WorldWideScience

Sample records for shell-and-tube heat exchanger

  1. Shell-and-tube heat exchanger selection aid

    International Nuclear Information System (INIS)

    A prototype has been developed to investigate the feasibility of using expert systems to aid junior process system designers with the selection of components for shell-and-tube heat exchangers. The selection criteria for heat exchanger design were based on process, environmental and administrative constraints. The system was developed using EXSYS and consists of approximately 140 rules. This paper describes the development process and the lessons learned

  2. Design and economic optimization of shell and tube heat exchangers using Artificial Bee Colony (ABC) algorithm

    International Nuclear Information System (INIS)

    Highlights: ? Artificial Bee Colony for shell and tube heat exchanger optimization is used. ? The total cost is minimized by varying design variables. ? This new approach can be applied for optimization of heat exchangers. - Abstract: In this study, a new shell and tube heat exchanger optimization design approach is developed. Artificial Bee Colony (ABC) has been applied to minimize the total cost of the equipment including capital investment and the sum of discounted annual energy expenditures related to pumping of shell and tube heat exchanger by varying various design variables such as tube length, tube outer diameter, pitch size, baffle spacing, etc. Finally, the results are compared to those obtained by literature approaches. The obtained results indicate that Artificial Bee Colony (ABC) algorithm can be successfully applied for optimal design of shell and tube heat exchangers.

  3. Thermal Analysis of Shell and Tube Heat Ex-Changer Using C and Ansys

    Directory of Open Access Journals (Sweden)

    v.Hari Haran,*, B g.Ravindra Reddy and C b.Sreehari

    2013-07-01

    Full Text Available In this paper, a simplified model for the study of thermal analysis of shell-andtubes heat exchangers of water and oil type is roposed..Shell and Tube heat exchangers are having special importance in boilers, oil coolers, condensers, pre-heaters. They are also widely used in process applications as well as the refrigeration and air conditioning industry. The robustness and medium weighted shape of Shell and Tube heat exchangers make them well suited for high pressure operations. In this paper we have shown how to done the thermal analysis by using theoretical formulae for this we have chosen a practical problem of counter flow shell and tube heat exchanger of water and oil type, by using the data that come from theoretical formulae we have design a model of shell and tube heat exchanger using Pro-e and done the thermal analysis by using ANSYS software and comparing the result that obtained from ANSYS software and theoretical formulae. For simplification of theoretical calculations we have also done a C code which is useful for calculating the thermal analysis of a counter flow of water-oil type shell and tube heat exchanger.

  4. Simulasi Performansi Heat Exchanger Type Shell And Tube Dengan Double Segmental Baffle Terhadap Helical Baffle

    Directory of Open Access Journals (Sweden)

    Anggareza Adhitiya

    2013-12-01

    Full Text Available Pada heat exchanger type shell and tube, selain pengunaan baffle yang bertujuan untuk mengarahkan aliran pada sisi shell juga bertujuan untuk meningkatkan laju perpindahan panas yang terjadi antara fluida kerja dengan cara menimbulkan olakan aliran di sisi shell. Olakan –olakan ini nantinya yang akan mempengaruhi besarnya perpindahan panas dalam sisi shell. Pada kondisi standart baffle yang digunakan pada tugas akhir ini adalah jenis double segmental. Double segmental baffle mempunyai tingkat pressure drop yang cukup besar. sehingga perlu di ganti dengan baffle jenis helical yang mempunyai pressure drop yang lebih kecil. Untuk mengetahui performansi heat exchanger maka perlu adanya penelitian lebih lanjut simulasi numerik pada baffle heat exchanger type shell and tube. agar didapat pengaruh jenis baffle yang di gunakan terhadap karakteristik aliran dan perpindahan panas dari suatu heat exchanger type shell and tube. Tugas Akhir ini menggunakan program GAMBIT 2.4.6 untuk penggambaran geometri secara tiga dimensi dan program FLUENT 6.3.26 untuk mensimulasi aliran yang terjadi di dalam shell and tube heat exchanger. Pada software FLUENT 6.3.26 digunakan permodelan 3D Steady Flow dengan  memilih k – Epsilon RNG sebagai turbulence modeling serta mengaktifkan persamaan energy. Penelitian dilakukan dengan menggunakan dua variasi heat exchanger dengan jenis baffle yang berbeda .Heat exchanger type shell and tube dengan jenis double segmental baffle mempunyai nilai koefisien konveksi rata-rata = 218.408 w/m2.K. Sedangkan untuk helical baffle sebesar = 171.122 w/m2.K. Temperature outflow pada heat exchanger type shell and tube dengan jenis double segmental baffle = 306.7450K. Di ikuti dengan pressure drop sebesar = 2100 pascal Sedangkan untuk helical baffle mempunyai temperatur outflow sebesar = 307.0220K dengan pressure drop sebesar = 500 pascal.

  5. A SIMPLIFIED PREDICTIVE CONTROL FOR A SHELL AND TUBE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    S.RAJASEKARAN,

    2010-12-01

    Full Text Available In this paper a simplified predictive control design is applied for the controlling a temperature of a fluid stream using the shell and tube heat exchanger. The predictive control design based on Dynamic Matrix Control (DMC involves the complicated inversion computation for higher dimensional matrix. Using DMC for controlling a temperature of the shell and tube heat exchanger, there is still a need for optimization of conversation of energy. The simplified predictive control is based on DMC, which reduces the computational complexity by exploring its internal mechanism. Finally the simplified Predictive Control is applied to shell and tube heat exchanger and the results of this control algorithm compared with the conventional PID controller and DMC based PID Controllers.

  6. An expert model for the shell and tube heat exchangers analysis by artificial neural networks

    OpenAIRE

    Moghadassi, A. R.; Hosseini, S. M.; Parvizian, F.; Mohamadiyon, F.; Behzadi Moghadam, A.; Sanaeirad, A.

    2011-01-01

    Due to the importance of heat exchangers in chemical and petrochical industries, heat exchangers analysis and heat translate calculations are preceded. The conventional and prevalent methods (such as KERN method and etc) are presented heat translate calculation for the analysis and selection of shell and tube heat exchanger based on the obtained pressure drop and fouling factor after consecutive calculation. Also there are many properties and parameters in prevalent methods. The current work ...

  7. On the optimal design of shell and tube heat exchanger for nuclear applications

    International Nuclear Information System (INIS)

    In nuclear industry, heat exchanger plays an important role in the transfer of heat from reactor core, where heat is generated, to the ultimate heat sink UHS, and then is dissipated. The actual design of heat exchanger not only relies on thermohydraulic considerations but also on economical aspects and radiological safety considerations. For optimal design of heat exchanger for a specific application a compromise should be made for determining the important factors affecting the design. In this paper, an optimization model is presented for shell and tube heat exchanger, which could be considered as a tool for computer aided design. A case study is presented to explore the present adopted model. 3 figs

  8. Review of shell-and-tube heat exchanger fouling and corrosion in geothermal power plant service

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, P.F. II

    1983-12-01

    Heat exchangers for hot geofluid/working substance vaporizers for binary power plants are considered. A brief description of the physical test apparatus and the geofluid chemistry for each of the several heat exchanger tests is presented. The fouling data developed from these tests are summarized, in most cases presenting a mathematical expression for the increase in fouling factor with time. The materials performance data developed from these same tests are explored. The performance of shell-and-tube heat exchangers used as condensers and ancillary coolers in the power plant heat rejection system is considered.

  9. Numerical studies of combined multiple shell-pass shell-and-tube heat exchangers with helical baffles

    OpenAIRE

    Chen, Guidong; Zeng, Min; Wang, Qiuwang

    2008-01-01

    In order to simplify the manufacture and improve the heat transfer performance, we have invented a combined multiple shell-pass shell-and-tube heat exchanger. The novel combined multiple shell-pass shell-and-tube heat exchanger (CM-STHXs) with continuous helical baffles in the outer shell-pass and other different baffles in the inner shell-pass was compared with conventional STHX with segmental baffles by Computational Fluid Dynamics method. The numerical results show tha...

  10. Maintenance experience with shell and tube type heat exchangers of Cirus

    International Nuclear Information System (INIS)

    Cirus is a 40 MWt research reactor. The reactor utilizes metallic natural uranium fuel cladded in aluminium, demineralized light water as primary coolant and heavy water as moderator. The primary coolant (PCW) and moderator (HW) both recirculate in two different closed loops and cooled by sea water (ultimate heat sink) flowing through shell and tube heat exchangers. There are six numbers of primary coolant/sea water (PCW/SW) and three numbers of heavy water/sea water (HW/SW) heat exchangers connected in parallel in two different loops. One heat exchanger remains stand-by in both systems to provide necessary redundancy for routine servicing and maintenance. The heat exchangers have rendered over 35 years of service. This paper describes maintenance experience with the above said heat exchangers, various problems encountered, ageing studies and various innovative changes/modifications incorporated to reduce the down time and maintenance efforts. 1 fig

  11. Shell side CFD analysis of a small shell-and-tube heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Ozden, Ender [Department of Mechanical Engineering, Middle East Technical University, 06531 Ankara (Turkey); Tari, Ilker, E-mail: itari@metu.edu.t [Department of Mechanical Engineering, Middle East Technical University, 06531 Ankara (Turkey)

    2010-05-15

    The shell side design of a shell-and-tube heat exchanger; in particular the baffle spacing, baffle cut and shell diameter dependencies of the heat transfer coefficient and the pressure drop are investigated by numerically modeling a small heat exchanger. The flow and temperature fields inside the shell are resolved using a commercial CFD package. A set of CFD simulations is performed for a single shell and single tube pass heat exchanger with a variable number of baffles and turbulent flow. The results are observed to be sensitive to the turbulence model selection. The best turbulence model among the ones considered is determined by comparing the CFD results of heat transfer coefficient, outlet temperature and pressure drop with the Bell-Delaware method results. For two baffle cut values, the effect of the baffle spacing to shell diameter ratio on the heat exchanger performance is investigated by varying flow rate.

