WorldWideScience

Sample records for shell-and-tube heat exchanger

  1. Effect of segmental baffles on the shell-and-tube heat exchanger effectiveness

    OpenAIRE

    Vuki? Mi?a V.; Tomi? Mladen A.; Živkovi? Predrag M.; Ili? Gradimir S.

    2014-01-01

    In this paper, the results of the experimental investigations of fluid flow and heat transfer in laboratory experimental shell-and-tube heat exchanger are presented. Shell-and-tube heat exchanger is with one pass of warm water on the shell side and two passes of cool water in tube bundle. Shell-and-tube heat exchanger is with 24x2 tubes (U-tube) in triangle layout. During each experimental run, the pressure drops and the fluid temperatures on shell side, al...

  2. Design and economic optimization of shell and tube heat exchangers using Artificial Bee Colony (ABC) algorithm

    International Nuclear Information System (INIS)

    Highlights: ? Artificial Bee Colony for shell and tube heat exchanger optimization is used. ? The total cost is minimized by varying design variables. ? This new approach can be applied for optimization of heat exchangers. - Abstract: In this study, a new shell and tube heat exchanger optimization design approach is developed. Artificial Bee Colony (ABC) has been applied to minimize the total cost of the equipment including capital investment and the sum of discounted annual energy expenditures related to pumping of shell and tube heat exchanger by varying various design variables such as tube length, tube outer diameter, pitch size, baffle spacing, etc. Finally, the results are compared to those obtained by literature approaches. The obtained results indicate that Artificial Bee Colony (ABC) algorithm can be successfully applied for optimal design of shell and tube heat exchangers.

  3. Design and economic optimization of shell and tube heat exchangers using Artificial Bee Colony (ABC) algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Sencan Sahin, Arzu, E-mail: sencan@tef.sdu.edu.tr [Department of Mechanical Education, Technical Education Faculty, Sueleyman Demirel University, 32260 Isparta (Turkey); Kilic, Bayram, E-mail: bayramkilic@hotmail.com [Bucak Emin Guelmez Vocational School, Mehmet Akif Ersoy University, Bucak (Turkey); Kilic, Ulas, E-mail: ulaskilic@mehmetakif.edu.tr [Bucak Emin Guelmez Vocational School, Mehmet Akif Ersoy University, Bucak (Turkey)

    2011-10-15

    Highlights: {yields} Artificial Bee Colony for shell and tube heat exchanger optimization is used. {yields} The total cost is minimized by varying design variables. {yields} This new approach can be applied for optimization of heat exchangers. - Abstract: In this study, a new shell and tube heat exchanger optimization design approach is developed. Artificial Bee Colony (ABC) has been applied to minimize the total cost of the equipment including capital investment and the sum of discounted annual energy expenditures related to pumping of shell and tube heat exchanger by varying various design variables such as tube length, tube outer diameter, pitch size, baffle spacing, etc. Finally, the results are compared to those obtained by literature approaches. The obtained results indicate that Artificial Bee Colony (ABC) algorithm can be successfully applied for optimal design of shell and tube heat exchangers.

  4. A SIMPLIFIED PREDICTIVE CONTROL FOR A SHELL AND TUBE HEAT EXCHANGER

    OpenAIRE

    S.RAJASEKARAN,; Dr.T.KANNADASAN

    2010-01-01

    In this paper a simplified predictive control design is applied for the controlling a temperature of a fluid stream using the shell and tube heat exchanger. The predictive control design based on Dynamic Matrix Control (DMC) involves the complicated inversion computation for higher dimensional matrix. Using DMC for controlling a temperature of the shell and tube heat exchanger, there is still a need for optimization of conversation of energy. The simplified predictive control is based on DMC,...

  5. Simulasi Performansi Heat Exchanger Type Shell And Tube Dengan Double Segmental Baffle Terhadap Helical Baffle

    Directory of Open Access Journals (Sweden)

    Anggareza Adhitiya

    2013-12-01

    Full Text Available Pada heat exchanger type shell and tube, selain pengunaan baffle yang bertujuan untuk mengarahkan aliran pada sisi shell juga bertujuan untuk meningkatkan laju perpindahan panas yang terjadi antara fluida kerja dengan cara menimbulkan olakan aliran di sisi shell. Olakan –olakan ini nantinya yang akan mempengaruhi besarnya perpindahan panas dalam sisi shell. Pada kondisi standart baffle yang digunakan pada tugas akhir ini adalah jenis double segmental. Double segmental baffle mempunyai tingkat pressure drop yang cukup besar. sehingga perlu di ganti dengan baffle jenis helical yang mempunyai pressure drop yang lebih kecil. Untuk mengetahui performansi heat exchanger maka perlu adanya penelitian lebih lanjut simulasi numerik pada baffle heat exchanger type shell and tube. agar didapat pengaruh jenis baffle yang di gunakan terhadap karakteristik aliran dan perpindahan panas dari suatu heat exchanger type shell and tube. Tugas Akhir ini menggunakan program GAMBIT 2.4.6 untuk penggambaran geometri secara tiga dimensi dan program FLUENT 6.3.26 untuk mensimulasi aliran yang terjadi di dalam shell and tube heat exchanger. Pada software FLUENT 6.3.26 digunakan permodelan 3D Steady Flow dengan  memilih k – Epsilon RNG sebagai turbulence modeling serta mengaktifkan persamaan energy. Penelitian dilakukan dengan menggunakan dua variasi heat exchanger dengan jenis baffle yang berbeda .Heat exchanger type shell and tube dengan jenis double segmental baffle mempunyai nilai koefisien konveksi rata-rata = 218.408 w/m2.K. Sedangkan untuk helical baffle sebesar = 171.122 w/m2.K. Temperature outflow pada heat exchanger type shell and tube dengan jenis double segmental baffle = 306.7450K. Di ikuti dengan pressure drop sebesar = 2100 pascal Sedangkan untuk helical baffle mempunyai temperatur outflow sebesar = 307.0220K dengan pressure drop sebesar = 500 pascal.

  6. A SIMPLIFIED PREDICTIVE CONTROL FOR A SHELL AND TUBE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    S.RAJASEKARAN,

    2010-12-01

    Full Text Available In this paper a simplified predictive control design is applied for the controlling a temperature of a fluid stream using the shell and tube heat exchanger. The predictive control design based on Dynamic Matrix Control (DMC involves the complicated inversion computation for higher dimensional matrix. Using DMC for controlling a temperature of the shell and tube heat exchanger, there is still a need for optimization of conversation of energy. The simplified predictive control is based on DMC, which reduces the computational complexity by exploring its internal mechanism. Finally the simplified Predictive Control is applied to shell and tube heat exchanger and the results of this control algorithm compared with the conventional PID controller and DMC based PID Controllers.

  7. Comprehensive approach to avoid vibration and fretting in shell-and-tube heat exchangers

    International Nuclear Information System (INIS)

    This paper outlines a comprehensive approach to avoid vibration and fretting-wear problems in shell-and-tube heat exchangers. The approach consists of: avoiding large vibration amplitudes due to excitation mechanisms such as fluid-elastic instability and periodic wake shedding resonace while making sure that low amplitude vibrations due to other sources do not cause excessive tube damage. 15 refs

  8. On the optimal design of shell and tube heat exchanger for nuclear applications

    International Nuclear Information System (INIS)

    In nuclear industry, heat exchanger plays an important role in the transfer of heat from reactor core, where heat is generated, to the ultimate heat sink UHS, and then is dissipated. The actual design of heat exchanger not only relies on thermohydraulic considerations but also on economical aspects and radiological safety considerations. For optimal design of heat exchanger for a specific application a compromise should be made for determining the important factors affecting the design. In this paper, an optimization model is presented for shell and tube heat exchanger, which could be considered as a tool for computer aided design. A case study is presented to explore the present adopted model. 3 figs

  9. Design of portable shell and tube heat exchanger for a solar powered water distiller

    International Nuclear Information System (INIS)

    Full text: This study presents theoretical considerations and results of a portable shell and tube heat exchanger in a solar water distiller system. The device is composed of glass heat exchanger which served as a condenser for vapor condensing which were produced in black paint solar absorber. It is also composed of a tank for salt water source and a tank for produced distilled water. Shell and tube was designed and simulated using an implicit numerical scheme. Simulation results showed that accumulated mass water greatly depended on the inlet vapor temperature and volume, heat exchanger material, coolant water temperature and volume. Thus, changing the material from stainless steel to glass in the same condition (vapor temperature, vapor volume, coolant temperature and coolant volume); results comes to an acceptable range. These inexpensive shell and tube heat exchangers with 500 mm length, 19 mm Tube diameter, 100 mm and 200 mm Shell diameters respectively for stainless steel and Pyrex Glass permitted to produce 40 Liter/ day distilled water from vapor with 378 K inlet temperature in atmosphere pressure. If inlet pressure increases, vapor temperature will decline and thereupon, heat exchanger efficiency tangibility will increase. (author)

  10. Performance Analysis of Shell and Tube Heat Exchanger Using Miscible System

    Directory of Open Access Journals (Sweden)

    M. Thirumarimurugan

    2008-01-01

    Full Text Available An experimental investigation on comparative heat transfer study on a solvent and solution were made using 1-1 Shell and Tube Heat Exchanger. Steam is the hot fluid, whereas Water and Acetic acid-Water miscible solution serves as cold fluid. A series of runs were made between steam and water, steam and Acetic acid solution. In addition to, the volume fraction of Acetic acid was varied and the experiment was held. The flow rate of the cold fluid is maintained from 120 to 720 lph and the volume fraction of Acetic acid is varied from 10-50%. Experimental results such as exchanger effectiveness, overall heat transfer coefficients were calculated. A mathematical model was developed for the outlet temperatures of both the Shell and Tube side fluids and was simulated using MATLAB program. The model was compared with the experimental findings and found to be valid.

  11. Shell side CFD analysis of a small shell-and-tube heat exchanger

    International Nuclear Information System (INIS)

    The shell side design of a shell-and-tube heat exchanger; in particular the baffle spacing, baffle cut and shell diameter dependencies of the heat transfer coefficient and the pressure drop are investigated by numerically modeling a small heat exchanger. The flow and temperature fields inside the shell are resolved using a commercial CFD package. A set of CFD simulations is performed for a single shell and single tube pass heat exchanger with a variable number of baffles and turbulent flow. The results are observed to be sensitive to the turbulence model selection. The best turbulence model among the ones considered is determined by comparing the CFD results of heat transfer coefficient, outlet temperature and pressure drop with the Bell-Delaware method results. For two baffle cut values, the effect of the baffle spacing to shell diameter ratio on the heat exchanger performance is investigated by varying flow rate.

  12. PARAMETER IDENTIFICATION AND CONTROL OF A SHELL AND TUBE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Arun Sivaram

    2013-04-01

    Full Text Available In this work, we discuss about the process parameter identification and control of a Counter Flow Shell and Tube Heat Exchanger using Recursive Least Square Algorithm(RLS and Self Turning controller respectively. Here, we model the process with the help of experimental data using RLS Algorithm. Then an ST controller which comes under adaptive controller is used to control the process.With the help of STC, the tube outlet temperature is controlled by adjusting the flow of cold fluid through the shell side. In conventional way a PID controller is also tuned, and the performance is compared with STC using MATLAB simulations.

  13. Designing shell-and-tube heat exchangers with velocity dependent fouling

    Energy Technology Data Exchange (ETDEWEB)

    Butterworth, D. [AEA Technology Engineering Software, Abingdon, Oxon (United Kingdom)

    2000-08-01

    This paper uses the 'design-envelope' concept to explore the effect of velocity dependent fouling on the design of a shell-and-tube exchanger. A number of tube side fouling scenarios are explored including constant fouling, a step change in fouling at a critical velocity and a continuous variation in fouling with velocity. It is shown that the inclusion of the velocity dependence has a profound effect on the final design result and therefore on the design strategy. The effect of fouling both on heat transfer and pressure drop is considered. Cases are illustrated where there are two separate design envelopes, one for the fouled exchanger and one for the clean exchanger. Conclusions are drawn about the implications which this has on the specification, design and operation of exchangers. (au)

  14. CACHE: an extended BASIC program which computes the performance of shell and tube heat exchangers

    International Nuclear Information System (INIS)

    An extended BASIC program, CACHE, has been written to calculate steady state heat exchange rates in the core auxiliary heat exchangers, (CAHE), designed to remove afterheat from High-Temperature Gas-Cooled Reactors (HTGR). Computationally, these are unbaffled counterflow shell and tube heat exchangers. The computational method is straightforward. The exchanger is subdivided into a user-selected number of lengthwise segments; heat exchange in each segment is calculated in sequence and summed. The program takes the temperature dependencies of all thermal conductivities, viscosities and heat capacities into account providing these are expressed algebraically. CACHE is easily adapted to compute steady state heat exchange rates in any unbaffled counterflow exchanger. As now used, CACHE calculates heat removal by liquid weight from high-temperature helium and helium mixed with nitrogen, oxygen and carbon monoxide. A second program, FULTN, is described. FULTN computes the geometrical parameters required as input to CACHE. As reported herein, FULTN computes the internal dimensions of the Fulton Station CAHE. The two programs are chained to operate as one. Complete user information is supplied. The basic equations, variable lists, annotated program lists, and sample outputs with explanatory notes are included

  15. Comparison of shell-and-tube with plate heat exchangers for the use in low-temperature organic Rankine cycles

    International Nuclear Information System (INIS)

    Highlights: • Binary cycles for low-temperature heat sources are investigated. • Shell-and-tube and plate heat exchangers are modeled. • System optimization of the cycle variables and heat exchanger geometry. • ORCs with plate heat exchangers obtain in most cases higher efficiencies. - Abstract: Organic Rankine cycles (ORCs) can be used for electricity production from low-temperature heat sources. These ORCs are often designed based on experience, but this experience will not always lead to the most optimal configuration. The ultimate goal is to design ORCs by performing a system optimization. In such an optimization, the configuration of the components and the cycle parameters (temperatures, pressures, mass flow rate) are optimized together to obtain the optimal configuration of power plant and components. In this paper, the configuration of plate heat exchangers or shell-and-tube heat exchangers is optimized together with the cycle configuration. In this way every heat exchanger has the optimum allocation of heat exchanger surface, pressure drop and pinch-point-temperature difference for the given boundary conditions. ORCs with plate heat exchangers perform mostly better than ORCs with shell-and-tube heat exchangers, but one disadvantage of plate heat exchangers is that the geometry of both sides is the same, which can result in an inefficient heat exchanger. It is also shown that especially the cooling-fluid inlet temperature and mass flow have a strong influence on the performance of the power plant

  16. Experimental performance investigation of a shell and tube heat exchanger by exergy based sensitivity analysis

    Science.gov (United States)

    Mert, Suha Orçun; Reis, Alper

    2015-07-01

    Heat exchangers are used extensively in many industrial branches, primarily so in chemical and energy sectors. They also have important household usage as they are used in central and local heating systems. Any betterment on heat exchangers will serve greatly in preserving our already dwindling and costly energy resources. Strong approach of exergy analysis -which helps find out where the first steps should be taken in determining sources of inefficiencies and how to remedy them- will be used as a means to this end. The maximum useful work that can be harnessed from systems relationships with its environment is defined as exergy. In this study, the inlet and outlet flow rate values of fluids and temperature of hot stream both on shell and tube parts of a shell-tube heat exchange system have been inspected and their effects on the exergy efficiency of this thermal system have been analyzed. It is seen that the combination of high tube side inlet temperature, low shell side flow rate and high tube side flow rate are found to be the optimum for this experimental system with reaching 75, 65, and 32 % efficiencies respectively. Selecting operating conditions suitable to this behavior will help to increase the overall efficiency of shell-tube heat exchange systems and cause an increment in energy conservation.

  17. CFD Analysis of Shell and Tube Heat Exchanger to Study the Effect of Baffle Cut on the Pressure Drop

    OpenAIRE

    Avinash D Jadhav; Tushar A Koli

    2014-01-01

    The shell side design of a shell and tube heat exchanger; in particular the baffle spacing, baffle cut and shell diameter dependencies of the heat transfer coefficient and the pressure drop are investigated by numerically modelling a small heat exchanger. The flow and temperature fields inside the shell are resolved using a commercial CFD package. A set of CFD simulations is performed for a single shell and single tube pass heat exchanger with a variable number of baffles and turb...

  18. Optimum configuration of shell-and-tube heat exchangers for the use in low-temperature organic Rankine cycles

    OpenAIRE

    Walraven, Daniël; Laenen, Ben; D'haeseleer, William

    2014-01-01

    In this paper, a first step towards a system optimization of organic Rankine cycles (ORCs) is taken by optimizing the cycle parameters together with the configuration of shell-and-tube heat exchangers. In this way every heat exchanger has the optimum allocation of heat-exchanger surface, pressure drop and pinch-point-temperature difference for the given boundary conditions. Different tube configurations are investigated in this paper. It is concluded that the 30°-tube configurations should be...

  19. Optimum configuration of shell-and-tube heat exchangers for the use in low-temperature organic Rankine cycles

    International Nuclear Information System (INIS)

    Highlights: • Binary cycles for low-temperature heat sources are investigated. • Shell-and-tube heat exchangers are modeled. • System optimization of the cycle variables and shell-and-tube geometry. • 30°-tube configuration is optimal for single-phase heat exchangers. • 60°-tube configuration is optimal for two-phase heat exchangers. - Abstract: In this paper, a first step towards a system optimization of organic Rankine cycles (ORCs) is taken by optimizing the cycle parameters together with the configuration of shell-and-tube heat exchangers. In this way every heat exchanger has the optimum allocation of heat-exchanger surface, pressure drop and pinch-point-temperature difference for the given boundary conditions. Different tube configurations are investigated in this paper. It is concluded that the 30°-tube configurations should be used for the single-phase heat exchangers and the 60°-tube configuration for the two-phase heat exchangers. The performance of subcritical cycles can be strongly improved by adding a second pressure level. Recuperated cycles are only useful when the temperature of the heat source after the ORC should be relatively high

  20. Experimental Study on Heat Transfer Characteristics of Shell and Tube Heat Exchanger Using Hitran Wire Matrix Turbulators As Tube Inserts.

    Directory of Open Access Journals (Sweden)

    Manoj

    2014-06-01

    Full Text Available Shell and tube heat exchangers are extensively used in boilers, oil coolers, pre-heaters, condensers etc. They are also having special importance in process application as well as refrigeration and air conditioning industries. The present paper emphasizes on heat transfer characteristics of shell and tube heat exchangers with the aid of hiTRAN wire matrix inserts is been studied. Investigations were made on effect of mass flow rate of water on heat transfer characteristics in case of plain tube without inserts. When hiTRAN wire matrix tube inserts are used, which effectively increases the turbulence of tube side flow due to the hydrodynamic and thermal agitation of boundary layer in turns increases additional pressure drop is available in the system. This results in increase in the wall shear, reduced wall temperature which enhances substantial increase in tube side heat transfer characteristics. Heat and cooling processes streams is a standard operation in many industries this operation is often performed in heat exchangers where the heated or cold fluid flows under laminar conditions inside the tubes the mechanisms of under those flow conditions are complex poorly understood since they can involve both forced and natural convection making accurate prediction for heat exchanger. Heat transfer in laminar flow regimes is low by default but can be greatly increased by the use of passive heat transfer enhancement such as tube inserts. The present analysis the hiTRAN wire matrix turbulators were used and increased heat transfer characteristics as expected outcomes.

  1. Design of shell-and-tube heat exchangers when the fouling depends on local temperature and velocity

    Energy Technology Data Exchange (ETDEWEB)

    Butterworth, D. [HTFS, Hyprotech, Didcot (United Kingdom)

    2002-07-01

    Shell-and-tube heat exchangers are normally designed on the basis of a uniform and constant fouling resistance that is specified in advance by the exchanger user. The design process is then one of determining the best exchanger that will achieve the thermal duty within the specified pressure drop constraints. It has been shown in previous papers [Designing shell-and-tube heat exchangers with velocity-dependant fouling, 34th US national Heat Transfer Conference, 20-22 August 2000, Pittsburg, PA; Designing shell-and-tube heat exchangers with velocity-dependant fouling, 2nd Int. Conf. on Petroleum and Gas Phase Behavior and Fouling, 27-31 August 2000, Copenhagen] that this approach can be extended to the design of exchangers where the design fouling resistance depends on velocity. The current paper briefly reviews the main findings of the previous papers and goes on to treat the case where the fouling depends also on the local temperatures. The Ebert-Panchal [Analysis of Exxon crude-oil, slip-stream coking data, Engineering Foundation Conference on Fouling Mitigation of Heat Exchangers, 18-23 June 1995, California] form of fouling rate equation is used to evaluate this fouling dependence. When allowing for temperature effects, it becomes difficult to divorce the design from the way the exchanger will be operated up to the point when the design fouling is achieved. However, rational ways of separating the design from the operation are proposed. (author)

  2. Optimization of shell-and-tube heat exchangers conforming to TEMA standards with designs motivated by constructal theory

    International Nuclear Information System (INIS)

    Highlights: • A design method of heat exchangers motivated by constructal theory is proposed. • A genetic algorithm is applied and the TEMA standards are rigorously followed. • Three cases are studied to illustrate the advantage of the proposed design method. • The design method will reduce the total cost compared to two other methods. - Abstract: A modified optimization design approach motivated by constructal theory is proposed for shell-and-tube heat exchangers in the present paper. In this method, a shell-and-tube heat exchanger is divided into several in-series heat exchangers. The Tubular Exchanger Manufacturers Association (TEMA) standards are rigorously followed for all design parameters. The total cost of the whole shell-and-tube heat exchanger is set as the objective function, including the investment cost for initial manufacture and the operational cost involving the power consumption to overcome the frictional pressure loss. A genetic algorithm is applied to minimize the cost function by adjusting parameters such as the tube and shell diameters, tube length and tube arrangement. Three cases are studied which indicate that the modified design approach can significantly reduce the total cost compared to the original design method and traditional genetic algorithm design method

  3. Two-phase experimental heat transfer studies on a water-diesel system in a shell and tube heat exchanger

    OpenAIRE

    V. Alagesan; Sundaram, S

    2012-01-01

    Two-phase heat transfer involving two immiscible systems is gaining importance in petrochemical and allied industries. Varying compositions of diesel and water were experimentally studied in a 1:2 shell and tube heat exchanger. The data on pure water and diesel were fitted to an equation of the form. h1? = a NmRe.The two-phase multiplier, ? L, was related to the Lockhart Martinelli (L-M) parameter, ?tt², using the two-phase data and a correlation ? L = b+c(?tt²)+d/(&#...

  4. Shell side numerical analysis of a shell and tube heat exchanger considering the effects of baffle inclination angle on fluid flow using CFD

    OpenAIRE

    Raj Karuppa Thundil R.; Ganne Srikanth

    2012-01-01

    In this present study, attempts were made to investigate the impacts of various baffle inclination angles on fluid flow and the heat transfer characteristics of a shell-and-tube heat exchanger for three different baffle inclination angles namely 0°,10° and 20°. The simulation results for various shell and tube heat exchangers, one with segmental baffles perpendicular to fluid flow and two with segmental baffles inclined to the direction of fluid flow are compared for their performance. ...

  5. Validation of the method for determination of the thermal resistance of fouling in shell and tube heat exchangers

    International Nuclear Information System (INIS)

    Highlights: • Heat recovery in a heat exchanger network (HEN). • A novel method for on-line determination of the thermal resistance of fouling is presented. • Details are developed for shell and tube heat exchangers. • The method was validated and sensibility analysis was carried out. • Developed approach allows long-term monitoring of changes in the HEN efficiency. - Abstract: A novel method for on-line determination of the thermal resistance of fouling in shell and tube heat exchangers is presented. It can be applied under the condition that the data on pressure, temperature, mass flowrate and thermophysical properties of both heat-exchanging media are continuously available. The calculation algorithm for use in the novel method is robust and ensures reliable determination of the thermal resistance of fouling even if the operating parameters fluctuate. The method was validated using measurement data retrieved from the operation records of a heat exchanger network connected with a crude distillation unit rated 800 t/h. Sensibility analysis of the method was carried out and the calculated values of the thermal resistance of fouling were critically reviewed considering the results of qualitative evaluation of fouling layers in the exchangers inspected during plant overhaul

  6. Parametric study of gross flow maldistribution in a single-pass shell and tube heat exchanger in turbulent regime

    International Nuclear Information System (INIS)

    Highlights: • A potential means of reducing flow maldistribution in exchangers. • In turbulent flows, maldistribution is but only tube number. • A Gaussian function can also express flow maldistribution in the exchanger. -- Abstract: Uniform distribution of flow in tube bundle of shell and tube heat exchangers is an arbitrary assumption in conventional heat exchanger design. Nevertheless, in practice, flow maldistribution may be an inevitable occurrence which may have severe impacts on thermal and mechanical performance of heat exchangers i.e. fouling. The present models for flow maldistribution in the tube-side deal only with the maximum possible velocity deviation. Other flow maldistribution models propose and recommend the use of a probability distribution, e.g. Gaussian distribution. None of these, nevertheless, estimate quantitatively the number of tubes that suffer from flow maldistribution. This study presents a mathematical model for predicting gross flow maldistribution in the tube-side of a single-pass shell and tube heat exchanger. It can quantitatively estimate the magnitude of flow maldistribution and the number of tubes which have been affected. The validation of the resultant model has been confirmed when compared with similar study using computational fluid dynamics (CFD)

  7. CFD Analysis of Shell and Tube Heat Exchanger to Study the Effect of Baffle Cut on the Pressure Drop

    Directory of Open Access Journals (Sweden)

    Avinash D Jadhav

    2014-07-01

    Full Text Available The shell side design of a shell and tube heat exchanger; in particular the baffle spacing, baffle cut and shell diameter dependencies of the heat transfer coefficient and the pressure drop are investigated by numerically modelling a small heat exchanger. The flow and temperature fields inside the shell are resolved using a commercial CFD package. A set of CFD simulations is performed for a single shell and single tube pass heat exchanger with a variable number of baffles and turbulent flow. The results are observed to be sensitive to the turbulence model selection. The best turbulence model among the ones considered is determined by comparing the CFD results of heat transfer coefficient, outlet temperature and pressure drop with the Bell–Delaware method results. For two baffle cut values, the effect of the baffle spacing to shell diameter ratio on the heat exchanger performance is investigated by varying flow rate.

  8. A study on the development of fouling analysis technique for shell-and-tube heat exchangers

    International Nuclear Information System (INIS)

    Fouling of heat exchangers is generated by water-borne deposits, commonly known as foulants including particulate matter from the air, migrated corrosion produces; silt, clays, and sand suspended in water; organic contaminants; and boron based deposits in plants. The fouling is known to interfere with normal flow characteristics and reduce thermal efficiencies of heat exchangers. This paper describes the fouling analysis technique developed in this study which can analyze the thermal performance for heat exchangers and estimate the future fouling variations. To develop the fouling analysis technique for heat exchangers, fouling factor was introduced based on the ASME O and M codes and TEMA standards. For the purpose of verifying the fouling analysis technique, the fouling analyses were performed for four heat exchangers in several nuclear power plants; two residual heat removal heat exchangers of the residual heat removal system and two component cooling water heat exchangers of the component cooling water system

  9. Two-phase experimental heat transfer studies on a water-diesel system in a shell and tube heat exchanger

    Scientific Electronic Library Online (English)

    V., Alagesan; S., Sundaram.

    2012-06-01

    Full Text Available Two-phase heat transfer involving two immiscible systems is gaining importance in petrochemical and allied industries. Varying compositions of diesel and water were experimentally studied in a 1:2 shell and tube heat exchanger. The data on pure water and diesel were fitted to an equation of the form [...] . h1? = a NmRe.The two-phase multiplier, ? L, was related to the Lockhart Martinelli (L-M) parameter, ?tt², using the two-phase data and a correlation ? L = b+c(?tt²)+d/(?tt²)² was established. The two-phase heat transfer coefficient was calculated based on the coefficients 'a' and 'm' for pure diesel and pure water along with ?L and the L-M parameter. The calculated values of the two-phase heat transfer coefficient h2? based on pure diesel and pure water suggest that diesel is a better reference fluid since the average error is much smaller compared to pure water as reference.

  10. Two-phase experimental heat transfer studies on a water-diesel system in a shell and tube heat exchanger

    Directory of Open Access Journals (Sweden)

    V. Alagesan

    2012-06-01

    Full Text Available Two-phase heat transfer involving two immiscible systems is gaining importance in petrochemical and allied industries. Varying compositions of diesel and water were experimentally studied in a 1:2 shell and tube heat exchanger. The data on pure water and diesel were fitted to an equation of the form. h1? = a NmRe.The two-phase multiplier, ? L, was related to the Lockhart Martinelli (L-M parameter, ?tt², using the two-phase data and a correlation ? L = b+c(?tt²+d/(?tt²² was established. The two-phase heat transfer coefficient was calculated based on the coefficients 'a' and 'm' for pure diesel and pure water along with ?L and the L-M parameter. The calculated values of the two-phase heat transfer coefficient h2? based on pure diesel and pure water suggest that diesel is a better reference fluid since the average error is much smaller compared to pure water as reference.

  11. Design and Development of Shell and Tube Heat Exchanger for Harar Brewery Company Pasteurizer Application (Mechanical and Thermal Design

    Directory of Open Access Journals (Sweden)

    Dawit Bogale

    2014-10-01

    Full Text Available A heat exchanger is a device that is used to transfer thermal energy (enthalpy between two or more fluids, between a solid surface and a fluid, or between solid particulates and a fluid, at different temperatures and in thermal contact[1].From different types of heat exchangers the shell and tube heat exchangers with straight tubes and single pass is to be under study. Here the redesign takes place because of temperature fluctuation at the 9th zone of the pasteurizer in the Harar Brewery Company. Thermal and mechanical design is run in order to optimize the output temperature of the cold fluid at the last heat exchanger in which it is sprayed on the beer ready for customer use. In thermal design part geometry optimization is done through trial and error. And for Mechanical design part the natural frequency& vortex shedding of different components of heat exchangers are investigated through governing equations of vibrations under dynamic fluid with in tubes. Using computational fluid dynamics (CFD the heat transfer of the two fluid is investigated using FEM simulation software’s Gambit1.3 and Fluent 6.1and the performance of the STHEx determined in terms of variables such as pressure, temperature, flow rate, energy input/output, mass flow rate and mass transfer rate that are of particular interest in STHEx analysis.

  12. Impacto ecológico de los Intercambiadores de calor de tubo y coraza / Ecological impact of Shell and tube heat exchangers

    Scientific Electronic Library Online (English)

    Maida Bárbara, Reyes Rodríguez; Jorge Laureano, Moya Rodríguez; Oscar Miguel, Cruz Fonticiella.

    2015-04-01

    Full Text Available Los intercambiadores de calor de tubo y coraza son de los equipos más importantes en la industria. Su diseño termodinámico se basa en el coeficiente global de transferencia de calor y la caída de presión total. En 2007 se estableció una nueva propiedad termodinámica denominada "Entransía", que expre [...] sa la capacidad de un cuerpo de transferir calor. A la pérdida de esa capacidad se le denomina "Disipación de Entransía". Para evaluar el impacto ecológico de las máquinas térmicas, Angulo-Brown creó en 1991 la llamada función ecológica. En el presente trabajo se combinó la disipación de entransía con la función ecológica y se creó una nueva expresión para evaluar el impacto ambiental de los intercambiadores de calor. Se realizó además la optimización muti-objetivo de estos equipos. Fueron utilizadas como funciones objetivo la función ecológica y el costo. Para realizar la optimización se utilizó el método de los Algoritmos Genéticos. Abstract in english Shell and tube heat exchangers are ones the most important equipment in the industry. Their thermodynamic design is based on the global heat transference coefficient and the pressure drop. In 2007 was settled a new thermodynamic property denominated "Entransy", which expresses the capacity of a body [...] to transfer heat. The loss of this capacity is denominated "Entransy Dissipation". For evaluating the ecological impact of thermal machines, Angulo-Brown created in 1991 the "ecological function". In this paper the"entransy dissipation" and the ecological function were combined and a new expression for evaluating the ecological impact of shell and tube heat exchangers was created. A multi-objective optimization of this equipment wasalso realized. The ecological function and the cost wereused as objective functions. For carry out the optimization the method of the Genetic Algorithms was used.

  13. Plugging margin evaluation considering the fouling of shell-and-tube heat exchanger

    International Nuclear Information System (INIS)

    As operating time of heat exchangers progresses, fouling generated by water-borne deposits increases, number of tube plugging increases, and thermal performance decreases. The fouling and plugging of tubes are known to interfere with normal flow characteristics and reduce thermal efficiencies of heat exchangers. This paper describes the plugging margin evaluation method which can reflect the current fouling level developed in this study. To develop the plugging margin evaluation methods for heat exchangers, fouling factor was introduced based on the ASME O and M codes and TEMA standards. For the purpose of verifying the plugging margin evaluation methods, the fouling and plugging margin evaluations were performed for a component cooling heat exchanger in a nuclear power plant

  14. Vibration in shell and tube heat exchangers - prediction versus operation (Paper No. 003)

    International Nuclear Information System (INIS)

    The continued demand for improved performance of heat exchangers under serious limitations of cost and space, has led to designs that are more compact with increased flow rates. Though these changes have undoubtedly achieved the improved thermodynamic performance intended, they have at the same time made the heat exchanger tubes susceptible to flow induced vibration. Also, there has been a trend towards higher capacity heat exchangers having increased shell side flow velocities to improve the heat transfer. As a consequence, there has been a significant increase in the incidence of tube failures due to flow induced vibrations. Problems caused by flow induced vibrations like mechanical wear, fatigue failure, acoustic noise and mixing of shell side and tube side fluids are evaluated. (author). 2 figs., 2 tables, 10 refs

  15. Investigation of the effects of baffle orientation, baffle cut and fluid viscosity on shell side pressure drop and heat transfer coefficient in an e-type shell and tube heat exchanger

    OpenAIRE

    Mohammadi, Koorosh

    2011-01-01

    The commercial CFD code FLUENT is used to determine the effect of baffle orientation and baffle cut as well as viscosity of the working fluid on the shell-side heat transfer and pressure drop of a shell and tube heat exchanger. The shell and tube heat exchangers considered follow the TEMA standards. The investigation has been completed in three stages: 1. The shell and tube heat exchanger consists of 660 plain tubes with fixed outside diameter which are arranged in a triangular layout. Hor...

  16. Influence of Ionic Fluid in Counter flow in Shell and Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    N.D.Shirgire

    2014-07-01

    Full Text Available An Ionanofluids are a new and innovative class of heat transfer fluids which exhibit fascinating thermo physical properties compared to their base ionic liquids. In this paper (1-Butyl-3-methylimidazolium chloride (BmimCLionic fluid is used comparison with Distilled Water. Distilled Water is non Ionic form in nature, so, results using (BmimCLis Overall good efficient in heat transfer device, were obtained with experimental work results on thermal conductivity and heat capacity,. As compared to (BmimCL those of their base ionic liquids such as (mineral oils and ethylene glycol etc are less thermophysical properties . as coolants in heat exchanger are also used to access their feasibility and performance in heat transfer devices.

  17. Enhancement of Performance of Shell and Tube Heat Exchanger Using Pertinent Leakage Flow Between Baffle and Tube Bundles

    International Nuclear Information System (INIS)

    In this study, the effects of the leakage flow between the baffle and tube bundles on the performance of a shell and tube heat exchanger (STHE) were examined using the commercial software ANSYS FLUENT v.14. A computational fluid dynamics model was developed for a small STHE with five different cases for the ratio of the leakage cross-sectional area to the baffle cross-sectional area, ranging from 0 to 40%, in order to determine the optimum leakage flow corresponding to the maximum outlet temperature. Using fixed tube wall and inlet temperatures for the shell side of the STHE, the flow and temperature fields were calculated by increasing the Reynolds number from 4952 to 14858. The present results showed that the outlet temperature, pressure drop, and heat transfer coefficient were strongly affected by the leakage flow, as well as the Reynolds number. In contrast with a previous researchers finding that the leakage flow led to simultaneous decreases in the pressure drop and heat transfer rate, the present study found that the pertinent leakage flow provided momentum in the recirculation zone near the baffle plate and thus led to the maximum outlet temperature, a small pressure drop, and the highest heat transfer rate. The optimum leakage flow was shown in the case with a ratio of 20% among the five different cases.

  18. The modelling of particle build up in shell-and-tube heat exchangers due to process cooling water / Christiaan Jacob Ghyoot

    OpenAIRE

    Ghyoot, Christiaan Jacob

    2013-01-01

    Sasol Limited experiences extremely high particulate fouling rates inside shell-and-tube heat exchangers that utilize process cooling water. The water and foulants are obtained from various natural and process sources and have irregular fluid properties. The fouling eventually obstructs flow on the shell side of the heat exchanger to such an extent that the tube bundles have to be replaced every nine months. Sasol requested that certain aspects of this issue be addressed. To...

  19. Shell side numerical analysis of a shell and tube heat exchanger considering the effects of baffle inclination angle on fluid flow using CFD

    Directory of Open Access Journals (Sweden)

    Raj Karuppa Thundil R.

    2012-01-01

    Full Text Available In this present study, attempts were made to investigate the impacts of various baffle inclination angles on fluid flow and the heat transfer characteristics of a shell-and-tube heat exchanger for three different baffle inclination angles namely 0°,10° and 20°. The simulation results for various shell and tube heat exchangers, one with segmental baffles perpendicular to fluid flow and two with segmental baffles inclined to the direction of fluid flow are compared for their performance. The shell side design has been investigated numerically by modeling a small shell-and-tube heat exchanger. The study is concerned with a single shell and single side pass parallel flow heat exchanger. The flow and temperature fields inside the shell are studied using non-commercial CFD software tool ANSYS CFX 12.1. For a given baffle cut of 36 %, the heat exchanger performance is investigated by varying mass flow rate and baffle inclination angle. From the CFD simulation results, the shell side outlet temperature, pressure drop, recirculation near the baffles, optimal mass flow rate and the optimum baffle inclination angle for the given heat exchanger geometry are determined.

  20. Design Optimization of Shell and Tube Heat Exchanger by Vibration Analysis

    OpenAIRE

    S.H. Gawande; A. A Keste; L. G Navale; M. R. Nandgaonkar; V. J Sonawane; U. B Ubarhande

    2011-01-01

    In this paper a simplified approach to optimize the design of Shell Tube Heat Exchanger [STHE] by flow induced vibration analysis [FVA] is presented. The vibration analysis of STHE helps in achieving optimization in design by prevention of tube failure caused due to flow induced vibration. The main reason for tube failure due to flow induced vibration is increased size of STHE. It is found that in case of increased size of STHE, the surface area and number of tubes increases, thus the underst...

  1. Experimental determination of shell side heat transfer coefficient and pressure drop for an oil cooler shell-and-tube heat exchanger with three different tube bundles

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, R.; Hosseini-Ghaffar, A. [Faculty of Mechanical Engineering Amirkabir University of Technology, 424 Hafez Avenue, P.O. Box 15875-4413, Tehran (Iran); Soltani, M. [Mechanical Systems Department, Niroo research Institute (NRI), End of Pounak Bakhtari Blvd., P.O. Box 14665-517, Shahrak Gharb, Tehran (Iran)

    2007-04-15

    In this paper, the heat transfer coefficient and pressure drop on the shell side of a shell-and-tube heat exchanger have been experimentally obtained for three different types of copper tubes (smooth, corrugated and with micro-fins). Also, experimental data has been compared with theoretical data available. Correlations have been suggested for both pressure drop and Nusselt number for the three tube types. A shell-and-tube heat exchanger of an oil cooler used in a power transformer has been modeled and built for this experimental work in order to investigate the effect of surface configuration on the shell side heat transfer as well as the pressure drop of the three types of tube bundles. The bundles with the same geometry, configuration, number of baffles and length, but with different external tube surfaces inside the same shell were used for the experiment. Corrugated and micro-fin tubes have shown degradation of performance at a Reynolds number below a certain value (Re<400). At a higher Reynolds number the performance of the heat exchanger greatly improved for micro-finned tubes. (author)

  2. Cálculo simplificado de vibraciones en los intercambiadores de calor de tubo y coraza con fluidos líquidos / Simplified calculation of vibrations in shell and tube heat exchangers with liquids

    Scientific Electronic Library Online (English)

    Maida Bárbara, Reyes-Rodríguez; Jorge Laureano, Moya-Rodríguez; Rafael, Goytisolo-Espinosa.

    2014-08-01

    Full Text Available Un problema muy serio a tener en cuenta en el diseño mecánico de los intercambiadores de calor de tubo y coraza son las vibraciones inducidas en los tubos por el paso del fluido. La vibración de los tubos de los intercambiadores de calor de tubo y coraza es un factor que limita de manera importante [...] la operación de estos equipos. Los procesos dinámicos de los fluidos no estacionarios que ocurren durante el flujo producen vibraciones. Éstas son pulsaciones turbulentas de la presión (flujo turbulento), iniciación del vórtice y separación de los tubos durante el cruce de las corrientes, interacción hidro elástica de los montajes de los elementos transmisores del calor (tubos) con el flujo, y fenómenos acústicos. En el presente trabajo se describe el procedimiento a seguir para el cálculo de las vibraciones en los intercambiadores de calor de tubo y coraza. Abstract in english A very serious problem to consider in the mechanical design of Shell and Tube Heat Exchangers is the vibrations induced in the tubes by the fluid pass. The vibration of the tubes of the Shell and Tube Heat Exchangers is a factor that limits the operation of these equipments in important way. The dyn [...] amic processes of the nonstationary fluids that happen during the flow produce vibrations. These are turbulent pulsations of the pressure (turbulent flow), initiation of the vortex and separation of the tubes during the crossing of the currents, hydro elastic interaction of the assemblies of the transmitting elements of the heat (tubes) with the flow, and acoustic phenomena. In the present work the procedure for the calculation of the vibrations in Shell and Tube Heat Exchangers is described.

  3. A study on the development of plugging margin evaluation method reflected the fouling of a shell-and-tube heat exchanger

    International Nuclear Information System (INIS)

    As operating time of heat exchangers progresses, fouling generated by water-borne deposits and the number of plugged tubes increase and thermal performance decreases. Both fouling and tube plugging are known to interfere with normal flow characteristics and to reduce thermal efficiencies of heat exchangers. The heat exchangers of domestic nuclear power plants have been analyzed in terms of the heat flux and heat transfer coefficient at test conditions as a means of heat exchanger management. Except for the fouling level generated in operation of heat exchangers, also, all of the tubes of heat exchangers have been replaced when the number of plugged tubes exceeds the plugging criteria based on design performance sheet. This paper describes the plugging margin evaluation method reflected the fouling of shell-and-tube heat exchangers, which can evaluate the thermal performance for heat exchangers, estimate the further fouling variations, and reflect the current fouling level. To identify the effectiveness of the developed method, the fouling and plugging margin evaluations were performed for a component cooling heat exchanger in a nuclear power plant

  4. A study on development of a plugging margin evaluation method taking into account the fouling of shell-and tube heat exchangers

    International Nuclear Information System (INIS)

    As the operating time of heat exchangers progresses, fouling caused by water-borne deposits and the number of plugged tubes increase and thermal performance decreases. Both fouling and tube plugging are known to interfere with normal flow characteristics and to reduce thermal efficiencies of heat exchangers. The heat exchangers of Korean nuclear power plants have been analyzed in terms of heat transfer rate and overall heat transfer coefficient as a means of heat exchanger management. Except for fouling resulting from the operation of heat exchangers, all the tubes of heat exchangers have been replaced when the number of plugged tubes exceeded the plugging criteria based on design performance sheet. This paper describes a plugging margin evaluation method taking into account the fouling of shell-and-tube heat exchangers. The method can evaluate thermal performance, estimate future fouling variation, and consider current fouling level in the calculation of plugging margin. To identify the effectiveness of the developed method, fouling and plugging margin evaluations were performed at a component cooling heat exchanger in a Korean nuclear power plant

  5. A study on the development of fouling and plugging margin evaluation methods for shell-and-tube heat exchangers

    International Nuclear Information System (INIS)

    As operating time of heat exchangers progresses, fouling generated by water-borne deposits increases and thermal performance decreases. The fouling is known to interfere with normal flow characteristics and reduce thermal efficiencies of heat exchangers. The heat exchangers of nuclear power plants have been analyzed in terms of the heat flux and heat transfer coefficient at test conditions based on the ASME OM-S/G-Part 2 as a means of heat exchanger management. It is hard to estimate the heat performance trend and to establish the future management plan. This paper describes the fouling evaluation method which can evaluate the thermal performance for heat exchangers and estimate the future fouling variations and the plugging margin evaluation method which can reflect the current fouling level developed in this study. To develop the fouling and plugging margin evaluation methods for heat exchangers, fouling factor was introduced based on the ASME O and M codes and TEMA standards. For the purpose of verifying the two evaluation methods, the fouling and plugging margin evaluations were performed for a component cooling heat exchanger in a nuclear power plant

  6. Numerical simulation of vortex induced vibration and related parameters in cross flow shell and tubes heat exchanger: a review

    International Nuclear Information System (INIS)

    This paper presents a brief review of studies on cross flow induced vortices in downside of tubes which leads to vibration. Two types of vibrations have been studied for tubes in cross flow: first vibration of the tube due to vortex shedding which is important primarily in cross flow but this vibration disappears in slug flow or froth flow regions which are important in numerous heat exchangers, secondly fluid elastic excitation which is most dangerous mechanism in heat exchanger tube bundles. The paper also presents the other parameters such as temperature variation on tube, pressure effect, lift and drag generation and their influence on heat exchanger tubes, different models comparison and tube size effect of tubes for vortices. (author)

  7. Automatización y optimización del diseño de intercambiadores de calor de tubo y coraza mediante el método de Taborek / Automatization and optimization of shell and tube heat exchangers design using the method of Taborek

    Scientific Electronic Library Online (English)

    Maida Bárbara, Reyes-Rodríguez; Jorge-Laureano, Moya-Rodríguez; Oscar-Miguel, Cruz-Fonticiella; Eduardo-Miguel, Fírvida-Donéstevez; José-Alberto, Velázquez-Pérez.

    2014-04-01

    Full Text Available Los intercambiadores de calor del tipo de coraza y tubo constituyen la parte más importante de los equipos de transferencia de calor sin combustión en las plantas de procesos químicos. Existen en la literatura numerosos métodos para el diseño de Intercambiadores de calor de tubo y coraza. Entre los [...] más conocidos se encuentran el Método de Kern, el Método de Bell Delaware, el Método de Tinker, el Método de Wills and Johnston y el Método de Taborek. El presente trabajo tiene como objetivo describir y automatizar el método de Taborek. Se realiza además la optimización del Costo del Intercambiador de Calor mediante el método de Recocido Simulado y el método de los algoritmos genéticos. Se puede concluir que la optimización por ambos métodos arroja resultados similares, disminuyendo apreciablemente el costo del intercambiador optimizado. Abstract in english Shell and tube heat exchangers are the most important equipment for heat transfer without combustion in plants of chemical processes.There are many methods for designing shell and tube heat exchangers in literature. Among the most known are the Kern´s Method, the Method of Bell Delaware, the Method [...] of Tinker, the Method of Wills and Johnston and the Method of Taborek. The objective of this paper is to describe and automate the Taborek´s method. It is also realized and optimization of the heat exchanger cost using the genetic algorithm and Simulated Annealing. It can be concluded that the optimization using both methods conduces to similar results, diminishing considerably the optimized exchanger cost

  8. Software para la enseñanza de la dinámica y control de intercambiadores de calor de tubos y coraza / Educational software for the teaching of the dynamics and control of shell and tube heat exchangers

    Scientific Electronic Library Online (English)

    Fiderman, Machuca; Oscar, Urresta.

    2008-06-01

    Full Text Available Este trabajo presenta la estructura de un software desarrollado para la enseñanza y aprendizaje de la dinámica y control de intercambiadores de calor de tubos y coraza. El programa presenta, de manera numérica y gráfica, el comportamiento dinámico en lazo abierto y cerrado del proceso para diferente [...] s parámetros de diseño y condiciones de operación variables. El software permite modificar condiciones tanto de operación como de diseño, por ejemplo, temperatura y caudales de entrada a los tubos y coraza, número y longitud de tubos, número de pasos, diámetro externo e interno de los tubos, diámetro interno de coraza y factor de ensuciamiento. Abstract in english The present work shows the software structure developed for teaching and learning of the dynamics and control of shell and tubes heat exchangers. The program shows (numerical and graphical mode) the dynamic behavior in open and closed loop under different design parameters and variable operations co [...] nditions. The software allows changing operation and design conditions such as temperature and flow inlet in shells and tubes, number and length of tubes, inside and outside diameter of tubes, number of passes, shell outside diameter and fouling factor.

  9. Effect of the sequence of tube rolling in a tube bundle of a shell and tube heat exchanger on the stress-deformed state of the tube sheet

    Science.gov (United States)

    Tselishchev, M. F.; Plotnikov, P. N.; Brodov, Yu. M.

    2015-11-01

    Rolling the tube sheet of a heat exchanger with U-shaped tubes, as exemplified by the vapor cooler GP-24, was simulated. The simulation was performed using the finite element method with account of elas- tic-plastic properties of the tube and tube sheet materials. The simulation consisted of two stages; at the first stage, maximum and residual contact stress in the conjunction of a separate tube and the tube sheet was determined using the "equivalent sleeve" model; at the second stage, the obtained contact stress was applied to the hole surface in the tube sheet. Thus, different tube rolling sequences were simulated: from the center to the periphery of the tube sheet and from the periphery to the center along a spiral line. The studies showed that the tube rolling sequence noticeably influences the value of the tube sheet residual deflection for the same rolling parameters of separate tubes. Residual deflection of the tube sheet in different planes was determined. It was established that the smallest residual deflection corresponds to the tube rolling sequence from the periphery to the center of the tube sheet. The following dependences were obtained for different rolling sequences: maximum deformation of the tube sheet as a function of the number of rolled tubes, residual deformation of the tube sheet along its surface, and residual deflection of the tube sheet as a function of the rotation angle at the periphery. The preferred sequence of tube rolling for minimizing the tube sheet deformation is indicated.

  10. COMPARATIVEANALYSIS OF ADVANCED CONTROLLERS IN A HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Mr. P.Sivakumar

    2013-01-01

    Full Text Available Temperature control of the shell and tube heat exchanger is characteristics of nonlinear, time varying and time lag. Since the temperature control with conventional PID controller cannot meet a wide range of precision temperature control requirement, we design temperature control system of the shell and tube heat exchanger by combining fuzzy and PID control methods in this paper. The simulation and experiments are carried out; making a comparison with conventional PID control showing that fuzzy PID strategy can efficiently improve the performance of the shell and tube heat exchanger.

  11. Feasibility study of improved heat exchanger

    International Nuclear Information System (INIS)

    Generally shell and tube type heat exchangers have been used widely for many years in the auxiliary cooling systems of nuclear power plants. Recently, however, in general industrial facilities and so on many plate heat exchangers excellent in heat transfer performance have been used, compared with shell and tube heat exchangers, and their heat exchanger bodies and cooling system facilities have been rationalized. We carried out confirmation tests on the plate type heat exchangers in structural strength, aseismatic strength, heat transfer performance and maintenance regarding their application to nuclear power plants. As a result, we have confirmed that they can be applied to seawater systems of actual plants. The tests further provided useful information on their actual operation. (author)

  12. Maintenance experience on process heat exchangers in Dhruva reactor

    International Nuclear Information System (INIS)

    Dhruva a 100 MW (thermal) high flux research reactor has two types of heat exchangers operating in various process system i.e. shell and tube type and plate type. Annexure-1 indicates various heat exchangers in different systems of the reactor. Among the heat exchangers, those used in main coolant system, vault and shield cooling system did not warrant regular overhaul after commissioning but for periodic fastness, tightness checks in view of the high standard of purity and close chemistry control on the process fluids on both the sides of the heat exchangers. In addition, the heat transfer performance of these heat exchangers have been consistent without any degradation. Therefore shell and tube type heat exchangers in process water system and plate type heat exchangers in process water and Spent Fuel Storage Building (SFSB) bay water recirculation systems are typically chosen for highlighting the maintenance experience. Maintenance experience on process heat exchangers is given. 4 ills

  13. Study on flow-induced vibration and anti-vibration measures of nuclear heat exchanger

    International Nuclear Information System (INIS)

    Nuclear heat exchanger is the important equipment of nuclear power plant. Shell-and-tube is the ordinary style used in heat exchanger structure. Unreasonable design will make tubes vibrate and maybe lead tubes broken. Then the running safety of nuclear power plant is influenced. The flow-induced vibration mechanism is studied. Based on structure characteristic of shell-and-tube heat exchange, the failure modes of heat exchange caused by flow-induced vibration are analyzed roundly. Specific approaches are presented to prevent nuclear heat exchange from vibration. (authors)

  14. Delaware Method Improvement for the Shell and Tubes Heat Exchanger Design

    OpenAIRE

    Miguel Toledo-Velázquez; Pedro Quinto-Diez; Juan C. Alzelmetti-Zaragoza; Sergio R. Galvan; Juan Abugaber-Francis; Arturo Reyes-León

    2014-01-01

    In this paper the Delaware Method published in 1963 is analyzed and upgraded with using correction factors which take into account the undesirable currents of the mean flow. However, this method presents graphically these correction factors which imply an impediment to fulfill the software calculations. Thus, the equations corresponding to the correction factor equations and a Fortran 77 numerical program were established. This system is given to explore ...

  15. Heat exchanger with intermediate evaporating and condensing fluid

    International Nuclear Information System (INIS)

    A shell and tube-type heat exchanger, such as a liquid sodium-operated steam generator for use in nuclear reactors, comprises a shell containing a primary fluid tube bundle, a secondary fluid tube bundle at higher elevation, and an intermediate fluid vaporizing at the surface of the primary fluid tubes and condensing at the surface of the secondary fluid tubes

  16. Joint economic optimization of heat exchanger design and maintenance policy

    OpenAIRE

    Antonio C. Caputo; Pelagagge, Pacifico M.; Salini, Paolo

    2011-01-01

    In this paper a new approach to shell and tube heat exchanger optimization is presented based on the minimization of the life-cycle cost. The method allows the joint optimization of both the equipment design and the cleaning policy. Economic savings resulting from the proposed design procedure are relevant especially when large sized equipment is involved or when a large number of small sized units are installed. At first, a thermal design procedure defines the heat transfer area as well as f...

  17. Evaluation methodology for advance heat exchanger concepts using analytical hierarchy process

    International Nuclear Information System (INIS)

    This study describes how the major alternatives and criteria being developed for the heat exchangers for next generation nuclear reactors are evaluated using the analytical hierarchy process (AHP). This evaluation was conducted as an aid in developing and selecting heat exchangers for integrating power production and process heat applications with next generation nuclear reactors. The basic setup for selecting the most appropriate heat exchanger option was established with evaluation goals, alternatives, and criteria. The two potential candidates explored in this study were shell-and-tube (helical coiled) and printed circuit heat exchangers. Based on study results, the shell-and-tube (helical coiled) heat exchanger is recommended for a demonstration reactor in the near term, mainly because of its reliability.

  18. Thermal analysis of baffled shell and tube type EGR cooler for different types of tubes using CFD

    OpenAIRE

    Ibrahim Hussain Shah; , Avinash Kumar Namdeo*2

    2014-01-01

    Exhaust Gas Recirculation (EGR) technique using EGR cooler reduces the NOx content from the tailpipe emission of Diesel engines. Commercial computational fluid dynamics (CFD) code is used to solve and simulate the flow-fields and temperature distribution of fluids inside the EGR cooler. In this investigation two models (model-a and model-b) of EGR coolers are developed using Pro/Engineer Wildfire 4.0 software. Model-a is a single pass baffled shell and tube heat exchanger with...

  19. A Simple Tubesheet Layout Program for Heat Exchangers

    OpenAIRE

    Murali, S; Y. B. Rao

    2008-01-01

    The development of tubesheet layout program for shell and tube heat exchangers is presented in this study. Program is written in AutoLISP language, which provides standard tubesheet layout drawing as per standard codes and non standard tubsheet in AutoCAD Environment. The program computes the optimal number of tube count and lays out drawing with respecting constraints, including the shell ID, number of passes, center to center distance of tubes and tube outer diameter. Tubesheet layout drawi...

