioning. Specifically, shell and tube type heat exchangers experience flow-induced vibration due to the high velocity flow over the tube banks. Flow-induced vibration in these heat exchangers leads to equipment breakdown and hence expensive repair and process shutdown. The goal of this research is to provide accurate measurements that can help modelers to validate their models using the measured experimental parameters and thereby develop better design criteria for avoiding fluid-elastic instability in heat exchangers. The research is divided between two primary experimental efforts, the first conducted using water alone (single phase) and the second using a mixture of air or steam and water as the working fluid (two phase). The outline of this report is as follows: After the introduction to fluid-elastic instability, the experimental apparatus constructed to conduct the experiments is described in Chapter 2 along with the measurement procedures. Chapter 3 presents results obtained on the tube array and the flow loop, as well as techniques used in data processing. The project performance is described and evaluated in Chapter 4 followed by a discussion of publications and presentations relevant to the project in Chapter 5, while the conclusions and recommendations for future work are presented in Chapter 6.

  12. Development of Design Criteria for Fluid Induced Structural Vibrations in Steam Generators and Heat Exchangers

    OAK-B135 Flow-induced vibration in heat exchangers has been a major cause of concern in the nuclear industry for several decades. Many incidents of failure of heat exchangers due to apparent flow-induced vibration have been reported through the USNRC incident reporting system. Almost all heat exchangers have to deal with this problem during their operation. The phenomenon has been studied since the 1970s and the database of experimental studies on flow-induced vibration is constantly updated with new findings and improved design criteria for heat exchangers. In the nuclear industry, steam generators are often affected by this problem. However, flow-induced vibration is not limited to nuclear power plants, but to any type of heat exchanger used in many industrial applications such as chemical processing, refrigeration and air conditioning. Specifically, shell and tube type heat exchangers experience flow-induced vibration due to the high velocity flow over the tube banks. Flow-induced vibration in these heat exchangers leads to equipment breakdown and hence expensive repair and process shutdown. The goal of this research is to provide accurate measurements that can help modelers to validate their models using the measured experimental parameters and thereby develop better design criteria for avoiding fluid-elastic instability in heat exchangers. The research is divided between two primary experimental efforts, the first conducted using water alone (single phase) and the second using a mixture of air or steam and water as the working fluid (two phase). The outline of this report is as follows: After the introduction to fluid-elastic instability, the experimental apparatus constructed to conduct the experiments is described in Chapter 2 along with the measurement procedures. Chapter 3 presents results obtained on the tube array and the flow loop, as well as techniques used in data processing. The project performance is described and evaluated in Chapter 4 followed by a discussion of publications and presentations relevant to the project in Chapter 5, while the conclusions and recommendations for future work are presented in Chapter 6

  13. Fouling analyses for heat exchangers of NPP

    Fouling of heat exchanges is generated by water-borne deposits, commonly known as foulants including particulate matter from the air, migrated corrosion produces; silt, clays, and sand suspended in water; organic contaminants; and boron based deposits in plants. This fouling is known to interfere with normal flow characteristics and reduce thermal efficiencies of heat exchangers. In order to analyze the fouling for heat exchangers of nuclear power plant, the fouling factor is introduced based on the ASME O and M codes and TEMA standards. This paper focuses on the fouling analyses for the heat exchangers of several primary systems; the RHR heat exchanger of the residual heat removal system, the letdown heat exchanger of the chemical and volume control system, and the CCW heat exchanger of the component cooling water system, Based on the results of the fouling levels for the three heat exchangers are assumed

  14. Heat exchanges in coarsening systems

    This paper is a contribution to the understanding of the thermal properties of ageing systems where statistically independent degrees of freedom with greatly separated time scales are expected to coexist. Focusing on the prototypical case of quenched ferromagnets, where fast and slow modes can be respectively associated with fluctuations in the bulk of the coarsening domains and in their interfaces, we perform a set of numerical experiments specifically designed to compute the heat exchanges between different degrees of freedom. Our studies promote a scenario with fast modes acting as an equilibrium reservoir to which interfaces may release heat through a mechanism that allows fast and slow degrees to maintain their statistical properties independently

  15. DHE (downhole heat exchangers). [Downhole Heat Exchangers (DHE)

    Culver, G.

    1990-11-01

    The use of downhole heat exchangers (DHE) for residential or commercial space and domestic water heating and other applications has several desirable features. Systems are nearly or completely passive -- that is, no or very little geothermal water or steam is produced from the well either reducing or completely eliminating surface environmental concerns and the need for disposal systems or injection wells. Initial cost of pumps and installation are eliminated or reduced along with pumping power costs and maintenance costs associated with pumping often corrosive geothermal fluids. Many residential and small commercial systems do not require circulating pumps because the density difference in the incoming and outgoing sides of the loop are sufficient to overcome circulating friction losses in the entire system. The major disadvantage of DHEs is their dependence on natural heat flow. In areas where geological conditions provide high permeability and a natural hydraulic gradient, DHEs can provide a substantial quantity of heat. A single 500-ft (152 m) well in Klamath Falls, Oregon, supplies over one megawatt thermal and output is apparently limited by the surface area of pipe that can be installed in the well bore. In contrast, DHEs used in conjunction with heat pumps may supply less than 8 KW from a well of similar depth. Here output is limited by conductive heat flow with perhaps a small contribution from convection near the well bore. The highest capacity DHE reported to date, in Turkey, supplies 6 MW thermal from an 820-ft (250 m) well. There were two main goals for this project. The first was to gather, disseminate and exchange internationally information on DHES. The second was to perform experiments that would provide insight into well bore/aquifer interaction and thereby provide more information on which to base DHE designs. 27 refs., 31 figs., 3 tabs.

  16. Cryogenic Heat Exchanger with Turbulent Flows

    Amrit, Jay; Douay, Christelle; Dubois, Francis; Defresne, Gerard

    2012-01-01

    An evaporator-type cryogenic heat exchanger is designed and built for introducing fluid-solid heat exchange phenomena to undergraduates in a practical and efficient way. The heat exchanger functions at liquid nitrogen temperature and enables cooling of N[subscript 2] and He gases from room temperatures. We present first the experimental results of

  17. Forensic analysis of failed heat exchanger tubes of NGL cooler of gas processing installation

    Bhat, S.S.; Kapoor, I.R.; Katarki, M.V. [Materials and Corrosion Section, Institute of Engineering and Ocean Technology, Oil and Natural Gas Corporation Limited, Panvel, Navi Mumbai, 410221 (India)

    2004-07-01

    Regular failures of heat exchangers in NGL cooler of gas processing installation of Oil and Natural Gas Corporation have been observed during the last few years. These heat exchangers are of shell and tube type. The failures were reported to be on tubes side only and none of the shell failed. Detailed laboratory investigations to examine the objective evidence presented by the failed components to determine the corrosion mechanism leading to failure, were carried out and the results of the said forensic analysis is reported in this paper. The corrosion morphology suggests that it is primarily a concentration cell corrosion type by under deposit attack and pinholes were found below the deposit in the internal surface of the exchanger tube. The corrosion product is magnetic in nature and the dominant peaks in the X-ray diffraction spectra are of Iron oxide in the form of magnetite, Fe{sub 3}O{sub 4}. The exchanger tube material was found to be highly susceptible to severe crevice corrosion under deposits in the electrochemical Tafel plot and cyclic polarisation studies under simulated test conditions using high pressure high temperature autoclave. During the last 3 to 4 years, maximum values recorded for the inorganic phosphate and total hardness in the quality control tests of cooling water were found to be higher than the acceptable limit while the zinc content was found to be falling below the acceptable limit. The decomposition of organic component of phosphate has led to insufficiency in the required dose of phosphate. Higher inorganic component of phosphates along with higher hardness led to precipitation and as such inorganic phosphate was found in the deposits. Therefore protective film formation was insufficient to mitigate under deposit pitting corrosion. Dose of 15 ppm total phosphate (having 40 to 60% organic phosphate form) and a minimum of 2 to 3 ppm zinc concentration were recommended to avoid recurrence of under deposit pitting corrosion. (authors)

  18. Free vibrations of finite circular cylindrical shells and tubes with and without a surrounding fluid

    Numerical models are evaluated for determining the natural frequencies of thin-walled closed circular cylindrical shells and straight tube bundles in a fluid or without a fluid. Experiments are described to check the reliability of the numerical models. Some of the models are applied for the vibration analysis of some parts of the sodium-steam heat exchangers of the SNR-300 reactor in Kalkar (West Germany). (Auth.)

  19. Analysis Of The Efficiency Improvement Of The Kartini Reactor's Heat Exchanger

    Analysis of the efficiency improvement of the shell and tube type of the Kartini reactor's Heat Exchanger (HE) have been carried out after the flow direction system was modified from the parallel flow to the counter flow system. The HE was tested by operating the reactor at the power level of 100 k W, until the temperature of the water coolant reached the steady state condition. The efficiency and other HE's parameters was investigated by using the SIMULTANmethod. From the experiment it is known that the inlet and outlet primary and secondary water coolants are Ti = 38oC, To = 35oC, ti 32oC and to = 33oC respectively. The investigation and analysis show that that HE's efficiency is η= 45,5 % due to U a= 674,79 W/m K, LMT = 3,27 and NTU 0,835. From the analysis can be concluded that the increase of the HE's efficiency is 2.5 % compared to parallel flow and the decrease is 6.7% compared to the HE's efficiency as soon as after having been cleaned in 1994

  20. Comparison of a Conventional Heat Exchangers with a New Designed Heat Exchanger Experimentally

    Tansel Koyun

    2014-04-01

    Full Text Available In this study, the air-water heat exchanger designed have been experimentally compared to conventional heat exchangers with and without fin. The same parameters for the three heat exchangers (pump flow, heating power, etc... have been used. In the experiments, speed-flow adjustment has been made to supply heat transfer at an optimum. As a result, during the circulation of water in pipe of the air-water heat exchanger, the corrosion fouling factor has not been formed. In addition, the efficiency of the new designed heat exchanger has been found between fin and finless heat exchanger efficiencies. The results have been shown in the diagrams.

  1. Fouling analyses of heat exchangers for PSR

    Fouling of heat exchangers is generated by water-borne deposits, commonly known as foulants including particulate matter from the air, migrated corrosion produces; silt, clays, and sand suspended in water; organic contaminants; and boron based deposits in plants. This fouling is known to interfere with normal flow characteristics and reduce thermal efficiencies of heat exchangers. This paper focuses on fouling analyses for six heat exchangers of two primary systems in two nuclear power plants; the regenerative heat exchangers of the chemical and volume control system and the component cooling water heat exchangers of the component cooling water system. To analyze the fouling for heat exchangers, fouling factor was introduced based on the ASME O and M codes and TEMA standards. Based on the results of the fouling analyses, the present thermal performances and fouling levels for the six heat exchangers were predicted

  2. HEAT EXCHANGE IN SLOT-HOLE RECUPERATORS

    Rovin, L. E.; L. N. Rusaja

    2015-01-01

    At calculation of slot heat exchangers it is necessary to take into account the additional stream of heat transferred by emission from internal wall to an external one and further distributed between heated air and environment.

  3. Heat exchanger thermal insulation system

    The heat exchanger insulation system described includes an outer ring, a bundle of circulation tubes connected at their ends to a tube plate and comprising a coaxial cylindrical sleeve around each tube with play along a part of its length near the ends connected to the tube plate. The sleeves are suspended by their upper ends to a perforated plate with holes into which the sleeves fit, the perforated plate being fixed to a ring fitted by its base to the tube plate by means of tie rods between the tube plate and the perforated plate. This system has been particularly designed for liquid sodium cooled reactors

  4. Optimum geometry of MEMS heat exchanger for heat transfer enhancement

    Nusrat J. Chhanda; Muhannad Mustafa; Maglub Al Nur

    2010-01-01

    The study is based on an analysis of MEMS heat exchanger of three different geometries: wavy, triangular and rectangular using water as test fluid. The problem is solved using finite element method. The aim of this analysis is to evaluate the performance of MEMS heat exchanger for different geometry and to obtain an optimum design for better heat enhancement. It is apparent from this work that rectangular surface heat exchanger shows the best performance for heat enhancement technique in comp...

  5. Nondestructive inspection of the tubes of TRIGA IPR-R1 reactor heat exchanger by eddy current testing

    The IPR-R1 TRIGA MARK 1 reactor is an open pool type reactor, cooled light water. It is used for research activities, personnel training and radioisotopes production, in operation since 1960 at the Nuclear Technology Development Center - CDTN/CNEN. It operates at a maximum thermal power of 100 kW and usually, the fuel cooling is done by natural circulation. If necessary, an external auxiliary cooling system, with a shell-and-tube type heat exchanger, can be used to improve the water heat removal. As part of the ageing management program of the reactor, a nondestructive evaluation of their heat exchanger stainless steel tubes will be performed, in order to verify its integrity. The examinations will be performed using the eddy current test method, which allows the detection and characterization of structural discontinuities in the wall of the tubes, if existing. For this purpose, probes and reference standards were designed and manufactured at CDTN facilities and test procedures were established and validated. In this paper, a description of the proposed infrastructure as well as the test methodology to be used in the examinations are presented and discussed. (author)

  6. NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2008-09-01

    One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change heat exchanger with Na as the heat exchanger coolant. In order to design a very efficient and effective heat exchanger one must optimize the design such that we have a high heat transfer and a lower pressure drop, but there is always a trade-off between them. Based on NGNP operational parameters, a heat exchanger analysis with the sodium phase change will be presented to show that the heat exchanger has the potential for highly effective heat transfer, within a small volume at reasonable cost.

  7. NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger

    One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor--process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change heat exchanger with Na as the heat exchanger coolant. In order to design a very efficient and effective heat exchanger one must optimize the design such that we have a high heat transfer and a lower pressure drop, but there is always a trade-off between them. Based on NGNP operational parameters, a heat exchanger analysis with the sodium phase change will be presented to show that the heat exchanger has the potential for highly effective heat transfer, within a small volume at reasonable cost

  8. Heat recovery from a cement plant with a Marnoch Heat Engine

    This paper examines the performance of a new Marnoch Heat Engine (MHE) that recovers waste heat from within a typical cement plant. Two MHE units with compressed air as the working fluid are installed to recover the waste heat. The first unit on the main stack has four pairs of shell and tube heat exchangers. The second heat recovery unit is installed on a clinker quenching system. This unit operates with three pairs of shell and tube heat exchangers. The recovered heat is converted to electricity through the MHE system and used internally within the cement plant. A predictive model and results are presented and discussed. The results show the promising performance of the MHE's capabilities for efficient generation of electricity from waste heat sources in a cement plant. The new heat recovery system increases the efficiency of the cement plant and lowers the CO2 emissions from the clinker production process. Moreover, it reduces the amount of waste heat to the environment and lowers the temperature of the exhaust gases. - Highlights: → This paper examines the thermodynamic performance of a new Marnoch Heat Engine (MHE) that recovers waste heat to produce electricity and improve the operating efficiency of a typical cement plant. → The first unit of the MHE on the main stack has four pairs of shell and tube heat exchangers and the second heat recovery unit is installed on a clinker quenching system. → Both predicted and experimental results demonstrate the promising performance of the MHE's capabilities for efficient generation of electricity from waste heat sources in a cement plant.

  9. Improved ceramic heat exchange material

    Mccollister, H. L.

    1977-01-01

    Improved corrosion resistant ceramic materials that are suitable for use as regenerative heat exchangers for vehicular gas turbines is reported. Two glass-ceramic materials, C-144 and C-145, have superior durability towards sulfuric acid and sodium sulfate compared to lithium aluminosilicate (LAS) Corning heat exchange material 9455. Material C-144 is a leached LAS material whose major crystalline phase is silica keatite plus mullite, and C-145 is a LAS keatite solid solution (S.S.) material. In comparison to material 9455, material C-144 is two orders of magnitude better in dimensional stability to sulfuric acid at 300 C, and one order of magnitude better in stability to sodium sulfate at 1000 C. Material C-145 is initially two times better in stability to sulfuric acid, and about one order of magnitude better in stability to sodium sulfate. Both C-144 and C-145 have less than 300 ppm delta L/L thermal expansion from ambient to 1000 C, and good dimensional stability of less than approximately 100 ppm delta L/L after exposure to 1000 C for 100 hours. The glass-ceramic fabrication process produced a hexagonal honeycomb matrix having an 85% open frontal area, 50 micrometer wall thickness, and less than 5% porosity.

  10. Air-sand heat exchanger

    Baumann, Torsten; Zunft, Stefan [German Aerospace Center (DLR), Stuttgart (Germany); Boura, Cristiano; Eckstein, Julian; Felinks, Jan; Goettsche, Joachim; Hoffschmidt, Bernhard; Schmitz, Stefan [FH Aachen, Juelich (Germany). Solar-Inst. Juelich

    2011-07-01

    This paper summarizes research activities that analyse the thermodynamic behaviour of an Air / Sand Heat Exchanger, developed by Solar-Institut Juelich (SIJ) and the German Aerospace Centre (DLR). A numerical 3-D model, new results and a model validation of this particular cross-flow heat exchanger are presented. Simulation results were obtained for sand with 1-2 mm grain size. The simulation was validated with operational results of a new 15 kW prototype unit. Ansys, including Ansys-CFX, is used as modelling and simulation platform. The bulk material is modelled by a porous solid medium without structural dynamic interaction between fluid and solid phase. For pressure drop calculations, Ergun's model for bulk material is used. The model parameters were validated and fitted with measured values of a separate pressure drop test rig. The validation was done with quartz sand. To determine the suitability of available granular products for this application, tests have been conducted regarding the thermomechanical properties as well as their attrition behaviour and abrasion on various wall materials.

  11. Heat exchanger device; Anordning ved varmevekslere

    Christiansen, P.E.; Borgaas, B.

    1997-04-16

    The invention relates to a heat exchanger device comprising a first heat exchanger for evaporation of liquid natural gas (LNG), and a second heat exchanger for superheating of gaseous natural gas (NG). The heat exchangers are arranged for heating these fluids by means of a heating medium and have an outlet which is connected to a mixing device for mixing the heat fluids with the corresponding unheated fluids. According to the invention, the heat exchangers comprise a common housing, in which there are provided separate passages for the fluids. The mixing device constitutes a unit together with the housing and has a single mixing chamber with one single fluid outlet. In separate passages, there are provided valves and respectively for the supply of LNG or NG in the housing and the mixing chamber. 1 fig.

  12. Analytical Entropy Analysis of Recuperative Heat Exchangers

    Marija Zivic; Zdravko Virag; Antun Galovic

    2003-01-01

    Abstract: The analytical solutions for the temperature variation of two streams in parallel flow, counter flow and cross-flow heat exchangers and related entropy generation due to heat exchange between the streams are presented. The analysis of limiting cases for the relative entropy generation is performed, and corresponding analytical expressions are given. The obtained results may be included in a more general procedure concerning optimal heat exchanger design.

  13. Heat exchangers in regenerative gas turbine cycles

    Nina, M. N. R.; Aguas, M. P. N.

    1985-09-01

    Advances in compact heat exchanger design and fabrication together with fuel cost rises continuously improve the attractability of regenerative gas turbine helicopter engines. In this study cycle parameters aiming at reduced specific fuel consumption and increased payload or mission range, have been optimized together with heat exchanger type and size. The discussion is based on a typical mission for an attack helicopter in the 900 kw power class. A range of heat exchangers is studied to define the most favorable geometry in terms of lower fuel consumption and minimum engine plus fuel weight. Heat exchanger volume, frontal area ratio and pressure drop effect on cycle efficiency are considered.

  14. Micro tube heat exchangers for Space Project

    National Aeronautics and Space Administration — Mezzo fabricates micro tube heat exchangers for a variety of applications, including aerospace, automotive racing, Department of Defense ground vehicles,...

  15. Heat exchangers in heavy water reactor systems

    Important features of some major heat exchange components of pressurized heavy water reactors and DHRUVA research reactor are presented. Design considerations and nuclear service classifications are discussed

  16. Process for repairing a cryogenic heat exchanger

    The patent describes a method for repairing leakage-causing cracks and fissures in a cryogenic heat exchanger. It comprises: reducing the interior pressure of the heat exchanger to a level which does not exceed the external pressure upon the hear exchanger while maintaining the temperature of the heat exchanger at a low level relative to the ambient external temperature; applying a curable liquid filler composition to the surface of the heat exchanger proximal the leakage site for seepage into the cracks and fissures located at the leakage. The composition upon a relatively short period of cure at low temperature forming a solid material which fills the cracks and fissures; curing the filler composition; and, applying a sealant composition to the surface of the heat exchanger at the filled leakage site. The sealant composition having long-term sealing performance under cyrogenic conditions

  17. Conjugate heat and mass transfer in heat mass exchanger ducts

    Zhang, Li-Zhi

    2013-01-01

    Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts bridges the gap between fundamentals and recent discoveries, making it a valuable tool for anyone looking to expand their knowledge of heat exchangers. The first book on the market to cover conjugate heat and mass transfer in heat exchangers, author Li-Zhi Zhang goes beyond the basics to cover recent advancements in equipment for energy use and environmental control (such as heat and moisture recovery ventilators, hollow fiber membrane modules for humidification/dehumidification, membrane modules for air purification, desi

  18. Probe Measures Fouling As In Heat Exchangers

    Marner, Wilbur J.; Macdavid, Kenton S.

    1990-01-01

    Combustion deposits reduce transfer of heat. Instrument measures fouling like that on gas side of heat exchanger in direct-fired boiler or heat-recovery system. Heat-flux probe includes tube with embedded meter in outer shell. Combustion gases flow over probe, and fouling accumulates on it, just as fouling would on heat exchanger. Embedded heat-flow meter is sandwich structure in which thin Chromel layers and middle alloy form thermopile. Users determine when fouling approaches unacceptable levels so they schedule cleaning and avoid decreased transfer of heat and increased drop in pressure fouling causes. Avoids cost of premature, unnecessary maintenance.

  19. Heat exchanger network retrofit optimization involving heat transfer enhancement

    Heat exchanger network retrofit plays an important role in energy saving in process industry. Many design methods for the retrofit of heat exchanger networks have been proposed during the last three decades. Conventional retrofit methods rely heavily on topology modifications which often result in a long retrofit duration and high initial costs. Moreover, the addition of extra surface area to the heat exchanger can prove difficult due to topology, safety and downtime constraints. Both of these problems can be avoided through the use of heat transfer enhancement in heat exchanger network retrofit. This paper presents a novel design approach to solve heat exchanger network retrofit problems based on heat transfer enhancement. An optimisation method based on simulated annealing has been developed to find the appropriate heat exchangers to be enhanced and to calculate the level of enhancement required. The physical insight of enhanced exchangers is also analysed. The new methodology allows several possible retrofit strategies using different retrofit methods be determined. Comparison of these retrofit strategies demonstrates that retrofit modification duration and payback time are reduced when heat transfer enhancement is utilised. Heat transfer enhancement can be also used as a substitute for increased heat exchanger network surface area to reduce retrofit investment costs.

  20. Optimization of parameters of heat exchangers vehicles

    Andrei MELEKHIN

    2014-09-01

    Full Text Available The relevance of the topic due to the decision of problems of the economy of resources in heating systems of vehicles. To solve this problem we have developed an integrated method of research, which allows to solve tasks on optimization of parameters of heat exchangers vehicles. This method decides multicriteria optimization problem with the program nonlinear optimization on the basis of software with the introduction of an array of temperatures obtained using thermography. The authors have developed a mathematical model of process of heat exchange in heat exchange surfaces of apparatuses with the solution of multicriteria optimization problem and check its adequacy to the experimental stand in the visualization of thermal fields, an optimal range of managed parameters influencing the process of heat exchange with minimal metal consumption and the maximum heat output fin heat exchanger, the regularities of heat exchange process with getting generalizing dependencies distribution of temperature on the heat-release surface of the heat exchanger vehicles, defined convergence of the results of research in the calculation on the basis of theoretical dependencies and solving mathematical model.

  1. Heat exchange fluids and techniques. [US patents

    Ranney, M.W.

    1979-01-01

    The detailed, descriptive information presented is based on US patents, issued since January 1975, that deal with heat exchange fluids and techniques, and their potential for energy saving. This book serves a double purpose in that it supplies detailed technical information and can be used as a guide to the US patent literature in this field. By indicating all the information that is significant, and eliminating legal jargon and juristic phraseology, an advanced, technically oriented review of heat exchange fluids and techniques is presented. Information is included on the design and construction of heat exchangers; heat transfer fluids; low temperature processes; heat storage; heat transfer control in buildings; solar and geothermal energy processes; and industrial, medical, and residential uses of heat exchangers. (LCL)

  2. Heat Exchanger Lab for Chemical Engineering Undergraduates

    Rajala, Jonathan W.; Evans, Edward A.; Chase, George G.

    2015-01-01

    Third year chemical engineering undergraduate students at The University of Akron designed and fabricated a heat exchanger for a stirred tank as part of a Chemical Engineering Laboratory course. The heat exchanger portion of this course was three weeks of the fifteen week long semester. Students applied concepts of scale-up and dimensional…

  3. Tube in-shell heat exchanger

    A tube-in-shell heat exchanger is described. It comprises a bundle of heat exchange tubes extending within an elongate shell. The tubes pass through a tube sheet and are connected thereto by means comprising branch pipes and compression pipe couplings

  4. Heat Exchanger Lab for Chemical Engineering Undergraduates

    Rajala, Jonathan W.; Evans, Edward A.; Chase, George G.

    2015-01-01

    Third year chemical engineering undergraduate students at The University of Akron designed and fabricated a heat exchanger for a stirred tank as part of a Chemical Engineering Laboratory course. The heat exchanger portion of this course was three weeks of the fifteen week long semester. Students applied concepts of scale-up and dimensional

  5. Experimental evaluation of vibrations in heat exchangers

    Flow induced vibrations may produce damage of heat exchangers, condensers and steam generators tubes. To evaluate this problem a set of tests were developed to know the real support state of the tubes, which have great influence on the vibration response. This paper include a description of the tests and the results obtained applying them on a heat exchanger equipment. (author)

  6. Improved ceramic heat exchanger materials

    Rauch, H. W.

    1980-01-01

    The development and evaluation of materials for potential application as heat exchanger structures in automotive gas turbine engines is discussed. Test specimens in the form of small monolithic bars were evaluated for thermal expansion and dimensional stability before and after exposure to sea salt and sulfuric acid, followed by short and long term cycling at temperatures up to 1200 C. The material finally selected, GE-7808, consists of the oxides, ZrO2-MgO-Al2O3-S1O2, and is described generically as ZrMAS. The original version was based on a commercially available cordierite (MAS) frit. However, a clay/talc mixture was demonstrated to be a satisfactory very low cost source of the cordierite (MAS) phase. Several full size honeycomb regenerator cores, about 10.2 cm thick and 55 cm diameter were fabricated from both the frit and mineral versions of GE-7808. The honeycomb cells in these cores had rectangular dimensions of about 0.5 mm x 2.5 mm and a wall thickness of approximately 0.2 mm. The test data show that GE-7808 is significantly more stable at 1100 C in the presence of sodium than the aluminosilicate reference materials. In addition, thermal exposure up to 1100 C, with and without sodium present, results in essentially no change in thermal expansion of GE-7808.

  7. A Review on Heat Transfer Improvent of Plate Heat Exchanger

    Abhishek Nandan; Gurpreet Singh Sokhal

    2015-01-01

    Plate heat exchanger has found a wide range of application in various industries like food industries, chemical industries, power plants etc. It reduces the wastage of energy and improves the overall efficiency of the system. Hence, it must be designed to obtain the maximum heat transfer possible. This paper is presented in order to study the various theories and results given over the improvement of heat transfer performance in a plate heat exchanger. However, there is still a la...