  12. Shell side CFD analysis of a small shell-and-tube heat exchanger

    International Nuclear Information System (INIS)

    The shell side design of a shell-and-tube heat exchanger; in particular the baffle spacing, baffle cut and shell diameter dependencies of the heat transfer coefficient and the pressure drop are investigated by numerically modeling a small heat exchanger. The flow and temperature fields inside the shell are resolved using a commercial CFD package. A set of CFD simulations is performed for a single shell and single tube pass heat exchanger with a variable number of baffles and turbulent flow. The results are observed to be sensitive to the turbulence model selection. The best turbulence model among the ones considered is determined by comparing the CFD results of heat transfer coefficient, outlet temperature and pressure drop with the Bell-Delaware method results. For two baffle cut values, the effect of the baffle spacing to shell diameter ratio on the heat exchanger performance is investigated by varying flow rate.

  13. PARAMETER IDENTIFICATION AND CONTROL OF A SHELL AND TUBE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Arun Sivaram

    2013-04-01

    Full Text Available In this work, we discuss about the process parameter identification and control of a Counter Flow Shell and Tube Heat Exchanger using Recursive Least Square Algorithm(RLS and Self Turning controller respectively. Here, we model the process with the help of experimental data using RLS Algorithm. Then an ST controller which comes under adaptive controller is used to control the process.With the help of STC, the tube outlet temperature is controlled by adjusting the flow of cold fluid through the shell side. In conventional way a PID controller is also tuned, and the performance is compared with STC using MATLAB simulations.

  14. CACHE: an extended BASIC program which computes the performance of shell and tube heat exchangers

    International Nuclear Information System (INIS)

    An extended BASIC program, CACHE, has been written to calculate steady state heat exchange rates in the core auxiliary heat exchangers, (CAHE), designed to remove afterheat from High-Temperature Gas-Cooled Reactors (HTGR). Computationally, these are unbaffled counterflow shell and tube heat exchangers. The computational method is straightforward. The exchanger is subdivided into a user-selected number of lengthwise segments; heat exchange in each segment is calculated in sequence and summed. The program takes the temperature dependencies of all thermal conductivities, viscosities and heat capacities into account providing these are expressed algebraically. CACHE is easily adapted to compute steady state heat exchange rates in any unbaffled counterflow exchanger. As now used, CACHE calculates heat removal by liquid weight from high-temperature helium and helium mixed with nitrogen, oxygen and carbon monoxide. A second program, FULTN, is described. FULTN computes the geometrical parameters required as input to CACHE. As reported herein, FULTN computes the internal dimensions of the Fulton Station CAHE. The two programs are chained to operate as one. Complete user information is supplied. The basic equations, variable lists, annotated program lists, and sample outputs with explanatory notes are included

  15. 3D NUMERICAL SIMULATIONS OF THE THERMAL PROCESSES IN THE SHELL AND TUBE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Mi?a V. Vuki?

    2014-01-01

    Full Text Available A shell and tube heat exchanger (STHE is one of the most often used apparatuses in chemical industry. One of the main goals of the STHE manufacturers is to improve their exploitation reliability and efficiency. Two approaches to the STHE design improvement are possible: experimental investigation, which is very expensive and time-consuming because of the shell side complex geometry, and numerical investigations. Numerical simulations can be used to check the old and to develop new and more efficient STHE designs. In this paper, the results of the numerical investigations of fluid flow and heat transfer in the laboratory experimental STHE are presented. Numerical simulation has been performed by using the PHOENICS code. The tube bundle has been modeled by using the concept of porous media. Standard k-e turbulence model is used.

  16. Optimum configuration of shell-and-tube heat exchangers for the use in low-temperature organic Rankine cycles

    International Nuclear Information System (INIS)

    Highlights: • Binary cycles for low-temperature heat sources are investigated. • Shell-and-tube heat exchangers are modeled. • System optimization of the cycle variables and shell-and-tube geometry. • 30°-tube configuration is optimal for single-phase heat exchangers. • 60°-tube configuration is optimal for two-phase heat exchangers. - Abstract: In this paper, a first step towards a system optimization of organic Rankine cycles (ORCs) is taken by optimizing the cycle parameters together with the configuration of shell-and-tube heat exchangers. In this way every heat exchanger has the optimum allocation of heat-exchanger surface, pressure drop and pinch-point-temperature difference for the given boundary conditions. Different tube configurations are investigated in this paper. It is concluded that the 30°-tube configurations should be used for the single-phase heat exchangers and the 60°-tube configuration for the two-phase heat exchangers. The performance of subcritical cycles can be strongly improved by adding a second pressure level. Recuperated cycles are only useful when the temperature of the heat source after the ORC should be relatively high

  17. Estimated Outlet Temperatures in Shell-and-Tube Heat Exchanger Using Artificial Neural Network Approach Based on Practical Data

    OpenAIRE

    Hisham Hassan Jasim

    2013-01-01

    The objective of this study is to apply Artificial Neural Network for heat transfer analysis of shell-and-tube heat exchangers widely used in power plants and refineries. Practical data was obtained by using industrial heat exchanger operating in power generation department of Dura refinery. The commonly used Back Propagation (BP) algorithm was used to train and test networks by divided the data to three samples (training, validation and testing data) to give more approach data with actual ca...

  18. Design of shell-and-tube heat exchangers when the fouling depends on local temperature and velocity

    Energy Technology Data Exchange (ETDEWEB)

    Butterworth, D. [HTFS, Hyprotech, Didcot (United Kingdom)

    2002-07-01

    Shell-and-tube heat exchangers are normally designed on the basis of a uniform and constant fouling resistance that is specified in advance by the exchanger user. The design process is then one of determining the best exchanger that will achieve the thermal duty within the specified pressure drop constraints. It has been shown in previous papers [Designing shell-and-tube heat exchangers with velocity-dependant fouling, 34th US national Heat Transfer Conference, 20-22 August 2000, Pittsburg, PA; Designing shell-and-tube heat exchangers with velocity-dependant fouling, 2nd Int. Conf. on Petroleum and Gas Phase Behavior and Fouling, 27-31 August 2000, Copenhagen] that this approach can be extended to the design of exchangers where the design fouling resistance depends on velocity. The current paper briefly reviews the main findings of the previous papers and goes on to treat the case where the fouling depends also on the local temperatures. The Ebert-Panchal [Analysis of Exxon crude-oil, slip-stream coking data, Engineering Foundation Conference on Fouling Mitigation of Heat Exchangers, 18-23 June 1995, California] form of fouling rate equation is used to evaluate this fouling dependence. When allowing for temperature effects, it becomes difficult to divorce the design from the way the exchanger will be operated up to the point when the design fouling is achieved. However, rational ways of separating the design from the operation are proposed. (author)

  19. Optimization of shell-and-tube heat exchangers conforming to TEMA standards with designs motivated by constructal theory

    International Nuclear Information System (INIS)

    Highlights: • A design method of heat exchangers motivated by constructal theory is proposed. • A genetic algorithm is applied and the TEMA standards are rigorously followed. • Three cases are studied to illustrate the advantage of the proposed design method. • The design method will reduce the total cost compared to two other methods. - Abstract: A modified optimization design approach motivated by constructal theory is proposed for shell-and-tube heat exchangers in the present paper. In this method, a shell-and-tube heat exchanger is divided into several in-series heat exchangers. The Tubular Exchanger Manufacturers Association (TEMA) standards are rigorously followed for all design parameters. The total cost of the whole shell-and-tube heat exchanger is set as the objective function, including the investment cost for initial manufacture and the operational cost involving the power consumption to overcome the frictional pressure loss. A genetic algorithm is applied to minimize the cost function by adjusting parameters such as the tube and shell diameters, tube length and tube arrangement. Three cases are studied which indicate that the modified design approach can significantly reduce the total cost compared to the original design method and traditional genetic algorithm design method

  20. Design optimization of shell-and-tube heat exchangers using single objective and multiobjective particle swarm optimization

    International Nuclear Information System (INIS)

    The Particle Swarm Optimization (PSO) algorithm is used to optimize the design of shell-and-tube heat exchangers and determine the optimal feasible solutions so as to eliminate trial-and-error during the design process. The design formulation takes into account the area and the total annual cost of heat exchangers as two objective functions together with operating as well as geometrical constraints. The Nonlinear Constrained Single Objective Particle Swarm Optimization (NCSOPSO) algorithm is used to minimize and find the optimal feasible solution for each of the nonlinear constrained objective functions alone, respectively. Then, a novel Nonlinear Constrained Mult-objective Particle Swarm Optimization (NCMOPSO) algorithm is used to minimize and find the Pareto optimal solutions for both of the nonlinear constrained objective functions together. The experimental results show that the two algorithms are very efficient, fast and can find the accurate optimal feasible solutions of the shell and tube heat exchangers design optimization problem. (orig.)

  1. Two-phase experimental heat transfer studies on a water-diesel system in a shell and tube heat exchanger

    OpenAIRE

    V. Alagesan; Sundaram, S.

    2012-01-01

    Two-phase heat transfer involving two immiscible systems is gaining importance in petrochemical and allied industries. Varying compositions of diesel and water were experimentally studied in a 1:2 shell and tube heat exchanger. The data on pure water and diesel were fitted to an equation of the form. h1? = a NmRe.The two-phase multiplier, ? L, was related to the Lockhart Martinelli (L-M) parameter, ?tt², using the two-phase data and a correlation ? L = b+c(?tt²)+d/(...