  20. The Optimum Selection and Drawing Output Program Development of Shell and Tube Type Oil Cooler

    International Nuclear Information System (INIS)

    Shell and Tube type Oil Cooler is widely used for hydraulic presses, die casting machines, generation equipments, machine tools and construction heavy machinery. Temperature of oil in the hydraulic system changes viscosity and thickness of oil film. They have a bad effect to performance and lubrication of hydraulic machinery, so it is important to know exactly the heat exchanging efficiency of oil cooler for controlling oil temperature. But most Korean manufacturers do not have test equipment for oil cooler, so they cannot carry out the efficiency test of oil cooler and it is impossible to verify its performance. This paper includes information of construction of necessary utilities for oil cooler test and design and manufacture of test equipment. One can select the optimum product by obtaining performance data through tests of various kinds of oil coolers. And also the paper developed a program which can be easily used for design of 2D and 3D drawings of oil cooler

  1. A Numerical Algorithm and a Graphical Method to Size a Heat Exchanger

    DEFF Research Database (Denmark)

    Berning, Torsten

    2011-01-01

    This paper describes the development of a numerical algorithm and a graphical method that can be employed in order to determine the overall heat transfer coefficient inside heat exchangers. The method is based on an energy balance and utilizes the spreadsheet application software Microsoft ExcelTM. The application is demonstrated in an example for designing a single pass shell and tube heat exchanger that was developed in the Department of Materials Technology of the Norwegian University of Scie...

  2. Application of intensified heat transfer for the retrofit of heat exchanger network

    International Nuclear Information System (INIS)

    Highlights: ? Novel design approach for the retrofit of HEN based on intensified heat transfer. ? Development of a mathematical model to evaluate shell-and-tube heat exchanger performances. ? Identification of the most appropriate heat exchangers requiring heat transfer enhancements in the heat exchanger network. -- Abstract: A number of design methods have been proposed for the retrofit of heat exchanger networks (HEN) during the last three decades. Although considerable potential for energy savings can be identified from conventional retrofit approaches, the proposed solutions have rarely been adopted in practice, due to significant topology modifications required and resulting engineering complexities during implementation. The intensification of heat transfer for conventional shell-and-tube heat exchangers can eliminate the difficulties of implementing retrofit in HEN which are commonly restricted by topology, safety and maintenance constraints, and includes high capital costs for replacing equipment and pipelines. This paper presents a novel design approach to solve HEN retrofit problems based on heat transfer enhancement. A mathematical model has been developed to evaluate shell-and-tube heat exchanger performances, with which heat-transfer coefficients and pressure drops for both fluids in tube and shell sides are obtained. The developed models have been compared with the Bell-Delaware, simplified Tinker and Wills-Johnston methods and tested with the HTRI (registered) and HEXTRAN (registered) software packages. This demonstrates that the new model is much simpler but can give reliable results in most cases. For the debottlenecking of HEN, four heuristic rules are proposed to identify the most appropriate heat exchangers requiring heat transfer enhancements in the HEN. The application of this new design approach allows a significant improvement in energy recovery without fundamental structural modifications to the network.

  3. Predicted and measured velocity distribution in a model heat exchanger

    International Nuclear Information System (INIS)

    This paper presents a comparison between numerical predictions, using the porous media concept, and measurements of the two-dimensional isothermal shell-side velocity distributions in a model heat exchanger. Computations and measurements were done with and without tubes present in the model. The effect of tube-to-baffle leakage was also investigated. The comparison was made to validate certain porous media concepts used in a computer code being developed to predict the detailed shell-side flow in a wide range of shell-and-tube heat exchanger geometries

  4. Evaluation Methodology for Advance Heat Exchanger Concepts Using Analytical Hierarchy Process

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Eung Soo Kim

    2012-07-01

    The primary purpose of this study is to aid in the development and selection of the secondary/process heat exchanger (SHX) for power production and process heat application for a Next Generation Nuclear Reactors (NGNR). The potential options for use as an SHX are explored such as shell and tube, printed circuit heat exchanger. A shell and tube (helical coiled) heat exchanger is a recommended for a demonstration reactor because of its reliability while the reactor design is being further developed. The basic setup for the selection of the SHX has been established with evaluation goals, alternatives, and criteria. This study describes how these criteria and the alternatives are evaluated using the analytical hierarchy process (AHP).

  5. Plate type heat exchanger for Reaktor TRIGA PUSPATI

    International Nuclear Information System (INIS)

    The PUSPATI TRIGA reactor (RTP) reached its first criticality status on 28 June 1982 with an installed capacity of 1 MW. After 26 years in operation, the ageing process has set in and many systems in the reactor need maintenance and replacement. Among these systems, the more critical one is the heat exchanger system. Currently, the shell and tube type heat exchanger is being used. It has been observed that the performance of the heat exchanger has dropped significantly over the years. Visual inspections indicate that the tubes are corroded or even to the extent of being totally blocked. With this in mind and also with the setting up of the new Nuclear Power Division, whose mission includes upgrading the present reactor to 3 MW, the heat exchanger system is essential and a critical component. Literature indicates that the use of plate type exchangers are more efficient than the current shell and tube type. This paper will look into the engineering and safety aspects of using the plate type heat exchanger to the current TRIGA PUSPATI reactor. (Author)

  6. Liquid-fluidized-bed heat exchanger flow distribution models

    Energy Technology Data Exchange (ETDEWEB)

    Cole, L.T.; Allen, C.A.

    1979-01-01

    Allied Chemical Corporation at the Idaho National Engineering Laboratory is developing liquid-fluidized-bed shell-and-tube heat exchangers for geothermal applications. Sand fluidized by geothermal water on the shell side prevents scaling and increases heat transfer coefficients over conventional heat exchangers. Tests were conducted on two instrumented fluidized-bed heat exchanger models, constructed primarily of plexiglass, which differ in tube bundle orientation. One contains a horizontal bundle and the other a vertical tube bundle. Plexiglass construction allowed visual observation of flow patterns. The vertical model proved to have more uniform flow distribution and higher heat transfer coefficients than the horizontal model. The horizontal heat exchanger experienced piling on top of the tubes and areas of poor fluidization existed in the bed. Geometric considerations show that a horizontal design is more conducive to large flow rates than a vertical design. New design concepts for both vertical and horizontal assemblies and recommendations for further developmental work are presented.

  7. Heat exchanger

    International Nuclear Information System (INIS)

    A heat exchanger having primary and secondary conduits in heat-exchanging relationship is described comprising: at least one serpentine tube having parallel sections connected by reverse bends, the serpentine tube constituting one of the conduits; a group of open-ended tubes disposed adjacent to the parallel sections, the open-ended tubes constituting the other of the conduits, and forming a continuous mass of contacting tubes extending between and surrounding the serpentine tube sections; and means securing the mass of tubes together to form a predetermined cross-section of the entirety of the mass of open-ended tubes and tube sections

  8. Efficiency improvement of the indirect supercritical CO2 turbine system for fast reactors by applying micro-channel intermediate heat exchanger

    International Nuclear Information System (INIS)

    Two types of intermediate heat exchanger, shell-and-tube type and microchannel heat exchanger (MCHE) type, have been designed for a Na-cooled fast reactor with an indirect supercritical CO2 turbine. MCHE is a kind of Printed Circuit Heat Exchanger (PCHE) and it uses sinusoidal offset fins that were developed at the Tokyo Institute of Technology (TIT). Its heat transfer and pressure drop correlations were developed based on CFD analysis results, we recommend: Nu equals 0.186*Re0.61*Pr0.4 and friction factor f equals 0.11*Re-0.17. Design results indicate that the value of pressure drop was less than 1% and was very low for the MCHE compared with 8.65% for the shell-and-tube type. In the MCHE, the flow cross-sectional area is large and the CO2 velocity is small. Therefore, it has similar heat transfer area to that of the shell-and-tube type. Nevertheless, the heat transfer volume is only 8% of that for the shell and tube type due to denser arrangement. Consequently, results revealed that cycle thermal efficiency of 45% was achieved in the fast reactor power plant with an MCHE intermediate heat exchanger installed

  9. A Numerical Algorithm and a Graphical Method to Size a Heat Exchanger

    DEFF Research Database (Denmark)

    Berning, Torsten

    2011-01-01

    This paper describes the development of a numerical algorithm and a graphical method that can be employed in order to determine the overall heat transfer coefficient inside heat exchangers. The method is based on an energy balance and utilizes the spreadsheet application software Microsoft ExcelTM. The application is demonstrated in an example for designing a single pass shell and tube heat exchanger that was developed in the Department of Materials Technology of the Norwegian University of Science and Technology (NTNU) where water vapor is superheated by a secondary oil cycle. This approach can be used to reduce the number of hardware iterations in heat exchanger design.

  10. Various methods to improve heat transfer in exchangers

    Science.gov (United States)

    Pavel, Zitek; Vaclav, Valenta

    2015-05-01

    The University of West Bohemia in Pilsen (Department of Power System Engineering) is working on the selection of effective heat exchangers. Conventional shell and tube heat exchangers use simple segmental baffles. It can be replaced by helical baffles, which increase the heat transfer efficiency and reduce pressure losses. Their usage is demonstrated in the primary circuit of IV. generation MSR (Molten Salt Reactors). For high-temperature reactors we consider the use of compact desk heat exchangers, which are small, which allows the integral configuration of reactor. We design them from graphite composites, which allow up to 1000°C and are usable as exchangers: salt-salt or salt-acid (e.g. for the hydrogen production). In the paper there are shown thermo-physical properties of salts, material properties and principles of calculations.

  11. State-of-the-art survey of joinability of materials for OTEC heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Beaver, R. J.

    1978-12-01

    Literature and industrial sources were surveyed to assess, on the basis of apparent economics and reliability, the joinability of both shell-and-tube and compact ocean thermal energy conversion (OTEC) heat exchangers. A no-leak requirement is mandatory to prevent mixing seawater and the ammonia working fluid. The operating temperature range considered is 7 to 28/sup 0/C (45 to 82/sup 0/F). Materials evaluated were aluminum, titanium, copper--nickel, AL-6X austenitic stainless steel, singly and in combination with steel and concrete. Many types of welding and brazing processes, roller expansion, magnaforming, O-ring sealing, and adhesive bonding were considered. The automatic gas tungsten-arc welding process and explosion welding processes are the only two joining processes that now appear to offer the high reliability required of no-leak shell-and-tube heat exchangers. Of these two processes, the gas tungsten-arc welding process appears to be the more economically attractive.

  12. Life Cycle Cost Model for Condition Monitoring of heat exchanger

    OpenAIRE

    Melingen, Daniel

    2010-01-01

    Shell and tube heat exchangers (H/X) are widely used in the industry. Offshore, the H/Xs are used as heaters or coolers. In this thesis it is assumed that the H/X function is to cool down gas or oil. A large number of different configuration of H/X exist today, single pass and u-bend is most used offshore. This thesis looks further into the most used H/X on an offshore platform single pass.

    The thesis is dealing with formulas that indicate performance of an H/X. It is normal...

  13. Segmented heat exchanger

    Science.gov (United States)

    Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  14. Effectiveness of evolutionary algorithms for optimization of heat exchangers

    International Nuclear Information System (INIS)

    Highlights: • Design optimization of shell and tube heat exchangers. • Comparing performance of three evolutionary optimization algorithms. • Conducting comprehensive simulations for design optimization. • Cuckoo search demonstrates the best performance. - Abstract: This paper comprehensively investigates performance of evolutionary algorithms for design optimization of shell and tube heat exchangers (STHX). Genetic algorithm (GA), firefly algorithm (FA), and cuckoo search (CS) method are implemented for finding the optimal values for seven key design variables of the STHX model. ?-NTU method and Bell-Delaware procedure are used for thermal modeling of STHX and calculation of shell side heat transfer coefficient and pressure drop. The purpose of STHX optimization is to maximize its thermal efficiency. Obtained results for several simulation optimizations indicate that GA is unable to find permissible and optimal solutions in the majority of cases. In contrast, design variables found by FA and CS always lead to maximum STHX efficiency. Also computational requirements of CS method are significantly less than FA method. As per optimization results, maximum efficiency (83.8%) can be achieved using several design configurations. However, these designs are bearing different dollar costs. Also it is found that the behavior of the majority of decision variables remains consistent in different runs of the FA and CS optimization processes

  15. Design of the intermediate heat exchanger for the high temperature gas-cooled reactor hydrogen cogeneration system, (1)

    International Nuclear Information System (INIS)

    Japan Atomic Energy Agency (JAEA) has been carrying out design studies of the Gas Turbine High Temperature Reactor 300 for Cogeneration (GTHTR300C). One of the key components in the GTHTR300C is an intermediate heat exchanger (IHX). The IHX for the GTHTR300C is rated 170 MWt and designed on the basis of the shell and tube type IHX adopted in the High Temperature engineering Test Reactor (HTTR). As a conceptual design, we selected the heat exchanger tube size which is based on heat transfer calculation, designed conceptual structure, and evaluated the primary stress in design condition. By the results of this study, the technical feasibility of the large size shell and tube type IHX for the GTHTR300C was verified. (author)

  16. Online performance assessment of heat exchanger using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ahilan, C.; Kumanan, S. [Department of Production Engineering, National Institute of Technology Tiruchirappalli (India); Sivakumaran, N. [Department of Instrumentation and Control Engineering, National Institute of Technology Tiruchirappalli (India)

    2011-07-01

    Heat exchanger is a device in which heat is transferred from one medium to another across a solid surface. The performance of heat exchanger deteriorates with time due to fouling on the heat transfer surface. It is necessary to assess periodically the heat exchanger performance, in order to maintain at high efficiency level. Industries follow adopted practices to monitor but it is limited to some degree. Online monitoring has an advantage to understand and improve the heat exchanger performance. In this paper, online performance monitoring system for shell and tube heat exchanger is developed using artificial neural networks (ANNs). Experiments are conducted based on full factorial design of experiments to develop a model using the parameters such as temperatures and flow rates. ANN model for overall heat transfer coefficient of a design/ clean heat exchanger system is developed using a feed forward back propagation neural network and trained. The developed model is validated and tested by comparing the results with the experimental results. This model is used to assess the performance of heat exchanger with the real/fouled system. The performance degradation is expressed using fouling factor (FF), which is derived from the overall heat transfer coefficient of design system and real system. It supports the system to improve the performance by asset utilization, energy efficient and cost reduction interms of production loss.

  17. Online performance assessment of heat exchanger using artificial neural networks

    Directory of Open Access Journals (Sweden)

    C. Ahilan, S. Kumanan, N. Sivakumaran

    2011-09-01

    Full Text Available Heat exchanger is a device in which heat is transferred from one medium to another across a solid surface. The performance of heat exchanger deteriorates with time due to fouling on the heat transfer surface. It is necessary to assess periodically the heat exchanger performance, in order to maintain at high efficiency level. Industries follow adopted practices to monitor but it is limited to some degree. Online monitoring has an advantage to understand and improve the heat exchanger performance. In this paper, online performance monitoring system for shell and tube heat exchanger is developed using artificial neural networks (ANNs. Experiments are conducted based on full factorial design of experiments to develop a model using the parameters such as temperatures and flow rates. ANN model for overall heat transfer coefficient of a design/ clean heat exchanger system is developed using a feed forward back propagation neural network and trained. The developed model is validated and tested by comparing the results with the experimental results. This model is used to assess the performance of heat exchanger with the real/fouled system. The performance degradation is expressed using fouling factor (FF, which is derived from the overall heat transfer coefficient of design system and real system. It supports the system to improve the performance by asset utilization, energy efficient and cost reduction interms of production loss.

  18. An experimental and numerical study of a jetfire stop material and a new helical flow heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Austegard, Anders

    1997-12-31

    This thesis consists of two parts. Part 1: Experimental and numerical study of jetfire stop, and Part 2: Experimental and numerical study of a new kind of shell and tube heat exchanger with helical flow on shell side. Part 1 describes the development of the model for simulation of the temperature development through Viking jetfirestop. A simulation program is developed that calculates the temperature development through Viking jetfire stop. In the development of the model, measurements of reaction energy, pyrolysis and heat conductivity at low temperatures are made. The conductivity at higher temperatures and when pyrolysis reactions are going on is estimated experimentally and by numerical calculations. Full-scale jet fire test and small-scale xenon lamp experiments are made to test the simulation model. Part 2 contains the development of a model that simulate the fluid flow and heat transfer in a helical flow shell and tube heat exchanger. It consists of the development of a porosity model and a model for pressure drop and heat transfer as well as experiments in non-standard tube layouts. Results from the simulation program are compared with experiments on a helical flow shell and tube heat exchanger. There is a separate appendix volume. 62 refs., 152 figs., 22 tabs.

  19. Development of VB Based Software For Design And Analysis of Heat Exchangers

    Directory of Open Access Journals (Sweden)

    Prof. Sandeep M. Joshi

    2014-07-01

    Full Text Available The exchange of heat is one of the most important processes in the mechanical industry and heat exchanger is the major equipment used to transfer heat from one medium to another. This project work on the Computer Aided Design (CAD of shell and tube, double pipe and spiral coil heat exchanger aims to provide an easy way to design it. A case study question was taken and all the necessary calculations in the thermal design are carried out using standard method of heat exchanger design. The thermal design is then used as a guide to the computer aided design using computer codes. The computer software program used is the Visual Basic called Visual Basic 6.0 (VB 6 because of its numerous advantages over the other software programmes. The result gotten from the computer aided design was compared to the result from the thermal design. The computer aided design software was equally used to test other problems on shell and tube, double pipe and spiral coil heat exchanger. Because the computer aided design was found to be more accurate, quicker and more efficient, it was recommended for use in companies and industries.

  20. Thermal analysis of baffled shell and tube type EGR cooler for different types of tubes using CFD

    Directory of Open Access Journals (Sweden)

    Ibrahim Hussain Shah

    2014-08-01

    Full Text Available Exhaust Gas Recirculation (EGR technique using EGR cooler reduces the NOx content from the tailpipe emission of Diesel engines. Commercial computational fluid dynamics (CFD code is used to solve and simulate the flow-fields and temperature distribution of fluids inside the EGR cooler. In this investigation two models (model-a and model-b of EGR coolers are developed using Pro/Engineer Wildfire 4.0 software. Model-a is a single pass baffled shell and tube heat exchanger with staggered tube arrangement of plain tubes and having conical shaped stationary heads (gas inlet/outlet chamber [2]. Model-b is having the same tube arrangement and spacing as they were in model-a, but the plain tubes were replaced with internally finned tubes to increase the internal surface area of tubes. The finned tubes are of same outer diameter and same tube material as that of plain tubes. In model-a and model-b, the inlet conditions of both the cooling water and hot gases are the same. These models are analysed with Ansys Fluent 13.0 software. The CFD results show that, by replacing the plain tubes with internally finned tubes, the rate of heat exchange between the cooling water and hot gases enhanced.

  1. Appendix to the thesis an experimental and numerical study of a jetfire stop material and a new helical flow heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Austegard, Anders

    1997-12-31

    This thesis consists of two parts. Part 1: Experimental and numerical study of jetfire stop, and Part 2: Experimental and numerical study of a new kind of shell and tube heat exchanger with helical flow on shell side. Part 1 describes the development of the model for simulation of the temperature development through Viking jetfirestop. A simulation program is developed that calculates the temperature development through Viking jetfirestop. In the development of the model, measurements of reaction energy, pyrolysis and heat conductivity at low temperatures are made. The conductivity at higher temperatures and when pyrolysis reactions are going on is estimated experimentally and by numerical calculations. Full-scale jet fire test and small-scale xenon lamp experiments are made to test the simulation model. Part 2 contains the development of a model that simulate the fluid flow and heat transfer in a helical flow shell and tube heat exchanger. It consists of the development of a porosity model and a model for pressure drop and heat transfer as well as experiments in non-standard tube layouts. Results from the simulation program are compared with experiments on a helical flow shell and tube heat exchanger. This is a separate appendix volume, including computer codes and simulated results. 316 figs., 11 tabs.

  2. Heat Exchanger Design Options and Tritium Transport Study for the VHTR System

    Energy Technology Data Exchange (ETDEWEB)

    Chang H. Oh; Eung S. Kim

    2008-09-01

    This report presents the results of a study conducted to consider heat exchanger options and tritium transport in a very high temperature reactor (VHTR) system for the Next Generation Nuclear Plant Project. The heat exchanger options include types, arrangements, channel patterns in printed circuit heat exchangers (PCHE), coolant flow direction, and pipe configuration in shell-and-tube designs. Study considerations include: three types of heat exchanger designs (PCHE, shell-and-tube, and helical coil); single- and two-stage unit arrangements; counter-current and cross flow configurations; and straight pipes and U-tube designs in shell-and-tube type heat exchangers. Thermal designs and simple stress analyses were performed to estimate the heat exchanger options, and the Finite Element Method was applied for more detailed calculations, especially for PCHE designs. Results of the options study show that the PCHE design has the smallest volume and heat transfer area, resulting in the least tritium permeation and greatest cost savings. It is theoretically the most reliable mechanically, leading to a longer lifetime. The two-stage heat exchanger arrangement appears to be safer and more cost effective. The recommended separation temperature between first and second stages in a serial configuration is 800oC, at which the high temperature unit is about one-half the size of the total heat exchanger core volume. Based on simplified stress analyses, the high temperature unit will need to be replaced two or three times during the plant’s lifetime. Stress analysis results recommend the off-set channel pattern configuration for the PCHE because stress reduction was estimated at up to 50% in this configuration, resulting in a longer lifetime. The tritium transport study resulted in the development of a tritium behavior analysis code using the MATLAB Simulink code. In parallel, the THYTAN code, previously performed by Ohashi and Sherman (2007) on the Peach Bottom data, was revived and verified. The 600 MWt VHTR core input file developed in preparation for the transient tritium analysis of VHTR systems was replaced with the original steady-state inputs for future calculations. A Finite Element Method analysis was performed using COMSOL Multiphysics software to accurately predict tritium permeation through the PCHE type heat exchanger walls. This effort was able to estimate the effective thickness for tritium permeations and develop a correlation for general channel configurations, which found the effective thickness to be much shorter than the average channel distance because of dead spots on the channel side.

  3. Studi Numerik Pengaruh Baffle Inclination Pada Alat Penukar Kalor Tipe Shell And Tube Terhadap Aliran Fluida Dan Perpindahan Panas

    Directory of Open Access Journals (Sweden)

    Rezky Fadil Arnaw

    2014-09-01

    Full Text Available Heat exchanger atau alat penukar kalor merupakan suatu peralatan yang digunakan untuk memindahkan sejumlah energi dalam bentuk panas dari satu fluida ke fluida yang lain. Perpindahan panas tersebut terjadi dari suatu fluida yang suhunya lebih tinggi ke fluida lain yang suhunya lebih rendah. Pada tugas akhir ini akan dilakukan penelitian tentang pengaruh baffle inclination terhadap aliran fluida dan perpindahan panas pada alat penukar kalor tipe shell and tube. Dalam penelitian ini akan dilakukan tiga variasi sudut baffle inclination yaitu 0º, 10° dan 20° dengan besar laju aliran massa yang divariasikan yaitu sebesar 0.5 kg/s, 1 kg/s dan 2 kg/s. Tipe baffle yang digunakan adalah single segmental baffle dengan baffle cut sebesar 36% dan menggunakan arah aliran jenis parallel. Hasil analisa simulasi menunjukkan bahwa laju aliran massa yang meningkat akan menyebabkan kenaikan pressure drop yang cukup drastis dan penurunan temperatur outlet. Alat penukar kalor dengan baffle inclination 0° memiliki nilai perpindahan panas terbaik jika dibandingkan dengan baffle inclination 10° dan 20°.

  4. Microplate Heat Exchanger Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a microplate heat exchanger for cryogenic cooling systems used for continuous flow distributed cooling systems, large focal plane arrays, multiple...

  5. Optimization of Heat Exchangers

    International Nuclear Information System (INIS)

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics (pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger design.

  6. Optimization of Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Ivan Catton

    2010-10-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  7. Overall heat transfer coefficient and pressure drop in a typical tubular exchanger employing alumina nano-fluid as the tube side hot fluid

    Science.gov (United States)

    Kabeel, A. E.; Abdelgaied, Mohamed

    2015-08-01

    Nano-fluids are used to improve the heat transfer rates in heat exchangers, especially; the shell-and-tube heat exchanger that is considered one of the most important types of heat exchangers. In the present study, an experimental loop is constructed to study the thermal characteristics of the shell-and-tube heat exchanger; at different concentrations of Al2O3 nonmetallic particles (0.0, 2, 4, and 6 %). This material concentrations is by volume concentrations in pure water as a base fluid. The effects of nano-fluid concentrations on the performance of shell and tube heat exchanger have been conducted based on the overall heat transfer coefficient, the friction factor, the pressure drop in tube side, and the entropy generation rate. The experimental results show that; the highest heat transfer coefficient is obtained at a nano-fluid concentration of 4 % of the shell side. In shell side the maximum percentage increase in the overall heat transfer coefficient has reached 29.8 % for a nano-fluid concentration of 4 %, relative to the case of the base fluid (water) at the same tube side Reynolds number. However; in the tube side the maximum relative increase in pressure drop has recorded the values of 12, 28 and 48 % for a nano-material concentration of 2, 4 and 6 %, respectively, relative to the case without nano-fluid, at an approximate value of 56,000 for Reynolds number. The entropy generation reduces with increasing the nonmetallic particle volume fraction of the same flow rates. For increase the nonmetallic particle volume fraction from 0.0 to 6 % the rate of entropy generation decrease by 10 %.

  8. Heat exchangers: operation problems

    International Nuclear Information System (INIS)

    The main operation problems for heat exchangers are fouling, corrosion, vibrations and mechanical resistance. Fouling and corrosion lead to an over dimensioning, energy consumption increase, corroded pieces change, shutdown costs. Vibrations are taken in account during the dimensioning phase of the heat exchangers. Mechanical resistance problems are, for the classical ones, described in regulation texts. (A.B.). 5 figs., 4 tabs

  9. Damping in heat exchanger tube bundles. A review

    International Nuclear Information System (INIS)

    Damping is a major concern in the design and operation of tube bundles with loosely supported tubes in baffles for process shell and tube heat exchangers and steam generators which are used in nuclear, process and power generation industries. System damping has a strong influence on the amplitude of vibration. Damping depends upon the mechanical properties of the tube material, geometry of intermediate supports and the physical properties of shell-side fluid. Type of tube motion, number of supports, tube frequency, vibration amplitude, tube mass or diameter, side loads, support thickness, higher modes, shell-side temperature etc., affect damping in tube bundles. The importance of damping is further highlighted due to current trend of larger exchangers with increased shell-side velocities in modern units. Various damping mechanisms have been identified (Friction damping, Viscous damping, Squeeze film damping, Support damping. Two-Phase damping, and very recent-Thermal damping), which affect the performance of process exchangers and steam generators with respect to flow induced vibration design, including standard design guidelines. Damping in two-phase flow is very complex and highly void fraction, and flow-regime dependent. The current paper focuses on the various known damping mechanisms subjected to both single and two-phase cross-flow in process heat exchangers and steam generators and formulates the design guidelines for safer design. (author)

  10. Support for heat exchangers

    International Nuclear Information System (INIS)

    The very large heat exchangers which are typical of many nuclear power plants place great demands on their supports. The support here described is for a vertical heat exchanger. A convex Lubrit plate allows a certain amount of transverse and rotational movement of the heat exhanger relative to the foundation. Taps engaging in the support surface of the heat exchanger and between the support box and the concrete foundation ensure that relative movement is restricted to those surfaces where it is intended. A steel box structure embedded in the concrete foundation dissipates heat transferred through the support system and avoids overheating the concrete. Horizontal stays support the heat exchanger against the concrete walls. (JIW)

  11. Plate-Type Heat Exchanger

    International Science & Technology Center (ISTC)

    Conduction of Experimental Studies of Heat Exchange Element of Plate-Type Heat Exchanger Aiming at Enhancement of its Effectiveness Owing to Design Improvement and Optimization of Used Heat Exchange Intensifiers

  12. Heat exchanger design handbook

    CERN Document Server

    Thulukkanam, Kuppan

    2013-01-01

    Completely revised and updated to reflect current advances in heat exchanger technology, Heat Exchanger Design Handbook, Second Edition includes enhanced figures and thermal effectiveness charts, tables, new chapter, and additional topics--all while keeping the qualities that made the first edition a centerpiece of information for practicing engineers, research, engineers, academicians, designers, and manufacturers involved in heat exchange between two or more fluids.See What's New in the Second Edition: Updated information on pressure vessel codes, manufacturer's association standards A new c

  13. Second-Law based thermodynamic analysis of a novel heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    He, Y.L.; Lei, Y.G.; Tao, W.Q.; Zhang, J.F.; Chu, P.; Li, R. [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University (China)

    2009-01-15

    In the present investigation, second-law based thermodynamics analysis was applied to a new heat exchanger with helical baffles. The helical baffles are designed as quadrant ellipses and each baffle occupies one quadrant of the cross-section of the shell side. Experimental tests were carried out with cold water in the tube side with a constant flow rate, and hot oil on the shell side with flow rate range from 4-24 m{sup 3}/h. The temperatures and pressures for the inlet and outlet of both sides were measured. The heat transfer, pressure drop, entropy generation, and exergy loss of the new heat exchanger were investigated and compared with the results for a conventional shell-and-tube heat exchanger with segmental baffles. The computed results indicated that both the entropy generation number and exergy losses of the new heat exchanger design are lower than those of the heat exchanger with segmental baffles, which means that the novel heat exchanger has a higher efficiency than the heat exchanger with segmental baffles, from the second-law based thermodynamics viewpoint. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  14. Microtube Strip Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Doty, F.D.

    1990-12-27

    Doty Scientific (DSI) believes their Microtube-Strip Heat Exchanger will contribute significantly to (a) the closed Brayton cycles being pursued at MIT, NASA, and elsewhere; (b) reverse Brayton cycle cryocoolers, currently being investigated by NASA for space missions, being applied to MRI superconducting magnets; and (c) high-efficiency cryogenic gas separation schemes for CO{sub 2} removal from exhaust stacks. The goal of this current study is to show the potential for substantial progress in high-effectiveness, low-cost, gas-to-gas heat exchangers for diverse applications at temperatures from below 100 K to above 1000 K. To date, the highest effectiveness measured is about 98%, and relative pressure drops below 0.1% with a specific conductance of about 45 W/kgK are reported. During the pre-award period DSI built and tested a 3-module heat exchanger bank using 103-tube microtube strip (MTS) modules. To add to their analytical capabilities, DSI has acquired computational fluid dynamics (CFD) software. This report describes the pre-award work and the status of the ten tasks of the current project, which are: analyze flow distribution and thermal stresses within individual modules; design a heat exchanger bank of ten modules with 400 microtube per module; obtain production quality tubestrip die and AISI 304 tubestrips; obtain production quality microtubing; construct revised MTS heat exchanger; construct dies and fixtures for prototype heat exchanger; construct 100 MTS modules; assemble 8-10 prototype MTS heat exchangers; test prototype MTS heat exchanger; and verify test through independent means. 7 refs., 9 figs. 1 tab. (CK)

  15. Microtube strip heat exchanger

    Science.gov (United States)

    Doty, F. D.

    1990-12-01

    Doty Scientific (DSI) believes their microtube-strip heat exchanger will contribute significantly to the following: (1) the closed Brayton cycles being pursued at MIT, NASA, and elsewhere; (2) reverse Brayton cycle cryocoolers, currently being investigated by NASA for space missions, being applied to MRI superconducting magnets; and (3) high-efficiency cryogenic gas separation schemes for CO2 removal from exhaust stacks. The goal of this current study is to show the potential for substantial progress in high-effectiveness, low-cost, gas-to-gas heat exchangers for diverse applications at temperatures from below 100 K to above 1000 K. To date, the highest effectiveness measured is about 98 percent and relative pressure drops below 0.1 percent with a specific conductance of about 45 W/kgK are reported. During the pre-award period DSI built and tested a 3-module heat exchanger bank using 103-tube microtube strip (MTS) modules. To add to their analytical capabilities, DSI has acquired computational fluid dynamics (CFD) software. This report describes the pre-award work and the status of the ten tasks of the current project, which are: analyze flow distribution and thermal stresses within individual modules; design a heat exchanger bank of ten modules with 400 microtube per module; obtain production quality tubestrip die and AISI 304 tubestrips; obtain production quality microtubing; construct revised MTS heat exchanger; construct dies and fixtures for prototype heat exchanger; construct 100 MTS modules; assemble 8 to 10 prototype MTS heat exchangers; test prototype MTS heat exchanger; and verify test through independent means.

  16. Method to design shell-side pressure drop constrained tubular heat exchangers

    International Nuclear Information System (INIS)

    In shell and tube heat exchangers, the triple segmental baffle arrangement has been infrequently used, even though the potential of this baffle system for high thermal effectiveness with low pressure drop is generally known. This neglect seems to stem from the lack of published design guidelines on the subject. Lately, however, with the rapid growth in the size of nuclear heat exchangers, the need to develop unconventional baffling pattern has become increasingly important. A method to utilize effectively the triple segmental concept to develop economical designs is presented herein. The solution technique given in this paper is based on a flow model named ''Piecewise Continuous Cosine Model.'' The solution procedure easily lends itself to detailed analysis to determine safety against flow-induced vibrations. 20 refs

  17. Tube vibration in industrial size test heat exchanger

    International Nuclear Information System (INIS)

    Tube vibration data from tests of a specially built and instrumented, industrial-type, shell-and-tube heat exchanger are reported. The heat exchanger is nominally 0.6 m (2 ft) in dia and 3.7 m (12 ft) long. Both full tube and no-tubes-in-window bundles were tested for inlet/outlet nozzles of different sizes and with the tubes supported by seven, equally-spaced, single-segmental baffles. Prior to water flow testing, natural frequencies and damping of representative tubes were measured in air and water. Flow testing was accomplished by increasing the flow rates in stepwise fashion and also by sweeping through a selected range of flow rates. The primary variables measured and reported are tube accelerations and/or displacements and pressure drop through the bundle. Tests of the full tube bundle configuration revealed tube rattling to occur at intermediate flow rates, and fluidelastic instability, with resultant tube impacting, to occur when the flow rate exceeded a threshold level; principally, the four-span tubes were involved in the regions immediately adjacent to the baffle cut. For the range of flow rates tested, fluidelastic instability was not achieved in the no-tubes-in-window bundle; in this configuration the tubes are supported by all seven baffles and are, therefore, stiffer

  18. Microtube strip heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Doty, F.D.

    1992-07-09

    The purpose of this contract has been to explore the limits of miniaturization of heat exchangers with the goals of (1) improving the theoretical understanding of laminar heat exchangers, (2) evaluating various manufacturing difficulties, and (3) identifying major applications for the technology. A low-cost, ultra-compact heat exchanger could have an enormous impact on industry in the areas of cryocoolers and energy conversion. Compact cryocoolers based on the reverse Brayton cycle (RBC) would become practical with the availability of compact heat exchangers. Many experts believe that hardware advances in personal computer technology will rapidly slow down in four to six years unless lowcost, portable cryocoolers suitable for the desktop supercomputer can be developed. Compact refrigeration systems would permit dramatic advances in high-performance computer work stations with conventional'' microprocessors operating at 150 K, and especially with low-cost cryocoolers below 77 K. NASA has also expressed strong interest in our MTS exchanger for space-based RBC cryocoolers for sensor cooling. We have demonstrated feasibility of higher specific conductance by a factor of five than any other work in high-temperature gas-to-gas exchangers. These laminar-flow, microtube exchangers exhibit extremely low pressure drop compared to alternative compact designs under similar conditions because of their much shorter flow length and larger total flow area for lower flow velocities. The design appears to be amenable to mass production techniques, but considerable process development remains. The reduction in materials usage and the improved heat exchanger performance promise to be of enormous significance in advanced engine designs and in cryogenics.

  19. Microtube strip heat exchanger

    Science.gov (United States)

    Doty, F. D.

    1992-07-01

    The purpose of this contract has been to explore the limits of miniaturization of heat exchangers with the goals of (1) improving the theoretical understanding of laminar heat exchangers, (2) evaluating various manufacturing difficulties, and (3) identifying major applications for the technology. A low-cost, ultra-compact heat exchanger could have an enormous impact on industry in the areas of cryocoolers and energy conversion. Compact cryocoolers based on the reverse Brayton cycle (RBC) would become practical with the availability of compact heat exchangers. Many experts believe that hardware advances in personal computer technology will rapidly slow down in four to six years unless lowcost, portable cryocoolers suitable for the desktop supercomputer can be developed. Compact refrigeration systems would permit dramatic advances in high-performance computer work stations with 'conventional' microprocessors operating at 150 K, and especially with low-cost cryocoolers below 77 K. NASA has also expressed strong interest in our MTS exchanger for space-based RBC cryocoolers for sensor cooling. We have demonstrated feasibility of higher specific conductance by a factor of five than any other work in high-temperature gas-to-gas exchangers. These laminar-flow, microtube exchangers exhibit extremely low pressure drop compared to alternative compact designs under similar conditions because of their much shorter flow length and larger total flow area for lower flow velocities. The design appears to be amenable to mass production techniques, but considerable process development remains. The reduction in materials usage and the improved heat exchanger performance promise to be of enormous significance in advanced engine designs and in cryogenics.

  20. Monogroove liquid heat exchanger

    Science.gov (United States)

    Brown, Richard F. (Inventor); Edelstein, Fred (Inventor)

    1990-01-01

    A liquid supply control is disclosed for a heat transfer system which transports heat by liquid-vapor phase change of a working fluid. An assembly (10) of monogroove heat pipe legs (15) can be operated automatically as either heat acquisition devices or heat discharge sources. The liquid channels (27) of the heat pipe legs (15) are connected to a reservoir (35) which is filled and drained by respective filling and draining valves (30, 32). Information from liquid level sensors (50, 51) on the reservoir (35) is combined (60) with temperature information (55) from the liquid heat exchanger (12) and temperature information (56) from the assembly vapor conduit (42) to regulate filling and draining of the reservoir (35), so that the reservoir (35) in turn serves the liquid supply/drain needs of the heat pipe legs (15), on demand, by passive capillary action (20, 28).

  1. Heat exchanger restart evaluation

    International Nuclear Information System (INIS)

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4A was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the identified tube. The leaking tube was removed and examined metallurgically to determine the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized

  2. Heat exchanger restart evaluation

    International Nuclear Information System (INIS)

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4kA was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized herein

  3. A minichannel aluminium tube heat exchanger - Pt. 1: Evaluation of single-phase heat transfer coefficients by the Wilson plot method

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, Primal; Palm, Bjoern; Ameel, Tim; Lundqvist, Per; Granryd, Eric [Department of Energy Technology, Division of Applied Thermodynamics and Refrigeration, Royal Institute of Technology (KTH), Stockholm (Sweden)

    2008-06-15

    A prototype liquid-to-refrigerant heat exchanger was developed with the aim of minimizing the refrigerant charge in small systems. To allow correct calculation of the refrigerant side heat transfer, the heat exchanger was first tested for liquid-to-liquid (water-to-water) operation in order to determine the single-phase heat transfer performance. These single-phase tests are reported in this paper. The heat exchanger was made from extruded multiport aluminium tubes and was designed similar to a shell-and-tube heat exchanger. The heat transfer areas of the shell-side and tube-side were approximately 0.82 m{sup 2} and 0.78 m{sup 2}, respectively. There were six rectangular-shaped parallel channels in a tube. The hydraulic diameter of the tube-side was 1.42 mm and of the shell-side 3.62 mm. Tests were conducted with varying water flow rates, temperature levels and heat fluxes on both the tube and shell sides at Reynolds numbers of approximately 170-6000 on the tube-side and 1000-5000 on the shell-side, respectively. The Wilson plot method was employed to investigate the heat transfer on both the shell and tube sides. In the Reynolds number range of 2300-6000, it was found that the Nusselt numbers agreed with those predicted by the Gnielinski correlation within {+-}5% accuracy. In the Reynolds number range of 170-1200 the Nusselt numbers gradually increased from 2.1 to 3.7. None of the previously reported correlations for laminar flow predicted the Nusselt numbers well in this range. The shell-side Nusselt numbers were found to be considerably higher than those predicted by correlations from the literature. (author)

  4. Robust multi-objective optimization of state feedback controllers for heat exchanger system with probabilistic uncertainty

    Science.gov (United States)

    Lotfi, Babak; Wang, Qiuwang

    2013-07-01

    The performance of thermal control systems has, in recent years, improved in numerous ways due to developments in control theory and information technology. The shell-and-tube heat exchanger (STHX) is a medium where heat transfer process occurred. The accuracy of the heat exchanger depends on the performance of both elements. Therefore, both components need to be controlled in order to achieve a substantial result in the process. For this purpose, the actual dynamics of both shell and tube of the heat exchanger is crucial. In this paper, optimal reliability-based multi-objective Pareto design of robust state feedback controllers for a STHX having parameters with probabilistic uncertainties. Accordingly, the probabilities of failure of those objective functions are also considered in the reliability-based design optimization (RBDO) approach. A new multi-objective uniform-diversity genetic algorithm (MUGA) is presented and used for Pareto optimum design of linear state feedback controllers for STHX problem. In this way, Pareto front of optimum controllers is first obtained for the nominal deterministic STHX using the conflicting objective functions in time domain. Such Pareto front is then obtained for STHX having probabilistic uncertainties in its parameters using the statistical moments of those objective functions through a Hammersley Sequence Sampling (HSS) approach. It is shown that multi-objective reliability-based Pareto optimization of the robust state feedback controllers using MUGA includes those that may be obtained by various crisp threshold values of probability of failures and, thus, remove the difficulty of selecting suitable crisp values. Besides, the multi-objective Pareto optimization of such robust feedback controllers using MUGA unveils some very important and informative trade-offs among those objective functions. Consequently, some optimum robust state feedback controllers can be compromisingly chosen from the Pareto frontiers.

  5. Tube boiler heat exchanger

    International Nuclear Information System (INIS)

    The tube boiler heat exchanger has been designed for use in a steam generator circuit of a sodium cooled fast breeder reactor. U-type heat exchanger tubes with legs of different lengths are suspended within the boiler. They are made of steel with 9% chrome content. Each tube is passed through an opening in the tube wall with some clearance and then tightly sealed to the tube wall by means of a sleeve. This seal is achieved by a brazed connection using Nicrobraz 135 brazing metal (nickel base alloy) applied by means of a high frequency induction technique. (GL/DG)

  6. Process heat transfer principles, applications and rules of thumb

    CERN Document Server

    Serth, Robert W

    2014-01-01

    Process Heat Transfer is a reference on the design and implementation of industrial heat exchangers. It provides the background needed to understand and master the commercial software packages used by professional engineers in the design and analysis of heat exchangers. This book focuses on types of heat exchangers most widely used by industry: shell-and-tube exchangers (including condensers, reboilers and vaporizers), air-cooled heat exchangers and double-pipe (hairpin) exchangers. It provides a substantial introduction to the design of heat exchanger networks using pinch technology, the mos

  7. ASME code considerations for the compact heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Nestell, James [MPR Associates Inc., Alexandria, VA (United States); Sham, Sam [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-31

    The mission of the U.S. Department of Energy (DOE), Office of Nuclear Energy is to advance nuclear power in order to meet the nation's energy, environmental, and energy security needs. Advanced high temperature reactor systems such as sodium fast reactors and high and very high temperature gas-cooled reactors are being considered for the next generation of nuclear reactor plant designs. The coolants for these high temperature reactor systems include liquid sodium and helium gas. Supercritical carbon dioxide (sCO?), a fluid at a temperature and pressure above the supercritical point of CO?, is currently being investigated by DOE as a working fluid for a nuclear or fossil-heated recompression closed Brayton cycle energy conversion system that operates at 550°C (1022°F) at 200 bar (2900 psi). Higher operating temperatures are envisioned in future developments. All of these design concepts require a highly effective heat exchanger that transfers heat from the nuclear or chemical reactor to the chemical process fluid or the to the power cycle. In the nuclear designs described above, heat is transferred from the primary to the secondary loop via an intermediate heat exchanger (IHX) and then from the intermediate loop to either a working process or a power cycle via a secondary heat exchanger (SHX). The IHX is a component in the primary coolant loop which will be classified as "safety related." The intermediate loop will likely be classified as "not safety related but important to safety." These safety classifications have a direct bearing on heat exchanger design approaches for the IHX and SHX. The very high temperatures being considered for the VHTR will require the use of very high temperature alloys for the IHX and SHX. Material cost considerations alone will dictate that the IHX and SHX be highly effective; that is, provide high heat transfer area in a small volume. This feature must be accompanied by low pressure drop and mechanical reliability and robustness. Classic shell and tube designs will be large and costly, and may only be appropriate in steam generator service in the SHX where boiling inside the tubes occurs. For other energy conversion systems, all of these features can be met in a compact heat exchanger design. This report will examine some of the ASME Code issues that will need to be addressed to allow use of a Code-qualified compact heat exchanger in IHX or SHX nuclear service. Most effort will focus on the IHX, since the safety-related (Class A) design rules are more extensive than those for important-to-safety (Class B) or commercial rules that are relevant to the SHX.

  8. A minichannel aluminium tube heat exchanger - Pt. 3: Condenser performance with propane

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, Primal; Palm, Bjoern; Ameel, Tim; Lundqvist, Per; Granryd, Eric [Department of Energy Technology, Division of Applied Thermodynamics and Refrigeration, Royal Institute of Technology (KTH), Stockholm (Sweden)

    2008-06-15

    This paper reports heat transfer results obtained during condensation of refrigerant propane inside a minichannel aluminium heat exchanger vertically mounted in an experimental setup simulating a water-to-water heat pump. The condenser was constructed of multiport minichannel aluminium tubes assembled as a shell-and-tube heat exchanger. Propane vapour entered the condenser tubes via the top end and exited sub-cooled from the bottom. Coolant water flowed upward on the shell-side. The heat transfer areas of the tube-side and the shell-side of the condenser were 0.941 m{sup 2} and 0.985 m{sup 2}, respectively. The heat transfer rate between the two fluids was controlled by varying the evaporation temperature while the condensation temperature was fixed. The applied heat transfer rate was within 3900-9500 W for all tests. Experiments were performed at constant condensing temperatures of 30{sup o}C, 40{sup o}C and 50{sup o}C, respectively. The cooling water flow rate was maintained at 11.90 l min{sup -1} for all tests. De-superheating length, two-phase length, sub-cooling length, local heat transfer coefficients and average heat transfer coefficients of the condenser were calculated. The experimental heat transfer coefficients were compared with predictions from correlations found in the literature. The experimental heat transfer coefficients in the different regions were higher than those predicted by the available correlations. (author)

  9. A chaotic quantum-behaved particle swarm approach applied to optimization of heat exchangers

    International Nuclear Information System (INIS)

    Particle swarm optimization (PSO) method is a population-based optimization technique of swarm intelligence field in which each solution called “particle” flies around in a multidimensional problem search space. During the flight, every particle adjusts its position according to its own experience, as well as the experience of neighboring particles, using the best position encountered by itself and its neighbors. In this paper, a new quantum particle swarm optimization (QPSO) approach combined with Zaslavskii chaotic map sequences (QPSOZ) to shell and tube heat exchanger optimization is presented based on the minimization from economic view point. The results obtained in this paper for two case studies using the proposed QPSOZ approach, are compared with those obtained by using genetic algorithm, PSO and classical QPSO showing the best performance of QPSOZ. In order to verify the capability of the proposed method, two case studies are also presented showing that significant cost reductions are feasible with respect to traditionally designed exchangers. Referring to the literature test cases, reduction of capital investment up to 20% and 6% for the first and second cases, respectively, were obtained. Therefore, the annual pumping cost decreased markedly 72% and 75%, with an overall decrease of total cost up to 30% and 27%, respectively, for the cases 1 and 2, respectively, showing the improvement potential of the proposed method, QPSOZ. - Highlights: ? Shell and tube heat exchanger is minimized from economic view point. ? A new quantum particle swarm optimization (QPSO) combined with Zaslavskii chaotic map sequences (QPSOZ) is proposed. ? Reduction of capital investment up to 20% and 6% for the first and second cases was obtained. ? Annual pumping cost decreased 72% and 75%, with an overall decrease of total cost up to 30% and 27% using QPSOZ.

  10. Manufacture of heat exchangers

    International Nuclear Information System (INIS)

    A tube bundle for use in a heat exchanger has a series of spaced parallel tubes supported by tube plates and is manufactured by depositing welding material around the end of each tube, machining the deposited material to form an annular flange around the end of the tube and welding the flange into apertures in the tube plate. Preferably the tubes have a length which is slightly less than the distance between the outer surfaces of the tube plates and the deposited material is deposited so that it overlaps and protects the end surfaces of the tubes. A plug may be inserted in the bore of the tubes during the welding material deposition which, as described, is effected by manual metal arc welding. One use of heat exchangers incorporating a tube bundle manufactured as above is in apparatus for reducing the volume of, and recovering nitric acid from, radioactive effluents from a nuclear reprocessing plant. (author)

  11. Tubed heat exchanger

    International Nuclear Information System (INIS)

    A tubed heat exchanger is described, which has at least one tube with transverse flow over it. The invention concerns the improvement of efficiency by avoiding thick boundary layers on the tube. It has transverse ribs set on it with special projections, which, according to the invention lie only on one side of the main plane of the ribs. Eight pictures illustrate the proposal. (RW)

  12. Evaluation of structural integrity and heat exchange efficiency for dimpled tube type EGR cooler

    International Nuclear Information System (INIS)

    Most of vehicle manufacturers have applied Exhaust Gas Recirculation (EGR) system to the development of diesel engines in order to obtain the high thermal efficiency without NOX and Particulate Matter (PM) emitted from the engine. EGR system, which reflow a cooled exhaust gas from vehicles burning diesel as fuel to a combustion chamber of engine, has been used to solve this problem. In order to confirm the safety of the EGR system, finite element analysis was carried out. The safety of EGR system against temperature variation in the shell and tubes was evaluated through the thermal and structural analysis, and the modal analysis using ANSYS was also performed. Finally, the performance of EGR system was verified through the experiment and numerical simulation using effectiveness-NTU method. Program for the estimation of the heat exchange efficiency of the EGR system with regard to the dimpled tube shape was developed

  13. Counterflow Regolith Heat Exchanger Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The counterflow regolith heat exchanger (CoRHE) is a device that transfers heat from hot regolith to cold regolith. The CoRHE is essentially a tube-in-tube heat...

  14. Compact cryocooler heat exchangers

    International Nuclear Information System (INIS)

    Compact heat exchangers are subject to different constraints as a room temperature gas is cooled down by a cold stream returning from a JT valve (or a similar cryoprocess component). In particular, the optimization of exchangers for liquid helium systems has to cover a wide range in temperature and density of the fluid. In the present work we address the following thermodynamic questions: 1. The optimization of intermediate temperatures which optimize stage operation (a stage is assumed to have a constant cross section); 2. The optimum temperature difference available for best overall economic performance values. The results are viewed in the context of porous media concepts applied to rather low speeds of fluid flow in narrow passages. In this paper examples of fluid/solid constraints imposed in this non-classical low temperature area are presented

  15. Heat exchanger performance monitoring guidelines

    International Nuclear Information System (INIS)

    Fouling can occur in many heat exchanger applications in a way that impedes heat transfer and fluid flow and reduces the heat transfer or performance capability of the heat exchanger. Fouling may be significant for heat exchanger surfaces and flow paths in contact with plant service water. This report presents guidelines for performance monitoring of heat exchangers subject to fouling. Guidelines include selection of heat exchangers to monitor based on system function, safety function and system configuration. Five monitoring methods are discussed: the heat transfer, temperature monitoring, temperature effectiveness, delta P and periodic maintenance methods. Guidelines are included for selecting the appropriate monitoring methods and for implementing the selected methods. The report also includes a bibliography, example calculations, and technical notes applicable to the heat transfer method

  16. Study on pull-out force in tube-and-shell heat exchangers with finite element method

    International Nuclear Information System (INIS)

    Using the finite element method to shell-and-tube multiple fixed-tube plate heat exchanger in three kinds of cases, the pull-out force for a heat exchanger and tube-sheets under the different temperature distribution are calculated. The results show that the pull-out force have a bigger difference in the different locations of a heat exchanger tube for multiple exchangers. According to the allowable value of ASME, the pull-out force of all heat exchanger tubes and tube-sheet joint for case 3 can meet the requirements, but the pull-out force of the joints with 56 heat exchanger tubes and tube-sheets for case 1 and with 22 heat exchanger tubes and tube-sheets for case 2 are over the allowable values. Therefore, under the co-action of vibration, corrosion and so on caused by the flow of the medium,it is easy for these joints to rupture and leak. (authors)

  17. Preliminary issues associated with the next generation nuclear plant intermediate heat exchanger design.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Moisseytsev, A.; Majumdar, S.; Shankar, P. S.; Nuclear Engineering Division

    2007-04-05

    The Next Generation Nuclear Plant (NGNP), which is an advanced high temperature gas reactor (HTGR) concept with emphasis on production of both electricity and hydrogen, involves helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas turbine inlet temperature of 900-1000 C. In the indirect cycle system, an intermediate heat exchanger is used to transfer the heat from primary helium from the core to the secondary fluid, which can be helium, nitrogen/helium mixture, or a molten salt. The system concept for the vary high temperature reactor (VHTR) can be a reactor based on the prismatic block of the GT-MHR developed by a consortium led by General Atomics in the U.S. or based on the PBMR design developed by ESKOM of South Africa and British Nuclear Fuels of U.K. This report has made a preliminary assessment on the issues pertaining to the intermediate heat exchanger (IHX) for the NGNP. Two IHX designs namely, shell and tube and compact heat exchangers were considered in the assessment. Printed circuit heat exchanger, among various compact heat exchanger (HX) designs, was selected for the analysis. Irrespective of the design, the material considerations for the construction of the HX are essentially similar, except may be in the fabrication of the units. As a result, we have reviewed in detail the available information on material property data relevant for the construction of HX and made a preliminary assessment of several relevant factors to make a judicious selection of the material for the IHX. The assessment included four primary candidate alloys namely, Alloy 617 (UNS N06617), Alloy 230 (UNS N06230), Alloy 800H (UNS N08810), and Alloy X (UNS N06002) for the IHX. Some of the factors addressed in this report are the tensile, creep, fatigue, creep fatigue, toughness properties for the candidate alloys, thermal aging effects on the mechanical properties, American Society of Mechanical Engineers (ASME) Code compliance information, and performance of the alloys in helium containing a wide range of impurity concentrations. A detailed thermal hydraulic analysis, using a model developed at ANL, was performed to calculate heat transfer, temperature distribution, and pressure drop inside both printed circuit and shell-and-tube heat exchangers. The analysis included evaluation of the role of key process parameters, geometrical factors in HX designs, and material properties. Calculations were performed for helium-to-helium, helium-to-helium/nitrogen, and helium-to-salt HXs. The IHX being a high temperature component, probably needs to be designed using ASME Code Section III, Subsection NH, assuming that the IHX will be classified as a class 1 component. With input from thermal hydraulic calculations performed at ANL, thermal conduction and stress analyses for both compact and shell-and-tube HXs were performed.

  18. Heat exchanger repair

    International Nuclear Information System (INIS)

    There are two ways to rapir heater tubes in tubular heat exchangers, partial replacement of tubes and a technique called sleeving. In the former case, the defective tube section is cut out, removed, and replaced by a new section butt welded to the old piece of tube which remained in place. In the sleeving technique, a tube sleeve is slid into the defective tube and, after expansion, welded to the original tube. In this case, the welding technique employed is not laser welding, as is often maintained in the literature, but TIG pulsation welding. The results of preliminary tests and the qualification of both processes are outlined in the article; an account is given also of the replacement of the tube sections when repairing condensate coolers. (orig.)