  8. High temperature alloys and ceramic heat exchanger

    From the standpoint of energy saving, the future operating temperatures of process heat and gas turbine plants will become higher. For this purpose, ceramics is the most promissing candidate material in strength for application to high-temperature heat exchangers. This report deals with a servey of characteristics of several high-temperature metallic materials and ceramics as temperature-resistant materials; including a servey of the state-of-the-art of ceramic heat exchanger technologies developed outside of Japan, and a study of their application to the intermediate heat exchanger of VHTR (a very-high-temperature gas-cooled reactor). (author)

  9. Testing and plugging power plant heat exchangers

    Sutor, F. [Expando Seal Tools, Inc., Montgomeryville, PA (United States)

    1994-12-31

    Heat Exchanger tubes fail for any number of reasons including but certainly not limited to the cumulative effects of corrosion, erosion, thermal stress and fatigue. This presentation will attempt to identify the most common techniques for determining which tubes are leaking and then introduce the products in use to plug the leaking tubes. For the sake of time I will limit the scope of this presentation to include feedwater heaters and secondary system heat exchangers such as Hydrogen Coolers, Lube Oil Coolers, and nuclear Component Cooling Water, Emergency Cooling Water, Regenerative Heat Recovery heat exchangers.

  10. Heat transfer analysis of short helical borehole heat exchangers

    Highlights: ► Vertical ground heat exchanger with a helical shaped pipe is analyzed. ► The model considers the interaction between the ground and the environment. ► The results of the model are in good agreement with the experimental values. ► The weather conditions considerably affect the fluid heat carrier temperature. ► The pitch between the turns does not affect the behaviour of the heat exchanger. -- Abstract: In this paper a numerical model to analyze the thermal behaviour of vertical ground heat exchangers with a helical shaped pipe is presented. This type of configuration can be a suitable alternative to conventional ground heat exchangers, especially when the heating and cooling loads of the building are very low. The model describes the heat transfer problem by means of a network of interconnected thermal resistances and capacitances. Moreover, as the investigated ground heat exchanger is usually installed in shallow depth, the model takes into account the interaction between the ground and the ambient environment which affects the fluid heat carrier temperature into the heat exchanger and, as a consequence, the energy efficiency of the heat pump. After a sensitivity analysis on the mesh parameters, the presented model is compared with experimental data and the simulation results show good agreement with the measurements. Finally, analyses to investigate the influence of the weather conditions, of the axial heat transfer and of the pitch between the turns of the helical pipe for two types of ground are carried out.

  11. Heat exchanger device and method for heat removal or transfer

    Koplow, Jeffrey P.

    2015-12-08

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  12. Heat exchanger, head and shell acceptance criteria

    Instability of postulated flaws in the head component of the heat exchanger could not produce a large break, equivalent to a DEGB in the PWS piping, due to the configuration of the head and restraint provided by the staybolts. Rather, leakage from throughwall flaws in the head would increase with flaw length with finite leakage areas that are bounded by a post-instability flaw configuration. Postulated flaws at instability in the shell of the heat exchanger or in the cooling water nozzles could produce a large break in the Cooling Water System (CWS) pressure boundary. An initial analysis of flaw stability for postulated flaws in the heat exchanger head was performed in January 1992. This present report updates that analysis and, additionally, provides acceptable flaw configurations to maintain defined structural or safety margins against flaw instability of the external pressure boundary components of the heat exchanger, namely the head, shell, and cooling water nozzles. Structural and flaw stability analyses of the heat exchanger tubes, the internal pressure boundary of the heat exchangers or interface boundary between the PWS and CWS, were previously completed in February 1992 as part of the heat exchanger restart evaluation and are not covered in this report

  13. Thermodynamic Optimization of GSHPS Heat Exchangers

    Ahmad Kahrobaeian

    2007-09-01

    Full Text Available

    In this paper, a new method for determining the optimized dimensions of a ground source heat pump system (GSHPS heat exchanger is presented. Using the GSHPS is one of the ways for utilization of infinite, clean and renewable energies in the environment. In recent years, due to limitation of physical space for installing the heat exchangers and avoiding the environmental effects on heat exchanger operation, vertical GSHP systems are used more than the other ones. Determination of optimum heat exchanger size is one of the most important parameters in the optimization of the heat exchanger design. In this study, optimum length and diameter for the heat exchanger is determined for different mass flows by using the second law of thermodynamics. The optimal length and diameter minimize entropy generation and therefore result in increased efficiency of the heat pump.

    • An initial version of this pa per was published in May of 2004 in the proceedings of Second International Applied Thermodynamics Conference, Istanbul, Turkey.

  14. A Review on Heat Transfer Improvent of Plate Heat Exchanger

    Abhishek Nandan

    2015-03-01

    Full Text Available Plate heat exchanger has found a wide range of application in various industries like food industries, chemical industries, power plants etc. It reduces the wastage of energy and improves the overall efficiency of the system. Hence, it must be designed to obtain the maximum heat transfer possible. This paper is presented in order to study the various theories and results given over the improvement of heat transfer performance in a plate heat exchanger. However, there is still a lack in data and generalized equations for the calculation of different parameters in the heat exchanger. It requires more attention to find out various possible correlations and generalized solutions for the performance improvement of plate heat exchanger.

  15. Heat Exchanger Support Bracket Design Calculations

    This engineering note documents the design of the heat exchanger support brackets. The heat exchanger is roughly 40 feet long, 22 inches in diameter and weighs 6750 pounds. It will be mounted on two identical support brackets that are anchored to a concrete wall. The design calculations were done for one bracket supporting the full weight of the heat exchanger, rounded up to 6800 pounds. The design follows the American Institute of Steel Construction (AISC) Manual of steel construction, Eighth edition. All calculated stresses and loads on welds were below allowables.

  16. Heat exchanger module for secondary circuit of nuclear heating plant

    The heat exchanger placed in the reactor vessel consists of a bundle of heat exchange tubes, two tube plates, their lids, and inlet and outlet tubes. The heat exchange tubes of the exchanger of the secondary coolant circuit are attached by their upper ends to the upper tube plate and by their bottom ends to the bottom tube plate. The heat exchange elements are placed around the inlet tube of the secondary coolant circuit passing tightly through the upper tube plate. The outlet tube of the secondary coolant circuit passes tightly through the reactor vessel and by its upper end is attached to the inlet tube and by its bottom end to the lid of the upper tube plate. The inlet tube is tightly connected to the bottom tube plate via the expansion pressurizer. (B.S.)

  17. Heat exchanger fouling: Prediction, measurement, and mitigation

    The US Department of Energy (DOE), Office of Industrial Programs (OIP) sponsors the development of innovative heat exchange systems. Fouling is a major and persistent cost associated with most industrial heat exchangers and nationally wastes an estimated 2.9 Quads per year. To predict and control fouling, three OIP projects are currently exploring heat exchanger fouling in specific industrial applications. A fouling probe has been developed to determine empirically the fouling potential of an industrial gas stream and to derive the fouling thermal resistance. The probe is a hollow metal cylinder capable of measuring the average heat flux along the length of the tube. The local heat flux is also measured by a heat flux meter embedded in the probe wall. The fouling probe has been successfully tested in the laboratory at flue gas temperatures up to 2200 F and a local heat flux up to 41,000 BTU/hr sq ft. The probe has been field tested at a coal-fired boiler plant. Future tests at a municipal waste incinerator are planned. Two other projects study enhanced heat exchanger tubes, specifically the effect of enhanced surface geometries on the tube bundle performance. Both projects include fouling in a liquid heat transfer fluid. Identifying and quantifying the factors affecting fouling in these enhanced heat transfer tubes will lead to techniques to mitigate fouling.

  18. A heat exchanger with dual tubes

    The invention relates to a heat exchanger provided with dual tubes arranged in two bundles within a casing. That heat exchanger is characterized in that the tubes penetrate into the casing from the opposite ends thereof, said tubes being imbricated in such a way of the second bundle, a heat-conducting medium being contained in said casing for transferring heat from the fluid of one of said bundles to the other bundle fluid. The invention can be applied in particular to liquid-metal steam generators and also extended to PWR reactors

  19. Lightweight Thermal Storage Heat Exchangers Project

    National Aeronautics and Space Administration — This SBIR proposal aims to develop thermal energy storage heat exchangers that are significantly lighter and higher conductance than the present art which involves...

  20. Heat exchangers: an energy viewpoint approach

    This paper, at first, presents a brief discussion of the concept of exergy. The second part studies the exchange of heat by conduction, convection and radiation as well as the irreversibilities due to the required temperature gradient. It shows the importance of the temperature level on the heat flux and the exergy lost. This analysis results also in conclusions on the fins and the thermal insulation. The third part studies the heat exchangers, in general. The loss of exergy due to the thermal exchange permits a comparison of the thermal value of these apparatus and, as well, shows the influence of the isothermal change of state of a fluid, i.e. in vaporization. Finally, based on the conclusions reached above, different types of heat exchangers used in industrial applications are analysed

  1. A laminar-flow heat exchanger

    Doty, F. D.; Hosford, G.; Jones, J. D.; Spitzmesser, J. B.

    The advantages of designing heat exchangers in the laminar flow regime are discussed from a theoretical standpoint. It is argued that laminar flow designs have the advantages of reducing thermodynamic and hydrodynamic irreversibilities and hence increasing system efficiency. More concretely, laminar flow heat exchangers are free from the turbulence-induced vibration common in conventional heat exchangers and can thus offer longer life and greater reliability. The problems of manufacturing heat exchangers suited to laminar flow are discussed. A method of manufacture which allows compact, modular design is outlined. Experience with this method of manufacture is described, and experimental results are presented. The problems of fouling and flow maldistribution are briefly discussed, and some possible applications are mentioned.

  2. Aplicación del Método de la Colonia de Hormigas Mixto a la optimización de intercambiadores de calor de tubo y coraza//Application of the Mixed Ant Colony Method to the optimization of tube and shell heat exchangers

    Maida Bárbara Reyes‐Rodríguez

    2014-05-01

    Full Text Available Los procesos de transferencia de calor sonuno de los problemas más importantes a resolver en el campo de la Ingeniería. Entre los equipos más usados en la industria para realizar la transferencia de calor están los intercambiadores de calor de tubo y coraza. En el presente trabajo se desarrolla el procedimiento para la optimización del diseño de estos equipos utilizando el método de Kern y aplicando el algoritmo de la colonia de hormigas. Se aplica el mismo a tres ejemplos concretos y los resultados obtenidos se comparan con los obtenidos aplicando otros métodos de la inteligencia artificial. Se optimizan los principales parámetros geométricos de los intercambiadores de calor de tubo y coraza para lograr un menor costo de los mismos. Se demuestra la eficacia del nuevo procedimiento MACO (Mixed Ant Colony Optimization, en el proceso de optimización desde el punto de vista económico utilizando diferentes casos de estudios.Palabras claves: intercambiadores de calor, colonia de hormigas, método de Kern.______________________________________________________________________________AbstractHeat transfer processes are one of the most important problems to be solved in the field of Engineering. Among the most widely used equipment for heat transfer in the industry are the shell and tube heat exchangers. This paper develops the procedure for optimizing the design of shell and tube heat exchangers using the method of Kern and applying the ant colony algorithm. The procedure has been applied to three specific examples and the results obtained are compared with those obtained by applying other methods of artificial intelligence. The main geometric parameters of shell and tube heat exchangers are optimized, to achieve a lower cost of the exchanger. The efficacy of the new procedure MACO (Mixed Ant Colony Optimization for the optimization process from economically point of view was demonstrated, using different case studies.Key words: heat exchangers, ant colony, Kern method.

  3. Stirling Engine With Radial Flow Heat Exchangers

    Vitale, N.; Yarr, George

    1993-01-01

    Conflict between thermodynamical and structural requirements resolved. In Stirling engine of new cylindrical configuration, regenerator and acceptor and rejector heat exchangers channel flow of working gas in radial direction. Isotherms in regenerator ideally concentric cylinders, and gradient of temperature across regenerator radial rather than axial. Acceptor and rejector heat exchangers located radially inward and outward of regenerator, respectively. Enables substantial increase in power of engine without corresponding increase in diameter of pressure vessel.

  4. Tube-in-shell heat exchangers

    A tube-in-shell heat exchanger is described for use in liquid metal cooled fast breeder reactor constructions. The system consists of a bundle of heat exchange tubes with a central spine extending longitudinally through the shell and a series of longitudinally spaced transverse grids resiliently mounted on the central spine within the shell to provide transverse support for bracing the tubes apart. (U.K.)

  5. Heat exchanger effectiveness in unsteady state

    Mai, T. H.; Chitou, N.; Padet, J.

    1999-10-01

    A method is proposed to determine the thermal effectiveness of heat exchangers in situ, when one of the fluids is submitted to any kind of flow rate variations. It leads to the definition of the average effectiveness in unsteady state, which forms an extension of the classical effectiveness used in steady state. It requires an unsophisticated equipment of measurement and should lead to an easy and continuous control of the fouling of heat exchangers.

  6. Brayton-cycle heat exchanger technology program

    Killackey, J. J.; Coombs, M. G.; Graves, R. F.; Morse, C. J.

    1976-01-01

    The following five tasks designed to advance this development of heat exchanger systems for close loop Brayton cycle power systems are presented: (1) heat transfer and pressure drop data for a finned tubular heat transfer matrix. The tubes are arranged in a triangular array with copper stainless steel laminate strips helically wound on the tubes to form a disk fin geometry; (2) the development of a modularized waste heat exchanger. Means to provide verified double containment are described; (3) the design, fabrication, and test of compact plate fin heat exchangers representative of full scale Brayton cycle recuperators; (4) the analysis and design of bellows suitable for operation at 1600 F and 200 psia for 1,000 cycles and 50,000 hours creep life; and (5) screening tests used to select a low cost braze alloy with the desirable attributes of a gold base alloy. A total of 22 different alloys were investigated; the final selection was Nicrobraz 30.

  7. Mathematical Modeling of Spiral Heat Exchanger

    Probal Guha , Vaishnavi Unde

    2014-04-01

    Full Text Available Compact Heat Exchangers (CHEs are increasingly being used on small and medium scale industries. Due to their compact size and efficient design, they facilitate more efficient heat transfer. Better heat transfer would imply lesser fuel consumption for the operations of the plant, giving improvement to overall efficiency. This reduction in consumption of fuel is a step towards sustainable development. This report exclusively deals with the study the spiral heat exchanger.The design considerations for spiral heat exchanger is that the flow within the spiral has been assumed as flow through a duct and by using Shah London empirical equation for Nusselt number design parameters are further optimized.This is accompanied by a detailed energy balance to generate a concise mathematical model

  8. REVIEW OF HEAT TRANSFER ENHANCEMENT IN DIFFERENT TYPES OF BAFFLES AND THEIR ORIENTATIONS.

    S.P.WALDE

    2012-04-01

    Full Text Available The use of baffles in channel is commonly used for passive heat transfer enhancement strategy in single phase internal flow. Considering the rapid increase in energy demand, effective heat transfer enhancement techniques have become important task worldwide. Some of the applications of passive heat transfer enhancement strategies are in process industries, thermal regenerator, Shell and tube type heat exchanger, Internal cooling system of gas turbine blades, radiators for space vehicles and automobiles, etc. Thepresent paper is a review of different types of baffles and its arrangement. According to recent studies these are known to be economic heat transfer augmentation tools.

  9. Flow and heat transfer enhancement in tube heat exchangers

    Sayed Ahmed, Sayed Ahmed E.; Mesalhy, Osama M.; Abdelatief, Mohamed A.

    2015-11-01

    The performance of heat exchangers can be improved to perform a certain heat-transfer duty by heat transfer enhancement techniques. Enhancement techniques can be divided into two categories: passive and active. Active methods require external power, such as electric or acoustic field, mechanical devices, or surface vibration, whereas passive methods do not require external power but make use of a special surface geometry or fluid additive which cause heat transfer enhancement. The majority of commercially interesting enhancement techniques are passive ones. This paper presents a review of published works on the characteristics of heat transfer and flow in finned tube heat exchangers of the existing patterns. The review considers plain, louvered, slit, wavy, annular, longitudinal, and serrated fins. This review can be indicated by the status of the research in this area which is important. The comparison of finned tubes heat exchangers shows that those with slit, plain, and wavy finned tubes have the highest values of area goodness factor while the heat exchanger with annular fin shows the lowest. A better heat transfer coefficient ha is found for a heat exchanger with louvered finned and thus should be regarded as the most efficient one, at fixed pumping power per heat transfer area. This study points out that although numerous studies have been conducted on the characteristics of flow and heat transfer in round, elliptical, and flat tubes, studies on some types of streamlined-tubes shapes are limited, especially on wing-shaped tubes (Sayed Ahmed et al. in Heat Mass Transf 50: 1091-1102, 2014; in Heat Mass Transf 51: 1001-1016, 2015). It is recommended that further detailed studies via numerical simulations and/or experimental investigations should be carried out, in the future, to put further insight to these fin designs.

  10. Research of heat exchange rate of the pulsating heat pipe

    Kravets V. Yu.

    2010-02-01

    Full Text Available Given article presents experimental research of heat transfer characteristics of the pulsating heat pipe (PHP which consists of seven coils with 1 mm inner diameter. Water was used as the heat carrier. PHP construction, measuring circuit and research technique are presented. It is shown that under PHP functioning there are two characteristic modes of operation, which can be distinguished by values of thermal resistance. PHP heat exchange features are disclosed.

  11. Heat exchanger with auxiliary cooling system

    The object is to provide a heat exchanger with a reliable simple auxiliary cooling mechanism capable of cooling a nuclear reactor without impeding the flow of the reactor coolant during normal operation. Diagrams and full operating details are given. The invention is of a heat exchanger comprising a vertical cylindrical housing with heat transfer tubes mounted in the housing, a secondary coolant inlet and outlet means for conducting a secondary coolant at one temperature through the heat transfer tubes and primary coolant inlet and outlet means for conducting a primary coolant at another temperature through a primary coolant space in the enclosure around and in heat transfer relationship with the heat transfer tubes. There is auxiliary cooling in an annular chamber formed around, and partly defined by, the housing which has openings at the top and bottom of the annular chamber to allow cooling of the primary coolant space by convection during breakdown or shutdown of the primary coolant circulation. (UK)

  12. Heat transfer 1982; Proceedings of the Seventh International Conference, Technische Universitaet Muenchen, Munich, West Germany, September 6-10, 1982. Volume 6 - General papers: Combined heat and mass transfer, particle heat transfer, heat exchangers, industrial heat transfer, heat transfer in energy utilization

    Grigull, U.; Hahne, E.; Stephan, K.; Straub, J.

    Laboratory and operational studies of heat transfer (HT) are presented. Such topics as the irreversibility of HT and mass transfer (MT), HT in disperse systems at high temperatures, fixed-bed reactors with submerged tube bundles, HT and MT in a low-speed turbulent boundary layer with condensation, multilayer insulation blankets for spacecraft applications, HT and MT in transpiration-cooled turbine blades, and finite-element analysis of HT in a solid with radiation and ablation are discussed. Contributions are included on the design of shell-and-tube heat exchangers to avoid flow-induced vibration, HT and MT in air-conditioning cooling coils, a friction-factor correlation for the offset strip-fin matrix, convective HT in gas-turbine combustion chambers, thermal-energy storage systems, turbulent buoyant HT in enclosures containing fire sources, a phase-change dry/wet cooling system for power plants, and the effect of secondary flow on HT in solar collector tubes. For individual items see A83-43014 to A83-43024

  13. The dry heat exchanger calorimeter system

    A radiometric isothermal heat flow calorimeter and preconditioner system that uses air instead of water as the heat exchange medium has been developed at Mound. The dry heat exchanger calorimeter is 42 inches high by 18 inches in diameter and the preconditioner is a 22 inch cube, making it extremely compact compared to existing units. The new system is ideally suited for transportable, stand-alone, or glovebox applications. Preliminary tests of the system have produced sample measurements with standard deviations less than 0.25% and sample errors less than 0.50%. These tests have shown that the dry heat exchanger system will yield acceptance data with an accuracy comparable to those of Mound water bath systems now in use. 4 figs., 1 tab

  14. Thermal hydraulic simulation of moderator heat exchanger

    Pressurized heavy water reactors form the majority in the first stage of India's nuclear power programme. Heavy water is both moderator and primary coolant. The heat generated in the moderator due to neutron moderation and capture has to be removed in moderator heat exchangers. It has been desired to improve the performance characteristics of moderator heat exchangers, whereby moderator would enter the calandria vessel at a low temperature and would enable higher power of operation for the same limiting temperature of moderator in the calandria. Results of studies carried out using a three dimensional computer code for various operating options are given. Using these velocities the heat exchangers have been analysed for flow induced vibrations. 7 refs., 6 figs., 6 tabs

  15. Near Field Investigation of Borehole Heat Exchangers

    Erol, Selcuk

    2015-01-01

    As an alternative and renewable energy source, the shallow geothermal energy evolving as one of the most popular energy source due to its easy accessibility and availability worldwide, and the ground source heat pump (GSHP) systems are the most frequent applications for extracting the energy from the shallow subsurface. As the heat extraction capacity of the GSHP system applications arises, the design of the borehole heat exchangers (BHE), which is the connected part of the system in the grou...

  16. Decontamination of Primary Heat Exchanger Heat Transfer Plate in HANARO

    In HANARO, a multi-purpose research reactor, a 30 MWth open-tank-in-pool type, a plate type primary heat exchanger transfers the reactor core residual heat absorbed by a primary coolant to a secondary coolant. There was a leakage in the gasket of the no. one heat exchanger after about five years of normal operation. The leaking heat transfer plate pack was replaced with a new one and decontaminated. This paper describes the method of decontaminating the radioactivity of the no. 1 heat exchanger used plate pack and the results. A chemical treatment method was applied to the decontamination. This treatment method consists of cleaning the used plate with a hydro jet after properly depositing it in a scale agent

  17. Performance Investigation of Plate Type Heat Exchanger (A Case Study)

    Simarpreet Singh; Sanjeev Jakhar

    2014-01-01

    Heat exchanger is a thermodynamic system which is most commonly used in the process industry for exchanging heat energy between the fluids. flowing in the same or opposite direction. It is desired that effectiveness of heat exchanger should remain as large as possible. Heat exchanger's performance may be improved by the addition of fins or corrugations. These investigations include design of plate type heat exchanger, heat transfer enhancement, flow phenomenon and cleanliness ...

  18. Design of common heat exchanger network for batch processes

    Heat integration of energy streams is very important for the efficient energy recovery in production systems. Pinch technology is a very useful tool for heat integration and maximizing energy efficiency. Creating of heat exchangers network as a common solution for systems in batch mode that will be applicable in all existing time slices is very difficult. This paper suggests a new methodology for design of common heat exchanger network for batch processes. Heat exchanger network designs were created for all determined repeatable and non-repeatable time periods time slices. They are the basis for creating the common heat exchanger network. The common heat exchanger network as solution, satisfies all heat-transfer needs for each time period and for every existing combination of selected streams in the production process. This methodology use split of some heat exchangers into two or more heat exchange units or heat exchange zones. The reason for that is the multipurpose use of heat exchangers between different pairs of streams in different time periods. Splitting of large heat exchangers would maximize the total heat transfer usage of heat exchange units. Final solution contains heat exchangers with the minimum heat load as well as the minimum need of heat transfer area. The solution is applicable for all determined time periods and all existing stream combinations. - Highlights: Methodology for design of energy efficient systems in batch processes. Common Heat Exchanger Network solution based on designs with Pinch technology. Multipurpose use of heat exchangers in batch processes

  19. Research of characteristics slot-hole heat exchanger with the developed surface of heat exchange

    Malkin E. C.

    2010-03-01

    Full Text Available Thermal characteristics of multichannel slot-hole heat exchanger with the developed surface of heat exchange inside the opened-cycle water cooling system are experimentally investigated. Graphic dependences of average value of temperature of the simulator of a heat current and temperatures of the heat exchanger base are presented on tapped-off power. Dependences of tapped-off power and hydraulic losses on the of water consumption are given. It is shown, that use of developed slot-hole heat exchanger provides higher values of tapped-off power as compared to well-known two-channel slot-hole heat exchanger: at the temperature of heat-generating component simulator of +60°С the tapped-off power increases with 307 up to 750 W. Recommendations on increase of adaptability of slot-hole heat exchanger manufacturing are given. Heat exchanger is suitable for application in microprocessors and others heat-generating components and electronic equipment units cooling.

  20. Heat Transfer Study in a Coaxial Heat Exchanger Using Nanofluids

    Luciu, Răzvan-Silviu; Mateescu, Theodor

    2010-01-01

    The heat transfer of nanofluids in a coaxial heat exchanger is studied numerically using a Computational Fluid Dynamics (CFD) approach. The present study indicates an increase of the thermal performances with 50% of nanofluids compared to water. The nanofluid is composed of aluminum oxide (Al2O3) particles dispersed in water for various concentrations ranging (1, 3 and 5%).

  1. Simulation of induction heating process with radiative heat exchange

    A. Kachel

    2007-05-01

    Full Text Available Purpose: Numerical modelling of induction heating process is a complex issue. It needs analysis of coupled electromagnetic and thermal fields. Calculation models for electromagnetic field analysis as well as thermal field analysis need simplifications. In case of thermal field calculations, correct modelling of radiative heat exchange between the heated charge and inductor’s thermal insulation is essential. Most commercial calculation programs enabling coupled analysis of electromagnetic and thermal fields do not allow taking into consideration radiative heat exchange between calculation model components, which limits thermal calculations only to the charge area. The paper presents a supplementation of the program Flux 2D with radiative heat exchange procedures.Design/methodology/approach: Commercial program Flux 2D designed for coupled electromagnetic and thermal calculation (based on finite element method was supplemented with authors program for radiative heat exchange based on numerical integration of classic equations.Findings: Supplementation EM-T calculations with radiative heat exchange between charge and inductor enables to calculate thermal insulation parameters and increase precision of modelling.Research limitations/implications: Procedures for radiative heat exchange enables calculation of two surfaces (flat or cylindrical with finite dimensions. The surfaces can be displaced relative to each other (charge shorter or longer than thermal insulation of inductor. Material of surfaces is modelled as: flat, diffuse, radiant surfaces absorb energy evenly in the whole spectrum (grey bodies. The whole system is modelled as in a steady thermal state (quasi-steady.Originality/value: Authors program extends Flux 2D features with a possibility for calculating radiative heat transfer. The application of radiative process is possible between all components of the studied model, not only for the boundary conditions.

  2. Comparison between conventional heat exchanger performance and an heat pipes exchanger

    The thermal performance of conventional compact heat exchanger and of exchanger with heat pipes are simulated using a digital computer, for equal volumes and the same process conditions. The comparative analysis is depicted in graphs that indicate which of the situations each equipment is more efficient. (author)

  3. 21 CFR 870.4240 - Cardiopulmonary bypass heat exchanger.

    2010-04-01

    ... bypass heat exchanger. (a) Identification. A cardiopulmonary bypass heat exchanger is a device, consisting of a heat exchange system used in extracorporeal circulation to warm or cool the blood or... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass heat exchanger....