  2. A new design approach for shell-and-tube heat exchangers using imperialist competitive algorithm (ICA) from economic point of view

    International Nuclear Information System (INIS)

    Highlights: ? A new shell and tube heat exchanger optimization design approach is developed. ? Design optimization is performed using imperialist competitive optimization (ICA) algorithm. ? The capital investment, annual cost and consequently total cost are minimized by applying ICA technique. ? Proposed a quick approach to optimal design of heat exchangers with very low run time. - Abstract: Cost minimization of shell-and-tube heat exchangers is a key objective. Traditional design approaches besides being time consuming, do not guarantee the reach of an economically optimal solution. So, in this research, a new shell and tube heat exchanger optimization design approach is developed based on imperialist competitive algorithm (ICA). The ICA algorithm has some good features in reaching to the global minimum in comparison to other evolutionary algorithms. In present study, ICA technique has been applied to minimize the total cost of the equipment including capital investment and the sum of discounted annual energy expenditures related to pumping of shell and tube heat exchanger by varying various design variables such as tube length, tube outer diameter, pitch size and baffle spacing. Based on proposed method, a full computer code was developed for optimal design of shell and tube heat exchangers and different test cases are solved by it to demonstrate the effectiveness and accuracy of the proposed algorithm. Finally the results are compared to those obtained by literature approaches. The obtained results indicate that the ICA algorithm can be successfully applied for optimal design of shell and tube heat exchangers with higher accuracy in less computational time

  3. Parametric study of gross flow maldistribution in a single-pass shell and tube heat exchanger in turbulent regime

    International Nuclear Information System (INIS)

    Highlights: • A potential means of reducing flow maldistribution in exchangers. • In turbulent flows, maldistribution is but only tube number. • A Gaussian function can also express flow maldistribution in the exchanger. -- Abstract: Uniform distribution of flow in tube bundle of shell and tube heat exchangers is an arbitrary assumption in conventional heat exchanger design. Nevertheless, in practice, flow maldistribution may be an inevitable occurrence which may have severe impacts on thermal and mechanical performance of heat exchangers i.e. fouling. The present models for flow maldistribution in the tube-side deal only with the maximum possible velocity deviation. Other flow maldistribution models propose and recommend the use of a probability distribution, e.g. Gaussian distribution. None of these, nevertheless, estimate quantitatively the number of tubes that suffer from flow maldistribution. This study presents a mathematical model for predicting gross flow maldistribution in the tube-side of a single-pass shell and tube heat exchanger. It can quantitatively estimate the magnitude of flow maldistribution and the number of tubes which have been affected. The validation of the resultant model has been confirmed when compared with similar study using computational fluid dynamics (CFD)

  4. Two-phase experimental heat transfer studies on a water-diesel system in a shell and tube heat exchanger

    Scientific Electronic Library Online (English)

    V., Alagesan; S., Sundaram.

    2012-06-01

    Full Text Available Two-phase heat transfer involving two immiscible systems is gaining importance in petrochemical and allied industries. Varying compositions of diesel and water were experimentally studied in a 1:2 shell and tube heat exchanger. The data on pure water and diesel were fitted to an equation of the form [...] . h1? = a NmRe.The two-phase multiplier, ? L, was related to the Lockhart Martinelli (L-M) parameter, ?tt², using the two-phase data and a correlation ? L = b+c(?tt²)+d/(?tt²)² was established. The two-phase heat transfer coefficient was calculated based on the coefficients 'a' and 'm' for pure diesel and pure water along with ?L and the L-M parameter. The calculated values of the two-phase heat transfer coefficient h2? based on pure diesel and pure water suggest that diesel is a better reference fluid since the average error is much smaller compared to pure water as reference.

  5. Thermal-economic multi-objective optimization of shell and tube heat exchanger using particle swarm optimization (PSO)

    Science.gov (United States)

    Ghanei, A.; Assareh, E.; Biglari, M.; Ghanbarzadeh, A.; Noghrehabadi, A. R.

    2014-10-01

    Many studies are performed by researchers about shell and tube heat exchanger (STHE) but the multi-objective particle swarm optimization (PSO) technique has never been used in such studies. This paper presents application of thermal-economic multi-objective optimization of STHE using PSO. For optimal design of a STHE, it was first thermally modeled using e-number of transfer units method while Bell-Delaware procedure was applied to estimate its shell side heat transfer coefficient and pressure drop. Multi objective PSO (MOPSO) method was applied to obtain the maximum effectiveness (heat recovery) and the minimum total cost as two objective functions. The results of optimal designs were a set of multiple optimum solutions, called `Pareto optimal solutions'. In order to show the accuracy of the algorithm, a comparison is made with the non-dominated sorting genetic algorithm (NSGA-II) and MOPSO which are developed for the same problem.

  6. Impacto ecológico de los Intercambiadores de calor de tubo y coraza / Ecological impact of Shell and tube heat exchangers

    Scientific Electronic Library Online (English)

    Maida Bárbara, Reyes Rodríguez; Jorge Laureano, Moya Rodríguez; Oscar Miguel, Cruz Fonticiella.

    2015-04-01

    Full Text Available Los intercambiadores de calor de tubo y coraza son de los equipos más importantes en la industria. Su diseño termodinámico se basa en el coeficiente global de transferencia de calor y la caída de presión total. En 2007 se estableció una nueva propiedad termodinámica denominada "Entransía", que expre [...] sa la capacidad de un cuerpo de transferir calor. A la pérdida de esa capacidad se le denomina "Disipación de Entransía". Para evaluar el impacto ecológico de las máquinas térmicas, Angulo-Brown creó en 1991 la llamada función ecológica. En el presente trabajo se combinó la disipación de entransía con la función ecológica y se creó una nueva expresión para evaluar el impacto ambiental de los intercambiadores de calor. Se realizó además la optimización muti-objetivo de estos equipos. Fueron utilizadas como funciones objetivo la función ecológica y el costo. Para realizar la optimización se utilizó el método de los Algoritmos Genéticos. Abstract in english Shell and tube heat exchangers are ones the most important equipment in the industry. Their thermodynamic design is based on the global heat transference coefficient and the pressure drop. In 2007 was settled a new thermodynamic property denominated "Entransy", which expresses the capacity of a body [...] to transfer heat. The loss of this capacity is denominated "Entransy Dissipation". For evaluating the ecological impact of thermal machines, Angulo-Brown created in 1991 the "ecological function". In this paper the"entransy dissipation" and the ecological function were combined and a new expression for evaluating the ecological impact of shell and tube heat exchangers was created. A multi-objective optimization of this equipment wasalso realized. The ecological function and the cost wereused as objective functions. For carry out the optimization the method of the Genetic Algorithms was used.

  7. Beneficial design of unbaffled shell-and-tube heat exchangers for attachment of longitudinal fins with trapezoidal profile

    Directory of Open Access Journals (Sweden)

    Balaram Kundu

    2015-03-01

    Full Text Available A parametric variation followed with Kern’s method of design of extended surface heat exchanger has been made for an unbaffled shell-and-tube heat exchanger problem. For this analysis, the rectangular and trapezoidal fin shapes longitudinally attached to the fin tubes are taken. In comparison with the attachment of trapezoidal fins, it is found that the heat transfer rate was lesser than the rectangular cross section by keeping a constant outer diameter of the shell along with all other constraints of a heat exchanger design, namely, number of passes, tube outer diameter, tube pitch layout, etc. But when the total volume of the fin over a tube was kept constraint, using trapezoidal fins the heat transfer rate is found to be increased and consequently the pressure drop decreases much more than in the case of fins with rectangular cross section. This optimization has shown beneficial results in all the cases of different constraints of heat exchanger design analysis.

  8. Estimated Outlet Temperatures in Shell-and-Tube Heat Exchanger Using Artificial Neural Network Approach Based on Practical Data

    Directory of Open Access Journals (Sweden)

    Hisham Hassan Jasim

    2013-01-01

    Full Text Available The objective of this study is to apply Artificial Neural Network for heat transfer analysis of shell-and-tube heat exchangers widely used in power plants and refineries. Practical data was obtained by using industrial heat exchanger operating in power generation department of Dura refinery. The commonly used Back Propagation (BP algorithm was used to train and test networks by divided the data to three samples (training, validation and testing data to give more approach data with actual case. Inputs of the neural network include inlet water temperature, inlet air temperature and mass flow rate of air. Two outputs (exit water temperature to cooling tower and exit air temperature to second stage of air compressor were taken in ANN.150 sets of data were generated in different days by the reference heat exchanger model to training the network. Regression between desired target and prediction ANN output for training , validation, testing and all samples show reasonably values are equal to one (R=1 . 50 sets of data were generated to test the network and compare between desired and predicated exit temperature (water temp. and air temp. show a good agreement ( .

  9. Influence of Ionic Fluid in Counter flow in Shell and Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    N.D.Shirgire

    2014-07-01

    Full Text Available An Ionanofluids are a new and innovative class of heat transfer fluids which exhibit fascinating thermo physical properties compared to their base ionic liquids. In this paper (1-Butyl-3-methylimidazolium chloride (BmimCLionic fluid is used comparison with Distilled Water. Distilled Water is non Ionic form in nature, so, results using (BmimCLis Overall good efficient in heat transfer device, were obtained with experimental work results on thermal conductivity and heat capacity,. As compared to (BmimCL those of their base ionic liquids such as (mineral oils and ethylene glycol etc are less thermophysical properties . as coolants in heat exchanger are also used to access their feasibility and performance in heat transfer devices.

  10. Design and Simulation of Conventional and Intelligent Controllers for Temperature Control Of Shell and Tube Heat Exchanger System

    Directory of Open Access Journals (Sweden)

    E.saranya

    2013-07-01

    Full Text Available Heat exchanger system is widely used in chemical plants because it can sustain wide range of temperature and pressure. The main purpose of a heat exchanger system is to transfer heat from a hot fluid to a cooler fluid, so temperature control of outlet fluid is of prime importance. The designed controllers will regulate the temperature of the outgoing fluid to a desired set point in the shortest possible time irrespective of load and process disturbances, equipment saturation and nonlinearity. To control the temperature of outlet fluid of the heat exchanger system, a conventional P,PI and PID controller can be used. Due to nonlinear nature, shell and tube heat exchanger system is hard to model and control using conventional methods. The intelligent controllers are effective for nonlinear processes. In this paper, conventional P,PI,PID and IMC based PID controllers are designed and simulation results are presented and discussed. From the results it is observed that IMC based PID controller gives better results when compared to other controllers. To improve the performance the fuzzy controller and model based neuro controllers (inverse and internal model controllers are designed and simulated. To develop model based neuro controllers forward and inverse neuro model are developed, trained and validated. Simulation studies are carried out with fuzzy logic controller and model based neuro controllers for servo and regulatory problems. The results are presented and discussed. It is observed that ,fuzzy logic controller and IMC based PID controllers are giving better results when compared to conventional PID controller and model based neuro controllers.