  19. Aplicación del Método de la Colonia de Hormigas Mixto a la optimización de intercambiadores de calor de tubo y coraza / Application of the Mixed Ant Colony Method to the optimization of tube and shell heat exchangers

    Scientific Electronic Library Online (English)

    Maida-Bárbara, Reyes-Rodríguez; Jorge-Laureano, Moya-Rodríguez; Sergio-Ramón, Pérez-León; Gonzalo, Nápoles-Ruiz.

    2014-08-01

    Full Text Available Los procesos de transferencia de calor son uno de los problemas más importantes a resolver en el campo de la Ingeniería. Entre los equipos más usados en la industria para realizar la transferencia de calor están los intercambiadores de calor de tubo y coraza. En el presente trabajo se desarrolla el [...] procedimiento para la optimización del diseño de estos equipos utilizando el método de Kern y aplicando el algoritmo de la colonia de hormigas. Se aplica el mismo a tres ejemplos concretos y los resultados obtenidos se comparan con los obtenidos aplicando otros métodos de la inteligencia artificial. Se optimizan los principales parámetros geométricos de los intercambiadores de calor de tubo y coraza para lograr un menor costo de los mismos. Se demuestra la eficacia del nuevo procedimiento MACO (Mixed Ant Colony Optimization), en el proceso de optimización desde el punto de vista económico utilizando diferentes casos de estudios. Abstract in english Heat transfer processes are one of the most important problems to be solved in the field of Engineering. Among the most widely used equipment for heat transfer in the industry are the shell and tube heat exchangers. This paper develops the procedure for optimizing the design of shell and tube heat e [...] xchangers using the method of Kern and applying the ant colony algorithm. The procedure has been applied to three specific examples and the results obtained are compared with those obtained by applying other methods of artificial intelligence. The main geometric parameters of shell and tube heat exchangers are optimized, to achieve a lower cost of the exchanger. The efficacy of the new procedure MACO (Mixed Ant Colony Optimization) for the optimization process from economically point of view was demonstrated, using different case studies.

  20. WASTE HEAT RECOVERY FROM BOILER OF LARGE-SCALE TEXTILE INDUSTRY

    OpenAIRE

    Prateep Pattanapunt; Kanokorn Hussaro; Tika Bunnakand; Sombat Teekasap

    2013-01-01

    Many industrial heating processes generate waste energy in textile industry; especially exhaust gas from the boiler at the same time reducing global warming. Therefore, this article will present a study the way to recovery heat waste from boiler exhaust gas by mean of shell and tube heat exchanger. Exhaust gas from boiler dyeing process, which carries a large amount of heat, energy consumptions could be decrease by using of waste-heat recovery systems. In this study, using ANASYS simulation p...

  1. Review of Current Experience on Intermediate Heat Exchanger (IHX) and A Recommended Code Approach

    International Nuclear Information System (INIS)

    The purpose of the ASME/DOE Gen IV Task 7 Part I is to review the current experience on various high temperature reactor intermediate heat exchanger (IHX) concepts. There are several different IHX concepts that could be envisioned for HTR/VHTR applications in a range of temperature from 850C to 950C. The concepts that will be primarily discussed herein are: (1) Tubular Helical Coil Heat Exchanger (THCHE); (2) Plate-Stamped Heat Exchanger (PSHE); (3) Plate-Fin Heat Exchanger (PFHE); and (4) Plate-Machined Heat Exchanger (PMHE). The primary coolant of the NGNP is potentially subject to radioactive contamination by the core as well as contamination from the secondary loop fluid. To isolate the radioactivity to minimize radiation doses to personnel, and protect the primary circuit from contamination, intermediate heat exchangers (IHXs) have been proposed as a means for separating the primary circuit of the NGNP (Next Generation Nuclear Plant) or other process heat application from the remainder of the plant. This task will first review the different concepts of IHX that could be envisioned for HTR/VHTR applications in a range of temperature from 850 to 950 C. This will cover shell-and-tube and compact designs (including the platefin concept). The review will then discuss the maturity of the concepts in terms of design, fabricability and component testing (or feedback from experience when applicable). Particular attention will be paid to the feasibility of developing the IHX concepts for the NGNP with operation expected in 2018-2021. This report will also discuss material candidates for IHX applications and will discuss specific issues that will have to be addressed in the context of the HTR design (thermal aging, corrosion, creep, creep-fatigue, etc). Particular attention will be paid to specific issues associated with operation at the upper end of the creep regime.

  2. Review of Current Experience on Intermediate Heat Exchanger (IHX) and A Recommended Code Approach

    Energy Technology Data Exchange (ETDEWEB)

    Duane Spencer; Kevin McCoy

    2010-02-02

    The purpose of the ASME/DOE Gen IV Task 7 Part I is to review the current experience on various high temperature reactor intermediate heat exchanger (IHX) concepts. There are several different IHX concepts that could be envisioned for HTR/VHTR applications in a range of temperature from 850C to 950C. The concepts that will be primarily discussed herein are: (1) Tubular Helical Coil Heat Exchanger (THCHE); (2) Plate-Stamped Heat Exchanger (PSHE); (3) Plate-Fin Heat Exchanger (PFHE); and (4) Plate-Machined Heat Exchanger (PMHE). The primary coolant of the NGNP is potentially subject to radioactive contamination by the core as well as contamination from the secondary loop fluid. To isolate the radioactivity to minimize radiation doses to personnel, and protect the primary circuit from contamination, intermediate heat exchangers (IHXs) have been proposed as a means for separating the primary circuit of the NGNP (Next Generation Nuclear Plant) or other process heat application from the remainder of the plant. This task will first review the different concepts of IHX that could be envisioned for HTR/VHTR applications in a range of temperature from 850 to 950 C. This will cover shell-and-tube and compact designs (including the platefin concept). The review will then discuss the maturity of the concepts in terms of design, fabricability and component testing (or feedback from experience when applicable). Particular attention will be paid to the feasibility of developing the IHX concepts for the NGNP with operation expected in 2018-2021. This report will also discuss material candidates for IHX applications and will discuss specific issues that will have to be addressed in the context of the HTR design (thermal aging, corrosion, creep, creep-fatigue, etc). Particular attention will be paid to specific issues associated with operation at the upper end of the creep regime.

  3. Heat pipes in modern heat exchangers

    International Nuclear Information System (INIS)

    Heat pipes are very flexible systems with regard to effective thermal control. They can easily be implemented as heat exchangers inside sorption and vapour-compression heat pumps, refrigerators and other types of heat transfer devices. Their heat transfer coefficient in the evaporator and condenser zones is 103-105 W/m2 K, heat pipe thermal resistance is 0.01-0.03 K/W, therefore leading to smaller area and mass of heat exchangers. Miniature and micro heat pipes are welcomed for electronic components cooling and space two-phase thermal control systems. Loop heat pipes, pulsating heat pipes and sorption heat pipes are the novelty for modern heat exchangers. Heat pipe air preheaters are used in thermal power plants to preheat the secondary-primary air required for combustion of fuel in the boiler using the energy available in exhaust gases. Heat pipe solar collectors are promising for domestic use. This paper reviews mainly heat pipe developments in the Former Soviet Union Countries. Some new results obtained in USA and Europe are also included

  4. Simulations of thermal-hydraulic processes in heat exchangers- station of the cogeneration power plant

    Energy Technology Data Exchange (ETDEWEB)

    Studovic, M.; Stevanovic, V.; Ilic, M.; Nedeljkovic, S. [Faculty of Mechanical Engineering of Belgrade (Croatia)

    1995-12-31

    Design of the long district heating system to Belgrade (base load 580 MJ/s) from Thermal Power Station `Nikola Tesla A`, 30 km southwest from the present gas/oil burning boilers in New Belgrade, is being conducted. The mathematical model and computer code named TRP are developed for the prediction of the design basis parameters of heat exchangers station, as well as for selection of protection devices and formulation of operating procedures. Numerical simulations of heat exchangers station are performed for various transient conditions: up-set and abnormal. Physical model of multi-pass, shell and tube heat exchanger in the station represented is by unique steam volume, and with space discretised nodes both for water volume and tube walls. Heat transfer regimes on steam and water side, as well as hydraulic calculation were performed in accordance with TEMA standards for transient conditions on both sides, and for each node on water side. Mathematical model is based on balance equations: mass and energy for lumped parameters on steam side, and energy balances for tube walls and water in each node. Water mass balance is taken as boundary/initial condition or as specified control function. The physical model is proposed for (s) heat exchangers in the station and (n) water and wall volumes. Therefore, the mathematical model consists of 2ns+2, non-linear differential equations, including equations of state for water, steam and tube material, and constitutive equations for heat transfer on steam and water side, solved by the Runge-Kutt method. Five scenarios of heat exchangers station behavior have been simulated with the TRP code and obtained results are presented. (author)

  5. High Temperature Heat Exchanger Project

    Energy Technology Data Exchange (ETDEWEB)

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  6. A minichannel aluminium tube heat exchanger - Pt. 2: Evaporator performance with propane

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, Primal; Palm, Bjoern; Ameel, Tim; Lundqvist, Per; Granryd, Eric [Department of Energy Technology, Division of Applied Thermodynamics and Refrigeration, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden)

    2008-06-15

    This paper presents heat transfer data for a multiport minichannel heat exchanger vertically mounted as an evaporator in a test-rig simulating a small water-to-water heat pump. The multiport minichannel heat exchanger was designed similar to a shell-and-tube type heat exchanger, with a six-channel tube of 1.42 mm hydraulic diameter, a tube-side heat transfer area of 0.777 m{sup 2} and a shell-side heat transfer area of 0.815 m{sup 2}. Refrigerant propane with a desired vapour quality flowed upward through the tubes and exited with a desired superheat of 1-4 K. A temperature-controlled glycol solution that flowed downward on the shell-side supplied the heat for the evaporation of the propane. The heat transfer rate between the glycol solution and propane was controlled by varying the evaporation temperature and propane mass flow rate while the glycol flow rate was fixed (18.50 l min{sup -1}). Tests were conducted for a range of evaporation temperatures from -15 to +10{sup o}C, heat flux from 2000 to 9000 W m{sup -2} and mass flux from 13 to 66 kg m{sup -2} s{sup -1}. The heat transfer coefficients were compared with 14 correlations found in the literature. The experimental heat transfer coefficients were higher than those predicted by many of the correlations. A correlation which was previously developed for a very large and long tube (21 mm diameter and 10 m long) was in good agreement with the experimental data (97% of the data within {+-}30%). Several other correlations were able to predict the data within a reasonable deviation (within {+-}30%) after some adjustments to the correlations. (author)

  7. Electroforming thin channel heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Steffani, C.P.

    1991-06-01

    Research at Lawrence Livermore National Laboratory has shown that thin channel heat exchangers can be produced on bimetallic mandrels by the stack and plate method. Depth to width ratios of 100 to 1 are easily produced, with other ratios dependent on heating or cooling requirements. Mass production of these plates may be possible using reel to reel'' methods. Future generations of heat exchangers may be produced via composite electroforming, chemical vapor deposition (CVD) or physical vapor deposition (PVD). 6 refs.

  8. New general correlations for pure chevron plate heat exchangers. Paper no. IGEC-1-069

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Khader, M.M. [Al-Balqa Applied Univ., Dept. of Chemical Engineering, Faculty of Engineering Technology, Amman (Jordan)]. E-mail: mak@accessme.com

    2005-07-01

    There is an increase interest in the development of Plate Heat Exchanger (PHE) as effective and compact heat transfer equipment. It exhibits excellent heat transfer characteristics which allow more compact designs than that achieved with conventional shell and tube heat exchangers. This paper proposes new Modified Leveque Equations (MGLEs) which were originally based on Generalized Leveque Equation (GLE) presented by Martin, 1996, for mixed chevron plates. A comparative study was conducted to evaluate the thermal performance calculations of MGLEs and recently developed complex equation presented by Muley and Manglik, 1999, against the well known correlations for pure chevron angles presented by Kumar, 1984. An industrial case study was used to carry out the required analysis and comparison. The complex equation of Muley and Manglik,1999, gave noticeable deviation error in angles of 30{sup o} , 40{sup o} and 50{sup o} when compared with classical correlations for pure chevron plates. Whereas the two equations of the MGLEs based on hard plate, MGLE(1), and soft plate, MGLE(2) gave an excellent overall performance and they can with confidence replace the Kumar's correlations for pure chevron angles at wide range of Reynolds numbers from laminar to high turbulent regions. (author)

  9. Heat exchanger using graphite foam

    Science.gov (United States)

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  10. Numerical simulation of heat exchanger

    International Nuclear Information System (INIS)

    Accurate and detailed knowledge of the fluid flow field and thermal distribution inside a heat exchanger becomes invaluable as a large, efficient, and reliable unit is sought. This information is needed to provide proper evaluation of the thermal and structural performance characteristics of a heat exchanger. It is to be noted that an analytical prediction method, when properly validated, will greatly reduce the need for model testing, facilitate interpolating and extrapolating test data, aid in optimizing heat-exchanger design and performance, and provide scaling capability. Thus tremendous savings of cost and time are realized. With the advent of large digital computers and advances in the development of computational fluid mechanics, it has become possible to predict analytically, through numerical solution, the conservation equations of mass, momentum, and energy for both the shellside and tubeside fluids. The numerical modeling technique will be a valuable, cost-effective design tool for development of advanced heat exchangers

  11. Numerical simulation of heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Sha, W.T.

    1985-01-01

    Accurate and detailed knowledge of the fluid flow field and thermal distribution inside a heat exchanger becomes invaluable as a large, efficient, and reliable unit is sought. This information is needed to provide proper evaluation of the thermal and structural performance characteristics of a heat exchanger. It is to be noted that an analytical prediction method, when properly validated, will greatly reduce the need for model testing, facilitate interpolating and extrapolating test data, aid in optimizing heat-exchanger design and performance, and provide scaling capability. Thus tremendous savings of cost and time are realized. With the advent of large digital computers and advances in the development of computational fluid mechanics, it has become possible to predict analytically, through numerical solution, the conservation equations of mass, momentum, and energy for both the shellside and tubeside fluids. The numerical modeling technique will be a valuable, cost-effective design tool for development of advanced heat exchangers.

  12. Damping of heat exchanger tubes

    International Nuclear Information System (INIS)

    Damping information is required for flow-induced vibration analyses of heat exchangers. There are several possible energy dissipation mechanisms that contribute to overall tube damping, including structural damping, friction damping, tube-to-fluid viscous damping and squeeze-film damping. These mechanisms and their relative contribution to overall tube damping are discussed. The approach is to identify the more important energy dissipation mechanisms and to formulate them in terms of heat exchanger tube parameters. This will give the designer a method to evaluate overall tube damping. The results of recent measurements on a simple two-span heat exchanger tube, on tube bundles in two-phase cross-flow, and on real heat exchangers in the field are disscussed

  13. Tube in shell heat exchangers

    International Nuclear Information System (INIS)

    An improved tube-in-shell heat exchanger to be used between liquid metal and water is described for use in the liquid metal coolant system of fast breeder reactors. It is stated that this design is less prone to failures which could result in sodium water reactions than previous exchangers. (UK)

  14. Effect of channel configurations for tritium transfer in printed circuit heat exchangers

    International Nuclear Information System (INIS)

    The Next Generation Nuclear Plant (NGNP), a very High temperature Gas-Cooled Reactor (VHTR) concept, will provide the first demonstration of a closed-loop Brayton cycle at a commercial scale of a few hundred megawatts electric and hydrogen production. The power conversion system (PCS) for the NGNP will take advantage of the significantly higher reactor outlet temperatures of the VHTR to provide higher efficiencies than can be achieved in the current generation of light water reactors. Besides demonstrating a system design that can be used directly for subsequent commercial deployment, the NGNP will demonstrate key technology elements that can be used in subsequent advanced power conversion systems for other Generation IV reactors. In anticipation of the design, development and procurement of an advanced power conversion system for the NGNP, the system integration of the NGNP and hydrogen plant was initiated to identify the important design and technology options that must be considered in evaluating the performance of the proposed NGNP. In the VHTR system, an intermediate heat exchanger (IHX), which transfers heat from the reactor core to the electricity or hydrogen production system is one key component, and its effectiveness is directly related to the system overall efficiency. In the VHTRs, the gas fluids used for coolant generally have poor heat transfer capability, so it requires very large surface area for a given condition. For this reason, a compact heat exchanger (CHE), which is widely used in industry especially for gas-to-gas or gas-to-liquid heat exchange is considered as a potential candidate for an IHX replacing the classical shell and tube type heat exchanger. A compact heat exchanger is arbitrary referred to be a heat exchanger having a surface area density greater than 700 m2/m3. The compactness is usually achieved by fins and micro-channels, and leads to the enormous heat transfer enhancement and size reduction. The surface area density is the total heat transfer area divided by the volume of the heat exchanger. In the case of PCHE units, the heat transfer surface area density may be as high as 2,500 m2/m3. This high compactness implies an appreciable reduction in material reducing cost. In this study, heat transfer and tritium penetration analyses have been performed for two different channel configurations of the PCHE; (1) standard and (2) off-set. One of the goals of this study was to determine whether offsetting the hot and cold streams would significantly reduce the tritium flux, and whether or not it would affect the heat transfer significantly. (author)

  15. Effect of Channel Configurations for Tritium Transfer in Printed Circuit Heat Exchangers

    International Nuclear Information System (INIS)

    The Next Generation Nuclear Plant (NGNP), a very High temperature Gas-Cooled Reactor (VHTR) concept, will provide the first demonstration of a closed-loop Brayton cycle at a commercial scale of a few hundred megawatts electric and hydrogen production. The power conversion system (PCS) for the NGNP will take advantage of the significantly higher reactor outlet temperatures of the VHTR to provide higher efficiencies than can be achieved in the current generation of light water reactors. Besides demonstrating a system design that can be used directly for subsequent commercial deployment, the NGNP will demonstrate key technology elements that can be used in subsequent advanced power conversion systems for other Generation IV reactors. In anticipation of the design, development and procurement of an advanced power conversion system for the NGNP, the system integration of the NGNP and hydrogen plant was initiated to identify the important design and technology options that must be considered in evaluating the performance of the proposed NGNP. In the VHTR system, an intermediate heat exchanger (IHX), which transfers heat from the reactor core to the electricity or hydrogen production system is one key component, and its effectiveness is directly related to the system overall efficiency. In the VHTRs, the gas fluids used for coolant generally have poor heat transfer capability, so it requires very large surface area for a given condition. For this reason, a compact heat exchanger (CHE), which is widely used in industry especially for gasto-gas or gas-to-liquid heat exchange is considered as a potential candidate for an IHX replacing the classical shell and tube type heat exchanger. A compact heat exchanger is arbitrary referred to be a heat exchanger having a surface area density greater than 700 m2/m3. The compactness is usually achieved by fins and micro-channels, and leads to the enormous heat transfer enhancement and size reduction. The surface area density is the total heat transfer area divided by the volume of the heat exchanger. In the case of PCHE units, the heat transfer surface area density may be as high as 2,500 m2/m3. This high compactness implies an appreciable reduction in material reducing cost. In this study, heat transfer and tritium penetration analyses have been performed for two different channel configurations of the PCHE; (1) standard and (2) off-set. One of the goals of this study was to determine whether offsetting the hot and cold streams would significantly reduce the tritium flux, and whether or not it would affect the heat transfer significantly.

  16. Heat exchanger and related methods

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Terry D.; McKellar, Michael G.

    2015-12-22

    Heat exchangers include a housing having an inlet and an outlet and forming a portion of a transition chamber. A heating member may form another portion of the transition chamber. The heating member includes a first end having a first opening and a second end having a second opening larger than the first opening. Methods of conveying a fluid include supplying a first fluid into a transition chamber of a heat exchanger, supplying a second fluid into the transition chamber, and altering a state of a portion of the first fluid with the second fluid. Methods of sublimating solid particles include conveying a first fluid comprising a material in a solid state into a transition chamber, heating the material to a gaseous state by directing a second fluid through a heating member and mixing the first fluid and the second fluid.

  17. Simulation of the performance of shell-and-tube condensers; Rohrbuendelverfluessiger - Simulation des Leistungsverhaltens

    Energy Technology Data Exchange (ETDEWEB)

    Ciconkov, R. [Univ. ' ' St. Kiril and Metodij' ' , Masinski Fakultet, Skopje (Yugoslavia); Hilligweg, A. [Georg-Simon-Ohm-Fachhochschule Nuernberg, FB Maschinenbau und Versorgungstechnik (Germany)

    2003-02-01

    The performance of cold vapour refrigerating plants is depending on a multitude of parameters which directly influence a single component only. However, they have an indirect effect on all other components as well. To predict the balance point as a result of the interaction of all components it is necessary to predict the performance of each component separately. In this paper a simulation tool for shell-and-tube condensers is introduced, selected results are shown and explained. (orig.) [German] Kompressionskaelteanlagen sind im Betrieb vielfaeltigen Einfluessen unterworfen, die direkt auf einzelne Komponenten, indirekt aber auf die gesamte Anlage einwirken. Um den Betriebspunkt, der sich im Zusammenspiel der Komponenten einstellt, zu bestimmen, muss im ersten Schritt das Leistungsverhalten der einzelnen Komponenten dargestellt werden. In diesem Beitrag wird eine Methode zur Vorhersage des Leistungsverhaltens von Rohrbuendelverfluessigern erlaeutert. Einzelne Ergebnisse werden vorgestellt. (orig.)

  18. Development of Design Criteria for Fluid Induced Structural Vibrations in Steam Generators and Heat Exchangers

    International Nuclear Information System (INIS)

    OAK-B135 Flow-induced vibration in heat exchangers has been a major cause of concern in the nuclear industry for several decades. Many incidents of failure of heat exchangers due to apparent flow-induced vibration have been reported through the USNRC incident reporting system. Almost all heat exchangers have to deal with this problem during their operation. The phenomenon has been studied since the 1970s and the database of experimental studies on flow-induced vibration is constantly updated with new findings and improved design criteria for heat exchangers. In the nuclear industry, steam generators are often affected by this problem. However, flow-induced vibration is not limited to nuclear power plants, but to any type of heat exchanger used in many industrial applications such as chemical processing, refrigeration and air conditioning. Specifically, shell and tube type heat exchangers experience flow-induced vibration due to the high velocity flow over the tube banks. Flow-induced vibration in these heat exchangers leads to equipment breakdown and hence expensive repair and process shutdown. The goal of this research is to provide accurate measurements that can help modelers to validate their models using the measured experimental parameters and thereby develop better design criteria for avoiding fluid-elastic instability in heat exchangers. The research is divided between two primary experimental efforts, the first conducted using water alone (single phase) and the second using a mixture of air or steam and water as the working fluid (two phase). The outline of this report is as follows: After the introduction to fluid-elastic instability, the experimental apparatus constructed to conduct the experiments is described in Chapter 2 along with the measurement procedures. Chapter 3 presents results obtained on the tube array and the flow loop, as well as techniques used in data processing. The project performance is described and evaluated in Chapter 4 followed by a discussion of publications and presentations relevant to the project in Chapter 5, while the conclusions and recommendations for future work are presented in Chapter 6

  19. Heat exchanger staybolt acceptance criteria

    International Nuclear Information System (INIS)

    The structural integrity demonstration of the primary coolant piping system includes evaluating the structural capacity of each component against a large break or equivalent Double-Ended Guillotine Break. A large break at the inlet or outlet heads of the heat exchangers would occur if the restraint members of the heads become inactive. The structural integrity of the heads is demonstrated by showing the redundant capacity of the staybolts to restrain the head at design conditions and under seismic loadings. The Savannah River Site heat exchanger head is attached to the tubesheet by 84 staybolts. Access to the staybolts is limited due to a welded seal cap over the staybolts. An ultrasonic testing (UT) inspection technique to provide an in-situ examination of the staybolts has recently been developed at SRS. Examination of the staybolts will be performed to ensure their service condition and configuration is within acceptance limits. An acceptance criteria methodology has been developed to disposition flaws reported in the staybolt inspections while ensuring adequate restraint capacity of the staybolts to maintain integrity of the heat exchanger heads against collapse. The methodology includes an approach for the baseline and periodic inspections of the staybolts. The heat exchanger head is analyzed with a three-dimensional finite element model. The restraint provided by the staybolts is evaluated for several postulated cases of inactive or missing staybolts. Evaluation of specific, inactive staybolt configurations based on the UT results can be performed with the finite element model and fracture methodology in this report

  20. Heat Exchangers Analysis

    Directory of Open Access Journals (Sweden)

    S.C. Pang

    2013-01-01

    Full Text Available Current research performs mathematics correlations between engine speed, coolant flow, vehicle speed and driving gear. A step-by-step procedure is described to obtain the engine cooling system parameters mathematically (include a CFD model. After obtaining the parameters, the thermal equilibrium of engine cooling system is studied thoroughly. The study of thermal equilibrium provides some insights on how to reduce engine cooling load and when the interference of cooling fan is required. A segmented spread sheet model is developed in order to explain the phenomenon which air flow driven by uniform ram air could dissipate higher amount of heat flow than air flow driven by cooling fan. The segmentation analysis concluded that minimum mCp fluid is switched to coolant when the air flow is concentrated at small portion of area.

  1. Fouling analyses for heat exchangers of NPP

    International Nuclear Information System (INIS)

    Fouling of heat exchanges is generated by water-borne deposits, commonly known as foulants including particulate matter from the air, migrated corrosion produces; silt, clays, and sand suspended in water; organic contaminants; and boron based deposits in plants. This fouling is known to interfere with normal flow characteristics and reduce thermal efficiencies of heat exchangers. In order to analyze the fouling for heat exchangers of nuclear power plant, the fouling factor is introduced based on the ASME O and M codes and TEMA standards. This paper focuses on the fouling analyses for the heat exchangers of several primary systems; the RHR heat exchanger of the residual heat removal system, the letdown heat exchanger of the chemical and volume control system, and the CCW heat exchanger of the component cooling water system, Based on the results of the fouling levels for the three heat exchangers are assumed

  2. Cryogenic Heat Exchanger with Turbulent Flows

    Science.gov (United States)

    Amrit, Jay; Douay, Christelle; Dubois, Francis; Defresne, Gerard

    2012-01-01

    An evaporator-type cryogenic heat exchanger is designed and built for introducing fluid-solid heat exchange phenomena to undergraduates in a practical and efficient way. The heat exchanger functions at liquid nitrogen temperature and enables cooling of N[subscript 2] and He gases from room temperatures. We present first the experimental results of…

  3. Optimization of heat exchanger for indirectly heated water heater

    Science.gov (United States)

    Kaduchová, Katarína; Lenhard, Richard; Janda?ka, Jozef

    2012-04-01

    Due to the optimization of geometrical parameters of the heat exchanger in indirect heated water heaters created a mathematical model of heating hot water, by which I have subsequently made the simulation of the device to change its geometrical parameters. Based on these results, the impacts of the geometrical parameters affect the performance of the heat exchanger. The results of the optimization to create a CFD model which watched at the behavior of optimized heat exchanger for indirect heated water heaters.

  4. Free vibrations of finite circular cylindrical shells and tubes with and without a surrounding fluid

    International Nuclear Information System (INIS)

    Numerical models are evaluated for determining the natural frequencies of thin-walled closed circular cylindrical shells and straight tube bundles in a fluid or without a fluid. Experiments are described to check the reliability of the numerical models. Some of the models are applied for the vibration analysis of some parts of the sodium-steam heat exchangers of the SNR-300 reactor in Kalkar (West Germany). (Auth.)

  5. Comparison of a Conventional Heat Exchangers with a New Designed Heat Exchanger Experimentally

    Directory of Open Access Journals (Sweden)

    Tansel Koyun

    2014-04-01

    Full Text Available In this study, the air-water heat exchanger designed have been experimentally compared to conventional heat exchangers with and without fin. The same parameters for the three heat exchangers (pump flow, heating power, etc... have been used. In the experiments, speed-flow adjustment has been made to supply heat transfer at an optimum. As a result, during the circulation of water in pipe of the air-water heat exchanger, the corrosion fouling factor has not been formed. In addition, the efficiency of the new designed heat exchanger has been found between fin and finless heat exchanger efficiencies. The results have been shown in the diagrams.

  6. Fouling analyses of heat exchangers for PSR

    International Nuclear Information System (INIS)

    Fouling of heat exchangers is generated by water-borne deposits, commonly known as foulants including particulate matter from the air, migrated corrosion produces; silt, clays, and sand suspended in water; organic contaminants; and boron based deposits in plants. This fouling is known to interfere with normal flow characteristics and reduce thermal efficiencies of heat exchangers. This paper focuses on fouling analyses for six heat exchangers of two primary systems in two nuclear power plants; the regenerative heat exchangers of the chemical and volume control system and the component cooling water heat exchangers of the component cooling water system. To analyze the fouling for heat exchangers, fouling factor was introduced based on the ASME O and M codes and TEMA standards. Based on the results of the fouling analyses, the present thermal performances and fouling levels for the six heat exchangers were predicted

  7. Heat exchanger for solar water heaters

    Science.gov (United States)

    Cash, M.; Krupnick, A. C.

    1977-01-01

    Proposed efficient double-walled heat exchanger prevents contamination of domestic water supply lines and indicates leakage automatically in solar as well as nonsolar heat sources using water as heat transfer medium.

  8. Optimization of heat exchanger for indirectly heated water heater

    OpenAIRE

    Kaduchová Katarína; Lenhard Richard; Janda?ka Jozef

    2012-01-01

    Due to the optimization of geometrical parameters of the heat exchanger in indirect heated water heaters created a mathematical model of heating hot water, by which I have subsequently made the simulation of the device to change its geometrical parameters. Based on these results, the impacts of the geometrical parameters affect the performance of the heat exchanger. The results of the optimization to create a CFD model which watched at the behavior of optimized heat exchanger for indirect hea...

  9. Mathematical simulation of heat exchanger working conditions

    Science.gov (United States)

    Gavlas, Stanislav; ?ur?anský, Peter; Lenhard, Richard; Janda?ka, Jozef

    2015-05-01

    One of the When designing a new heat exchanger it is necessary to consider all the conditions imposed on the exchanger and its desired properties. Most often the investigation of heat transfer is to find heat surface. When applying exchanger for proposed hot air engine, it will be a counter-flow heat exchanger of gas - gas type. Gas, which transfers the heat will be exhaust gas from the combustion of biomass. An important step in the design and verification is to analyze exchanger designed using numerical methods, the verification of the correctness of design and verification of boundary conditions which include temperatures, flow rates and pressure drops. Due to the fact that the heat transfer in the heat exchanger is a three-dimensional plot and timeindependent, the system is described by partial differential equations that need to be solved by numerical methods.

  10. Mathematical simulation of heat exchanger working conditions

    Directory of Open Access Journals (Sweden)

    Gavlas Stanislav

    2015-01-01

    Full Text Available One of the When designing a new heat exchanger it is necessary to consider all the conditions imposed on the exchanger and its desired properties. Most often the investigation of heat transfer is to find heat surface. When applying exchanger for proposed hot air engine, it will be a counter-flow heat exchanger of gas - gas type. Gas, which transfers the heat will be exhaust gas from the combustion of biomass. An important step in the design and verification is to analyze exchanger designed using numerical methods, the verification of the correctness of design and verification of boundary conditions which include temperatures, flow rates and pressure drops. Due to the fact that the heat transfer in the heat exchanger is a three-dimensional plot and timeindependent, the system is described by partial differential equations that need to be solved by numerical methods.

  11. Testing and analysis of immersed heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Farrington, R.B.; Bingham, C.E.

    1986-08-01

    The objectives were to determine the performance of four immersed, ''supply-side'' heat exchangers used in solar domestic-hot-water systems; to examine the effects of flow rate, temperature difference, and coil configuration on performance; and to develop a simple model to predict the performance of immersed heat exchangers. We tested four immersed heat exchangers: a smooth coil, a finned spiral, a single-wall bayonet, and a double-wall bayonet. We developed two analyticl models and a simple finite difference model. We experimentally verified that the performance of these heat exchangers depends on the flow rate through them; we also showed that the temperature difference between the heat exchanger's inlet and the storage tank can strongly affect a heat exchanger's performance. We also compared the effects of the heat exchanger's configuration and correlated Nusselt and Rayleigh numbers for each heat exchanger tested. The smooth coil had a higher effectiveness than the others, while the double-wall bayonet had a very low effectiveness. We still do not know the long-term effectiveness of heat exchangers regarding scale accumulation, nor do we know the effects of very low flow rates on a heat exchanger's performance.

  12. Comparative Study of Heat Exchangers Using CFD

    OpenAIRE

    Melvinraj C R; Vishal Varghese C

    2014-01-01

    A parallel flow heat exchanger and a corresponding ribbed tube heat exchanger is modeled and numerically analysed using a commercial finite volume CFD package. Pro-E & ANSYS 14.5 softwares are used for the designing and the analysis. CFD predictions of effectiveness of the two heat exchangers are obtained and compared. After selecting the best modeling approach, the sensitivity of the results to particular flow rate is investigated. It is observed that the flow and the tempera...

  13. Micro tube heat exchangers for Space Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Mezzo fabricates micro tube heat exchangers for a variety of applications, including aerospace, automotive racing, Department of Defense ground vehicles,...

  14. High temperature heat exchange: nuclear process heat applications

    International Nuclear Information System (INIS)

    The unique element of the HTGR system is the high-temperature operation and the need for heat exchanger equipment to transfer nuclear heat from the reactor to the process application. This paper discusses the potential applications of the HTGR in both synthetic fuel production and nuclear steel making and presents the design considerations for the high-temperature heat exchanger equipment

  15. Optimization of heat exchanger for indirectly heated water heater

    Directory of Open Access Journals (Sweden)

    Kaduchová Katarína

    2012-04-01

    Full Text Available Due to the optimization of geometrical parameters of the heat exchanger in indirect heated water heaters created a mathematical model of heating hot water, by which I have subsequently made the simulation of the device to change its geometrical parameters. Based on these results, the impacts of the geometrical parameters affect the performance of the heat exchanger. The results of the optimization to create a CFD model which watched at the behavior of optimized heat exchanger for indirect heated water heaters.

  16. Conjugate heat and mass transfer in heat mass exchanger ducts

    CERN Document Server

    Zhang, Li-Zhi

    2013-01-01

    Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts bridges the gap between fundamentals and recent discoveries, making it a valuable tool for anyone looking to expand their knowledge of heat exchangers. The first book on the market to cover conjugate heat and mass transfer in heat exchangers, author Li-Zhi Zhang goes beyond the basics to cover recent advancements in equipment for energy use and environmental control (such as heat and moisture recovery ventilators, hollow fiber membrane modules for humidification/dehumidification, membrane modules for air purification, desi

  17. Optimization of parameters of heat exchangers vehicles

    Directory of Open Access Journals (Sweden)

    Andrei MELEKHIN

    2014-09-01

    Full Text Available The relevance of the topic due to the decision of problems of the economy of resources in heating systems of vehicles. To solve this problem we have developed an integrated method of research, which allows to solve tasks on optimization of parameters of heat exchangers vehicles. This method decides multicriteria optimization problem with the program nonlinear optimization on the basis of software with the introduction of an array of temperatures obtained using thermography. The authors have developed a mathematical model of process of heat exchange in heat exchange surfaces of apparatuses with the solution of multicriteria optimization problem and check its adequacy to the experimental stand in the visualization of thermal fields, an optimal range of managed parameters influencing the process of heat exchange with minimal metal consumption and the maximum heat output fin heat exchanger, the regularities of heat exchange process with getting generalizing dependencies distribution of temperature on the heat-release surface of the heat exchanger vehicles, defined convergence of the results of research in the calculation on the basis of theoretical dependencies and solving mathematical model.

  18. Tube in-shell heat exchanger

    International Nuclear Information System (INIS)

    A tube-in-shell heat exchanger is described. It comprises a bundle of heat exchange tubes extending within an elongate shell. The tubes pass through a tube sheet and are connected thereto by means comprising branch pipes and compression pipe couplings

  19. Experimental evaluation of vibrations in heat exchangers

    International Nuclear Information System (INIS)

    Flow induced vibrations may produce damage of heat exchangers, condensers and steam generators tubes. To evaluate this problem a set of tests were developed to know the real support state of the tubes, which have great influence on the vibration response. This paper include a description of the tests and the results obtained applying them on a heat exchanger equipment. (author)

  20. Cryogenic heat exchanger with turbulent flows

    International Nuclear Information System (INIS)

    An evaporator-type cryogenic heat exchanger is designed and built for introducing fluid-solid heat exchange phenomena to undergraduates in a practical and efficient way. The heat exchanger functions at liquid nitrogen temperature and enables cooling of N2 and He gases from room temperatures. We present first the experimental results of various parameters which characterize the heat exchanger (efficiency, number of transfer units, heat exchange coefficient, etc) as a function of the mass flow rate of the gas to be cooled. An analysis of the Nu-Re diagram is also presented. All experiments were conducted with N2 gas. The scope of this tool is readily extended to research purposes. (paper)

  1. Testing and plugging power plant heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Sutor, F. [Expando Seal Tools, Inc., Montgomeryville, PA (United States)

    1994-12-31

    Heat Exchanger tubes fail for any number of reasons including but certainly not limited to the cumulative effects of corrosion, erosion, thermal stress and fatigue. This presentation will attempt to identify the most common techniques for determining which tubes are leaking and then introduce the products in use to plug the leaking tubes. For the sake of time I will limit the scope of this presentation to include feedwater heaters and secondary system heat exchangers such as Hydrogen Coolers, Lube Oil Coolers, and nuclear Component Cooling Water, Emergency Cooling Water, Regenerative Heat Recovery heat exchangers.

  2. Heat exchanger device and method for heat removal or transfer

    Energy Technology Data Exchange (ETDEWEB)

    Koplow, Jeffrey P

    2015-03-24

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  3. Heat exchanger device and method for heat removal or transfer

    Energy Technology Data Exchange (ETDEWEB)

    Koplow, Jeffrey P.

    2015-12-08

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  4. Heat exchanger device and method for heat removal or transfer

    Science.gov (United States)

    Koplow, Jeffrey P

    2013-12-10

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  5. Component Cooling Heat Exchanger Heat Transfer Capability Operability Monitoring

    International Nuclear Information System (INIS)

    The ultimate heat sink (UHS) is of highest importance for nuclear power plant safe and reliable operation. The most important component in line from safety-related heat sources to the ultimate heat sink water body is a component cooling heat exchanger (CC Heat Exchanger). The Component Cooling Heat Exchanger has a safety-related function to transfer the heat from the Component Cooling (CC) water system to the Service Water (SW) system. SW systems throughout the world have been the root of many plant problems because the water source, usually river, lake, sea or cooling pond, are conductive to corrosion, erosion, biofouling, debris intrusion, silt, sediment deposits, etc. At Krsko NPP, these problems usually cumulate in the summer period from July to August, with higher Sava River (service water system) temperatures. Therefore it was necessary to continuously evaluate the CC Heat Exchanger operation and confirm that the system would perform its intended function in accordance with the plant's design basis, given as a minimum heat transfer rate in the heat exchanger design specification sheet. The Essential Service Water system at Krsko NPP is an open cycle cooling system which transfers heat from safety and non-safety-related systems and components to the ultimate heat sink the Sava River. The system is continuously in operation in all modes of plant operation, including plant shutdown and refueling. However, due to the Sava River impurities and our limited abilities of the water treatment, the system is subject to fouling, sedimentation buildup, corrosion and scale formation, which could negatively impact its performance being unable to satisfy its safety related post accident heat removal function. Low temperature difference and high fluid flows make it difficult to evaluate the CC Heat Exchanger due to its specific design. The important effects noted are measurement uncertainties, nonspecific construction, high heat transfer capacity, and operational specifics (e.g. using CC Heat Exchanger bypass valves for CC temperature control, variation of plant heat loads, pumps performance, and day-night temperature difference, with lagging effects on heat transfer dynamics). Krsko NPP is continuously monitoring the Component Cooling (CC) Heat Exchanger performance using the on-line process information system (PIS). By defining the mathematical algorithm, it is possible to continuously evaluate the CC Heat Exchanger operability by verifying if the heat transfer rate calculation is in accordance with the heat exchanger design specification sheet requirements. These calculations are limited to summer periods only when the bypass valves are neither throttled nor open.(author).

  6. Performances of heat exchangers on HTGR application

    International Nuclear Information System (INIS)

    Rising oil price is making the high-temperature gas-cooled reactor (HTGR) an attractive alternative energy resource for high temperature process heat applications. Motivation and aspect of nuclear process applications to steam reforming and coal gasification, etc. are described. Studies on heat transfer problems are reviewed. The present status of designed high temperature heat exchangers is summarized. The performances of He-He high temperature heat exchanger tested in Japan is reported. Several problems in the future research and development of technologies for process heat application by HTGR are discussed. 29 refs

  7. A Review on Heat Transfer Improvent of Plate Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Abhishek Nandan

    2015-03-01

    Full Text Available Plate heat exchanger has found a wide range of application in various industries like food industries, chemical industries, power plants etc. It reduces the wastage of energy and improves the overall efficiency of the system. Hence, it must be designed to obtain the maximum heat transfer possible. This paper is presented in order to study the various theories and results given over the improvement of heat transfer performance in a plate heat exchanger. However, there is still a lack in data and generalized equations for the calculation of different parameters in the heat exchanger. It requires more attention to find out various possible correlations and generalized solutions for the performance improvement of plate heat exchanger.

  8. Heat Exchanger Support Bracket Design Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Rucinski, Russ; /Fermilab

    1995-01-12

    This engineering note documents the design of the heat exchanger support brackets. The heat exchanger is roughly 40 feet long, 22 inches in diameter and weighs 6750 pounds. It will be mounted on two identical support brackets that are anchored to a concrete wall. The design calculations were done for one bracket supporting the full weight of the heat exchanger, rounded up to 6800 pounds. The design follows the American Institute of Steel Construction (AISC) Manual of steel construction, Eighth edition. All calculated stresses and loads on welds were below allowables.

  9. Expanded microchannel heat exchanger: design, fabrication and preliminary experimental test

    OpenAIRE

    Denkenberger, David C.; Brandemuehl, Michael J.; Pearce, Joshua M.; Zhai, John

    2012-01-01

    This paper first reviews non-traditional heat exchanger geometry, laser welding, practical issues with microchannel heat exchangers, and high effectiveness heat exchangers. Existing microchannel heat exchangers have low material costs, but high manufacturing costs. This paper presents a new expanded microchannel heat exchanger design and accompanying continuous manufacturing technique for potential low-cost production. Polymer heat exchangers have the potential for high effe...

  10. Comparative Study of Heat Exchangers Using CFD

    Directory of Open Access Journals (Sweden)

    Melvinraj C R

    2014-05-01

    Full Text Available A parallel flow heat exchanger and a corresponding ribbed tube heat exchanger is modeled and numerically analysed using a commercial finite volume CFD package. Pro-E & ANSYS 14.5 softwares are used for the designing and the analysis. CFD predictions of effectiveness of the two heat exchangers are obtained and compared. After selecting the best modeling approach, the sensitivity of the results to particular flow rate is investigated. It is observed that the flow and the temperature fields obtained from CFD simulations provide valuable information about the parts of the heat exchanger design that need improvement. Correlation based approaches may indicate the existence of the weakness but CFD simulations can also pin point the source and the location of it. Using CFD may speed up the design process and may improve the final design.

  11. Lightweight Thermal Storage Heat Exchangers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR proposal aims to develop thermal energy storage heat exchangers that are significantly lighter and higher conductance than the present art which involves...

  12. Acoustic resonance in plate heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Rodarte, Enrique; Miller, Norman; Hrnjak, Predrag [Illinois Univ., Mechanical and Industrial Engineering Dept., Urbana, IL (United States)

    1998-12-01

    A `whistling` sound, which develops under transient conditions in some automobile air conditioning systems equipped with plate type evaporators, was identified as acoustic resonance. The `whistle` was reproduced in the laboratory under steady-state conditions. Testing of these heat exchangers was done first with R134a and then with nitrogen. Nitrogen testing proved to be much faster and easier and provided results comparable to the results obtained using R134a. The evidence presented in this work suggests the acoustic resonance in this type of heat exchanger is similar in nature to the acoustic resonance problems reported for tube array in duct type heat exchangers. This is to the authors` knowledge the first time that acoustic resonance problems have been reported in the literature for plate heat exchangers. (Author)

  13. Stirling Engine With Radial Flow Heat Exchangers

    Science.gov (United States)

    Vitale, N.; Yarr, George

    1993-01-01

    Conflict between thermodynamical and structural requirements resolved. In Stirling engine of new cylindrical configuration, regenerator and acceptor and rejector heat exchangers channel flow of working gas in radial direction. Isotherms in regenerator ideally concentric cylinders, and gradient of temperature across regenerator radial rather than axial. Acceptor and rejector heat exchangers located radially inward and outward of regenerator, respectively. Enables substantial increase in power of engine without corresponding increase in diameter of pressure vessel.

  14. Fouling of a double pipe heat exchanger

    OpenAIRE

    Llinares Fontdevila, Antonio

    2004-01-01

    Every single heat exchanger in operation in modern industries is exposed to fouling to a greater or lesser extent depending on the surface temperature, surface condition, material of construction, fluid velocity, flow geometry and fluid composition. The fouling phenomenon is time dependent and will result in a decrease in thermal effectiveness of a heat exchanger. Once the thermal effectiveness decreases to a minimum acceptable level, cleaning of the equipment becomes necessary to restore its...

  15. Method for removing coronene from heat exchangers

    International Nuclear Information System (INIS)

    A method for removing a coronene deposit in a reforming process is described that consists of (A) contacting a hydrocarbonacous feedstock with a catalyst in the presence of added hydrogen at reforming conditions in a reforming zone; (B) splitting the total reforming zone effluent into a first stream and a second stream; (C) passing said first stream into a first train of heat exchangers arranged in parallel with a second train of heat exchangers; (D) passing said second stream into said second train of heat exchangers, said reforming zone effluent comprising coronene, at least a portion of which deposits in said heateexchangers; (E) separating the heat exchanged total reforming zone effluent into a hydrogen-rich gaseous phase and a liquid hydrocarbon phase comprising normally liquid hydrocarbons and normally gaseous hydrocarbons, the improvement which comprises reducing the flow of said first stream in said first train of heat exchangers to produce a temperature sufficient to condense at least a portion of said reformer effluent therein such that the resulting condensate contacts said coronene deposit, and simultaneously increasing the flow of said second stream in said second train of heat exchangers

  16. Mathematical Modeling of Spiral Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Probal Guha , Vaishnavi Unde

    2014-04-01

    Full Text Available Compact Heat Exchangers (CHEs are increasingly being used on small and medium scale industries. Due to their compact size and efficient design, they facilitate more efficient heat transfer. Better heat transfer would imply lesser fuel consumption for the operations of the plant, giving improvement to overall efficiency. This reduction in consumption of fuel is a step towards sustainable development. This report exclusively deals with the study the spiral heat exchanger.The design considerations for spiral heat exchanger is that the flow within the spiral has been assumed as flow through a duct and by using Shah London empirical equation for Nusselt number design parameters are further optimized.This is accompanied by a detailed energy balance to generate a concise mathematical model

  17. Flow and heat transfer enhancement in tube heat exchangers

    Science.gov (United States)

    Sayed Ahmed, Sayed Ahmed E.; Mesalhy, Osama M.; Abdelatief, Mohamed A.

    2015-08-01

    The performance of heat exchangers can be improved to perform a certain heat-transfer duty by heat transfer enhancement techniques. Enhancement techniques can be divided into two categories: passive and active. Active methods require external power, such as electric or acoustic field, mechanical devices, or surface vibration, whereas passive methods do not require external power but make use of a special surface geometry or fluid additive which cause heat transfer enhancement. The majority of commercially interesting enhancement techniques are passive ones. This paper presents a review of published works on the characteristics of heat transfer and flow in finned tube heat exchangers of the existing patterns. The review considers plain, louvered, slit, wavy, annular, longitudinal, and serrated fins. This review can be indicated by the status of the research in this area which is important. The comparison of finned tubes heat exchangers shows that those with slit, plain, and wavy finned tubes have the highest values of area goodness factor while the heat exchanger with annular fin shows the lowest. A better heat transfer coefficient ha is found for a heat exchanger with louvered finned and thus should be regarded as the most efficient one, at fixed pumping power per heat transfer area. This study points out that although numerous studies have been conducted on the characteristics of flow and heat transfer in round, elliptical, and flat tubes, studies on some types of streamlined-tubes shapes are limited, especially on wing-shaped tubes (Sayed Ahmed et al. in Heat Mass Transf 50: 1091-1102, 2014; in Heat Mass Transf 51: 1001-1016, 2015). It is recommended that further detailed studies via numerical simulations and/or experimental investigations should be carried out, in the future, to put further insight to these fin designs.

  18. Heat recovery equipment for engines

    Energy Technology Data Exchange (ETDEWEB)

    Segaser, C.L.

    1977-04-01

    The recovery and use of waste heat from prime movers is an important consideration for evaluating an on-site power system, since it is the basic factor that makes possible a substantial increase in fuel-use efficiency. The equipment usually employed to recover waste heat can be categorized as: (a) shell-and-tube type heat exchangers, (b) radiator-type heat exchangers, (c) exhaust gas boilers for the generation of pressurized hot water and/or steam, (d) steam separators, and (e) combined packaged units for ebulliently cooled internal combustion piston engines. The functional requirements and cost considerations involved in applying these devices for the recovery of waste heat from various types of prime-movers considered for application in the ICES Systems Engineering Program are examined.

  19. Heat transfer from oriented heat exchange areas

    Science.gov (United States)

    Vantuch, Martin; Huzvar, Jozef; Kapjor, Andrej

    2014-03-01

    This paper deals with the transfer of heat-driven heat transfer surface area in relation to the construction of the criterion equation for "n" horizontal pipe one about another. On the bases of theoretical models have been developed for calculating the thermal performance of natural convection by Churilla and Morgan, for various pipe diameters and temperatures. These models were compared with models created in CFD-Fluent Ansys the same boundary conditions. The aim of the analyse of heat and fluxional pipe fields "n" pipes one about another at natural convection is the creation of criterion equation on the basis of which the heat output of heat transfer from pipe oriented areas one above another with given spacing could be quantified. At presence a sum of criterion equations exists for simple geometrical shapes of individual oriented geometrical areas but the criterion equation which would consider interaction of fluxional field generated by free convection from multiple oriented areas is not mentioned in standardly accessible technical literature and other magazine publications.

  20. Performance Investigation of Plate Type Heat Exchanger (A Case Study)

    OpenAIRE

    Simarpreet Singh; Sanjeev Jakhar

    2014-01-01

    Heat exchanger is a thermodynamic system which is most commonly used in the process industry for exchanging heat energy between the fluids. flowing in the same or opposite direction. It is desired that effectiveness of heat exchanger should remain as large as possible. Heat exchanger's performance may be improved by the addition of fins or corrugations. These investigations include design of plate type heat exchanger, heat transfer enhancement, flow phenomenon and cleanliness ...

  1. The water-cryogen heat exchanger

    Science.gov (United States)

    Bartlit, J. R.; Boyer, K.; Williamson, K. D.

    1970-01-01

    Heat exchanger, using water as heat medium, converts liquid hydrogen to gaseous hydrogen at a very high rate. Possible applications include treatment of liquified natural gas in cities to bring the gas on-line quickly, conversion of liquid oxygen and liquid nitrogen for steel mills, and high volume inert purging.

  2. The effect of plate heat exchanger’s geometry on heat transfer

    Directory of Open Access Journals (Sweden)

    Oana GIURGIU

    2014-11-01

    Full Text Available The study presents further Computational Fluid Dynamics (CFD numerical analysis for two models of plate heat exchangers. Comparatively was studied the influence of geometric characteristics of plates on the intensification process of heat exchange. For this purpose, it was examined the distribution of velocity and temperatures fields on active plate height. Heat transfer characteristics were analysed through the variation of mass flow on the primary heat agent.

  3. Borehole Heat Exchangers; Intercambiadores goetermicos verticales

    Energy Technology Data Exchange (ETDEWEB)

    Llopis Trillo, G.; Lopez Jimeno, C.

    2009-07-01

    Ground source heat pump systems are applied to air conditioning and domestic hot water in buildings for its high energetic efficiency. In urban areas of major European countries, the most commonly used are those, that include borehole heat exchangers. Their use in Spain, compared with its surrounding countries is quite small. Here it is described their functioning system, their advantages over other geothermal heat exchangers, their equipment and materials used in their construction their means of thermal transfer, and it is done a prediction about the future of their use in our country. (Author)

  4. Phase Change Material Heat Exchanger Life Test

    Science.gov (United States)

    Lillibridge, Sean; Stephan, Ryan

    2009-01-01

    Low Lunar Orbit (LLO) poses unique thermal challenges for the orbiting space craft, particularly regarding the performance of the radiators. The IR environment of the space craft varies drastically from the light side to the dark side of the moon. The result is a situation where a radiator sized for the maximal heat load in the most adverse situation is subject to freezing on the dark side of the orbit. One solution to this problem is to implement Phase Change Material (PCM) Heat Exchangers. PCM Heat Exchangers act as a "thermal capacitor," storing thermal energy when there is too much being produced by the space craft to reject to space, and then feeding that energy back into the thermal loop when conditions are more favorable. Because they do not use an expendable resource, such as the feed water used by sublimators and evaporators, PCM Heat Exchangers are ideal for long duration LLO missions. In order to validate the performance of PCM Heat Exchangers, a life test is being conducted on four n-Pentadecane, carbon filament heat exchangers. Fluid loop performance, repeatability, and measurement of performance degradation over 2500 melt-freeze cycles will be performed.

  5. Thermal hydraulic simulation of moderator heat exchanger

    International Nuclear Information System (INIS)

    Pressurized heavy water reactors form the majority in the first stage of India's nuclear power programme. Heavy water is both moderator and primary coolant. The heat generated in the moderator due to neutron moderation and capture has to be removed in moderator heat exchangers. It has been desired to improve the performance characteristics of moderator heat exchangers, whereby moderator would enter the calandria vessel at a low temperature and would enable higher power of operation for the same limiting temperature of moderator in the calandria. Results of studies carried out using a three dimensional computer code for various operating options are given. Using these velocities the heat exchangers have been analysed for flow induced vibrations. 7 refs., 6 figs., 6 tabs

  6. Microtube strip heat exchanger. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Doty, F.D.

    1992-07-09

    The purpose of this contract has been to explore the limits of miniaturization of heat exchangers with the goals of (1) improving the theoretical understanding of laminar heat exchangers, (2) evaluating various manufacturing difficulties, and (3) identifying major applications for the technology. A low-cost, ultra-compact heat exchanger could have an enormous impact on industry in the areas of cryocoolers and energy conversion. Compact cryocoolers based on the reverse Brayton cycle (RBC) would become practical with the availability of compact heat exchangers. Many experts believe that hardware advances in personal computer technology will rapidly slow down in four to six years unless lowcost, portable cryocoolers suitable for the desktop supercomputer can be developed. Compact refrigeration systems would permit dramatic advances in high-performance computer work stations with ``conventional`` microprocessors operating at 150 K, and especially with low-cost cryocoolers below 77 K. NASA has also expressed strong interest in our MTS exchanger for space-based RBC cryocoolers for sensor cooling. We have demonstrated feasibility of higher specific conductance by a factor of five than any other work in high-temperature gas-to-gas exchangers. These laminar-flow, microtube exchangers exhibit extremely low pressure drop compared to alternative compact designs under similar conditions because of their much shorter flow length and larger total flow area for lower flow velocities. The design appears to be amenable to mass production techniques, but considerable process development remains. The reduction in materials usage and the improved heat exchanger performance promise to be of enormous significance in advanced engine designs and in cryogenics.