  4. Intermediate heat exchanger for HTR process heat application

    In the French study on the nuclear gasification of coal, the following options were recommended: Coal hydrogenation, the hydrogen being derived from CH4 reforming under the effects of HTR heat; the use of an intermediate helium circuit between the nuclear plant and the reforming plant. The purpose of the present paper is to describe the heat exchanger designed to transfer heat from the primary to the intermediate circuit

  5. Heat Transfer of Nanofluid in a Double Pipe Heat Exchanger

    Aghayari, Reza; Maddah, Heydar; Zarei, Malihe; Dehghani, Mehdi; Kaskari Mahalle, Sahar Ghanbari

    2014-01-01

    This paper investigates the enhancement of heat transfer coefficient and Nusselt number of a nanofluid containing nanoparticles (?-AL2O3) with a particle size of 20?nm and volume fraction of 0.1%0.3% (V/V). Effects of temperature and concentration of nanoparticles on Nusselt number changes and heat transfer coefficient in a double pipe heat exchanger with counter turbulent flow are investigated. Comparison of experimental results with valid theoretical data based on semiempirical equations s...

  6. Stokes Flow Heat Transfer In An Annular, Rotating Heat Exchanger

    Saatdjian, E.; Rodrigo, A.J.S.; Mota, J.P.B.

    2011-01-01

    Abstract The heat transfer rate into highly viscous, low thermal-conductivity fluids can be enhanced significantly by chaotic advection in three-dimensional flows dominated by viscous forces. The physical effect of chaotic advection is to render the cross-sectional temperature field uniform, thus increasing both the wall temperature gradient and the heat flux into the fluid. A method of analysis for one such flow?the flow in the eccentric, annular, rotating heat exchanger?and a pro...

  7. Simulation of induction heating process with radiative heat exchange

    Kachel, A; Przy?ucki, R.

    2007-01-01

    Purpose: Numerical modelling of induction heating process is a complex issue. It needs analysis of coupled electromagnetic and thermal fields. Calculation models for electromagnetic field analysis as well as thermal field analysis need simplifications. In case of thermal field calculations, correct modelling of radiative heat exchange between the heated charge and inductors thermal insulation is essential. Most commercial calculation programs enabling coupled analysis of electromagnetic and ...

  8. The dynamic behaviour of heat exchangers

    In order to study the dynamics of nuclear power plants, one needs mathematical models made up of ordinary differential equations. This report deals with models for heat exchangers. These models allow exact evaluations of the temperatures for any steady state. The deformation of the temperature maps during transients is taken into account. To do this, average temperatures are evaluated keeping In mind, on one hand the partial differential equations, on the other hand, the physical phenomenons which are involved. Seven ordinary differential equations at most, are necessary for one heat exchanger. Theses models were compared with mathematically exact ones and also with experimental results, that EDF was able to measure on EDF-1 heat exchangers. The results appear to be correct. (authors)

  9. Modeling particle deposition on HVAC heat exchangers

    Fouling of fin-and-tube heat exchangers by particle deposition leads to diminished effectiveness in supplying ventilation and air conditioning. This paper explores mechanisms that cause particle deposition on heat exchanger surfaces. We present a model that accounts for impaction, diffusion, gravitational settling, and turbulence. Simulation results suggest that some submicron particles deposit in the heat exchanger core, but do not cause significant performance impacts. Particles between 1 and 10(micro)m deposit with probabilities ranging from 1-20% with fin edge impaction representing the dominant mechanism. Particles larger than 10(micro)m deposit by impaction on refrigerant tubes, gravitational settling on fin corrugations, and mechanisms associated with turbulent airflow. The model results agree reasonably well with experimental data, but the deposition of larger particles at high velocities is underpredicted. Geometric factors, such as discontinuities in the fins, are hypothesized to be responsible for the discrepancy

  10. Heat exchanger including an auxiliary cooling system

    It comprises a vertical envelope, heat transfer tubes mainted in this envelope, inlet and outlet windows for a primary coolant flowing between the tubes and inlet and outlet collectors to make the secondary coolant circulate inside the tubes, and an auxiliary cooling system situated in the inlet window, inside a shell. This shell is opened at its upper part and connected to the heat exchanger envelope at its lower part. This system cools the primary coolant when it is not in forced circulation, what creates a natural circulation of this primary coolant to the bottom. The invention can be applied to fast nuclear reactors cooled by sodium. This heat exchanger extracts the heat produced by the core operating normally, and besides, the residual power in case of pump shutdown reactor accident

  11. Carbon nanotube heat-exchange systems

    Hendricks, Terry Joseph (Arvada, CO); Heben, Michael J. (Denver, CO)

    2008-11-11

    A carbon nanotube heat-exchange system (10) and method for producing the same. One embodiment of the carbon nanotube heat-exchange system (10) comprises a microchannel structure (24) having an inlet end (30) and an outlet end (32), the inlet end (30) providing a cooling fluid into the microchannel structure (24) and the outlet end (32) discharging the cooling fluid from the microchannel structure (24). At least one flow path (28) is defined in the microchannel structure (24), fluidically connecting the inlet end (30) to the outlet end (32) of the microchannel structure (24). A carbon nanotube structure (26) is provided in thermal contact with the microchannel structure (24), the carbon nanotube structure (26) receiving heat from the cooling fluid in the microchannel structure (24) and dissipating the heat into an external medium (19).

  12. Fouling corrosion in aluminum heat exchangers

    Su Jingxin; Ma Minyu; Wang Tianjing; Guo Xiaomei; Hou Liguo; Wang Zhiping

    2015-01-01

    Fouling deposits on aluminum heat exchanger reduce the heat transfer efficiency and cause corrosion to the apparatus. This study focuses on the corrosive behavior of aluminum coupons covered with a layer of artificial fouling in a humid atmosphere by their weight loss, Tafel plots, electrochemical impedance spectroscopy (EIS), and scanning electron microscope (SEM) observations. The results reveal that chloride is one of the major elements found in the fouling which damages the passive film a...

  13. Fouling of heat exchanger surfaces: General principles

    1986-12-01

    This Data Item ESDU 86038 is an addition to the Heat Transfer Sub-series. The importance of various parameters that affect fouling are discussed. Appropriate methods for dealing with fouling in all stages from design through to operation of heat exchanger equipment are indicated. Methods of suppressing fouling by additives, or of cleaning equipment chemically or mechanically, are considered. A brief outline of the physical process of fouling including some mathematical models is given.

  14. Heat exchanger containing a component capable of discontinuous movement

    Wilson, David Gordon (Winchester, MA)

    2002-01-01

    Regenerative heat exchangers are described for transferring heat between hot and cold fluids. The heat exchangers have seal-leakage rates significantly less than those of conventional regenerative heat exchangers because the matrix is discontinuously moved and is releasably sealed while in a stationary position. Both rotary and modular heat exchangers are described. Also described are methods for transferring heat between a hot and cold fluid using the discontinuous movement of matrices.

  15. Hierarchic modeling of heat exchanger thermal hydraulics

    Volume Averaging Technique (VAT) is employed in order to model the heat exchanger cross-flow as a porous media flow. As the averaging of the transport equations lead to a closure problem, separate relations are introduced to model interphase momentum and heat transfer between fluid flow and the solid structure. The hierarchic modeling is used to calculate the local drag coefficient Cd as a function of Reynolds number Reh. For that purpose a separate model of REV is built and DNS of flow through REV is performed. The local values of heat transfer coefficient h are obtained from available literature. The geometry of the simulation domain and boundary conditions follow the geometry of the experimental test section used at U.C.L.A. The calculated temperature fields reveal that the geometry with denser pin-fins arrangement (HX1) heats fluid flow faster. The temperature field in the HX2 exhibits the formation of thermal boundary layer between pin-fins, which has a significant role in overall thermal performance of the heat exchanger. Although presented discrepancies of the whole-section drag coefficient Cd are large, we believe that hierarchic modeling is an appropriate strategy for calculation of complex transport phenomena in heat exchanger geometries.(author)

  16. NUMERICAL SIMULATION OF VERTICAL GROUND HEAT EXCHANGERS FOR GROUND SOURCE HEAT PUMPS

    Jalaluddin

    2011-01-01

    Abstract: This paper presents the numerical simulation of several types of vertical ground heat exchangers. The ground heat exchangers (GHEs) such as U-tube, double-tube and multi-tube were simulated using the commercial CFD software FLUENT. Water flows through the heat exchangers and exchanges the heat to the ground. The inlet and outlet water temperatures, flow rate, and heat exchange rate are presented. The heat exchange rates in discontinuous short-time period of operation ...

  17. Heat exchanger, specifically a steam generator heated with liquid sodium

    The invention concerns a heat exchanger, specifically a liquid sodium heated steam generator. This exchanger comprises a vertical long casing, a distributor for feeding the internal capacity of the casing with a first liquid coolant (liquid sodium), at least one bundle of tubes fitted inside the casing for the circulation of a second coolant (water), in indirect heat exchange relation with the first coolant, and facilities for maintaining in the casing a free given level of liquid topped by an inert gas atmosphere (argon). The upper ends of the tubes are fitted with thermal sleeves connecting them to the side wall of the casing for crossing it under the free liquid level and the distributor is placed in the casing above the bundle of tubes

  18. Trends in the development of heat exchangers

    Paikert, P.

    1988-03-01

    Without referring to all of the developments observed, the paper focuses on typical, important, and possibly trendsetting heat exchanger innovations and improvements of 1986/87. In spite of an intended objective description and presentation of the trends observed the report is not completely free from subjective statements and interpretations due to personal experiences.

  19. Heat exchanger for a contaminated fluid

    A heat exchanger, in particular for a contaminated fluid in the nuclear industry. The tubes forming the tube core are welded and crimped across the whole width of the tubular plate which defines the floating head together with the sealing cover, and said tubular plate is also welded and crimped to the calandria along the whole of its periphery. (author)

  20. Condensation and frost formation in heat exchangers

    The occurence of condensation and of frost formation are considered for air to heat exchangers with emphasis on how such occurrences would affect the performance of such heat exchangers when they are used in ventilating applications. The formulations which predict performance are developed for parallel, counter flow and cross flow with either formation or condensation, and for condensation the consequences for evaporation of condensate and of the effect of longitudinal conduction in the walls of the exchanger are also considered. For the prediction of the exchanger performance with frost formation there must be specified the growth of the frost layer with time and existing theories for this growth are examined, a new method of calculation of the growth is presented and this is shown to give results for the growth that are in accord with available experimental evidence. This new theory for the growth of a frost layer is used to predict the performance of a parallel flow exchanger under conditions in which frost formation occurs, by successively applying the steady state performance calculation for time increments over which the frost layer build-up is calculated for these time increments. The calculation of counter flow exchanger performance by this method, while feasible, is so time consuming that only the general aspects of the calculation are considered

  1. Heat exchange process, particularly to cool fission gases and heat exchanger to perform the method

    Heat exchangers developed for nuclear power plants could also be used for cooling fission gases from the hydropyrolysis of heavy hydrocarbons, particularly heat exchangers with an intermediate carrier filling of liquid metal (e.g. heavy metal alloy). As the heat exchanger surfaces have to be decoked from time to time when used for cooling fission gases, where high temperatures occur, it is proposed to change the level of the fill of the intermediate carrier fill by adding or removing intermediate carrier material. It is then possible to decoke without having to remove the cooling water. (UWI)

  2. Stokes flow heat transfer in an annular, rotating heat exchanger

    The heat transfer rate into highly viscous, low thermal-conductivity fluids can be enhanced significantly by chaotic advection in three-dimensional flows dominated by viscous forces. The physical effect of chaotic advection is to render the cross-sectional temperature field uniform, thus increasing both the wall temperature gradient and the heat flux into the fluid. A method of analysis for one such flow-the flow in the eccentric, annular, rotating heat exchanger-and a procedure to determine the best heat transfer conditions, namely the optimal values of the eccentricity ratio and time-periodic rotating protocol, are discussed. It is shown that in continuous flows, such as the one under consideration, there exists an optimum frequency of the rotation protocol for which the heat transfer rate is a maximum. - Highlights: → The eccentric, annular, rotating heat exchanger is studied for periodic Stokes flow. → Counter-rotating the inner tube with a periodic velocity enhances the heat transfer. → The heat-transfer enhancement under such conditions is due to chaotic advection. → For a given axial flow rate there is a frequency that maximizes the heat transfer. → There is also an optimum value of the eccentricity ratio.

  3. Tube-in-shell heat exchangers

    Tube-in-shell heat exchangers normally comprise a bundle of parallel tubes within a shell container, with a fluid arranged to flow through the tubes in heat exchange with a second fluid flowing through the shell. The tubes are usually end supported by the tube plates that separate the two fluids, and in use the tube attachments to the tube plates and the tube plates can be subject to severe stress by thermal shock and frequent inspection and servicing are required. Where the heat exchangers are immersed in a coolant such as liquid Na such inspection is difficult. In the arrangement described a longitudinally extending central tube is provided incorporating axially spaced cylindrical tube plates to which the opposite ends of the tubes are attached. Within this tube there is a tubular baffle that slidably seals against the wall of the tube between the cylindrical tube plates to define two co-axial flow ducts. These ducts are interconnected at the closed end of the tube by the heat exchange tubes and the baffle comprises inner and outer spaced walls with the interspace containing Ar. The baffle is easily removable and can be withdrawn to enable insertion of equipment for inspecting the wall of the tube and tube attachments and to facilitate plugging of defective tubes. Cylindrical tube plates are believed to be superior for carrying pressure loads and resisting the effects of thermal shock. Some protection against thermal shock can be effected by arranging that the secondary heat exchange fluid is on the tube side, and by providing a thermal baffle to prevent direct impingement of hot primary fluid on to the cylindrical tube plates. The inner wall of the tubular baffle may have flexible expansible region. Some nuclear reactor constructions incorporating such an arrangement are described, including liquid metal reactors. (U.K.)

  4. Brayton heat exchange unit development program

    Morse, C. J.; Richard, C. E.; Duncan, J. D.

    1971-01-01

    A Brayton Heat Exchanger Unit (BHXU), consisting of a recuperator, a heat sink heat exchanger and a gas ducting system, was designed, fabricated, and tested. The design was formulated to provide a high performance unit suitable for use in a long-life Brayton-cycle powerplant. A parametric analysis and design study was performed to establish the optimum component configurations to achieve low weight and size and high reliability, while meeting the requirements of high effectiveness and low pressure drop. Layout studies and detailed mechanical and structural design were performed to obtain a flight-type packaging arrangement. Evaluation testing was conducted from which it is estimated that near-design performance can be expected with the use of He-Xe as the working fluid.

  5. Predicting particle deposition on HVAC heat exchangers

    Siegel, Jeffrey A.; Nazaroff, William W.

    Particles in indoor environments may deposit on the surfaces of heat exchangers that are used in heating, ventilation and air conditioning (HVAC) systems. Such deposits can lead to performance degradation and indoor air quality problems. We present a model of fin-and-tube heat-exchanger fouling that deterministically simulates particle impaction, gravitational settling, and Brownian diffusion and uses a Monte Carlo simulation to account for impaction due to air turbulence. The model predicts that heat exchangers with air flows and fin spacings that are typical of HVAC systems. For supermicron particles, deposition increases with particle size. The dominant deposition mechanism for 1-10 μm particles is impaction on fin edges. Gravitational settling, impaction, and air turbulence contribute to deposition for particles larger than 10 μm. Gravitational settling is the dominant deposition mechanism for lower air velocities, and impaction on refrigerant tubes is dominant for higher velocities. We measured deposition fractions for 1-16 μm particles at three characteristic air velocities. On average, the measured results show more deposition than the model predicts for an air speed of 1.5 m s -1. The amount that the model underpredicts the measured data increases at higher velocities and especially for larger particles, although the model shows good qualitative agreement with the measured deposition fractions. Discontinuities in the heat-exchanger fins are hypothesized to be responsible for the increase in measured deposition. The model and experiments reported here are for isothermal conditions and do not address the potentially important effects of heat transfer and water phase change on deposition.

  6. Preliminary SP-100/Stirling heat exchanger designs

    Analytic modeling of several heat exchanger concepts to couple the SP-100 nuclear reactor lithium loop and the Space Stirling Power Convertor (SSPC) was performed. Four 25 kWe SSPC's are used to produce the required 100 kW of electrical power. This design work focused on the interface between a single SSPC and the primary lithium loop. Manifolding to separate and collect the four channel flow was not modeled. This work modeled two separate types of heat exchanger interfaces (conductive coupling and radiative coupling) to explore their relative advantages and disadvantages. The minimum mass design of the conductively coupled concepts was 18 kg or 0.73 kg/kWe for a single 25 kWe convertor. The minimum mass radiatively coupled concept was 41 kg or 1.64 kg/kWe. The direct conduction heat exchanger provides a lighter weight system because of its ability to operate the Stirling convertor evaporator at higher heat fluxes than those attainable by the radiatively coupled systems. Additionally the conductively coupled concepts had relatively small volumes and provide potentially simpler assembly. Their disadvantages were the tight tolerances and material joining problems associated with this refractory to superalloy interface. The advantages of the radiatively coupled designs were the minimal material interface problems

  7. Some performance characteristics of a fluidized bed heat recovery unit

    The advantages of using fluidized bed heat recovery units with diesel engines are well documented. Two of those are: significantly less tube fouling and heat transfer coefficient four to five time higher than that of conventional shell and tube heat exchangers. The high concentration of soot in the exhaust gases of diesel engines make fouling a major concern in design of any kind of heat recovery unit. In the experiment a conventional fluidized bed heat exchanger was connected to the exhaust of a diesel engine mounted on a dynamometer. With this arrangement it was possible to test the heat recovery unit under a wide range of operating conditions. The main objective of this experiment was the determination of the performance characteristics of the heat recovery unit, especially with reference to its heat transfer and fouling characteristics. (author)

  8. Triple loop heat exchanger for an absorption refrigeration system

    Reimann, Robert C. (Lafayette, NY)

    1984-01-01

    A triple loop heat exchanger for an absorption refrigeration system is disclosed. The triple loop heat exchanger comprises portions of a strong solution line for conducting relatively hot, strong solution from a generator to a solution heat exchanger of the absorption refrigeration system, conduit means for conducting relatively cool, weak solution from the solution heat exchanger to the generator, and a bypass system for conducting strong solution from the generator around the strong solution line and around the solution heat exchanger to an absorber of the refrigeration system when strong solution builds up in the generator to an undesirable level. The strong solution line and the conduit means are in heat exchange relationship with each other in the triple loop heat exchanger so that, during normal operation of the refrigeration system, heat is exchanged between the relatively hot, strong solution flowing through the strong solution line and the relatively cool, weak solution flowing through the conduit means. Also, the strong solution line and the bypass system are in heat exchange relationship in the triple loop heat exchanger so that if the normal flow path of relatively hot, strong solution flowing from the generator to an absorber is blocked, then this relatively, hot strong solution which will then be flowing through the bypass system in the triple loop heat exchanger, is brought into heat exchange relationship with any strong solution which may have solidified in the strong solution line in the triple loop heat exchanger to thereby aid in desolidifying any such solidified strong solution.

  9. Tubular heat exchanger, for nuclear installations

    The description is given of a heat exchanger comprising an elongated heat exchanger module suitable for group mounting with other similar modules. The module includes a long casing having a hexagonal cross section configuration to make it easy to group together a set of modules in an appreciably continuous set. A set of thermally conducting tubes is arranged in the casing and extends through its entire length. An intake collector is fitted to one end of the casing and communicates with one end of the tubes and an outlet collector is fitted to the other end of the casing and communicates with the other end of the tubes, a fluid passage being made inside the casing for the flow of primary fluid through it around the thermally conducting tubes. The intake and outlet collectors are each fitted for their respective coupling to an intake manifold and an outlet manifold for the flow of a primary fluid through the tubes in the casing

  10. Selection of materials for heat exchangers

    This paper provides a frame work for selecting heat exchangers materials especially those used in nuclear power plants. Typical examples of materials selection for heat exchanger tubing of nuclear power plants and condensers are presented. The paper brings out also, the importance of continued intensive R and D in materials in order to enhance the reliability and reduce cost by improving upon the existing materials by minor additions of alloying elements or new materials. The properties of Cr- Mo - alloys with minor additions of W, V, Nb and N are discussed in view of their use at elevated temperatures in the power industry. These alloys were found to provide considerable operation flexibility due to their low expansion coefficient and high thermal conductivity in comparison with the austenitic stainless steels. Also, the Ni base alloy Inconel 617. Could be selected for his excellent combination of creep and hot corrosion resistance up to a temperature of a 50 degree C. 2 figs., 7 tabs

  11. Inner inspection device for heat exchanger

    The device of the present invention is most suitable to the inner inspection for an intermediate heat exchanger of a HTGR type reactor. That is, the device comprises (1) a device for grinding/polishing the surface of a portion to be inspected, (2) a device for etching the polished surface, (3) a device for directly observing the etched surface or sampling a replica, (4) a conveyor, (5) an image observation device for analyzing/calculating the extent of the creep deformation based on the information from the metal tissues obtained by the device in (3) and (6) a control device for remote controlling the inner device. With such a constitution, the inner inspection device is sent to the heat exchanger by the device (4). The portion to be inspected in the heat exchanger is ground/polished into a mirror surface by the device (2). Then, the mirror surface metal tissues are observed by the device (3). Information of the metal tissues obtained as the result is sent to the device (5), in which the extent of damages can be observed and evaluated. In the method of the present invention, the inspection accuracy is improved compared with an ultrasonic defect scoping method and an eddy current defect scoping method. (I.S.)

  12. Heat exchangers and methods of construction thereof

    A heat exchanger is described comprising a shell having first inlet means and first outlet means for the flow of a first fluid therethrough, a plurality of tubes within the shell to provide a path for flow of a second fluid in heat exchange relation to the first fluid, second inlet means and second outlet means for flow of the second fluid to and from the tubes respectively, a tubular member concentric with at least a portion of the length of one of the tubes to define a space between the tube and the tubular member, at least one radially outwardly projecting portion on the tubular member, and a plurality of tube support means spaced apart and disposed generally perpendicular to the tube axes, wherein the tubular member is fixedly attached at one end to one of the tube support means and at the other end to an adjacent one of the tube support means, the space between the tube and the tubular member is closed to flow of both the first fluid and the second fluid, and the radially outwardly projecting portion on the tubular member extends longitudinally to allow flexing of the tubular member and expanding thereof radially outwardly during construction of the heat exchanger so as to allow insertion of the tube into the tubular member, the radially outwardly projecting portion defining a gap which contributes to the space between the tube and the tubular member. 6 figs

  13. Performance Investigation of Plate Type Heat Exchanger (A Case Study

    Simarpreet Singh

    2014-04-01

    Full Text Available Heat exchanger is a thermodynamic system which is most commonly used in the process industry for exchanging heat energy between the fluids. flowing in the same or opposite direction. It is desired that effectiveness of heat exchanger should remain as large as possible. Heat exchanger's performance may be improved by the addition of fins or corrugations. These investigations include design of plate type heat exchanger, heat transfer enhancement, flow phenomenon and cleanliness factor. In process plants, this type of heat exchange is generally used for recovering heat content of exhaust steam. However, with the flow of fluid for a long period, fouling occurs on the plate surface. Therefore, it is required to investigate the effect of fouling, wherever the heat exchanger is installed. An extensive experimental investigation has been carried out under clean and dirty condition of the said plate type heat exchanger. Heat transfer and flow data were collected in experiment. From collected data heat transfer rate, overall heat transfer coefficient, fouling factor and cleanliness factor were evaluated. Based upon the cleanliness factor data, next date of cleanliness for plate type heat exchanger was predicted. It is felt that the outcome of the present research work may be quite useful for efficient operation of plate type heat exchanger installed in Process plants.

  14. 40 CFR 63.104 - Heat exchange system requirements.

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Heat exchange system requirements. 63... 63.104 Heat exchange system requirements. (a) Unless one or more of the conditions specified in... subpart shall monitor each heat exchange system used to cool process equipment in a chemical...

  15. 40 CFR 63.1328 - Heat exchange systems provisions.

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Heat exchange systems provisions. 63... Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins 63.1328 Heat exchange... of this subpart. (h) The compliance date for heat exchange systems subject to the provisions of...

  16. 40 CFR 63.1409 - Heat exchange system provisions.

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Heat exchange system provisions. 63... each heat exchange system used to cool process equipment in an affected source, according to the... shall comply with the requirements in paragraph (d) of this section. (1) The heat exchange system...

  17. 40 CFR 63.654 - Heat exchange systems.

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Heat exchange systems. 63.654 Section... Emission Standards for Hazardous Air Pollutants From Petroleum Refineries 63.654 Heat exchange systems...) of this section, the owner or operator of a heat exchange system that meets the criteria in ...

  18. 40 CFR 63.1435 - Heat exchanger provisions.

    2010-07-01

    ...) When the HON heat exchange system requirements in 63.104 refer to Table 4 of 40 CFR part 63, subpart... for heat exchange systems, with the exceptions noted in paragraphs (b) through (e) of this section. (b...) shall apply for the purposes of this subpart. (c) When the HON heat exchange system requirements in ...

  19. Heat-Exchanger Computational Procedure For Temperature-Dependent Fouling

    Chiappetta, L.; Szetela, E.

    1985-01-01

    Computer program predicts heat-exchanger performance under variety of conditions. Program provides rapid means of calculating distribution of fluid and wall temperatures, fuel deposit formation, and pressure losses at various locations in heat exchanger. Developed for use with heat exchanger that vaporizes fuel prior to fuel ignition; other applications possible.

  20. OXIDE DISPERSION-STRENGTHENED HEAT EXCHANGER TUBING

    Harper, Mark A.

    2001-11-06

    Oxide dispersion strengthened (ODS) alloys (e.g. the INCOLOY{reg_sign} MA956 alloy) are known for their excellent high temperature properties and are prime candidate materials for the construction of very high temperature heat exchangers that will be used in Vision 21 power plants. The main limitation of these materials is their poor weldability. Commercially available ODS tubing also tends to exhibit relatively poor circumferential creep strength due to current processing practices resulting in a fine grain size in the transverse direction. Thus far, these two characteristics of the ODS tubing have restricted its use to mostly non-pressure containing applications. The objectives of this program are to develop: (a) an MA956 tube with sufficient circumferential creep strength for long term use as heat exchanger tubing for very high temperatures; (b) a welding technique(s) for producing adequate joints between an MA956 tube and an MA956 tube, and an MA956 tube and an INCONEL 601 tube; (c) the bending strain limits, below which recrystallization will not occur in a MA956 tube during normal operation; and (d) the high temperature corrosion limits for the MA956 alloy with respect to working-fluid side and fireside environments. Also, this program seeks to generate data for use by heat exchanger designers and the ASME Boiler and Pressure Vessel Code, and perform an analysis of the mechanical property, tube bending, and corrosion data in order to determine the implications on the design of a very high temperature heat exchanger (T>1093 C/2000 F). After one year, work is currently being conducted on increasing the circumferential strength of a MA956 tube, developing joining techniques for this material, determining the tube bending strain limits, and establishing the high temperature corrosion parameters for the MA956 alloy in environments expected to be present in Vision 21 power plants. Work in these areas will is continuing into the next fiscal year, with success anticipated to produce innovative developments that will allow the reliable use of ODS alloys for heat exchanger tubing, as well as a variety of applications previously not possible with metallic materials.

  1. Graphite Foam Heat Exchangers for Thermal Management

    Klett, J.W.