  11. The modelling of particle build up in shell-and-tube heat exchangers due to process cooling water / Christiaan Jacob Ghyoot

    OpenAIRE

    Ghyoot, Christiaan Jacob

    2013-01-01

    Sasol Limited experiences extremely high particulate fouling rates inside shell-and-tube heat exchangers that utilize process cooling water. The water and foulants are obtained from various natural and process sources and have irregular fluid properties. The fouling eventually obstructs flow on the shell side of the heat exchanger to such an extent that the tube bundles have to be replaced every nine months. Sasol requested that certain aspects of this issue be addressed. To...

  12. Shell side numerical analysis of a shell and tube heat exchanger considering the effects of baffle inclination angle on fluid flow using CFD

    Directory of Open Access Journals (Sweden)

    Raj Karuppa Thundil R.

    2012-01-01

    Full Text Available In this present study, attempts were made to investigate the impacts of various baffle inclination angles on fluid flow and the heat transfer characteristics of a shell-and-tube heat exchanger for three different baffle inclination angles namely 0°,10° and 20°. The simulation results for various shell and tube heat exchangers, one with segmental baffles perpendicular to fluid flow and two with segmental baffles inclined to the direction of fluid flow are compared for their performance. The shell side design has been investigated numerically by modeling a small shell-and-tube heat exchanger. The study is concerned with a single shell and single side pass parallel flow heat exchanger. The flow and temperature fields inside the shell are studied using non-commercial CFD software tool ANSYS CFX 12.1. For a given baffle cut of 36 %, the heat exchanger performance is investigated by varying mass flow rate and baffle inclination angle. From the CFD simulation results, the shell side outlet temperature, pressure drop, recirculation near the baffles, optimal mass flow rate and the optimum baffle inclination angle for the given heat exchanger geometry are determined.

  13. Design Optimization of Shell and Tube Heat Exchanger by Vibration Analysis

    OpenAIRE

    S. H. GAWANDE; A. A Keste; L.G. Navale; M R Nandgaonkar; V. J Sonawane; U. B Ubarhande

    2011-01-01

    In this paper a simplified approach to optimize the design of Shell Tube Heat Exchanger [STHE] by flow induced vibration analysis [FVA] is presented. The vibration analysis of STHE helps in achieving optimization in design by prevention of tube failure caused due to flow induced vibration. The main reason for tube failure due to flow induced vibration is increased size of STHE. It is found that in case of increased size of STHE, the surface area and number of tubes increases, thus the underst...

  14. A new method to calculate pressure drop and shell-side heat transfer coefficient in a shell-and-tube heat exchanger

    International Nuclear Information System (INIS)

    A new method to calculate pressure drop (?p) and shell-side heat transfer coefficient (h sub(c)) in a shell-and-tube heat exchanger with segmental baffles is presented. The method is based on the solution of the equations of conservation of mass and momentum between two baffles. The calculated distributions of pressure and velocities given respectively, ?p and h sub(c). The values of ?p and h sub(c) are correlated for a given geometry whit the shell side fluid properties and flow rate. The calculated and experimental results agree very well for a U-Tube heat exchanger. (Author)

  15. Simulation of (EG+Al2O3 Nanofluid Through the Shell and Tube Heat Exchanger with Rectangular Arrangement of Tubes and Constant Heat Flux

    Directory of Open Access Journals (Sweden)

    F. Khoddamrezaee

    2010-01-01

    Full Text Available In this study, the characteristics of (EG+AL2O3 nanofluid and (EG fluid which cross a rectangular arrangement of tubes in a shell and tubes heat exchanger have been investigated. The stagnation point, separation point, heat transfer coefficient and shear stress in both of nanofluid and purefluid have been determined and compared with each other. The heat transfer and velocity simulation of two phase flow have been done by mixture model. Results show that by using of nanofluid, the stagnation and separation points of flow were postponed and the amount of heat transfer coefficient and shear stress increased but the effect of shear stress increase can be neglected in compare of unusual heat transfer rising.

  16. Cálculo simplificado de vibraciones en los intercambiadores de calor de tubo y coraza con fluidos líquidos / Simplified calculation of vibrations in shell and tube heat exchangers with liquids

    Scientific Electronic Library Online (English)

    Maida Bárbara, Reyes-Rodríguez; Jorge Laureano, Moya-Rodríguez; Rafael, Goytisolo-Espinosa.

    2014-08-01

    Full Text Available Un problema muy serio a tener en cuenta en el diseño mecánico de los intercambiadores de calor de tubo y coraza son las vibraciones inducidas en los tubos por el paso del fluido. La vibración de los tubos de los intercambiadores de calor de tubo y coraza es un factor que limita de manera importante [...] la operación de estos equipos. Los procesos dinámicos de los fluidos no estacionarios que ocurren durante el flujo producen vibraciones. Éstas son pulsaciones turbulentas de la presión (flujo turbulento), iniciación del vórtice y separación de los tubos durante el cruce de las corrientes, interacción hidro elástica de los montajes de los elementos transmisores del calor (tubos) con el flujo, y fenómenos acústicos. En el presente trabajo se describe el procedimiento a seguir para el cálculo de las vibraciones en los intercambiadores de calor de tubo y coraza. Abstract in english A very serious problem to consider in the mechanical design of Shell and Tube Heat Exchangers is the vibrations induced in the tubes by the fluid pass. The vibration of the tubes of the Shell and Tube Heat Exchangers is a factor that limits the operation of these equipments in important way. The dyn [...] amic processes of the nonstationary fluids that happen during the flow produce vibrations. These are turbulent pulsations of the pressure (turbulent flow), initiation of the vortex and separation of the tubes during the crossing of the currents, hydro elastic interaction of the assemblies of the transmitting elements of the heat (tubes) with the flow, and acoustic phenomena. In the present work the procedure for the calculation of the vibrations in Shell and Tube Heat Exchangers is described.

  17. Shell-side single-phase flows and heat transfer in shell-and-tube heat exchangers, 2

    International Nuclear Information System (INIS)

    Attention is focused on flows and heat transfer around a tube bundle located near the inlet nozzle in segmentally baffled tubular heat exchangers. A finite-difference analysis is performed to determine flow patterns, local heat ransfer coefficients, and pressure drops across a tube bundle. They are found to agree within a reasonable accuracy with experimental data. Particular attention is directed to the effects of the diameter of an inlet nozzle on flow patterns and local heat transfer coefficients. A noteworthy finding is that, with the use of a relatively large inlet nozzle whose diameter is roughly half of the shell diameter, the variation of local heat transfer coefficient in a tube bundle is contained in a tolerable range of 30 per cent. (author)

  18. Shell-side single-phase flows and heat transfer in shell-and-tube heat exchangers, 3

    International Nuclear Information System (INIS)

    An experimental investigation is performed to find the axial and circumferential distribution of local heat transfer coefficients around a tube bundle in segmentally turbular heat exchangers. The variation in the axial distribution of the heat transfer coefficient is found to be negligible compared with that of circumferential distribution or that within the tube bundle. Local heat transfer coefficients are sensitive to the ratio of the inlet nozzle diameter to the shell diameter in the inlet nozzle region of the tube bundle, while they remain invariant in the center region. No remarkable decrease of local heat transfer coefficients in the window zone is observed, so it is considered that there isn't any effective recirculation zones at the edge there. The normalization of the circumferential heat transfer coefficient using its averaged value keeps the distribution pattern unchanged with the Reynolds number, the ratio of inlet nozzle diameter to shell diameter and location of the tube within the bundle. These normalized values are assumed to agree with those of a tube bank of two dimensional array, with reasonable accuracy. (author)

  19. Numerical simulation of vortex induced vibration and related parameters in cross flow shell and tubes heat exchanger: a review

    International Nuclear Information System (INIS)

    This paper presents a brief review of studies on cross flow induced vortices in downside of tubes which leads to vibration. Two types of vibrations have been studied for tubes in cross flow: first vibration of the tube due to vortex shedding which is important primarily in cross flow but this vibration disappears in slug flow or froth flow regions which are important in numerous heat exchangers, secondly fluid elastic excitation which is most dangerous mechanism in heat exchanger tube bundles. The paper also presents the other parameters such as temperature variation on tube, pressure effect, lift and drag generation and their influence on heat exchanger tubes, different models comparison and tube size effect of tubes for vortices. (author)

  20. Automatización y optimización del diseño de intercambiadores de calor de tubo y coraza mediante el método de Taborek / Automatization and optimization of shell and tube heat exchangers design using the method of Taborek

    Scientific Electronic Library Online (English)

    Maida Bárbara, Reyes-Rodríguez; Jorge-Laureano, Moya-Rodríguez; Oscar-Miguel, Cruz-Fonticiella; Eduardo-Miguel, Fírvida-Donéstevez; José-Alberto, Velázquez-Pérez.

    2014-04-01

    Full Text Available Los intercambiadores de calor del tipo de coraza y tubo constituyen la parte más importante de los equipos de transferencia de calor sin combustión en las plantas de procesos químicos. Existen en la literatura numerosos métodos para el diseño de Intercambiadores de calor de tubo y coraza. Entre los [...] más conocidos se encuentran el Método de Kern, el Método de Bell Delaware, el Método de Tinker, el Método de Wills and Johnston y el Método de Taborek. El presente trabajo tiene como objetivo describir y automatizar el método de Taborek. Se realiza además la optimización del Costo del Intercambiador de Calor mediante el método de Recocido Simulado y el método de los algoritmos genéticos. Se puede concluir que la optimización por ambos métodos arroja resultados similares, disminuyendo apreciablemente el costo del intercambiador optimizado. Abstract in english Shell and tube heat exchangers are the most important equipment for heat transfer without combustion in plants of chemical processes.There are many methods for designing shell and tube heat exchangers in literature. Among the most known are the Kern´s Method, the Method of Bell Delaware, the Method [...] of Tinker, the Method of Wills and Johnston and the Method of Taborek. The objective of this paper is to describe and automate the Taborek´s method. It is also realized and optimization of the heat exchanger cost using the genetic algorithm and Simulated Annealing. It can be concluded that the optimization using both methods conduces to similar results, diminishing considerably the optimized exchanger cost

  1. Software para la enseñanza de la dinámica y control de intercambiadores de calor de tubos y coraza / Educational software for the teaching of the dynamics and control of shell and tube heat exchangers

    Scientific Electronic Library Online (English)

    Fiderman, Machuca; Oscar, Urresta.