  7. Comparison between conventional heat exchanger performance and an heat pipes exchanger

    International Nuclear Information System (INIS)

    The thermal performance of conventional compact heat exchanger and of exchanger with heat pipes are simulated using a digital computer, for equal volumes and the same process conditions. The comparative analysis is depicted in graphs that indicate which of the situations each equipment is more efficient. (author)

  8. Simulation of induction heating process with radiative heat exchange

    Directory of Open Access Journals (Sweden)

    A. Kachel

    2007-05-01

    Full Text Available Purpose: Numerical modelling of induction heating process is a complex issue. It needs analysis of coupled electromagnetic and thermal fields. Calculation models for electromagnetic field analysis as well as thermal field analysis need simplifications. In case of thermal field calculations, correct modelling of radiative heat exchange between the heated charge and inductor’s thermal insulation is essential. Most commercial calculation programs enabling coupled analysis of electromagnetic and thermal fields do not allow taking into consideration radiative heat exchange between calculation model components, which limits thermal calculations only to the charge area. The paper presents a supplementation of the program Flux 2D with radiative heat exchange procedures.Design/methodology/approach: Commercial program Flux 2D designed for coupled electromagnetic and thermal calculation (based on finite element method was supplemented with authors program for radiative heat exchange based on numerical integration of classic equations.Findings: Supplementation EM-T calculations with radiative heat exchange between charge and inductor enables to calculate thermal insulation parameters and increase precision of modelling.Research limitations/implications: Procedures for radiative heat exchange enables calculation of two surfaces (flat or cylindrical with finite dimensions. The surfaces can be displaced relative to each other (charge shorter or longer than thermal insulation of inductor. Material of surfaces is modelled as: flat, diffuse, radiant surfaces absorb energy evenly in the whole spectrum (grey bodies. The whole system is modelled as in a steady thermal state (quasi-steady.Originality/value: Authors program extends Flux 2D features with a possibility for calculating radiative heat transfer. The application of radiative process is possible between all components of the studied model, not only for the boundary conditions.

  9. Simulation of induction heating process with radiative heat exchange

    OpenAIRE

    Kachel, A; R. Przy?ucki

    2007-01-01

    Purpose: Numerical modelling of induction heating process is a complex issue. It needs analysis of coupled electromagnetic and thermal fields. Calculation models for electromagnetic field analysis as well as thermal field analysis need simplifications. In case of thermal field calculations, correct modelling of radiative heat exchange between the heated charge and inductor’s thermal insulation is essential. Most commercial calculation programs enabling coupled analysis of electromagnetic and ...

  10. The dynamic behaviour of heat exchangers

    International Nuclear Information System (INIS)

    In order to study the dynamics of nuclear power plants, one needs mathematical models made up of ordinary differential equations. This report deals with models for heat exchangers. These models allow exact evaluations of the temperatures for any steady state. The deformation of the temperature maps during transients is taken into account. To do this, average temperatures are evaluated keeping In mind, on one hand the partial differential equations, on the other hand, the physical phenomenons which are involved. Seven ordinary differential equations at most, are necessary for one heat exchanger. Theses models were compared with mathematically exact ones and also with experimental results, that EDF was able to measure on EDF-1 heat exchangers. The results appear to be correct. (authors)

  11. NUMERICAL SIMULATION OF VERTICAL GROUND HEAT EXCHANGERS FOR GROUND SOURCE HEAT PUMPS

    OpenAIRE

    Jalaluddin

    2011-01-01

    Abstract: This paper presents the numerical simulation of several types of vertical ground heat exchangers. The ground heat exchangers (GHEs) such as U-tube, double-tube and multi-tube were simulated using the commercial CFD software FLUENT. Water flows through the heat exchangers and exchanges the heat to the ground. The inlet and outlet water temperatures, flow rate, and heat exchange rate are presented. The heat exchange rates in discontinuous short-time period of operation ...

  12. Tube-in-shell heat exchangers

    International Nuclear Information System (INIS)

    A tube-in-shell heat exchanger has double sealing joints between the tubes and a tube plate of the heat exchanger constituted by the provision of a secondary tube plate spaced from the normal tube plate and through which each tube extends with sealing in addition to the normal tube to tube plate sealing joints, there being a bellows enveloping the tubes and sealed to both the normal and the secondary tube plates. The space between these tube plates can be monitored for leakage. (author)

  13. Heat exchanger design for desalination plants

    International Nuclear Information System (INIS)

    The Office of Saline Water (OSW) accomplished a very large amount of significant work related to the design and performance of large heat exchanger bundles and enhanced heat transfer surfaces. This work was undertaken to provide basic technical and economic data for the design of distillation plants for the desalination of seawater, and should be of value to other industrial applications as well. The OSW work covers almost every aspect of heat exchanger design, and ranges academic research to data gathering on commercial desalting plants. Exchanger design configurations include multistage flash plant condensers, vertical tube falling film and upflow evaporators, and horizontal tube spray film evaporators. Unfortunately, the data is scattered through a large number of reports of which many are concerned primarily with factors other than heat transfer, and the quality of reporting and the quality of the data are far from consistent. This report catalogues and organizes the heat exchanger data developed by the OSW. Some analysis as to the validity of the data is made and ranges of performance that can be expected are given. Emphasis is placed on the vertical tube, falling film evaporators. A thorough analysis of the large literature file that was surveyed was not possible. No analysis was made of the quality of original data, but apparent data discrepancies are pointed out where such discrepancies happen to be found

  14. Numerical Simulations of Recovery Heat Exchangers.

    Czech Academy of Sciences Publication Activity Database

    Novotný, P.; Vít, T.; Dan?ová, Petra

    Prague : Institute of Thermomechanics AS CR, v. v. i., 2011 - (Fuis, V.), s. 439-442 ISBN 978-80-87012-33-8. [Engineering Mechanics 2011 /17./. Svratka (CZ), 09.05.2011-12.05.2011] Grant ostatní: GA TA ?R(CZ) TA01020313 Institutional research plan: CEZ:AV0Z20760514 Keywords : recovery heat exchanger s * heat recovery * numerical simulations Subject RIV: BJ - Thermodynamics

  15. Hierarchic modeling of heat exchanger thermal hydraulics

    International Nuclear Information System (INIS)

    Volume Averaging Technique (VAT) is employed in order to model the heat exchanger cross-flow as a porous media flow. As the averaging of the transport equations lead to a closure problem, separate relations are introduced to model interphase momentum and heat transfer between fluid flow and the solid structure. The hierarchic modeling is used to calculate the local drag coefficient Cd as a function of Reynolds number Reh. For that purpose a separate model of REV is built and DNS of flow through REV is performed. The local values of heat transfer coefficient h are obtained from available literature. The geometry of the simulation domain and boundary conditions follow the geometry of the experimental test section used at U.C.L.A. The calculated temperature fields reveal that the geometry with denser pin-fins arrangement (HX1) heats fluid flow faster. The temperature field in the HX2 exhibits the formation of thermal boundary layer between pin-fins, which has a significant role in overall thermal performance of the heat exchanger. Although presented discrepancies of the whole-section drag coefficient Cd are large, we believe that hierarchic modeling is an appropriate strategy for calculation of complex transport phenomena in heat exchanger geometries.(author)

  16. Exergo-ecological evaluation of heat exchanger

    Directory of Open Access Journals (Sweden)

    Stanek Wojciech

    2014-01-01

    Full Text Available Thermodynamic optimization of thermal devices requires information about the influence of operational and structural parameters on its behaviour. The interconnections among parameters can be estimated by tools such as CFD, experimental statistic of the deviceetc. Despite precise and comprehensive results obtained by CFD, the time of computations is relatively long. This disadvantage often cannot be accepted in case of optimization as well as online control of thermal devices. As opposed to CFD the neural network or regression is characterized by short computational time, but does not take into account any physical phenomena occurring in the considered process. The CFD model of heat exchanger was built using commercial package Fluent/Ansys. The empirical model of heat exchanger has been assessed by regression and neural networks based on the set of pseudo-measurements generated by the exact CFD model. In the paper, the usage of the developed empirical model of heat exchanger for the minimisation of TEC is presented. The optimisationconcerns operational parameters of heat exchanger. The TEC expresses the cumulative exergy consumption of non-renewable resources. The minimization of the TEC is based on the objective function formulated by Szargut. However, the authors extended the classical TEC by the introduction of the exergy bonus theory proposed by Valero. The TEC objective function fulfils the rules of life cycle analysis because it contains the investment expenditures (measured by the cumulative exergy consumption of non-renewable natural resources, the operation of devices and the final effects of decommissioning the installation.

  17. Heat exchanger and method for its production

    International Nuclear Information System (INIS)

    The patent refers to heat exchangers, preferably to steam generators for nuclear power stations, in which the parallel tubes are fixed to each other by welding to distancing elements. A method is described for the fabrication by a welding machine, so that the number of necessary tests can be reduced drastically. (P.K.)

  18. Heat exchanger and method for its production

    International Nuclear Information System (INIS)

    The patent refers to heat exchangers preferably steam generators for nuclear power stations with a number of parallel tubes arranged in curved planes. The fixing of the tubes to each other is accomplished by welding to distancing elements, e.g. fins of the adjacent tubes. This system eliminates the danger of fretting corrosion and vibration of the tubes. (P.K.)

  19. Numerical simulation of the thermal behavior of heat transfer equipment operated at low temperature

    International Nuclear Information System (INIS)

    The paper presents a method for calculating the non-steady heat transfer in a shell and tube heat exchanger. The characteristic equations were solved with a Finite Element Method. As the geometry is cylindrical and axial symmetry was assumed, the equations were solved in a two dimensional geometry. The interpolation functions are linear and the Galerkin method was applied. The process occurred without phase change. For the solving of the algebraic equations associated with the differential equations, we used the method of steepest descendent (gradient method). As results, we present the temperature profile for the tube and shell gas. (author)

  20. Intermediate heat exchanger project for Super Phenix

    International Nuclear Information System (INIS)

    The Super Phenix (1 200 MWe) intermediate heat exchangers are derived directly from those of Phenix (250 MWe) which has been in operation at Marcoule near Avignon (Gard - France) for the last two years. The active part structure (exchange tube bundle) is very similar for both reactors and design studies have proved that this concept, based on experience gained in Phenix plan construction, was able to achieve the required operating conditions. The characteristics related to reactor pool-type design are presented. Thermal, hydraulic and mechanical considerations are then presented. (Auth.)

  1. Preliminary SP-100/Stirling heat exchanger designs

    International Nuclear Information System (INIS)

    Analytic modeling of several heat exchanger concepts to couple the SP-100 nuclear reactor primary lithium loop and the Space Stirling Power Convertor (SSPC) was performed. Four 25 kWe SSPC's are used to produce the required 100 kW of electrical power. This design work focused on the interface between a single SSPC and the primary lithium loop. Manifolding to separate and collect the four channel flow was not modeled. This work modeled two separate types of heat exchanger interfaces (conductive coupling and radiative coupling) to explore their relative advantages and disadvantages. The minimum mass design of the conductively coupled concepts was 18 kg or 0.73 kg/kWe for a single 25 kWe convertor. The minimum mass radiatively coupled concept was 41 kg or 1.64 kg/kWe. The direct conduction heat exchanger provides a lighter weight system because of its ability to operate the Stirling convertor evaporator at higher heat fluxes than those attainable by the radiatively coupled systems. Additionally the conductively coupled concepts had relatively small volumes and provide potentially simpler assembly. Their disadvantages were the tight tolerances and material joining problems associated with this refractory to superalloy interface. The advantages of the radiatively coupled designs were the minimal material interface problems

  2. Preliminary SP-100/Stirling heat exchanger designs

    International Nuclear Information System (INIS)

    Analytic modeling of several heat exchanger concepts to couple the SP-100 nuclear reactor lithium loop and the Space Stirling Power Convertor (SSPC) was performed. Four 25 kWe SSPC's are used to produce the required 100 kW of electrical power. This design work focused on the interface between a single SSPC and the primary lithium loop. Manifolding to separate and collect the four channel flow was not modeled. This work modeled two separate types of heat exchanger interfaces (conductive coupling and radiative coupling) to explore their relative advantages and disadvantages. The minimum mass design of the conductively coupled concepts was 18 kg or 0.73 kg/kWe for a single 25 kWe convertor. The minimum mass radiatively coupled concept was 41 kg or 1.64 kg/kWe. The direct conduction heat exchanger provides a lighter weight system because of its ability to operate the Stirling convertor evaporator at higher heat fluxes than those attainable by the radiatively coupled systems. Additionally the conductively coupled concepts had relatively small volumes and provide potentially simpler assembly. Their disadvantages were the tight tolerances and material joining problems associated with this refractory to superalloy interface. The advantages of the radiatively coupled designs were the minimal material interface problems

  3. Preliminary SP-100/Stirling heat exchanger designs

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, P.; Tower, L. [Sverdrup Technology, Inc., Brook Park, OH (United States). Lewis Research Center Group; Dawson, R. [Aerospace Design and Fabrication Inc., Brook Park, OH (United States); Blue, B.; Dunn, P. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center

    1994-09-01

    Analytic modeling of several heat exchanger concepts to couple the SP-100 nuclear reactor lithium loop and the Space Stirling Power Convertor (SSPC) was performed. Four 25 kWe SSPC`s are used to produce the required 100 kW of electrical power. This design work focused on the interface between a single SSPC and the primary lithium loop. Manifolding to separate and collect the four channel flow was not modeled. This work modeled two separate types of heat exchanger interfaces (conductive coupling and radiative coupling) to explore their relative advantages and disadvantages. The minimum mass design of the conductively coupled concepts was 18 kg or 0.73 kg/kWe for a single 25 kWe convertor. The minimum mass radiatively coupled concept was 41 kg or 1.64 kg/kWe. The direct conduction heat exchanger provides a lighter weight system because of its ability to operate the Stirling convertor evaporator at higher heat fluxes than those attainable by the radiatively coupled systems. Additionally the conductively coupled concepts had relatively small volumes and provide potentially simpler assembly. Their disadvantages were the tight tolerances and material joining problems associated with this refractory to superalloy interface. The advantages of the radiatively coupled designs were the minimal material interface problems.

  4. Fouling of a plate heat exchanger by cheese whey solutions

    OpenAIRE

    Corcoran, Brian

    1997-01-01

    A plate heat exchanger rig was developed at Dublin City University to study fouling of plate heat exchangers using cheese whey solutions. The rig consisted of an Alfa-Laval plate heat exchanger, 316 stainless steel pipework, pressure and temperature measurement and was temperature controlled with all information logged via an Anville data acquisition system. Cheese whey solutions of various concentration were passed through the plate heat exchanger for periods of up to four hours. The eff...

  5. Materials development for HTGR heat exchangers

    International Nuclear Information System (INIS)

    High-temperature, gas-cooled reactors (HTGR's) are uranium/thorium-fueled, graphite-moderated, helium-cooled systems capable of producing high-temperature primary coolant. Several variants of this system are under active development in the United States and worldwide. In one version, the primary coolant heat is transferred to steam generators producing 5380C/16.5 MPa steam for use in electricity generation or process heat applications. The materials and design technology for steam generators in this system are well developed, relying heavily upon prior experience with fossil-fired steam generators and the steam generators of the commercial HTGR's. The major work that remains to be done is to complete qualification of the materials and to respond to evolving rules pertinent to elevatedtemperature nuclear design and construction. Other versions of the HTGR generate much higher primary coolant gas temperatures (8500 to 9500C) and exchange this heat, through intermediate heat exchangers (IHX's), to a secondary loop for higher temperature process heat applications. Although IHX's for these systems are typically pressure-balanced (low-stress) units, their design involves several challenges, including the potential interactions between structural materials and impurities present in the HTGR primary coolant. Considerable work is required to qualify materials for IHX applications, including detailed mechanical property characterization, determination of environmental influences on performance, provision of welding materials and procedures for producing joints of adequate strength and integrity, and provisions for wear protection. Some of the work currently under way addressing these issues is described

  6. Earth Air Heat Exchanger in Parallel Connection

    OpenAIRE

    ManojkumarDubey1 , Dr. J.L.Bhagoria2 , Dr. Atullanjewar

    2013-01-01

    The temperature of earth at a certain depth about 2 to 3m the temperature of ground remains nearly constant throughout the year. This constant temperature is called the undisturbed temperature of earth which remains higher than the outside temperature in winter and lower than the outside temperature in summer. When ambient air is drawn through buried pipes, the air is cooled in summer and heated in winter, before it is used for ventilation. The earth air heat exchanger can fulfil in both purp...

  7. Selection of materials for heat exchangers

    International Nuclear Information System (INIS)

    This paper provides a frame work for selecting heat exchangers materials especially those used in nuclear power plants. Typical examples of materials selection for heat exchanger tubing of nuclear power plants and condensers are presented. The paper brings out also, the importance of continued intensive R and D in materials in order to enhance the reliability and reduce cost by improving upon the existing materials by minor additions of alloying elements or new materials. The properties of Cr- Mo - alloys with minor additions of W, V, Nb and N are discussed in view of their use at elevated temperatures in the power industry. These alloys were found to provide considerable operation flexibility due to their low expansion coefficient and high thermal conductivity in comparison with the austenitic stainless steels. Also, the Ni base alloy Inconel 617. Could be selected for his excellent combination of creep and hot corrosion resistance up to a temperature of a 50 degree C. 2 figs., 7 tabs

  8. Performance Investigation of Plate Type Heat Exchanger (A Case Study

    Directory of Open Access Journals (Sweden)

    Simarpreet Singh

    2014-04-01

    Full Text Available Heat exchanger is a thermodynamic system which is most commonly used in the process industry for exchanging heat energy between the fluids. flowing in the same or opposite direction. It is desired that effectiveness of heat exchanger should remain as large as possible. Heat exchanger's performance may be improved by the addition of fins or corrugations. These investigations include design of plate type heat exchanger, heat transfer enhancement, flow phenomenon and cleanliness factor. In process plants, this type of heat exchange is generally used for recovering heat content of exhaust steam. However, with the flow of fluid for a long period, fouling occurs on the plate surface. Therefore, it is required to investigate the effect of fouling, wherever the heat exchanger is installed. An extensive experimental investigation has been carried out under clean and dirty condition of the said plate type heat exchanger. Heat transfer and flow data were collected in experiment. From collected data heat transfer rate, overall heat transfer coefficient, fouling factor and cleanliness factor were evaluated. Based upon the cleanliness factor data, next date of cleanliness for plate type heat exchanger was predicted. It is felt that the outcome of the present research work may be quite useful for efficient operation of plate type heat exchanger installed in Process plants.

  9. Plating Patches On Heat-Exchanger Jackets

    Science.gov (United States)

    Loureiro, Henry; Kubik, Frank

    1989-01-01

    Permanent repairs made without welding. Technique used to repair nickel-alloy nozzle jacket of Space Shuttle main engine. Applicable to other metal heat-exchanger jackets with similar configurations. Does not require welding, brazing, soldering, or other operations involving high temperatures and consequent damage to surrounding areas. Portion of jacket around damaged area removed by grinding and polishing out to edges adjacent to tube/jacket braze bonds. Spaces between tubes filled with wax preventing contamination of spaces during subsequent plating.

  10. Heat Exchanger for Motor Vehicle Cooling System

    OpenAIRE

    Thuliez, Jean-Luc; Chevroulet, Tristan; Stoll, Daniel

    1997-01-01

    Heat exchanger for a motor vehicle cooling system including a sleeve-like meter hermetically mounted on, and surrounding, a hollow tubular chassis meter of the vehicle. The sleeve is provided with inlets and outlets communicating with the space between the sleeve and the chassis meter and vehicle coolant flows through the inlet and outlet. Air, flowing over the outside surface of the sleeve and the inside surface of the chassis meter, cools the vehicle coolant. SMH - MCC Smart, car concepts (...

  11. Comparative studies on micro heat exchanger optimisation.

    OpenAIRE

    Okabe, T.; Foli, K; Olhofer, M; Jin, Y; Sendhoff, B

    2003-01-01

    Although many methods for dealing with multi-objective optimisation (MOO) problems are available as stated in K. Deb (2001) and successful applications have been reported on C.A. Coello et al. (2001), the comparison between MOO methods applied to real-world problem was rarely carried out. This paper reports the comparison between MOO methods applied to a real-world problem, namely, the optimization of a micro heat exchanger (?HEX). Two MOO methods, dynamically weighted aggregation (DWA) propo...

  12. Heat exchangers and methods of construction thereof

    International Nuclear Information System (INIS)

    A heat exchanger is described comprising a shell having first inlet means and first outlet means for the flow of a first fluid therethrough, a plurality of tubes within the shell to provide a path for flow of a second fluid in heat exchange relation to the first fluid, second inlet means and second outlet means for flow of the second fluid to and from the tubes respectively, a tubular member concentric with at least a portion of the length of one of the tubes to define a space between the tube and the tubular member, at least one radially outwardly projecting portion on the tubular member, and a plurality of tube support means spaced apart and disposed generally perpendicular to the tube axes, wherein the tubular member is fixedly attached at one end to one of the tube support means and at the other end to an adjacent one of the tube support means, the space between the tube and the tubular member is closed to flow of both the first fluid and the second fluid, and the radially outwardly projecting portion on the tubular member extends longitudinally to allow flexing of the tubular member and expanding thereof radially outwardly during construction of the heat exchanger so as to allow insertion of the tube into the tubular member, the radially outwardly projecting portion defining a gap which contributes to the space between the tube and the tubular member. 6 figs

  13. OXIDE DISPERSION-STRENGTHENED HEAT EXCHANGER TUBING

    Energy Technology Data Exchange (ETDEWEB)

    Harper, Mark A.

    2001-11-06

    Oxide dispersion strengthened (ODS) alloys (e.g. the INCOLOY{reg_sign} MA956 alloy) are known for their excellent high temperature properties and are prime candidate materials for the construction of very high temperature heat exchangers that will be used in Vision 21 power plants. The main limitation of these materials is their poor weldability. Commercially available ODS tubing also tends to exhibit relatively poor circumferential creep strength due to current processing practices resulting in a fine grain size in the transverse direction. Thus far, these two characteristics of the ODS tubing have restricted its use to mostly non-pressure containing applications. The objectives of this program are to develop: (a) an MA956 tube with sufficient circumferential creep strength for long term use as heat exchanger tubing for very high temperatures; (b) a welding technique(s) for producing adequate joints between an MA956 tube and an MA956 tube, and an MA956 tube and an INCONEL 601 tube; (c) the bending strain limits, below which recrystallization will not occur in a MA956 tube during normal operation; and (d) the high temperature corrosion limits for the MA956 alloy with respect to working-fluid side and fireside environments. Also, this program seeks to generate data for use by heat exchanger designers and the ASME Boiler and Pressure Vessel Code, and perform an analysis of the mechanical property, tube bending, and corrosion data in order to determine the implications on the design of a very high temperature heat exchanger (T>1093 C/2000 F). After one year, work is currently being conducted on increasing the circumferential strength of a MA956 tube, developing joining techniques for this material, determining the tube bending strain limits, and establishing the high temperature corrosion parameters for the MA956 alloy in environments expected to be present in Vision 21 power plants. Work in these areas will is continuing into the next fiscal year, with success anticipated to produce innovative developments that will allow the reliable use of ODS alloys for heat exchanger tubing, as well as a variety of applications previously not possible with metallic materials.

  14. Technology Solutions Case Study: Foundation Heat Exchanger, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-03-01

    The foundation heat exchanger, developed by Oak Ridge National Laboratory, is a new concept for a cost-effective horizontal ground heat exchanger that can be connected to water-to-water or water-to-air heat pump systems for space conditioning as well as domestic water heating.

  15. Expanded microchannel heat exchanger: design, fabrication and preliminary experimental test

    CERN Document Server

    Denkenberger, David C; Pearce, Joshua M; Zhai, John; 10.1177/0957650912442781

    2012-01-01

    This paper first reviews non-traditional heat exchanger geometry, laser welding, practical issues with microchannel heat exchangers, and high effectiveness heat exchangers. Existing microchannel heat exchangers have low material costs, but high manufacturing costs. This paper presents a new expanded microchannel heat exchanger design and accompanying continuous manufacturing technique for potential low-cost production. Polymer heat exchangers have the potential for high effectiveness. The paper discusses one possible joining method - a new type of laser welding named "forward conduction welding," used to fabricate the prototype. The expanded heat exchanger has the potential to have counter-flow, cross-flow, or parallel-flow configurations, be used for all types of fluids, and be made of polymers, metals, or polymer-ceramic precursors. The cost and ineffectiveness reduction may be an order of magnitude or more, saving a large fraction of primary energy. The measured effectiveness of the prototype with 28 micro...

  16. AUTOMATIC EVOLUTION OF HEAT EXCHANGER NETWORKS WITH SIMULTANEOUS HEAT EXCHANGER DESIGN

    Scientific Electronic Library Online (English)

    F.S., LIPORACE; F.L.P., PESSOA; E.M., QUEIROZ.

    1999-03-01

    Full Text Available Recently, a new software (AtHENS) that automatically synthesizes a heat exchanger network with minima consumption of utilities was developed. This work deals with the next step, which represents the evolution of the initial network. Hence, new procedures to identify and break loops are incorporated, [...] for which a new algorithm is proposed. Also, a heat exchanger design procedure which uses the available pressure drop to determine the film coefficient on the tube side and shell side is added, providing the utilization of more realistic heat exchangers in the network during its optimization. Results obtained from a case study point to the possibility of equipment design having a strong influence on the network synthesis.

  17. Heat Exchanger Anchors for Thermo-active Tunnels

    OpenAIRE

    Mimouni, Thomas; Dupray, Fabrice; Minon, Sophie; Laloui, Lyesse

    2013-01-01

    Shallow geothermal power represents an important energy resource for the heating and cooling of the buildings. Due to relatively low temperature levels encountered at shallow depths in the soil, between 10°C and 20°C, heat pumps are required to process the extracted heat, forming the so called ground source heat pump system. Different types of heat exchangers with the ground were developed in order to optimize the heat exchanges, from simple geothermal loops grouted in boreholes reaching dept...

  18. Heat exchange apparatus for a reactor

    International Nuclear Information System (INIS)

    A heat exchange apparatus for transferring heat from a reactor gas coolant to a secondary fluid medium is described. The heat exchange apparatus comprises an elongated vertically extending hole in a concrete shield. Supported within the hole in spaced relation to the wall thereof is an elongated vertical extending tubular shroud which shroud has a gas entry at its lower end and a gas exit at its upper end. Means are provided for dividing the annular space between the shroud 16 and the wall of the hole into an upper and a lower region. Disposed in the shield is an inlet for reactor coolant which communicates with the lower region and is positioned vertically so as to be spaced above the gas entry to the shroud to thereby suppress natural convection during nonoperating standby conditions of the apparatus. An outlet for reactor coolant, which is disposed in the shield, communicates with the upper region. A plurality of vertically extending, spaced apart bayonet tube assemblies are supported within the shroud and means are provided for passing secondary fluid through these tube assemblies. A circulator is provided for causing the reactor coolant to flow in through the inlet, downward in the annular space, into the shroud through the gas entry, upward through the shroud and out through the outlet during emergency conditions of the reactor

  19. Design of a liquid metals heat exchanger

    International Nuclear Information System (INIS)

    The method that has been used in this design is that of the summation of the partial resistances to the heat transference, permitting to obtain the value of the total coefficient of heat transfer which will be equal to the reciprocal of the summation of all the resistances. The obtained exchanger is of tubes and rod type shield with the primary sodium flowing through the tubes and the secondary sodium flowing in counter-current through the shield. The shield has a nominal diameter of 6 inches and the bundle of tubes is formed by 31 tubes with a nominal diameter of 1/2 inch. The shield as well as the tubes are of stainless steel. The total heat transfer area is of 7.299 square meters, and the effective length of heat transfer is of 3.519 meters. After sizing the interchanger it was proceeded to simulate its functioning through a computer program in which the effective length of heat transfer was divided in 150 points in such a way that according to the integration of the distinct parameters along these points a comparison can finally be made between the design values and those of the simulation, which show a concordance. (author)

  20. Characterization of various losses in a cryogenic counterflow heat exchanger

    Science.gov (United States)

    Aminuddin, Mohammad; Zubair, Syed M.

    2014-11-01

    A detailed assessment of irreversibility, predominantly heat in-leak and axial wall conduction, is essential in accurately predicting the performance of high effectiveness heat exchangers employed in cryogenic applications. Integration into a refrigeration system as well requires consideration of parasitic heat loss by conduction from exchanger cold end to the adjacent components. Governing equations incorporating these effects in a counterflow exchanger are solved numerically and the model predictions evaluated for heat exchanger ineffectiveness and heat loss by conduction. The optimum performance mandates minimization of both. Although ineffectiveness decreases at higher longitudinal conduction, cold end loss increases with deterioration of the overall performance. Utilizing lower heat capacity rate hot fluid, nevertheless, reduces the cold end loss. Heat in-leak is relatively high with concurrent consideration of axial wall conduction and has adverse consequence on heat exchanger effectiveness. Analysis of the net heat transferred to lower stages of refrigeration reveals a critical NTU.

  1. Fluid dynamical considerations on heat exchanger networks

    Scientific Electronic Library Online (English)

    A. J. M., Vieira; F. L. P., Pessoa; E. M., Queiroz.

    2000-03-01

    Full Text Available The synthesis and analysis of heat exchanger networks are issues of great industrial interest due to the possibilities of decreasing plant costs, through the reduction of the utilities consumption and/or the number of equipments, in a grassroot design or retrofitting an existent network. The present [...] paper explores a new design algorithm based on the Total Annual Cost (TAC) optimization for a thermal equipment, with mean tubeside and shellside flow velocities constraints, studying also the influence of pumping cost in the network’s final cost.

  2. Steam generator with duplex heat exchange tubes

    International Nuclear Information System (INIS)

    The invention claims a design of a steam generator for fast reactors. The advantage of the design is that it does not require additional expansion tanks for the steam generator and that the steam generator may be filled with indication liquid, e.g., sodium, after assembly work has been completed at the power plant. Another advantage is that in a vertical steam generator with duplex heat exchange tubes the configuration facilitates the detection of a failure of the walls of the duplex tubes. (J.P.)

  3. LMFBR intermediate-heat-exchanger experience

    International Nuclear Information System (INIS)

    This paper presents developmental and operating experience of large Intermediate Heat Exchangers (IHX's) in US from the Fast Flux Test Facility (FFTF) to the Clinch River Breeder Reactor Plant (CRBRP) to the Large Development Plant (LDP). Design commonalities and deviations among these IHX's are synopsized. Various developmental tests that were conducted in the areas of hydraulic, structural and mechanical design are also presented. The FFTF is currently operating. Performance data of the FFTF IHXs are reviewed, and comparisons between actual and predicted performances are made. The results are used to assess the adequacy of IHX designs

  4. LMFBR intermediate-heat-exchanger experience

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S.M.; Beaver, T.R.

    1983-01-01

    This paper presents developmental and operating experience of large Intermediate Heat Exchangers (IHX's) in US from the Fast Flux Test Facility (FFTF) to the Clinch River Breeder Reactor Plant (CRBRP) to the Large Development Plant (LDP). Design commonalities and deviations among these IHX's are synopsized. Various developmental tests that were conducted in the areas of hydraulic, structural and mechanical design are also presented. The FFTF is currently operating. Performance data of the FFTF IHXs are reviewed, and comparisons between actual and predicted performances are made. The results are used to assess the adequacy of IHX designs.

  5. Fouling and corrosion of freshwater heat exchangers

    International Nuclear Information System (INIS)

    Fouling in freshwater heat exchangers (HX) costs the Canadian nuclear power industry millions of dollars annually in replacement energy and capital equipment. The main reasons are loss of heat transfer and corrosion. Underdeposit pitting is the predominant corrosion mechanism. Erosion corrosion has also been observed. Failure analyses, field studies, and laboratory research have provided us with information to help explain the reasons for reduced performance. Newly installed HX tubing immediately becomes colonized with a complex community of bacteria in a slimey organic matrix. The biofilm itself produces corrosive species and in addition it promotes the attachment of sediment particles and the deposition of calcareous material. The result is a thick, adherent deposit which creates crevices, concentrates aggressive species and alters the system's hydrodynamics

  6. New waste heat district heating system with combined heat and power based on absorption heat exchange cycle in China

    International Nuclear Information System (INIS)

    A new waste heat district heating system with combined heat and power based on absorption heat exchange cycle (DHAC) was developed to increase the heating capacity of combined heat and power (CHP) through waste heat recovery, and enhance heat transmission capacity of the existing primary side district heating network through decreasing return water temperature by new type absorption heat exchanger (AHE). The DHAC system and a conventional district heating system based on CHP (CDH) were analyzed in terms of both thermodynamics and economics. Compared to CDH, the DHAC increased heating capacity by 31% and increased heat transmission capacity of the existing primary side district heating network by 75%. The results showed that the exergetic efficiency of DHAC was 10.41% higher and the product exergy monetary cost was 36.6¥/GJ less than a CHD. DHAC is an effective way to increase thermal utilization factor of CHP, and to reduce district heating cost. - Highlights: ? Absorption heat pumps are used to recover waste heat in CHP. ? Absorption heat exchanger can reduce exergy loss in the heat transfer process. ? New waste heat heating system (DHAC) can increase heating capacity of CHP by 31%. ? DHAC can enhance heat transmission capacity of the primary pipe network by 75%. ? DHAC system has the higher exergetic efficiency and the better economic benefit.

  7. Finned heat exchanger. Ib. General and basic aspects

    International Nuclear Information System (INIS)

    This paper is a review of the main literature studies about the finned heat exchanger modelling and simulation. Finned heat exchangers are used in cryogenic industry, nuclear industry, food industry, medicine, etc.. The aspects concerning the air circulation through the heat exchanger component tubes are studied, as well as those involved in the thermal transfer from technological fluid to wall or from fin to air. A particular attention is devoted to the physical and mathematical complete models of finned heat exchangers, as well as to the criterial relationship for the calculation of the partial heat transfer to air (?2), fin efficiency (?a) and friction coefficient (f). Details are also given about the influence of the thermal contact resistance on the finned heat exchanger performance. This study is a useful tool for a correct technological sizing of this type of heat exchangers. (authors)

  8. Simulation Studies on A Cross Flow Plate Fin Heat Exchanger

    Directory of Open Access Journals (Sweden)

    M. Thirumarimurugan

    2008-01-01

    Full Text Available Compact heat exchangers which were initially developed for the aerospace industries in the1940s have been considerably improved in the past few years. The main reasons for the goodperformance of compact heat exchangers are their special design which includes turbulent which inturn use high heat transfer coefficient and resists fouling, and maximum temperature driving forcebetween the hot and cold fluids. Numerous types use special enhancement techniques to achieve therequired heat transfer in smaller plot areas and, in many cases, less initial investment. One such type ofcompact heat exchanger is the Plate-fin heat exchanger. The complexity of compact heat exchangerdesign equations results from the exchangers unique ability to transfer heat between multiple processstreams and a wide array of possible flow configurations. This paper presents the performanceevaluation of cross flow plate fin heat exchanger with several different Gas-Liquid systems.Experimental results such as exchanger effectiveness, overall heat transfer coefficients were calculatedfor the flow systems of Cross flow Heat Exchangers. A steady state model for the outlet temperature ofboth the cold and hot fluid and overall heat transfer coefficient of a plate-fin cross flow heat exchangerwas developed and simulated using MATLAB, which was verified with the experiments conducted.

  9. Intermediate heat exchanger project for Super Phenix

    International Nuclear Information System (INIS)

    The Super Phenix (1200 MWe) intermediate heat exchangers are derived directly from those of Phenix (250 MWe). The intermediate exchangers are housed in the reactor vessel annulus: as this annulus must be of the smallest volume possible, these IHX are required to work at a high specific rating. The exchange surface is calculated for nominal conditions. A range is then defined, consistent with the above requirements and throughout which the ratio between bundle thickness and bundle length remains acceptable. Experimental technics and calculations were used to determine the number of tube constraint systems required to keep the vibration amplitude within permissible limits. From a knowledge of this number, the pressure drop produced by the primary flow can be calculated. The bundle geometry is determined together with the design of the corresponding tube plates and the way in which these plates should be joined to the body of the IHX. The experience (technical and financial) acquired in the construction of Phenix is then used to optimize the design of the Super Phenix project. An approximate definition of the structure of the IHX is obtained by assuming a simplified load distribution in the calculations. More sophisticated calculations (e.g. finite element method) are then used to determine the behaviour of the different points of the IHX, under nominal and transient conditions

  10. Heat transfer pipe shielding device for heat exchanger

    International Nuclear Information System (INIS)

    The front face and the rear face of a frame that surrounds the circumference of the water chamber body of a multi-tube heat exchanger are covered by a rotational shielding plate. A slit is radially formed to the shielding plate for the insertion of a probe or cleaner to the heat transfer pipe and a deflector is disposed on the side opposite to the slit. The end of the heat transfer pipe to be inspected is exposed to the outer side by way of the slit by the rotation of the shielding plate, and the probe or cleaner is inserted in the heat transfer pipe to conduct an eddy current injury monitoring test or cleaning. The inside of the water chamber and the heat transfer pipe is exhausted by a ventilation nozzle disposed to the frame. Accordingly, a shielding effect upon inspection and cleaning can be obtained and, in addition, inspection and exhaustion at the cleaning position can be conducted easily. Since the operation for attachment and detachment is easy, the effect of reducing radiation dose per unit can be obtained by the shortening of the operation time. (N.H.)

  11. Numerical Analysis of Tube-Fin Heat Exchanger using Fluent

    OpenAIRE

    M. V. Ghori; R. K. Kirar

    2012-01-01

    Three-dimensional CFD simulations are carried out to investigate heat transfer and fluid flow characteristics of two-row plain Tube and Fin heat exchanger using FLUENT software. Heat transfer and pressure drop characteristics of the heat exchanger are investigated for Reynolds numbers ranging from 330 to 7000. Model geometry is created and meshed by using GAMBIT software. Fluid flow and heat transfer are simulated and results compared using both laminar and turbulent flow models k-, and SST k...

  12. CFD Based Evaluation Of Effectiveness Of Counter Flow Heat Exchanger

    OpenAIRE

    Gurpreet Kour

    2014-01-01

    Engineers are continually being asked to improve effectiveness of heat transfer equipments. These requests may arise as a result of the need to increase profitability or accommodate capital limitations. Processes which use heat transfer equipment i.e. heat exchanger must frequently be improved for these reasons. Artifical roughness is important technique for enhancing the effectiveness of heat exchanger. In this work effectiveness of smooth as well as roughened tube in heat ex...

  13. WASTE HEAT RECOVERY FROM BOILER OF LARGE-SCALE TEXTILE INDUSTRY

    Directory of Open Access Journals (Sweden)

    Prateep Pattanapunt

    2013-01-01

    Full Text Available Many industrial heating processes generate waste energy in textile industry; especially exhaust gas from the boiler at the same time reducing global warming. Therefore, this article will present a study the way to recovery heat waste from boiler exhaust gas by mean of shell and tube heat exchanger. Exhaust gas from boiler dyeing process, which carries a large amount of heat, energy consumptions could be decrease by using of waste-heat recovery systems. In this study, using ANASYS simulation performs a thermodynamics analysis. An energy-based approach is performed for optimizing the effective working condition for waste-heat recovery with exhaust gas to air shell and tube heat exchanger. The variations of parameters, which affect the system performance such as, exhaust gas and air temperature, velocity and mass flow rate and moisture content is examined respectively. From this study, it was found that heat exchanger could be reduced temperature of exhaust gases and emission to atmosphere and the time payback is the fastest. The payback period was determined about 6 months for investigated ANSYS. The air is circulated in four passes from the top to the bottom of the test section, in overall counter-flow with exhaust gas. The front area is 1720�1720 mm, the flow length 7500 mm, the inner and outer diameter of exhaust gas is 800 mm, the tube assembly consist of 196 tubes, the tube diameter is 76.2 mm, the tube thickness is 2.6 mm, the tube length is 4500 mm, the tube length of air inner and outer is 500 mm. The result show that, the boiler for superheated type there are exhaust gas temperature is 190°C, 24% the moisture content of fuel and there are palm kernel shell 70 tons day-1 which there are the high temperature after the heat exchanger, 150°C. It was occurred acid rain. The hot air from heat exchanger process can be reduced the moisture of palm kernel shell fuel to 15%.The fuel consumption is reduced by about 2.05% (322.72 kJ kg-1, while the shell and tube heat exchanger outlet exhaust gas temperature decreases from 190 to 150°C.

  14. Heat exchanger for fuel cell power plant reformer

    Science.gov (United States)

    Misage, Robert (Manchester, CT); Scheffler, Glenn W. (Tolland, CT); Setzer, Herbert J. (Ellington, CT); Margiott, Paul R. (Manchester, CT); Parenti, Jr., Edmund K. (Manchester, CT)

    1988-01-01

    A heat exchanger uses the heat from processed fuel gas from a reformer for a fuel cell to superheat steam, to preheat raw fuel prior to entering the reformer and to heat a water-steam coolant mixture from the fuel cells. The processed fuel gas temperature is thus lowered to a level useful in the fuel cell reaction. The four temperature adjustments are accomplished in a single heat exchanger with only three heat transfer cores. The heat exchanger is preheated by circulating coolant and purge steam from the power section during startup of the latter.

  15. Finned heat exchangers. Ia. General and basic aspects

    International Nuclear Information System (INIS)

    This paper is a review of the main literature studies about the finned heat exchanger modelling and simulation. Finned heat exchangers are used in cryogenic industry, nuclear industry, food industry, medicine, etc. The aspects concerning the air circulation through the heat exchanger component tubes are studied, as well as those involved in the thermal transfer from technological fluid to wall or from fin to air. A particular attention is devoted to the physical and mathematical complete models of finned heat exchangers, as well as to the criterial relationship for the calculation of the partial thermal transfer to air, ?2, fin efficiency, ?a and friction coefficient, f. Details are also given about the influence of the thermal contact resistance on the finned heat exchanger performance. This study is a useful tool for a correct technological sizing of this heat exchanger type. (authors)

  16. Performance of multiple mini-tube heat exchangers as an internal heat exchanger of a vapor-injection cycle heat pump

    Science.gov (United States)

    Jang, Jin Yong; Jeong, Ji Hwan

    2015-05-01

    A multiple mini-tube (MMT) heat exchanger was considered as an internal heat exchanger of vapor-injection cycle heat pump. Heat transfer and pressure drop in multiple mini-tube heat exchangers were numerically and experimentally investigated. Results show that the best performance of the MMT heat exchanger can be obtained when the intermediate-pressure two-phase refrigerant is supplied to the shell-side and this refrigerant reaches a saturated vapor state at the exit of the heat exchanger.

  17. Control Dewar Subcooler Heat Exchanger Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Rucinski, R.; /Fermilab

    1993-10-04

    The calculations done to size the control dewar subcooler were done to obtain a sufficient subcooler size based on some conservative assumptions. The final subcooler design proposed in the design report will work even better because (1) It has more tubing length, and (2) will have already subcooled liquid at the inlet due to the transfer line design. The subcooler design described in the 'Design Report of the 2 Tesla Superconducting Solenoid for the Fermilab D0 Detector Upgrade' is the final design proposed. A short description of this design follows. The subcooler is constructed of 0.50-inch OD copper tubing with 1.0-inch diameter fins. It has ten and one half spirals at a 11.375-inch centerline diameter to provide 31 feet of tubing length. The liquid helium supply for the solenoid flows through the subcooler and then is expanded through a J-T valve. The subcooler spirals are immersed in the return two phase helium process stream. The return stream is directed over the finned tubing by an annulus created by a 10-inch pipe inside a 12-inch pipe. The transfer line from the refrigerator to the control dewar is constructed such that the liquid helium supply tube is in the refrigerator return stream, thereby subcooling the liquid up to the point where the u-tubes connect the transfer line to the control dewar. The subcooler within the control dewar will remove the heat picked up in the helium supply u-tube/bayonets. The attached subcooler/heat exchanger calculations were done neglecting any subcooling in the transfer line. All heat picked up in the transfer line from the refrigerator storage dewar to the control dewar is absorbed by the supply stream. The subcooler was sized such that the two phase supply fluid is subcooled at 1.7 atm pressure and when expanded through a JT valve to 1.45 atm pressure it is at a saturated liquid state. The calculations apply during steady state operation and at a flow rate of 16 g/s. The analysis of the heat exchanger was broken into two parts relating to the heat transfer mode taking place. The first part is considered the condensing part in which the helium supply stream is changed from two phase fluid to one phase liquid. The second part is the subcooling part where the liquid temperature is lowered, i.e.. subcooled. A summary of the calculations and results appears on the next page. The raw calculations follow the summary.

  18. Liquid-Liquid Heat Exchanger With Zero Interpath Leakage Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future manned spacecraft will require thermal management systems that effectively and safely control the temperature in inhabited modules. Interface heat exchangers...

  19. Power engineering, power saving and investigations on heat exchange in Russia (materials of the first Russian national conference on heat exchange)

    International Nuclear Information System (INIS)

    Review of works, presented at the 1-st Russian national conference on heat exchange and related directly to power engineering and power saving, is shown. The program of conference covered all trends in modern science on heat exchange: natural and forced convection; heat exchange by chemical transformations; boiling; boiling crisis and beyond-the-crisis heat exchange; two-phase flows; evaporation and condensation; dispersion flows and porous media; heat exchange intensification; radiation and complex heat exchange; thermal conductivity and thermal insulation

  20. A new ejector heat exchanger based on an ejector heat pump and a water-to-water heat exchanger

    International Nuclear Information System (INIS)

    Highlights: • EHE is based on the reverse Carnot cycle and current heat transfer mechanisms. • EHE can decrease the return water temperature in the PHN to 35 °C. • EHE can increase the heating capacity of the existed PHN by approximately 43%. • The return water temperature in the PHN is much lower than that in the SHN. • EHE has a simpler structure, lower manufacture cost, and better regulation characteristics. - Abstract: As urban construction has been developing rapidly in China, urban heating load has been increasing continually. Heating capacity of the existed primary heating network (PHN) cannot meet district heating requirements of most metropolises in northern China. A new type of ejector heat exchanger (EHE) based on an ejector heat pump and a water-to-water heat exchanger (WWHE) was presented to increase the heating capacity of the existed PHN, and the EHE was also analyzed in terms of laws of thermodynamics. A new parameter, the exergy distribution ratio (EDR), is introduced, which is adopted to analyze regulation characteristics of the EHE. We find that the EHE shows better performance when EDR ranges from 44% to 63%. EHE can decrease the temperature of return water in the PHN to 35 °C, therefore, this can increase the heating capacity of existed PHN by about 43%. The return water with lower temperature in the PHN could recover more low-grade waste heat in industrial systems. Because of its smaller volume and lower investment, EHEs could be applied more appropriately in district heating systems for long-distance heating and waste heat district heating systems

  1. Predict the temperature distribution in gas-to-gas heat pipe heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Azad, E. [Iranian Research Organization for Science and Technology, Department of Advanced Materials and Renewable Energy, Tehran (Iran, Islamic Republic of)

    2012-07-15

    A theoretical model has been developed to investigate the thermal performance of a continuous finned circular tubing of an air-to-air thermosyphon-based heat pipe heat exchanger. The model has been used to determine the heat transfer capacity, which expresses the thermal performance of heat pipe heat exchanger. The model predicts the temperature distribution in the flow direction for both evaporator and condenser sections and also the saturation temperature of the heat pipes. The approach used for the present study considers row-by-row heat-transfer in evaporator and condenser sections of the heat pipe heat exchanger. (orig.)

  2. Measurement of flow field and local heat transfer distribution on a scraped heat exchanger crystalliser surface

    OpenAIRE

    Rodriguez, Marcos; Ravelet, Florent; Delfos, Rene; Witkamp, Geert-Jan

    2008-01-01

    In a cylindrical scraped heat exchanger crystallizer geometry the flow field influence on the local heat transfer distribution on an evenly cooled scraped heat exchanger surface has been studied by direct measurements of the heat exchanger surface temperature and the fluid velocity field inside the crystallizer. Liquid Crystal Thermometry revealed that the local heat transfer is higher in the middle area of the scraped surface. Stereoscopic PIV measurements demonstrated that the secondary flo...

  3. Thermal energy storage heat exchanger: Molten salt heat exchanger design for utility power plants

    Science.gov (United States)

    Ferarra, A.; Yenetchi, G.; Haslett, R.; Kosson, R.

    1977-01-01

    The use of thermal energy storage (TES) in the latent heat of molten salts as a means of conserving fossil fuels and lowering the cost of electric power was evaluated. Public utility systems provided electric power on demand. This demand is generally maximum during late weekday afternoons, with considerably lower overnight and weekend loads. Typically, the average demand is only 60% to 80% of peak load. As peak load increases, the present practice is to purchase power from other grid facilities or to bring older less efficient fossil-fuel plants on line which increase the cost of electric power. The widespread use of oil-fired boilers, gas turbine and diesel equipment to meet peaking loads depletes our oil-based energy resources. Heat exchangers utilizing molten salts can be used to level the energy consumption curve. The study begins with a demand analysis and the consideration of several existing modern fossil-fuel and nuclear power plants for use as models. Salts are evaluated for thermodynamic, economic, corrosive, and safety characteristics. Heat exchanger concepts are explored and heat exchanger designs are conceived. Finally, the economics of TES conversions in existing plants and new construction is analyzed. The study concluded that TES is feasible in electric power generation. Substantial data are presented for TES design, and reference material for further investigation of techniques is included.

  4. Condensing Heat Exchanger with Hydrophilic Antimicrobial Coating

    Science.gov (United States)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor)

    2014-01-01

    A multi-layer antimicrobial hydrophilic coating is applied to a substrate of anodized aluminum, although other materials may form the substrate. A silver layer is sputtered onto a thoroughly clean anodized surface of the aluminum to about 400 nm thickness. A layer of crosslinked, silicon-based macromolecular structure about 10 nm thickness overlies the silver layer, and the outermost surface of the layer of crosslinked, silicon-based macromolecular structure is hydroxide terminated to produce a hydrophilic surface with a water drop contact angle of less than 10.degree.. The coated substrate may be one of multiple fins in a condensing heat exchanger for use in the microgravity of space, which has narrow channels defined between angled fins such that the surface tension of condensed water moves water by capillary flow to a central location where it is pumped to storage. The antimicrobial coating prevents obstruction of the capillary passages.

  5. FASTEF Heat exchanger tube rupture CFD simulation

    International Nuclear Information System (INIS)

    The aim of this technical note is to present CFD simulations of a tube rupture incidental scenario in a Primary Heat eXchanger (PHX)/Primary Pump (PP) assembly for two design variants of the FAst-Spectrum Transmutation Experimental Facility FASTEF ongoing design, in the framework of the FP7 Central Design Team (CDT) European project. The simulation domain reproduces with some simplification the entire primary coolant loop. The objective is to understand whether it is necessary take some counter-measures to avoid the ingress of steam in the cold plenum. The simulation has been performed on two successive updates of the design and of the nominal operation. The simulations show a good resistance to steam ingress, under the condition that provision is made to avoid an excessive accumulation of steam at the top of the PHX/PP assembly casing.

  6. FASTEF Heat exchanger tube rupture CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, V., E-mail: moreau@crs4.it [CRS4, Centre for Advanced Studies, Research and Development in Sardinia, Polaris, Edificio 1, 09010 Pula, CA (Italy)

    2012-11-15

    The aim of this technical note is to present CFD simulations of a tube rupture incidental scenario in a Primary Heat eXchanger (PHX)/Primary Pump (PP) assembly for two design variants of the FAst-Spectrum Transmutation Experimental Facility FASTEF ongoing design, in the framework of the FP7 Central Design Team (CDT) European project. The simulation domain reproduces with some simplification the entire primary coolant loop. The objective is to understand whether it is necessary take some counter-measures to avoid the ingress of steam in the cold plenum. The simulation has been performed on two successive updates of the design and of the nominal operation. The simulations show a good resistance to steam ingress, under the condition that provision is made to avoid an excessive accumulation of steam at the top of the PHX/PP assembly casing.

  7. Cardioplegia heat exchanger design modelling using computational fluid dynamics.

    Science.gov (United States)

    van Driel, M R

    2000-11-01

    A new cardioplegia heat exchanger has been developed by Sorin Biomedica. A three-dimensional computer-aided design (CAD) model was optimized using computational fluid dynamics (CFD) modelling. CFD optimization techniques have commonly been applied to velocity flow field analysis, but CFD analysis was also used in this study to predict the heat exchange performance of the design before prototype fabrication. The iterative results of the optimization and the actual heat exchange performance of the final configuration are presented in this paper. Based on the behaviour of this model, both the water and blood fluid flow paths of the heat exchanger were optimized. The simulation predicted superior heat exchange performance using an optimal amount of energy exchange surface area, reducing the total contact surface area, the device priming volume and the material costs. Experimental results confirm the empirical results predicted by the CFD analysis. PMID:11131219

  8. Multiple utilities targeting for heat exchanger networks

    International Nuclear Information System (INIS)

    A targeting methodology is proposed to determine the optimum loads for multiple utilities considering the cost tradeoffs in energy and capital for heat exchanger networks (HENs). The method is based on a newly-developed Cheapest Utility Principle (CUP), which simply states that it is optimal to increase the load of the cheapest utility and maintain the loads of the relatively expensive utilities constant while increasing the total utility consumption. In other words, the temperature driving forces at the utility pinches once optimized do not change even when the minimum approach temperature (?Tmin) at the process pinch is varied. The CUP holds rigorously when the relationship between the exchanger area and the capital cost is linear. Even when the relationship is non-linear, it proves to be an excellent approximation that reduces the computational effort during multiple utilities targeting. By optimizing the utility pinches sequentially and recognizing that these optimized utility pinches essentially do not change with the process ?Tmin, the results can be elegantly represented through the optimum load distribution (OLD) plots introduced in this work. (author)

  9. The effect of external factors on the characteristics of waste heat heat exchangers of a GPA

    Energy Technology Data Exchange (ETDEWEB)

    Makar, R.M.; Ostapenko, A.N.; Patychenko, A.S.; Sereda, N.I.; Shelkovskiy, B.I.

    1983-01-01

    The effect of different factors in operational conditions is examined on the basic parameters of waste heat heat exchangers of gas pumping units with gas turbine motors. The range is shown of the regulation of the heat conductivity in heat exchangers with standard gate valve units. The obtained data make it possible to develop a VER for specific conditions.

  10. Superphenix 1 intermediate heat exchanger fabrication

    International Nuclear Information System (INIS)

    The eight Superphenix 375-MW (thermal) intermediate heat exchangers (IHXs) are similar in overall design to the Phenix components. Detailed design changes had to be made during fabrication on the following grounds: Due to seismic resistance, the support area was raised as high as possible to situate the component natural frequencies well out of the resonance peak range and remove thick plate-to-shell connections from heavy thermal load areas. Integration of lessons drawn from the Phenix incidents, due mainly to secondary sodium radial temperature disparities, resulted in the design of a more adaptable outlet header, together with a sodium mixing device, and in the reduction of temperature differences by heat insulation. To avoid circumferential temperature disparities, the iron shot biological shielding plug was replaced by stacked stainless steel plates within an outer shell, which in the new design, is not a supporting structure. The thermal-hydraulic and mechanical design of the component necessitated the elaboration of sophisticated computer codes, with validation of results on mock-ups. The detailed design studies and the actual manufacturing work had to adapt to both design developments and to inherent fabrication difficulties, mainly related to the very tight tolerances imposed for these exceptionally large components and to the welding of steel with an excessive boron content. The construction of the Creys-Malville IHXs afforded valuable industrial experience, which should provide a basis for the design of simpler and less costly IHX units for the forthcoming 1500-MW (electric) breeder

  11. A Liquid-Liquid Thermoelectric Heat Exchanger as a Heat Pump for Testing Phase Change Material Heat Exchangers

    Science.gov (United States)

    Sheth, Rubik B.; Makinen, Janice; Le, Hung V.

    2016-01-01

    The primary objective of the Phase Change HX payload on the International Space Station (ISS) is to test and demonstrate the viability and performance of Phase Change Material Heat Exchangers (PCM HX). The system was required to pump a working fluid through a PCM HX to promote the phase change material to freeze and thaw as expected on Orion's Multipurpose Crew Vehicle. Due to limitations on ISS's Internal Thermal Control System, a heat pump was needed on the Phase Change HX payload to help with reducing the working fluid's temperature to below 0degC (32degF). This paper will review the design and development of a TEC based liquid-liquid heat exchanger as a way to vary to fluid temperature for the freeze and thaw phase of the PCM HX. Specifically, the paper will review the design of custom coldplates and sizing for the required heat removal of the HX.