    2004-06-07

    Improved thermal management is needed to increase the power density of electronic and more effectively cool electronic enclosures that are envisioned in future aircraft, spacecraft and surface ships. Typically, heat exchanger cores must increase in size to more effectively dissipate increased heat loads, this would be impossible in many cases, thus improved heat exchanger cores will be required. In this Phase I investigation, MRi aimed to demonstrate improved thermal management using graphite foam (Gr-foam) core heat exchangers. The proposed design was to combine Gr-foams from POCO with MRi's innovative low temperature, active metal joining process (S-Bond{trademark}) to bond Gr-foam to aluminum, copper and aluminum/SiC composite faceplates. The results were very favorable, so a Phase II SBIR with the MDA was initiated. This had primarily 5 tasks: (1) bonding, (2) thermal modeling, (3) cooling chip scale packages, (4) evaporative cooling techniques and (5) IGBT cold plate development. The bonding tests showed that the ''reflow'' technique with S-Bond{reg_sign}-220 resulted in the best and most consistent bond. Then, thermal modeling was used to design different chip scale packages and IGBT cold plates. These designs were used to fabricate many finned graphite foam heat sinks specifically for two standard type IC packages, the 423 and 478 pin chips. These results demonstrated several advantages with the foam. First, the heat sinks with the foam were lighter than the copper/aluminum sinks used as standards. The sinks for the 423 design made from foam were not as good as the standard sinks. However, the sinks made from foam for the 478 pin chips were better than the standard heat sinks used today. However, this improvement was marginal (in the 10-20% better regime). However, another important note was that the epoxy bonding technique resulted in heat sinks with similar results as that with the S-bond{reg_sign}, slightly worse than the S-bond{reg_sign}, but still better than the standard heat sinks. Next, work with evaporative cooling techniques, such as heat pipes, demonstrated some unique behavior with the foam that is not seen with standard wick materials. This was that as the thickness of the foam increased, the performance got better, where with standard wick materials, as the thickness increases, the performance decreases. This is yet to be completely explained. Last, the designs from the thermal model were used to fabricate a series of cold plates with the graphite foam and compare them to similar designs using high performance folded fin aluminum sinks (considered standard in the industry). It was shown that by corrugating the foam parallel to fluid flow, the pressure drop can be reduced significantly while maintaining the same heat transfer as that in the folded fin heat sink. In fact, the results show that the graphite foam heat sink can utilized 5% the pumping power as that required with the folded fin aluminum heat sink, yet remove the same amount of heat.

  2. Heat transfer enhancement in heat exchangers by longitudinal vortex generators

    In this paper heat transfer enhancement and flow losses are computed for the interaction of a laminar channel flow with a pair of counterrotating longitudinal vortices generated by a pair of delta-winglets punched out of the channel wall. The geometry simulates an element of a fin-plate or fin-tube heat exchanger. The structure of the vortex flow and temperature distribution, the local heat transfer coefficients and the local flow losses are discussed for a sample case. For a Reynolds number of Red = 1000 and a vortex generator angle of attack of β = 25 degrees heat transfer is enhanced locally by more than 300% and in the mean by 50%. These values increase further with Re and β

  3. Comparative analysis of compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors

    Highlights: • Compact heat exchanger designs evaluated for advanced nuclear reactor applications. • Wavy channel PCHE compared with offset strip-fin heat exchanger (OSFHE). • 15° pitch angle wavy channel PCHE offers optimum performance characteristics. • OSFHE exhibits higher pressure drop and lower compactness than other options. • Comparison technique applicable for evaluating candidate heat exchangers designs. - Abstract: A comparative evaluation of alternative compact heat exchanger designs for use as the intermediate heat exchanger in advanced nuclear reactor systems is presented in this article. Candidate heat exchangers investigated included the Printed circuit heat exchanger (PCHE) and offset strip-fin heat exchanger (OSFHE). Both these heat exchangers offer high surface area to volume ratio (a measure of compactness [m2/m3]), high thermal effectiveness, and overall low pressure drop. Helium–helium heat exchanger designs for different heat exchanger types were developed for a 600 MW thermal advanced nuclear reactor. The wavy channel PCHE with a 15° pitch angle was found to offer optimum combination of heat transfer coefficient, compactness and pressure drop as compared to other alternatives. The principles of the comparative analysis presented here will be useful for heat exchanger evaluations in other applications as well

  4. Microchannel Heat Exchangers with Carbon Dioxide

    Zhao, Y.; Ohadi, M.M.; Radermacher, R.

    2001-09-15

    The objective of the present study was to determine the performance of CO{sub 2} microchannel evaporators and gas coolers in operational conditions representing those of residential heat pumps. A set of breadboard prototype microchannel evaporators and gas coolers was developed and tested. The refrigerant in the heat exchangers followed a counter cross-flow path with respect to the airflow direction. The test conditions corresponded to the typical operating conditions of residential heat pumps. In addition, a second set of commercial microchannel evaporators and gas coolers was tested for a less comprehensive range of operating conditions. The test results were reduced and a comprehensive data analysis, including comparison with the previous studies in this field, was performed. Capacity and pressure drop of the evaporator and gas cooler for the range of parameters studied were analyzed and are documented in this report. A gas cooler performance prediction model based on non-dimensional parameters was also developed and results are discussed as well. In addition, in the present study, experiments were conducted to evaluate capacities and pressure drops for sub-critical CO{sub 2} flow boiling and transcritical CO{sub 2} gas cooling in microchannel heat exchangers. An extensive review of the literature failed to indicate any previous systematic study in this area, suggesting a lack of fundamental understanding of the phenomena and a lack of comprehensive data that would quantify the performance potential of CO{sub 2} microchannel heat exchangers for the application at hand. All experimental tests were successfully conducted with an energy balance within {+-}3%. The only exceptions to this were experiments at very low saturation temperatures (-23 C), where energy balances were as high as 10%. In the case of evaporators, it was found that a lower saturation temperature (especially when moisture condensation occurs) improves the overall heat transfer coefficient significantly. However, under such conditions, air side pressure drop also increases when moisture condensation occurs. An increase in airflow rate also increases the overall heat transfer coefficient. Air side pressure drop mainly depends on airflow rate. For the gas cooler, a significant portion of the heat transfer occurred in the first heat exchanger module on the refrigerant inlet side. The temperature and pressure of CO{sub 2} significantly affect the heat transfer and fluid flow characteristics due to some important properties (such as specific heat, density, and viscosity). In the transcritical region, performance of CO{sub 2} strongly depends on the operating temperature and pressure. Semi-empirical models were developed for predictions of CO{sub 2} evaporator and gas cooler system capacities. The evaporator model introduced two new factors to account for the effects of air-side moisture condensate and refrigerant outlet superheat. The model agreed with the experimental results within {+-}13%. The gas cooler model, based on non-dimensional parameters, successfully predicted the experimental results within {+-}20%. Recommendations for future work on this project include redesigning headers and/or introducing flow mixers to avoid flow mal-distribution problems, devising new defrosting techniques, and improving numerical models. These recommendations are described in more detail at the end of this report.

  5. Characteristics of heat flow in recuperative heat exchangers

    Lalović Milisav

    2005-01-01

    Full Text Available A simplified model of heat flow in cross-flow tube recuperative heat exchangers (recuperators was presented in this paper. One of the purposes of this investigation was to analyze changes in the values of some parameters of heat transfer in recuperators during combustion air preheating. The logarithmic mean temperature (Atm and overall heat transfer coefficient (U, are two basic parameters of heat flow, while the total heated area surface (A is assumed to be constant. The results, presented as graphs and in the form of mathematical expressions, were obtained by analytical methods and using experimental data. The conditions of gaseous fuel combustions were defined by the heat value of gaseous fuel Qd = 9263.894 J.m-3, excess air ratio λ= 1.10, content of oxygen in combustion air ν(O2 = 26%Vol, the preheating temperature of combustion air (cold fluid outlet temperature tco = 100-500°C, the inlet temperature of combustion products (hot fluid inlet temperature thi = 600-1100°C.

  6. Technology Solutions Case Study: Foundation Heat Exchanger, Oak Ridge, Tennessee

    None

    2014-03-01

    The foundation heat exchanger, developed by Oak Ridge National Laboratory, is a new concept for a cost-effective horizontal ground heat exchanger that can be connected to water-to-water or water-to-air heat pump systems for space conditioning as well as domestic water heating.

  7. Investigation Status of Heat Exchange while Boiling Hydrocarbon Fuel

    D. S. Obukhov

    2014-06-01

    Full Text Available The paper contains analysis of heat exchange investigations while boiling hydrocarbon fuel. The obtained data are within the limits of the S.S. Kutateladze dependence proposed in 1939. Heat exchange at non-stationary heat release has not been investigated. The data for hydrocarbon fuel with respect to critical density of heat flow are not available even for stationary conditions.

  8. Comparisons of the heat transfer and pressure drop of the microchannel and minichannel heat exchangers

    Dang, Thanhtrung [Ho Chi Minh City University of Technical Education, Department of Heat and Refrigeration Technology, Ho Chi Minh City (Viet Nam); Teng, Jyh-Tong [Chung Yuan Christian University, Department of Mechanical Engineering, Chung-Li (China)

    2011-10-15

    The present study investigated the comparisons of the heat transfer and pressure drop of the microchannel and minichannel heat exchangers, both numerically and experimentally. The results obtained from this study indicated that the heat transfer rate obtained from microchannel heat exchanger was higher than those obtained from the minichannel heat exchangers; however, the pressure drops obtained from the microchannel heat exchanger were also higher than those obtained from the minichannel heat exchangers. As a result, the microchannel heat exchanger should be selected for the systems where high heat transfer rates are needed. In addition, at the same average velocity of water in the channels used in this study, the effectiveness obtained from the microchannel heat exchanger was 1.2-1.53 times of that obtained from the minichannel heat exchanger. Furthermore, the results obtained from the experiments were in good agreement with those obtained from the design theory and the numerical analyses. (orig.)

  9. Design of a liquid metals heat exchanger

    The method that has been used in this design is that of the summation of the partial resistances to the heat transference, permitting to obtain the value of the total coefficient of heat transfer which will be equal to the reciprocal of the summation of all the resistances. The obtained exchanger is of tubes and rod type shield with the primary sodium flowing through the tubes and the secondary sodium flowing in counter-current through the shield. The shield has a nominal diameter of 6 inches and the bundle of tubes is formed by 31 tubes with a nominal diameter of 1/2 inch. The shield as well as the tubes are of stainless steel. The total heat transfer area is of 7.299 square meters, and the effective length of heat transfer is of 3.519 meters. After sizing the interchanger it was proceeded to simulate its functioning through a computer program in which the effective length of heat transfer was divided in 150 points in such a way that according to the integration of the distinct parameters along these points a comparison can finally be made between the design values and those of the simulation, which show a concordance. (author)

  10. Performance of heat pumps with direct expansion in vertical ground heat exchangers in heating mode

    Highlights: • The work focuses on direct expansion ground source heat pumps in heating mode. • The evaporating process of the refrigerant fluid into boreholes is analyzed. • A method to design the direct expansion borehole heat exchangers is presented. • Direct expansion and the common secondary loop heat pumps are compared. • The comparison is carried out in terms of both borehole length and performance. - Abstract: Ground source heat pump systems represent an interesting example of renewable energy technology for heating and cooling of buildings. The connection with the ground is usually done by means of a closed loop where a heat-carrier fluid (pure water or a solution of antifreeze and water) flows and, in heating mode, moves heat from ground to refrigerant fluid of heat pump. A new solution is the direct expansion heat pump. In this case, the heat-carrier fluid inside the ground loop is the same refrigerant fluid of heat pump. This paper focuses on the energy performance of direct expansion ground source heat pump with borehole heat exchangers in heating mode, looking at residential building installations. For this purpose, the evaporating process of the refrigerant fluid inside vertical tubes is investigated in order to analyze the influence of the convective heat transfer coefficient on the global heat transfer with the surrounding ground. Then, an analytical model reported in literature for the design of common borehole heat exchangers has been modified for direct expansion systems. Finally, the direct expansion and common ground source heat pumps have been compared in terms of both total borehole length and thermal performance. Results indicate that the direct expansion system has higher energy performance and requires lower total borehole length compared to the common system. However, when the two systems are compared with the same mean fluid evaporating temperature, the overall length of the ground heat exchanger of the direct expansion heat pump is greater than that of the common system

  11. Expanded microchannel heat exchanger: design, fabrication and preliminary experimental test

    Denkenberger, David C; Pearce, Joshua M; Zhai, John; 10.1177/0957650912442781

    2012-01-01

    This paper first reviews non-traditional heat exchanger geometry, laser welding, practical issues with microchannel heat exchangers, and high effectiveness heat exchangers. Existing microchannel heat exchangers have low material costs, but high manufacturing costs. This paper presents a new expanded microchannel heat exchanger design and accompanying continuous manufacturing technique for potential low-cost production. Polymer heat exchangers have the potential for high effectiveness. The paper discusses one possible joining method - a new type of laser welding named "forward conduction welding," used to fabricate the prototype. The expanded heat exchanger has the potential to have counter-flow, cross-flow, or parallel-flow configurations, be used for all types of fluids, and be made of polymers, metals, or polymer-ceramic precursors. The cost and ineffectiveness reduction may be an order of magnitude or more, saving a large fraction of primary energy. The measured effectiveness of the prototype with 28 micro...

  12. A heat exchanger computational procedure for temperature-dependent fouling

    Chiappetta, L. M.; Szetela, E. J.

    1981-01-01

    A novel heat exchanger computational procedure is described which provides a means of rapidly calculating the distributions of fluid and wall temperatures, deposit formation, and pressure loss at various points in a heat exchanger. The procedure is unique in that it is capable of treating wide variations in heat exchanger geometry without recourse to restrictive assumptions concerning heat exchanger type (e.g., co-flow, counterflow, cross flow devices, etc.). The analysis has been used extensively to predict the performance of cross-counterflow heat exchangers in which one fluid behaves as a perfect gas (e.g., air) while the other fluid is assumed to be a distillate fuel. The model has been extended to include the effects on heat exchanger performance of time varying inflow conditions. Heat exchanger performance degradation due to deposit formation with time can be simulated, making this procedure useful in predicting the effects of temperature-dependent fouling.

  13. Steam generator with duplex heat exchange tubes

    The invention claims a design of a steam generator for fast reactors. The advantage of the design is that it does not require additional expansion tanks for the steam generator and that the steam generator may be filled with indication liquid, e.g., sodium, after assembly work has been completed at the power plant. Another advantage is that in a vertical steam generator with duplex heat exchange tubes the configuration facilitates the detection of a failure of the walls of the duplex tubes. (J.P.)

  14. PENGARUH TEBAL ISOLASI TERMAL TERHADAP EFEKTIVITAS PLATE HEAT EXCHANGER

    Ekadewi Anggraini Handoyo

    2000-01-01

    Full Text Available In a heat exchanger, there is heat transferred either from the surrounding or to the surrounding, which is not expected. A thermal insulator is used to reduce this heat transfer. The effectiveness of a heat exchanger will increase if the heat loss to surrounding can be reduced. Theoretically, the thicker the insulator the smaller the heat loss in a plate heat exchanger. A research is carried on to study the effect of an insulator thickness on heat exchanger effectiveness. The insulators used are glasswool and rockwool. It turns out that the effectiveness is increasing until a maximum point, and then decreasing when the thickness of the insulator is increasing. Abstract in Bahasa Indonesia : Dalam suatu heat exchanger selalu terjadi perpindahan panas ke atau dari lingkungan yang tidak diharapkan. Untuk mengurangi perpindahan panas ini digunakan isolator termal. Efektivitas heat exchanger akan meningkat jika panas yang hilang ke atau dari lingkungan dapat dikurangi. Secara teoritis untuk heat exchanger berbentuk kotak semakin tebal isolator termal yang digunakan semakin kecil panas mengalir ke atau dari lingkungan. Dalam penelitian ini dicari pengaruh ketebalan isolator termal terhadap efektivitas suatu plate heat exchanger. Percobaan dilakukan untuk 2 jenis isolator, yaitu glasswool dan rockwool. Hasil yang didapat adalah efektivitas akan meningkat sampai harga tertentu dan kemudian akan berkurang dengan penambahan ketebalan isolator termal. Kata kunci: isolator termal, efektivitas, plate heat exchanger.

  15. RIBBED DOUBLE PIPE HEAT EXCHANGER: ANALYTICAL ANALYSIS

    HUSSAIN H. AL-KAYIEM

    2011-02-01

    Full Text Available This paper presents the findings obtained by modeling a Double Pipe Heat Exchanger (DPHE equipped with repeated ribs from the inside for artificial roughing. An analytical procedure was developed to analyze the thermal and hydraulic performance of the DPHE with and without ribbing. The procedure was verified by comparing with experimental reported results and they are in good agreement. Several parameters were investigated in this study including the effect of ribs pitch to height ratios, P/e= 5, 10, 15, and 20, and ribs to hydraulic diameter ratios, e/Dh= 0.0595, 0.0765, and 0.107. These parameters were studied at various operating Reynolds number ranging from 2500 to 150000. Different installation configurations were investigated, too. An enhan-cement of 4 times in the heat transfer in terms of Stanton number was achieved at the expense of 38 times increase of pressure drop across the flow in terms of friction facto values.

  16. Microbial fouling control in heat exchangers

    Biofilm formation in turbulent flow has been studied a great deal during the last 15 years. Such studies have provided the basis for further experiments designed to test the efficacy of industrial antimicrobials against biofilms in laboratory models and in actual real-world industrial water-treatment programs. Biofilm microbiology is relevant from the industrial perspective because adherent populations of microorganisms often cause an economic impact on industrial processes. For example, it is the adherent population of microorganisms in cooling-water systems that can eventually contribute to significant heat transfer and fluid frictional resistances. The microbiology of biofilms in heat exchangers can be related to the performance of industrial antimicrobials. The development of fouling biofilms and methods to quantitatively observe the effect of biofouling control agents are discussed in this paper

  17. Fouling and corrosion of freshwater heat exchangers

    Fouling in freshwater heat exchangers (HX) costs the Canadian nuclear power industry millions of dollars annually in replacement energy and capital equipment. The main reasons are loss of heat transfer and corrosion. Underdeposit pitting is the predominant corrosion mechanism. Erosion corrosion has also been observed. Failure analyses, field studies, and laboratory research have provided us with information to help explain the reasons for reduced performance. Newly installed HX tubing immediately becomes colonized with a complex community of bacteria in a slimey organic matrix. The biofilm itself produces corrosive species and in addition it promotes the attachment of sediment particles and the deposition of calcareous material. The result is a thick, adherent deposit which creates crevices, concentrates aggressive species and alters the system's hydrodynamics

  18. Intermediate heat exchanger project for Super Phenix

    The Super Phenix (1200 MWe) intermediate heat exchangers are derived directly from those of Phenix (250 MWe). The intermediate exchangers are housed in the reactor vessel annulus: as this annulus must be of the smallest volume possible, these IHX are required to work at a high specific rating. The exchange surface is calculated for nominal conditions. A range is then defined, consistent with the above requirements and throughout which the ratio between bundle thickness and bundle length remains acceptable. Experimental technics and calculations were used to determine the number of tube constraint systems required to keep the vibration amplitude within permissible limits. From a knowledge of this number, the pressure drop produced by the primary flow can be calculated. The bundle geometry is determined together with the design of the corresponding tube plates and the way in which these plates should be joined to the body of the IHX. The experience (technical and financial) acquired in the construction of Phenix is then used to optimize the design of the Super Phenix project. An approximate definition of the structure of the IHX is obtained by assuming a simplified load distribution in the calculations. More sophisticated calculations (e.g. finite element method) are then used to determine the behaviour of the different points of the IHX, under nominal and transient conditions

  19. New waste heat district heating system with combined heat and power based on absorption heat exchange cycle in China

    A new waste heat district heating system with combined heat and power based on absorption heat exchange cycle (DHAC) was developed to increase the heating capacity of combined heat and power (CHP) through waste heat recovery, and enhance heat transmission capacity of the existing primary side district heating network through decreasing return water temperature by new type absorption heat exchanger (AHE). The DHAC system and a conventional district heating system based on CHP (CDH) were analyzed in terms of both thermodynamics and economics. Compared to CDH, the DHAC increased heating capacity by 31% and increased heat transmission capacity of the existing primary side district heating network by 75%. The results showed that the exergetic efficiency of DHAC was 10.41% higher and the product exergy monetary cost was 36.6¥/GJ less than a CHD. DHAC is an effective way to increase thermal utilization factor of CHP, and to reduce district heating cost. - Highlights: ► Absorption heat pumps are used to recover waste heat in CHP. ► Absorption heat exchanger can reduce exergy loss in the heat transfer process. ► New waste heat heating system (DHAC) can increase heating capacity of CHP by 31%. ► DHAC can enhance heat transmission capacity of the primary pipe network by 75%. ► DHAC system has the higher exergetic efficiency and the better economic benefit.

  20. Simulation Studies on A Cross Flow Plate Fin Heat Exchanger

    M. Thirumarimurugan

    2008-01-01

    Full Text Available Compact heat exchangers which were initially developed for the aerospace industries in the1940s have been considerably improved in the past few years. The main reasons for the goodperformance of compact heat exchangers are their special design which includes turbulent which inturn use high heat transfer coefficient and resists fouling, and maximum temperature driving forcebetween the hot and cold fluids. Numerous types use special enhancement techniques to achieve therequired heat transfer in smaller plot areas and, in many cases, less initial investment. One such type ofcompact heat exchanger is the Plate-fin heat exchanger. The complexity of compact heat exchangerdesign equations results from the exchangers unique ability to transfer heat between multiple processstreams and a wide array of possible flow configurations. This paper presents the performanceevaluation of cross flow plate fin heat exchanger with several different Gas-Liquid systems.Experimental results such as exchanger effectiveness, overall heat transfer coefficients were calculatedfor the flow systems of Cross flow Heat Exchangers. A steady state model for the outlet temperature ofboth the cold and hot fluid and overall heat transfer coefficient of a plate-fin cross flow heat exchangerwas developed and simulated using MATLAB, which was verified with the experiments conducted.

  1. Heat exchanger development at Reaction Engines Ltd.

    Varvill, Richard

    2010-05-01

    The SABRE engine for SKYLON has a sophisticated thermodynamic cycle with heat transfer between the fluid streams. The intake airflow is cooled in an efficient counterflow precooler, consisting of many thousand small bore thin wall tubes. Precooler manufacturing technology has been under investigation at REL for a number of years with the result that flightweight matrix modules can now be produced. A major difficulty with cooling the airflow to sub-zero temperatures at low altitude is the problem of frost formation. Frost control technology has been developed which enables steady state operation. The helium loop requires a top cycle heat exchanger (HX3) to deliver a constant inlet temperature to the main turbine. This is constructed in silicon carbide and the feasibility of manufacturing various matrix geometries has been investigated along with suitable joining techniques. A demonstration precooler will be made to run in front of a Viper jet engine at REL's B9 test facility in 2011. This precooler will incorporate full frost control and be built from full size SABRE engine modules. The facility will incorporate a high pressure helium loop that rejects the absorbed heat to a bath of liquid nitrogen.

  2. CFD Based Evaluation Of Effectiveness Of Counter Flow Heat Exchanger

    Gurpreet Kour

    2014-01-01

    Engineers are continually being asked to improve effectiveness of heat transfer equipments. These requests may arise as a result of the need to increase profitability or accommodate capital limitations. Processes which use heat transfer equipment i.e. heat exchanger must frequently be improved for these reasons. Artifical roughness is important technique for enhancing the effectiveness of heat exchanger. In this work effectiveness of smooth as well as roughened tube in heat ex...

  3. Investigation of Brazed Plate Heat Exchangers With Variable Chevron Angles

    S. Muthuraman

    2013-01-01

    - Experiments to measure the condensation heat transfer coefficient and the pressure drop in brazed plate heat exchangers (BPHEs) were performed with the refrigerants R410A and R22. Brazed plate heat exchangers with different chevron angles of 45°, 35°, and 20° were used. Varying the mass flux, the condensation temperature, and the vapor quality of the refrigerant, we measured the condensation heat transfer coefficient and the pressure drops. Both the heat transfer coefficient and the pressur...

  4. HEAT TRANSFER COEFFICIENT AND FRICTION FACTOR CHARACTERISTICS OF A GRAVITY ASSISTED BAFFLED SHELL AND HEAT-PIPE HEAT EXCHANGER

    P. Raveendiran; SIVARAMAN B

    2015-01-01

    The heat transfer coefficients and friction factors of a baffled shell and heat pipe heat exchanger with various inclination angles were determined experimentally; using methanol as working fluid and water as heat transport fluid were reported. Heat pipe heat exchanger reported in this investigation have inclination angles varied between 15o and 60o for different mass flow rates and temperature at the shell side of the heat exchanger. All the required parameters like outlet temperature of bot...

  5. Heat extraction from salinity-gradient solar ponds using heat pipe heat exchangers

    Tundee, Sura; Terdtoon, Pradit; Sakulchangsatjatai, Phrut [Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200 (Thailand); Singh, Randeep; Akbarzadeh, Aliakbar [Energy Conservation and Renewable Energy Group, School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Bundoora East Campus, Bundoora, Victoria 3083 (Australia)

    2010-09-15

    This paper presents the results of experimental and theoretical analysis on the heat extraction process from solar pond by using the heat pipe heat exchanger. In order to conduct research work, a small scale experimental solar pond with an area of 7.0 m{sup 2} and a depth of 1.5 m was built at Khon Kaen in North-Eastern Thailand (16 27'N102 E). Heat was successfully extracted from the lower convective zone (LCZ) of the solar pond by using a heat pipe heat exchanger made from 60 copper tubes with 21 mm inside diameter and 22 mm outside diameter. The length of the evaporator and condenser section was 800 mm and 200 mm respectively. R134a was used as the heat transfer fluid in the experiment. The theoretical model was formulated for the solar pond heat extraction on the basis of the energy conservation equations and by using the solar radiation data for the above location. Numerical methods were used to solve the modeling equations. In the analysis, the performance of heat exchanger is investigated by varying the velocity of inlet air used to extract heat from the condenser end of the heat pipe heat exchanger (HPHE). Air velocity was found to have a significant influence on the effectiveness of heat pipe heat exchanger. In the present investigation, there was an increase in effectiveness by 43% as the air velocity was decreased from 5 m/s to 1 m/s. The results obtained from the theoretical model showed good agreement with the experimental data. (author)

  6. Heat exchanger for fuel cell power plant reformer

    Misage, Robert (Manchester, CT); Scheffler, Glenn W. (Tolland, CT); Setzer, Herbert J. (Ellington, CT); Margiott, Paul R. (Manchester, CT); Parenti, Jr., Edmund K. (Manchester, CT)

    1988-01-01

    A heat exchanger uses the heat from processed fuel gas from a reformer for a fuel cell to superheat steam, to preheat raw fuel prior to entering the reformer and to heat a water-steam coolant mixture from the fuel cells. The processed fuel gas temperature is thus lowered to a level useful in the fuel cell reaction. The four temperature adjustments are accomplished in a single heat exchanger with only three heat transfer cores. The heat exchanger is preheated by circulating coolant and purge steam from the power section during startup of the latter.

  7. Heat exchangers and the performance of heat pumps - Analysis of a heat pump database

    Heat pumping is a highly energy-efficient technology that could help reduce energy and environmental problems. The efficiency of a heat pump greatly depends on the individual and integral performance of the components inside. In this study, heat pump performance is investigated with a special focus on heat exchangers. Experimental data obtained from comprehensive heat pump measurements performed at the Austrian Institute of Technology (AIT) were analyzed with the help of thermodynamic models developed for this purpose. The analysis shows that the performance of heat exchangers varies widely resulting in substantial COP differences among the heat pumps. The models and methodology developed in this study are found capable of extracting useful information from measurement data quickly and accurately and could be useful for the industry. - Research highlights: → A heat pump database has been analyzed focussing on the influences of heat exchangers on COP. → It was shown that an empirical equation could excellently correlate experimental COP data with relevant parameters. → It was found that heat exchanger design alone caused 15-20% difference in COP.