    2008-06-01

    Full Text Available Este trabajo presenta la estructura de un software desarrollado para la enseñanza y aprendizaje de la dinámica y control de intercambiadores de calor de tubos y coraza. El programa presenta, de manera numérica y gráfica, el comportamiento dinámico en lazo abierto y cerrado del proceso para diferente [...] s parámetros de diseño y condiciones de operación variables. El software permite modificar condiciones tanto de operación como de diseño, por ejemplo, temperatura y caudales de entrada a los tubos y coraza, número y longitud de tubos, número de pasos, diámetro externo e interno de los tubos, diámetro interno de coraza y factor de ensuciamiento. Abstract in english The present work shows the software structure developed for teaching and learning of the dynamics and control of shell and tubes heat exchangers. The program shows (numerical and graphical mode) the dynamic behavior in open and closed loop under different design parameters and variable operations co [...] nditions. The software allows changing operation and design conditions such as temperature and flow inlet in shells and tubes, number and length of tubes, inside and outside diameter of tubes, number of passes, shell outside diameter and fouling factor.

  2. Effects of spray axis incident angle on heat transfer performance of rhombus-pitch shell-and-tube interior spray evaporator

    International Nuclear Information System (INIS)

    An interior spray method is proposed for enhancing the heat transfer performance of a compact rhombus-pitch shell-and-tube spray evaporator. The experimental results show that the shell-side heat transfer coefficient obtained using the proposed spray method is significantly higher than that achieved in a conventional flooded-type evaporator. Four different spray axis incident angles (0 .deg., 45 .deg., 60 .deg. and 75 .deg.) are tested in order to investigate the effect of the spray inclination angle on the heat transfer performance of the spray evaporator system. It is shown that the optimal heat transfer performance is obtained using a spray axis incident angle of 60 .deg.

  3. Design of heat exchangers by numerical methods

    International Nuclear Information System (INIS)

    Differential equations describing the heat tranfer in shell - and tube heat exchangers are derived and solved numerically. The method of ?T sub(lm) is compared with the proposed method in cases where the specific heat at constant pressure, Cp and the overall heat transfer coefficient, U, vary with temperature. The error of the method of ?T sub (lm) for the computation of the exchanger lenght is less than + 10%. However, the numerical method, being more accurate and at the same time easy to use and economical, is recommended for the design of shell-and-tube heat exchangers. (Author)

  4. COMPARATIVEANALYSIS OF ADVANCED CONTROLLERS IN A HEAT EXCHANGER

    OpenAIRE

    Sivakumar, P.

    2013-01-01

    Temperature control of the shell and tube heat exchanger is characteristics of nonlinear, time varying and time lag. Since the temperature control with conventional PID controller cannot meet a wide range of precision temperature control requirement, we design temperature control system of the shell and tube heat exchanger by combining fuzzy and PID control methods in this paper. The simulation and experiments are carried out; making a comparison with conventional PID control showing that fuz...

  5. Chapter 11. Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin D.; Culver, Gene

    1998-01-01

    Most geothermal fluids, because of their elevated temperature, contain a variety of dissolved chemicals. These chemicals are frequently corrosive toward standard materials of construction. As a result, it is advisable in most cases to isolate the geothermal fluid from the process to which heat is being transferred. The task of heat transfer from the geothermal fluid to a closed process loop is most often handled by a plate heat exchanger. The two most common types used in geothermal applications are: bolted and brazed. For smaller systems, in geothermal resource areas of a specific character, downhole heat exchangers (DHEs) provide a unique means of heat extraction. These devices eliminate the requirement for physical removal of fluid from the well. For this reason, DHE-based systems avoid entirely the environmental and practical problems associated with fluid disposal. Shell and tube heat exchangers play only a minor role in low-temperature, direct-use systems. These units have been in common use in industrial applications for many years and, as a result, are well understood. For these reasons, shell and tube heat exchangers will not be covered in this chapter.

  6. Computation of two-dimensional isothermal flow in shell-and-tube heat exchangers

    International Nuclear Information System (INIS)

    A computational procedure is outlined whereby two-dimensional isothermal shell-side flow distributions can be calculated for tube bundles having arbitrary boundaries and flow blocking devices, such as sealing strips, defined in arbitrary locations. The procedure is described in some detail and several computed results are presented to illustrate the robustness and generality of the method

  7. Joint economic optimization of heat exchanger design and maintenance policy

    OpenAIRE

    Caputo, Antonio C.; Pelagagge, Pacifico M.; Salini, Paolo

    2011-01-01

    In this paper a new approach to shell and tube heat exchanger optimization is presented based on the minimization of the life-cycle cost. The method allows the joint optimization of both the equipment design and the cleaning policy. Economic savings resulting from the proposed design procedure are relevant especially when large sized equipment is involved or when a large number of small sized units are installed. At first, a thermal design procedure defines the heat transfer area as well as f...

  8. COMPARATIVE THERMAL ANALYSIS OF HELIXCHANGER WITH SEGMENTAL HEAT EXCHANGER USING BELL-DELAWARE METHOD

    Directory of Open Access Journals (Sweden)

    S. Pavithran

    2012-05-01

    Full Text Available Heat exchangers are important heat transfer apparatus in oil refining, chemical engineering, environmental protection, electric power generation etc. The present work modifies the existing Bell-Delaware method used for conventional heat exchanger, taking into consideration the helical geometry of Helixchanger. Thermal analysis was carried out to study the impacts of various baffle inclination angles on fluid flow and heat transfer of heat exchangers with helical baffles. The analysis was conducted for conventional shell and tube heat Exchanger and Helixchanger for five baffle inclination angles. Analysis results indicate that continual helical baffles can reduce or even eliminate dead regions in the shell side of shell-and-tube heat exchangers. The pressure drop varies drastically with baffle inclination angle and shell-side Reynolds number. The variation of the pressure drop is relatively large for small inclination angle. However, for ?>350, the effect of ? on pressure drop is very small. Compared to the segmental heat exchangers, the heat exchangers with continual helical baffles have higher heat transfer coefficients to the same pressure drop. The detailed knowledge on the heat transfer and pressure drop across the shell side will provide further basis flow for further optimization of shell-and-tube heat exchangers.

  9. A Simple Tubesheet Layout Program for Heat Exchangers

    OpenAIRE

    Murali, S.; Rao, Y. B.

    2008-01-01

    The development of tubesheet layout program for shell and tube heat exchangers is presented in this study. Program is written in AutoLISP language, which provides standard tubesheet layout drawing as per standard codes and non standard tubsheet in AutoCAD Environment. The program computes the optimal number of tube count and lays out drawing with respecting constraints, including the shell ID, number of passes, center to center distance of tubes and tube outer diameter. Tubesheet layout drawi...

  10. The Optimum Selection and Drawing Output Program Development of Shell and Tube Type Oil Cooler

    International Nuclear Information System (INIS)

    Shell and Tube type Oil Cooler is widely used for hydraulic presses, die casting machines, generation equipments, machine tools and construction heavy machinery. Temperature of oil in the hydraulic system changes viscosity and thickness of oil film. They have a bad effect to performance and lubrication of hydraulic machinery, so it is important to know exactly the heat exchanging efficiency of oil cooler for controlling oil temperature. But most Korean manufacturers do not have test equipment for oil cooler, so they cannot carry out the efficiency test of oil cooler and it is impossible to verify its performance. This paper includes information of construction of necessary utilities for oil cooler test and design and manufacture of test equipment. One can select the optimum product by obtaining performance data through tests of various kinds of oil coolers. And also the paper developed a program which can be easily used for design of 2D and 3D drawings of oil cooler

  11. Application of intensified heat transfer for the retrofit of heat exchanger network

    International Nuclear Information System (INIS)

    Highlights: ? Novel design approach for the retrofit of HEN based on intensified heat transfer. ? Development of a mathematical model to evaluate shell-and-tube heat exchanger performances. ? Identification of the most appropriate heat exchangers requiring heat transfer enhancements in the heat exchanger network. -- Abstract: A number of design methods have been proposed for the retrofit of heat exchanger networks (HEN) during the last three decades. Although considerable potential for energy savings can be identified from conventional retrofit approaches, the proposed solutions have rarely been adopted in practice, due to significant topology modifications required and resulting engineering complexities during implementation. The intensification of heat transfer for conventional shell-and-tube heat exchangers can eliminate the difficulties of implementing retrofit in HEN which are commonly restricted by topology, safety and maintenance constraints, and includes high capital costs for replacing equipment and pipelines. This paper presents a novel design approach to solve HEN retrofit problems based on heat transfer enhancement. A mathematical model has been developed to evaluate shell-and-tube heat exchanger performances, with which heat-transfer coefficients and pressure drops for both fluids in tube and shell sides are obtained. The developed models have been compared with the Bell-Delaware, simplified Tinker and Wills-Johnston methods and tested with the HTRI (registered) and HEXTRAN (registered) software packages. This demonstrates that the new model is much simpler but can give reliable results in most cases. For the debottlenecking of HEN, four heuristic rules are proposed to identify the most appropriate heat exchangers requiring heat transfer enhancements in the HEN. The application of this new design approach allows a significant improvement in energy recovery without fundamental structural modifications to the network.