  12. Development of heat resistant ion exchange resin. First Report

    International Nuclear Information System (INIS)

    In nuclear power stations, as a means of maintaining the soundness of nuclear reactors, the cleaning of reactor cooling water has been carried out. But as for the ion exchange resin which is used as the cleaning agent in the filtrating and desalting facility in reactor water cleaning system, since the heat resistance is low, high temperature reactor water is cooled once and cleaned, therefore large heat loss occurs. If the cleaning can be done at higher temperature, the reduction of heat loss and compact cleaning facilities become possible. In this study, a new ion exchange resin having superior heat resistance has been developed, and the results of the test of evaluating the performance of the developed ion exchange resin are reported. The heat loss in reactor water cleaning system, the heat deterioration of conventional ion exchange resin, and the development of the anion exchange resin of alkyl spacer type are described. The outline of the performance evaluation test, the experimental method, and the results of the heat resistance, ion exchange characteristics and so on of C4 resin are reported. The with standable temperature of the developed anion exchange resin was estimated as 80 - 90degC. The ion exchange performance at 95degC of this resin did not change from that at low temperature in chloride ions and silica, and was equivalent to that of existing anion exchange resin. (K.I.)

  13. Influence of supercritical ORC parameters on plate heat exchanger design

    International Nuclear Information System (INIS)

    The applications of Organic Rankine Cycle (ORC) appear to be growing in the field of waste heat utilization. This thermodynamic cycle can be successfully used in the field of biomass combustion, geothermal systems or solar desalination systems, providing efficient systems. In the last years, a very intense investigation on the utilization of low temperature waste heat for supplying ORC systems has brought new research potential in the area of thermodynamic optimisation of this cycle. More specifically, the use of supercritical fluid parameters in the ORC processes seems to become more and more attractive leading to lower exergy destruction systems together with higher heat utilization systems. However, the investigation of the heat exchanger design and the heat exchange coefficients is of high importance for these applications as the effective heat transfer reflects on the overall process energetic and exergetic efficiency. It is important to study the relatively unknown heat transfer mechanisms around the critical point to improve both the heat exchanger surface and the design algorithms. The aim of this paper is to investigate the influence of the ORC parameters on the heat exchanger design. More specifically, the basic parameters of the design of the heat exchangers will be defined in the cases of supercritical fluid parameters and the convective coefficients as well as resulting heat transfer surface will be calculated for various fluid parameters. - Highlights: ? Optimisation of the heat exchanger partitioning. ? Comparison of proposed correlations for calculating heat transfer coefficients. ? Calculation of the heat transfer coefficients under supercritical fluid parameters. ? Calculation of the necessary heat transfer surface. ? Calculation of the heat exchanger efficiency under supercritical fluid parameters.

  14. THERMAL ANALYSIS OF EARTH AIR HEAT EXCHANGER USING CFD

    Directory of Open Access Journals (Sweden)

    Vaibhav Madane

    2015-05-01

    Full Text Available This project focuses on Earth Air Heat Exchanger which is reducing energy consumption in a building. The air is passing through the buried tubes and heat exchange takes place between air and surrounding soil. This equipment helps to reduce energy consumption of an air conditioning unit. This project analyses the thermal performance of earth air heat exchanger by using computational fluid dynamics modeling. The model is validated against experimental observations and investigations on an experimental setup in Ajmer. Simulation results are in fair agreement with experimental data. Effects of pipe materials on thermal performance of earth air heat exchangers are also studied for summer conditions in Mumbai. Results have shown that the performance of earth air heat exchanger is not significantly affected by material of buried pipes.

  15. The heat exchanger of small pellet boiler for phytomass

    Science.gov (United States)

    Mi?ieta, Jozef; Lenhard, Richard; Janda?ka, Jozef

    2014-08-01

    Combustion of pellets from plant biomass (phytomass) causes various troubles. Main problem is slagging ash because of low melting temperature of ash from phytomass. This problem is possible to solve either improving energetic properties of phytomass by additives or modification of boiler construction. A small-scale boiler for phytomass is different in construction of heat exchanger and furnace mainly. We solve major problem - slagging ash, by decreasing combustion temperature via redesign of pellet burner and boiler body. Consequence of lower combustion temperature is also lower temperature gradient of combustion gas. It means that is necessary to design larger heat exchanging surface. We plane to use underfed burner, so we would utilize circle symmetry heat exchanger. Paper deals design of heat exchanger construction with help of CFD simulation. Our purpose is to keep uniform water flux and combustion gas flux in heat exchanger without zone of local overheating and excess cooling.

  16. Test results of a Stirling engine utilizing heat exchanger modules with an integral heat pipe

    Science.gov (United States)

    Skupinski, Robert C.; Tower, Leonard K.; Madi, Frank J.; Brusk, Kevin D.

    1993-01-01

    The Heat Pipe Stirling Engine (HP-1000), a free-piston Stirling engine incorporating three heat exchanger modules, each having a sodium filled heat pipe, has been tested at the NASA-Lewis Research Center as part of the Civil Space Technology Initiative (CSTI). The heat exchanger modules were designed to reduce the number of potential flow leak paths in the heat exchanger assembly and incorporate a heat pipe as the link between the heat source and the engine. An existing RE-1000 free-piston Stirling engine was modified to operate using the heat exchanger modules. This paper describes heat exchanger module and engine performance during baseline testing. Condenser temperature profiles, brake power, and efficiency are presented and discussed.

  17. Advanced heat exchanger development for molten salts

    International Nuclear Information System (INIS)

    Highlights: • Hastelloy N and 242, shows corrosion resistance to molten salt at nominal operating temperatures. • Both diffusion welds and sheet material in Hastelloy N were corrosion tested in at 650, 700, and 850 °C for 200, 500, and 1000 h. • Thermal gradients and galvanic couples in the molten salts enhance corrosion rates. • Corrosion rates found were typically <10 mils per year. - Abstract: This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non-nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, that show good corrosion resistance in molten salt at nominal operating temperatures up to 700 °C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet material in Hastelloy N were corrosion tested in 58 mol% KF and 42 mol% ZrF4 at 650, 700, and 850 °C for 200, 500, and 1000 h. Corrosion rates were similar between welded and nonwelded materials, typically <100 ?m per year after 1000 h of corrosion tests. No catastrophic corrosion was observed in the diffusion welded regions. For materials of construction, nickel-based alloys and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of the type of salt impurity and alloy composition, with respect to chromium and carbon, to better define the best conditions for corrosion resistance. Also presented is the division of the nuclear reactor and high-temperature components per American Society of Mechanical Engineers (ASME) standards, along with design requirements for a subcritical Rankine power cycle heat exchanger that has to overcome pressure difference of about 17 MPa

  18. Advanced heat exchanger development for molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Sabharwall, Piyush, E-mail: Piyush.Sabharwall@inl.gov [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Clark, Denis; Glazoff, Michael [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Zheng, Guiqiu; Sridharan, Kumar; Anderson, Mark [University of Wisconsin, Madison (United States)

    2014-12-15

    Highlights: • Hastelloy N and 242, shows corrosion resistance to molten salt at nominal operating temperatures. • Both diffusion welds and sheet material in Hastelloy N were corrosion tested in at 650, 700, and 850 °C for 200, 500, and 1000 h. • Thermal gradients and galvanic couples in the molten salts enhance corrosion rates. • Corrosion rates found were typically <10 mils per year. - Abstract: This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non-nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, that show good corrosion resistance in molten salt at nominal operating temperatures up to 700 °C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet material in Hastelloy N were corrosion tested in 58 mol% KF and 42 mol% ZrF{sub 4} at 650, 700, and 850 °C for 200, 500, and 1000 h. Corrosion rates were similar between welded and nonwelded materials, typically <100 ?m per year after 1000 h of corrosion tests. No catastrophic corrosion was observed in the diffusion welded regions. For materials of construction, nickel-based alloys and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of the type of salt impurity and alloy composition, with respect to chromium and carbon, to better define the best conditions for corrosion resistance. Also presented is the division of the nuclear reactor and high-temperature components per American Society of Mechanical Engineers (ASME) standards, along with design requirements for a subcritical Rankine power cycle heat exchanger that has to overcome pressure difference of about 17 MPa.

  19. CFD Based Evaluation Of Effectiveness Of Counter Flow Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Gurpreet Kour

    2014-04-01

    Full Text Available Engineers are continually being asked to improve effectiveness of heat transfer equipments. These requests may arise as a result of the need to increase profitability or accommodate capital limitations. Processes which use heat transfer equipment i.e. heat exchanger must frequently be improved for these reasons. Artifical roughness is important technique for enhancing the effectiveness of heat exchanger. In this work effectiveness of smooth as well as roughened tube in heat exchanger is theoretically investigated by using ring type roughness geometry. The performance obtained is then compared with smooth tube. Ringed tube has a significant effect on effectiveness of heat exchanger. The effectiveness is 3.2 times as compared with plane tube was reported. The effectiveness found to be increased with increasing roughness and decreasing pitch between the rings.

  20. Flat tube heat exchangers – Direct and indirect noise levels in heat pump applications

    International Nuclear Information System (INIS)

    In the outdoor unit of an air-source heat pump the fan is a major noise source. The noise level from the fan is dependent on its state of operation: high air-flow and high pressure drop often result in higher noise levels. In addition, an evaporator that obstructs an air flow is a noise source in itself, something that may contribute to the total noise level. To be able to reduce the noise level, heat exchanger designs other than the common finned round tubes were investigated in this study. Three types of heat exchanger were evaluated to detect differences in noise level and air-side heat transfer performance at varying air flow. The measured sound power level from all the heat exchangers was low in comparison to the fan sound power level (direct effect). However, the heat exchanger design was shown to have an important influence on the sound power level from the fan (indirect effect). One of the heat exchangers with flat tubes was found to have the lowest sound power level, both direct and indirect, and also the highest heat transfer rate. This type of flat tube heat exchanger has the potential to reduce the overall noise level of a heat pump while maintaining heat transfer efficiency. - Highlights: •The direct noise from a heat exchanger is negligible in heat pump applications. •The design of the heat exchanger highly influences the noise from an outdoor unit. •Flat tube heat exchangers can reduce the noise from the outdoor unit of a heat pump. •Flat tube heat exchangers can increase the energy efficiency of a heat pump

  1. Characteristics of Vertical Mantle Heat Exchangers for Solar Water Heaters

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Morrison, G.L.; Behnia, M.

    1999-01-01

    - The flow structure in vertical mantle heat exchangers was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the mantle were measured using a particle Image Velocimetry (PIV) system. A CFD simulation model of vertical mantle heat exchangers was also developed for detailed evaluation of the heat flux distribution over the mantle surface. Both the experimental and simulation results indicate that distribution of the flow around th...

  2. Numerical simulation of fluid flow and heat transfer in a concentric tube heat exchanger

    International Nuclear Information System (INIS)

    In this paper, numerical simulation of a concentric tube heat exchanger is presented to determine the convective heat transfer coefficient and friction factor in a smooth tube. Increasing the convective heat transfer coefficient can increase heat transfer rate in a concentric tube heat exchanger from a given tubular surface area. This can be achieved by using heat transfer augmentation devices. This work constitutes the initial phase of the numerical simulation of heat transfer from tubes employing augmentation devices, such as twisted tapes, wire-coil inserts, for heat transfer enhancement. A computational fluid dynamics (CFD) simulation tool was developed with CFX software and the results obtained from the simulations are validated with the empirical correlations for a smooth tube heat exchanger. The difficulties associated with the simulation of a heat exchanger augmented with wire-coil inserts are discussed. (author)

  3. Improving a process's efficiency by exploiting heat pockets in its heat exchange network

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yufei; Feng, Xiao; Cai, Yan; Zhu, Maobin; Chu, Khim H. [Department of Chemical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2009-11-15

    On the grand composite curve of a heat exchange network, a heat pocket exists when a local heat source above the pinch point or a local heat sink below the pinch point appears. In this paper, heat recovery in the heat pocket is presented by combining the pinch technology and exergy analysis. When the heat pocket is big, hot streams in the pocket can be used to generate a higher level utility, and the cold streams in the pocket can be heated by a lower level utility. In this way, exergy loss can be reduced, and the process's efficiency can be improved. The heat exchange network of a hydrogen production process is used as a case study. The energy performance of the heat exchange network can be further improved by recovering the heat in the heat pocket, compared with the scheme based only on pinch technology. (author)

  4. Investigation of Brazed Plate Heat Exchangers With Variable Chevron Angles

    Directory of Open Access Journals (Sweden)

    S. Muthuraman

    2013-08-01

    Full Text Available - Experiments to measure the condensation heat transfer coefficient and the pressure drop in brazed plate heat exchangers (BPHEs were performed with the refrigerants R410A and R22. Brazed plate heat exchangers with different chevron angles of 45°, 35°, and 20° were used. Varying the mass flux, the condensation temperature, and the vapor quality of the refrigerant, we measured the condensation heat transfer coefficient and the pressure drops. Both the heat transfer coefficient and the pressure drop increased proportionally with the mass flux and the vapor quality and inversely with the condensation temperature and the chevron angle.

  5. Improvements of U-pipe Borehole Heat Exchangers

    OpenAIRE

    Acuña, José

    2010-01-01

    The sales of Ground Source Heat Pumps in Sweden and many other countries are having a rapid growth in the last decade. Today, there are approximately 360 000 systems installed in Sweden, with a growing rate of about 30 000 installations per year. The most common way to exchange heat with the bedrock in ground source heat pump applications is circulating a secondary fluid through a Borehole Heat Exchanger (BHE), a closed loop in a vertical borehole. The fluid transports the heat from the groun...

  6. Temperatures and Heat Flows in a Soil Enclosing a Slinky Horizontal Heat Exchanger

    OpenAIRE

    Pavel Neuberger; Radomír Adamovský; Michaela Še?ová

    2014-01-01

    Temperature changes and heat flows in soils that host “slinky”-type horizontal heat exchangers are complex, but need to be understood if robust quantification of the thermal energy available to a ground-source heat pump is to be achieved. Of particular interest is the capacity of the thermal energy content of the soil to regenerate when the heat exchangers are not operating. Analysis of specific heat flows and the specific thermal energy regime within the soil, including that captured by the ...

  7. Thermal behavior of a heat exchanger module for seasonal heat storage

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon; Andersen, Elsa; Chen, Ziqian; Perers, Bengt; Dannemand, Mark

    2012-01-01

    Experimental and theoretic investigations are carried out to study the heat transfer capacity rate of a heat exchanger module for seasonal heat storage with sodium acetate trihydrate (SAT) supercooling in a stable way. A sandwich heat storage test module has been built with the phase change material (PCM) storage box in between two plate heat exchangers. Charge of the PCM storage is investigated experimentally with solid phase SAT as initial condition. Discharge of the PCM storage with the prese...

  8. Integrated system of nuclear reactor and heat exchanger

    International Nuclear Information System (INIS)

    The invention concerns PWRs in which the heat exchanger is associated with a pressure vessel containing the core and from which it can be selectively detached. This structural configuration applies to electric power generating uses based on land or on board ships. An existing reactor of this kind is fitted with a heat exchanger in which the tubes are 'U' shaped. This particular design of heat exchangers requires that the ends of the curved tubes be solidly maintained in a tube plate of great thickness, hence difficult to handle and to fabricate and requiring unconventional fine control systems for the control rods and awkward coolant pump arrangements. These complications limit the thermal power of the system to level below 100 megawatts. On the contrary, the object of this invention is to provide a one-piece PWR reactor capable of reaching power levels of 1500 thermal megawatts at least. For this, a pressure vessel is provided in the cylindrical assembly with not only a transversal separation on a plane located between the reactor and the heat exchanger but also a cover selectively detachable which supports the fine control gear of the control rods. Removing the cover exposes a part of the heat exchanger for easy inspection and maintenance. Further, the heat exchanger can be removed totally from the pressure vessel containing the core by detaching the cylindrical part, which composes the heat exchanger section, from the part that holds the reactor core on a level with the transversal separation

  9. Characteristics of cooling water fouling in a heat exchange system

    International Nuclear Information System (INIS)

    This study investigated the efficiency of the physical water treatment method in preventing and controlling fouling accumulation on heat transfer surfaces in a laboratory heat exchange system with tap and artificial water. To investigate the fouling characteristics, an experimental test facility with a plate type heat exchange system was newly built, where cooling and hot water moved in opposite directions forming a counter-flow heat exchanger. The obtained fouling resistances were used to analyze the effects of the physical water treatment on fouling mitigation. Furthermore, the surface tension and pH values of water were also measured. This study compared the fouling characteristics of cooling water in the heat exchange system with and without the mitigation methods for various inlet velocities. In the presence of the electrode devices with a velocity of 0.5m/s, the fouling resistance was reduced by 79% compared to that in the absence of electrode devices

  10. Damping of multispan heat exchanger tubes. Pt. 1: in gases

    International Nuclear Information System (INIS)

    Flow-induced vibration analyses of heat exchanger tubes require the knowledge of damping. This paper treats the question of damping on multispan heat exchanger tubes in air and gases. The different energy dissipation mechanisms that contribute to tube damping are discussed. The available experimental data are reviewed and analysed. We find that the main damping mechanism in gases is friction between tube and tube-supports. Damping is strongly related to tube-support thickness. Damping values are recommended for design purposes. This study is interesting in the nuclear industry for it often uses heat exchangers

  11. Experiments for performance enhancement of the innovative heat exchanger

    International Nuclear Information System (INIS)

    In present study, three dimension numerical analysis of Heatric PCHE is performed and compared to existing experimental data. And according to the results, the parameters to influence on thermal-hydraulic performance of PCHE have been derived and a Parametric study for the derived parameters has been performed. Based on these results, a new shape of channel in heat exchanger has been designed. And, performing three dimensional numerical analysis of a new designed heat exchanger and existing PCBE, thermal-hydraulic performance of the new designed heat exchanger has been validated numerically. And, the loop for experiments is designed for experimental investigation

  12. The influence of heat exchanger design on the synthesis of heat exchanger networks

    Directory of Open Access Journals (Sweden)

    Liporace F.S.

    2000-01-01

    Full Text Available Heat exchanger network (HEN synthesis has been traditionally performed without accounting for a more detailed unit design, which is important since the final HEN may require unfeasible units. Recently, publications on this matter have appeared, as well as softwares that simultaneously perform synthesis and units design. However, these publications do not clearly show the influence of the new added features on the final HEN. Hence, this work aims at showing that units' design can strongly affect the final HEN. Improvements on heat transfer area and total annual cost estimations, which influence the HEN structural evolution, are the main responsible for that. It is also shown the influence of some design bounds settings, which can indicate an unfeasible unit design and, therefore, the need for a new match search or the maintenance of a loop. An example reported in the literature is used to illustrate the discussion.

  13. The influence of heat exchanger design on the synthesis of heat exchanger networks

    Scientific Electronic Library Online (English)

    F.S., Liporace; F.L.P., Pessoa; E.M., Queiroz.

    2000-12-01

    Full Text Available Heat exchanger network (HEN) synthesis has been traditionally performed without accounting for a more detailed unit design, which is important since the final HEN may require unfeasible units. Recently, publications on this matter have appeared, as well as softwares that simultaneously perform synth [...] esis and units design. However, these publications do not clearly show the influence of the new added features on the final HEN. Hence, this work aims at showing that units' design can strongly affect the final HEN. Improvements on heat transfer area and total annual cost estimations, which influence the HEN structural evolution, are the main responsible for that. It is also shown the influence of some design bounds settings, which can indicate an unfeasible unit design and, therefore, the need for a new match search or the maintenance of a loop. An example reported in the literature is used to illustrate the discussion.

  14. Thermal behavior of a heat exchanger module for seasonal heat storage

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2012-01-01

    Experimental and theoretic investigations are carried out to study the heat transfer capacity rate of a heat exchanger module for seasonal heat storage with sodium acetate trihydrate (SAT) supercooling in a stable way. A sandwich heat storage test module has been built with the phase change material (PCM) storage box in between two plate heat exchangers. Charge of the PCM storage is investigated experimentally with solid phase SAT as initial condition. Discharge of the PCM storage with the presence of crystallization is studied experimentally. Fluid flow and heat transfer in the PCM module are theoretically investigated by Computational Fluid Dynamics (CFD) calculations. The heat transfer rates between the PCM storage and the heating fluid/cooling fluid in the plate heat exchangers are determined. The CFD calculated temperatures are compared to measured temperatures. Based on the studies, recommendations on how best to transfer heat to and from the seasonal heat storage module are given.

  15. Optimization of cross flow heat exchangers for thermoelectric waste heat recovery

    International Nuclear Information System (INIS)

    Thermoelectric waste heat recovery is investigated for current thermoelectric materials with advanced heat exchangers. Numerical heat exchanger models integrated with models for Bi2Te3 thermoelectric modules are validated against experimental data from previous cross flow heat exchanger studies as well as experiments using thermoelectrics between counterflow hot water and cooling air flow channels. The models are used in optimization studies of thermoelectric waste heat recovery with air cooling in a cross flow heat exchanger. Power losses from an air fan and a fluid pump result in an optimal configuration at intermediate cooling air and hot fluid flows. Results show that heat exchangers with Bi2Te3 thermoelectrics can achieve net power densities over 40 W/l

  16. Investigation of Condensation Heat Transfer Correlation of Heat Exchanger Design in Secondary Passive Cooling System

    International Nuclear Information System (INIS)

    Recently, condensation heat exchangers have been studied for applications to the passive cooling systems of nuclear plants. To design vertical-type condensation heat exchangers in secondary passive cooling systems, TSCON (Thermal Sizing of CONdenser), a thermal sizing program for a condensation heat exchanger, was developed at KAERI (Korea Atomic Energy Research Institute). In this study, the existing condensation heat transfer correlation of TSCON was evaluated using 1,157 collected experimental data points from the heat exchanger of a secondary passive cooling system for the case of pure steam condensation. The investigation showed that the Shah correlation, published in 2009, provided the most satisfactory results for the heat transfer coefficient with a mean absolute error of 34.8%. It is suggested that the Shah correlation is appropriate for designing a condensation heat exchanger in TSCON

  17. Low Cost Polymer heat Exchangers for Condensing Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, Thomas [Brookhaven National Lab. (BNL), Upton, NY (United States); Trojanowski, Rebecca [Brookhaven National Lab. (BNL), Upton, NY (United States); Wei, George [Brookhaven National Lab. (BNL), Upton, NY (United States); Worek, Michael [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-30

    Work in this project sought to develop a suitable design for a low cost, corrosion resistant heat exchanger as part of a high efficiency condensing boiler. Based upon the design parameters and cost analysis several geometries and material options were explored. The project also quantified and demonstrated the durability of the selected polymer/filler composite under expected operating conditions. The core material idea included a polymer matrix with fillers for thermal conductivity improvement. While the work focused on conventional heating oil, this concept could also be applicable to natural gas, low sulfur heating oil, and biodiesel- although these are considered to be less challenging environments. An extruded polymer composite heat exchanger was designed, built, and tested during this project, demonstrating technical feasibility of this corrosion-resistant material approach. In such flue gas-to-air heat exchangers, the controlling resistance to heat transfer is in the gas-side convective layer and not in the tube material. For this reason, the lower thermal conductivity polymer composite heat exchanger can achieve overall heat transfer performance comparable to a metal heat exchanger. However, with the polymer composite, the surface temperature on the gas side will be higher, leading to a lower water vapor condensation rate.

  18. Numerical Analysis of Tube-Fin Heat Exchanger using Fluent

    Directory of Open Access Journals (Sweden)

    M. V. Ghori

    2012-08-01

    Full Text Available Three-dimensional CFD simulations are carried out to investigate heat transfer and fluid flow characteristics of two-row plain Tube and Fin heat exchanger using FLUENT software. Heat transfer and pressure drop characteristics of the heat exchanger are investigated for Reynolds numbers ranging from 330 to 7000. Model geometry is created and meshed by using GAMBIT software. Fluid flow and heat transfer are simulated and results compared using both laminar and turbulent flow models k-, and SST k-omega, with steady-state solvers to calculate pressure drop, flow, and temperature fields. Model validation is carried out by comparing the simulated value friction factor f and Colburn factor j to experimental results investigate by Wang. Reasonable agreement is found between the simulations and experimental data, and the fluent software has been sufficient for simulating the flow fields in tube-fin heat exchangers.

  19. SILICON CARBIDE CERAMICS FOR COMPACT HEAT EXCHANGERS

    International Nuclear Information System (INIS)

    Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making high dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure which allows complete conversion of the carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low chemical reactivity and porosity while the cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800 C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm-3 (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process was studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal conductivities of most commercial SiC materials are much lower due to phonon scattering by impurities (e.g., sintering aids located at the grain boundaries of these materials). The thermal conductivity of our SiC was determined using the laser flash method and it is 214 W/mK at 373 K and 64 W/mK at 1273 K. These values are very close to those of pure SiC and are much higher than those of SiC materials made by industrial processes. This SiC made by our LSI process meets the thermal properties required for use in high temperature heat exchanger. Cellulose and phenolic resin carbons lack the well-defined atomic structures associated with common carbon allotropes. Atomic-scale structure was studied using high resolution transmission electron microscopy (HRTEM), nitrogen gas adsorption and helium gas pycnometry. These studies revealed that cellulose carbon exhibits a very high degree of atomic disorder and angstrom-scale porosity. It has a density of only 93% of that of pure graphite, with primarily sp2 bonding character and a low concentration of graphene clusters. Phenolic resin carbon shows more structural order and substantially less angstrom-scale porosity. Its density is 98% of that of pure graphite, and Fourier transform analysis of its TEM micrographs has revealed high concentrations of sp3 diamond and sp2 graphene nano-clusters. This is the first time that diamond nano-clusters have been observed in carbons produced from phenolic resin. AC and DC electrical measurements were made to follow the thermal conversion of microcrystalline cellulose to carbon. This study identifies five regions of electrical conductivity that can be directly correlated to the chemical decomposition and microstructural evolution during carbonization. In Region I, a decrease in overall AC conductivity occurs due to the initial loss of the polar groups from cellulose molecules. In Region II, the AC conductivity starts to increase with heat treatment temperature due to the formation and growth of conducting carbon clusters. In Region III, a further increase of AC conductivity with increasing heat treatment temperature is observed.

  20. SILICON CARBIDE CERAMICS FOR COMPACT HEAT EXCHANGERS

    Energy Technology Data Exchange (ETDEWEB)

    DR. DENNIS NAGLE; DR. DAJIE ZHANG

    2009-03-26

    Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making high dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure which allows complete conversion of the carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low chemical reactivity and porosity while the cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800 C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm{sup -3} (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process was studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal conductivities of most commercial SiC materials are much lower due to phonon scattering by impurities (e.g., sintering aids located at the grain boundaries of these materials). The thermal conductivity of our SiC was determined using the laser flash method and it is 214 W/mK at 373 K and 64 W/mK at 1273 K. These values are very close to those of pure SiC and are much higher than those of SiC materials made by industrial processes. This SiC made by our LSI process meets the thermal properties required for use in high temperature heat exchanger. Cellulose and phenolic resin carbons lack the well-defined atomic structures associated with common carbon allotropes. Atomic-scale structure was studied using high resolution transmission electron microscopy (HRTEM), nitrogen gas adsorption and helium gas pycnometry. These studies revealed that cellulose carbon exhibits a very high degree of atomic disorder and angstrom-scale porosity. It has a density of only 93% of that of pure graphite, with primarily sp2 bonding character and a low concentration of graphene clusters. Phenolic resin carbon shows more structural order and substantially less angstrom-scale porosity. Its density is 98% of that of pure graphite, and Fourier transform analysis of its TEM micrographs has revealed high concentrations of sp3 diamond and sp2 graphene nano-clusters. This is the first time that diamond nano-clusters have been observed in carbons produced from phenolic resin. AC and DC electrical measurements were made to follow the thermal conversion of microcrystalline cellulose to carbon. This study identifies five regions of electrical conductivity that can be directly correlated to the chemical decomposition and microstructural evolution during carbonization. In Region I, a decrease in overall AC conductivity occurs due to the initial loss of the polar groups from cellulose molecules. In Region II, the AC conductivity starts to increase with heat treatment temperature due to the formation and growth of conducting carbon clusters. In Region III, a further increase of AC conductivity with increasing heat treatment temperature is obs

  1. Application of transient analysis methodology to heat exchanger performance monitoring

    International Nuclear Information System (INIS)

    A transient testing technique is developed to evaluate the thermal performance of industrial scale heat exchangers. A Galerkin-based numerical method with a choice of spectral basis elements to account for spatial temperature variations in heat exchangers is developed to solve the transient heat exchanger model equations. Testing a heat exchanger in the transient state may be the only viable alternative where conventional steady state testing procedures are impossible or infeasible. For example, this methodology is particularly suited to the determination of fouling levels in component cooling water system heat exchangers in nuclear power plants. The heat load on these so-called component coolers under steady state conditions is too small to permit meaningful testing. An adequate heat load develops immediately after a reactor shutdown when the exchanger inlet temperatures are highly time-dependent. The application of the analysis methodology is illustrated herein with reference to an in-situ transient testing carried out at a nuclear power plant. The method, however, is applicable to any transient testing application

  2. Evaluation of fluid bed heat exchanger optimization parameters. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    Uncertainty in the relationship of specific bed material properties to gas-side heat transfer in fluidized beds has inhibited the search for optimum bed materials and has led to over-conservative assumptions in the design of fluid bed heat exchangers. An experimental program was carried out to isolate the effects of particle density, thermal conductivity, and heat capacitance upon fluid bed heat transfer. A total of 31 tests were run with 18 different bed material loads on 12 material types; particle size variations were tested on several material types. The conceptual design of a fluidized bed evaporator unit was completed for a diesel exhaust heat recovery system. The evaporator heat transfer surface area was substantially reduced while the physical dimensions of the unit increased. Despite the overall increase in unit size, the overall cost was reduced. A study of relative economics associated with bed material selection was conducted. For the fluidized bed evaporator, it was found that zircon sand was the best choice among materials tested in this program, and that the selection of bed material substantially influences the overall system costs. The optimized fluid bed heat exchanger has an estimated cost 19% below a fin augmented tubular heat exchanger; 31% below a commercial design fluid bed heat exchanger; and 50% below a conventional plain tube heat exchanger. The comparisons being made for a 9.6 x 10/sup 6/ Btu/h waste heat boiler. The fluidized bed approach potentially has other advantages such as resistance to fouling. It is recommended that a study be conducted to develop a systematic selection of bed materials for fluidized bed heat exchanger applications, based upon findings of the study reported herein.

  3. Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-04-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  4. Process Heat Exchanger Options for the Advanced High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-06-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  5. Fabrication and Analysis of Counter Flow Helical Coil Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Swapnil Ahire

    2014-09-01

    Full Text Available Heat recovery is the capture of energy contained in fluids otherwise that would be lost from a facility. Heat sources may include heat pumps, chillers, steam condensate lines, hot flue gases from boiler, hot air associated with kitchen and laundry facilities, exhaust gases of the engines, power-generation equipment. Helical coil heat exchanger is one of the devices which are used for the heat recovery system. A heat exchanger is a device used to transfer heat between two or more fluids with different temperatures for various application including power plants, nuclear reactors, refrigeration & air condition system, automotive industries, heat recovery system, chemical processing and food industries. Common examples of heat exchangers in everyday use are air pre-heaters and conditioners, automobile radiators, condensers, evaporators, and coolers In present paper analysis of counter flow heat exchanger is done and then variations of various dimensionless numbers i.e. Reynolds Number, Nusselt’s Number and Dean’s number are studied.

  6. Heat Pipe Heat Exchangers with Double Isolation Layers for Prevention of Interpath Leakage Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Current manned spacecraft heat rejection systems use two heat exchangers and an intermediate fluid loop to provide isolation between the crew compartment air and...

  7. Heat Pipe Heat Exchangers with Double Isolation Layers for Prevention of Interpath Leakage Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Cooling Technologies, Inc. (ACT), supported by Hamilton Sundstrand, proposes to develop a heat pipe heat exchanger that is low mass and provides two levels...

  8. Testing the SPOT heat exchanger at the OKB Gidropress stand

    International Nuclear Information System (INIS)

    The work is aimed at describing the SPOT heat exchanger test (the system for the passive heat removal), intended for the prolonged heat removal from the reactor core by the NPP de-energizing with the loss of all the emergency electric supply sources. The descriptions of the testing stand, the heat exchanger model, the purposes and methodology of the tests are presented. The test results by the customer program are discussed. The obtained data are applied for substantiating the full-scale SPOT efficiency

  9. High Effectiveness Heat Exchanger for Cryogenic Refrigerators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose an innovative high performance cryogenic heat exchanger manufactured of titanium by photo-etching and diffusion bonding. This is a parallel plate design...

  10. Damping of multispan heat exchanger tubes. Pt. 2: in liquids

    International Nuclear Information System (INIS)

    Damping information is required for flow-induced vibration analyses of heat exchanger tubes. This paper treats the question of damping of multispan heat exchanger tubes in liquids. There are three important energy dissipation mechanisms that contribute to damping in liquids. These are: viscous damping between tube and liquid, squeeze-film damping in the clearance between tube and tube-support and friction damping at the tube-support. These mechanisms are discussed and formulated in terms of heat exchanger tube parameters. The available experimental data on damping in liquids are reviewed and analysed. Semi-empirical expressions have been developed to formulate damping. These expressions are recommended for design purposes. This study is interesting in the nuclear industry for it often uses heat exchangers

  11. Phase Change Material (PCM) Heat Exchanger Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Project has identified two PCM HX concepts that will be designed, developed and demonstrated on-board the International Space Station (ISS):The first heat exchanger...

  12. Noise spectra measured on the Dragon reactor primary heat exchanges

    International Nuclear Information System (INIS)

    The frequency spectra of secondary water flow and tube wall temperatures have been measured on Dragon primary heat exchangers. No indication of tube wall temperature oscillations leading to tube burnout was found from the noise spectra analysed. (author)

  13. Thermal design heat sinks, thermoelectrics, heat pipes, compact heat exchangers, and solar cells

    CERN Document Server

    Lee, H S

    2010-01-01

    The proposed is written as a senior undergraduate or the first-year graduate textbook,covering modern thermal devices such as heat sinks, thermoelectric generators and coolers, heat pipes, and heat exchangers as design components in larger systems. These devices are becoming increasingly important and fundamental in thermal design across such diverse areas as microelectronic cooling, green or thermal energy conversion, and thermal control and management in space, etc. However, there is no textbook available covering this range of topics. The proposed book may be used as a capstone design cours

  14. On-line fouling monitor for heat exchangers

    International Nuclear Information System (INIS)

    Biological and/or chemical fouling in utility service water system heat exchangers adversely affects operation and maintenance costs, and reduced heat transfer capability can force a power deaerating or even a plant shut down. In addition, service water heat exchanger performance is a safety issue for nuclear power plants, and the issue was highlighted by NRC in Generic Letter 89-13. Heat transfer losses due to fouling are difficult to measure and, usually, quantitative assessment of the impact of fouling is impossible. Plant operators typically measure inlet and outlet water temperatures and flow rates and then perform complex calculations for heat exchanger fouling resistance or ''cleanliness''. These direct estimates are often imprecise due to inadequate instrumentation. Electric Power Research Institute developed and patented an on-line condenser fouling monitor. This monitor may be installed in any location within the condenser; does not interfere with routine plant operations, including on-line mechanical and chemical treatment methods; and provides continuous, real-time readings of the heat transfer efficiency of the instrumented tube. This instrument can be modified to perform on-line monitoring of service water heat exchangers. This paper discusses the design, construction of the new monitor, and algorithm used to calculate service water heat exchanger fouling

  15. Computer aided heat transfer analysis in a laboratory scaled heat exchanger unit

    International Nuclear Information System (INIS)

    In this study. an explanation of a laboratory scaled heat exchanger unit and a software which is developed to analyze heat transfer. especially to use it in heat transfer courses, are represented. Analyses carried out in the software through sample values measured in the heat exchanger are: (l) Determination of heat transfer rate, logarithmic mean temperature difference and overall heat transfer coefficient; (2)Determination of convection heat transfer coefficient inside and outside the tube and the effect of fluid velocity on these; (3)Investigation of the relationship between Nusselt Number. Reynolds Number and Prandtl Number by using multiple non-linear regression analysis. Results are displayed on the screen graphically

  16. Applications of two-phase flow and heat transfer in compact heat exchangers

    OpenAIRE

    Lintern, Andrew Charles

    2008-01-01

    Three applications of two-phase flow and heat transfer in plate-fin heat exchangers have been studied. A dephlegmator is a heat exchanger in which reflux condensation of a vapour mixture occurs, and plate-fln versions have importance in cryogenic gas separation processes. Numerical calculations for different binary mixtures show that the number of transfer units can be expressed as a simple function of the inlet vapour state and flow rate, heat load, and channel geometry. Th...

  17. Simulation of stirred yoghurt processing in plate heat exchangers

    OpenAIRE

    Fernandes, Carla S.; Dias, Ricardo P.; Nóbrega, João M.; Afonso, Isabel A.; Melo, Luis F.; Maia, João M.

    2005-01-01

    In the present work, simulations of stirred yoghurt processing in a plate heat exchanger were performed using computational fluid dynamics (CFD) calculations and the results compared with experimental data, showing a very good agreement. A Herschel–Bulkley model for the viscosity and an Arrhenius-type term for the temperature dependence were used to model the thermo-rheological behaviour of yoghurt. The heat exchanger used in this study operates in a parallel arrangement, thus simplifyi...

  18. Surface interactions and deposit growth in fouling of heat exchangers

    OpenAIRE

    Oliveira, Ros??rio; L. F. Melo; Pinheiro, Maria Manuela; Vieira, M. J.

    1993-01-01

    Fouling of heat exchangers is a costly problem in industJ)'. There is a need for a better understanding of the phenomena involved in the build up of deposits on surfaces. The paper reviews the basic mechanisms of fouling, emphasizing their rdle in determining the overall fouling rate. Mass transfer, adhesion, chemical or biological reactions can be the rate limiting processes depending on the design and operating conditions of the heat exchanger. Reference is made to the most c...

  19. Thermal performance modeling of cross-flow heat exchangers

    CERN Document Server

    Cabezas-Gómez, Luben; Saíz-Jabardo, José Maria

    2014-01-01

    This monograph introduces a numerical computational methodology for thermal performance modeling of cross-flow heat exchangers, with applications in chemical, refrigeration and automobile industries. This methodology allows obtaining effectiveness-number of transfer units (e-NTU) data and has been used for simulating several standard and complex flow arrangements configurations of cross-flow heat exchangers. Simulated results have been validated through comparisons with results from available exact and approximate analytical solutions. Very accurate results have been obtained over wide ranges

  20. Quantum, cyclic and 'particle exchange' heat engines

    CERN Document Server

    Humphrey, T E

    2004-01-01

    We show that a range of 'non-cyclic' heat engines, including thermionic and thermoelectric devices, the three-level amplifier (thermally pumped laser), solar cells and LEDs and some Brownian heat engines all share a common thermodynamic mechanism for achieving reversibility and finite power, which is quite different from that utilized in cyclic heat engines such as the Carnot, Otto or Brayton cycles.

  1. A fundamentally new approach to air-cooled heat exchangers.

    Energy Technology Data Exchange (ETDEWEB)

    Koplow, Jeffrey P.

    2010-01-01

    We describe breakthrough results obtained in a feasibility study of a fundamentally new architecture for air-cooled heat exchangers. A longstanding but largely unrealized opportunity in energy efficiency concerns the performance of air-cooled heat exchangers used in air conditioners, heat pumps, and refrigeration equipment. In the case of residential air conditioners, for example, the typical performance of the air cooled heat exchangers used for condensers and evaporators is at best marginal from the standpoint the of achieving maximum the possible coefficient of performance (COP). If by some means it were possible to reduce the thermal resistance of these heat exchangers to a negligible level, a typical energy savings of order 30% could be immediately realized. It has long been known that a several-fold increase in heat exchanger size, in conjunction with the use of much higher volumetric flow rates, provides a straight-forward path to this goal but is not practical from the standpoint of real world applications. The tension in the market place between the need for energy efficiency and logistical considerations such as equipment size, cost and operating noise has resulted in a compromise that is far from ideal. This is the reason that a typical residential air conditioner exhibits significant sensitivity to reductions in fan speed and/or fouling of the heat exchanger surface. The prevailing wisdom is that little can be done to improve this situation; the 'fan-plus-finned-heat-sink' heat exchanger architecture used throughout the energy sector represents an extremely mature technology for which there is little opportunity for further optimization. But the fact remains that conventional fan-plus-finned-heat-sink technology simply doesn't work that well. Their primary physical limitation to performance (i.e. low thermal resistance) is the boundary layer of motionless air that adheres to and envelops all surfaces of the heat exchanger. Within this boundary layer region, diffusive transport is the dominant mechanism for heat transfer. The resulting thermal bottleneck largely determines the thermal resistance of the heat exchanger. No one has yet devised a practical solution to the boundary layer problem. Another longstanding problem is inevitable fouling of the heat exchanger surface over time by particulate matter and other airborne contaminants. This problem is especially important in residential air conditioner systems where often little or no preventative maintenance is practiced. The heat sink fouling problem also remains unsolved. The third major problem (alluded to earlier) concerns inadequate airflow to heat exchanger resulting from restrictions on fan noise. The air-cooled heat exchanger described here solves all of the above three problems simultaneously. The 'Air Bearing Heat Exchanger' provides a several-fold reduction in boundary layer thickness, intrinsic immunity to heat sink fouling, and drastic reductions in noise. It is also very practical from the standpoint of cost, complexity, ruggedness, etc. Successful development of this technology is also expected to have far reaching impact in the IT sector from the standpointpoint of solving the 'Thermal Brick Wall' problem (which currently limits CPU clocks speeds to {approx}3 GHz), and increasing concern about the the electrical power consumption of our nation's information technology infrastructure.

  2. The fouling in the tubular heat exchanger of Algiers refinery

    Science.gov (United States)

    Harche, Rima; Mouheb, Abdelkader; Absi, Rafik

    2015-06-01

    Crude oil fouling in refinery preheat exchangers is a chronic operational problem that compromises energy recovery in these systems. Progress is hindered by the lack of quantitative knowledge of the dynamic effects of fouling on heat exchanger transfer and pressure drops. In subject of this work is an experimental determination of the thermal fouling resistance in the tubular heat exchanger of the crude oil preheats trains installed in an Algiers refinery. By measuring the inlet and outlet temperatures and mass flows of the two fluids, the overall heat transfer coefficient has been determined. Determining the overall heat transfer coefficient for the heat exchanger with clean and fouled surfaces, the fouling resistance was calculated. The results obtained from the two cells of exchangers studies, showed that the fouling resistance increased with time presented an exponential evolution in agreement with the model suggested by Kern and Seaton, with the existence of fluctuation caused by the instability of the flow rate and the impact between the particles. The bad cleaning of the heat exchangers involved the absence of the induction period and caused consequently, high values of the fouling resistance in a relatively short period of time.

  3. Liquid-metal-gas heat exchanger for HTGR type reactors

    International Nuclear Information System (INIS)

    The aim of this study is to investigate the heat transfer characteristics of a liquid metal heat exchanger (HE) for a helium-cooled high temperature reactor. A tube-type heat exchanger is considered as well as two direct exchangers: a bubble-type heat exchanger and a heat exchanger according to the spray principle. Experiments are made in order to determine the gas content of bubble-type heat exchangers, the dependence of the droplet diameter on the nozzle diameter, the falling speed of the droplets, the velocity of the liquid jet, and the temperature variation of liquid jets. The computer codes developed for HE calculation are structured so that they may be used for gas/liquid HE, too. Each type of HE that is dealt with is designed by accousting for a technical and an economic assessment. The liquid-lead jet spray is preferred to all other types because of its small space occupied and its simple design. It shall be used in near future in the HTR by the name of lead/helium HE. (GL)

  4. Heat exchanger with vertical flexible tubes of the 'descending' type

    International Nuclear Information System (INIS)

    This invention concerns a heat exchanger with vertical flexible tubes of the 'descending' type, particularly intended for the evaporation of a saline solution. For the record, a vertical tube heat exchanger for heating a secondary fluid by a primary fluid is of the 'descending' type when the secondary fluid flows by gravity in thin films along the outside of the tubes in which the primary fluid is flowing. Specifically, the purpose of this invention is a heat exchanger of the above type comprising new arrangements for fixing the tubes by their upper ends and the creation on the outside of these tubes of a thin continuous descending film of secondary fluid to be heated

  5. Forced convection heat exchange inside porous sintered metals

    International Nuclear Information System (INIS)

    Methods and results of investigating heat exchange in the process of liquid flow inside porous sintered metals have been analyzed. It has been shown that experimental data available include extremely conflicting correlations between heat transfer coefficient and Reynolds number, porosity, and relative wall thickness. Scattering of the data can attain one order of magnitude. The volume coefficient of heat transfer inside pores determined in papers does not correspond to its real value in the initial equations of the inner problem of porous cooling. Calculating and experimental method of determining the heat transfer coefficient has been developed and realized on the unit of radiation heating. More accurate experimental data on intraporous heat exchange have been obtained. It has been established that relative wall thickness does not affect the intensity of heat transfer inside pores

  6. Continuous cleaning of heat exchanger with recirculating fluidized bed

    International Nuclear Information System (INIS)

    Fluidized bed heat exchangers for liquids have been studied in the United States, the Netherlands, and the Federal Republic of Germany. Between 1965 and 1970, fluidized bed heat exchangers were developed in the United States as brine heaters in seawater desalination. Furthermore, their potential in the utilization of geothermal energy was tested between 1975 and 1980. In the Netherlands, fluidized bed heat exchangers have been developed since 1973 for brine heating and heat recovery in multistage flash evaporators for seawater desalination and, since about 1980, for applications in the process industry. The authors became interested in fluidized bed heat exchangers first in 1978 in connection with wastewater evaporation. The authors emphasize that the results of all these groups were in basic agreement. They can be summarized as follows: 1. The fluidized bed will in many cases maintain totally clean surfaces and neither scaling nor fouling will occur. In cases where even a fluidized bed cannot completely prevent scaling or fouling, the thickness of the layer is controlled. In these cases stable operation maintaining acceptable overall heat transfer coefficients is possible without cleaning. 2. There are always excellent heat transfer coefficients as low superficial velocities of less than ? < 0.5 m/s. 3. The pressure losses are comparable with those in normal heat exchangers since fluidized bed heat exchangers are mostly operated at low superficial velocities. 4. Feed flow may be varied between 50 and 150% or more of the design feed flow. 5. Erosion is negligible. 6. Fluidized bed particles can be manufactured from all sorts of chemically and mechanically resistant materials, such as sand, glass, ceramics, and metals

  7. Thermofluidynamic study of a sodium-sodium heat exchanger

    International Nuclear Information System (INIS)

    Sodium-sodium heat exchanges are installated in the reactor coolant system of fast breeder nuclear power plant. In the traditional engineering practice the thermal-hydraulic design of such heat exchanges is based on well-known Nu-Re-Pr correlations while three-dimensional effects are generally neglected in some applications, especially for flow regime, buoyant flow and non-uniform heat sources distributions, the 3D behaviour is an important issue in determining the heat exchanger performances. Herein a fully 3D thermal-hydraulic model of a sodium-sodium heat exchanger is presented. Each one of the 268 tubes of the bundle is modeled individually and the annular shell flow and temperature field is computed with a CFD calculation using the computer code CFX-4.1. The global heat transfer parameters of the heat exchanger are computed and compared with measured data for selected operational conditions which include the effect of local tube plugging by oxidic solid material. The comparison indicates a very good agreement between code predictions and measured data. (author)

  8. Investigation into fouling factor in compact heat exchanger

    Directory of Open Access Journals (Sweden)

    Masoud Asadi

    2013-03-01

    Full Text Available Fouling problems cannot be avoided in many heat exchanger operations, and it is necessary to introduce defensive measures to minimize fouling and the cost of cleaning. The fouling control measures used during either design or operation must be subjected to a thorough economic analysis, taking into consideration all the costs of the fouling control measures and their projected benefits in reducing costs due to fouling. Under some conditions, nearly asymptotic fouling resistances can be obtained, and this suggests a somewhat different approach to the economics. Fouling is a generic term for the deposition of foreign matter on a heat transfer surface. Deposits accumulating in the small channels of a compact heat exchanger affect both heat transfer and fluid flow. Fouling deposits constricting passages in a compact heat exchanger are likely to increase the pressure drop and therefore reduce the flow rate. Reduced flow rate may be a process constraint; it reduces efficiency and increases the associated energy use and running costs. Maintenance costs will also increase. Fouling remains the area of greatest concern for those considering the installation of compact heat exchangers. The widespread installation of compact heat exchangers has been hindered by the perception that the small passages are more strongly affected by the formation of deposits. In this paper different types of fouling and treatment are presented.

  9. Assessment of ASME code examinations on regenerative, letdown and residual heat removal heat exchangers

    International Nuclear Information System (INIS)

    Inservice inspection requirements for pressure retaining welds in the regenerative, letdown, and residual heat removal heat exchangers are prescribed in Section XI Articles IWB and IWC of the ASME Boiler and Pressure Vessel Code. Accordingly, volumetric and/or surface examinations are performed on heat exchanger shell, head, nozzle-to-head, and nozzle-to-shell welds. Inspection difficulties associated with the implementation of these Code-required examinations have forced operating nuclear power plants to seek relief from the U.S. Nuclear Regulatory Commission. The nature of these relief requests are generally concerned with metallurgical, geometry, accessibility, and radiation burden. Over 60% of licensee requests to the NRC identify significant radiation exposure burden as the principle reason for relief from the ASME Code examinations on regenerative heat exchangers. For the residual heat removal heat exchangers, 90% of the relief requests are associated with geometry and accessibility concerns. Pacific Northwest National Laboratory was funded by the NRC Office of Nuclear Regulatory Research to review current practice with regard to volumetric and/or surface examinations of shell welds of letdown heat exchangers regenerative heat exchangers and residual (decay) heat removal heat exchangers Design, operating, common preventative maintenance practices, and potential degradation mechanisms are reviewed. A detailed survey of domestic and international PWR-specific operating experience was performed to identify pressure boundary failures (or lack of failures) in each heat exchanger type and NSSS design. The service data survey was based on the PIPExp- database and covers PWR plants worldwide for the period 1970-2004. Finally a risk assessment of the current ASME Code inspection requirements for residual heat removal, letdown, and regenerative heat exchangers is performed. The results are then reviewed to discuss the examinations relative to plant safety and occupational radiation exposures

  10. Heat Exchangers for the Next Generation of Nuclear Reactors

    International Nuclear Information System (INIS)

    The realisation that fossil fuel resources are finite, the associated rising price and a growing concern about greenhouse gas emissions, has resulted in renewed interest in nuclear energy. Generation IV and other programmes are looking at a variety of new reactors. These reactors vary in type from Very High Temperature Gas Cooled Reactors (VHTR) to Liquid Metal Fast Reactors (LFR and SFR) with cooling mediums that include: - Helium, - Supercritical carbon dioxide, - Sodium, - Lead, - Molten salts. In addition interest is not just focused on production of electrical power with an efficiency greater than that associated with the Rankine Cycle (typically 30 -35%); there is now genuine interest in nuclear energy as a heat source for hydrogen production, via the Sulphur Iodine Process (SI) or high temperature electrolysis. The production of electrical power at higher efficiency via a Brayton Cycle, and hydrogen production requires both heat at higher temperatures, up to 1000 deg C and high effectiveness heat exchange to transfer the heat to either the power or process cycle. This presents new challenges for the heat exchangers. If plant efficiencies are to be improved there is a need for: - High effectiveness heat exchange at minimal pressure drop; - Compact heat exchange to improve safety and economics; - An ability to build coded heat exchangers in a variety of nickel based alloys, oxide dispersion strengthened alloys (ODS) and ceramic materials to address the temperature, life and corrosion issues associated with these demanding duties. Heatric has already given consideration to many of these challenges. Their Print Circuit Heat Exchanger (PCHE) and Formed Plate Heat Exchanger (FPHE) technology which are commercially available today, will fulfill all of the duties up to temperatures of 950 deg C. In addition products currently under development will further increase the temperature and pressure range, while offering greater corrosion resistance and operational life. This paper outlines the challenges for the heat exchangers and the development required, with particular attention given to material selection. It is further the objective of this study to demonstrate that heat exchangers such as PCHE and FPHE are able to meet the above challenges. (authors)

  11. PS1 satellite refrigerator heat exchanger: Failure of the LN2 heat exchanger to low pressure helium

    International Nuclear Information System (INIS)

    The PS1 heat exchanger is one of three prototype heat exchangers built by Atomic Welders before Meyer was given the contract to build the Satellite Refrigerator Heat Exchanger components. This heat exchanger was first put into operation in July 1983. In November 1991, this heat exchanger experienced a failure in the shell of heat exchanger 1 causing nitrogen to contaminate the helium in the refrigerator. The resulting contamination plugged heat exchanger 3. The break occurred at a weld that connects a 0.25 inch thick ring to heat exchanger 1. The failure appears to be a fatigue of the shell due to temperature oscillations. The flow rate through the break was measured to be 1.0 scfm for a pressure drop over the crack of 50 psi. An ANSYS analysis of the failure area indicates that the stress would be 83,000 psi if the metal did not yield. This is based on cooling down the shell to 80K from 300K with the shell side helium on the outside of the shell at 300K. This is the largest change in temperature that occurs during operation. During normal operations, the temperature swings are not nearly this large, however temperatures down to 80K are not unusual (LN2 overflowing pot). The highest temperatures are typically 260K. The analysis makes no attempt to estimate the stress concentration factor at this weld but there is no doubt that it is greater than 1. No estimate as to the number of cycles to cause failure was calculated nor any estimate as to the actual number of cycles was made

  12. Computational fluid modeling in a heat exchanger design

    Energy Technology Data Exchange (ETDEWEB)

    Eghlimi, A.; Fletcher, C.A.J.; Adam, Q.

    1999-07-01

    The design of efficient heat exchangers are crucial in many industrial applications including power utility boilers, water heaters, etc. However, in many engineering problems heat exchanger design has evolved a traditional experimental manner. This approach is not only costly but also involves technical difficulties in taking direct full-scale measurements. This raises up the issue of CFD (Computational Fluid Dynamic) modeling as a design tool. In the present study, CFD has been used to model complex flows in a heat exchanger. The efficient local fluid and thermal flow simulation around fins assist in the design process of heat exchangers. The steady-state Reynolds-averaged Navier-Stokes equations are discretized directly in physical space in a turbulent flow modeling. The complicated 3D fin and baffle arrangement has been studied. An exhaust flue (products of combustion) enter a steel tube with heat absorbing fins welded on the inside, and the hole tube sits inside a pressure vessel containing water. The heat transfer from the carrier fluid to the fins and then to the surrounding water has been studied computationally. For a fixed diameter flue there can be an infinite variety of fins configurations. The present work models the convection, conduction and radiation heat transfer inside the heat exchanger. It is desired to improve the efficiency of the heat exchanger and this can be achieved by accurately modeling the heat transfer from the fins to the surrounding fluid. A periodic heat transfer boundary condition has been applied to save the computational time. The transport equations have been under-relaxed to provide a stable solution procedure. A solution adoption mesh refinement technique has been used to refine the grid based on the numerical solution data. In this study, three turbulence models have been employed in conjunction with three near wall treatment approaches. The standard {kappa}-{epsilon}, RNG based {kappa}-{epsilon} and full Reynolds stress models with standard wall function, a pressure sensitized based wall function and a two layer zonal model have been employed. FLUENT CFD software has been utilized for this modeling. The study involves modeling conduction inside the fins and heat exchanger tube, convection inside the tube and radiation from the mixture gas (products of combustion) to the fins and surrounding water. The results are physically consistent and represent CFD analysis in modeling a heat exchanger.