  8. The LUX prototype detector: Heat exchanger development

    The LUX (large underground xenon) detector is a two-phase xenon time projection chamber (TPC) designed to search for WIMP–nucleon dark matter interactions. As with all noble element detectors, continuous purification of the detector medium is essential to produce a large (>1ms) electron lifetime; this is necessary for efficient measurement of the electron signal which in turn is essential for achieving robust discrimination of signal from background events. In this paper, we describe the development of a novel purification system deployed in a prototype detector. The results from the operation of this prototype indicated heat exchange with an efficiency above 94% up to a flow rate of 42 slpm, allowing for an electron drift length greater than 1 m to be achieved in approximately 2 days and sustained for the duration of the testing period

  9. DEVELOPMENT OF ODS HEAT EXCHANGER TUBING

    The Vision 21 project titled ''Development of ODS Heat Exchanger Tubing'' has been initiated. A project kick-off meeting was held in Huntington, WV, the MA956 powder that will be used in the extrusion campaign has been obtained, and some of the MA956 tubing and rod required for joining trials has been shipped to the appropriate subcontractors. Acquisition of the MA956 alloy powder will allow the extrusion campaign to begin during the month of February. Also, tubing shipped to Edison Welding Institute and rod shipped to Michigan Technological University will allow joining trials to begin. In addition to these technical aspects, negotiations with all the subcontractors have been completed and the Project Management Plan and Project Work Plan have been prepared and submitted for approval

  10. Fluidelastic instability of heat exchanger tube bundles

    This paper reports that fluidelastic instability is the most important vibration excitation mechanism for heat exchanger tube bundles subjected to cross-flow. Most of the available data on this topic have been reviewed from the perspective of the designer. Uniform definitions of critical flow velocity for instability, damping, natural frequency and hydrodynamic mass were used. Nearly 300 data points were assembled. The authors found that only data from experiments where all tubes are free to vibrate are valid form a design point of view. In liquids, fluid damping is important and should be considered in the formulation of fluidelastic instability. From a practical design point of view, we conclude that fluidelastic instability may be expressed simply in term of dimensionless flow velocity and dimensionless mass-damping. There is no advantage in considering more sophisticated models at this time. Practical design guidelines are discussed

  11. Radiant heat exchange measurements for Tore Supra

    In order to minimize the energy consumption of the low temperature cryogenic system connected to the superconducting magnet of TORE-SUPRA, heat exchange from thermal radiation between the vacuum vessels and the thermal shields has been studied. Accordingly large scale cold and hot walls of T.S. have been simulated in a model with reduced dimensions. In this model, the experiment consists in the measurement of the thermal radiated power between two concentric cylindrical surfaces of stainless steel under vacuum conditions. The temperature of the external cylinder was kept constant at 80 K. The internal cylinder was bakeable up to 2500C. Various surface treatments were applied on the two cylinders (mechanical polishing and metal deposition of Al, Ag, Ni)

  12. Condensing Heat Exchanger with Hydrophilic Antimicrobial Coating

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor)

    2014-01-01

    A multi-layer antimicrobial hydrophilic coating is applied to a substrate of anodized aluminum, although other materials may form the substrate. A silver layer is sputtered onto a thoroughly clean anodized surface of the aluminum to about 400 nm thickness. A layer of crosslinked, silicon-based macromolecular structure about 10 nm thickness overlies the silver layer, and the outermost surface of the layer of crosslinked, silicon-based macromolecular structure is hydroxide terminated to produce a hydrophilic surface with a water drop contact angle of less than 10.degree.. The coated substrate may be one of multiple fins in a condensing heat exchanger for use in the microgravity of space, which has narrow channels defined between angled fins such that the surface tension of condensed water moves water by capillary flow to a central location where it is pumped to storage. The antimicrobial coating prevents obstruction of the capillary passages.

  13. Turbulence Model Comparison for Compact Plate Heat Exchanger Design Application.

    Vitillo, F.; Cachon, L.; Millan, P.; Reulet, P.; Laroche, E

    2014-01-01

    In the framework of the Gas-Power Conversion System for the Advanced Sodium Technological Reactor for Industrial Demonstration (ASTRID) project design, works done at CEA are focused on the design of the sodium-gas heat exchanger. Compact plate heat exchangers are indicated as the most suitable technology for such applications. An innovative compact heat exchanger geometry is proposed in this paper: its innovationconsists increatinga 3D mixing flow. The proposed geometry has also very good mec...

  14. Two-phase Flow Distribution in Heat Exchanger Manifolds

    Vist, Sivert

    2004-01-01

    The current study has investigated two-phase refrigerant flow distribution in heat exchange manifolds. Experimental data have been acquired in a heat exchanger test rig specially made for measurement of mass flow rate and gas and liquid distribution in the manifolds of compact heat exchangers. Twelve different manifold designs were used in the experiments, and CO2 and HFC-134a were used as refrigerants.

  15. Heat exchanger and water tank arrangement for passive cooling system

    Gillett, James E. (Greensburg, PA); Johnson, F. Thomas (Baldwin Boro, PA); Orr, Richard S. (Pittsburgh, PA); Schulz, Terry L. (Murrysville Boro, PA)

    1993-01-01

    A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tubesheets mounted to the tank connections so that the tubesheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tubesheets on a square pitch and then on a rectangular pitch therebetween. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight.

  16. High temperature heat exchanger studies for applications to gas turbines

    Min, June Kee; Jeong, Ji Hwan; Ha, Man Yeong; Kim, Kui Soon

    2009-12-01

    Growing demand for environmentally friendly aero gas-turbine engines with lower emissions and improved specific fuel consumption can be met by incorporating heat exchangers into gas turbines. Relevant researches in such areas as the design of a heat exchanger matrix, materials selection, manufacturing technology, and optimization by a variety of researchers have been reviewed in this paper. Based on results reported in previous studies, potential heat exchanger designs for an aero gas turbine recuperator, intercooler, and cooling-air cooler are suggested.

  17. Performance of multiple mini-tube heat exchangers as an internal heat exchanger of a vapor-injection cycle heat pump

    Jang, Jin Yong; Jeong, Ji Hwan

    2016-04-01

    A multiple mini-tube (MMT) heat exchanger was considered as an internal heat exchanger of vapor-injection cycle heat pump. Heat transfer and pressure drop in multiple mini-tube heat exchangers were numerically and experimentally investigated. Results show that the best performance of the MMT heat exchanger can be obtained when the intermediate-pressure two-phase refrigerant is supplied to the shell-side and this refrigerant reaches a saturated vapor state at the exit of the heat exchanger.

  18. Performance of multiple mini-tube heat exchangers as an internal heat exchanger of a vapor-injection cycle heat pump

    Jang, Jin Yong; Jeong, Ji Hwan

    2015-05-01

    A multiple mini-tube (MMT) heat exchanger was considered as an internal heat exchanger of vapor-injection cycle heat pump. Heat transfer and pressure drop in multiple mini-tube heat exchangers were numerically and experimentally investigated. Results show that the best performance of the MMT heat exchanger can be obtained when the intermediate-pressure two-phase refrigerant is supplied to the shell-side and this refrigerant reaches a saturated vapor state at the exit of the heat exchanger.

  19. Thermal energy storage heat exchanger: Molten salt heat exchanger design for utility power plants

    Ferarra, A.; Yenetchi, G.; Haslett, R.; Kosson, R.

    1977-01-01

    The use of thermal energy storage (TES) in the latent heat of molten salts as a means of conserving fossil fuels and lowering the cost of electric power was evaluated. Public utility systems provided electric power on demand. This demand is generally maximum during late weekday afternoons, with considerably lower overnight and weekend loads. Typically, the average demand is only 60% to 80% of peak load. As peak load increases, the present practice is to purchase power from other grid facilities or to bring older less efficient fossil-fuel plants on line which increase the cost of electric power. The widespread use of oil-fired boilers, gas turbine and diesel equipment to meet peaking loads depletes our oil-based energy resources. Heat exchangers utilizing molten salts can be used to level the energy consumption curve. The study begins with a demand analysis and the consideration of several existing modern fossil-fuel and nuclear power plants for use as models. Salts are evaluated for thermodynamic, economic, corrosive, and safety characteristics. Heat exchanger concepts are explored and heat exchanger designs are conceived. Finally, the economics of TES conversions in existing plants and new construction is analyzed. The study concluded that TES is feasible in electric power generation. Substantial data are presented for TES design, and reference material for further investigation of techniques is included.

  20. A new ejector heat exchanger based on an ejector heat pump and a water-to-water heat exchanger

    Highlights: • EHE is based on the reverse Carnot cycle and current heat transfer mechanisms. • EHE can decrease the return water temperature in the PHN to 35 °C. • EHE can increase the heating capacity of the existed PHN by approximately 43%. • The return water temperature in the PHN is much lower than that in the SHN. • EHE has a simpler structure, lower manufacture cost, and better regulation characteristics. - Abstract: As urban construction has been developing rapidly in China, urban heating load has been increasing continually. Heating capacity of the existed primary heating network (PHN) cannot meet district heating requirements of most metropolises in northern China. A new type of ejector heat exchanger (EHE) based on an ejector heat pump and a water-to-water heat exchanger (WWHE) was presented to increase the heating capacity of the existed PHN, and the EHE was also analyzed in terms of laws of thermodynamics. A new parameter, the exergy distribution ratio (EDR), is introduced, which is adopted to analyze regulation characteristics of the EHE. We find that the EHE shows better performance when EDR ranges from 44% to 63%. EHE can decrease the temperature of return water in the PHN to 35 °C, therefore, this can increase the heating capacity of existed PHN by about 43%. The return water with lower temperature in the PHN could recover more low-grade waste heat in industrial systems. Because of its smaller volume and lower investment, EHEs could be applied more appropriately in district heating systems for long-distance heating and waste heat district heating systems

  1. Multiple utilities targeting for heat exchanger networks

    A targeting methodology is proposed to determine the optimum loads for multiple utilities considering the cost tradeoffs in energy and capital for heat exchanger networks (HENs). The method is based on a newly-developed Cheapest Utility Principle (CUP), which simply states that it is optimal to increase the load of the cheapest utility and maintain the loads of the relatively expensive utilities constant while increasing the total utility consumption. In other words, the temperature driving forces at the utility pinches once optimized do not change even when the minimum approach temperature (ΔTmin) at the process pinch is varied. The CUP holds rigorously when the relationship between the exchanger area and the capital cost is linear. Even when the relationship is non-linear, it proves to be an excellent approximation that reduces the computational effort during multiple utilities targeting. By optimizing the utility pinches sequentially and recognizing that these optimized utility pinches essentially do not change with the process ΔTmin, the results can be elegantly represented through the optimum load distribution (OLD) plots introduced in this work. (author)

  2. Axial flow heat exchanger devices and methods for heat transfer using axial flow devices

    Koplow, Jeffrey P.

    2016-02-16

    Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.

  3. Liquid-Liquid Heat Exchanger With Zero Interpath Leakage Project

    National Aeronautics and Space Administration — Future manned spacecraft will require thermal management systems that effectively and safely control the temperature in inhabited modules. Interface heat exchangers...

  4. Corrosion problems for heat exchangers of pressurized water reactors

    The corrosion event should be minimized in the heat exchangers which are used between the primary and the secondary circuits of PWR-PHWR due to radioactivity in the primary coolant.The various corrosion types and the types of heat exchangers are described with the wide-known corrosion regions in them. Corrosion defects in the heat exchangers are investigated according to all defects amount and it is evaluated types and materials of the heat exchangers as statistical values. Recently, some points are defined for the precautions of the corrosion. (Author)

  5. A study on the heat transfer development of heat exchanger with vortex generator

    A numerical analysis using FLUENT code was carried out to investigate flow characteristics and heat transfer development of heat exchangers. The analysis results for both cases of the fin-circular tube and the fin-flat tube heat exchanger with the vortex generator show relatively higher heat transfer coefficient than that for both cases of the fin-circular tube and the fin-flat tube heat exchangers without the vortex generator. Also, the analysis result for the fin-circular tube heat exchanger with the vortex generator has relatively higher heat transfer coefficient and higher pressure loss than those for the fin-flat tube heat exchanger with the vortex generator. The results of this study can be used to design the heat exchanger with relatively low pressure loss and maximum heat transfer coefficient. 28 figs., 15 refs. (Author) .new

  6. Fouling corrosion in aluminum heat exchangers

    Su Jingxin

    2015-06-01

    Full Text Available Fouling deposits on aluminum heat exchanger reduce the heat transfer efficiency and cause corrosion to the apparatus. This study focuses on the corrosive behavior of aluminum coupons covered with a layer of artificial fouling in a humid atmosphere by their weight loss, Tafel plots, electrochemical impedance spectroscopy (EIS, and scanning electron microscope (SEM observations. The results reveal that chloride is one of the major elements found in the fouling which damages the passive film and initiates corrosion. The galvanic corrosion between the metal and the adjacent carbon particles accelerates the corrosive process. Furthermore, the black carbon favors the moisture uptake, and gives the dissolved oxygen greater chance to migrate through the fouling layer and form a continuous diffusive path. The corrosion rate decreasing over time is conformed to electrochemistry measurements and can be verified by Faraday’s law. The EIS results indicate that the mechanism of corrosion can be interpreted by the pitting corrosion evolution mechanism, and that pitting was observed on the coupons by SEM after corrosive exposure.

  7. Vertical drum heat exchanger for overheated steam production

    The heat exchange surface of the heat exchanger consists on the primary side of vertical parallel heat transfer tubes with the feeder channel for the water/steam mixture to the steam separators and of a discharge steam channel from the separators. On the secondary side of the heat transfer tubes the heat exchanger is provided with a partition which runs across all tubes. The feeder channel to the separators is connected to the area between the tubes immediately under the partition and the discharge channel immediately above the partition. (M.D.)

  8. Simulation Studies on A Cross Flow Plate Fin Heat Exchanger

    Thirumarimurugan, M.; T Kannadasan; E. Ramasamy

    2008-01-01

    Compact heat exchangers which were initially developed for the aerospace industries in the1940s have been considerably improved in the past few years. The main reasons for the goodperformance of compact heat exchangers are their special design which includes turbulent which inturn use high heat transfer coefficient and resists fouling, and maximum temperature driving forcebetween the hot and cold fluids. Numerous types use special enhancement techniques to achieve therequired heat transfer in...

  9. A Liquid-Liquid Thermoelectric Heat Exchanger as a Heat Pump for Testing Phase Change Material Heat Exchangers

    Sheth, Rubik B.; Makinen, Janice; Le, Hung V.

    2016-01-01

    The primary objective of the Phase Change HX payload on the International Space Station (ISS) is to test and demonstrate the viability and performance of Phase Change Material Heat Exchangers (PCM HX). The system was required to pump a working fluid through a PCM HX to promote the phase change material to freeze and thaw as expected on Orion's Multipurpose Crew Vehicle. Due to limitations on ISS's Internal Thermal Control System, a heat pump was needed on the Phase Change HX payload to help with reducing the working fluid's temperature to below 0degC (32degF). This paper will review the design and development of a TEC based liquid-liquid heat exchanger as a way to vary to fluid temperature for the freeze and thaw phase of the PCM HX. Specifically, the paper will review the design of custom coldplates and sizing for the required heat removal of the HX.

  10. Heat Recovery Ventilation for Housing: Air-to-Air Heat Exchangers.

    Corbett, Robert J.; Miller, Barbara

    The air-to-air heat exchanger (a fan powered ventilation device that recovers heat from stale outgoing air) is explained in this six-part publication. Topic areas addressed are: (1) the nature of air-to-air heat exchangers and how they work; (2) choosing and sizing the system; (3) installation, control, and maintenance of the system; (4) heat

  11. WASTE HEAT RECOVERY FROM BOILER OF LARGE-SCALE TEXTILE INDUSTRY

    Prateep Pattanapunt

    2013-01-01

    Full Text Available Many industrial heating processes generate waste energy in textile industry; especially exhaust gas from the boiler at the same time reducing global warming. Therefore, this article will present a study the way to recovery heat waste from boiler exhaust gas by mean of shell and tube heat exchanger. Exhaust gas from boiler dyeing process, which carries a large amount of heat, energy consumptions could be decrease by using of waste-heat recovery systems. In this study, using ANASYS simulation performs a thermodynamics analysis. An energy-based approach is performed for optimizing the effective working condition for waste-heat recovery with exhaust gas to air shell and tube heat exchanger. The variations of parameters, which affect the system performance such as, exhaust gas and air temperature, velocity and mass flow rate and moisture content is examined respectively. From this study, it was found that heat exchanger could be reduced temperature of exhaust gases and emission to atmosphere and the time payback is the fastest. The payback period was determined about 6 months for investigated ANSYS. The air is circulated in four passes from the top to the bottom of the test section, in overall counter-flow with exhaust gas. The front area is 1720×1720 mm, the flow length 7500 mm, the inner and outer diameter of exhaust gas is 800 mm, the tube assembly consist of 196 tubes, the tube diameter is 76.2 mm, the tube thickness is 2.6 mm, the tube length is 4500 mm, the tube length of air inner and outer is 500 mm. The result show that, the boiler for superheated type there are exhaust gas temperature is 190°C, 24% the moisture content of fuel and there are palm kernel shell 70 tons day-1 which there are the high temperature after the heat exchanger, 150°C. It was occurred acid rain. The hot air from heat exchanger process can be reduced the moisture of palm kernel shell fuel to 15%.The fuel consumption is reduced by about 2.05% (322.72 kJ kg-1, while the shell and tube heat exchanger outlet exhaust gas temperature decreases from 190 to 150°C.

  12. Advanced heat exchanger development for molten salts

    Sabharwall, Piyush, E-mail: Piyush.Sabharwall@inl.gov [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Clark, Denis; Glazoff, Michael [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Zheng, Guiqiu; Sridharan, Kumar; Anderson, Mark [University of Wisconsin, Madison (United States)

    2014-12-15

    Highlights: Hastelloy N and 242, shows corrosion resistance to molten salt at nominal operating temperatures. Both diffusion welds and sheet material in Hastelloy N were corrosion tested in at 650, 700, and 850 C for 200, 500, and 1000 h. Thermal gradients and galvanic couples in the molten salts enhance corrosion rates. Corrosion rates found were typically <10 mils per year. - Abstract: This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non-nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, that show good corrosion resistance in molten salt at nominal operating temperatures up to 700 C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet material in Hastelloy N were corrosion tested in 58 mol% KF and 42 mol% ZrF{sub 4} at 650, 700, and 850 C for 200, 500, and 1000 h. Corrosion rates were similar between welded and nonwelded materials, typically <100 ?m per year after 1000 h of corrosion tests. No catastrophic corrosion was observed in the diffusion welded regions. For materials of construction, nickel-based alloys and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of the type of salt impurity and alloy composition, with respect to chromium and carbon, to better define the best conditions for corrosion resistance. Also presented is the division of the nuclear reactor and high-temperature components per American Society of Mechanical Engineers (ASME) standards, along with design requirements for a subcritical Rankine power cycle heat exchanger that has to overcome pressure difference of about 17 MPa.

  13. Advanced heat exchanger development for molten salts

    Highlights: • Hastelloy N and 242, shows corrosion resistance to molten salt at nominal operating temperatures. • Both diffusion welds and sheet material in Hastelloy N were corrosion tested in at 650, 700, and 850 °C for 200, 500, and 1000 h. • Thermal gradients and galvanic couples in the molten salts enhance corrosion rates. • Corrosion rates found were typically <10 mils per year. - Abstract: This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non-nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, that show good corrosion resistance in molten salt at nominal operating temperatures up to 700 °C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet material in Hastelloy N were corrosion tested in 58 mol% KF and 42 mol% ZrF4 at 650, 700, and 850 °C for 200, 500, and 1000 h. Corrosion rates were similar between welded and nonwelded materials, typically <100 μm per year after 1000 h of corrosion tests. No catastrophic corrosion was observed in the diffusion welded regions. For materials of construction, nickel-based alloys and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of the type of salt impurity and alloy composition, with respect to chromium and carbon, to better define the best conditions for corrosion resistance. Also presented is the division of the nuclear reactor and high-temperature components per American Society of Mechanical Engineers (ASME) standards, along with design requirements for a subcritical Rankine power cycle heat exchanger that has to overcome pressure difference of about 17 MPa

  14. Corrosion of heat exchanger materials under heat transfer conditions

    Severe pitting has occurred in moderator heat exchangers tubed with Incoloy-800 in Pickering Nuclear Generating Station. The pitting originated on the cooling side (outside) of the tubes and perforation occurred in less than two years. It was known from corrosion testing at CRNL that Incoloy-800 was not susceptible to pitting in Lake Ontario water under isothermal conditions. Corrosion testing with heat transfer across the tube wall was carried out, and it was noted that severe pitting could occur under deposits formed on the tubes in silty Lake Ontario water. Subsequent testing, carried out in co-operation with Ontario Hydro Research Division, investigated the pitting resistance of other candidate tubing alloys: Incoloy-825, 904 L stainless steel, AL-6X, Inconel-625, 70:30 Cu:Ni, titanium, Sanicro-30 and Sanicro-281. Of these, only titanium and Sanicro-28 have not suffered some degree of pitting attack in silt-containing Lake Ontario Water. In the absence of silt, and hence deposits, no pitting took place on any of the alloys tested

  15. Corrosion of heat exchanger materials under heat transfer conditions

    Severe pitting has occurred in moderator heat exchangers tubed with Incoloy-800 in Pickering Nuclear Generating Station. The pitting originated on the cooling water side (outside) of the tubes and perforation occurred in less than two years. It was known from corrosion testing at Chalk River Laboratories that Incoloy-800 was not susceptible to pitting in Lake Ontario water under isothermal conditions. Corrosion testing with heat transfer across the tube wall was carried out, and it was noted that severe pitting could occur under deposits formed on the tubes in silty Lake Ontario water. Subsequent testing carried out in co-operation with Ontario Hydro Research Division, investigated the pitting resistance of other candidate tubing alloys: Incoloy-825, 904 L stainless steel, AL-6X, Inconel 625, 70:30 Cu:Ni, titanium, Sanicro-30 and Sanicro-28. Of these, only titanium and Sanicro-28 have not suffered some degree of pitting attack in silt-containing Lake Ontario water. In the absence of silt, and hence deposits, no pitting took place on any of the alloys tested. (author). 3 refs., 4 tabs., 6 figs

  16. Refrigeration system performance using liquid-suction heat exchangers

    Klein, S.A.; Reindl, D.T.; Brownell, K. [Wisconsin Univ., Dept. of Mechanical Engineering, Madison, WI (United States)

    2000-07-01

    Heat transfer devices are provided in many refrigeration systems to exchange energy between the cool gaseous refrigerant leaving the evaporator and warm liquid refrigerant exiting the condenser. These liquid-suction or suction-line heat exchangers can, in some cases, yield improved system performance while in other cases they degrade system performance. Although previous researchers have investigated performance of liquid-suction heat exchangers, this study can be distinguished from the previous studies in three ways. First, this paper identifies a new dimensionless group to correlate performance impacts attributable to liquid-suction heat exchangers. Second, the paper extends previous analyses to include new refrigerants. Third, the analysis includes the impact of pressure drops through the liquid-suction heat exchanger on system performance. It is shown that reliance on simplified analysis techniques can lead to inaccurate conclusions regarding the impact of liquid-suction heat exchangers on refrigeration system performance. From detailed analyses, it can be concluded that liquid-suction heat exchangers that have a minimal pressure loss on the low pressure side are useful for systems using R507A, R134a, R12, R404A, R290, R407C, R600, and R410A. The liquid-suction heat exchanger is detrimental to system performance in systems using R22, R32, and R717. (Author)

  17. A concept of PWR using plate and shell heat exchangers

    In previous work it was verified the physical possibility of using plate and shell heat exchangers for steam generation in a PWR for merchant ships. This work studies the possibility of using GESMEX commercial of the shelf plate and shell heat exchanger of series XPS. It was found it is feasible for this type of heat exchanger to meet operational and accidental requirements for steam generation in PWR. Additionally, it is proposed an arrangement of such heat exchangers inside the reactor pressure vessel. Such arrangement may avoid ANSI/ANS51.1 nuclear class I requirements on those heat exchangers because they are contained in the reactor coolant pressure barrier and play no role in accidental scenarios. Additionally, those plates work under compression, preventing the risk of rupture. Being considered non-nuclear safety, having a modular architecture and working under compression may turn such architectural choice a must to meet safety objectives with improved economics. (author)

  18. A concept of PWR using plate and shell heat exchangers

    Freire, Luciano Ondir; Andrade, Delvonei Alves de, E-mail: luciano.ondir@gmail.com, E-mail: delvonei@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    In previous work it was verified the physical possibility of using plate and shell heat exchangers for steam generation in a PWR for merchant ships. This work studies the possibility of using GESMEX commercial of the shelf plate and shell heat exchanger of series XPS. It was found it is feasible for this type of heat exchanger to meet operational and accidental requirements for steam generation in PWR. Additionally, it is proposed an arrangement of such heat exchangers inside the reactor pressure vessel. Such arrangement may avoid ANSI/ANS51.1 nuclear class I requirements on those heat exchangers because they are contained in the reactor coolant pressure barrier and play no role in accidental scenarios. Additionally, those plates work under compression, preventing the risk of rupture. Being considered non-nuclear safety, having a modular architecture and working under compression may turn such architectural choice a must to meet safety objectives with improved economics. (author)

  19. Multifrequency Eddy Current Evaluation of Heat Exchangers Structures

    Chady, T.; Kowalczyk, J.

    2009-03-01

    In this paper a method of flaw detection in heat exchangers is presented. The aim of this work was to evaluate the eddy current testing algorithm which will be effective in case of complex structures evaluation. The final target is to propose the modified version of the transducer for tube heat exchangers. For tubes with irregular construction of exchanging surface, different configurations of transducer excitation was used to reduce influence of radiator elements.

  20. Self-defrosting recuperative air-to-air heat exchanger

    Drake, Richard L. (Delmar, NY)

    1993-01-01

    A heat exchanger includes a stationary spirally or concentrically wound heat exchanger core with rotating baffles on upper and lower ends thereof. The rotating baffles include rotating inlets and outlets which are in communication with respective fixed inlets and outlets via annuli. The rotation of the baffles causes a concurrent rotation of the temperature distribution within the stationary exchanger core, thereby preventing frost build-up in some applications and preventing the formation of hot spots in other applications.