  12. Multidimensional numerical modeling of heat exchangers

    International Nuclear Information System (INIS)

    A comprehensive, multidimensional, thermal-hydraulic model is developed for the analysis of shell-and-tube heat exchangers for liquid-metal services. For the shellside fluid, the conservation equations of mass, momentum, and energy for continuum fluids are modified using the concept of porosity, surface permeability and distributed resistance to account for the blockage effects due to the presence of heat-transfer tubes, flow baffles/shrouds, the support plates, etc. On the tubeside, the heat-transfer tubes are connected in parallel between the inlet and outlet plenums, and tubeside flow distribution is calculated based on the plenum-to-plenum pressure difference being equal for all tubes. It is assumed that the fluid remains single-phase on the shell side and may undergo phase-change on the tube side, thereby simulating the conditions of Liquid Metal Fast Breeder Reactor (LMFBR) intermediate heat exchangers (IHX) and steam generators (SG)

  13. Design study of plastic film heat exchanger

    Science.gov (United States)

    Guyer, E. C.; Brownell, D. L.

    1986-02-01

    This report presents the results of an effort to develop and design a unique thermoplastic film heat exchanger for use in an industrial heat pump evaporator system and other energy recovery applications. The concept for the exchanger is that of individual heat exchange elements formed by two adjoining and freely hanging plastic films. Liquid flows downward in a regulated fashion between the films due to the balance of hydrostatic and frictional forces. The fluid stream on the outside of film may be a free-falling liquid film, a condensing gas, or a noncondensing gas. The flow and structural principles are similar to those embodied in an earlier heat exchange system developed for use in waste water treatment systems (Sanderson). The design allows for high heat transfer rates while working within the thermal and structural limitations of thermoplastic materials. The potential of this new heat exchanger design lies in the relatively low cost of plastic film and the high inherent corrosion and fouling resistance. This report addresses the selection of materials, the potential heat transf er performance, the mechanical design and operation of a unit applied in a low pressure steam recovery system, and the expected selling price in comparison to conventional metallic shell and tube heat exchangers.

  14. Heat exchanger

    International Nuclear Information System (INIS)

    A heat exchanger having primary and secondary conduits in heat-exchanging relationship is described comprising: at least one serpentine tube having parallel sections connected by reverse bends, the serpentine tube constituting one of the conduits; a group of open-ended tubes disposed adjacent to the parallel sections, the open-ended tubes constituting the other of the conduits, and forming a continuous mass of contacting tubes extending between and surrounding the serpentine tube sections; and means securing the mass of tubes together to form a predetermined cross-section of the entirety of the mass of open-ended tubes and tube sections

  15. Heat exchanger

    International Nuclear Information System (INIS)

    A heat exchanger is proposed for the application in liquid-metal cooled fast breeder nuclear reactors, in which one may do without a liquid-metal intermediate loop. According to the invention, both tube bundles of the heat exchanger are surrounded by particles housing a particle size of 50 ?m to 1,000 ?m. A fluidized bed is produced by a fluidizing gas (e.g. helium), a cyclone separator retains the particles in the waste gas. The tube bundles are kept advantageously in separated sections. (UWI)

  16. Heat exchangers

    International Nuclear Information System (INIS)

    Description is given of a heat exchanger with exchange surfaces of preformed metal-sheets constituting at least one exchange bundle. A bundle comprises juxtaposed independent compartments, each of which comprising two superimposed preformed sheets and its respective manifolds for the inlet and outlet of a coolant. Substantially in parallel relationship to one surface of the respective compartment, said manifolds are mounted at the ends and on the opposed surfaces of the compartment, thus giving it, in cross-section, the shape of a Z with truncated arms. Since the sheets forming each compartments are of rectangular shape, the various juxtaposed independent compartments constitute an exchange-bundle of generally parallelepipedic shape, the manifolds being arranged in stepped fashion and defining those two sides of the parallelepiped inclined with respect to the axis of the latter. The heat-exchanger according to the invention can be used in particular in nuclear power stations, either mobile or not, e.g. of the PWR-type, and also in small-size installations

  17. A Numerical Algorithm and a Graphical Method to Size a Heat Exchanger

    DEFF Research Database (Denmark)

    Berning, Torsten

    2011-01-01

    This paper describes the development of a numerical algorithm and a graphical method that can be employed in order to determine the overall heat transfer coefficient inside heat exchangers. The method is based on an energy balance and utilizes the spreadsheet application software Microsoft ExcelTM. The application is demonstrated in an example for designing a single pass shell and tube heat exchanger that was developed in the Department of Materials Technology of the Norwegian University of Science and Technology (NTNU) where water vapor is superheated by a secondary oil cycle. This approach can be used to reduce the number of hardware iterations in heat exchanger design.

  18. Heat exchanger

    International Nuclear Information System (INIS)

    A heat exchanger such as forms, for example, part of a power steam boiler is made up of a number of tubes that may be arranged in many different ways, and it is necessary that the tubes be properly supported. The means by which the tubes are secured must be as simple as possible so as to facilitate construction and must be able to continue to function effectively under the varying operating conditions to which the heat exchanger is subject. The arrangement described is designed to meet these requirements, in an improved way. The tubes are secured to a member extending past several tubes and abutment means are provided. At least some of the abutment means comprise two abutment pieces and a wedge secured to the supporting member, that acts on these pieces to maintain the engagement. (U.K.)

  19. Life Cycle Cost Model for Condition Monitoring of heat exchanger

    OpenAIRE

    Melingen, Daniel

    2010-01-01

    Shell and tube heat exchangers (H/X) are widely used in the industry. Offshore, the H/Xs are used as heaters or coolers. In this thesis it is assumed that the H/X function is to cool down gas or oil. A large number of different configuration of H/X exist today, single pass and u-bend is most used offshore. This thesis looks further into the most used H/X on an offshore platform single pass.

    The thesis is dealing with formulas that indicate performance of an H/X. It is normal...

  20. Heat exchanger

    Science.gov (United States)

    Brackenbury, P.J.

    1983-12-08

    A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

  1. Segmented heat exchanger

    Science.gov (United States)

    Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  2. Sensitivity Analysis for DHRS Heat Exchanger Performance Tests of PGSFR

    International Nuclear Information System (INIS)

    The STELLA-1 facility has been constructed and separate effect tests of heat exchangers for DHRS are going to be conducted. Two kinds of heat exchangers including DHX (shell-and-tube sodium-to-sodium heat exchanger) and AHX (helical-tube sodium-to-air heat exchanger) will be tested for design codes V and V. Main test points are a design point and a plant normal operation point of each heat exchanger. Additionally, some plant transient conditions are taken into account for establishing a test condition set. To choose the plant transient test conditions, a sensitivity analysis has been conducted using the design codes for each heat exchanger. The sensitivity of the PGSFR DHRS heat exchanger tests (the DHX and AHX in the STELLA-1 facility) has been analyzed through a parametric study using the design codes SHXSA and AHXSA at the design point and the plant normal operation point. The DHX heat transfer performance was sensitive to the change in the inlet temperature of the shell-side and the AHX heat transfer performance was sensitive to the change in the inlet temperature of the tube side. The results of this work will contribute to an improvement of the test matrix for the separate effect test of each heat exchanger

  3. Heat pipe array heat exchanger

    Science.gov (United States)

    Reimann, Robert C. (Lafayette, NY)

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  4. Online performance assessment of heat exchanger using artificial neural networks

    Directory of Open Access Journals (Sweden)

    C. Ahilan, S. Kumanan, N. Sivakumaran

    2011-09-01

    Full Text Available Heat exchanger is a device in which heat is transferred from one medium to another across a solid surface. The performance of heat exchanger deteriorates with time due to fouling on the heat transfer surface. It is necessary to assess periodically the heat exchanger performance, in order to maintain at high efficiency level. Industries follow adopted practices to monitor but it is limited to some degree. Online monitoring has an advantage to understand and improve the heat exchanger performance. In this paper, online performance monitoring system for shell and tube heat exchanger is developed using artificial neural networks (ANNs. Experiments are conducted based on full factorial design of experiments to develop a model using the parameters such as temperatures and flow rates. ANN model for overall heat transfer coefficient of a design/ clean heat exchanger system is developed using a feed forward back propagation neural network and trained. The developed model is validated and tested by comparing the results with the experimental results. This model is used to assess the performance of heat exchanger with the real/fouled system. The performance degradation is expressed using fouling factor (FF, which is derived from the overall heat transfer coefficient of design system and real system. It supports the system to improve the performance by asset utilization, energy efficient and cost reduction interms of production loss.

  5. Materials experience and selection for nuclear materials production reactor heat exchangers

    International Nuclear Information System (INIS)

    The primary coolant systems for the heavy-water nuclear materials production reactors at the Savannah River Site are coupled to the secondary coolant systems through shell and tube heat exchangers. The head, shell, and tube sheets of these heat exchangers are fabricated from AISI Type 304 grades of austenitic stainless steel. The 8,957 tubes in each heat exchanger were originally fabricated from Type 304 stainless steel, but service experience has lead to the use of Sea Cure tubing in newer systems. The design includes double tube sheets, core rods, and 33,410 square feet of heat transfer surface. Tubes are rolled into the tube sheets and seal welded after rolling. The tubes contain Type 304 stainless steel rods which are positioned in the center of each tube axis to increase the fraction of the cooling water contacting the heat transfer surface. Each reactor utilizes twelve heat exchangers; thus the 120+ reactor-years of operating experience provide approximately 1,440 heat exchanger-years of service. Fatigue, stress corrosion cracking, crevice corrosion, and pitting have been observed during the service life. This paper describes the observed degradation processes and uses the operational experience to recommend materials for the Heavy Water -- New Production Reactor (HW-NPR)

  6. Materials experience and selection for nuclear materials production reactor heat exchangers

    International Nuclear Information System (INIS)

    Primary coolant systems for the heavy-water nuclear materials production reactors at the Savannah River Site are coupled to the secondary coolant systems through shell and tube heat exchangers. The head, shell, and tube sheets of these heat exchangers are fabricated from AISI Type 304 grades of austenitic stainless steel. The 8,957 tubes in each heat exchanger were originally fabricated from Type 304 stainless steel, but service experience has lead to the use of Sea Cure tubing in newer systems. The design includes double tube sheets, core rods, and 33,410 square feet of heat transfer surface. Tubes are rolled into the tube sheets and seal welded after rolling. The tubes contain Type 304 stainless steel rods which repositioned in the center of each tube axis to increase the fraction of the cooling water contacting the heat transfer surface. Each reactor utilizes twelve heat exchangers; thus the 120 + reactor-years of operating experience provide approximately 1,440 heat exchanger-years of service. Fatigue, stress corrosion cracking, crevice corrosion, and pitting have been observed during the service life. This paper describes the observed degradation processes and uses the operational experience to recommend materials for the heavy water-new production reactor (HW-NPR)

  7. Materials experience and selection for nuclear materials production reactor heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J.E.; Louthan, M.R. Jr.