  13. Experimental heat exchanger with a corrugated capillary tube.

    Czech Academy of Sciences Publication Activity Database

    Peukert, Pavel; Hrubý, Jan

    Liberec : Technical University of Liberec, 2009 - (Vít, T.; Dan?ová, P.; Dvo?ák, V.), s. 286-289 ISBN 978-80-7372-538-9. [International Conference Experimental Fluid Mechanics 2009. Liberec (CZ), 25.11.2009-27.11.2009] Institutional research plan: CEZ:AV0Z20760514 Keywords : heat exchanger * experimental setup * heat transfer Subject RIV: BJ - Thermodynamics

  14. Handbook for heat exchangers and tube banks design

    CERN Document Server

    Annaratone, Donatello

    2010-01-01

    The motion of fluids is never in parallel- or counter-flow in heat exchangers and tube banks, leading to complexities in the equations for calculating their transferred heat and temperatures. This review of the topic includes 70 design and verification tables.

  15. Transfer coefficients in elliptical tubes and plate fin heat exchangers

    International Nuclear Information System (INIS)

    Mean transfer coefficients in elliptical tubes and plate fin heat exchangers were determined by application of heat and mass transfer analogy in conjunction with the naphthalene sublimation technique. The transfer coefficients are presented in a dimensionless form as functions of the Reynolds number. By using the least squares method analytical expressions for the transfer coefficients were determined with low scattering. (E.G.)

  16. Experimental study of heat transfer in a heat exchanger with rectangular channels

    International Nuclear Information System (INIS)

    This paper presents the results of an experimental study related to characterisation of a mini channel heat exchanger. Such heat exchanger may be used in water cooling of electronic components. The results obtained show the efficiency of this exchanger even with very low water flow rates. Indeed, in spite of the importance of the extracted heat fluxes which can reach about 50Kw/m2, the temperature of the cooled Aluminium bloc remained always lower than the tolerated threshold of 80 degree in electronic cooling. Moreover, several thermal characteristics such as equivalent thermal resistance of the exchanger, the average internal convective heat transfer coefficient and the increase in the temperature of the cooling water have been measured. The results presented have been obtained with in quinconcerectangular mini-channel heat exchanger, with a hydraulic diameter Dh = 2mm. NOMENCLATURE h D Hydraulic diameter (mm). int

  17. Renormalized anisotropic exchange for representing heat assisted magnetic recording media

    International Nuclear Information System (INIS)

    Anisotropic exchange has been incorporated in a description of magnetic recording media near the Curie temperature, as would be found during heat assisted magnetic recording. The new parameters were found using a cost function that minimized the difference between atomistic properties and those of renormalized spin blocks. Interestingly, the anisotropic exchange description at 1.5?nm discretization yields very similar switching and magnetization behavior to that found at 1.2?nm (and below) discretization for the previous isotropic exchange. This suggests that the increased accuracy of anisotropic exchange may also reduce the computational cost during simulation

  18. Fast reactor power plant design having heat pipe heat exchanger

    Science.gov (United States)

    Huebotter, Paul R. (Western Springs, IL); McLennan, George A. (Downers Grove, IL)

    1985-01-01

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  19. Hydraulic and thermal design of a gas microchannel heat exchanger

    International Nuclear Information System (INIS)

    In this paper investigations on the design of a gas flow microchannel heat exchanger are described in terms of hydrodynamic and thermal aspects. The optimal choice for thermal conductivity of the solid material is discussed by analysis of its influences on the thermal performance of a micro heat exchanger. Two numerical models are built by means of a commercial CFD code (Fluent). The simulation results provide the distribution of mass flow rate, inlet pressure and pressure loss, outlet pressure and pressure loss, subjected to various feeding pressure values. Based on the thermal and hydrodynamic analysis, a micro heat exchanger made of polymer (PEEK) is designed and manufactured for flow and heat transfer measurements in air flows. Sensors are integrated into the micro heat exchanger in order to measure the local pressure and temperature in an accurate way. Finally, combined with numerical simulation, an operating range is suggested for the present micro heat exchanger in order to guarantee uniform flow distribution and best thermal and hydraulic performances.

  20. Hydraulic and thermal design of a gas microchannel heat exchanger

    Science.gov (United States)

    Yang, Yahui; Brandner, Juergen J.; Morini, Gian Luca

    2012-05-01

    In this paper investigations on the design of a gas flow microchannel heat exchanger are described in terms of hydrodynamic and thermal aspects. The optimal choice for thermal conductivity of the solid material is discussed by analysis of its influences on the thermal performance of a micro heat exchanger. Two numerical models are built by means of a commercial CFD code (Fluent). The simulation results provide the distribution of mass flow rate, inlet pressure and pressure loss, outlet pressure and pressure loss, subjected to various feeding pressure values. Based on the thermal and hydrodynamic analysis, a micro heat exchanger made of polymer (PEEK) is designed and manufactured for flow and heat transfer measurements in air flows. Sensors are integrated into the micro heat exchanger in order to measure the local pressure and temperature in an accurate way. Finally, combined with numerical simulation, an operating range is suggested for the present micro heat exchanger in order to guarantee uniform flow distribution and best thermal and hydraulic performances.

  1. Compact interior heat exchangers for CO{sub 2} mobile heat pumping systems

    Energy Technology Data Exchange (ETDEWEB)

    Hafner, Armin

    2003-07-01

    The natural refrigerant carbon dioxide (CO{sub 2}) offers new possibilities for design of flexible, efficient and environmentally safe mobile heat pumping systems. As high-efficient car engines with less waste heat are developed, extra heating of the passenger compartment is needed in the cold season. A reversible transcritical CO{sub 2} system with gliding temperature heat rejection can give high air delivery temperature which results in rapid heating of the passenger compartment and rapid defogging or defrosting of windows. When operated in cooling mode, the efficiency of transcritical CO{sub 2} systems is higher compared to common (HFC) air conditioning systems, at most dominant operating conditions. Several issues were identified for the design of compact interior heat exchangers for automotive reversible CO{sub 2} heat pumping systems. Among theses issues are: (1) Refrigerant flow distribution, (2) Heat exchanger fluid flow circuiting, (3) Air temperature uniformity downstream of the heat exchanger, (4) Minimization of temperature approach, (5) Windshield flash fogging due to retained water inside the heat exchanger, (6) Internal beat conduction in heating mode operation, and (7) Refrigerant side pressure drop In order to provide a basis for understanding these issues, the author developed a calculation model and set up a test facility and investigated different prototype heat exchangers experimentally.

  2. Heat Transfer Analysis of the Passive Residual Heat Removal Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenwen; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng [Jiaotong University, Shaanxi (China)

    2014-08-15

    In the present study, thermal-hydraulics characteristics of AP1000 passive residual heat removal heat exchanger (PRHR-HX) at initial operating stage were analyzed based on the porous media models. The data predicated by RELAP5 under the condition of the station blackout was employed as the inlet flow rate and temperature boundary of CFD calculation. The heat transfer from the primary side coolant to the in-containment refueling water storage tank (IRWST) side fluid was calculated in a three-dimensional geometry during iterations, and the distributed resistances were added into the C-type tube bundle regions. Three-dimensional distributions of velocity and temperature in the IRWST were calculated by the CFD code ANSYS FLUENT. The primary temperature, heat transfer coefficients of two sides and the heat transfer were obtained using the coupled heat transfer between the primary side and the IRWST side. The simulation results indicated that the water temperature rises gradually which leads to a thermal stratification phenomenon in the tank and the heat transfer capability decreases with an increase of water temperature. The present results indicated that the method containing coupled heat transfer from the primary side fluid to IRWST side fluid and porous media model is a suitable approach to study the transient thermal-hydraulics of PRHR/IRWST.

  3. Heat Transfer Analysis of the Passive Residual Heat Removal Heat Exchanger

    International Nuclear Information System (INIS)

    In the present study, thermal-hydraulics characteristics of AP1000 passive residual heat removal heat exchanger (PRHR-HX) at initial operating stage were analyzed based on the porous media models. The data predicated by RELAP5 under the condition of the station blackout was employed as the inlet flow rate and temperature boundary of CFD calculation. The heat transfer from the primary side coolant to the in-containment refueling water storage tank (IRWST) side fluid was calculated in a three-dimensional geometry during iterations, and the distributed resistances were added into the C-type tube bundle regions. Three-dimensional distributions of velocity and temperature in the IRWST were calculated by the CFD code ANSYS FLUENT. The primary temperature, heat transfer coefficients of two sides and the heat transfer were obtained using the coupled heat transfer between the primary side and the IRWST side. The simulation results indicated that the water temperature rises gradually which leads to a thermal stratification phenomenon in the tank and the heat transfer capability decreases with an increase of water temperature. The present results indicated that the method containing coupled heat transfer from the primary side fluid to IRWST side fluid and porous media model is a suitable approach to study the transient thermal-hydraulics of PRHR/IRWST

  4. Laminar fluid flow and heat transfer in a fin-tube heat exchanger with vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Yanagihara, J.I.; Rodriques, R. Jr. [Polytechnic School of Univ. of Sao Paolo, Sao Paolo (Brazil). Dept. of Mechanical Engineering

    1996-12-31

    Development of heat transfer enhancement techniques for fin-tube heat exchangers has great importance in industry. In recent years, heat transfer augmentation by vortex generators has been considered for use in plate fin-tube heat exchangers. The present work describes a numerical investigation about the influence of delta winglet pairs of vortex generators on the flow structure and heat transfer of a plate fin-tube channel. The Navier-Stokes and Energy equations are solved by the finite volume method using a boundary-fitted coordinate system. The influence of vortex generators parameters such as position, angle of attack and aspect ratio were investigated. Local and global influences of vortex generators in heat transfer and flow losses were analyzed by comparison with a model using smooth fin. The results indicate great advantages of this type of geometry for application in plate fin-tube heat exchangers, in terms of large heat transfer enhancement and small pressure loss penalty. (author)

  5. Energy and capital targets for constrained heat exchanger networks

    Scientific Electronic Library Online (English)

    L.C., Santos; R.J., Zemp.

    2000-12-01

    Full Text Available A new procedure for estimating area and capital cost targets of constrained heat exchanger networks is presented. The method allows for match constrained networks and exchangers with more than one tube pass. The procedure is based on modelling the problem as a non-linear formulation where the forbid [...] den exchanger matches are included as constraints and the temperature difference correction due to multipass exchangers is included in the model. The difficulty of converging to a solution due to the additional non-linear constraints imposed by the multipass exchangers required the use of a two-level approach: at the inner level, the area targets for simple pass exchangers are obtained, and at the outer level the temperature difference required for multipass exchangers are computed and fed back to the inner level. The procedure is repeated until an appropriate tolerance between two iterations was achieved. A comparison between the estimated exchanger areas and costs estimated by the new procedure and the area and costs obtained from the final heat exchanger design shows a very good agreement.

  6. Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge

    2011-04-01

    The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. The intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding.

  7. Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers

    International Nuclear Information System (INIS)

    The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. The intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding.

  8. Plastic heat exchangers: a state-of-the-art review

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D; Holtz, R E; Koopman, R N; Marciniak, T J; MacFarlane, D R

    1979-07-01

    Significant increases in energy utilization efficiency can be achieved through the recovery of low-temperature rejected heat. This energy conserving possibility provides incentive for the development of heat exchangers which could be employed in applications where conventional units cannot be used. Some unique anticorrosion and nonstick characteristics of plastics make this material very attractive for heat recovery where condensation, especially sulfuric acid, and fouling occur. Some of the unique characteristics of plastics led to the commercial success of DuPont's heat exchangers utilizing polytetrafluoroethylene (trade name Teflon) tubes. Attributes which were exploited in this application were the extreme chemical inertness of the material and its flexibility, which enabled utilization in odd-shaped spaces. The wide variety of polymeric materials available ensures chemical inertness for almost any application. Lower cost, compoundability with fillers to improve thermal/mechanical properties, and versatile fabrication methods are incentives for many uses. Also, since many plastics resist corrosion, they can be employed in lower temperature applications (< 436 K), where condensation can occur and metal units have been unable to function. It is clear that if application and design can be merged to produce a cost-effective alternate to present methods of handling low-temperature rejected heat, then there is significant incentive for plastic heat exchangers, to replace traditional metallic heat exchangers or to be used in services where metals are totally unsuited.

  9. Numerical simulation of shell-side heat transfer and flow of natural circulation heat exchanger

    International Nuclear Information System (INIS)

    In order to analyze the influence on the heat transfer and flow characteristics of the heat exchanger model of different solving models and structures, a variety of transformation to the model equivalent for the heat exchanger was studied. In this paper, Fluent software was used to simulate the temperature-field and flow-field of the equivalent model, and investigate its heat-transferring and flow characteristics. Through comparative analysis of the distribution of temperature-field and flow-field for different models, the heat-transferring process and natural convection situation of heat exchanger were deeply understood. The results show that the temperature difference between the inside and outside of the natural circulation heat exchanger tubes is larger and the flow is more complex, so the turbulence model is the more reasonable choice. Asymmetry of tubes position makes the flow and heat transfer of the fluid on both sides to be dissymmetrical and makes the fluid interaction, and increases the role of natural convection. The complex structure of heat exchanger makes the flow and heat transfer of the fluid on both sides to be irregular to some extent when straight tubes into C-bent are transformed, and all these make the turbulence intensity increase and improve the effect of heat transfer. (authors)

  10. Prediction of Heat Removal Capacity of Horizontal Condensation Heat Exchanger submerged in Pool

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong-Su; Hong, Soon-Joon [FNC Tech., Yongin (Korea, Republic of); Cho, Hyoung-Kyu [Seoul National University, Seoul (Korea, Republic of); Park, Goon-Cherl [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-10-15

    As representative passive safety systems, there are the passive containment cooling system (PCCS) of ESBWR, the emergency condenser system (ECS) of the SWR-1000, the passive auxiliary feed-water system (PAFS) of the APR+ and etc. During the nuclear power plant accidents, these passive safety systems can cool the nuclear system effectively via the heat transfer through the steam condensation, and then mitigate the accidents. For the optimum design and the safety analysis of the passive safety system, it is essential to predict the heat removal capacity of the heat exchanger well. The heat removal capacity of the horizontal condensation heat exchanger submerged in a pool is determined by a combination of a horizontal in-tube condensation heat transfer and a boiling heat transfer on the horizontal tube. Since most correlations proposed in the previous nuclear engineering field were developed for the vertical tube, there is a certain limit to apply these correlations to the horizontal tube. Therefore, this study developed the heat transfer model for the horizontal Ushaped condensation heat exchanger submerged in a pool to predict well the horizontal in-tube condensation heat transfer, the boiling heat transfer on the horizontal tube and the overall heat removal capacity of the heat exchanger using the best-estimate system analysis code, MARS.

  11. Applications of artificial neural networks for thermal analysis of heat exchangers - A review

    International Nuclear Information System (INIS)

    Artificial neural networks (ANN) have been widely used for thermal analysis of heat exchangers during the last two decades. In this paper, the applications of ANN for thermal analysis of heat exchangers are reviewed. The reported investigations on thermal analysis of heat exchangers are categorized into four major groups, namely (i) modeling of heat exchangers, (ii) estimation of heat exchanger parameters, (iii) estimation of phase change characteristics in heat exchangers and (iv) control of heat exchangers. Most of the papers related to the applications of ANN for thermal analysis of heat exchangers are discussed. The limitations of ANN for thermal analysis of heat exchangers and its further research needs in this field are highlighted. ANN is gaining popularity as a tool, which can be successfully used for the thermal analysis of heat exchangers with acceptable accuracy. (authors)

  12. Effect of nanoparticles on heat transfer in mini double-pipe heat exchangers in turbulent flow

    Science.gov (United States)

    Aghayari, Reza; Maddah, Heydar; Ashori, Fatemeh; Hakiminejad, Afshin; Aghili, Mehdi

    2015-03-01

    In this work, heat transfer of a fluid containing nanoparticles of aluminum oxide with the water volume fraction (0.1-0.3) percent has been reported. Heat transfer of the fluid containing nano water aluminum oxide with a diameter of about 20 nm in a horizontal double pipe counter flow heat exchanger under turbulent flow conditions was studied. The results showed that the heat transfer of nanofluid in comparison with the heat transfer of fluid is slightly higher than 12 percent.

  13. USING LIGA BASED MICROFABRICATION TO IMPROVE OVERALL HEAT TRANSFER EFFICIENCY OF PRESSURIZED WATER REACTOR: I. Effects of Different Micro Pattern on Overall Heat Transfer.

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, M.; Ibekwe, S.; Li, G.; Pang, S.S.; and Lian, K.

    2006-07-01

    The Pressurized Water Reactors (PWRs in Figure 1) were originally developed for naval propulsion purposes, and then adapted to land-based applications. It has three parts: the reactor coolant system, the steam generator and the condenser. The Steam generator (a yellow area in Figure 1) is a shell and tube heat exchanger with high-pressure primary water passing through the tube side and lower pressure secondary feed water as well as steam passing through the shell side. Therefore, a key issue in increasing the efficiency of heat exchanger is to improve the design of steam generator, which is directly translated into economic benefits. The past research works show that the presence of a pin-fin array in a channel enhances the heat transfer significantly. Hence, using microfabrication techniques, such as LIGA, micro-molding or electroplating, some special microstructures can be fabricated around the tubes in the heat exchanger to increase the heat-exchanging efficiency and reduce the overall size of the heat-exchanger for the given heat transfer rates. In this paper, micro-pin fins of different densities made of SU-8 photoresist are fabricated and studied to evaluate overall heat transfer efficiency. The results show that there is an optimized micro pin-fin configuration that has the best overall heat transfer effects.

  14. Heat exchangers selection, rating, and thermal design

    CERN Document Server

    Kakaç, Sadik; Pramuanjaroenkij, Anchasa

    2012-01-01

    Praise for the Bestselling Second EditionThe first edition of this work gathered in one place the essence of important information formerly scattered throughout the literature. The second edition adds the following new information: introductory material on heat transfer enhancement; an application of the Bell-Delaware method; new correlation for calculating heat transfer and friction coefficients for chevron-type plates; revision of many of the solved examples and the addition of several new ones.-MEMagazine

  15. Computer simulation of cored brick regenerative heat exchangers

    International Nuclear Information System (INIS)

    A computer model has been developed to simulate the thermal response of a cored brick regenerative heat exchanger to be used in magnetohydrodynamic energy conversion processes. The model uses a set of finite-difference equations to simulate the heat exchange core between gas and ceramic the equations calculate the temperature variation of the gas and ceramic along the axis of the heat exchange. The insulation and steel shell are thermally coupled to the core by a second set of finite-difference equations. The physical properties of the core, insulation, and gas are curvefit as functions of temperature, and the vertical gaps between insulator layers, causing thermal resistance in the heat exchange, are also represented. The time, burner operation, and intermediate cooldown cycles necessary to reach cyclic, steady-state operating conditions from room temperature are determined during the start-up simulation the response of the insulation to changes in core temperature was studied during the steady-state simulation the time required to reduce the core and insulation temperature to safe operating levels was determined during the shut-down simulation. It was concluded that at least 16 hours are necessary for the heat exchanger to reach cyclic, steady-state conditions, and that during a power failure, a back-up power source will be needed for at least 27 hours to insure the safety of the facility

  16. Experimental investigation of water sprayed finned heat exchanger tube bundles

    International Nuclear Information System (INIS)

    Experimental investigations have been made to study the performance of two finned tube-bundle heat exchangers (FORGO type) when wetted by water sprays. The heat exchangers are designed to cool water in a dry cooling tower. The test-elements had a frontal area of 1 m2. The water sprays were created by 20 nozzles, 200 mm in front of the heat exchangers. Air velocities at the inlet of the coolers were in the range 0,8 m/s to 12 m/s and initial temperature differences ITD reached 45 degrees C. The test facility was designed to determine the combined latent and sensible heat fluxes in the wetted heat exchanger, the airside pressure drop and the air humidity and temperature at the exchanger inlet and outlet, and to measure the weight of the water wetting the cooler's surface. The sprayed test elements were investigated in different positions, but most of the experiments were carried out in the position with the fins horizontal

  17. Intensification of heat exchange processes in cryogenic plants and systems

    International Nuclear Information System (INIS)

    This paper reports on heat exchange processes and apparatus that are responsible for efficient and reliable performance of cryogenic equipment. Certain institutes and companies in USSR have performed extensive investigations, engineering and test works to intensify heat exchange processes and to improve designs of heat exchange apparatus. Presently, the cryogenic platts and systems are furnished with the apparatus wherein use is made of effective heat exchange components of various designs. Thus, when manufacturing coiled condenser-evaporators, liquid subcoolers for large air separation plants, and coolers for cryogenic product storage systems, use is made of aluminum tubes with external transverse finning of various fin heights. To manufacture the coolers and gasificators for various cryogenic product, tubes with external capillary-porous coating, as well as tubes with internal longitudinal fining using notched aluminum packing find wide application. Plate-fin aluminum heat exchangers with various packings are used in cooling units, condenser-evaporators and cryogenic liquid subcoolers. Copper tubes with wire-type external transversal finning are employed for helium liquefier and refrigerator apparatus

  18. Experimental investigation of a reticulated porous alumina heat exchanger for high temperature gas heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, A; Chandran, RB; Davidson, JH

    2015-01-22

    The present study presents an experimental study of a prototype counter-flow heat exchanger designed to recover sensible heat from inert and reactive gases flowing through a high temperature solar reactor for splitting CO2. The tube-in-tube heat exchanger is comprised of two concentric alumina tubes, each filled with reticulated porous alumina with a nominal porosity of 80% and pore density of 5 pores per inch (ppi). The RPC provides high heat transfer surface area per unit volume (917 m(-1)) with low pressure drop. Measurements include the permeability, inertial coefficient, overall heat transfer coefficient, effectiveness and pressure drop. For laminar flow and an inlet gas temperature of 1240 K, the overall heat transfer coefficients are 36-41 W m(-2) K-1. The measured performance is in good agreement with a prior CFD model of the heat exchanger. (C) 2014 Elsevier Ltd. All rights reserved.

  19. Development of User-Friendly Software to Design Dairy Heat Exchanger and Performance Evaluation

    Directory of Open Access Journals (Sweden)

    DipankarMandal

    2015-02-01

    Full Text Available The paper proposes a calculation algorithm and development of a software in Visual Basic(Visual Studio 2012 Express Desktop used in heat transfer studies when different heat exchangers are involved (e.g. Helical Type Triple Tube Heat Exchanger , Plate Type Heat Exchanger.It includes the easy calculation of heat transfer coefficient and followed by the design and simulation of heat exchanger design parameter by inputting general known parameters of a heat exchanger into the developed software—-?DAIRY –HE ?. A parametric study is conducted using the software interface to determine the length of tubes or dimensions of heat exchanger.

  20. Liquid Salt Heat Exchanger Technology for VHTR Based Applications

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark; Sridhara, Kumar; Allen, Todd; Peterson, Per

    2012-10-11

    The objective of this research is to evaluate performance of liquid salt fluids for use as a heat carrier for transferring high-temperature process heat from the very high-temperature reactor (VHTR) to chemical process plants. Currently, helium is being considered as the heat transfer fluid; however, the tube size requirements and the power associated with pumping helium may not be economical. Recent work on liquid salts has shown tremendous potential to transport high-temperature heat efficiently at low pressures over long distances. This project has two broad objectives: To investigate the compatibility of Incoloy 617 and coated and uncoated SiC ceramic composite with MgCl2-KCl molten salt to determine component lifetimes and aid in the design of heat exchangers and piping; and, To conduct the necessary research on the development of metallic and ceramic heat exchangers, which are needed for both the helium-to-salt side and salt-to-process side, with the goal of making these heat exchangers technologically viable. The research will consist of three separate tasks. The first task deals with material compatibility issues with liquid salt and the development of techniques for on-line measurement of corrosion products, which can be used to measure material loss in heat exchangers. Researchers will examine static corrosion of candidate materials in specific high-temperature heat transfer salt systems and develop an in situ electrochemical probe to measure metallic species concentrations dissolved in the liquid salt. The second task deals with the design of both the intermediate and process side heat exchanger systems. Researchers will optimize heat exchanger design and study issues related to corrosion, fabrication, and thermal stresses using commercial and in-house codes. The third task focuses integral testing of flowing liquid salts in a heat transfer/materials loop to determine potential issues of using the salts and to capture realistic behavior of the salts in a small scale prototype system. This includes investigations of plugging issues, heat transfer, pressure drop, and the corrosion and erosion of materials in the flowing system.

  1. A Cell Model to Describe and Optimize Heat and Mass Transfer in Contact Heat Exchangers

    OpenAIRE

    Piotr Yakimychev; Nickolay Yelin; Vadim Mizonov

    2011-01-01

    A cell model to describe and optimize heat and mass transfer in contact heat exchangers for utilization of exhaust gases heat is proposed. The model is based on the theory of Markov chains and allows calculating heat and mass transfer at local moving force of the processes in each cell. The total process is presented as two parallel chains of cells (one for water flow and one for gas flow). The corresponding cells of the chains can exchange heat and mass, and water and gas can travel along th...

  2. Comparative design evaluation of plate fin heat exchanger and coiled finned tube heat exchanger for helium liquefier in the temperature range of 300-80 K

    International Nuclear Information System (INIS)

    Present indigenous helium liquefaction system at RRCAT uses the cross-counter flow coiled-finned tube heat exchangers developed completely from Indian resources. These coiled-finned tube heat exchangers are mainly suitable up to medium capacity helium liquefiers. For large capacity helium liquefier, plate fin heat exchangers are more suitable options. This paper presents the comparative evaluation of the design of both types of heat exchangers in the temperature range of 300-80 K for helium liquefier. (author)

  3. Modeling and Performance Analysis of Alternative Heat Exchangers for Heavy Vehicles

    OpenAIRE

    Lin, Wamei

    2014-01-01

    Cross flow heat exchangers made from aluminum are common as radiators in vehicles. However, due to the increasing power requirement and the limited available space in vehicles, it is extremely difficult to increase the size of heat exchangers (HEXs) placed in the front of vehicles. Placing the heat exchanger on the roof or at the underbody of vehicles might offer opportunity to increase the size of the heat exchangers. A new configuration of heat exchangers has to be developed to accommodate ...

  4. Air-side particulate fouling of microchannel heat exchangers: Experimental comparison of air-side pressure drop and heat transfer with plate-fin heat exchanger

    OpenAIRE

    Bell, Ian; Groll, Eckhard

    2011-01-01

    In this study, the air-side pressure drop and heat transfer performance of plate-fin and microchannel coils were tested under clean and fouled conditions. The heat exchangers were tested with two different types of dust, ASHRAE Standard Dust and Arizona Road Test Dust. The ASHRAE Standard Dust was found to have a very significant impact on the pressure drop of the microchannel heat exchanger, increasing the air-side pressure drop of the microchannel heat exchanger over 200% for a dust injec...

  5. Theoretical and numerical analyses of a ceramic monolith heat exchanger

    International Nuclear Information System (INIS)

    This study assessed the performance of a ceramic monolith heat exchanger, estimating heat transfer and pressure drop by numerical computation and the ?-NTU method. A heat exchanger consists of rectangular ducts for exhaust gas, a ceramic core, and rectangular ducts for air and exhaust gases, as well as air in the cross-flow direction. The numerical computations were performed for the whole domain, including the exhaust gas, ceramic core, and air. In addition, the heat exchanger was examined using a conventional ?- NTU method with several Nusselt number correlations from the literature to characterize the flow in the rectangular duct. The results of these numerical computation analyses demonstrated that the effectiveness of the heat exchanger, as demonstrated using the ?-NTU method with Stephan's Nusselt number correlation, came closest to the results of computation with a relative error of 2%. The air-side pressure drops indicated by the results of numerical computation were 13-22% higher than those calculated using the head loss equation with the inclusion of a friction factor that was obtained from previous experiments examining heat transfer conditions

  6. Heat transfer of high thermal energy storage with heat exchanger for solar trough power plant

    International Nuclear Information System (INIS)

    High temperature thermal energy storage was studied by a lab-scale cylindrical storage tank experiment. A heat exchanger of thermal energy storage is used for separating two fluids, storage medium, and heat transfer fluid (HTF). There are two types of pipe in the heat exchanger, a vertical straight pipe and a helical coiled pipe. The experimental results were validated with the created mathematical model of nonsteady state heat exchanger. The highest storage efficiency is 0.631 at the HTF flow rate of 0.1 kg/s in a helical coiled pipe heat exchanger. The HTF and storage medium temperatures were measured for validating the model at various HTF flow rates. The agreement between model and experiment was presented with the error below 10%. This model is able to calculate the storage temperature of solar thermal power plants that performs in the liquid temperature range of selected HTF and storage medium

  7. Materials, Turbomachinery and Heat Exchangers for Supercritical CO2 Systems

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark; Nellis, Greg; Corradini, Michael

    2012-10-19

    The objective of this project is to produce the necessary data to evaluate the performance of the supercritical carbon dioxide cycle. The activities include a study of materials compatibility of various alloys at high temperatures, the heat transfer and pressure drop in compact heat exchanger units, and turbomachinery issues, primarily leakage rates through dynamic seals. This experimental work will serve as a test bed for model development and design calculations, and will help define further tests necessary to develop high-efficiency power conversion cycles for use on a variety of reactor designs, including the sodium fast reactor (SFR) and very high-temperature gas reactor (VHTR). The research will be broken into three separate tasks. The first task deals with the analysis of materials related to the high-temperature S-CO{sub 2} Brayton cycle. The most taxing materials issues with regard to the cycle are associated with the high temperatures in the reactor side heat exchanger and in the high-temperature turbine. The system could experience pressures as high as 20MPa and temperatures as high as 650°C. The second task deals with optimization of the heat exchangers required by the S-CO{sub 2} cycle; the S-CO{sub 2} flow passages in these heat exchangers are required whether the cycle is coupled with a VHTR or an SFR. At least three heat exchangers will be required: the pre-cooler before compression, the recuperator, and the heat exchanger that interfaces with the reactor coolant. Each of these heat exchangers is unique and must be optimized separately. The most challenging heat exchanger is likely the pre-cooler, as there is only about a 40°C temperature change but it operates close to the CO{sub 2} critical point, therefore inducing substantial changes in properties. The proposed research will focus on this most challenging component. The third task examines seal leakage through various dynamic seal designs under the conditions expected in the S-CO{sub 2} cycle, including supercritical, choked, and two-phase flow conditions.

  8. Mill Scale Corrosion and Prevention in Carbon Steel Heat Exchanger

    Science.gov (United States)

    Sharma, Pankaj; Roy, Himadri

    2015-10-01

    The cause of material degradation of an ASTM A-124 grade carbon steel tube belonging to a heat exchanger has been investigated. Visual examination, followed by an in-depth microstructural characterization using optical microscopy, energy dispersive X-ray, and scanning electron microscopy, was carried out for understanding the primary cause of material degradation. Based on the results of an extensive examination as well as the background information provided on the heat exchanger, it was determined that the steel tubes were predominantly damaged by the mechanism of crevice corrosion facilitated by the presence of mill scale. It is concluded that the heat exchanger tubes were not properly investigated for defects after their fabrication. Based on the situation, the proper cleaning method was selected for preventing further corrosion in the system. A chemical cleaning process was designed using acid pickling along with an inhibitor and a surfactant.

  9. Heat exchangers for automotive gas turbine power plants

    International Nuclear Information System (INIS)

    Automotive gas turbine power plants are now in the final stages of development for quantity manufacture. A crucial factor in this development is the regenerative heat exchanger. The relative merits of the rotary regenerative and static recuperative heat exchanger are compared. Thermal efficiency and initial cost are two vital issues involved in the design of small gas turbines for the commercial establishment of gas turbine vehicles. The selection of a material for the rotaty regenerator is essentially related to resolving the two vital issues of future small gas turbines and is, therefore, analysed. The account of the pioneering work involved in engineering the glass ceramic and other non-metal regenerators includes a complete failure analysis based on running experience with over 200 ceramic regenerators. The problems of sealing, supporting and manufacturing the ceramic regenerator are discussed and future practical designs are outlined. Heat exchange theory applied to small gas turbines is also reviewed

  10. Preliminary results of statistical dynamic experiments on a heat exchanger

    International Nuclear Information System (INIS)

    The inherent noise signals present in a heat exchanger have been recorded and analysed in order to determine some of the statistical dynamic characteristics of the heat exchanger. These preliminary results show that the primary side temperature frequency response may be determined by analysing the inherent noise. The secondary side temperature frequency response and cross coupled temperature frequency responses between primary and secondary are poorly determined because of the presence of a non-stationary noise source in the secondary circuit of this heat exchanger. This may be overcome by correlating the dependent variables with an externally applied noise signal. Some preliminary experiments with an externally applied random telegraph type of signal are reported. (author)

  11. Diffusion Welding of Compact Heat Exchangers for Nuclear Applications

    Energy Technology Data Exchange (ETDEWEB)

    Denis Clark; Ron Mizia; Dr. Michael V. Glazoff; Mr. Michael W. Patterson

    2012-06-01

    The next-­-generation nuclear plant (NGNP) is designed to be a flexible source of energy, producing various mixes of electrical energy and process heat (for example, for hydrogen generation) on demand. Compact heat exchangers provide an attractive way to move energy from the helium primary reactor coolant to process heat uses. For process heat efficiency, reactor outlet temperatures of 750-­-900°C are desirable. There are minor but deleterious components in the primary coolant; the number of alloys that can handle this environment is small. The present work concentrates on Alloys 800H and 617.

  12. Prefabricated heat-exchanging fireplace. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Schleper, M.A.

    1981-06-15

    A heat-exchanging fireplace was installed in a 2000 square foot home and the standard air distribution equipment was ducted directly to the forced-air heating system of the home. The standard air distribution equipment for the fireplace included two squirrel-cage blowers which were connected to a thermostat, allowing a choice of temperature ranges; and a snap disc thermostat was used to disconnect the blowers in order to avoid blowing cold air after the fire died out. Arranged in this manner, one is able to set the regular home thermostat a few degrees lower than the fireplace thermostat, and this will allow the regular heating system to turn on after the fire has gone out in the fireplace. Energy consumption in both the fireplace and the conventional heating system was monitored throughout a heating season and then compared with past heating seasons when only a conventional heating system was used.

  13. THE STUDY OF HEAT EXCHANGE DYNAMICS OF VENTILATION EMISSIONS ON HEAT UTILIZATION WITH CONSIDERATION FOR WATER VAPOUR CONDENSATION

    Directory of Open Access Journals (Sweden)

    V. S. Ezhov

    2010-10-01

    Full Text Available Problem statement. Known corrosion-resistant air heaters made from glass tubes have not received wide acceptance because of some defects (low mechanical strength, temperature deformation, complexity and unreliability of assemblies, etc., whereas the structure of insulated glazing heat exchange devices has some advantages. The aim of present paper is to study heat exchange dynamics of venti-lation emissions in insulated glazing air heater on heat utilization with considera-tion for water vapor condensation.Results and conclusions. The study of heat exchange in channel insulated glazing heat exchanger at heat utilization of corrosion-active ventilation emissions is car-ried out with consideration for water vapour condensation on heat-exchange sur-faces. It is shown that the rate of heat exchange under longitudinal flow of vertical glass surfaces air heated and steam-and-air cooled is 15—20 % lower than the rate of heat exchange at air cooling.

  14. Performance of a Thermoelectric Device with Integrated Heat Exchangers

    Science.gov (United States)

    Barry, Matthew M.; Agbim, Kenechi A.; Chyu, Minking K.

    2015-06-01

    Thermoelectric devices (TEDs) convert heat directly into electrical energy, making them well suited for waste heat recovery applications. An integrated thermoelectric device (iTED) is a restructured TED that allows more heat to enter the p-n junctions, thus producing a greater power output . An iTED has heat exchangers incorporated into the hot-side interconnectors with flow channels directing the working fluid through the heat exchangers. The iTED was constructed of p- and n-type bismuth-telluride semiconductors and copper interconnectors and rectangular heat exchangers. The performance of the iTED in terms of , produced voltage and current , heat input and conversion efficiency for various flow rates (), inlet temperatures (C) ) and load resistances () with a constant cold-side temperature ( = 0C) was conducted experimentally. An increase in had a greater effect on the performance than did an increase in . A 3-fold increase in resulted in a 3.2-, 3.1-, 9.7-, 3.5- and 2.8-fold increase in and respectively. For a constant of 50C, a 3-fold increase in from 3300 to 9920 resulted in 1.6-, 1.6-, 2.6-, 1.5- and 1.9-fold increases in , , , and respectively.

  15. Experimental investigation of a reticulated porous alumina heat exchanger for high temperature gas heat recovery

    International Nuclear Information System (INIS)

    The present study presents an experimental study of a prototype counter-flow heat exchanger designed to recover sensible heat from inert and reactive gases flowing through a high temperature solar reactor for splitting CO2. The tube-in-tube heat exchanger is comprised of two concentric alumina tubes, each filled with reticulated porous alumina with a nominal porosity of 80% and pore density of 5 pores per inch (ppi). The RPC provides high heat transfer surface area per unit volume (917 m?1) with low pressure drop. Measurements include the permeability, inertial coefficient, overall heat transfer coefficient, effectiveness and pressure drop. For laminar flow and an inlet gas temperature of 1240 K, the overall heat transfer coefficients are 36–41 W m?2 K?1. The measured performance is in good agreement with a prior CFD model of the heat exchanger. - Highlights: • A ceramic heat exchanger provides gas-phase heat recuperation for a solar thermochemical reactor. • Alumina reticulated porous ceramic (RPC) provides high surface area and low pressure drop. • Heat transfer and pressure drop are measured at temperatures up to 1240 K. • RPC provides a 9-fold increase in heat transfer compared to bare tubes

  16. Characterization of a mini-channel heat exchanger for a heat pump system

    International Nuclear Information System (INIS)

    In this paper a mini-channel aluminum heat exchanger used in a reversible heat pump is presented. Mini-channel finned heat exchangers are getting more and more interest for refrigeration systems, especially when compactness and low refrigerant charge are desired. Purpose of this paper was to characterize the mini-channel heat exchanger used as evaporator in terms of heat transfer performance and to study the refrigerant distribution in the manifold. The heat exchanger characterization was performed experimentally by means of a test rig built up for this purpose. It is composed of an air-to-air heat pump, air channels for the external and internal air circulation arranged in a closed loop, measurement sensors and an acquisition system. The overall heat transfer capacity was assessed. Moreover, in order to characterize the flow field of the refrigerant in the manifold of the heat exchanger, a numerical investigation of the fluid flow by means of CFD was performed. It was meant to evaluate the goodness of the present design and to identify possible solutions for the future improvement of the manifold design.

  17. A heat exchanger model that includes axial conduction, parasitic heat loads, and property variations

    Energy Technology Data Exchange (ETDEWEB)

    Nellis, G.F. [University of Wisconsin, Madison, WI (United States). Cryogenic Engineering Lab.

    2003-09-01

    High performance heat exchangers are a critical component in many cryogenic systems and the performance of these devices is typically very sensitive to axial conduction, property variations, and parasitic heat losses to the environment. This paper presents a numerical model of a heat exchanger in which these effects are explicitly modeled. The governing equations are derived, nondimensionalized, discretized, and solved on an exponentially distributed grid. The resulting numerical model is simple to implement and computationally efficient and can therefore easily be integrated into complex system models. The numerical model is validated against analytical solutions in the appropriate limits and then used to investigate the effect of heat exchanger end conditions (adiabatic vs fixed temperature) and radiation parasitics. The numerical model, which explicitly considers the combined effect of several loss mechanisms as they interact, is compared to simple models that consider these effects separately. Finally, the model is applied to an example heat exchanger core under a specific set of operating conditions in order to demonstrate its utility. This numerical model may also be used to examine the effect of property variations including temperature driven changes in specific heat capacity, metal conductivity, parasitic heat load, and heat transfer coefficients and is therefore useful in the design of a variety of cryogenic system components including counter- and parallel-flow heat exchangers for gas liquefaction, mixed-gas refrigeration, and reverse Brayton systems. (author)

  18. A heat exchanger model that includes axial conduction, parasitic heat loads, and property variations

    Science.gov (United States)

    Nellis, G. F.

    2003-09-01

    High performance heat exchangers are a critical component in many cryogenic systems and the performance of these devices is typically very sensitive to axial conduction, property variations, and parasitic heat losses to the environment. This paper presents a numerical model of a heat exchanger in which these effects are explicitly modeled. The governing equations are derived, nondimensionalized, discretized, and solved on an exponentially distributed grid. The resulting numerical model is simple to implement and computationally efficient and can therefore easily be integrated into complex system models. The numerical model is validated against analytical solutions in the appropriate limits and then used to investigate the effect of heat exchanger end conditions (adiabatic vs fixed temperature) and radiation parasitics. The numerical model, which explicitly considers the combined effect of several loss mechanisms as they interact, is compared to simple models that consider these effects separately. Finally, the model is applied to an example heat exchanger core under a specific set of operating conditions in order to demonstrate its utility. This numerical model may also be used to examine the effect of property variations including temperature driven changes in specific heat capacity, metal conductivity, parasitic heat load, and heat transfer coefficients and is therefore useful in the design of a variety of cryogenic system components including counter- and parallel-flow heat exchangers for gas liquefaction, mixed-gas refrigeration, and reverse Brayton systems.

  19. Characterization of a mini-channel heat exchanger for a heat pump system

    Science.gov (United States)

    Arteconi, A.; Giuliani, G.; Tartuferi, M.; Polonara, F.

    2014-04-01

    In this paper a mini-channel aluminum heat exchanger used in a reversible heat pump is presented. Mini-channel finned heat exchangers are getting more and more interest for refrigeration systems, especially when compactness and low refrigerant charge are desired. Purpose of this paper was to characterize the mini-channel heat exchanger used as evaporator in terms of heat transfer performance and to study the refrigerant distribution in the manifold. The heat exchanger characterization was performed experimentally by means of a test rig built up for this purpose. It is composed of an air-to-air heat pump, air channels for the external and internal air circulation arranged in a closed loop, measurement sensors and an acquisition system. The overall heat transfer capacity was assessed. Moreover, in order to characterize the flow field of the refrigerant in the manifold of the heat exchanger, a numerical investigation of the fluid flow by means of CFD was performed. It was meant to evaluate the goodness of the present design and to identify possible solutions for the future improvement of the manifold design.

  20. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    Energy Technology Data Exchange (ETDEWEB)

    Mittereder, N.; Poerschke, A.

    2013-11-01

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season. Upon completion of the monitoring phase, measurements revealed that the initial TRNSYS simulated horizontal sub-slab ground loop heat exchanger fluid temperatures and heat transfer rates differed from the measured values. To determine the cause of this discrepancy, an updated model was developed utilizing a new TRNSYS subroutine for simulating sub-slab heat exchangers. Measurements of fluid temperature, soil temperature, and heat transfer were used to validate the updated model.

  1. Method for the positioning of pipes in a heat exchanger

    International Nuclear Information System (INIS)

    The invention relates to a method for positioning pipes in a heat exchanger. The grating that supports the pipes of the heat exchanger may be equipped with projections in the passages that also support the pipes. Such projections may, however, obstruct the positioning of the pipes in the grating. The purpose of the invention is to bypass this problem by applying receding projections that move outward when a wedge is put in the grating and thereupon turned round in such a way that the pipes can freely be positioned. Thereupon, the wedge is turned back and the projections will resume their positions. (Auth.)

  2. Internal dust recirculation system for a fluidized bed heat exchanger

    Science.gov (United States)

    Gamble, Robert L. (Wayne, NJ); Garcia-Mallol, Juan A. (Morristown, NJ)

    1981-01-01

    A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided in a heat exchange relation to the bed and includes a steam drum disposed adjacent the bed and a tube bank extending between the steam drum and a water drum. The tube bank is located in the path of the effluent gases exiting from the bed and a baffle system is provided to separate the solid particulate matter from the effluent gases. The particulate matter is collected and injected back into the fluidized bed.

  3. DOE/ANL/HTRI heat exchanger tube vibration data bank

    International Nuclear Information System (INIS)

    Development of a new heat exchanger tube vibration data bank at Argonne National Laboratory is described. Comprehensive case histories on heat exchangers that have experienced tube-vibration problems and units that have been trouble-free are accumulated and this information is rendered available for evaluation, improvement, and development of vibration-prediction methods and design guidelines. Discussions include difficulties in generating a data bank, data form development, and solicitation efforts. Also included are 15 case histories upon which the data bank will be built. As new case histories are received, they will be assembled and published as addenda to this report

  4. Heat exchangers for high-temperature thermodynamic cycles

    International Nuclear Information System (INIS)

    The special requirements of heat exchangers for high temperature thermodynamic cycles are outlined and discussed with particular emphasis on cost and thermal stress problems. Typical approaches that have been taken to a comprehensive solution intended to meet all of the many boundary conditions are then considered by examining seven typical designs including liquid-to-liquid heat exchangers for nuclear plants, a heater for a closed cycle gas turbine coupled to a fluidized bed coal combustion chamber, steam generators for nuclear plants, a fossil fuel-fired potassium boiler, and a potassium condenser-steam generator. (auth)

  5. Heat exchange equipment for the Sizewell 'B' turbine generators

    International Nuclear Information System (INIS)

    The Heat Exchange Equipment associated with the Sizewell 'B' Turbine Generators embodies features specific to the wet steam cycle of the PWR. In comparison with fossil fuelled plant, steam conditions are considerably lower and so for a given electrical output, steam and feed water flows are of necessity much higher. In addition, the plant must embody measures to combat wet steam erosion and to accommodate substantial quantities of draining separated condensate. The paper describes key features of design, layout and materials selection on the Sizewell 'B' heat exchange equipment which address these problems. (author)

  6. CFD simulation of air to air enthalpy heat exchanger

    International Nuclear Information System (INIS)

    Highlights: • A CFD model capable of modelling conjugate heat and mass transfer processes. • A mesh independence studies and a CFD model validation have been conducted. • Effects of flow direction on the effectiveness have been examined. • Performance parameters were sensible and latent effectiveness and pressure drop. - Abstract: A CFD model which supports conjugate heat and mass transfer problem representation across the membrane of air-to-air energy recovery heat exchangers has been developed. The model consists of one flow passage for the hot stream and another for the adjacent cold stream. Only half of each flow passage volume has been modelled on each side of the membrane surface. Three dimensional, steady state and laminar flow studies have been conducted using a commercial CFD package. The volumetric species transport model has been adopted to describe the H2O and air gas mixtures. Mesh dependency has been examined and followed by validation of the CFD model against published data. Furthermore, effects of flow direction at the inlet of the heat exchanger on its thermal effectiveness have been investigated. Simulation results are presented and analysed in terms of sensible effectiveness, latent effectiveness and pressure drop across the membrane heat exchanger. Results have shown that counter-flow configuration has greater sensitivity to the mesh centre perpendicular distance from the membrane when compared to the other two flow configurations (cross-/parallel-flow). However, the lateral mesh element length has shown minimal effect on the thermal effectiveness of the enthalpy heat exchanger. For the quasi-flow heat exchanger, a perpendicular flow direction to the inlets has been found to produce a higher performance in contrast to the non-perpendicular flow

  7. Fouling detection in heat exchangers by Takagi-Sugeno observers

    International Nuclear Information System (INIS)

    The phenomenon of fouling in heat exchangers is currently an important topic. Indeed, the fouling is a costly issue that increases the energy loss (directly or indirectly through an over-sizing of the equipment), and therefore increases the water consumption. As a side effect, fouling increases CO2 consumption that leads to environmental consequences. Fouling can be detected either on local scale, using expensive and specific sensors or on global scale. Global estimation of fouling can be done by measuring the variation of the mass of the exchanger, or by estimating the efficiency of the exchanger through the transfer coefficient. These two methods require very restricting conditions: a powered exchanger to measure mass variation and a steady state exchanger to estimate the efficiency. The work introduced in this thesis deals with the development of non-linear observers that detect fouling early enough to start an efficient cleaning process. As a beginning, a finite element model of a counter current tubular exchanger was proposed. Then three approaches, based on non-linear Takagi-Sugeno observers, were suggested to detect early fouling in heat exchangers. First approach consisted in a set of observers that estimated the parameters of fouling effect through an interpolation method. The second approach proposed a polynomial Takagi-Sugeno observer, using the theory of sums of squares. Finally, a observer of Takagi-Sugeno type with unknown inputs was developed. As a conclusion, a comparison between those different methods was done. (author)

  8. Optimization of the Heat Exchangers of a Thermoelectric Generation System

    Science.gov (United States)

    Martínez, A.; Vián, J. G.; Astrain, D.; Rodríguez, A.; Berrio, I.

    2010-09-01

    The thermal resistances of the heat exchangers have a strong influence on the electric power produced by a thermoelectric generator. In this work, the heat exchangers of a thermoelectric generator have been optimized in order to maximize the electric power generated. This thermoelectric generator harnesses heat from the exhaust gas of a domestic gas boiler. Statistical design of experiments was used to assess the influence of five factors on both the electric power generated and the pressure drop in the chimney: height of the generator, number of modules per meter of generator height, length of the fins of the hot-side heat exchanger (HSHE), length of the gap between fins of the HSHE, and base thickness of the HSHE. The electric power has been calculated using a computational model, whereas Fluent computational fluid dynamics (CFD) has been used to obtain the thermal resistances of the heat exchangers and the pressure drop. Finally, the thermoelectric generator has been optimized, taking into account the restrictions on the pressure drop.

  9. Optimization of heat exchanger networks using genetic algorithms

    International Nuclear Information System (INIS)

    Most thermal processes encountered in the power industry (chemical, metallurgical, nuclear and thermal power stations) necessitate the transfer of large amounts of heat between fluids having different thermal potentials. A common practice applied to achieve such a requirement consists of using heat exchangers. In general, each current of fluid is conveniently cooled or heated independently from each other in the power plant. When the number of heat exchangers is large enough, however, a convenient arrangement of different flow currents may allow a considerable reduction in energy consumption to be obtained (Linnhoff and Hidmarsh, 1983). In such a case the heat exchangers form a 'Heat Exchanger Network' (HEN) that can be optimized to reduce the overall energy consumption. This type of optimization problem, involves two separates calculation procedures. First, it is necessary to optimize the topology of the HEN that will permit a reduction in energy consumption to be obtained. In a second step the power distribution across the HEN should be optimized without violating the second law of thermodynamics. The numerical treatment of this kind of problem requires the use of both discrete variables (for taking into account each heat exchanger unit) and continuous variables for handling the thermal load of each unit. It is obvious that for a large number of heat exchangers, the use of conventional calculation methods, i.e., Simplexe, becomes almost impossible. Therefore, in this paper we present a 'Genetic Algorithm' (GA), that has been implemented and successfully used to treat complex HENs, containing a large number of heat exchangers. As opposed to conventional optimization techniques that require the knowledge of the derivatives of a function, GAs start the calculation process from a large population of possible solutions of a given problem (Goldberg, 1999). Each possible solution is in turns evaluated according to a 'fitness' criterion obtained from an objective equation. This equation must completely describe the optimization problem to be handled, i.e., maximization or minimization. The best solutions are then retained and Genetic operators such as crossover and mutation are then applied in order to reproduce a new population of solutions that have a better fitness than the previous ones. These processes of crossover, mutation and selection are repeated until a suitable convergence criterion is able to stop the procedure. It is important to point out that GAs handle a coded form of each possible solution (for instance binary coded solutions) that represent the individuals, i.e., chromosomes of a population, instead of handling the solution to the problem itself. In order to carry out the synthesis of HEN we have implemented two different coded populations; one population is used to code for the topology of the HEN and the second for the heat load handled by each heat exchanger (Lewin et al., 1998). Ck is a coefficient used to adjust the degree of penalty. This approach has been used to treat several HEN problems taken from the open literature. In general the results obtained with the proposed algorithm are in excellent agreement with those obtained by using conventional techniques, i.e., Simplexe. We have found that the use of GAs also permits other satisfactory solutions corresponding to different heat exchanger topologies and thermal load distributions to be obtained. Further, we were able to handle HENs containing more than 15 heat exchanges, that were impossible to solve using conventional methods. However, it is important to point out that the proposed technique is not appropriate to handle HENs that require the division of currents. (author)

  10. Comparisons of Heat Transfer Performance of a Closed-looped Oscillating Heat Pipe and Closed-looped Oscillating Heat Pipe with Check Valves Heat Exchangers

    Directory of Open Access Journals (Sweden)

    P. Meena

    2008-01-01

    Full Text Available This research was to study the comparisons of heat transfer performance of closed-looped oscillating heat pipe and closed-looped oscillating heat pipe with check valves heat exchangers with R134a, Ethanol and water were used as the working fluids. A set of heat pipe heat exchanger (CLOHP and CLOHP/CV were made of copper tubes in combination of following dimension: 2.03 mm inside diameter: 40 turns, with 20, 10 and 20 cm for evaporator, adiabatic and condenser sections lengths. The working fluid was filled in the tube at the filling ratio of 50%. The evaporator section was given heat by heater while the condenser section was cooled by air. The adiabatic section was properly insulated. In the test operation, it could be concluded as follows. It indicated that the heat transfer performance of closed-looped oscillating heat pipe with check valves heat exchanger better than closed-looped oscillating heat exchanger.

  11. Thermal conductivity of backfill materials for inground heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Shadley, J.T.; Den Braven, K.R. [Univ. of Idaho, Moscow, ID (United States). Dept. of Mechanical Engineering

    1995-11-01

    The thermal conductivity of the material immediately surrounding the heat exchangers in a vertical borehole directly affects the performance and costs of a ground-coupled heat pump (GCHP) system by regulating the flow of energy to or from the ground. Many properties of the backfill material such as moisture content, composition, specific heat and density influence the thermal conductivity. The thermal conductivities of a wide variety of pure backfill materials and mixtures were measured. All the materials examined were compared with a standard bentonite backfill. Saturated natural sandy soil was the backfill material with the highest thermal conductivity. One attractive mixture consists of a pure silica sand, acrylic latex, and graphite. This mixture forms a solid backfill around the heat exchanger. Yet, the attractiveness of any backfill material combination remains very location and application dependent, varying with the native soils at the site, and the mode in which the GCHP is to be used.

  12. Double tube heat exchanger with novel enhancement: Part II - single phase convective heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tiruselvam, R.; Chin, W.M.; Raghavan, Vijay R. [OYL Sdn. Bhd., Research and Application Department, Kuala Lumpur (Malaysia)

    2012-08-15

    The study is conducted to evaluate the heat transfer characteristics of two new and versatile enhancement configurations in a double tube heat exchanger annulus. The novelty is that they are usable in single phase forced convection, evaporation and condensation. Heat transfer coefficients are determined by the Wilson Plot technique in laminar and turbulent flow and correlations are proposed for Nusselt numbers. Comparisons are then made between heat transfer and flow friction. (orig.)

  13. Exergy Analysis of Organic Rankine Cycle with Internal Heat Exchanger

    OpenAIRE

    Kyoung Hoon Kim; Hyung Jong Ko; Se Woong Kim

    2013-01-01

    In recent years Organic Rankine Cycle (ORC) has become a field of intense research and appears a promising technology for conversion of heat into useful work or electricity. In this work thermodynamic performance of ORC with internal heat exchanger is comparatively assessed for various working fluids based on the second law of thermodynamics. Special attention is paid to the effect of turbine inlet pressure on the exergy destructions (anergies) at various system components and the exergy effi...

  14. Heat transfer characteristics of a new helically coiled crimped spiral finned tube heat exchanger

    Science.gov (United States)

    Srisawad, Kwanchanok; Wongwises, Somchai

    2009-02-01

    In the present study, the heat transfer characteristics in dry surface conditions of a new type of heat exchanger, namely a helically coiled finned tube heat exchanger, is experimentally investigated. The test section, which is a helically coiled fined tube heat exchanger, consists of a shell and a helical coil unit. The helical coil unit consists of four concentric helically coiled tubes of different diameters. Each tube is constructed by bending straight copper tube into a helical coil. Aluminium crimped spiral fins with thickness of 0.5 mm and outer diameter of 28.25 mm are placed around the tube. The edge of fin at the inner diameter is corrugated. Ambient air is used as a working fluid in the shell side while hot water is used for the tube-side. The test runs are done at air mass flow rates ranging between 0.04 and 0.13 kg/s. The water mass flow rates are between 0.2 and 0.4 kg/s. The water temperatures are between 40 and 50°C. The effects of the inlet conditions of both working fluids flowing through the heat exchanger on the heat transfer coefficients are discussed. The air-side heat transfer coefficient presented in term of the Colburn J factor is proportional to inlet-water temperature and water mass flow rate. The heat exchanger effectiveness tends to increase with increasing water mass flow rate and also slightly increases with increasing inlet water temperature.