  1. Dynamic responses of heat exchanger tube banks

    Understanding and modeling fluid/structure interaction in cylinder bundles is a basic requirement in the development of analytical methods and guidelines for designing LMFBR heat exchanger and reactor fuel assemblies that are free from component vibration problems. As a step toward satisfying this requirement, an analytical and experimental study of tube banks vibrating in liquids is presented. A general method of analysis is presented for free and forced vibrations of tube banks including tube/fluid interaction, and numerical results are given for tube banks subjected to various types of excitations. Two cantilevered tubes were tested in a water tank, and the natural frequencies and forced responses of coupled motion were measured. Experimental data and analytical results are in reasonably good agreement. The analytical method presented is currently being extended to account for the flowing fluid in tube banks and will be used in the development of the mathematical models for crossflow- and parallel-flow-induced vibrations of tube bundles. Those models will be useful in predicting the response of tube bundles and in design to avoid detrimental vibration

  2. Explosive plugging of nuclear heat exchangers

    Explosive welding is a well established process for cladding one metal on another or for welding tubes to tubeplates or lap welding, etc. Recently, the process has been adapted to plugging of heat exchangers in conventional and nuclear power plant, where it has already been accepted especially in situations where the access is difficult and remote from the site of plugging. The paper describes the explosive plugging techniques developed in the Department of Mechanical and Industrial Engineering of The Queen's University of Belfast for the reheater and superheater of the PFR, and for the reheater of the AGR. For the PFR a point charge system has been used which causes a spherical expansion of the plug, which gives two zones of welding. Initially for the much larger plug required for the AGR it was proposed to use a parallel stand-off welding set-up, but it proved difficult or impossible to avoid a crevice. Consequently, a rim charge set-up has been developed which gives a circular ring expansion of the plug with two zones of welding. Besides the problem of the design of the plug and explosive charge geometry it has also been necessary to consider the distortion of holes adjoining the hole in which a plug is welded. Bunging of adjoining holes in order to reduce the distortion has also been investigated

  3. Thermal hydraulic analysis for the design of intermediate heat exchanger

    Prototype Fast Breeder Reactor (PFBR) is a sodium cooled reactor with 500MWe(1210MWt) capacity. Nuclear heat generated in the core is transferred to primary sodium flowing through the subassemblies. The hot primary sodium exchanges heat with secondary sodium through intermediate heat exchangers. A two dimensional analysis of the intermediate heat exchanger has clearly brought out the high values of radial temperature drop of primary and secondary sodium streams when the secondary flow is uniform. A solution of unequal secondary flow has proved to be an effective method to reduce the temperature drops leading to a safer design. (author). 7 refs., 5 figs

  4. CFD Based Evaluation Of Effectiveness Of Counter Flow Heat Exchanger

    Gurpreet Kour

    2014-04-01

    Full Text Available Engineers are continually being asked to improve effectiveness of heat transfer equipments. These requests may arise as a result of the need to increase profitability or accommodate capital limitations. Processes which use heat transfer equipment i.e. heat exchanger must frequently be improved for these reasons. Artifical roughness is important technique for enhancing the effectiveness of heat exchanger. In this work effectiveness of smooth as well as roughened tube in heat exchanger is theoretically investigated by using ring type roughness geometry. The performance obtained is then compared with smooth tube. Ringed tube has a significant effect on effectiveness of heat exchanger. The effectiveness is 3.2 times as compared with plane tube was reported. The effectiveness found to be increased with increasing roughness and decreasing pitch between the rings.

  5. Test results of a Stirling engine utilizing heat exchanger modules with an integral heat pipe

    Skupinski, Robert C.; Tower, Leonard K.; Madi, Frank J.; Brusk, Kevin D.

    1993-01-01

    The Heat Pipe Stirling Engine (HP-1000), a free-piston Stirling engine incorporating three heat exchanger modules, each having a sodium filled heat pipe, has been tested at the NASA-Lewis Research Center as part of the Civil Space Technology Initiative (CSTI). The heat exchanger modules were designed to reduce the number of potential flow leak paths in the heat exchanger assembly and incorporate a heat pipe as the link between the heat source and the engine. An existing RE-1000 free-piston Stirling engine was modified to operate using the heat exchanger modules. This paper describes heat exchanger module and engine performance during baseline testing. Condenser temperature profiles, brake power, and efficiency are presented and discussed.

  6. Optimized heat exchanger unit in a thermoacoustic refrigerator

    El-Fawal, Mawahib Hassan; Mohd-Ghazali, Normah

    2012-06-01

    Due to concern over the environmental impact caused by hazardous refrigerants, the last ten years or so has seen increasing research into thermoacoustic refrigeration. A thermoacoustic refrigerator is a device which uses acoustic power to pump heat. It holds the merits of simple mechanical design, absence of harmful refrigerants and having no or few moving parts. However, the performance of the thermoacoustic refrigerator, particularly the standing wave types, is currently not competitive compared to its counterpart conventional vapor-compression refrigerator. Thermoacoustic refrigeration prototypes, built up-to-date, achieved 0.1-0.2 relative coefficient of performance (COPR) compared with that of 0.33-0.5 for the conventional vapor-compression refrigerators. The poor heat exchanger design is one of the reasons for this poor efficiency. This paper discussed the influence of the thermoacoustic refrigerator heat exchanger's parameters on its design and the optimization of the performance of the system using the Lagrange multiplier method. The results showed that, the dissipated power is less than the published value by about 49% in the cold heat exchanger and about 38.5% in the hot heat exchanger. Furthermore, the increase of the cold heat exchanger effectiveness is found to be 3%. Thus, the decrease in the dissipated power in both heat exchangers with effective cold heat exchanger increases the performance of the thermoacoustic refrigerator.

  7. SILICON CARBIDE CERAMICS FOR COMPACT HEAT EXCHANGERS

    Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making high dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure which allows complete conversion of the carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low chemical reactivity and porosity while the cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800 C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm-3 (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process was studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal conductivities of most commercial SiC materials are much lower due to phonon scattering by impurities (e.g., sintering aids located at the grain boundaries of these materials). The thermal conductivity of our SiC was determined using the laser flash method and it is 214 W/mK at 373 K and 64 W/mK at 1273 K. These values are very close to those of pure SiC and are much higher than those of SiC materials made by industrial processes. This SiC made by our LSI process meets the thermal properties required for use in high temperature heat exchanger. Cellulose and phenolic resin carbons lack the well-defined atomic structures associated with common carbon allotropes. Atomic-scale structure was studied using high resolution transmission electron microscopy (HRTEM), nitrogen gas adsorption and helium gas pycnometry. These studies revealed that cellulose carbon exhibits a very high degree of atomic disorder and angstrom-scale porosity. It has a density of only 93% of that of pure graphite, with primarily sp2 bonding character and a low concentration of graphene clusters. Phenolic resin carbon shows more structural order and substantially less angstrom-scale porosity. Its density is 98% of that of pure graphite, and Fourier transform analysis of its TEM micrographs has revealed high concentrations of sp3 diamond and sp2 graphene nano-clusters. This is the first time that diamond nano-clusters have been observed in carbons produced from phenolic resin. AC and DC electrical measurements were made to follow the thermal conversion of microcrystalline cellulose to carbon. This study identifies five regions of electrical conductivity that can be directly correlated to the chemical decomposition and microstructural evolution during carbonization. In Region I, a decrease in overall AC conductivity occurs due to the initial loss of the polar groups from cellulose molecules. In Region II, the AC conductivity starts to increase with heat treatment temperature due to the formation and growth of conducting carbon clusters. In Region III, a further increase of AC conductivity with increasing heat treatment temperature is observed. In addition, the AC conductivity demonstrates a non-linear frequency dependency due to electron hopping, interfacial polarization, and onset of a percolation threshold. In Region IV, the DC conductivity continues to increase with heat treatment due to the growth and percolation of carbon clusters. Finally in Region V, the DC conductivity reaches a plateau with increasing heat treatment temperature as the system reaches a fully percolated state. Thermophysical properties of carbon materials derived from microcrystalline cellulose have been measured under vacuum and compared with earlier measurements conducted under nitrogen to better understand the influence of porosity, composition, and atmosphere effects. The effective thermal conductivity in vacuum is lower than that observed in nitrogen primarily due to the conductivity of nitrogen gas

  8. SILICON CARBIDE CERAMICS FOR COMPACT HEAT EXCHANGERS

    DR. DENNIS NAGLE; DR. DAJIE ZHANG

    2009-03-26

    Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making high dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure which allows complete conversion of the carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low chemical reactivity and porosity while the cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800 C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm{sup -3} (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process was studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal conductivities of most commercial SiC materials are much lower due to phonon scattering by impurities (e.g., sintering aids located at the grain boundaries of these materials). The thermal conductivity of our SiC was determined using the laser flash method and it is 214 W/mK at 373 K and 64 W/mK at 1273 K. These values are very close to those of pure SiC and are much higher than those of SiC materials made by industrial processes. This SiC made by our LSI process meets the thermal properties required for use in high temperature heat exchanger. Cellulose and phenolic resin carbons lack the well-defined atomic structures associated with common carbon allotropes. Atomic-scale structure was studied using high resolution transmission electron microscopy (HRTEM), nitrogen gas adsorption and helium gas pycnometry. These studies revealed that cellulose carbon exhibits a very high degree of atomic disorder and angstrom-scale porosity. It has a density of only 93% of that of pure graphite, with primarily sp2 bonding character and a low concentration of graphene clusters. Phenolic resin carbon shows more structural order and substantially less angstrom-scale porosity. Its density is 98% of that of pure graphite, and Fourier transform analysis of its TEM micrographs has revealed high concentrations of sp3 diamond and sp2 graphene nano-clusters. This is the first time that diamond nano-clusters have been observed in carbons produced from phenolic resin. AC and DC electrical measurements were made to follow the thermal conversion of microcrystalline cellulose to carbon. This study identifies five regions of electrical conductivity that can be directly correlated to the chemical decomposition and microstructural evolution during carbonization. In Region I, a decrease in overall AC conductivity occurs due to the initial loss of the polar groups from cellulose molecules. In Region II, the AC conductivity starts to increase with heat treatment temperature due to the formation and growth of conducting carbon clusters. In Region III, a further increase of AC conductivity with increasing heat treatment temperature is observed. In addition, the AC conductivity demonstrates a non-linear frequency dependency due to electron hopping, interfacial polarization, and onset of a percolation threshold. In Region IV, the DC conductivity continues to increase with heat treatment due to the growth and percolation of carbon clusters. Finally in Region V, the DC conductivity reaches a plateau with increasing heat treatment temperature as the system reaches a fully percolated state. Thermophysical properties of carbon materials derived from microcrystalline cellulose have been measured under vacuum and compared with earlier measurements conducted under nitrogen to better understand the influence of porosity, composition, and atmosphere effects. The effective thermal conductivity in vacuum is lower than that observed in nitrogen primarily due to the conductivity of nitrogen gas.

  9. Heat exchanger and method of making. [rocket lining

    Fortini, A.; Kazaroff, J. M. (Inventor)

    1980-01-01

    A heat exchange of increased effectiveness is disclosed. A porous metal matrix is disposed in a metal chamber or between walls through which a heat-transfer fluid is directed. The porous metal matrix has internal bonds and is bonded to the chamber in order to remove all thermal contact resistance within the composite structure. Utilization of the invention in a rocket chamber is disclosed as a specific use. Also disclosed is a method of constructing the heat exchanger.

  10. Flat tube heat exchangers – Direct and indirect noise levels in heat pump applications

    In the outdoor unit of an air-source heat pump the fan is a major noise source. The noise level from the fan is dependent on its state of operation: high air-flow and high pressure drop often result in higher noise levels. In addition, an evaporator that obstructs an air flow is a noise source in itself, something that may contribute to the total noise level. To be able to reduce the noise level, heat exchanger designs other than the common finned round tubes were investigated in this study. Three types of heat exchanger were evaluated to detect differences in noise level and air-side heat transfer performance at varying air flow. The measured sound power level from all the heat exchangers was low in comparison to the fan sound power level (direct effect). However, the heat exchanger design was shown to have an important influence on the sound power level from the fan (indirect effect). One of the heat exchangers with flat tubes was found to have the lowest sound power level, both direct and indirect, and also the highest heat transfer rate. This type of flat tube heat exchanger has the potential to reduce the overall noise level of a heat pump while maintaining heat transfer efficiency. - Highlights: •The direct noise from a heat exchanger is negligible in heat pump applications. •The design of the heat exchanger highly influences the noise from an outdoor unit. •Flat tube heat exchangers can reduce the noise from the outdoor unit of a heat pump. •Flat tube heat exchangers can increase the energy efficiency of a heat pump

  11. Performance studies on high temperature sodium to air heat exchangers

    It has been observed that design of high temperature sodium to air heat exchanger has some uncertainties which have led to poor heat transfer performance in the past. The study of such heat exchangers is important to avoid excessive temperature build up in the reactor as decay heat removal exchangers for the prototype fast breeder reactor are to be of this design. A computer program has been developed for design of transverse finned U tube cross flow type of heat exchanger with two or more passes on the tube side. The paper deals with the features of construction of a typical sodium to air heat exchanger, types of finned tubes commonly used with comparison of different types of connection of fins to tubes. The improvements carried out during the design of second sodium to air heat exchanger to improve heat transfer performance have been highlighted. The effect of variation of few important parameters on the heat transfer performance and pressure drop has been elucidated. 7 refs., 2 tabs., 3 figs

  12. Studies on a heat exchanger producting subcooled liquid helium

    A heat exchanger for cooling the TRISTAN final focusing superconducting quadrupole magnet was studied. This heat exchanger could produce subcooled liquid helium of 20 g/s and 0. 16 MPa below 4.4 K with saturated liquid helium at 0.11 MPa. For the heat transfer of single phase flow in the heat exchanger, the calculations with the Dittus-Boelter and Kutateladze equations agreed well with the measurements. For the heat transfer during the condensation process, the Shah equation including vapor quality was applied. The calculated heat transfer energy was twice as large as the measured value and the vapor effect on the heat transfer coefficient was not as large as that calculated by the Shah equation

  13. Performance of tubes-and plate fins heat exchangers

    By means of a two-dimensional analysis performance, and using local heat transfer coefficients, the plate fin temperature distribution, the air bulk temperature along the stream path and the fin efficiency can be obtained, for several Reynolds numbers and fin materials. Herein are also presented the average heat transfer coefficients for isothermal plate fins, referring to heat exchangers with central-tube and rear-tube row and to two-row tubes heat exchangers configurations. It is possible to obtain the real tax or the real area of heat transfer, using the average hea transfer coefficients for isothermal plate fins and the fin efficiency. (Author)

  14. Investigation of Brazed Plate Heat Exchangers With Variable Chevron Angles

    S. Muthuraman

    2013-08-01

    Full Text Available - Experiments to measure the condensation heat transfer coefficient and the pressure drop in brazed plate heat exchangers (BPHEs were performed with the refrigerants R410A and R22. Brazed plate heat exchangers with different chevron angles of 45°, 35°, and 20° were used. Varying the mass flux, the condensation temperature, and the vapor quality of the refrigerant, we measured the condensation heat transfer coefficient and the pressure drops. Both the heat transfer coefficient and the pressure drop increased proportionally with the mass flux and the vapor quality and inversely with the condensation temperature and the chevron angle.

  15. Integrated system of nuclear reactor and heat exchanger

    The invention concerns PWRs in which the heat exchanger is associated with a pressure vessel containing the core and from which it can be selectively detached. This structural configuration applies to electric power generating uses based on land or on board ships. An existing reactor of this kind is fitted with a heat exchanger in which the tubes are 'U' shaped. This particular design of heat exchangers requires that the ends of the curved tubes be solidly maintained in a tube plate of great thickness, hence difficult to handle and to fabricate and requiring unconventional fine control systems for the control rods and awkward coolant pump arrangements. These complications limit the thermal power of the system to level below 100 megawatts. On the contrary, the object of this invention is to provide a one-piece PWR reactor capable of reaching power levels of 1500 thermal megawatts at least. For this, a pressure vessel is provided in the cylindrical assembly with not only a transversal separation on a plane located between the reactor and the heat exchanger but also a cover selectively detachable which supports the fine control gear of the control rods. Removing the cover exposes a part of the heat exchanger for easy inspection and maintenance. Further, the heat exchanger can be removed totally from the pressure vessel containing the core by detaching the cylindrical part, which composes the heat exchanger section, from the part that holds the reactor core on a level with the transversal separation

  16. Heat Exchange and Thermal Modes of Modern Ring Furnaces

    V. I. Timoshpolsky

    2014-06-01

    Full Text Available The paper considers an accumulated experience concerning investigation of heat exchange and thermal modes of ring furnaces applied for heating simulation. Physical and mathematical model and methodology for theoretical investigation of round billet heating in the ring furnace are proposed in the paper.

  17. A REVIEW ON EFFECT OF VORTEX GENERATORS ON FLOW CHARACTERISTICS AND HEAT TRANSFER IN HEAT EXCHANGERS

    Wani, S A; S.R.Patil

    2015-01-01

    The development of high-performance thermal systems has increased interest in heat transfer enhancement techniques. The high thermal performance enhancement of heat exchanger systems is needed to use energy source efficiently due to the sky-rocketing prices of petroleum and coal fuels. Heat exchangers are widely used in industry both for cooling and heating. Insertion of turbulator in the flow passage is one of the favorable passive heat transfer augmentation techniques due to the...

  18. Characteristics of cooling water fouling in a heat exchange system

    This study investigated the efficiency of the physical water treatment method in preventing and controlling fouling accumulation on heat transfer surfaces in a laboratory heat exchange system with tap and artificial water. To investigate the fouling characteristics, an experimental test facility with a plate type heat exchange system was newly built, where cooling and hot water moved in opposite directions forming a counter-flow heat exchanger. The obtained fouling resistances were used to analyze the effects of the physical water treatment on fouling mitigation. Furthermore, the surface tension and pH values of water were also measured. This study compared the fouling characteristics of cooling water in the heat exchange system with and without the mitigation methods for various inlet velocities. In the presence of the electrode devices with a velocity of 0.5m/s, the fouling resistance was reduced by 79% compared to that in the absence of electrode devices

  19. Flow-induced vibration of component cooling water heat exchangers

    This paper presents an evaluation of flow- induced vibration problems of component cooling water heat exchangers. Specifically, it describes flow-induced vibration phenomena, tests to identify the excitation mechanisms, measurement of response characteristics, analyses to predict tube response and wear, various design alterations, and modifications of the original design. Several unique features associated with the heat exchangers are demonstrated, including energy-trapping modes, existence of tube-support- plate (TSP)-inactive modes, and fluid-elastic instability of TSP-active and -inactive modes. On the basis of this evaluation, the difficulties and future research needs for the evaluation of heat exchangers are identified

  20. Experiments for performance enhancement of the innovative heat exchanger

    In present study, three dimension numerical analysis of Heatric PCHE is performed and compared to existing experimental data. And according to the results, the parameters to influence on thermal-hydraulic performance of PCHE have been derived and a Parametric study for the derived parameters has been performed. Based on these results, a new shape of channel in heat exchanger has been designed. And, performing three dimensional numerical analysis of a new designed heat exchanger and existing PCBE, thermal-hydraulic performance of the new designed heat exchanger has been validated numerically. And, the loop for experiments is designed for experimental investigation

  1. Heat exchanger designs for gas turbine HTGR power plant

    The performance and mechanical aspects of the recuperator and precooler designs established for a nuclear CCGT power plant in the 1200-MW(e) class are presented. These heat exchangers are designed for an integrated plant arrangement embodying three independent power conversion loops coupled to an HTGR, with one set of heat exchangers per loop. Topics discussed include heat exchanger concept evolution and selection, thermal sizing, and mechanical design. In addition to design features, fabrication and handling considerations required to accommodate the large size and weight of these units are discussed

  2. Miniature Joule - Thomson liquefier with sintered heat exchanger

    Eugeniusz, Bodio; Maciej, Chorowski; Marta, Wilczek; Arkadiusz, Bozek

    Conventional Joule-Thomson refrigerators are made with finned, capillary tubing for the heat exchanger and a throttling valve for reducing the pressure [1]. A new kind of recuperative miniature heat-exchanger can be developed if a powder metallurgy technology is used. A high pressure capillary tube is sintered with metal powder. The grains of metal should be ball shaped or similar. In result of sintering process a good thermal contact between an outside tube surface and powder grains is achieved. The heat exchange surface is well developed and a porous sinter acts as a low pressure gas canal.

  3. Heat exchanger and water tank arrangement for passive cooling system

    A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tube sheets mounted to the tank connections so that the tube sheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tube sheets on a square pitch and then on a rectangular pitch there between. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight. 6 figures

  4. Recovery of heat from wool scour effluent

    Nicoll, S.R.

    1978-04-15

    The wool scouring industry uses 42% of the fuel used by the New Zealand textile industry, the fuel bill being 16% of the total scouring costs. To increase efficiency, the industry has widely adopted the Wronz scouring system which rationalizes the scouring process and increases productivity. As part of this system, heat is recovered from the effluent discharged. The economics of such heat recovery and the performance of three types of heat exchanger that have been used for this purpose are discussed. The cost of a heat exchanger can be recovered in a few months with savings in total fuel usage of up to 10%, amounting to about $7000 per annum in terms of oil costs. A spiral heat exchanger and a plate heat exchanger performed well and are recommended for this use. A multi-pass shell and tube heat exchanger was less suitable and is not recommended. The plate type is the cheapest and the most popular. The optimum size recovers 85% of the heat in the effluent at a capital cost of $9.10 per kW recovered.

  5. Turbulence and heat exchange under ice

    Sirevaag, Anders

    2003-01-01

    Turbulent fluxes of heat and salt were measured under sea ice at four different locations around Spitsbergen. In Kongsfjorden on West Spitsbergen additional measurements of heat fluxes in the ice and in the atmosphere were done and compared in an air/sea/ice heat budget. Ocean heat flux in Kongsfjorden is about 13 W/m2 and comparison with the other heat fluxes at the ice/ocean interface shows a good agreement. From the heat budget at the ice/ocean interface, the ice growth during three subseq...

  6. Temperatures and Heat Flows in a Soil Enclosing a Slinky Horizontal Heat Exchanger

    Pavel Neuberger

    2014-02-01

    Full Text Available Temperature changes and heat flows in soils that host “slinky”-type horizontal heat exchangers are complex, but need to be understood if robust quantification of the thermal energy available to a ground-source heat pump is to be achieved. Of particular interest is the capacity of the thermal energy content of the soil to regenerate when the heat exchangers are not operating. Analysis of specific heat flows and the specific thermal energy regime within the soil, including that captured by the heat-exchangers, has been characterised by meticulous measurements. These reveal that high concentrations of antifreeze mix in the heat-transfer fluid of the heat exchanger have an adverse impact on heat flows discharged into the soil.

  7. Low Cost Polymer heat Exchangers for Condensing Boilers

    Butcher, Thomas [Brookhaven National Lab. (BNL), Upton, NY (United States); Trojanowski, Rebecca [Brookhaven National Lab. (BNL), Upton, NY (United States); Wei, George [Brookhaven National Lab. (BNL), Upton, NY (United States); Worek, Michael [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-30

    Work in this project sought to develop a suitable design for a low cost, corrosion resistant heat exchanger as part of a high efficiency condensing boiler. Based upon the design parameters and cost analysis several geometries and material options were explored. The project also quantified and demonstrated the durability of the selected polymer/filler composite under expected operating conditions. The core material idea included a polymer matrix with fillers for thermal conductivity improvement. While the work focused on conventional heating oil, this concept could also be applicable to natural gas, low sulfur heating oil, and biodiesel- although these are considered to be less challenging environments. An extruded polymer composite heat exchanger was designed, built, and tested during this project, demonstrating technical feasibility of this corrosion-resistant material approach. In such flue gas-to-air heat exchangers, the controlling resistance to heat transfer is in the gas-side convective layer and not in the tube material. For this reason, the lower thermal conductivity polymer composite heat exchanger can achieve overall heat transfer performance comparable to a metal heat exchanger. However, with the polymer composite, the surface temperature on the gas side will be higher, leading to a lower water vapor condensation rate.

  8. EVALUASI KINERJA HEAT EXCHANGER DENGAN METODE FOULING F

    Bambang Setyoko

    2012-02-01

    Full Text Available The performance of heat exchangers usually deteriorates with time as a result of accumulation of depositson heat transfer surfaces. The layer of deposits represents additional resistance to heat transfer and causesthe rate of heat transfer in a heat exchanger to decrease. The net effect of these accumulations on heattransfer is represented by a fouling factor Rf , which is a measure of the thermal resistance introduced byfouling.In this case, the type of fouling is the precipitation of solid deposits in a fluid on the heat transfer surface.The mineral deposits forming on the inner and the outer surfaces of fine tubes in the heat exchanger. Thefouling factor is increases with time as the solid deposits build up on the heat exchanger surface. Foulingincreases with increasing temperature and decreasing velocity.In this research, we obtain the coefisien clean overal 5,93 BTU/h.ft2.oF, Dirt factor 0,004 BTU/h.ft2 0F,Pressure drope in tube 2,84 . 10-3 Psi and pressure drope in shell 4,93 . 10-4 Psi.This result are less thanthe standard of parameter. Its means this Heat exchanger still clean relativity and can operate continousslywithout cleaning.

  9. A review of metal foam and metal matrix composites for heat exchangers and heat Sinks

    Han, Xiao-Hong; Wang, Qin; Park, Young-Gil; T'Joen, Christophe; Sommers, Andrew; Jacobi, Anthony

    2012-01-01

    Recent advances in manufacturing methods open the possibility for broader use of metal foams and metal matrix composites (MMCs) for heat exchangers, and these materials can have tailored material properties. Metal foams in particular combine a number of interesting properties from a heat exchanger's point of view. In this paper, the material properties of metal foams and MMCs are surveyed, and the current state of the art is reviewed for heat exchanger applications. Four different application...

  10. A lumped parameter, low dimension model of heat exchanger

    This paper reports on the results of investigation of the distributed parameter model, the difference model, and the model of the method of weighted residuals for heat exchangers. By the method of weighted residuals (MWR), the opposite flow heat exchanger system is approximated by low dimension, lumped parameter model. By assuming constant specific heat, constant density, the same form of tube cross-section, the same form of the surface of heat exchange, uniform flow velocity, the linear relation of heat transfer to flow velocity, liquid heat carrier, and the thermal insulation of liquid from outside, fundamental equations are obtained. The experimental apparatus was made of acrylic resin. The response of the temperature at the exit of first liquid to the variation of the flow rate of second liquid was measured and compared with the models. The MWR model shows good approximation for the low frequency region, and as the number of division increases, good approximation spreads to higher frequency region. (Kato, T.)

  11. Numerical Analysis of Tube-Fin Heat Exchanger using Fluent

    M. V. Ghori

    2012-08-01

    Full Text Available Three-dimensional CFD simulations are carried out to investigate heat transfer and fluid flow characteristics of two-row plain Tube and Fin heat exchanger using FLUENT software. Heat transfer and pressure drop characteristics of the heat exchanger are investigated for Reynolds numbers ranging from 330 to 7000. Model geometry is created and meshed by using GAMBIT software. Fluid flow and heat transfer are simulated and results compared using both laminar and turbulent flow models k-, and SST k-omega, with steady-state solvers to calculate pressure drop, flow, and temperature fields. Model validation is carried out by comparing the simulated value friction factor f and Colburn factor j to experimental results investigate by Wang. Reasonable agreement is found between the simulations and experimental data, and the fluent software has been sufficient for simulating the flow fields in tube-fin heat exchangers.

  12. Investigation of Condensation Heat Transfer Correlation of Heat Exchanger Design in Secondary Passive Cooling System

    Recently, condensation heat exchangers have been studied for applications to the passive cooling systems of nuclear plants. To design vertical-type condensation heat exchangers in secondary passive cooling systems, TSCON (Thermal Sizing of CONdenser), a thermal sizing program for a condensation heat exchanger, was developed at KAERI (Korea Atomic Energy Research Institute). In this study, the existing condensation heat transfer correlation of TSCON was evaluated using 1,157 collected experimental data points from the heat exchanger of a secondary passive cooling system for the case of pure steam condensation. The investigation showed that the Shah correlation, published in 2009, provided the most satisfactory results for the heat transfer coefficient with a mean absolute error of 34.8%. It is suggested that the Shah correlation is appropriate for designing a condensation heat exchanger in TSCON

  13. Quantum, cyclic and 'particle exchange' heat engines

    Humphrey, T E

    2004-01-01

    We show that a range of 'non-cyclic' heat engines, including thermionic and thermoelectric devices, the three-level amplifier (thermally pumped laser), solar cells and LEDs and some Brownian heat engines all share a common thermodynamic mechanism for achieving reversibility and finite power, which is quite different from that utilized in cyclic heat engines such as the Carnot, Otto or Brayton cycles.