    1990-01-01

    The primary coolant systems for the heavy-water nuclear materials production reactors at the Savannah River Site are coupled to the secondary coolant systems through shell and tube heat exchangers. The head, shell, and tube sheets of these heat exchangers are fabricated from AISI Type 304 grades of austenitic stainless steel. The 8,957 tubes in each heat exchanger were originally fabricated from Type 304 stainless steel, but service experience has lead to the use of Sea Cure tubing in newer systems. The design includes double tube sheets, core rods, and 33,410 square feet of heat transfer surface. Tubes are rolled into the tube sheets and seal welded after rolling. The tubes contain Type 304 stainless steel rods which are positioned in the center of each tube axis to increase the fraction of the cooling water contacting the heat transfer surface. Each reactor utilizes twelve heat exchangers; thus the 120+ reactor-years of operating experience provide approximately 1,440 heat exchanger-years of service. Fatigue, stress corrosion cracking, crevice corrosion, and pitting have been observed during the service life. This paper describes the observed degradation processes and uses the operational experience to recommend materials for the Heavy Water -- New Production Reactor (HW-NPR).

  8. Materials experience and selection for nuclear materials production reactor heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J.E.; Louthan, M.R. Jr. (Materials Technology Section, Savannah River Lab., Aiken, SC (US))

    1990-01-01

    Primary coolant systems for the heavy-water nuclear materials production reactors at the Savannah River Site are coupled to the secondary coolant systems through shell and tube heat exchangers. The head, shell, and tube sheets of these heat exchangers are fabricated from AISI Type 304 grades of austenitic stainless steel. The 8,957 tubes in each heat exchanger were originally fabricated from Type 304 stainless steel, but service experience has lead to the use of Sea Cure tubing in newer systems. The design includes double tube sheets, core rods, and 33,410 square feet of heat transfer surface. Tubes are rolled into the tube sheets and seal welded after rolling. The tubes contain Type 304 stainless steel rods which repositioned in the center of each tube axis to increase the fraction of the cooling water contacting the heat transfer surface. Each reactor utilizes twelve heat exchangers; thus the 120 + reactor-years of operating experience provide approximately 1,440 heat exchanger-years of service. Fatigue, stress corrosion cracking, crevice corrosion, and pitting have been observed during the service life. This paper describes the observed degradation processes and uses the operational experience to recommend materials for the heavy water-new production reactor (HW-NPR).

  9. A Simple Tubesheet Layout Program for Heat Exchangers

    Directory of Open Access Journals (Sweden)

    S. Murali

    2008-01-01

    Full Text Available The development of tubesheet layout program for shell and tube heat exchangers is presented in this study. Program is written in AutoLISP language, which provides standard tubesheet layout drawing as per standard codes and non standard tubsheet in AutoCAD Environment. The program computes the optimal number of tube count and lays out drawing with respecting constraints, including the shell ID, number of passes, center to center distance of tubes and tube outer diameter. Tubesheet layout drawing can be used as template for actual tubesheet. Furthermore the program is validated with open literature and shown good agreement with it. Besides the tubesheet for Heat exchangers this method can be extended to the tube counts of sheave plates and perforated plates of distillation column and Cooling Towers.

  10. Woven heat exchanger

    Science.gov (United States)

    Piscitella, Roger R. (Idaho Falls, ID)

    1987-01-01

    In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  11. Heat exchangers for cardioplegia systems: in vitro study of four different concepts.

    Science.gov (United States)

    Drummond, Mário; Novello, Waldyr Parorali; de Arruda, Antonio Celso Fonseca; Braile, Domingo Marcolino

    2003-05-01

    The aim of this work is the evaluation of four different heat exchangers used for myocardium during cardioplegic system in cardiac surgeries. Four types of shell and tube heat exchangers made of different exchange elements were constructed, as follows: stainless steel tubes, aluminium tubes, polypropylene hollow fiber, and bellows type. The evaluation was performed by in vitro tests of parameters such as heat transfer, pressure drop, and hemolysis tendency. The result has shown that all four systems tested were able to achieve the heat performance, and to offer low resistance to flow, and safety, as well as have low tendency to hemolysis. However, we can emphasize that the bellows type heat exchanger has a significant difference with regard to the other three types. PMID:12752210

  12. Heat Exchanger Design Options and Tritium Transport Study for the VHTR System

    Energy Technology Data Exchange (ETDEWEB)

    Chang H. Oh; Eung S. Kim

    2008-09-01

    This report presents the results of a study conducted to consider heat exchanger options and tritium transport in a very high temperature reactor (VHTR) system for the Next Generation Nuclear Plant Project. The heat exchanger options include types, arrangements, channel patterns in printed circuit heat exchangers (PCHE), coolant flow direction, and pipe configuration in shell-and-tube designs. Study considerations include: three types of heat exchanger designs (PCHE, shell-and-tube, and helical coil); single- and two-stage unit arrangements; counter-current and cross flow configurations; and straight pipes and U-tube designs in shell-and-tube type heat exchangers. Thermal designs and simple stress analyses were performed to estimate the heat exchanger options, and the Finite Element Method was applied for more detailed calculations, especially for PCHE designs. Results of the options study show that the PCHE design has the smallest volume and heat transfer area, resulting in the least tritium permeation and greatest cost savings. It is theoretically the most reliable mechanically, leading to a longer lifetime. The two-stage heat exchanger arrangement appears to be safer and more cost effective. The recommended separation temperature between first and second stages in a serial configuration is 800oC, at which the high temperature unit is about one-half the size of the total heat exchanger core volume. Based on simplified stress analyses, the high temperature unit will need to be replaced two or three times during the plant’s lifetime. Stress analysis results recommend the off-set channel pattern configuration for the PCHE because stress reduction was estimated at up to 50% in this configuration, resulting in a longer lifetime. The tritium transport study resulted in the development of a tritium behavior analysis code using the MATLAB Simulink code. In parallel, the THYTAN code, previously performed by Ohashi and Sherman (2007) on the Peach Bottom data, was revived and verified. The 600 MWt VHTR core input file developed in preparation for the transient tritium analysis of VHTR systems was replaced with the original steady-state inputs for future calculations. A Finite Element Method analysis was performed using COMSOL Multiphysics software to accurately predict tritium permeation through the PCHE type heat exchanger walls. This effort was able to estimate the effective thickness for tritium permeations and develop a correlation for general channel configurations, which found the effective thickness to be much shorter than the average channel distance because of dead spots on the channel side.

  13. Studi Numerik Pengaruh Baffle Inclination Pada Alat Penukar Kalor Tipe Shell And Tube Terhadap Aliran Fluida Dan Perpindahan Panas

    Directory of Open Access Journals (Sweden)

    Rezky Fadil Arnaw

    2014-09-01

    Full Text Available Heat exchanger atau alat penukar kalor merupakan suatu peralatan yang digunakan untuk memindahkan sejumlah energi dalam bentuk panas dari satu fluida ke fluida yang lain. Perpindahan panas tersebut terjadi dari suatu fluida yang suhunya lebih tinggi ke fluida lain yang suhunya lebih rendah. Pada tugas akhir ini akan dilakukan penelitian tentang pengaruh baffle inclination terhadap aliran fluida dan perpindahan panas pada alat penukar kalor tipe shell and tube. Dalam penelitian ini akan dilakukan tiga variasi sudut baffle inclination yaitu 0º, 10° dan 20° dengan besar laju aliran massa yang divariasikan yaitu sebesar 0.5 kg/s, 1 kg/s dan 2 kg/s. Tipe baffle yang digunakan adalah single segmental baffle dengan baffle cut sebesar 36% dan menggunakan arah aliran jenis parallel. Hasil analisa simulasi menunjukkan bahwa laju aliran massa yang meningkat akan menyebabkan kenaikan pressure drop yang cukup drastis dan penurunan temperatur outlet. Alat penukar kalor dengan baffle inclination 0° memiliki nilai perpindahan panas terbaik jika dibandingkan dengan baffle inclination 10° dan 20°.

  14. Energy-efficiency comparison of advanced ammonia heat-exchanger types

    Science.gov (United States)

    Panchal, C.; Rabas, T.

    1990-11-01

    Ammonia is the most cost-effective working fluid for many Rankine power cycles and is widely utilized in industrial refrigeration applications. For example, it was selected as the most advantageous working fluid for the comprehensive closed-cycle Ocean Thermal Energy Conversion investigations where the heat source and sink are the warm, surface seawater and the cold, deep seawater, respectively. An essential part of this investigation was to measure the performance of many advanced heat-exchanger types using ammonia as the working fluid and to compare these results with those for conventional shell-and-tube designs. This paper presents an overview of these experiments and their potential significance for improved energy efficiency for industrial refrigeration applications. The heat exchangers used for industrial refrigeration systems account for about 50 percent of the equipment cost. However, current practice is to use state-of-the-art designs -- the shell-and-tube type without enhanced tubes. Substantial energy savings are possible through the use of advanced ammonia evaporator and condenser heat-exchanger types.