  15. A heat exchanger analogy of automotive paint ovens

    International Nuclear Information System (INIS)

    Computational prediction of vehicle temperatures in an automotive paint oven is essential to predict paint quality and manufacturability. The complex geometry of vehicles, varying scales in the flow, transient nature of the process, and the tightly coupled conjugate heat transfer render the numerical models computationally very expensive. Here, a novel, simplified model of the oven is developed using an analogy to a three-stream cross flow heat exchanger that transfers heat from air to a series of moving bodies and supporting carriers. The analogous heat exchanger equations are developed and solved numerically. Steady state Computational Fluid Dynamics (CFD) simulations are carried out to model the flow field and to extract the heat transfer coefficients around the body and carriers. The air temperature distribution from the CFD models is used as a boundary condition in the analogous model. Correction coefficients are used in the analogy to take care of various assumptions. These are determined from existing test data. The same corrections are used to predict air temperatures for a modified configuration of the oven and a different vehicle. The method can be used to conduct control volume analysis of ovens to determine energy efficiency, and to study new vehicle or oven designs. -- Highlights: • Analogy of an automotive paint oven as a three stream cross flow heat exchanger. • The three streams are vehicle bodies, carriers and hot air. • Convection coefficients and inlet air stream temperatures from steady CFD simulations. • Analogy useful for overall energy efficiency analysis of conveyor ovens in general

  16. Xenon recirculation-purification with a heat exchanger

    International Nuclear Information System (INIS)

    Liquid-xenon based particle detectors have been dramatically growing in size during the last years, and are now exceeding the one-ton scale. The required high xenon purity is usually achieved by continuous recirculation of xenon gas through a high-temperature getter. This challenges the traditional way of cooling these large detectors, since in a thermally well insulated detector, most of the cooling power is spent to compensate losses from recirculation. The phase change during recondensing requires five times more cooling power than cooling the gas from ambient temperature to -1000C (173 K). Thus, to reduce the cooling power requirements for large detectors, we propose to use the heat from the purified incoming gas to evaporate the outgoing xenon gas, by means of a heat exchanger. Generally, a heat exchanger would appear to be only of very limited use, since evaporation and liquefaction occur at zero temperature difference. However, the use of a recirculation pump reduces the pressure of the extracted liquid, forces it to evaporate, and thus cools it down. We show that this temperature difference can be used for an efficient heat exchange process. We investigate the use of a commercial parallel plate heat exchanger with a small liquid xenon detector. Although we expected to be limited by the available cooling power to flow rates of about 2 SLPM, rates in excess of 12 SLPM can easily be sustained, limited only by the pump speed and the impedance of the flow loop. The heat exchanger operates with an efficiency of (96.8±0.5)%. This opens the possibility for fast xenon gas recirculation in large-scale experiments, while minimizing thermal losses.

  17. Performance analysis of heat transfer processes from wet and dry surfaces : cooling towers and heat exchangers

    OpenAIRE

    Hasan, Ala Ali

    2005-01-01

    The objective of this work is to study the thermal and hydraulic performance of evaporatively cooled heat exchangers, including closed wet cooling towers, and dry tube heat exchangers with various geometries. Applications utilising such equipment exist in almost every thermal process. The investigation includes theoretical analysis, computational approaches, and experimental measurements. In this work, a computational model is presented for the thermal performance of closed wet cooling to...

  18. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    Science.gov (United States)

    Phillips, B.A.; Zawacki, T.S.

    1998-07-21

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use, as the heat transfer medium, the working fluid of the absorption system taken from the generator at a location where the working fluid has a rich liquor concentration. 5 figs.

  19. Method of pressure pulse cleaning heat exchanger tubes, upper tube support plates and other areas in a nuclear steam generator and other tube bundle heat exchangers

    International Nuclear Information System (INIS)

    This patent describes the art of removing corrosive deposits from locations within a heat exchanger in which the heat exchanger is characterized by an enclosed tank containing heat exchanger tubes which are closely packed together and support plates arranged transverse to and sequentially spaced along the longitudinal axis of the heat exchanger tubes and forming junctions therewith, where the support plates contain a multiplicity of transverse holes extending through their entire thickness and where crevices exist between the outer surface of the heat exchanger tubes and the support plates at the site of the junctions and wherein these crevices and the holes in the support plates act as flow holes to permit liquid which is placed in the enclosed tank to rise to a multiplicity of levels within the tank. The heat exchanger also contains an outer shell and a tube support sheet at the lower extremity of the tank to provide a base support for the multiplicity of heat exchanger tubes

  20. Heat exchanger operation in the externally heated air valve engine with separated settling chambers

    International Nuclear Information System (INIS)

    The crucial role in the externally heated air valve engine is played by its heat exchangers which work in a closed cycle. These are: a heater and a cooler and they are subject to a numerical analysis in the paper. Both of them are equipped with fixed volumes that are separate settling chambers causing that heat exchangers behave as almost stationary recuperators and analysis of the stationary behaviour is the main goal of the paper. Power and efficiency of the engine must be not lower than their averaged values for the same engine working in unsteady conditions. The results of calculations confirm such a statement. The pressure drop in the exchanger is another natural phenomenon presented. It has been overcome by use of additional blowers and the use of them is an additional focus of the presented analysis. A separation of settling chambers and additional blowers is a novelty in the paper. There is also a pre-heater applied in the engine which does not differ from well-known heat exchangers met in energy generation devices. The main objective of the paper is to find the behaviour of the engine model under stationary conditions of the heat exchangers and compare it with the non-stationary ones. - Highlights: • Externally heated air engine combined with forced working gas flow (supercharging). • Separate settling chambers allow for achieving stable and constant heat exchange parameters. • Pressure drop in heat exchangers overcome by additional blowers. • Reciprocating piston air engine, cam governing system, standard lubrication for externally heated engine. • Different fuels: oil, coal, gas, biomass also solar or nuclear energy

  1. Integral collector storage system with heat exchange apparatus

    Science.gov (United States)

    Rhodes, Richard O.

    2004-04-20

    The present invention relates to an integral solar energy collector storage systems. Generally, an integral collector storage system includes a tank system, a plurality of heat exchange tubes with at least some of the heat exchange tubes arranged within the tank system, a first glazing layer positioned over the tank system and a base plate positioned under the tank system. In one aspect of the invention, the tank system, the first glazing layer an the base plate each include protrusions and a clip is provided to hold the layers together. In another aspect of the invention, the first glazing layer and the base plate are ribbed to provide structural support. This arrangement is particularly useful when these components are formed from plastic. In yet another aspect of the invention, the tank system has a plurality of interconnected tank chambers formed from tubes. In this aspect, a supply header pipe and a fluid return header pipe are provided at a first end of the tank system. The heat exchange tubes have inlets coupled to the supply header pipe and outlets coupled to the return header pipe. With this arrangement, the heat exchange tubes may be inserted into the tank chambers from the first end of the tank system.

  2. Air Circulation and Heat Exchange under Reduced Pressures

    Science.gov (United States)

    Rygalov, Vadim; Wheeler, Raymond; Dixon, Mike; Hillhouse, Len; Fowler, Philip

    Low pressure atmospheres were suggested for Space Greenhouses (SG) design to minimize sys-tem construction and re-supply materials, as well as system manufacturing and deployment costs. But rarified atmospheres modify heat exchange mechanisms what finally leads to alter-ations in thermal control for low pressure closed environments. Under low atmospheric pressures (e.g., lower than 25 kPa compare to 101.3 kPa for normal Earth atmosphere), convection is becoming replaced by diffusion and rate of heat exchange reduces significantly. During a period from 2001 to 2009, a series of hypobaric experiments were conducted at Space Life Sciences Lab (SLSLab) NASA's Kennedy Space Center and the Department of Space Studies, University of North Dakota. Findings from these experiments showed: -air circulation rate decreases non-linearly with lowering of total atmospheric pressure; -heat exchange slows down with pressure decrease creating risk of thermal stress (elevated leaf tem-peratures) for plants in closed environments; -low pressure-induced thermal stress could be reduced by either lowering system temperature set point or increasing forced convection rates (circulation fan power) within certain limits; Air circulation is an important constituent of controlled environments and plays crucial role in material and heat exchange. Theoretical schematics and mathematical models are developed from a series of observations. These models can be used to establish optimal control algorithms for low pressure environments, such as a space greenhouse, as well as assist in fundamental design concept developments for these or similar habitable structures.

  3. Fouling characteristics of compact heat exchangers and enhanced tubes.

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, C. B.; Rabas, T. J.

    1999-07-15

    Fouling is a complex phenomenon that (1) encompasses formation and transportation of precursors, and (2) attachment and possible removal of foulants. A basic understanding of fouling mechanisms should guide the development of effective mitigation techniques. The literature on fouling in complex flow passages of compact heat exchangers is limited; however, significant progress has been made with enhanced tubes.

  4. Baffle plate for a tube bundle heat exchanger

    International Nuclear Information System (INIS)

    The invention deals with the design of the spacers keeping apart the opposite baffle plates bounding and fixing the tube bundles in a heat exchanger for nuclear reactors. It is of advantage that the baffle plates consist of a flexible deformable plastic; nylon and highly temperature-resistant polyesters (polyaryl ether) are mentioned. (RW)

  5. Method and marking element for heat exchanger repair

    International Nuclear Information System (INIS)

    In order to repair the tubes of heat exchangers detected by means of a remote-controlled device, the defective tube is marked by means of a marking element, which is fixed by the same remote-controlled device by using a setting tool. This technique has been invented especially for works on the steam generators of pressurized water reactors. (orig.)

  6. Experimental study on the heat transfer characteristics in corrugated and flat plate type heat exchanger

    International Nuclear Information System (INIS)

    An experiment was performed to study heat transfer characteristics between corrugated heat exchanger and flat plate type one. While heat capacity(13.86kW) was provided constantly and the flow speed was varied from 2.8 to 17.9m/s, the temperature and the pressure drop were measured. Furthermore, heat transfer coefficient, Colburn factor and Nusselt number were calculated using them. With increase of the flow speed for both exchangers, the coefficient and the pressure drop increased, but Colburn factor decreased. The coefficient, pressure drop and Colburn factor of the corrugated type were all higher than those of the flat one, which is due to the flow interruption with recirculation and reattachment of the corrugated type. The empirical correlations of Nusselt number were suggested for the tested two heat exchangers

  7. Heat exchanger for transfering heat produced in a high temperature reactor to an intermediate circuit gas

    International Nuclear Information System (INIS)

    The invention is concerned with improving the arrangement of a heat exchanger designed to transfer heat from the coolant gas circuit of a high temperature reactor to a gas which is to be used for a process heat plant. In the plant the material stresses are to be kept low at high differential pressures and temperatures. According to the invention the tube bundles designed as boxes are fixed within the heat exchanger closure by means of supply pipes having got loops. For conducting the hot gas the heat exchanger has got a central pipe leading out of the reactor vessel through the pod closure and having got only one point of fixation, lying in this closure. Additional advantageous designs are mentioned. (orig./PW)

  8. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    Energy Technology Data Exchange (ETDEWEB)

    Mittereder, Nick [IBACOS, Inc., Pittsburgh, PA (United States); Poerschke, Andrew [IBACOS, Inc., Pittsburgh, PA (United States)

    2013-11-01

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season.

  9. Review of Heat Transfer Augmentation Within A Plate Heat Exchanger By Different Shapes Of Ribs

    Directory of Open Access Journals (Sweden)

    A. D. Yadav

    2013-05-01

    Full Text Available Heat transfer augmentation techniques (passive, active or a combination of passive and active methods are commonly used in areas such as process industries, heating and cooling in evaporators, thermal power plants, air-conditioning equipment, refrigerators, radiators for space vehicles, automobiles, etc. Passive techniques, where inserts are used in the flow passage to augment the heat transfer rate, are advantageous compared with active techniques, because the insert manufacturing process is simple and these techniques can be easily employed in an existing heat exchanger. In design of compact heat exchangers, passive techniques of heat transfer augmentation can play an important role if a proper passive insert configuration can be selected according to the heat exchanger working condition (both flow and heat transfer conditions. In the past decade, several studies on the passive techniques of heat transfer augmentation have been reported. Twisted tapes, wire coils, ribs, fins, dimples, etc., are the most commonly used passive heat transfer augmentation tools. In the present paper, emphasis is given to works dealing with different shapes of ribs, and there arrangement because, according to recent studies, these are known to be economic heat transfer augmentation tools. The present review is organized in four different sections: circular ribs with staggered at 90º; circular ribs with staggered at 45º, triangular ribs with staggered at 90ºand triangular ribs with staggered at 45º.

  10. A new waste heat district heating system with combined heat and power (CHP) based on ejector heat exchangers and absorption heat pumps

    International Nuclear Information System (INIS)

    A new waste heat district heating system with CHP based on ejector heat exchangers and absorption heat pumps (DH-EHE) is presented to decrease heating energy consumption of existing CHP systems by recovering waste heat of exhausted steam from a steam turbine, which could also increase heat transmission capacity of the primary heating network (PHN) by decreasing temperature of the return water of existing PHN. A new ejector heat exchanger based on ejector refrigeration cycle is invented to decrease temperature of the return water of PHN to 30 °C under the designed case. DH-EHE is analyzed in terms of laws of thermodynamics and economics. Compared to conventional district heating systems with CHP (CDH), DH-EHE can decrease consumption of steam extracted from a steam turbine by 41.4% and increase heat transmission capacity of the existing PHN by 66.7% without changing the flow rate of circulating water. The heating cost of DH-EHE is 8.62 ¥/GJ less than that of CDH. Compared to CDH, the recovery period of additional investment of DH-EHE is about two years. DH-EHE shows better economic and environmental benefits, which is promising for both district heating systems for long-distance heat transmission and waste heat district heating systems. - Highlights: • Heating capacity of this new heating system increases by 41% by waste heat recovery. • Temperature of return water of the primary heating network can be reduced to 30 °C. • Heating cost of new heating system is 8.62¥/GJ less than that of conventional one. • The recovery period of additional investment of new heating system is about 2 years. • This new heating system shows better economic and environmental benefits

  11. Studi Eksperimen Analisa Performa Compact Heat Exchanger Louvered Fin Flat Tube untuk pemanfaatan Waste Energy

    Directory of Open Access Journals (Sweden)

    Taqwim Ismail

    2014-03-01

    Full Text Available Waste Heat Recovery merupakan instalasi yang digunakan untuk memanfaatkan kembali waste energy seperti exhaust gas. Penelitian dilakukan pada compact heat exchanger tipe louvered fin flat tube sebagai salah satu komponen penyusun waste heat recovery system. Eksperimen dilakukan dengan mendesain compact heat exchanger tipe louvered fin flat tube kemudian dilakukan pengujian pada compact heat exchanger yang telah didesain. Pengujian dilakukan dengan memberikan tiga variasi kecepatan putaran fan sisi exhaust gas, yaitu 0.2, 0.3, dan 0.4 m/s untuk mengetahui unjuk kerja yang berbeda dari compact heat exchanger yang telah didesain.  Hasil yang didapatkan dari studi eksperimen ini adalah dimensi dari compact heat exchanger tipe louvered fin flat tube dan beberapa parameter yang menunjukkan unjuk kerja dari compact heat exchanger seperti nilai heat transfer baik dari sisi air maupun sisi exhaust gas, effectiveness, number of transfer unit (NTU, overall heat transfer coefficient, dan  ?TLMTD dari compact heat exchanger.

  12. State-of-the-art review of heat-recovery processes. [76 references

    Energy Technology Data Exchange (ETDEWEB)

    Gambill, W.R.; Reed, W.R.

    1978-08-01

    A review was conducted of industrial heat-recovery processes and related equipment of potential benefit to coal-conversion complexes. Major categories of heat-exchange processes and equipment investigated included special shell-and-tube; periodic-flow and rotary regenerators; heat pipe arrays; direct phase contactors; steam and organic Rankine cycles for power generation from waste heat; and heat-pump applications to distillation. The importance of heat recovery and utilization in coal-conversion plants is widely recognized, as are the general problems associated with the design of the exchangers. A review of past experience in operating coal-conversion plants and of some proposed designs indicates that many flows will be in the laminar or transition regimes and that overall heat-transfer coefficients for exchangers involving at least one process stream will be low (less than or equal to 100 Btu/hr.ft/sup 2/./sup 0/F). Discussions with individuals knowledgeable in the process heat-transfer field revealed a relatively high degree of unanimity in that design of these exchangers would be more difficult than would their fabrication. Designs are based on the process and property data provided and construction materials specified by the buyer. No warranties are made concerning material lifetime or effect of fouling on performance. There is a clear need for more physical-property data (especially viscosities), improved heat-transfer correlations for multiphase streams (coal-oil and coal-water slurries, e.g.), and rates of fouling, corrosion, and erosion.

  13. Rotary heat exchangers with time varying or nonuniform inlet temperatures

    International Nuclear Information System (INIS)

    The performance of a counterflow, rotary heat exchanger operating with either transient or nonuniform inlet temperatures is investigated. The effect of transient inlet temperatures is analyzed in terms of the response of the outlet fluid temperatures to a step change in temperature of one of the inlet fluid streams. The effect of temperature nonuniformities is analyzed in terms of the change in steady-state effectiveness due to a circumferential temperature distribution in one of the inlet fluid streams. These temporal and spatial variations are explored using three different methods of analysis. An equilibrium analysis, assuming infinite heat transfer coefficients is developed from kinematic wave theory. It is used to qualitatively describe the heat transfer process and define the upper limit of performance. A finite difference model of the governing differential equations, using finite transfer coefficients, is employed to obtain a detailed numerical analysis of heat exchanger performance. Results for the complete range of matrix to fluid capacity rate ratio are presented for a balanced and symmetric regenerator. At moderate capacity rate ratios, the numerical analysis predicts unusual temporal periodicity in the transient response. An experimental analysis has also been conducted using a counterflow, parallel passage, rotary heat exchanger made from polyester film. The results are used to substantiate predictions of the numerical model

  14. Optimizing the Heat Exchanger Network of a Steam Reforming System

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh; Korsgaard, Anders Risum

    2004-01-01

    Proton Exchange Membrane (PEM) based combined heat and power production systems are highly integrated energy systems. They may include a hydrogen production system and fuel cell stacks along with post combustion units optionally coupled with gas turbines. The considered system is based on a natural gas steam reformer along with gas purification reactors to generate clean hydrogen suited for a PEM stack. The temperatures in the various reactors in the fuel processing system vary from around 1000°C to the stack temperature at 80°C. Furthermore, external heating must be supplied to the endothermic steam reforming reaction and steam must be generated. The dependence of the temperature profiles on conversion in shift reactors for gas purification is also significant. The optimum heat integration in the system is thus imperative in order to minimize the need for hot and cold utilities. A rigorous 1D stationary numerical system model was used and process integration techniques for optimizing the heat exchanger network for the reforming unit are proposed. Objective is to minimize the system cost. Keywords: Fuel cells; Steam Reforming; Heat Exchanger Network (HEN) Synthesis; MINLP.

  15. Novel Power Electronics Three-Dimensional Heat Exchanger: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, K.; Cousineau, J.; Lustbader, J.; Narumanchi, S.

    2014-08-01

    Electric drive systems for vehicle propulsion enable technologies critical to meeting challenges for energy, environmental, and economic security. Enabling cost-effective electric drive systems requires reductions in inverter power semiconductor area. As critical components of the electric drive system are made smaller, heat removal becomes an increasing challenge. In this paper, we demonstrate an integrated approach to the design of thermal management systems for power semiconductors that matches the passive thermal resistance of the packaging with the active convective cooling performance of the heat exchanger. The heat exchanger concept builds on existing semiconductor thermal management improvements described in literature and patents, which include improved bonded interface materials, direct cooling of the semiconductor packages, and double-sided cooling. The key difference in the described concept is the achievement of high heat transfer performance with less aggressive cooling techniques by optimizing the passive and active heat transfer paths. An extruded aluminum design was selected because of its lower tooling cost, higher performance, and scalability in comparison to cast aluminum. Results demonstrated a heat flux improvement of a factor of two, and a package heat density improvement over 30%, which achieved the thermal performance targets.

  16. Shape optimization of a heat exchanger with internally finned tube

    International Nuclear Information System (INIS)

    Optimization of a heat exchanger with internally finned circular tubes has been performed for three-dimensional periodically fully developed turbulent flow and heat transfer. The design variables of fin number N, fin width (d1,d2) and fin height(H) , are numerically optimized for the limiting conditions of N = 22?37, d1= 0.5?1.5 mm, d2 0.5?1.5 mm, H = 0.1?1.5. Due to the periodic boundary conditions along main flow direction, the three layers of meshes are considered. The CFD and the mathematical optimization are coupled to optimize the heat exchanger. The flow and thermal fields are predicted using the finite volume method and the optimization is carried out by using the Sequential Quadratic Programming (SQP) method which is widely used in the constrained nonlinear optimization problem

  17. New intermediate heat exchanger for loop type LMFBR

    International Nuclear Information System (INIS)

    Secondary sodium loop elimination is proposed for the loop type LMFBR with using Advanced Intermediate Heat Exchanger (AIHX) for reduction in size and cost. This heat exchanger contains primary sodium tubes, and tertiary water tubes in a tank filled with intermediate heat transfer media. A concept verifying experiment was performed with using Ga as the intermediate medium in natural convective region to low velocity forced circulation. From the experimental correlation, AIHX - steam generator was conceptually designed. In order to use Pb or Pb-Bi for intermediate medium, a thermal interaction of Pb and Pb-Bi with water was studied experimentally. Interactions ware found to be suppressed under pressurized condition of two to three bars, and possibility of intense interaction could be ruled out. (authors)

  18. New intermediate heat exchanger for loop type LMFBR

    International Nuclear Information System (INIS)

    Secondary sodium loop elimination is proposed for the loop type LMFBR with using Advanced Intermediate Heat Exchanger (AIHX) for reduction in size and cost. This heat exchanger contains primary sodium tubes and tertiary water tubes in a tank filled with intermediate heat transfer media. Figure 1 shows a comparison with a conventional loop type system. A concept verifying experiment has been performed with using Ga as the intermediate medium in natural convective region to low velocity forced circulation. From the experimental correlation, AIHX-steam generator was conceptually designed. In order to use Pb or Pb-Bi for the intermediate medium, the thermal interaction of Pb and Pb-Bi with water was studied experimentally. Interaction was sup- pressed under the pressurized condition of several bars, and the possibility of vapor explosion will be ruled out. (authors)

  19. The computational optimization of heat exchange efficiency in stack chimneys

    Energy Technology Data Exchange (ETDEWEB)

    Van Goch, T.A.J.

    2012-02-15

    For many industrial processes, the chimney is the final step before hot fumes, with high thermal energy content, are discharged into the atmosphere. Tapping into this energy and utilizing it for heating or cooling applications, could improve sustainability, efficiency and/or reduce operational costs. Alternatively, an unused chimney, like the monumental chimney at the Eindhoven University of Technology, could serve as an 'energy channeler' once more; it can enhance free cooling by exploiting the stack effect. This study aims to identify design parameters that influence annual heat exchange in such stack chimney applications and optimize these parameters for specific scenarios to maximize the performance. Performance is defined by annual heat exchange, system efficiency and costs. The energy required for the water pump as compared to the energy exchanged, defines the system efficiency, which is expressed in an efficiency coefficient (EC). This study is an example of applying building performance simulation (BPS) tools for decision support in the early phase of the design process. In this study, BPS tools are used to provide design guidance, performance evaluation and optimization. A general method for optimization of simulation models will be studied, and applied in two case studies with different applications (heating/cooling), namely; (1) CERES case: 'Eindhoven University of Technology monumental stack chimney equipped with a heat exchanger, rejects heat to load the cold source of the aquifer system on the campus of the university and/or provides free cooling to the CERES building'; and (2) Industrial case: 'Heat exchanger in an industrial stack chimney, which recoups heat for use in e.g. absorption cooling'. The main research question, addressing the concerns of both cases, is expressed as follows: 'what is the optimal set of design parameters so heat exchange in stack chimneys is optimized annually for the cases in which a stack chimney heat exchanger is used for heating or cooling applications, what is the expected performance and how do the design parameters relate to this performance'. Simulation models were developed in the BPS tool ESP-r. The most important design parameters and their relative influence on the performance indicators were analysed based on sensitivity analysis (SA). From this analysis general design guidelines were derived ('optimal set of design parameters'). A multi objective optimization of the design parameters was performed on the simulation models, using the responsive surface methods and artificial neural network capabilities of optimization environment ModEContier to speed up the iteration process. In this optimization, 'heat exchange in stack chimneys is optimized annually'. The uncertainty in the optimized results has been analysed using uncertainty analysis (UA). Finally, the appropriateness of deploying a complex, high resolution simulation has been evaluated by studying current modelling resolution selection methodology found in literature.

  20. Study on numerical and experimental heat transfer characteristics of heat exchanger with helical turbulators

    International Nuclear Information System (INIS)

    Heat exchangers have been widely used devices in the industry because of supply heat transfer between two fluids that are at different temperatures and separated by a solid wall. There are two groups: active and passive methods. The active methods requires extra external power sources, for instance, mechanical aids, surface and fluid vibration, electrostatic fields, injection or suction of fluid and jet impingement. The other is the passive methods, on the contrary, without additional external power, such as a surface coating, rough surfaces, extended surfaces, displaced enhancement devices, turbulent or swirl flow devices, coiled tubes and additives for liquids and gases. Experimental study of the heat exchangers is very useful but very expensive because of the high cost of the tools. A suitable computational fluid dynamics (CFD) code is run to compare to experimental studies, provides flow field information. Experimental analysis and three-dimensional numerical simulations for the concentric-tube heat exchanger with helical turbulators having different pitches distance were performed to reveal the effects of pitches distance on the heat transfer and pressure drop characteristics. The conclusions can be summarized; the FLUENT was applied successfully for the heat transfer and pressure drop analysis in the concentric-tube heat exchanger with helical turbulator. The numerical, experimental and empirical correlation results were in a good agreement with each others. Whereas Nu number increases with increase of Re number, the friction factor reduces. The results indicated the effective enhancement of the heat transfer performance. It can be concluded that numerical calculations provided more detailed knowledge of the heat transfer and flow distribution than experimental studies. The values of the pressure drop can be negligible, when comparing with the heat transfer enhancement. The numerical and experimental results show as a validated computational technique using in this study. The obtained results for different pitch of helical turbulators can be applied to heat exchanger designs for commercial applications. (author)

  1. VHTR engineering design study: intermediate heat exchanger program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-11-01

    The work reported is the result of a follow-on program to earlier Very High Temperature Reactor (VHTR) studies. The primary use of the VHTR is to provide heat for various industrial processes, such as hydrocarbon reforming and coal gasification. For many processes the use of an intermediate heat transfer barrier between the reactor coolant and the process is desirable; for some processes it is mandatory. Various intermediate heat exchanger (IHX) concepts for the VHTR were investigated with respect to safety, cost, and engineering design considerations. The reference processes chosen were steam-hydrocarbon reforming, with emphasis on the chemical heat pipe, and steam gasification of coal. The study investigates the critically important area of heat transfer between the reactor coolant, helium, and the various chemical processes.

  2. Simulated annealing technique to design minimum cost exchanger

    Directory of Open Access Journals (Sweden)

    Khalfe Nadeem M.

    2011-01-01

    Full Text Available Owing to the wide utilization of heat exchangers in industrial processes, their cost minimization is an important target for both designers and users. Traditional design approaches are based on iterative procedures which gradually change the design and geometric parameters to satisfy a given heat duty and constraints. Although well proven, this kind of approach is time consuming and may not lead to cost effective design as no cost criteria are explicitly accounted for. The present study explores the use of nontraditional optimization technique: called simulated annealing (SA, for design optimization of shell and tube heat exchangers from economic point of view. The optimization procedure involves the selection of the major geometric parameters such as tube diameters, tube length, baffle spacing, number of tube passes, tube layout, type of head, baffle cut etc and minimization of total annual cost is considered as design target. The presented simulated annealing technique is simple in concept, few in parameters and easy for implementations. Furthermore, the SA algorithm explores the good quality solutions quickly, giving the designer more degrees of freedom in the final choice with respect to traditional methods. The methodology takes into account the geometric and operational constraints typically recommended by design codes. Three different case studies are presented to demonstrate the effectiveness and accuracy of proposed algorithm. The SA approach is able to reduce the total cost of heat exchanger as compare to cost obtained by previously reported GA approach.

  3. HEAT TRANSFER COEFFICIENT AND FRICTION FACTOR CHARACTERISTICS OF A GRAVITY ASSISTED BAFFLED SHELL AND HEAT-PIPE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    P. Raveendiran

    2015-06-01

    Full Text Available The heat transfer coefficients and friction factors of a baffled shell and heat pipe heat exchanger with various inclination angles were determined experimentally; using methanol as working fluid and water as heat transport fluid were reported. Heat pipe heat exchanger reported in this investigation have inclination angles varied between 15o and 60o for different mass flow rates and temperature at the shell side of the heat exchanger. All the required parameters like outlet temperature of both hot and cold side of heat exchanger and mass flow rate of fluids were measured using an appropriate instrument. Different tests were performed from which condenser side heat transfer coefficient and friction factor were calculated. In all operating conditions it has been found that the heat transfer coefficient increases by increasing the mass flow rate and angle of inclination. The reduction in friction factor occurs when the Reynolds number is increased. The overall optimum experimental effectiveness of GABSHPHE has found to be 42% in all operating conditioning at ? = 45o.

  4. Heat exchangers based on low temperature heat pipes for autonomous emergency WWER cooldown systems

    International Nuclear Information System (INIS)

    The new schemes of NPP independent passive emergency reactor facility cooldown systems are considered. Nuclear power plant is considered with water-moderated energy reactor WWER (NPP with WWER). There are low-temperature heat pipes heat exchangers for decay heat rejection under conditions of complete unit long-term loss of station power as used in the emergency system. Schemes of independent systems of emergency cooldown of 'hot' reactor facility based on two-phase thermosiphons or heat pipes are presented. The new circuits of WWER NPP independent passive emergency reactor cooldown systems with low-temperature heat pipes heat exchangers under conditions of complete unit long-term de-energization are considered. The circuits of emergency reactor cooldown systems and emergency repair cooldown are presented

  5. Flow and heat-transfer at the intake of a radially symmetrical longitudinal flow heat exchanger

    International Nuclear Information System (INIS)

    At the admission section of a radially symmetrical longitudinal flow heat exchanger, cross flow of the tubes occurs. The cross flow is followed by an inclined flow, which turns over to a well-balanced longitudinal flow along the tubes. At two heat exchanger models (tube pitch S? = 1.5, S? = 2.0) the velocity distribution, the pressure-drop and the heat-transfer is determined experimentally. By the variation of the boundary-conditions, the influence of the geometry, the mass flow, the tube pitch and the position of the first spacer is shown in this investigation. Finally the experimental datas are compared with results of calculations. (orig.)

  6. Analysis of the flow structure and heat transfer in a vertical mantle heat exchanger

    DEFF Research Database (Denmark)

    Knudsen, Søren; Morrison, GL; Behnia, M; Furbo, Simon

    2005-01-01

    The flow structure inside the inner tank and inside the mantle of a vertical mantle heat exchanger was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the inner tank and in the mantle were measured using a Particle Image Velocimetry (PIV) system. A Computational Fluid Dynamics (CFD) model of the vertical mantle heat exchanger was also developed for a detailed evaluation of the heat flux at the mantle wall and at the tank wall. ...

  7. Active heat exchange system development for latent heat thermal energy storage

    Science.gov (United States)

    Lefrois, R. T.; Mathur, A. K.

    1980-01-01

    Five tasks to select, design, fabricate, test and evaluate candidate active heat exchanger modules for future applications to solar and conventional utility power plants were discussed. Alternative mechanizations of active heat exchange concepts were analyzed for use with heat of fusion phase change materials (PCMs) in the temperature range of 250 to 350 C. Twenty-six heat exchange concepts were reviewed, and eight were selected for detailed assessment. Two candidates were selected for small-scale experimentation: a coated tube and shell heat exchanger and a direct contact reflux boiler. A dilute eutectic mixture of sodium nitrate and sodium hydroxide was selected as the PCM from over 50 candidate inorganic salt mixtures. Based on a salt screening process, eight major component salts were selected initially for further evaluation. The most attractive major components in the temperature range of 250 to 350 C appeared to be NaNO3, NaNO2, and NaOH. Sketches of the two active heat exchange concepts selected for test are given.

  8. Economic evaluation of an industrial high temperature lift heat transformer

    International Nuclear Information System (INIS)

    Heat transformers are closed cycle thermodynamic systems which allow waste heat energy to be recycled by increasing its temperature. TAHTs (Triple stage heat transformers) are capable of increasing the temperature of supplied heat by up to ?140 °C. This paper attempts to analyse the industrial attractiveness of such cycles by conducting a case study on the potential installation of a TAHT in a small Irish oil refinery, examining various different natural gas price scenarios. The choice of waste heat energy being recycled is shown to be pivotal to the success or failure of the installation. TAHTs are demonstrated to show most benefits when applied to waste heat streams with large quantities of latent heat. The usage of more efficient and cost effective equipment instead of conventional shell and tube heat exchangers within the system dramatically increases the potential economic return from the heat transformer. At the present gas price, the capital cost of (conventional) equipment is too high to make this investment financially attractive for the current industrial example, with excessive payback periods predicted. However a return to natural gas price levels observed in 2008 and 2009 would make the unit economically viable. - Highlights: • Economic viability of a triple stage heat transformer in an oil refinery is examined. • Energy Price, waste heat stream type and heat transfer equipment have largest effect. • Waste heat quantity and form are important in determining acceptable payback periods. • Rise of natural gas prices to 2008 levels makes investment feasible in most scenarios

  9. A comparative analysis of heat transfer and pressure drop in a plate heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Kariem, A.H.; Fletcher, L.S.

    1999-07-01

    This paper presents an extensive comparison of experimental studies and results obtained from theoretical models of plate heat exchangers over the past four decades. Most of the previous experimental research focused on the effect of plate geometry on heat transfer and pressure drop and generally included a correlation for experimental data. While there have been a number of correlations developed for plate heat exchangers, very few of the studies have considered the effect of the corrugation angle, {beta}, on the overall performance. Further, there is a larger body of experimental performance data available now than in the past. Therefore, the goals of this study are to review the various investigations of plate heat exchangers, identify and summarize the results, and develop new correlations are functions of Re and {beta}.

  10. Mixed salts fouling of plate heat exchanger during convective heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Zhi-ming, X.; Xing, H.; Jin-sheng, G.; Zhong-bin, Z. [Northeast China Dianli Univ., Jilin (China)

    2010-07-01

    Fouling in a plate heat exchanger occurs when solid or soft mud material accumulates on the surface of heat transfer equipment and comes into contact with the fluid. This laboratory study investigated the fouling characteristics of mixed salt solutions in a plate heat exchanger. First, the fouling characteristic of individual solutions of CaSO4, Ca3(PO4)2 and CaCO3 were studied, followed by the fouling characteristic of mixed solutions of these salts at the same experimental parameters, notably solution inlet temperature and hydrodynamics of the system. The results showed that the fouling of different mixed solutions are very different. Scanning electron microscopy was used to quantify deposit characteristics on the heat exchange surface. This study provided a foundation for further research involving mixed salts fouling. 10 refs., 1 tab., 10 figs.

  11. Subscale Water Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Sheth, Rubik; Hansen, Scott

    2016-01-01

    Supplemental heat rejection devices are required in many spacecraft as the radiators are not sized to meet the full heat rejection demand. One means of obtaining additional heat rejection is through the use of phase change material heat exchangers (PCM HX's). PCM HX's utilize phase change to store energy in unfavorable thermal environments (melting) and reject the energy in favorable environments (freezing). Traditionally, wax has been used as a PCM on spacecraft. However, water is an attractive alternative because it is capable of storing about 40% more energy per unit mass due to its higher latent heat of fusion. The significant problem in using water as a PCM is its expansion while freezing, leading to structural integrity concerns when housed in an enclosed heat exchanger volume. Significant investigation and development has taken place over the past five years to understand and overcome the problems associated with water PCM HX's. This paper reports on the final efforts by Johnson Space Center's Thermal Systems Branch to develop a water based PCM HX. The test article developed and reported on is a subscale version of the full-scale water-based PCM HX's constructed by Mezzo Technologies. The subscale unit was designed by applying prior research on freeze front propagation and previous full-scale water PCM HX development. Design modifications to the subscale unit included use of urethane bladder, decreased aspect ratio, perforated protection sheet, and use of additional mid-plates. Testing of the subscale unit was successful and 150 cycles were completed without fail.

  12. Experimental Investigation of Ice Phase Change Material Heat Exchangers

    Science.gov (United States)

    Leimkuehler, Thomas O.; Stephan, Ryan A.

    2012-01-01

    Phase change materials (PCM) may be useful for spacecraft thermal control systems that involve cyclical heat loads or cyclical thermal environments. Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. This can result in a decreased turndown ratio for the radiator and a reduced system mass. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents an overview of the results of this investigation from the past three years.

  13. Heat transfer processes in parallel-plate heat exchangers of thermoacoustic devices – numerical and experimental approaches

    OpenAIRE

    Jaworski, Artur J.; Piccolo, Antonio

    2012-01-01

    This paper addresses the issues of heat transfer in oscillatory flow conditions, which are typically found in thermoacoustic devices. The analysis presented concerns processes taking place in the individual “channels” of the parallel-plate heat exchangers (HX), and is a mixture of experimental and numerical approaches. In the experimental part, the paper describes the design of experimental apparatus to study the thermal-fluid processes controlling heat transfer in thermoacoustic ...

  14. Analysis of heat flow and "channelling" in a scraped-surface heat exchanger

    OpenAIRE

    Fitt, AD; Lee, MEM; PLEASE, CP

    2007-01-01

    Scraped-surface heat exchangers (SSHEs) are widely used in industries that manufacture and thermally process fluids; in particular, the food industry makes great use of such devices. Current understanding of the heat flow and fluid dynamics in SSHEs is predominantly based on empirical evidence. In this study a theoretical approach (based on asymptotic analysis) is presented for analysing both the flow and heat transfer in an idealised SSHE (a cylindrical annulus) for Newtonian fluids. The the...

  15. Modeling heat efficiency, flow and scale-up in the corotating disc scraped surface heat exchanger

    DEFF Research Database (Denmark)

    Friis, Alan; Szabo, Peter; Karlson, Torben

    2002-01-01

    A comparison of two different scale corotating disc scraped surface heat exchangers (CDHE) was performed experimentally. The findings were compared to predictions from a finite element model. We find that the model predicts well the flow pattern of the two CDHE's investigated. The heat transfer performance predicted by the model agrees well with experimental observations for the laboratory scale CDHE whereas the overall heat transfer in the scaled-up version was not in equally good agreement. Th...

  16. Multi-channel heat exchanger-reactor using arborescent distributors: A characterization study of fluid distribution, heat exchange performance and exothermic reaction

    International Nuclear Information System (INIS)

    A multi-functional heat exchanger-reactor comprising arborescent (tree-like) distributors and collector, 16 mini-channels in parallel and T-mixers is introduced in this paper. Flow distribution property, pressure drop and heat exchange performance of proposed heat exchanger-reactor are tested and discussed. Firstly, flow distribution uniformity is characterized by CFD simulation and then qualitatively confirmed by visualization experiment. Results show that for total flowrates ranging from 5 mL s?1 to 20 mL s?1, good distribution uniformity is obtained, with maximum flowrate deviation less than 10%. Then, experiments of heat exchange between hot and cold water are carried out. High values of overall heat transfer coefficient ranging from 2000 to 5000 W m?2 °C?1 are obtained under our working conditions. The volumetric heat exchange capability (UA/V) is found to be around 200 kW m?3 °C?1, showing a high heat exchange capability with compact design. The roles of end-effect and non-established flow are discussed and are supposed to be responsible for efficient heat transfer. Finally a typical fast exothermic reaction, neutralization between acid and basic solutions, is carried out to test the thermal control capability of the studied heat exchanger-reactor. Results indicate that isothermal condition could be realized by circulating appropriate flowrate of coolant through the heat exchanger. The design of heat exchanger-reactor with arborescent distributor and collector makes possible the application of multi-channel systems. This paper introduces systematically the successful integration of heat exchanger-reactor and its performance evaluation. - Highlights: • A design of mini scale, multichannel heat exchanger-reactor is proposed. • Uniform distribution for parallel channels is obtained with arborescent structure. • High global heat exchange coefficient is found experimentally. • Thermal control capability is verified with an exothermic reaction

  17. Heat transfer enhancement utilizing chaotic advection in coiled tube heat exchangers

    International Nuclear Information System (INIS)

    The present study introduced a novel chaotic coil heat exchanger utilizing chaotic advection to enhance heat transfer at low Reynolds numbers. Using Lagrangian tracing of fluid particles and their sensitivity to the initial condition and fluid element calculations, it was shown that mixing was significantly increased due to the chaotic advection. Heat transfer performance in the coil and chaotic configuration was visualized by isotherms contours of temperature in different cross-sections. In order to evaluate the hydraulic-thermal performance of heat exchangers, Nusselt numbers and friction factor were calculated and comparison was made between the two configurations. Numerical calculations revealed that the chaotic coil configuration displayed heat transfer enhancement of 4–26% relative to the fully developed Nusselt numbers in the regular coil with only 5–8% change in the pressure drop. - Highlights: • A novel chaotic coil heat exchanger is introduced in this study. • It is shown that mixing is increased significantly due to the altered chaotic advection mechanism. • By increasing the Reynolds number, results show impressive enhancement in chaotic heat exchanger performance. • Reorientation in chaotic flow leads to higher pressure loss than that in the normal helical coil

  18. Major heat exchanger performance in Ontario Hydro-operated CANDU nuclear generating stations

    International Nuclear Information System (INIS)

    The performance of heat exchangers is described in terms of their impact on the unit in the form of forced outages and deratings as well as incapability due to scheduled outages. Some major problems with heat exchangers are highlighted. (auth)

  19. Optimal Allocation of Heat Exchanger Inventory Associated with Fixed Power Output or Fixed Heat Transfer Rate Input

    OpenAIRE

    Feidt, Michel; COSTEA, M.; K. Le Saos; S. Petrescu

    2002-01-01

    The purpose of this study is to determine the optimal distribution of the heat transfer surface area or conductance among the Stirling engine heat exchangers when the minimum of the total heat transfer surface area of the heat exchangers is sought. The optimization procedure must fulfill one of the following constraints: (1) fixed power output of the engine, (2) fixed heat transfer rate available at the source, or (3) fixed power output and heat transfer rate at the source. Internal and exter...

  20. Evaluation of heat exchange performance for air-cooler in HTTR

    International Nuclear Information System (INIS)

    In High Temperature Engineering Test Reactor (HTTR) of 30MW, the generated heat at reactor core is finally dissipated at the air-cooler (ACL) by way of the heat exchangers of the primary pressurized water cooler and the intermediate heat exchanger. To remove generated hear at reactor core and to hold reactor inlet coolant temperature to specified temperature, heat exchangers in main cooling system of HTTR should have designed heat exchange performance. In this report, heat exchange performance for ACL in main cooling system is evaluated with previous operation data, and evaluated values are compared with designed value. Moreover, heat exchange performance at full power operation is estimated for the air temperature. As the result, ACL has heat exchange performance removing generated heat at reactor core under the ACL inlet air temperature of 33 degC. (author)

  1. Heat exchange intensification in evaporators of the ship refrigerating machinery with application of belt turbulence promoters

    Directory of Open Access Journals (Sweden)

    Proshkin Oleg Vladimirovich

    2009-10-01

    Full Text Available The search of methods of intensification of the heat exchange process at boiling in evaporators of refrigerators is made to decrease mass-dimension pa-rameters of heat exchange equipment. The heat exchange process at boiling within belt six-ray turbulence promoter, made as a six-ray star is investigated. The results of the model experiment for hydrodynamics and heat exchange of two-phase flow observation are presented.

  2. Optimum Design of Heat Exchangers Networks Part -I: Software Development

    International Nuclear Information System (INIS)

    In this paper, we have developed a computerized framework for Heat Exchanger Network Synthesis (HENS) with optimality conditions of achieving the least operating and capital cost. The framework of HEN design involves the development three-computer programs, which applied sequentially to design an optimum HEN. The first program Automatic Minimum Utilities [AMU] developed for automatic formulation of LP equations, these equations can be solved by the optimization software [LINDO] to predict minimum hot and cold utilities. The second program based on Vertical Heat Transfer Method [VHTM] for predicting minimum overall heat transfer area and defining the optimum ?bTmin. The third program [Mod.RESHEX] developed for targeting of heat transfer area and automatic synthesis of HEN. This program represents the modifications and development of RESHEX method to overcome the design defects, which appeared on original RESHEX applications

  3. Fluidized bed heat exchanger with water cooled air distributor and dust hopper

    Science.gov (United States)

    Jukkola, Walfred W. (Westport, CT); Leon, Albert M. (Mamaroneck, NY); Van Dyk, Jr., Garritt C. (Bethel, CT); McCoy, Daniel E. (Williamsport, PA); Fisher, Barry L. (Montgomery, PA); Saiers, Timothy L. (Williamsport, PA); Karstetter, Marlin E. (Loganton, PA)

    1981-11-24

    A fluidized bed heat exchanger is provided in which air is passed through a bed of particulate material containing fuel. A steam-water natural circulation system is provided for heat exchange and the housing of the heat exchanger has a water-wall type construction. Vertical in-bed heat exchange tubes are provided and the air distributor is water-cooled. A water-cooled dust hopper is provided in the housing to collect particulates from the combustion gases and separate the combustion zone from a volume within said housing in which convection heat exchange tubes are provided to extract heat from the exiting combustion gases.

  4. Heat exchanger with several parallel tubes with fins attached

    International Nuclear Information System (INIS)

    The tubes of the heat exchanger convey a first fluid. They are provided with ripple shaped sheet metal fins, which are distributed over the tubes length. A second fluid flows in the remaining spaces between the fins. The corrugations on each fin are only on the outer part of which immediately surrounds the corresponding tube and extend towards the neighbouring tube in the same row. The corrugations are free from perforations. The pressure loss of the second fluid is thereby significantly reduced and maintains good heat transfer properties. 7 figs

  5. Solid-State Additive Manufacturing for Heat Exchangers

    Science.gov (United States)

    Norfolk, Mark; Johnson, Hilary

    2015-03-01

    Energy densities in devices are increasing across many industries including power generation, high power electronics, manufacturing, and automotive. Increasingly, there is a need for very high efficiency thermal management devices that can pull heat out of a small area at higher and higher rates. Metal additive manufacturing (AM) technologies have the promise of creating parts with complex internal geometries required for integral thermal management. However, this goal has not been met due to constraints in fusion-based metal 3D printers. This work presents a new strategy for metal AM of heat exchangers using an ultrasonic sheet lamination approach.

  6. Investigations into the dynamic behaviour of finned tube heat exchangers

    International Nuclear Information System (INIS)

    Atmospheric disturbances due to thunder storms, side wind effects on the shell or ground inversion can impair the heat dissipation of a cooling tower. These effects react on the overall power plant, which is reflected in the varied electrical output. This uncontrolled behaviour has been investigated in detail for the case of a boiling water reactor nuclear power station with indirect natural draught dry cooling and compared with controlled performance. A computer model, which has been checked out by means of experimental investigations on three different types of tube, is presented to describe the dynamic behaviour of finned tube heat exchangers. (orig.)

  7. Heat exchangers and thermal energy storage concepts for the off-gas heat of steelmaking devices

    International Nuclear Information System (INIS)

    The fluctuating thermal emissions of electric arc furnaces require energy storage systems to provide downstream consumers with a continuous amount of thermal energy or electricity. Heat recovery systems based on thermal energy storage are presented. A comparison of different thermal energy storage systems has been performed. For the purpose, suitable heat exchangers for the off-gas heat have been developed. Dynamic process simulations of the heat recovery plants were necessary to check the feasibility of the systems and consider the non-steady-state off-gas emissions of the steelmaking devices. The implementation of a pilot plant into an existing off-gas duct of an electric arc furnace was required to check the real behavior of the heat exchanger and determine suitable materials in view of corrosion issues. The pilot plant is presented in this paper.

  8. Comprehensive approaches for reliable assessment of performance of heat exchangers

    International Nuclear Information System (INIS)

    In this paper, an overview on the use of various nondestructive testing (NDT) techniques for inspection of heat exchangers is given. The developmental efforts made at the author's laboratory and a case study describing failure of a heat exchanger are also discussed. Despite utmost care taken during pre-service and in-service NDT inspections, failures do take place due to deficiency in design, improper choice of materials, inadequate coverage of inspection and more importantly, unanticipated operating conditions. Systematic failure analysis, through the use of in-situ metallography and other means, helps in identifying the root cause for the failure. Such investigations are also provide valuable inputs for recommending remedial measures to prevent recurrence of such failure

  9. The root caused analysis of leakaged heat exchanger tube

    International Nuclear Information System (INIS)

    AISI type 316L stainless steel was used as a heat exchanger tube material in an inter-cooler column. After less than a year of operation, severe corrosion failures occurred and a transverse opening leakage was observed on one of the heat exchanger tubes. The failed tube was carefully analyzed using various metallurgical laboratory equipments. The root cause of the tube leakage was believed due to the presence of horizontal micro and macro pores as a hydrogen gas entrapment during casting of the parent ingot. The overlapped and gaping pores formed notch on the shell side of the tube surface, and it increasingly evident when the use of a high-energy water-jet and metal brush as cleaning procedure results in an establishment of pitting type local-action corrosion cells penetrated the tube wall. As a result, corrosive fluid in the tube side dissolved into the cooling water, accelerating the corrosion process.

  10. Horizontal Heat Exchanger Design and Analysis for Passive Heat Removal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Vierow, Karen

    2005-08-29

    This report describes a three-year project to investigate the major factors of horizontal heat exchanger performance in passive containment heat removal from a light water reactor following a design basis accident LOCA (Loss of Coolant Accident). The heat exchanger studied in this work may be used in advanced and innovative reactors, in which passive heat removal systems are adopted to improve safety and reliability The application of horizontal tube-bundle condensers to passive containment heat removal is new. In order to show the feasibility of horizontal heat exchangers for passive containment cooling, the following aspects were investigated: 1. the condensation heat transfer characteristics when the incoming fluid contains noncondensable gases 2. the effectiveness of condensate draining in the horizontal orientation 3. the conditions that may lead to unstable condenser operation or highly degraded performance 4. multi-tube behavior with the associated secondary-side effects This project consisted of two experimental investigations and analytical model development for incorporation into industry safety codes such as TRAC and RELAP. A physical understanding of the flow and heat transfer phenomena was obtained and reflected in the analysis models. Two gradute students (one funded by the program) and seven undergraduate students obtained research experience as a part of this program.

  11. Optimal Allocation of Heat Exchanger Inventory Associated with Fixed Power Output or Fixed Heat Transfer Rate Input

    Directory of Open Access Journals (Sweden)

    M. Costea

    2002-03-01

    Full Text Available The purpose of this study is to determine the optimal distribution of the heat transfer surface area or conductance among the Stirling engine heat exchangers when the minimum of the total heat transfer surface area of the heat exchangers is sought. The optimization procedure must fulfill one of the following constraints: (1 fixed power output of the engine, (2 fixed heat transfer rate available at the source, or (3 fixed power output and heat transfer rate at the source. Internal and external irreversibilities of the Stirling engine are considered. An analytic approach, when heat transfer occurs at small temperature differences at the heat reservoirs, provides several restrictions with regard to variables of the model. A sensitivity analysis of the minimum of the total heat transfer surface area of the heat exchangers with respect to these variables and parameters is presented. The results show optimal temperatures of the working fluid and optimum allocation of heat exchanger inventory.

  12. Eddy current detection of corrosion damage in heat exchanger tubes

    International Nuclear Information System (INIS)

    Eddy current is often the most effective nondestructive test method available for in-service inspection of small bore tubing in heat exchangers. The basic principles, advantages and shortcomings of the technique are outlined. Typical eddy current indications from corrosion-related defects such as stress corrosion cracks, pitting and tube denting under support plates are presented. Eddy current signals from features such as magnetite deposits and ferromagnetic inclusions which might be mistaken for defects are also discussed. (auth)

  13. Holding element for the tubes of a heat exchanger

    International Nuclear Information System (INIS)

    The holding element is arranged in a spacer grid having openings which receive each one a tube of the heat exchanger and which allow the coolant to flow through them around the tubes. It comprises a ring fastener on the plate defining with the tube a regular annular space for the said coolant, this ring being prolongated by at least three elastic plates symmetrically inclined to bear upon the tube and hold it in the opening axis

  14. Reliability, availability and maintenance optimisation of heat exchanger networks

    OpenAIRE

    Sikos, László; Klemeš, Ji?í

    2009-01-01

    Abstract A new methodology is proposed to use comprehensive up-to-date commercial software tools for Heat Exchanger Network (HEN) reliability modelling and optimisation. The idea behind this proposal is that to apply the combination of specific HEN optimisation and reliability software packages has several advantages over the commonly used approach. There is a variety of features that need to be taken into account to choose the right software tool. The HEN design has a significant ...

  15. Investigation into fouling factor in compact heat exchanger

    OpenAIRE

    Masoud Asadi; Ramin Haghighi Khoshkhoo

    2013-01-01

    Fouling problems cannot be avoided in many heat exchanger operations, and it is necessary to introduce defensive measures to minimize fouling and the cost of cleaning. The fouling control measures used during either design or operation must be subjected to a thorough economic analysis, taking into consideration all the costs of the fouling control measures and their projected benefits in reducing costs due to fouling. Under some conditions, nearly asymptotic fouling resistances can be obtaine...

  16. Analysis of Fouling Resistance in Safety-Related Heat Exchangers

    International Nuclear Information System (INIS)

    As a part of nuclear safety activities, developed countries have performed Periodic Safety Review (PSR) to verify and improve the safety of operating Nuclear Power Plants (NPPs). In 1999, it was decided by the Korean Atomic Energy Safety Committee to adopt the PSR program. PSR is officially legislated in 2001 as a 10-year-basis safety evaluation process. Since the first tentative application of PSR for Gori Unit 1 in 2000, it is now progressing well. Generally PSR assesses the cumulative effects of plant ageing and plant modifications, operating experience, technical developments and site aspects. The reviews include an assessment of plant design and operation against current safety standards and practices. After reviewing activities, safety is enhanced by implementing the corrective actions and/or safety improvements. When a PSR was performed in Gori Units 3-4, several safety-related heat exchangers in the Reactor Coolant System (RCS) such as a letdown heat exchanger were pointed out as the components necessitating a corrective action which is the analysis of fouling resistance. The fouling resistance is used as an important parameter to evaluate the safety as well as the economics of heat exchangers. However it is difficult to develop a credible analysis procedure due to considerable discrepancy between normal operating conditions and design conditions. This issue was identified while we were conducting a study in KNICS (Korea Nuclear I and C System) R and D program. We might be able to guess other NPPs in Korea are likely to have the same issue. This paper involves the characteristics of the safety related heat exchangers and the methodology to develop the analysis procedure

  17. Development of a heat exchanger root-cause analysis methodology

    International Nuclear Information System (INIS)

    The objective of this work is to determine a generic methodology for approaching the accurate identification of the root cause of component failure. Root-cause determinations are an everyday challenge to plant personnel, but they are handled with widely differing degrees of success due to the approaches, levels of diagnostic expertise, and documentation. The criterion for success is simple: If the root cause of the failure has truly been determined and corrected, the same causal failure relationship will not be demonstrated again in the future. The approach to root-cause analysis (RCA) element definition was to first selectively choose and constrain a functionally significant component (in this case a component cooling water to service water heat exchanger) that has demonstrated prevalent failures. Then a root cause of failure analysis was performed by a systems engineer on a large number of actual failure scenarios. The analytical process used by the engineer was documented and evaluated to abstract the logic model used to arrive at the root cause. For the case of the heat exchanger, the actual root-cause diagnostic approach is described. A generic methodology for the solution of the root cause of component failure is demonstrable for this general heat exchanger sample

  18. All-metal, compact heat exchanger for space cryocoolers

    Science.gov (United States)

    Swift, Walter L.; Valenzuela, Javier; Sixsmith, Herbert

    1990-11-01

    This report describes the development of a high performance, all metal compact heat exchanger. The device is designed for use in a reverse Brayton cryogenic cooler which provides five watts of refrigeration at 70 K. The heat exchanger consists of a stainless steel tube concentrically assembled within a second stainless steel tube. Approximately 300 pairs of slotted copper disks and matching annular slotted copper plates are positioned along the centerline axis of the concentric tubes. Each of the disks and plates has approximately 1200 precise slots machined by means of a special electric discharge process. Positioning of the disk and plate pairs is accomplished by means of dimples in the surface of the tubes. Mechanical and thermal connections between the tubes and plate/disk pairs are made by solder joints. The heat exchanger assembly is 9 cm in diameter by 50 cm in length and has a mass of 10 kg. The predicted thermal effectiveness is greater than 0.985 at design conditions. Pressure loss at design conditions is less than 5 kPa in both fluid passages. Tests were performed on a subassembly of plates integrally soldered to two end headers. The measured thermal effectiveness of the test article exceeded predicted levels. Pressure losses were negligibly higher than predictions.