  14. Liquid metal heat transfer in heat exchangers under low flow rate conditions

    The present paper describes the liquid metal heat transfer in heat exchangers under low flow rate conditions. Measured data from some experiments indicate that heat transfer coefficients of liquid metals at very low Péclet number are much lower than what are predicted by the well-known empirical relations. The cause of this phenomenon was not fully understood for many years. In the present study, one countercurrent-type heat exchanger is analyzed using three, separated countercurrent heat exchanger models: one is a heat exchanger model in the tube bank region, while the upper and lower plena are modeled as two heat exchangers with a single heat transfer tube. In all three heat exchangers, the same empirical correlation is used in the heat transfer calculation on the tube and the shell sides. The Nusselt number, as a function of the Péclet number, calculated from measured temperature and flow rate data in a 50 MW experimental facility was correctly reproduced by the calculation result, when the calculated result is processed in the same way as the experiment. Finally, it is clarified that the deviation is a superficial phenomenon which is caused by the heat transfer in the plena of the heat exchanger. (author)

  15. Application of transient analysis methodology to heat exchanger performance monitoring

    A transient testing technique is developed to evaluate the thermal performance of industrial scale heat exchangers. A Galerkin-based numerical method with a choice of spectral basis elements to account for spatial temperature variations in heat exchangers is developed to solve the transient heat exchanger model equations. Testing a heat exchanger in the transient state may be the only viable alternative where conventional steady state testing procedures are impossible or infeasible. For example, this methodology is particularly suited to the determination of fouling levels in component cooling water system heat exchangers in nuclear power plants. The heat load on these so-called component coolers under steady state conditions is too small to permit meaningful testing. An adequate heat load develops immediately after a reactor shutdown when the exchanger inlet temperatures are highly time-dependent. The application of the analysis methodology is illustrated herein with reference to an in-situ transient testing carried out at a nuclear power plant. The method, however, is applicable to any transient testing application

  16. Evaluation of fluid bed heat exchanger optimization parameters. Final report

    1980-03-01

    Uncertainty in the relationship of specific bed material properties to gas-side heat transfer in fluidized beds has inhibited the search for optimum bed materials and has led to over-conservative assumptions in the design of fluid bed heat exchangers. An experimental program was carried out to isolate the effects of particle density, thermal conductivity, and heat capacitance upon fluid bed heat transfer. A total of 31 tests were run with 18 different bed material loads on 12 material types; particle size variations were tested on several material types. The conceptual design of a fluidized bed evaporator unit was completed for a diesel exhaust heat recovery system. The evaporator heat transfer surface area was substantially reduced while the physical dimensions of the unit increased. Despite the overall increase in unit size, the overall cost was reduced. A study of relative economics associated with bed material selection was conducted. For the fluidized bed evaporator, it was found that zircon sand was the best choice among materials tested in this program, and that the selection of bed material substantially influences the overall system costs. The optimized fluid bed heat exchanger has an estimated cost 19% below a fin augmented tubular heat exchanger; 31% below a commercial design fluid bed heat exchanger; and 50% below a conventional plain tube heat exchanger. The comparisons being made for a 9.6 x 10/sup 6/ Btu/h waste heat boiler. The fluidized bed approach potentially has other advantages such as resistance to fouling. It is recommended that a study be conducted to develop a systematic selection of bed materials for fluidized bed heat exchanger applications, based upon findings of the study reported herein.

  17. Thermal design heat sinks, thermoelectrics, heat pipes, compact heat exchangers, and solar cells

    Lee, H S

    2010-01-01

    The proposed is written as a senior undergraduate or the first-year graduate textbook,covering modern thermal devices such as heat sinks, thermoelectric generators and coolers, heat pipes, and heat exchangers as design components in larger systems. These devices are becoming increasingly important and fundamental in thermal designacross such diverse areasas microelectronic cooling, green or thermal energy conversion, andthermal control and management in space, etc. However, there is notextbook available covering this rangeof topics. The proposed book may be used as a capstone design cours

  18. Process Heat Exchanger Options for the Advanced High Temperature Reactor

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-06-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  19. Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-04-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  20. Fabrication and Analysis of Counter Flow Helical Coil Heat Exchanger

    Swapnil Ahire

    2014-09-01

    Full Text Available Heat recovery is the capture of energy contained in fluids otherwise that would be lost from a facility. Heat sources may include heat pumps, chillers, steam condensate lines, hot flue gases from boiler, hot air associated with kitchen and laundry facilities, exhaust gases of the engines, power-generation equipment. Helical coil heat exchanger is one of the devices which are used for the heat recovery system. A heat exchanger is a device used to transfer heat between two or more fluids with different temperatures for various application including power plants, nuclear reactors, refrigeration & air condition system, automotive industries, heat recovery system, chemical processing and food industries. Common examples of heat exchangers in everyday use are air pre-heaters and conditioners, automobile radiators, condensers, evaporators, and coolers In present paper analysis of counter flow heat exchanger is done and then variations of various dimensionless numbers i.e. Reynolds Number, Nusselt’s Number and Dean’s number are studied.

  1. Damping of multispan heat exchanger tubes. Pt. 2: in liquids

    Damping information is required for flow-induced vibration analyses of heat exchanger tubes. This paper treats the question of damping of multispan heat exchanger tubes in liquids. There are three important energy dissipation mechanisms that contribute to damping in liquids. These are: viscous damping between tube and liquid, squeeze-film damping in the clearance between tube and tube-support and friction damping at the tube-support. These mechanisms are discussed and formulated in terms of heat exchanger tube parameters. The available experimental data on damping in liquids are reviewed and analysed. Semi-empirical expressions have been developed to formulate damping. These expressions are recommended for design purposes. This study is interesting in the nuclear industry for it often uses heat exchangers

  2. High Effectiveness Heat Exchanger for Cryogenic Refrigerators Project

    National Aeronautics and Space Administration — We propose an innovative high performance cryogenic heat exchanger manufactured of titanium by photo-etching and diffusion bonding. This is a parallel plate design...

  3. Phase Change Material (PCM) Heat Exchanger Development Project

    National Aeronautics and Space Administration — Project has identified two PCM HX concepts that will be designed, developed and demonstrated on-board the International Space Station (ISS):The first heat exchanger...

  4. The role of sealing strips in tubular heat exchangers

    Tubular-type heat exchangers contain both baffle plates and sealing strips. The baffles force the flow to pass normal to the axes of the tubes and they serve to support the tubes. In order to facilitate assembly of the heat exchanger, a space exists between the tube bundle and the retaining shell. This space offers a hydraulic short circuit to the fluid, thus reducing the effectiveness of the device to exchange heat. Sealing strips, which are metal strips mounted on the shell and running parallel to the tubes, are introduced to partially block this leakage flow, thereby increasing the effectiveness of the device. The objectives of the research reported here are to experimentally determine the effectiveness of sealing strips, and to investigate the effects of their shape and location. Such results not only supply design information, but they serve to establish the accuracy of computer codes which have been developed for such heat exchangers. (author)

  5. 1-MWE heat exchangers for OTEC. Final design report

    Sprouse, A.M.

    1980-06-19

    The design of a 1 MWe OTEC heat exchanger is documented, including the designs of the evaporator and associated systems, condenser, instrumentation, and materials for corrosion/erosion control and fabrication processes. (LEW)

  6. Heat exchanger identification by using iterative fuzzy observers

    Lalot, Sylvain; Gumundsson, Oddgeir; Plsson, Halldr; Plsson, lafur Ptur

    2015-06-01

    The principle of fuzzy observers is first illustrated on a general example: the determination of the two parameters of second order systems using a step response. The set of equations describing the system are presented and it is shown that accurate results are obtained, even for a high level of noise. The heat exchanger model is then introduced. It is based on a spatial division of a counter flow heat exchanger into multiple sections. The governing equations are rewritten as a state space representation. The number of sections needed to get accurate results is determined by comparing estimated values to experimental data. Based on the mean value of the root mean squared errors, it is shown that 80 sections is an appropriate value for this heat exchanger. It is then shown that the iterative fuzzy observers can be used to determine the main parameters of the counter flow heat exchanger, i.e. the convection heat transfer coefficients, when in transient state. The final values of these parameters are <3.5 % apart from the values determined by a time consuming trial and error procedure. Finally a sensitivity study is carried out, showing that a 1.5 % variation of the actual value of the overall heat transfer coefficient corresponds to a 0.5 % variation of the estimated overall heat transfer coefficient. This study also shows that the fuzzy observers are equally efficient when the heat exchanger is in steady state.

  7. On-line fouling monitor for heat exchangers

    Biological and/or chemical fouling in utility service water system heat exchangers adversely affects operation and maintenance costs, and reduced heat transfer capability can force a power deaerating or even a plant shut down. In addition, service water heat exchanger performance is a safety issue for nuclear power plants, and the issue was highlighted by NRC in Generic Letter 89-13. Heat transfer losses due to fouling are difficult to measure and, usually, quantitative assessment of the impact of fouling is impossible. Plant operators typically measure inlet and outlet water temperatures and flow rates and then perform complex calculations for heat exchanger fouling resistance or ''cleanliness''. These direct estimates are often imprecise due to inadequate instrumentation. Electric Power Research Institute developed and patented an on-line condenser fouling monitor. This monitor may be installed in any location within the condenser; does not interfere with routine plant operations, including on-line mechanical and chemical treatment methods; and provides continuous, real-time readings of the heat transfer efficiency of the instrumented tube. This instrument can be modified to perform on-line monitoring of service water heat exchangers. This paper discusses the design, construction of the new monitor, and algorithm used to calculate service water heat exchanger fouling

  8. Heat Pipe Heat Exchangers with Double Isolation Layers for Prevention of Interpath Leakage Project

    National Aeronautics and Space Administration — Current manned spacecraft heat rejection systems use two heat exchangers and an intermediate fluid loop to provide isolation between the crew compartment air and...

  9. Heat Pipe Heat Exchangers with Double Isolation Layers for Prevention of Interpath Leakage Project

    National Aeronautics and Space Administration — Advanced Cooling Technologies, Inc. (ACT), supported by Hamilton Sundstrand, proposes to develop a heat pipe heat exchanger that is low mass and provides two levels...

  10. Simulation of stirred yoghurt processing in plate heat exchangers

    Fernandes, Carla S.; Ricardo P. Dias; Nbrega, Joo M.; Afonso, Isabel A.; Luis F. Melo; Maia, Joo M.

    2005-01-01

    In the present work, simulations of stirred yoghurt processing in a plate heat exchanger were performed using computational fluid dynamics (CFD) calculations and the results compared with experimental data, showing a very good agreement. A HerschelBulkley model for the viscosity and an Arrhenius-type term for the temperature dependence were used to model the thermo-rheological behaviour of yoghurt. The heat exchanger used in this study operates in a parallel arrangement, thus simplifyi...

  11. Thermal performance modeling of cross-flow heat exchangers

    Cabezas-Gómez, Luben; Saíz-Jabardo, José Maria

    2014-01-01

    This monograph introduces a numerical computational methodology for thermal performance modeling of cross-flow heat exchangers, with applications in chemical, refrigeration and automobile industries. This methodology allows obtaining effectiveness-number of transfer units (e-NTU) data and has been used for simulating several standard and complex flow arrangements configurations of cross-flow heat exchangers. Simulated results have been validated through comparisons with results from available exact and approximate analytical solutions. Very accurate results have been obtained over wide ranges

  12. Ringshaped grid for supporting of pipes of a heat exchanger

    This heat exchanger furnishes a ring-shaped grid in which pipes can be ordered in a circular formation, as opposed to the conventional triangular ordering. In this structure the pipes are arranged in concentric circles. This means that each new row of pipes has an equal number of more pipes than the row directly inside, meaning that all the pipes in each row are equidistant from the center and form an equal surface for better heat exchange

  13. DOE/ANL/HTRI heat exchanger tube vibration data bank

    Halle, H.; Chenoweth, J.M.; Wambsganss, M.W.

    1981-01-01

    This addendum to the DOE/ANL/HTRI Heat Exchanger Tube Vibration Data Bank includes 16 new case histories of field experiences. The cases include several exchangers that did not experience vibration problems and several for which acoustic vibration was reported.

  14. Characteristics of fluid flow and heat transfer in a fluidized heat exchanger with circulating solid particles

    The commercial viability of heat exchanger is mainly dependent on its long-term fouling characteristic because the fouling increase the pressure loss and degrades the thermal performance of a heat exchanger. An experimental study was performed to investigate the characteristics of fluid flow and heat transfer in a fluidized bed heat exchanger with circulating various solid particles. The present work showed that the higher densities of particles had higher drag force coefficients, and the increases in heat transfer were in the order of sand, copper, steel, aluminum, and glass below Reynolds number of 5,000

  15. Computer aided heat transfer analysis in a laboratory scaled heat exchanger unit

    In this study. an explanation of a laboratory scaled heat exchanger unit and a software which is developed to analyze heat transfer. especially to use it in heat transfer courses, are represented. Analyses carried out in the software through sample values measured in the heat exchanger are: (l) Determination of heat transfer rate, logarithmic mean temperature difference and overall heat transfer coefficient; (2)Determination of convection heat transfer coefficient inside and outside the tube and the effect of fluid velocity on these; (3)Investigation of the relationship between Nusselt Number. Reynolds Number and Prandtl Number by using multiple non-linear regression analysis. Results are displayed on the screen graphically

  16. A fundamentally new approach to air-cooled heat exchangers.

    Koplow, Jeffrey P.

    2010-01-01

    We describe breakthrough results obtained in a feasibility study of a fundamentally new architecture for air-cooled heat exchangers. A longstanding but largely unrealized opportunity in energy efficiency concerns the performance of air-cooled heat exchangers used in air conditioners, heat pumps, and refrigeration equipment. In the case of residential air conditioners, for example, the typical performance of the air cooled heat exchangers used for condensers and evaporators is at best marginal from the standpoint the of achieving maximum the possible coefficient of performance (COP). If by some means it were possible to reduce the thermal resistance of these heat exchangers to a negligible level, a typical energy savings of order 30% could be immediately realized. It has long been known that a several-fold increase in heat exchanger size, in conjunction with the use of much higher volumetric flow rates, provides a straight-forward path to this goal but is not practical from the standpoint of real world applications. The tension in the market place between the need for energy efficiency and logistical considerations such as equipment size, cost and operating noise has resulted in a compromise that is far from ideal. This is the reason that a typical residential air conditioner exhibits significant sensitivity to reductions in fan speed and/or fouling of the heat exchanger surface. The prevailing wisdom is that little can be done to improve this situation; the 'fan-plus-finned-heat-sink' heat exchanger architecture used throughout the energy sector represents an extremely mature technology for which there is little opportunity for further optimization. But the fact remains that conventional fan-plus-finned-heat-sink technology simply doesn't work that well. Their primary physical limitation to performance (i.e. low thermal resistance) is the boundary layer of motionless air that adheres to and envelops all surfaces of the heat exchanger. Within this boundary layer region, diffusive transport is the dominant mechanism for heat transfer. The resulting thermal bottleneck largely determines the thermal resistance of the heat exchanger. No one has yet devised a practical solution to the boundary layer problem. Another longstanding problem is inevitable fouling of the heat exchanger surface over time by particulate matter and other airborne contaminants. This problem is especially important in residential air conditioner systems where often little or no preventative maintenance is practiced. The heat sink fouling problem also remains unsolved. The third major problem (alluded to earlier) concerns inadequate airflow to heat exchanger resulting from restrictions on fan noise. The air-cooled heat exchanger described here solves all of the above three problems simultaneously. The 'Air Bearing Heat Exchanger' provides a several-fold reduction in boundary layer thickness, intrinsic immunity to heat sink fouling, and drastic reductions in noise. It is also very practical from the standpoint of cost, complexity, ruggedness, etc. Successful development of this technology is also expected to have far reaching impact in the IT sector from the standpointpoint of solving the 'Thermal Brick Wall' problem (which currently limits CPU clocks speeds to {approx}3 GHz), and increasing concern about the the electrical power consumption of our nation's information technology infrastructure.

  17. Investigation of effect of oblique ridges on heat transfer in plate heat exchangers

    Novosd Jan; Dvo?k Vclav

    2014-01-01

    This article deals with numerical investigation of flow in plate heat exchangers. These are counterflow heat exchangers formed by plates. These plates are shaped by the ridges to intensify heat transfer. The objective of the work is the investigation of effect of straight oblique triangular ridges for increasing of heat transfer and pressure losses. The ridges on adjacent plates intersect and thus form a channel of complex shape. The research includes various types of ridges with different fi...

  18. Oil Circulation Effects on Evaporation Heat Transfer in Brazed Plate Heat Exchanger using R134A

    Jang, Jaekyoo; Chang, Youngsoo; Kang, Byungha

    2012-01-01

    Experimental study was performed for oil circulation effects on evaporation heat transfer in the brazed type plate heat exchangers using R134A. In this study, distribution device was installed to ensure uniform flow distribution in the refrigerant flow passage, which enhances heat transfer performance of plate type heat exchanger. Tests were conducted for three evaporation temperature; 33℃, 37℃, and 41℃ and several oil circulation conditions. The nominal conditions of refrigerant are as follo...

  19. Liquid-metal-gas heat exchanger for HTGR type reactors

    The aim of this study is to investigate the heat transfer characteristics of a liquid metal heat exchanger (HE) for a helium-cooled high temperature reactor. A tube-type heat exchanger is considered as well as two direct exchangers: a bubble-type heat exchanger and a heat exchanger according to the spray principle. Experiments are made in order to determine the gas content of bubble-type heat exchangers, the dependence of the droplet diameter on the nozzle diameter, the falling speed of the droplets, the velocity of the liquid jet, and the temperature variation of liquid jets. The computer codes developed for HE calculation are structured so that they may be used for gas/liquid HE, too. Each type of HE that is dealt with is designed by accousting for a technical and an economic assessment. The liquid-lead jet spray is preferred to all other types because of its small space occupied and its simple design. It shall be used in near future in the HTR by the name of lead/helium HE. (GL)

  20. The fouling in the tubular heat exchanger of Algiers refinery

    Harche, Rima; Mouheb, Abdelkader; Absi, Rafik

    2016-05-01

    Crude oil fouling in refinery preheat exchangers is a chronic operational problem that compromises energy recovery in these systems. Progress is hindered by the lack of quantitative knowledge of the dynamic effects of fouling on heat exchanger transfer and pressure drops. In subject of this work is an experimental determination of the thermal fouling resistance in the tubular heat exchanger of the crude oil preheats trains installed in an Algiers refinery. By measuring the inlet and outlet temperatures and mass flows of the two fluids, the overall heat transfer coefficient has been determined. Determining the overall heat transfer coefficient for the heat exchanger with clean and fouled surfaces, the fouling resistance was calculated. The results obtained from the two cells of exchangers studies, showed that the fouling resistance increased with time presented an exponential evolution in agreement with the model suggested by Kern and Seaton, with the existence of fluctuation caused by the instability of the flow rate and the impact between the particles. The bad cleaning of the heat exchangers involved the absence of the induction period and caused consequently, high values of the fouling resistance in a relatively short period of time.

  1. CTOD-based acceptance criteria for heat exchanger head staybolts

    The primary coolant piping system of the Savannah River Site (SRS) reactors contains twelve heat exchangers to remove the waste heat from the nuclear materials production. A large break at the inlet or outlet heads of the heat exchangers would occur if the restraint members of the heads become inactive. The heat exchanger head is attached to the tubesheet by 84 staybolts. The structural integrity of the heads is demonstrated by showing the redundant capacity of the staybolts to restrain the head at design conditions and under seismic loadings. The beat exchanger head is analyzed with a three- dimensional finite element model. The restraint provided by the staybolts is evaluated for several postulated cases of inactive or missing staybolts, that is, bolts that have a flaw exceeding the ultrasonic testing (UT) threshold depth of 25% of the bolt diameter. A limit of 6 inactive staybolts is reached with a fracture criterion based on the maximum allowable local displacement at the active staybolts which corresponds to the crack tip opening displacement (CTOD) of 0.032 inches. An acceptance criteria methodology has been developed to disposition flaws reported in the staybolt inspections while ensuring adequate restraint capacity of the staybolts to maintain integrity of the heat exchanger heads against collapse. The methodology includes an approach for the baseline and periodic inspections of the staybolts. A total of up to 6 staybolts, reported as containing flaws with depths at or exceeding 25% would be acceptable in the heat exchanger

  2. Development of User-Friendly Software to Design Dairy Heat Exchanger and Performance Evaluation

    DipankarMandal

    2015-01-01

    The paper proposes a calculation algorithm and development of a software in Visual Basic(Visual Studio 2012 Express Desktop) used in heat transfer studies when different heat exchangers are involved (e.g. Helical Type Triple Tube Heat Exchanger , Plate Type Heat Exchanger).It includes the easy calculation of heat transfer coefficient and followed by the design and simulation of heat exchanger design parameter by inputting general known parameters of a heat exchanger into the devel...

  3. The Experimental Study on Heat Transfer Characteristics of The External Heat Exchanger

    Ji, X. Y.; Lu, X. F.; Yang, L.; Liu, H. Z.

    Using the external heat exchanger in large-scale CFB boilers can control combustion and heat transfer separately, make the adjustments of bed temperature and steam temperature convenient. The state of gas-solid two phase flow in the external heat exchanger is bubbling fluidized bed, but differs from the regular one as there is a directional flow in it. Consequently, the temperature distribution changes along the flow direction. In order to study the heat transfer characteristics of the water cooled tubes in the bubbling fluidized bed and ensure the uniformity of heat transfer in the external heat exchanger, a physical model was set up according to the similarity principle and at the geometric ratio of 1?28 to an external heat exchanger of a 300MW CFB boiler. The model was connected with an electrically heated CFB test-bed which provides the circulating particles. The influencing factors and the distribution rule of the particles' heat transfer coefficient in the external heat exchanger were assessed by measuring the temperature changes of the water in the tubes and different parts of particles flow along the flow direction. At the end, an empirical correlation of particles' heat transfer coefficient in external heat exchanger was given by modifying the Veedendery empirical correlation.

  4. Continuous cleaning of heat exchanger with recirculating fluidized bed

    Fluidized bed heat exchangers for liquids have been studied in the United States, the Netherlands, and the Federal Republic of Germany. Between 1965 and 1970, fluidized bed heat exchangers were developed in the United States as brine heaters in seawater desalination. Furthermore, their potential in the utilization of geothermal energy was tested between 1975 and 1980. In the Netherlands, fluidized bed heat exchangers have been developed since 1973 for brine heating and heat recovery in multistage flash evaporators for seawater desalination and, since about 1980, for applications in the process industry. The authors became interested in fluidized bed heat exchangers first in 1978 in connection with wastewater evaporation. The authors emphasize that the results of all these groups were in basic agreement. They can be summarized as follows: 1. The fluidized bed will in many cases maintain totally clean surfaces and neither scaling nor fouling will occur. In cases where even a fluidized bed cannot completely prevent scaling or fouling, the thickness of the layer is controlled. In these cases stable operation maintaining acceptable overall heat transfer coefficients is possible without cleaning. 2. There are always excellent heat transfer coefficients as low superficial velocities of less than ν < 0.5 m/s. 3. The pressure losses are comparable with those in normal heat exchangers since fluidized bed heat exchangers are mostly operated at low superficial velocities. 4. Feed flow may be varied between 50 and 150% or more of the design feed flow. 5. Erosion is negligible. 6. Fluidized bed particles can be manufactured from all sorts of chemically and mechanically resistant materials, such as sand, glass, ceramics, and metals

  5. Investigation into fouling factor in compact heat exchanger

    Masoud Asadi

    2013-03-01

    Full Text Available Fouling problems cannot be avoided in many heat exchanger operations, and it is necessary to introduce defensive measures to minimize fouling and the cost of cleaning. The fouling control measures used during either design or operation must be subjected to a thorough economic analysis, taking into consideration all the costs of the fouling control measures and their projected benefits in reducing costs due to fouling. Under some conditions, nearly asymptotic fouling resistances can be obtained, and this suggests a somewhat different approach to the economics. Fouling is a generic term for the deposition of foreign matter on a heat transfer surface. Deposits accumulating in the small channels of a compact heat exchanger affect both heat transfer and fluid flow. Fouling deposits constricting passages in a compact heat exchanger are likely to increase the pressure drop and therefore reduce the flow rate. Reduced flow rate may be a process constraint; it reduces efficiency and increases the associated energy use and running costs. Maintenance costs will also increase. Fouling remains the area of greatest concern for those considering the installation of compact heat exchangers. The widespread installation of compact heat exchangers has been hindered by the perception that the small passages are more strongly affected by the formation of deposits. In this paper different types of fouling and treatment are presented.

  6. Sprinkled Heat Exchangers in Evaporation Mode

    Pospisil J.

    2013-04-01

    Full Text Available The paper presents research on the heat transfer at sprinkled tube bundles situated in a test chamber at atmospheric pressure and low-pressure. Dynamic effects of physical quantities influencing the heat transfer coefficient during boiling are examined experimentally. Experimental results were achieved by means of balance measuring using thermocouple probes and by analysis of thermal diagrams created during operation periods.

  7. Capillary pumped loop body heat exchanger

    Swanson, Theodore D. (Inventor); Wren, deceased, Paul (Inventor)

    1998-01-01

    A capillary pumped loop for transferring heat from one body part to another body part, the capillary pumped loop comprising a capillary evaporator for vaporizing a liquid refrigerant by absorbing heat from a warm body part, a condenser for turning a vaporized refrigerant into a liquid by transferring heat from the vaporized liquid to a cool body part, a first tube section connecting an output port of the capillary evaporator to an input of the condenser, and a second tube section connecting an output of the condenser to an input port of the capillary evaporator. A wick may be provided within the condenser. A pump may be provided between the second tube section and the input port of the capillary evaporator. Additionally, an esternal heat source or heat sink may be utilized.

  8. Exergy optimization in a steady moving bed heat exchanger

    Soria-Verdugo, Antonio; Almendros-Ibáñez, José Antonio; Ruiz-Rivas, Ulpiano; Santana Santana, Domingo José

    2007-01-01

    This work provides an exergy analysis of a moving bed heat exchanger to obtain for a range of incoming fluid flow rates the operational optimum and the incidence on it of the relevant parameters such as the dimensions of the exchanger, the particle diameter and the flow rate of the fluid. The MBHE proposed can be analyzed as a cross flow heat exchanger where one of the phases is a moving granular medium. In the present work the exergy analysis of the MBHE is carried out o...

  9. Thermal behavior of a heat exchanger module for seasonal heat storage

    Fan, Jianhua; Furbo, Simon; Andersen, Elsa; Chen, Ziqian; Perers, Bengt; Dannemand, Mark

    2012-01-01

    are theoretically investigated by Computational Fluid Dynamics (CFD) calculations. The heat transfer rates between the PCM storage and the heating fluid/cooling fluid in the plate heat exchangers are determined. The CFD calculated temperatures are compared to measured temperatures. Based on the......Experimental and theoretic investigations are carried out to study the heat transfer capacity rate of a heat exchanger module for seasonal heat storage with sodium acetate trihydrate (SAT) supercooling in a stable way. A sandwich heat storage test module has been built with the phase change...... material (PCM) storage box in between two plate heat exchangers. Charge of the PCM storage is investigated experimentally with solid phase SAT as initial condition. Discharge of the PCM storage with the presence of crystallization is studied experimentally. Fluid flow and heat transfer in the PCM module...

  10. New latent heat storage system with nanoparticles for thermal management of electric vehicles

    Javani, N.; Dincer, I.; Naterer, G. F.

    2014-12-01

    In this paper, a new passive thermal management system for electric vehicles is developed. A latent heat thermal energy storage with nanoparticles is designed and optimized. A genetic algorithm method is employed to minimize the length of the heat exchanger tubes. The results show that even the optimum length of a shell and tube heat exchanger becomes too large to be employed in a vehicle. This is mainly due to the very low thermal conductivity of phase change material (PCM) which fills the shell side of the heat exchanger. A carbon nanotube (CNT) and PCM mixture is then studied where the probability of nanotubes in a series configuration is defined as a deterministic design parameter. Various heat transfer rates, ranging from 300 W to 600 W, are utilized to optimize battery cooling options in the heat exchanger. The optimization results show that smaller tube diameters minimize the heat exchanger length. Furthermore, finned tubes lead to a higher heat exchanger length due to more heat transfer resistance. By increasing the CNT concentration, the optimum length of the heat exchanger decreases and makes the improved thermal management system a more efficient and competitive with air and liquid thermal management systems.

  11. A Freezable Heat Exchanger for Space Suit Radiator Systems

    Nabity, James A.; Mason, Georgia R.; Copeland, Robert J.; Trevino, Luis a.

    2008-01-01

    During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut s metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 1.58 kg (3.48 lbm), an additional 3.6 kg (8 lbm) of water are loaded into the unit, most of which is sublimated and lost to space, thus becoming the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the astronaut during an EVA can reduce the amount of expendable water consumed in the sublimator. Radiators have no moving parts and are thus highly reliable. Past freezable radiators have been too heavy, but the weight can be greatly reduced by placing a small and freeze tolerant heat exchanger between the astronaut and radiator, instead of making the very large radiator freeze tolerant. Therefore, the key technological innovation to improve space suit radiator performance was the development of a lightweight and freezable heat exchanger that accommodates the variable heat load generated by the astronaut. Herein, we present the heat transfer performance of a newly designed heat exchanger that endured several freeze / thaw cycles without any apparent damage. The heat exchanger was also able to continuously turn down or turn up the heat rejection to follow the variable load.

  12. Transfer coefficients in elliptical tubes and plate fin heat exchangers

    Mean transfer coefficients in elliptical tubes and plate fin heat exchangers were determined by application of heat and mass transfer analogy in conjunction with the naphthalene sublimation technique. The transfer coefficients are presented in a dimensionless form as functions of the Reynolds number. By using the least squares method analytical expressions for the transfer coefficients were determined with low scattering. (E.G.)

  13. Handbook for heat exchangers and tube banks design

    Annaratone, Donatello

    2010-01-01

    The motion of fluids is never in parallel- or counter-flow in heat exchangers and tube banks, leading to complexities in the equations for calculating their transferred heat and temperatures. This review of the topic includes 70 design and verification tables.

  14. Numerical and Experimental Investigation for Heat Transfer Enhancement by Dimpled Surface Heat Exchanger in Thermoelectric Generator

    Wang, Yiping; Li, Shuai; Yang, Xue; Deng, Yadong; Su, Chuqi

    2016-03-01

    For vehicle thermoelectric exhaust energy recovery, the temperature difference between the heat exchanger and the coolant has a strong influence on the electric power generation, and ribs are often employed to enhance the heat transfer of the heat exchanger. However, the introduction of ribs will result in a large unwanted pressure drop in the exhaust system which is unfavorable for the engine's efficiency. Therefore, how to enhance the heat transfer and control the pressure drop in the exhaust system is quite important for thermoelectric generators (TEG). In the current study, a symmetrical arrangement of dimpled surfaces staggered in the upper and lower surfaces of the heat exchanger was proposed to augment heat transfer rates with minimal pressure drop penalties. The turbulent flow characteristics and heat transfer performance of turbulent flow over the dimpled surface in a flat heat exchanger was investigated by numerical simulation and temperature measurements. The heat transfer capacity in terms of Nusselt number and the pressure loss in terms of Fanning friction factors of the exchanger were compared with those of the flat plate. The pressure loss and heat transfer characteristics of dimples with a depth-to-diameter ratio ( h/D) at 0.2 were investigated. Finally, a quite good heat transfer performance with minimal pressure drop heat exchanger in a vehicle TEG was obtained. And based on the area-averaged surface temperature of the heat exchanger and the Seeback effect, the power generation can be improved by about 15% at Re = 25,000 compared to a heat exchanger with a flat surface.

  15. Numerical and Experimental Investigation for Heat Transfer Enhancement by Dimpled Surface Heat Exchanger in Thermoelectric Generator

    Wang, Yiping; Li, Shuai; Yang, Xue; Deng, Yadong; Su, Chuqi

    2015-11-01

    For vehicle thermoelectric exhaust energy recovery, the temperature difference between the heat exchanger and the coolant has a strong influence on the electric power generation, and ribs are often employed to enhance the heat transfer of the heat exchanger. However, the introduction of ribs will result in a large unwanted pressure drop in the exhaust system which is unfavorable for the engine's efficiency. Therefore, how to enhance the heat transfer and control the pressure drop in the exhaust system is quite important for thermoelectric generators (TEG). In the current study, a symmetrical arrangement of dimpled surfaces staggered in the upper and lower surfaces of the heat exchanger was proposed to augment heat transfer rates with minimal pressure drop penalties. The turbulent flow characteristics and heat transfer performance of turbulent flow over the dimpled surface in a flat heat exchanger was investigated by numerical simulation and temperature measurements. The heat transfer capacity in terms of Nusselt number and the pressure loss in terms of Fanning friction factors of the exchanger were compared with those of the flat plate. The pressure loss and heat transfer characteristics of dimples with a depth-to-diameter ratio (h/D) at 0.2 were investigated. Finally, a quite good heat transfer performance with minimal pressure drop heat exchanger in a vehicle TEG was obtained. And based on the area-averaged surface temperature of the heat exchanger and the Seeback effect, the power generation can be improved by about 15% at Re = 25,000 compared to a heat exchanger with a flat surface.

  16. Construction of Air-Cooled Heat Exchanger in Reprocessing Plant

    A large scale Air-Cooled Heat Exchanger for Rokkasho Reprocessing Plant, Aomori prefecture, has been constructed and is now under pre-operation. It is classified as 'aseismic class As', as a key facility of safety equipment from the perspective of the final cooling unit of nuclear decayed heat generated by spent fuel stored in a pool. Design criteria of heat transfer, mechanical construction, winterization and corrosion prevention for this type of exchanger are shown in comparison with an exchanger for general refinery service. The aseismic design method for the exchanger is also shown including a fan driving unit as the rotational equipment referred to in the JEAG4601-1991 Supplement. According to the pre-operation report, the maximum amplitude of vibration at a typical bearing of the fan shaft measured about 50 micro meters peak to peak. Other operational data showed good results compared to design conditions. (author)

  17. Air Circulation and Heat Exchange Under Reduced Pressures

    Rygalov, V.; Wheeler, R.; Dixon, M.; Fowler, P.; Hillhouse, L.

    2010-01-01

    Heat exchange rates decrease non-linearly with reductions in atmospheric pressure. This decrease creates risk of thermal stress (elevated leaf temperatures) for plants under reduced pressures. Forced convection (fans) significantly increases heat exchange rate under almost all pressures except below 10 kPa. Plant cultivation techniques under reduced pressures will require forced convection. The cooling curve technique is a reliable means of assessing the influence of environmental variables like pressure and gravity on gas exchange of plant. These results represent the extremes of gas exchange conditions for simple systems under variable pressures. In reality, dense plant canopies will exhibit responses in between these extremes. More research is needed to understand the dependence of forced convection on atmospheric pressure. The overall thermal balance model should include latent and radiative exchange components.

  18. Renormalized anisotropic exchange for representing heat assisted magnetic recording media

    Anisotropic exchange has been incorporated in a description of magnetic recording media near the Curie temperature, as would be found during heat assisted magnetic recording. The new parameters were found using a cost function that minimized the difference between atomistic properties and those of renormalized spin blocks. Interestingly, the anisotropic exchange description at 1.5?nm discretization yields very similar switching and magnetization behavior to that found at 1.2?nm (and below) discretization for the previous isotropic exchange. This suggests that the increased accuracy of anisotropic exchange may also reduce the computational cost during simulation

  19. Renormalized anisotropic exchange for representing heat assisted magnetic recording media

    Jiao, Yipeng; Liu, Zengyuan; Victora, R. H., E-mail: victora@umn.edu [MINT Center, Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-05-07

    Anisotropic exchange has been incorporated in a description of magnetic recording media near the Curie temperature, as would be found during heat assisted magnetic recording. The new parameters were found using a cost function that minimized the difference between atomistic properties and those of renormalized spin blocks. Interestingly, the anisotropic exchange description at 1.5 nm discretization yields very similar switching and magnetization behavior to that found at 1.2 nm (and below) discretization for the previous isotropic exchange. This suggests that the increased accuracy of anisotropic exchange may also reduce the computational cost during simulation.

  20. Some problems of disperse medium use in heat exchangers

    The application of disperse media in heat-exchange equipment has been investigated experimentally. The authors studied heat transfer from a horizontally positioned cylinder to a layer of particles of oil-liquefied electrically produced corundum and pig iron. The coefficient of heat transfer from the cylinder to the particle layer increases 2.5 - to 3-fold as compared with pure oil, and an increase in particle diameter increases the heat-transfer coefficient. Calculations with a system with a gas suspension (a suspension of gas and solid particles) used as intermediate heat-transfer agent showed that the total surface area of its heat exchangers will be 35% larger than that of a similar system with water

  1. In - line determination of heat transfer coefficients in a plate heat exchanger

    Sotelo, S. Silva; Domínguez, R. J. Romero

    This paper shows an in - line determination of heat transfer coefficients in a plate heat exchanger. Water and aqueous working solution of lithium bromide + ethylene glycol are considered. Heat transfer coefficients are calculated for both fluids. "Type T" thermocouples were used for monitoring the wall temperature in a plate heat exchanger, which is one of the main components in an absorption system. Commercial software Agilent HP Vee Pro 7.5 was used for monitoring the temperatures and for the determination of the heat transfer coefficients. There are not previous works for heat transfer coefficients for the working solution used in this work.

  2. Characteristics of Vertical Mantle Heat Exchangers for Solar Water Heaters

    Shah, Louise Jivan; Morrison, G.L.; Behnia, M.

    1999-01-01

    - The flow structure in vertical mantle heat exchangers was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the mantle were measured using a particle Image Velocimetry (PIV) system. A CFD simulation model of vertical mantle heat...... exchangers was also developed for detailed evaluation of the heat flux distribution over the mantle surface. Both the experimental and simulation results indicate that distribution of the flow around the mantle gap is governed by buoyancy driven recirculation in the mantle. The operation of the mantle was...

  3. Pressure Drop of Hybrid Heat Exchanger for SO3 Decomposition

    A sulfur trioxide decomposer is one of the main technical challenges in the development of a nuclear hydrogen production system using SI cycle or hybrid sulfur cycle. Kim et al. developed a hybrid heat exchanger for the sulfur trioxide decomposition to withstand its severe operating conditions. The operation conditions include the high temperature over 850 .deg. C, the large pressure difference over 1 MPa, and the corrosive working fluid with the sulfuric acid gas mixture. The surface contacted with the process gas is coated with the corrosion resistant silicon carbide. Ion beam mixing technology with nitrogen ions is applied to reduce the thermal stress through the mixed interface between the coating layer and the base material. The base material of the heat exchanger is heat-resistant super alloy such as Hastelloy X. The hot gas channel plate and the process gas channel plate are joined by Park et al.'s diffusion bonding process. Kim et al. performed the sensitivity analysis of the thermo-chemical design of the hybrid-concept sulfur trioxide decomposer to determine the operation condition of the laboratory scale decomposer. The feasibility test results of the heat exchanger showed the surface enhancement effect on the corrosion-resistance in the sulfuric acid gas condition. Song et al. provided the thermal structural analysis results to install the laboratory-scale heat exchanger to maintain the structural integrity at the experimental condition. In this study, we obtained the experimental results for the pressure drop of the laboratory-scale hybrid heat exchanger

  4. An innovative plate heat exchanger of enhanced compactness

    In the framework of CEA R&D program to develop the Advanced Sodium Technological Reactor for Industrial Demonstration (ASTRID), the present work aims to demonstrate the industrial interest of an innovative compact heat exchanger technology. In fact, one of the main innovations of the ASTRID reactor could be the use of a Brayton Gas-power conversion system, in order to avoid the energetic sodium–water interaction that might occur if a traditional Rankine cycle was used. The present work aims to study the thermal-hydraulic performance of the innovative compact heat exchanger concept. Hence, thanks to a trustful numerical model, friction factor and heat transfer correlations are obtained. Then, a global compactness comparison strategy is proposed, taking into account design constraints. Finally, it is demonstrated that the innovative heat exchanger concept is more compact then other already industrial technologies of interest, showing that is can be considered to warrant serious consideration for future ASTRID design as well as for any industrial application that needs very compact heat exchanger technologies. - Highlights: • We propose a new innovative compact heat exchanger technology. • We provide thermal-hydraulic correlations for designers. • We provide a comparison strategy with existing technologies. • We demonstrate the industrial interest of the innovative concept

  5. Heat exchangers selection, rating, and thermal design

    Kakaç, Sadik; Pramuanjaroenkij, Anchasa

    2012-01-01

    Praise for the Bestselling Second EditionThe first edition of this work gathered in one place the essence of important information formerly scattered throughout the literature. The second edition adds the following new information: introductory material on heat transfer enhancement; an application of the Bell-Delaware method; new correlation for calculating heat transfer and friction coefficients for chevron-type plates; revision of many of the solved examples and the addition of several new ones.-MEMagazine

  6. Balance-of-plant heat exchanger condition assessment guidelines

    In nuclear power plants, service water system heat exchanger integrity and thermal performance are receiving close scrutiny to ensure that they perform their functions in an emergency condition. Many safety-related service water systems are called upon to function only in emergency conditions and are therefore difficult to monitor on a regular basis to ensure functionality. For some heat exchangers it is difficult to measure and extrapolate their thermal performance data since performance testing is often conducted at flows, temperatures, and heat loads which are different from design conditions. Tube fouling and plugged tubes may also contribute to this difficulty. Performance testing and analysis of heat exchanger alone does not provide information relative to structural integrity of remaining tubes. This document is provided to complement the existing performance testing with a periodic inservice inspection program

  7. High-temperature heat exchanger design - A review

    The introduction of high-temperature heat exchangers substantially effects the performance and efficiency of operating and new power and processing plants. The availability of high-temperature materials and the development of reliable design methods are prerequisite to their use in high technology system. High-temperature recuperators are in the development stage. Their design is a complex process due to radiation heat transfer and the still insufficiently explored effects of surface fouling. It is believed that the interpenetrating continua method will, in the first approximation, model real conditions encountered in these heat exchangers. Experience gained in high-temperature regenerator design has yielded data and relevant equations on which information from the literature will be presented in this paper. High-temperature heat exchanger design is greatly upgraded if mathematical modeling is used i.e. mathematical methods are developed and subsequently experimentally verified on the basis of present-day know-how and state-of-the-art computers

  8. Wind sensitivity of the inter-ocean heat exchange

    Corell, Hanna; Nilsson, Johan; Döös, Kristofer; Broström, Göran

    2009-01-01

    An idealised two-basin model is used to investigate the impact of the wind field on the heat exchange between the ocean basins. The scalar potential of the divergent component of the horizontal heat flux is computed, which gives a 'coarse-grained' image of the surface heat flux that captures the large-scale structure of the horizontal heat transport. Further the non-divergent component is examined, as well as the meridional heat transport and the temperature–latitude overturning stream functi...

  9. Wind sensitivity of the inter-ocean heat exchange

    Corell, Hanna; Nilsson, Johan; Döös, Kristofer; Broström, Göran

    2009-01-01

    An idealised two-basin model is used to investigate the impact of the wind field on the heat exchange between the ocean basins. The scalar potential of the divergent component of the horizontal heat flux is computed, which gives a ‘coarse-grained’ image of the surface heat flux that captures the large-scale structure of the horizontal heat transport. Further the non-divergent component is examined, as well as the meridional heat transport and the temperature–latitude overturning stream functi...

  10. Energy and capital targets for constrained heat exchanger networks

    L.C. Santos

    2000-12-01

    Full Text Available A new procedure for estimating area and capital cost targets of constrained heat exchanger networks is presented. The method allows for match constrained networks and exchangers with more than one tube pass. The procedure is based on modelling the problem as a non-linear formulation where the forbidden exchanger matches are included as constraints and the temperature difference correction due to multipass exchangers is included in the model. The difficulty of converging to a solution due to the additional non-linear constraints imposed by the multipass exchangers required the use of a two-level approach: at the inner level, the area targets for simple pass exchangers are obtained, and at the outer level the temperature difference required for multipass exchangers are computed and fed back to the inner level. The procedure is repeated until an appropriate tolerance between two iterations was achieved. A comparison between the estimated exchanger areas and costs estimated by the new procedure and the area and costs obtained from the final heat exchanger design shows a very good agreement.

  11. Compact interior heat exchangers for CO{sub 2} mobile heat pumping systems

    Hafner, Armin

    2003-07-01

    The natural refrigerant carbon dioxide (CO{sub 2}) offers new possibilities for design of flexible, efficient and environmentally safe mobile heat pumping systems. As high-efficient car engines with less waste heat are developed, extra heating of the passenger compartment is needed in the cold season. A reversible transcritical CO{sub 2} system with gliding temperature heat rejection can give high air delivery temperature which results in rapid heating of the passenger compartment and rapid defogging or defrosting of windows. When operated in cooling mode, the efficiency of transcritical CO{sub 2} systems is higher compared to common (HFC) air conditioning systems, at most dominant operating conditions. Several issues were identified for the design of compact interior heat exchangers for automotive reversible CO{sub 2} heat pumping systems. Among theses issues are: (1) Refrigerant flow distribution, (2) Heat exchanger fluid flow circuiting, (3) Air temperature uniformity downstream of the heat exchanger, (4) Minimization of temperature approach, (5) Windshield flash fogging due to retained water inside the heat exchanger, (6) Internal beat conduction in heating mode operation, and (7) Refrigerant side pressure drop In order to provide a basis for understanding these issues, the author developed a calculation model and set up a test facility and investigated different prototype heat exchangers experimentally.

  12. Laminar fluid flow and heat transfer in a fin-tube heat exchanger with vortex generators

    Yanagihara, J.I.; Rodriques, R. Jr. [Polytechnic School of Univ. of Sao Paolo, Sao Paolo (Brazil). Dept. of Mechanical Engineering

    1996-12-31

    Development of heat transfer enhancement techniques for fin-tube heat exchangers has great importance in industry. In recent years, heat transfer augmentation by vortex generators has been considered for use in plate fin-tube heat exchangers. The present work describes a numerical investigation about the influence of delta winglet pairs of vortex generators on the flow structure and heat transfer of a plate fin-tube channel. The Navier-Stokes and Energy equations are solved by the finite volume method using a boundary-fitted coordinate system. The influence of vortex generators parameters such as position, angle of attack and aspect ratio were investigated. Local and global influences of vortex generators in heat transfer and flow losses were analyzed by comparison with a model using smooth fin. The results indicate great advantages of this type of geometry for application in plate fin-tube heat exchangers, in terms of large heat transfer enhancement and small pressure loss penalty. (author)

  13. Performance restoration technique developed for fouled heat exchanger

    Heat exchanger (HE) is one of the important equipments for satisfactory operation of installations like power plants, chemical plants, particle accelerators etc. The performance of HE depends on the material of construction (MOC) as well as good engineering practice adopted, and performance deterioration takes place due to surface deposition, making it a thermal insulator. In Indus Electron Synchrotron Accelerator, RRCAT, Plate Heat Exchangers (PHEs, heat exchangers having corrugated plates) are installed to dissipate heat from primary process coolant (deionised water) to secondary coolant (soft water) through parallel SS 316 corrugated plates. For achieving precise electron beam stability, the process cooling water temperature is maintained within ±1°C. Deposition of scale takes place in secondary coolant side as Saturation Index (SI) of cooling tower water is maintained at + 0.5 to have mild scale of calcium carbonate on pipeline and other wetted parts of the loop to prevent corrosion. This forms scale in HE and affects the heat transfer coefficient, requiring routine cleaning to remove scale of PHE to have designed performance. A hard and sticky scale was formed in PHE and the problem could not be addressed by standard reconditioning techniques available. Samples were systematically analysed in our laboratory to know the content of the deposit so that suitable method could be applied to remove the foulants to clean the HE. About 48.52 % of deposit was found to be acid soluble, whereas approximately 44.14% of deposit dissolves in alkali. The remaining residue (7.43%), neither dissolved in acid nor in alkali, may be mostly dust. The cleaning solution was formulated in-house to remove the scale from heat exchanger plates. Sulfamic acid solution at 80 °C was used to decompose calcium scale to liberate carbon dioxide, whereas sodium hydroxide solution was used to remove remaining scale. The performance of the heat exchangers was restored. The developed formulation is believed to be most effective for all heat exchangers used in water application. (author)

  14. Plastic heat exchangers: a state-of-the-art review

    Miller, D; Holtz, R E; Koopman, R N; Marciniak, T J; MacFarlane, D R

    1979-07-01

    Significant increases in energy utilization efficiency can be achieved through the recovery of low-temperature rejected heat. This energy conserving possibility provides incentive for the development of heat exchangers which could be employed in applications where conventional units cannot be used. Some unique anticorrosion and nonstick characteristics of plastics make this material very attractive for heat recovery where condensation, especially sulfuric acid, and fouling occur. Some of the unique characteristics of plastics led to the commercial success of DuPont's heat exchangers utilizing polytetrafluoroethylene (trade name Teflon) tubes. Attributes which were exploited in this application were the extreme chemical inertness of the material and its flexibility, which enabled utilization in odd-shaped spaces. The wide variety of polymeric materials available ensures chemical inertness for almost any application. Lower cost, compoundability with fillers to improve thermal/mechanical properties, and versatile fabrication methods are incentives for many uses. Also, since many plastics resist corrosion, they can be employed in lower temperature applications (< 436 K), where condensation can occur and metal units have been unable to function. It is clear that if application and design can be merged to produce a cost-effective alternate to present methods of handling low-temperature rejected heat, then there is significant incentive for plastic heat exchangers, to replace traditional metallic heat exchangers or to be used in services where metals are totally unsuited.

  15. Water Vapor and Heat Exchanges over Lakes

    Vercauteren, Nikki

    2011-01-01

    Quantifying the interaction of the atmosphere and water surfaces is of great importance for water resources management, climate studies of ocean-atmosphere exchange and regional climate in coastal areas. Atmospheric dynamics over water surfaces have generally received less attention than land-atmosphere interactions due to difficulties in operating field studies. In this research we are trying to improve the physical parameterizations of lake-atmosphe...

  16. Heat recovery from Diesel exhausts by means of a fluidized bed heat exchanger

    Carlomagno, G.M.; Festa, R.; Massimilla, L.

    1983-01-01

    A fluidized bed heat exchanger, equipped with a specially designed manifold gas distributor, is conveniently used to recover heat from exhausts of a 60 kW Diesel engine. The sensitivity of the bed to tube heat transfer coefficient to soot fouling and the sensitivity of the exchanger efficiency to variations of such coefficients are analyzed. Procedures for in-operation tube defouling are described.

  17. Numerical simulation of shell-side heat transfer and flow of natural circulation heat exchanger

    In order to analyze the influence on the heat transfer and flow characteristics of the heat exchanger model of different solving models and structures, a variety of transformation to the model equivalent for the heat exchanger was studied. In this paper, Fluent software was used to simulate the temperature-field and flow-field of the equivalent model, and investigate its heat-transferring and flow characteristics. Through comparative analysis of the distribution of temperature-field and flow-field for different models, the heat-transferring process and natural convection situation of heat exchanger were deeply understood. The results show that the temperature difference between the inside and outside of the natural circulation heat exchanger tubes is larger and the flow is more complex, so the turbulence model is the more reasonable choice. Asymmetry of tubes position makes the flow and heat transfer of the fluid on both sides to be dissymmetrical and makes the fluid interaction, and increases the role of natural convection. The complex structure of heat exchanger makes the flow and heat transfer of the fluid on both sides to be irregular to some extent when straight tubes into C-bent are transformed, and all these make the turbulence intensity increase and improve the effect of heat transfer. (authors)

  18. Unique double-pipe internal heat exchanger for MAC

    Takeuchi, H.; Gyoeroeg, T.; Huenemoerder, W. [DENSO Automotive Deutschland GmbH (Germany)

    2007-07-01

    In automotive air conditioning, balancing comfort and fuel efficiency is very important. Vehicle cooling performance improvements during initial cool down has reached a limit in recent years, especially in very hot regions. We have addressed this issue by developing a unique double-pipe internal heat exchanger. In the main discourse, we first clarify the concept of the internal heat exchanger system (IHE) using the temperature difference between the high and low pressure pipes in the refrigeration cycle, and propose the application of an efficient internal heat exchanger. This unique double-pipe internal heat exchanger can easily be manufactured by inserting the inner pipe into the outer pipe and by fixing the pipes at both ends. The length of the IHE is 400mm(for example). This double-pipe internal heat exchanger can increase cooling performance by 5-12% at the equivalent power consumption levels in the same space as a conventional front air conditioner system. The result is an increase in the coefficient of performance (COP) by 10-15% at equivalent cooling performance. (orig.)

  19. Compact heat exchanger technologies for the HTRs recuperator application

    Modern HTR nuclear power plants which are now under development (projects GT-MHR, PBMR) are based on the direct cycle concept. This concept leads to a more important efficiency compared to the steam cycle but requires the use of high performance components such as an helium/helium heat exchanger called recuperator to guarantee the cycle efficiency. Using this concept, a net plant efficiency of around 50% can be achieved in the case of an electricity generating plant. As geometric constraints are particularly important for such a gas reactor to limit the size of the primary vessels, compact heat exchangers operating at high pressure and high temperature are attractive potential solutions for the recuperator application. In this frame, Framatome and CEA have reviewed the various technologies of compact heat exchangers used in industry. The first part of the paper will give a short description of the heat exchangers technologies and their ranges of application. In a second part, a selection of potential compact heat exchangers technologies are proposed for the recuperator application. This selection will be based upon their capabilities to cope with the operating conditions parameters (pressure, temperature, flow rate) and with other parameters such as fouling, corrosion, compactness, weight, maintenance and reliability. (author)

  20. Experimental investigation of water sprayed finned heat exchanger tube bundles

    Experimental investigations have been made to study the performance of two finned tube-bundle heat exchangers (FORGO type) when wetted by water sprays. The heat exchangers are designed to cool water in a dry cooling tower. The test-elements had a frontal area of 1 m2. The water sprays were created by 20 nozzles, 200 mm in front of the heat exchangers. Air velocities at the inlet of the coolers were in the range 0,8 m/s to 12 m/s and initial temperature differences ITD reached 45 degrees C. The test facility was designed to determine the combined latent and sensible heat fluxes in the wetted heat exchanger, the airside pressure drop and the air humidity and temperature at the exchanger inlet and outlet, and to measure the weight of the water wetting the cooler's surface. The sprayed test elements were investigated in different positions, but most of the experiments were carried out in the position with the fins horizontal