  19. Acoustic pulsations and vibratory stresses in heat exchangers

    International Nuclear Information System (INIS)

    The flow of a heat-bearing fluid in a heat exchanger causes the loosening of nonstreamlined obstacles which it encounters. The effect is simultaneously to produce a mechanical excitation of these obstacles and to generate fluctuations of pressure downstream from them. The high Reynolds numbers attained in heat exchangers mean that the excitatory stresses are random, and the estimation of the mechanical stresses produced necessitates the use of statistical methods. The danger of excitation may be reduced by the use of partitions or screens. Pressure pulsations generated by obstacles are not greatly influenced by mechanical vibrations of the obstacles so long as the amplitude of such vibrations remains low. On the other hand. The proximity of partitions and coincidences with acoustic resonances sometimes impose a synchronization of pulsations and consequently an increase in amplitude. These acoustic pulsations are propagated in the flow and create mechanical vibrations on the sides of the exchanger. These vibrations may in some cases reach substantial magnitudes at points far removed from the obstacles constituting the source of excitation

  20. Utilization of Porous Media for Condensing Heat Exchangers

    Science.gov (United States)

    Tuan, George C.

    2006-01-01

    The use of porous media as a mean of separating liquid condensate from the air stream in condensing heat exchangers has been explored in the past inside small plant growth chambers and in the Apollo Command Module. Both applications used a cooled porous media made of sintered stainless steel to cool and separate condensation from the air stream. However, the main issues with the utilization of porous media in the past have been the deterioration of the porous media over long duration, such as clogging and changes in surface wetting characteristics. In addition, for long duration usage, biofilm growth from microorganisms on the porous medial would also be an issue. In developing Porous Media Condensing Heat Exchangers (PMCHX) for future space applications, different porous materials and microbial growth control methods will need to be explored. This paper explores the work performed at JSC and GRC to evaluate different porous materials and microbial control methods to support the development of a Porous Media Condensing Heat Exchanger. It outlines the basic principles for designing a PMCHX and issues that were encountered and ways to resolve those issues. The PMCHX has potential of mass, volume, and power savings over current CHX and water separator technology and would be beneficial for long duration space missions.

  1. Fouling of HVAC fin and tube heat exchangers

    International Nuclear Information System (INIS)

    Fin and tube heat exchangers are used widely in residential, commercial and industrial HVAC applications. Invariably, indoor and outdoor air contaminants foul these heat exchangers. This fouling can cause decreased capacity and efficiency of the HVAC equipment as well as indoor air quality problems related to microbiological growth. This paper describes laboratory studies to investigate the mechanisms that cause fouling. The laboratory experiments involve subjecting a 4.7 fins/cm (12 fins/inch) fin and tube heat exchanger to an air stream that contains monodisperse particles. Air velocities ranging from 1.5-5.2 m/s (295 ft/min-1024 ft/min) and particle sizes from 1-8.6(micro)m are used. The measured fraction of particles that deposit as well as information about the location of the deposited material indicate that particles greater than about 1(micro)m contribute to fouling. These experimental results are used to validate a scaling analysis that describes the relative importance of several deposition mechanisms including impaction, Brownian diffusion, turbophoresis, thermophoresis, diffusiophoresis, and gravitational settling. The analysis is extended to apply to different fin spacings and particle sizes typical of those found in indoor air

  2. Modeling of Sulfuric Acid Condensation on Heat Exchanger Cooling Fins

    Science.gov (United States)

    Li, Xiaobai; Cook, David

    2011-11-01

    Sulfuric acid corrosion on metallic heat exchanger cooling fins can cause serious blockage problem and stop the normal operation of heat exchangers. Corrosion rates are strongly dependent on surface film pH value. Therefore, a multi-physics computational framework was developed to predict the liquid film formed on solid surface and the pH distribution. Such a model can be used for better understanding of acid condensation from multi-species system. In this work, first, from S to H2SO4, formation of sulfuric acid in gas phase during combustion and cooling process was investigated with detailed chemistry mechanisms. The amount of SO2 and SO3 that plays important role in acid condensation process was calculated. Then, multi-component condensation process was modeled to produce a liquid film of acid and water solution condensed on solid surface that has low temperature. pH value was obtained based on the concentration of the acid. The above work provides critical information for corrosion analysis for heat exchangers.

  3. Design experience with liquid-to-gas heat exchanger using finned heat pipes

    International Nuclear Information System (INIS)

    Heat pipes are high capacity heat transfer devices. Therefore, many studies have been carried out on their theory and application in liquid-gas heat exchangers and radiators. In this present study, a heat exchanger composed of 18 thermosyphones ( heat pipes without wicks) arranged in two rows with staggered configuration was constructed. Heat was absorbed by lower part of the tube from hot water and removed from upper part of the tube by air stream. Analysis showed that the boiling limit is the lowest limit. Since the capacity of each thermosyphone is lower than this limit, it is assured that the designed thermosyphones operate securely at the design condition. Calculations showed that they are capable of transferring 1908 watts heat from a hot water with 80 degree centigrade temperature and 6 liters per minute flow. Experimental results approved a capacity of 1730 watts. Comparison of the two mentioned values indicates the satisfactory design and construction. Theoretical and experimental values of heat transfer coefficient of inside and outside of the condensing part of the tube are in good agreement. The inside heat transfer coefficient of the used heat pipes was 7900 w/m 2.K while this value is 230 for a similar metallic tube

  4. Investigation of the thermal efficiency of a staggered elliptic-tube heat exchanger for aeroengine applications

    OpenAIRE

    Kritikos, K; Albanakis, C.; Missirlis, D.; Vlahostergios, Z.; Goulas, A; Storm, P

    2009-01-01

    Abstract In this paper, a numerical investigation of the thermal performance of a heat exchanger designed for aero engine applications is performed with the use of computational fluid dynamics (CFD). For this purpose, the exact geometry of the heat exchanger was modeled, and additionally the use of a porous medium methodology was adopted. For the latter the behaviour of the heat exchanger was described by experimentally derived pressure drop and heat transfer laws. The heat transfe...

  5. Heat Transfer and Pressure Drop Characteristics in Straight Microchannel of Printed Circuit Heat Exchangers

    Directory of Open Access Journals (Sweden)

    Jang-Won Seo

    2015-05-01

    Full Text Available Performance tests were carried out for a microchannel printed circuit heat exchanger (PCHE, which was fabricated with micro photo-etching and diffusion bonding technologies. The microchannel PCHE was tested for Reynolds numbers in the range of 100?850 varying the hot-side inlet temperature between 40 °C–50 °C while keeping the cold-side temperature fixed at 20 °C. It was found that the average heat transfer rate and heat transfer performance of the countercurrrent configuration were 6.8% and 10%?15% higher, respectively, than those of the parallel flow. The average heat transfer rate, heat transfer performance and pressure drop increased with increasing Reynolds number in all experiments. Increasing inlet temperature did not affect the heat transfer performance while it slightly decreased the pressure drop in the experimental range considered. Empirical correlations have been developed for the heat transfer coefficient and pressure drop factor as functions of the Reynolds number.

  6. Fault Detection in a Heat Exchanger, Comparative Analysis between Dynamic Principal Component Analysis and Diagnostic Observers / Detección de fallas en un intercambiador de calor, análisis comparativo entre análisis de componentes principales dinámico y observadores de diagnóstico

    Scientific Electronic Library Online (English)

    Juan C., Tudón Martínez; Rubén, Morales Menéndez; Ricardo A., Ramírez Mendoza; Luis E., Garza Castañón; Adriana, Vargas Martínez.

    2011-03-01

    Full Text Available El artículo presenta una comparación entre dos métodos de detección de fallas, Análisis de Componentes Principales Dinámico (DPCA por sus siglas en inglés) y Observadores de Diagnóstico (DO por sus siglas en inglés), bajo los mismos datos experimentales extraídos de un intercambiador de calor indust [...] rial de tubo y coraza. El análisis comparativo muestra las propiedades de detección de ambos métodos cuando sensores y/o actuadores fallan en línea, incluyendo fallas múltiples. Para ambos métodos se definen métricas similares: robustez, tiempo de detección, capacidad de aislamiento y explicación de propagación de fallas, tasa de falsas alarmas y capacidad de identificar fallas múltiples. Los resultados experimentales muestran las ventajas y desventajas de ambos métodos. DO detecta más rápido las fallas de sensores y actuadores, presenta menor tasa de falsas alarmas y puede aislar fallas múltiples. DPCA requiere menor esfuerzo de entrenamiento; sin embargo, no puede identificar 2 o más fallas secuenciales. Abstract in english A comparison between the Dynamic Principal Component Analysis (DPCA) method and a set of Diagnostic Observers (DO) under the same experimental data from a shell and tube industrial heat exchanger is presented. The comparative analysis shows the detection properties of both methods when sensors and/o [...] r actuators fail online, including scenarios with multiple faults. Similar metrics are defined for both methods: robustness, quick detection, isolability capacity, explanation facility, false alarm rates and multiple faults identifiability. Experimental results show the principal advantages and disadvantages of both methods. DO showed quicker detection for sensor and actuator faults with lower false alarm rate. Also, DO can isolate multiple faults. DPCA required a minor training effort; however, it can not identify two or more sequential faults.

  7. Thermal energy storage heat exchanger: Molten salt heat exchanger design for utility power plants

    Science.gov (United States)

    Ferarra, A.; Yenetchi, G.; Haslett, R.; Kosson, R.

    1977-01-01

    Sizing procedures are presented for latent heat thermal energy storage systems that can be used for electric utility off-peak energy storage, solar power plants and other preliminary design applications.

  8. Heat Exchanger Ranking Program Using Genetic Algorithm and ?-NTU Method for Optimal Design

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soon Ho; Kim, Minsung; Ha, Man Yeong; Park, Sang-Hu; Min, June Kee [Pusan National University, Busan (Korea, Republic of)

    2014-11-15

    Today, computational fluid dynamics (CFD) is widely used in industry because of the availability of high performance computers. However, full-scale analysis poses problems owing to the limited resources and time. In this study, the performance and optimal size of a heat exchanger were calculated using the effectiveness-number of transfer units (?-NTU) method and a database of characteristics heat exchanger. Information about the geometry and performance of various heat exchangers is collected, and the performance of the heat exchanger is calculated under the given operating conditions. To determine the optimal size of the heat exchanger, a Genetic Algorithm (GA) is used, and MATLAB and REFPROP are used for the calculation.

  9. Specialists' meeting on heat exchanging components of gas-cooled reactors

    International Nuclear Information System (INIS)

    The objective of the Meeting sponsored by IAEA was to provide a forum for the exchange and discussion of technical information related to heat exchanging and heat conducting components for gas-cooled reactors. The technical part of the meeting covered eight subjects: Heat exchanging components for process heat applications, design and requirements, and research and development programs; Status of the design and construction of intermediate He/He exchangers; Design, construction and performance of steam generators; Metallic materials and design codes; Design and construction of valves and hot gas ducts; Description of component test facilities and test results; Manufacturing of heat exchanging components

  10. Heat exchanger upgrades add value to plants old and new

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.J.

    2000-07-01

    By upgrading cooling towers, condensers and heat exchangers, utilities can significantly improve a plant's heat rate, driving efficiencies up and generating costs down. The article reports on a study conducted by Illinois Power on ways to improve performance of unit 6 at its Havana plant which concluded that the heat rate could be improved most effectively by upgrading the cooling tower. Psychometric Systems Inc., carried out the upgrade to the tower which now has a reduced cooling water temperature of 90.8 F and 2 MW increase in power. The 1100 MW Cayuga Generating Station in Terre Haute is to have new cooling towers using water from the Wabash River. Evaporative steam condensers are being installed in some plants - these can be more reliable than conventional condensers with cooling towers. 3 photos.

  11. Comprehensive Review on Adsorption Heat and Mass Exchange

    Directory of Open Access Journals (Sweden)

    Shraddha Gondane

    2013-02-01

    Full Text Available AbstractThe increase in energy consumption in world leads toserious environmental problems, especially globalwarming and resource depletion. So, in order to reducesuch problems use of renewable energies, energyrecovery and energy conservation are inevitable. Atpresent, there are large quantities of low-temperatureenergy released to the environment such as industrialwaste heat and solar energy. This can be utilized bytransforming them to high-temperature energy. Theprocess of adsorption is a reversible process by which agas or liquid molecules are fixed onto a solid matrix,typically a surface or a porous material. When themolecules get stick to the voids, they lose some energy, soadsorption is exothermic. The reverse process is calleddesorption and it is endothermic. The concept ofadsorption heat and mass exchange is used inthermochemical heat pump and chillers. This articlepresents the critical review of work carried out byresearch scholars in this upcoming area.

  12. Development of Printed Circuit Heat Exchanger and Experimental Test Loop For Liquid Sodium - Supercritical Carbon Dioxide Heat Exchange

    International Nuclear Information System (INIS)

    Sodium-cooled Fast Reactor (SFR) has many advantages with its fundamental design, for example, high temperature operation in low pressure and feature of spent nuclear fuel combustion. Nevertheless, public rejection on the possibility of sodium-water reaction accident and higher construction cost than light-water reactors delay the commercialization of SFR. Recently, as part of the study on the next generation nuclear reactor, researches on high efficiency energy cycles have been conducted, and Brayton cycle with supercritical carbon dioxide(S-CO2) began to emerge as a strong alternative to the Rankine cycle with steam. Supercritical carbon dioxide Brayton cycle system inherently excludes the sodium-water accident by using S-CO2 instead of steam. Also, adoption of Brayton cycle concept makes it possible to minimize the size of the overall system and reduce the compression work. Currently we are conducting an optimization of heat exchanger design for Na-CO2. In this article, configuration of a heat exchanger and the experimental loop for the purpose of heat exchanger verification will be introduced

  13. Numerical Analysis of Heat Transfer and Fluid Flow in Heat Exchangers with Emphasis on Pin Fin Technology

    OpenAIRE

    Nabati, Hamid

    2012-01-01

    One of the most important industrial processes is heat transfer, carried out by heat exchangers in single and multiphase flow applications. Despite the existence of well-developed theoretical models for different heat transfer mechanisms, the expanding need for industrial applications requiring the design and optimization of heat exchangers, has created a solid demand for experimental work and effort. This thesis concerns the use of numerical approaches to analyze and optimize heat transfer a...

  14. Primary loop heat exchanger for HTGR plant residual heat removal and auxiliary cooling system

    International Nuclear Information System (INIS)

    For several years design studies have been under way in the US on high-temperature process heat and steam applications utilizing a high-temperature gas-cooled reactor (HTGR) plant. Plant designs have incorporated safety-class core auxiliary cooling systems (CACSs). Each CACS primary loop includes an auxiliary helium circulator, a shutoff valve, and a water-cooled core auxiliary heat exchanger (CAHE), which transfers heat from the primary coolant helium to secondary system water. This function may be for normal or plant accident conditions and is completely independent of the main heat exchanger loops. The cooling modes include pressurized cooldown, depressurized cooldown, and cooldown for maintenance, refueling, and tests. The design criteria, design configuration, performance, and safety aspects of the CAHE design are presented

  15. Heat transfer to helium. Application to the design of heat exchangers

    International Nuclear Information System (INIS)

    The discovery of superconductivity has lead to a new technology at very low temperatures. This technology utilises liquid helium to maintain superconducting devices below their transition temperatures. These devices contain the heat exchangers for the circulation of the helium. The helium could be in two-phase flow or in single phase but near its critical point. This paper describes a study of the heat transfer and pressure drop characteristics of helium in two-phase flow and in the supercritical state. The results are compared with existing correlations. For two-phase pressure drop two methods were used: one based on slip between phases and the other based on a homogeneous model. The heat transfer data are compared with a number of existing correlations. The author proposes the best methods for calculating helium heat exchangers

  16. Pre-design stage of the intermediate heat exchanger for experimental fast reactor

    International Nuclear Information System (INIS)

    This report presents the outlines of a thermal-hydraulic calculation procedure for the pre-design stage of the Intermediate Heat Exchanger for a 5 MW Experimental Fast Reactor (EFR), which can be used in other similar projects, at the same stage of evolution. Heat transfer and heat loss computations for the preliminary design of the heat exchanger are presented. (author)

  17. Water Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Hansen, Scott W.; Sheth, Ribik B.; Atwell, Matt; Cheek, Ann; Agarwal, Muskan; Hong, Steven; Patel, Aashini,; Nguyen, Lisa; Posada, Luciano

    2014-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft’s radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a “topper” to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. Studies conducted in this paper investigate utilizing water’s high latent heat of formation as a PCM, as opposed to traditional waxes, and corresponding complications surrounding freezing water in an enclosed volume. Work highlighted in this study is primarily visual and includes understanding ice formation, freeze front propagation, and the solidification process of water/ice. Various test coupons were constructed of copper to emulate the interstitial pin configuration (to aid in conduction) of the proposed water PCM HX design. Construction of a prototypic HX was also completed in which a flexible bladder material and interstitial pin configurations were tested. Additionally, a microgravity flight was conducted where three copper test articles were frozen continuously during microgravity and 2-g periods and individual water droplets were frozen during microgravity.

  18. Heat Transfer Modeling of Phase Change Materials in Multiple Plates Heat Exchanger

    OpenAIRE

    M. Alipanah; A. Zahmatkesh

    2013-01-01

    Nowadays, given the increasing importance of energy sources, the possibility of energy storage in the heat exchangers through the Phase Change Materials (PCM) and releasing it when needed have been extremely essential. This study seeks to model the domestic water heat system in which the paraffin is as the phase change material and it stores the solar energy. The behavior of a PCM plate was studied by writing the governing equations and solving them as the one-dimensional, implicit method and...

  19. Heat transfer to immiscible liquid mixtures in a spiral plate heat exchanger

    Directory of Open Access Journals (Sweden)

    S. Sathiyan

    2013-06-01

    Full Text Available This work presents new predictive correlations for heat transfer to immiscible liquid-liquid mixtures in a spiral plate heat exchanger. Liquid-liquid heat transfer studies were carried out in spiral plate heat exchangers for the water-octane, water-kerosene, and water-dodecane systems. For each composition of the mixture, the mass flow rate of the cold fluid was varied, keeping that of the hot fluid and the fluid inlet temperatures constant. Two-phase cold flow rates were in the laminar range, while the hot fluid flow was turbulent. Calculations of the LMTD (log mean temperature difference correction factor showed that the flow was countercurrent. Heat transfer coefficients of the two-phase liquids were found to be strongly dependent on the composition of the liquid mixture and exhibited abrupt transitions as a function of the compositions. Given the absence of predictive correlations in the literature that sufficiently capture this compositiondependence, new empirical correlations were developed using part of the experimental data, with the composition of the cold fluid as an explicit variable. Statistical analysis of the regression yielded satisfactory results. The correlations were tested against the rest of the experimental data and were found to predict heat transfer coefficients within ± 15%. These preliminary studies should be useful in designing compact exchangers for handling two-phase water-organics mixtures.

  20. Heat transfer to immiscible liquid mixtures in a spiral plate heat exchanger

    Scientific Electronic Library Online (English)

    S., Sathiyan; Murali, Rangarajan; S., Ramachandran.

    2013-06-01

    Full Text Available This work presents new predictive correlations for heat transfer to immiscible liquid-liquid mixtures in a spiral plate heat exchanger. Liquid-liquid heat transfer studies were carried out in spiral plate heat exchangers for the water-octane, water-kerosene, and water-dodecane systems. For each comp [...] osition of the mixture, the mass flow rate of the cold fluid was varied, keeping that of the hot fluid and the fluid inlet temperatures constant. Two-phase cold flow rates were in the laminar range, while the hot fluid flow was turbulent. Calculations of the LMTD (log mean temperature difference) correction factor showed that the flow was countercurrent. Heat transfer coefficients of the two-phase liquids were found to be strongly dependent on the composition of the liquid mixture and exhibited abrupt transitions as a function of the compositions. Given the absence of predictive correlations in the literature that sufficiently capture this compositiondependence, new empirical correlations were developed using part of the experimental data, with the composition of the cold fluid as an explicit variable. Statistical analysis of the regression yielded satisfactory results. The correlations were tested against the rest of the experimental data and were found to predict heat transfer coefficients within ± 15%. These preliminary studies should be useful in designing compact exchangers for handling two-phase water-organics mixtures.

  1. Mathematical model and designing of recuperative heat exchangers for marine power installations

    Directory of Open Access Journals (Sweden)

    Shuraev Oleg Petrovich

    2013-10-01

    Full Text Available A mathematical model of recuperative heat exchangers is considered. The experience of its use for designing a wide range of shell-tube and box heat exchangers with different types of heat transfer fluids is accumulated. The model has been adapted to calculate the heat exchanger with Field's tubes that allowed a creation of a compact and lightweight heat exchanger module. The model considers the impact on heat transfer intensification of different ways. The effect on the heat transfer of polluting sedimentations on the heating surfaces is also considered. The features of Mathcad software package for solving the system of equations of heat transfer are used. The model is widely used for designing and analyzing the heat exchangers in scientific researches, as well as in the educational process.

  2. Horizontal Parallel Pipe Ground Heat Exchanger : Analytical Conception and Experimental Study

    International Nuclear Information System (INIS)

    Due to limited amount of natural resources exploited for heating, and in order to reduce the environmental impact, people should strive to use renewable energy resources. Ambient low-grade energy may be upgraded by the ground heat exchanger (GH E), which exploits the ground thermal inertia for buildings heating and cooling. In this study, analytical performance and experiments analysis of a horizontal ground heat exchanger have been performed. The analytical study, relates to the dimensioning of the heat exchanger, shows that the heat exchanger characteristics are very important for the determination of heat extracted from ground. The experimental results were obtained during the period 30 November to 10 December 2007, in the heating season of the greenhouses. Measurements show that the ground temperature under a certain depth remains relatively constant. To exploit effectively the heat capacity of the ground, a horizontal heat exchanger system has to be constructed and tested in the Center of Research and Technology of Energy, in Tunisia

  3. Performance of Helical Coil Heat Recovery Exchanger using Nanofluid as Coolant

    Directory of Open Access Journals (Sweden)

    Navid Bozorgan

    2015-07-01

    Full Text Available Nanofluids are expected to be a promising coolant condidate in chemical processes for heat transfer system size reduction. This paper focuses on reducing the number of turns in a helical coil heat recovery exchanger with a given heat exchange capacity in a biomass heating plant using ?-Al2O3/n-decane nanofluid as coolant. The nanofluid flows through the tubes and the hot n-hexane flows through the shell. The numerical results show that using nanofluid as coolant in a helical coil heat exchanger can reduce the manufacturing cost of the heat exchanger and pumping power by reducing the number of turns of the coil.

  4. Flow boiling heat transfer of ammonia/water mixture in a plate heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Taboas, Francisco [Universidad de Cordoba, Campus de Rabanales, Edificio Leonardo da Vinci, 14014 Cordoba (Spain); Valles, Manel; Bourouis, Mahmoud; Coronas, Alberto [CREVER - Universitat Rovira i Virgili, Av. Paisos Catalans No. 26, 43007 Tarragona (Spain)

    2010-06-15

    The objective of this work is to contribute to the development of plate heat exchangers as desorbers for ammonia/water absorption refrigeration machines driven by waste heat or solar energy. In this study, saturated flow boiling heat transfer and the associated frictional pressure drop of ammonia/water mixture flowing in a vertical plate heat exchanger is experimentally investigated. Experimental data is presented to show the effects of heat flux between 20 and 50 kW m{sup -2}, mass flux between 70 and 140 kg m{sup -2} s{sup -1}, mean vapour quality from 0.0 to 0.22 and pressure between 7 and 15 bar, for ammonia concentration between 0.42 and 0.62. The results show that for the selected operating conditions, the boiling heat transfer coefficient is highly dependent on the mass flux, whereas the influence of heat flux and pressure are negligible mainly at higher vapour qualities. The pressure drop increases with increasing mass flux and quality. However, the pressure drop is independent of the imposed heat flux. (author)

  5. MULTIPLE POLLUTANT REMOVAL USING THE CONDENSING HEAT EXCHANGER

    Energy Technology Data Exchange (ETDEWEB)

    B.J. JANKURA; G.A. KUDLAC; R.T. BAILEY

    1998-06-01

    The Integrated Flue Gas Treatment (IFGT) system is a new concept whereby a Teflon ® covered condensing heat exchanger is adapted to remove certain flue gas constituents, both particulate and gaseous, while recovering low level heat. The pollutant removal performance and durability of this device is the subject of a USDOE sponsored program to develop this technology. The program was conducted under contract to the United States Department of Energy?s Fossil Energy Technology Center (DOE-FETC) and was supported by the Ohio Coal Development Office (OCDO) within the Ohio Department of Development, the Electric Power Research Institute?s Environmental Control Technology Center (EPRI-ECTC) and Babcock and Wilcox - a McDermott Company (B&W). This report covers the results of the first phase of this program. This Phase I project has been a two year effort. Phase I includes two experimental tasks. One task dealt principally with the pollutant removal capabilities of the IFGT at a scale of about 1.2MWt. The other task studied the durability of the Teflon ® covering to withstand the rigors of abrasive wear by fly ash emitted as a result of coal combustion. The pollutant removal characteristics of the IFGT system were measured over a wide range of operating conditions. The coals tested included high, medium and low-sulfur coals. The flue gas pollutants studied included ammonia, hydrogen chloride, hydrogen fluoride, particulate, sulfur dioxide, gas phase and particle phase mercury and gas phase and particle phase trace elements. The particulate removal efficiency and size distribution was investigated. These test results demonstrated that the IFGT system is an effective device for both acid gas absorption and fine particulate collection. Although soda ash was shown to be the most effective reagent for acid gas absorption, comparative cost analyses suggested that magnesium enhanced lime was the most promising avenue for future study. The durability of the Teflon ® covered heat exchanger tubes was studied on a pilot-scale single- stage condensing heat exchanger (CHX ® ). This device was operated under typical coal-fired flue gas conditions on a continuous basis for a period of approximately 10 months. Data from the test indicate that virtually no decrease in Teflon ® thickness was observed for the coating on the first two rows of heat exchanger tubes, even at high inlet particulate loadings. Evidence of wear was present only at the microscopic level, and even then was very minor in severity.

  6. A decision analysis guideline for underground bulk air heat exchanger design specifications

    Scientific Electronic Library Online (English)

    M., Hooman; R.C.W., Webber-Youngman; J.J.L., du Plessis; W.M., Marx.

    2015-02-01

    Full Text Available This paper discusses a study that investigated different underground bulk air heat exchanger (>100 m³/s) design criteria. A literature review found that no single document exists covering all design criteria for different heat exchangers, and therefore the need was identified to generate a guideline [...] with decision analyser steps to arrive at a technical specification. The study investigated the factors influencing heat exchanger designs (spray chambers, towers, and indirect-contact heat exchangers) and the technical requirements for each. The decision analysers can be used to generate optimized, user-friendly fit-for-purpose designs for bulk air heat exchangers (air cooler and heat rejection). The study was tested against a constructed air cooler and heat rejection unit at a copper mine¹. It was concluded that the decision analysers were used successfully. This tool (decision analysers) can be used by engineers for the efficient and cost-effectively design of heat exchangers.

  7. Xenon Recirculation-Purification with a Heat Exchanger

    CERN Document Server

    Giboni, K L; Choi, B; Haruyama, T; Lang, R F; Lim, K E; Melgarejo, A J; Plante, G; 10.1088/1748-0221/6/03/P03002

    2011-01-01

    Liquid-xenon based particle detectors have been dramatically growing in size during the last years, and are now exceeding the one-ton scale. The required high xenon purity is usually achieved by continuous recirculation of xenon gas through a high-temperature getter. This challenges the traditional way of cooling these large detectors, since in a thermally well insulated detector, most of the cooling power is spent to compensate losses from recirculation. The phase change during recondensing requires five times more cooling power than cooling the gas from ambient temperature to -100C (173 K). Thus, to reduce the cooling power requirements for large detectors, we propose to use the heat from the purified incoming gas to evaporate the outgoing xenon gas, by means of a heat exchanger. Generally, a heat exchanger would appear to be only of very limited use, since evaporation and liquefaction occur at zero temperature difference. However, the use of a recirculation pump reduces the pressure of the extracted liquid...

  8. Simulation model air-to-air plate heat exchanger

    International Nuclear Information System (INIS)

    A simple simulation model of an air-to-air plate heat exchanger is presented. The model belongs to a collection of simulation models that allows the efficient computer simulation of heating, ventilation, and air-conditioning (HVAC) systems. The main emphasis of the models is to shorten computation time and to use only input data that are known in the design process of an HVAC system. The target of the models is to describe the behavior of HVAC components in the part-load operation mode, which is becoming increasingly important in energy efficient HVAC systems. The models are intended to be used for yearly energy calculations or load calculations with time steps of about 10 minutes or larger. Short- time dynamic effects, which are of interest for different aspects of control theory, are neglected. The part-load behavior is expressed in terms of the nominal condition and the dimensionless variation of the heat transfer with change of mass flow and temperature. The effectiveness- NTU relations are used to parametrize the convective heat transfer at nominal conditions and to compute the part-load condition. If the heat transfer coefficients on the two exchanger sides are not equal (i. e. due to partial bypassing of air), their ratio can be easily calculated and set as a parameter. The model is static and uses explicit equations only. The explicit model formulation ensures short computation time and numerical stability, which allows using the model with sophisticated engineering methods like automatic system optimization. This paper fully outlines the algorithm description and its simplifications. It is not tailored for any particular simulation program to ensure easy implementation in any simulation program

  9. Continued Water-Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Hansen, Scott W.; Sheth, Rubik B.; Poynot, Joe; Giglio, Tony; Ungar, Gene K.

    2015-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to meet the full heat rejection demands. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HX's do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development two full-scale, Orion sized water-based PCM HX's were constructed by Mezzo Technologies. These HX's were designed by applying prior research on freeze front propagation to a full-scale design. Design options considered included bladder restraint and clamping mechanisms, bladder manufacturing, tube patterns, fill/drain methods, manifold dimensions, weight optimization, and midplate designs. Two units, Units A and B, were constructed and differed only in their midplate design. Both units failed multiple times during testing. This report highlights learning outcomes from these tests and are applied to a final sub-scale PCM HX which is slated to be tested on the ISS in early 2017.

  10. Design of heat exchanger for Ericsson-Brayton piston engine.

    Science.gov (United States)

    Durcansky, Peter; Papucik, Stefan; Jandacka, Jozef; Holubcik, Michal; Nosek, Radovan

    2014-01-01

    Combined power generation or cogeneration is a highly effective technology that produces heat and electricity in one device more efficiently than separate production. Overall effectiveness is growing by use of combined technologies of energy extraction, taking heat from flue gases and coolants of machines. Another problem is the dependence of such devices on fossil fuels as fuel. For the combustion turbine is mostly used as fuel natural gas, kerosene and as fuel for heating power plants is mostly used coal. It is therefore necessary to seek for compensation today, which confirms the assumption in the future. At first glance, the obvious efforts are to restrict the use of largely oil and change the type of energy used in transport. Another significant change is the increase in renewable energy--energy that is produced from renewable sources. Among machines gaining energy by unconventional way belong mainly the steam engine, Stirling engine, and Ericsson engine. In these machines, the energy is obtained by external combustion and engine performs work in a medium that receives and transmits energy from combustion or flue gases indirectly. The paper deals with the principle of hot-air engines, and their use in combined heat and electricity production from biomass and with heat exchangers as primary energy transforming element. PMID:24977174

  11. Biofouling on plate heat exchangers and the impact of advanced oxidizing technology and ultrasound

    OpenAIRE

    Hjalmars, Anna

    2014-01-01

    Fouling in general and biofouling in specific is a problem concerning many industries. Biofouling occur in environments favorable for biological growth. As an example, industries using cooling water have problems with biofouling. The problem is apparent on heat exchangers as biofilm reduces the heat transfer and thus the performance. There are several different methods to reduce fouling on tube and shell heat exchanger on the market. However, for plate heat exchanger the alternatives are fewe...

  12. Effect of Liquid/Vapour Maldistribution on the Performance of Plate Heat Exchanger Evaporators

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Kærn, Martin Ryhl; Ommen, Torben Schmidt; Markussen, Wiebke Brix; Reinholdt, Lars; Elmegaard, Brian

    2015-01-01

    Plate heat exchangers are often applied as evaporators in industrial refrigeration and heat pump systems. In the design and modelling of such heat exchangers the flow and liquid/vapour distribution is often assumed to be ideal. However, maldistribution may occur and will cause each channel to behave differently due to the variation of the mass flux and vapour quality. To evaluate the effect of maldistribution on the performance of plate heat exchangers, a numerical model is developed in which th...

  13. Solution of operational problems utilization of an EX-IRT-2000 heat exchanger

    International Nuclear Information System (INIS)

    The Bandung TRIGA Mark II Reactor has been successfully operated for 21 years, especially in low power operation or as neutron sources for various experiments. Most of the operating time, approximately 80% of routine operation, was dedicated for radio-isotope production. During routine operation for radio-isotope production, the reactor could not be operated at full power. The reactor was operated at 60% of the maximum power (1 MWth) due to the inability of the original heat exchanger to operate properly. The reason is that slack deposition was built-up on the secondary side of the heat exchanger. Therefore, it reduced the coefficient of heat transfer considerably. To solve the problems, a set of heat exchanger including the pump was installed In parallel with the original unit. The heat exchanger was an IRT-2000 Reactor Heat exchanger which was collected from the abandoned IRT-2000 Project. The heat exchanger has capacity of 1.25 MW. The new heat exchanger could reduced the outlet temperature of the primary coolant Into 42 deg. C. While the original-heat exchanger at the worst condition and at 600 kW of power reach outlet temperature 49 deg. C. The IRT Heat Exchanger is a counter flow heat exchanger. (author)

  14. Numerical simulation of two phase flows in heat exchangers

    International Nuclear Information System (INIS)

    The author gives an overview of his research activity since 1981. He first gives a detailed presentation of properties and equations of two-phase flows in heat exchangers, and of their mathematical and numerical investigation: semi-local equations (mass conservation, momentum conservation and energy conservation), homogenized conservation equations (mass, momentum and enthalpy conservation, boundary conditions), equation closures, discretization, resolution algorithm, computational aspects and applications. Then, he reports the works performed in the field of turbulent flows, hyperbolic methods, low Mach methods, the Neptune project, and parallel computing

  15. Influence of plants on heat balance and entropy exchange.

    Czech Academy of Sciences Publication Activity Database

    Šír, Miloslav; Weger, J.; Tesa?, Miroslav; Lichner, ?.

    Praha : VÚKOZ, 2007, s. 177-180. ISBN 978-80-85116-52-6. [V?decká konference s mezinárodní ú?astí Strom a kv?tina – sou?ást života. Praha (CZ), 04.09.2007-04.09.2007] R&D Projects: GA AV ?R 1QS200420562; GA AV ?R IAA3042301; GA ?R GA205/05/2312 Institutional research plan: CEZ:AV0Z20600510 Keywords : plant transpiration * phytomass productivity * heat balance * entropy exchange * short rotation coppices Subject RIV: DA - Hydrology ; Limnology

  16. Erosion durability of steels in steam boiler heat exchanger tubes

    Energy Technology Data Exchange (ETDEWEB)

    Meuronen, V. [Lappeenranta University of Technology, Lappeenranta (Finland). Dept. of Energy Technology

    2000-05-01

    The erosion durability of three tube materials that are generally used in the heat exchangers of steam boilers was tested by having an air flow containing particles flowing through tube banks. The materials tested were St35.8, 15Mo3 and 10CrMo910. The last one was the most resistive to erosion. The material 15Mo3 had a higher resistance than St35.8, but lower than 10CrMo910. Correlations between erosion resistance and the strength, and erosion resistance and the ductility of the steels were observed. 4 refs., 4 figs., 5 tabs.

  17. Intermediate heat exchanger for fast neutron nuclear reactor

    International Nuclear Information System (INIS)

    A partition in the form of a bell is fixed around the envelope of the tube bundle and encloses an annular space joined to the inside of the envelope by an opening which forms the entrance to the heat exchanger. The upper part of the annular space is joined by a tube to a volume filled with inert gas. The circulation of the primary sodium operates under siphonage and can be easily interrupted by inserting an inert gas under pressure via the tube. Circulation is easily re-established by aspiration of the gas via the tube

  18. Aging management guideline for commercial nuclear power plants - heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Booker, S.; Lehnert, D.; Daavettila, N.; Palop, E.

    1994-06-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in commercial nuclear power plant heat exchangers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  19. Design of the Glenwood Springs downhole heat exchanger

    Science.gov (United States)

    Chiu, P.

    1982-04-01

    A heat exchanger has been designed to obtain 250,000 Btu/hr from a 20 in. diameter geothermal well at various brine temperatures. The system consists of a 10 in. diameter plastic pipe to promote convective flow in the well and a 4 in. diameter, Schedule 40 steel U-tube containing distilled water to extract the energy. Subject to the validity of the major assumptions, the required lengths of one leg of the U-tube at various brine temperatures are 34 ft (1500 F), 42 ft (1400 F), 54 ft (1300 F), and 75 ft (1200 F) for a mean working fluid temperature of 900 F.

  20. Process heat exchangers for gas-cooled high temperature reactors

    International Nuclear Information System (INIS)

    The process gas heat exchangers for the pebble bed reactor on the Otto cycle principle takes the shape of a tubular furnace with suspended pipes closed at one end and is combined in construction with a steam raising unit. The tubular furnace and the steam raising unit can be fixed at their cold ends by suitable provision of cooling gas. A ceramic partition wall with a metal jacket is provided between the two units. A chamber with filter devices is situated above the tubular furnace. (DG)

  1. Permeation Barrier Coatings for the Helical Heat Exchanger

    International Nuclear Information System (INIS)

    A permeation barrier coating was specified for the Helical Heat Exchanger (HHE) to minimize contamination through emissions and/or permeation into the nitrogen system for ALARA reasons. Due to the geometry of the HHE, a special coating practice was needed since the conventional method of high temperature pack aluminization was intractable. A survey of many coating companies was undertaken; their coating capabilities and technologies were assessed and compared to WSRC needs. The processes and limitations to coating the HHE are described. Slurry coating appears to be the most technically sound approach for coating the HHE

  2. Tube spacer grid for a heat-exchanger tube bundle

    International Nuclear Information System (INIS)

    A tube spacer grid for a heat-exchanger tube bundle is formed by an annular grid frame having a groove formed in its inner surface in which the interspaced grid bars have their ends positioned and held in interspaced relationship by short sections of tubes passed through holes axially formed in the grid frame so that the tubes are positioned between the ends of the grid bars in the grooves. The tube sections may be cut from the same tubes used to form the tube bundle. 5 claims, 3 drawing figures

  3. Aging management guideline for commercial nuclear power plants - heat exchangers

    International Nuclear Information System (INIS)

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in commercial nuclear power plant heat exchangers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein

  4. Vapor Compression and Thermoelectric Heat Pump Heat Exchangers for a Condensate Distillation System: Design and Experiment

    Science.gov (United States)

    Erickson, Lisa R.; Ungar, Eugene K.

    2013-01-01

    Maximizing the reuse of wastewater while minimizing the use of consumables is critical in long duration space exploration. One of the more promising methods of reclaiming urine is the distillation/condensation process used in the cascade distillation system (CDS). This system accepts a mixture of urine and toxic stabilizing agents, heats it to vaporize the water and condenses and cools the resulting water vapor. The CDS wastewater flow requires heating and its condensate flow requires cooling. Performing the heating and cooling processes separately requires two separate units, each of which would require large amounts of electrical power. By heating the wastewater and cooling the condensate in a single heat pump unit, mass, volume, and power efficiencies can be obtained. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump performance tests are provided. A summary is provided of the heat pump mass, volume and power trades and a selection recommendation is made.

  5. MATHEMATICAL MODELING OF THERMOPHYSICAL PARAMETERS OF VORTEX HEAT EXCHANGER OF HEATING SYSTEMS OF GAS DISTRIBUTION POINTS PREMISES

    OpenAIRE

    V. A. Lapin; V. N. Melkumov; A. N. Kobelev

    2009-01-01

    The mathematical model of heat transfer in vortex heat exchanger using natural gas energy which is released under decompression in gas-main pipe-lines for consumers of gas supply systems (dwellings, public and industrial buildings).

  6. Experimental investigation of thermal conductivity coefficient and heat exchange between fluidized bed and inclined exchange surface

    Scientific Electronic Library Online (English)

    B., Stojanovic; J., Janevski; M., Stojiljkovic.

    2009-06-01

    Full Text Available The paper presents experimental research of thermal conductivity coefficients of the siliceous sand bed fluidized by air and an experimental investigation of the particle size influence on the heat transfer coefficient between fluidized bed and inclined exchange surfaces. The measurements were perfo [...] rmed for the specific fluidization velocity and sand particle diameters d p=0.3, 0.5, 0.9 mm. The industrial use of fluidized beds has been increasing rapidly in the past 20 years owing to their useful characteristics. One of the outstanding characteristics of a fluidized bed is that it tends to maintain a uniform temperature even with nonuniform heat release. On the basis of experimental research, the influence of the process's operational parameters on the obtained values of the bed's thermal conductivity has been analyzed. The results show direct dependence of thermal conductivity on the intensity of mixing, the degree of fluidization, and the size of particles. In the axial direction, the coefficients that have been treated have values a whole order higher than in the radial direction. Comparison of experimental research results with experimental results of other authors shows good agreement and the same tendency of thermal conductivity change. It is well known in the literature that the value of the heat transfer coefficient is the highest in the horizontal and the smallest in the vertical position of the heat exchange surface. Variation of heat transfer, depending on inclination angle is not examined in detail. The difference between the values of the relative heat transfer coefficient between vertical and horizontal heater position for all particle sizes reduces by approximately 15% with the increase of fluidization rate.

  7. Experimental investigation of thermal conductivity coefficient and heat exchange between fluidized bed and inclined exchange surface

    Directory of Open Access Journals (Sweden)

    B. Stojanovic

    2009-06-01

    Full Text Available The paper presents experimental research of thermal conductivity coefficients of the siliceous sand bed fluidized by air and an experimental investigation of the particle size influence on the heat transfer coefficient between fluidized bed and inclined exchange surfaces. The measurements were performed for the specific fluidization velocity and sand particle diameters d p=0.3, 0.5, 0.9 mm. The industrial use of fluidized beds has been increasing rapidly in the past 20 years owing to their useful characteristics. One of the outstanding characteristics of a fluidized bed is that it tends to maintain a uniform temperature even with nonuniform heat release. On the basis of experimental research, the influence of the process's operational parameters on the obtained values of the bed's thermal conductivity has been analyzed. The results show direct dependence of thermal conductivity on the intensity of mixing, the degree of fluidization, and the size of particles. In the axial direction, the coefficients that have been treated have values a whole order higher than in the radial direction. Comparison of experimental research results with experimental results of other authors shows good agreement and the same tendency of thermal conductivity change. It is well known in the literature that the value of the heat transfer coefficient is the highest in the horizontal and the smallest in the vertical position of the heat exchange surface. Variation of heat transfer, depending on inclination angle is not examined in detail. The difference between the values of the relative heat transfer coefficient between vertical and horizontal heater position for all particle sizes reduces by approximately 15% with the increase of fluidization rate.

  8. Basic characteristics of heat-exchanger type steam reformer heated by high temperature helium gas, (2)

    International Nuclear Information System (INIS)

    A computer simulation model has been developed to analyze the basic characteristics of heat-exchanger type steam-methane reformer which is the key component to produce hydrogen using the nuclear process heat from high temperature gas cooled reactor. This model is based on the one-dimensional one taking account of heat transfer and reaction kinetics. In the previous report, the analytical model and the solution procedure have been described, and an example of calculation result has been shown compared with the experimental data in reference. This report describes simulation results of the dependencies of the characteristic quantities such as heat flux, reaction rates and hydrogen production rate in reformer tube on selected parameters, namely, the operating conditions (inlet gas temperatures, pressure and flow rates), the activities of the catalyst, the heat transfer rate and the dimensions of reaction tube. (author)

  9. Unglazed selective absorber solar air collector: Heat exchange analysis

    Science.gov (United States)

    Njomo, D.

    Unglazed solar air collectors show promise for applications such as ventilation air heating or crop drying. In this paper a mathematical model is developed to analyze the heat exchanges in an unglazed non-porous selective absorber air heater. It is shown that at quasi-steady state the energy balance equations of the components of the collector cascade into a single first order differential equation. The solution of this differential equation is written down as an explicit expression of the local temperature of the fluid flowing in the collector in terms of the time dependent solar intensity. The effect of various parameters such as the inlet fluid temperature, the mass flow rate, and the depth of the air channel on the thermal performances of the unglazed selective absorber collector are also studied. These performances are comparable to those of a conventional two glass covers air collector for low wind speeds.

  10. Exergy Analysis of Organic Rankine Cycle with Internal Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Kyoung Hoon Kim

    2013-02-01

    Full Text Available In recent years Organic Rankine Cycle (ORC has become a field of intense research and appears a promising technology for conversion of heat into useful work or electricity. In this work thermodynamic performance of ORC with internal heat exchanger is comparatively assessed for various working fluids based on the second law of thermodynamics. Special attention is paid to the effect of turbine inlet pressure on the exergy destructions (anergies at various system components and the exergy efficiency of system. Results show that for a given source the component at which the greatest anergy occurs differs with working fluid. As turbine inlet pressure increases, exergy efficiency increases for working fluid such as ammonia or R22, but decreases for working fluid with low critical pressure such as iso-pentane or n-pentane.

  11. A conceptual design of a large LMFBR intermediate heat exchanger

    International Nuclear Information System (INIS)

    Advanced conceptual design is continuing for a 1000 MWe Liquid Metal Fast Breeder Reactor (LMFBR) Large Development Plant (LDP) that would follow the Clinch River Breeder Reactor Demonstration Plant (CRBRP). The LD employs a loop-type primary heat transport system with hot-leg primary pumps. In support of this work, the conceptual design of large-size intermediate heat exchangers (IHX) has been undertaken. The overall unit configuration is similar to the CRBRP-IHX's in that a counterflow arrangement with a central downcomer is employed. This paper presents the thermal and hydraulic design aspects of the LDP-IHX. Two different thermal ratings of 643.5 and 965.25 MWt are considered and an option to add a primary reactor auxiliary cooling system (PRACS) in the inlet plenu of the 643.5 MWt IHX is also investigated. Further research and development programs are identified

  12. THE EFFECTS OF SWIRL GENERATOR HAVING WINGS WITH HOLES ON HEAT TRANSFER AND PRESSURE DROP IN TUBE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Zeki ARGUNHAN

    2006-02-01

    Full Text Available This paper examines the effect of turbulance creators on heat transfer and pressure drop used in concentric heat exchanger experimentaly. Heat exchanger has an inlet tube with 60 mm in diameter. The angle of swirl generators wings is 55º with each wing which has single, double, three and four holes. Swirl generators is designed to easily set to heat exchanger entrance. Air is passing through inner tube of heat exhanger as hot fluid and water is passing outer of inner tube as cool fluid.

  13. Theoretical investigation on thermal performance of heat pipe flat plate solar collector with cross flow heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Lan; Wu, Shuang-Ying; Zhang, Qiao-Ling; Li, You-Rong [Chongqing University, Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing (China); Chongqing University, College of Power Engineering, Chongqing (China)

    2012-07-15

    Based on the heat transfer characteristics of absorber plate and the heat transfer effectiveness-number of heat transfer unit method of heat exchanger, a new theoretical method of analyzing the thermal performance of heat pipe flat plate solar collector with cross flow heat exchanger has been put forward and validated by comparisons with the experimental and numerical results in pre-existing literature. The proposed theoretical method can be used to analyze and discuss the influence of relevant parameters on the thermal performance of heat pipe flat plate solar collector. (orig.)

  14. Analysis of field coordination on heat exchanger shell side with different diameter tubes and holding structure

    International Nuclear Information System (INIS)

    In order to overcome the disadvantages of the rod-baffle heat exchanger, which achieves the high heat transfer efficiency only at high flow velocity, and which with non compact layout of tubes and is weak in the resistance of operation mode changes, this paper proposed two sizes of heat exchange tubes and holding and support structures to replace the traditional rod-baffle support unit, to increase the heat exchange coefficient on shell side and the heat exchange effectiveness. Three-dimensional numerical simulation was conducted on the shellside flow field and heat exchange field by the CFD software, and the calculation method was proposed for the included angle for the shellside velocity-temperature gradient fields of the vertical flow heat exchanger with complex structure. The quantitative relationship of the field coordination angle for the shellside velocity field and temperature gradient field was obtained and it is proved that the new structure is with better field coordination relation. (authors)

  15. A study on the development of fouling evaluation method for finned tube heat exchanger

    International Nuclear Information System (INIS)

    Heat exchangers in nuclear power plants are used for various purposes, such as safe shutdown of nuclear reactor, increase of thermal efficiency, maintenance of temperature inside building, final heat sink, reduction of thermal stress by cold water injection, etc. As operating time of these heat exchangers progresses, fouling generated by water-borne deposits increases and thermal performance decreases. Even though thermal performance tests for heat exchangers without phase change in domestic nuclear power plants have performed with a fixed interval, thermal performance tests for finned tube heat exchangers with condensation have not performed to date. This paper describes the development of fouling evaluation method for finned tube heat exchangers and the result of prototype evaluation for the heat exchanger using the mixture of C3 and N-C4 as a refrigerant

  16. Ageing Management Programme: An Experience of In-Service Inspection of the Kartini Heat Exchanger

    International Nuclear Information System (INIS)

    This paper discusses an experience on ISI of the Kartini reactor heat exchanger, as part of the implementation of an ageing management programme. Kartini reactor is located in Yogyakarta, Indonesia. The heat exchanger was constructed for 250 kW capacity. The type of heat exchanger is shell with tube recirculation. Tube material is stainless steel 304, and the shell and baffle plate materials are carbon steel. The heat exchanger has 72 tubes, its outer and inner diameters respectively are 19 and 16 mm, and tube thickness is 1.5 mm. The aim of ISI was to obtain and evaluate the heat exchanger’s condition including the detection of any possible local tube thinning, pitting corrosion or gradual thinning, and determine whether any degradation or deterioration of the heat exchanger could have a significant impact to safety. The heat exchanger was inspected utilizing eddy current equipment in 2003 and 2006. Inspection results in 2003 determined that 12 heat exchanger tubes have a thinning degradation level ranging from 10% up to 60% of the outer diameter due to pitting corrosion. Deterioration of baffle plates has been linked to general corrosion attack. Inspection results in 2006 showed a consistent thinning degradation level with the previous inspection in 2003. So far heat exchanger performance is still satisfactory, as defined by the transfer of primary heat for a 2°C difference between inlet and outlet as required. (author)

  17. A simple and accurate numerical network flow model for bionic micro heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Pieper, M.; Klein, P. [Fraunhofer Institute (ITWM), Kaiserslautern (Germany)

    2011-05-15

    Heat exchangers are often associated with drawbacks like a large pressure drop or a non-uniform flow distribution. Recent research shows that bionic structures can provide possible improvements. We considered a set of such structures that were designed with M. Hermann's FracTherm {sup registered} algorithm. In order to optimize and compare them with conventional heat exchangers, we developed a numerical method to determine their performance. We simulated the flow in the heat exchanger applying a network model and coupled these results with a finite volume method to determine the heat distribution in the heat exchanger. (orig.)

  18. Ventilation Heat Recovery from Wood-Burning Domestic Flues. A Theoretical Analysis Based on a Triple Concentric Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Lionel Druette

    2013-01-01

    Full Text Available This paper presents a new air-heating system concept for energy-efficient dwellings. It is a system designed to heat a low-energy building by coupling a heat-recovery ventilation system with a three-fluid heat exchanger located on the chimney of a wood-pellet stove. The proposed work focuses on the heat transfer that occurs between flue gases, the ventilation air and the combustion air within a triple concentric tube heat exchanger with no insulation at its outer surface. The main objective is to predict outlet temperature for the specific geometry of the heat exchanger studied here. Thus, the governing differential equations are derived for a counter-co-current flow arrangement of the three fluids. Then analytical solutions for the steady-state temperature distribution are obtained as well as the amount of heat transferred to the outside. An expression for the effectiveness of the heat exchanger is also proposed. Based on these results, calculations are performed on a case study to predict the fluid temperature distribution along the heat exchanger. Finally, a parametric study is carried out on this case study to assess the influence of the relevant parameters on the effectiveness of the heat exchanger. In addition, computation of heat losses to the outside justifies whether insulation is needed.

  19. Intermediate heat exchanger and steam generator material selection for PFBR

    International Nuclear Information System (INIS)

    The Department of Atomic Energy envisages building a series of fast breeder reactors (FBRs) during the next century as a long term solution to the problem of meeting the nation's electric power requirements. PFBR is a 500 MWe sodium cooled reactor incorporating a pool type design. These are three heat transport circuits, viz. primary sodium, secondary sodium and water-steam. All the components of the primary circuit, viz, the IHXs and the sodium pumps are immersed in the pool. Primary sodium at 670 K is pumped by two pumps to the core, where it extracts the nuclear heat and attains 820 K. The four IHXs transfer heat from the primary sodium to the non-radioactive secondary sodium. The secondary sodium which attains a temperature of 798 K raises steam at 16.8 MPa and 766 K in eight SGs. This steam drives the turbo-alternator which generates power as in conventional fossil fuel fired stations. Details of material selection criteria for heat exchangers and steam generators are given. 9 refs., 4 tabs., 2 figs

  20. Thermal performance of direct contact heat exchangers for mixed hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Sharpe, L. Jr.; Coswami, D.Y.; Demuth, O.J.; Mines, G.

    1985-01-01

    This paper describes a physical and a mathematical model for evaluating the tray efficiencies for a direct contact heat exchanger (DCHX). The model is then used to determine the efficiencies for tests conducted on a 60kW sieve tray DCHX as heat is transferred from a geofluid (brine) to a working fluid (mixed hydrocarbons). It is assumed that there are three distinct regions in the column based on the state of the working fluid, as follows: Region I - Preheating with no vaporization; Region II - Preheating with moderate vaporization; and Region III - Major vaporization. The boundaries of these regions can be determined from the experimental data. In the model, mass balance and energy balance is written for a tray ''N'' in each of these regions. Finally, the ''tray efficiency'' or ''heat transfer'' effectiveness of the tray is calculated based on the definition that it is the ratio of the actual heat transfer to the maximum possible, thermodynamically.