  15. Dynamic friction modelling in heat exchanger tube simulations

    International Nuclear Information System (INIS)

    A force-balance friction model has been developed to describe dynamic friction phenomena in multi-degree of freedom vibration systems and validated for a two degree-of-freedom (2dof) lumped mass vibration system. It has been implemented into VIBIC, a finite element code for the vibration of beams with intermittent contact, to improve the prediction of tube wear rate in the simulation of shell-and-tube heat exchangers. The friction model has been tailored for VIBIC for various kinds of supports: circular, semi-circular scallop-bar, and arbitrary flat-bar supports. Simulations for single fuel pin vibration have been compared with experimental data on wear work rate for different test conditions, gaps and preloads

  16. Microplate Heat Exchanger Project

    National Aeronautics and Space Administration — We propose a microplate heat exchanger for cryogenic cooling systems used for continuous flow distributed cooling systems, large focal plane arrays, multiple...

  17. Optimization of Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Ivan Catton

    2010-10-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  18. Optimization of Heat Exchangers

    International Nuclear Information System (INIS)

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics (pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger design.

  19. Nature's Heat Exchangers.

    Science.gov (United States)

    Barnes, George

    1991-01-01

    Discusses the heat-transfer systems of different animals. Systems include heat conduction into the ground, heat transferred by convection, heat exchange in lizards, fish and polar animals, the carotid rete system, electromagnetic radiation from animals and people, and plant and animal fiber optics. (MDH)

  20. Heat exchanger for heat production

    International Nuclear Information System (INIS)

    The description is given of a heat exchanger of the kind in which a primary fluid, flowing in a bundle of parallel tubes which are connected, at least at their lower end, to a tube plate, exchanges its heat with a secondary fluid flowing around the tubes inside an outer casing. Each tube has, at least in the middle part of the exchanger, the shape of a portion of a circle with a central angle less than or equal to 900, and the bottom tube plate which is substantially normal at the lower ends of the tubes has an angle of not less than 450 with the horizontal

  1. Microscale Regenerative Heat Exchanger

    Science.gov (United States)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2006-01-01

    The device described herein is designed primarily for use as a regenerative heat exchanger in a miniature Stirling engine or Stirling-cycle heat pump. A regenerative heat exchanger (sometimes called, simply, a "regenerator" in the Stirling-engine art) is basically a thermal capacitor: Its role in the Stirling cycle is to alternately accept heat from, then deliver heat to, an oscillating flow of a working fluid between compression and expansion volumes, without introducing an excessive pressure drop. These volumes are at different temperatures, and conduction of heat between these volumes is undesirable because it reduces the energy-conversion efficiency of the Stirling cycle.

  2. Heat and mass exchanger

    Science.gov (United States)

    Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

    2011-06-28

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  3. Plate-Type Heat Exchanger

    International Science & Technology Center (ISTC)

    Conduction of Experimental Studies of Heat Exchange Element of Plate-Type Heat Exchanger Aiming at Enhancement of its Effectiveness Owing to Design Improvement and Optimization of Used Heat Exchange Intensifiers

  4. Heat exchanger design handbook

    CERN Document Server

    Thulukkanam, Kuppan

    2013-01-01

    Completely revised and updated to reflect current advances in heat exchanger technology, Heat Exchanger Design Handbook, Second Edition includes enhanced figures and thermal effectiveness charts, tables, new chapter, and additional topics--all while keeping the qualities that made the first edition a centerpiece of information for practicing engineers, research, engineers, academicians, designers, and manufacturers involved in heat exchange between two or more fluids.See What's New in the Second Edition: Updated information on pressure vessel codes, manufacturer's association standards A new c

  5. Radial flow heat exchanger

    Science.gov (United States)

    Valenzuela, Javier (Hanover, NH)

    2001-01-01

    A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

  6. Counterflow Regolith Heat Exchanger

    Science.gov (United States)

    Zubrin, Robert; Jonscher, Peter

    2013-01-01

    A problem exists in reducing the total heating power required to extract oxygen from lunar regolith. All such processes require heating a great deal of soil, and the heat energy is wasted if it cannot be recycled from processed material back into new material. The counterflow regolith heat exchanger (CoRHE) is a device that transfers heat from hot regolith to cold regolith. The CoRHE is essentially a tube-in-tube heat exchanger with internal and external augers attached to the inner rotating tube to move the regolith. Hot regolith in the outer tube is moved in one direction by a right-hand - ed auger, and the cool regolith in the inner tube is moved in the opposite direction by a left-handed auger attached to the inside of the rotating tube. In this counterflow arrangement, a large fraction of the heat from the expended regolith is transferred to the new regolith. The spent regolith leaves the heat exchanger close to the temperature of the cold new regolith, and the new regolith is pre-heated close to the initial temperature of the spent regolith. Using the CoRHE can reduce the heating requirement of a lunar ISRU system by 80%, reducing the total power consumption by a factor of two. The unique feature of this system is that it allows for counterflow heat exchange to occur between solids, instead of liquids or gases, as is commonly done. In addition, in variants of this concept, the hydrogen reduction can be made to occur within the counterflow heat exchanger itself, enabling a simplified lunar ISRU (in situ resource utilization) system with excellent energy economy and continuous nonbatch mode operation.

  7. Vibration damping of heat exchanger tube bundles in two-phase flow

    International Nuclear Information System (INIS)

    Two-phase flow exists in many shell-and-tube heat exchangers such as condensers, evaporators and nuclear steam generators. To avoid flow-induced vibration problems, it is necessary to have some information on tube damping mechanisms. This report pertains to the development of a model to formulate damping in two-phase cross-flow. This formulation is based on information available in the literature and particularly on the results of a recently completed experimental program. The compilation of a data base, the development of a semi-empirical model and the formulation of design guidelines are discussed in this report. The calculation of heat exchanger tube damping in two-phase cross-flow is illustrated by an example

  8. Microtube strip heat exchanger

    Science.gov (United States)

    Doty, F. D.

    1992-07-01

    The purpose of this contract has been to explore the limits of miniaturization of heat exchangers with the goals of (1) improving the theoretical understanding of laminar heat exchangers, (2) evaluating various manufacturing difficulties, and (3) identifying major applications for the technology. A low-cost, ultra-compact heat exchanger could have an enormous impact on industry in the areas of cryocoolers and energy conversion. Compact cryocoolers based on the reverse Brayton cycle (RBC) would become practical with the availability of compact heat exchangers. Many experts believe that hardware advances in personal computer technology will rapidly slow down in four to six years unless lowcost, portable cryocoolers suitable for the desktop supercomputer can be developed. Compact refrigeration systems would permit dramatic advances in high-performance computer work stations with 'conventional' microprocessors operating at 150 K, and especially with low-cost cryocoolers below 77 K. NASA has also expressed strong interest in our MTS exchanger for space-based RBC cryocoolers for sensor cooling. We have demonstrated feasibility of higher specific conductance by a factor of five than any other work in high-temperature gas-to-gas exchangers. These laminar-flow, microtube exchangers exhibit extremely low pressure drop compared to alternative compact designs under similar conditions because of their much shorter flow length and larger total flow area for lower flow velocities. The design appears to be amenable to mass production techniques, but considerable process development remains. The reduction in materials usage and the improved heat exchanger performance promise to be of enormous significance in advanced engine designs and in cryogenics.

  9. Heat exchanger restart evaluation

    International Nuclear Information System (INIS)

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4kA was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized herein

  10. Microgravity condensing heat exchanger

    Science.gov (United States)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor); North, Andrew (Inventor); Weislogel, Mark M. (Inventor)

    2011-01-01

    A heat exchanger having a plurality of heat exchanging aluminum fins with hydrophilic condensing surfaces which are stacked and clamped between two cold plates. The cold plates are aligned radially along a plane extending through the axis of a cylindrical duct and hold the stacked and clamped portions of the heat exchanging fins along the axis of the cylindrical duct. The fins extend outwardly from the clamped portions along approximately radial planes. The spacing between fins is symmetric about the cold plates, and are somewhat more closely spaced as the angle they make with the cold plates approaches 90.degree.. Passageways extend through the fins between vertex spaces which provide capillary storage and communicate with passageways formed in the stacked and clamped portions of the fins, which communicate with water drains connected to a pump externally to the duct. Water with no entrained air is drawn from the capillary spaces.

  11. Heat exchanger panel

    Science.gov (United States)

    Warburton, Robert E. (Inventor); Cuva, William J. (Inventor)

    2005-01-01

    The present invention relates to a heat exchanger panel which has broad utility in high temperature environments. The heat exchanger panel has a first panel, a second panel, and at least one fluid containment device positioned intermediate the first and second panels. At least one of the first panel and the second panel have at least one feature on an interior surface to accommodate the at least one fluid containment device. In a preferred embodiment, each of the first and second panels is formed from a high conductivity, high temperature composite material. Also, in a preferred embodiment, the first and second panels are joined together by one or more composite fasteners.

  12. Heat exchangers modelling and simulation using the F correction factor method and ?-P-R-NTC method

    International Nuclear Information System (INIS)

    In this paper there are presented comparatively the mathematical model, the calculation algorithm and the results obtained with the program that simulates the stationary and transient regimes of the shell-and-tube heat exchangers based on the method of correction factor F and the ?-P-R-NTC method. The program is realized by means of Microsoft Visual C++ compiler and can be applied to the thermal calculation of the heat exchangers with complex flow schemes. It is based on diagrams taken from literature. The working fluid of the modeled equipment which can be initialized in this program are light water and heavy water in liquid phase. The program can be up-graded by means of specific correction charts and operating fluid thermo-physics as well as thermodynamic properties library. This program is a fast and reliable tool in designing and verification of heat exchangers

  13. Cleaning and Heat Transfer in Heat Exchanger with Circulating Fluidized Beds

    Science.gov (United States)

    Kang, Ho Keun; Ahn, Soo Whan; Choi, Jong Woong; Lee, Byung Chang

    2010-06-01

    Fluidized bed type heat exchangers are known to increase the heat transfer and prevent the fouling. For proper design of circulating fluidized bed heat exchanger it is important to know the effect of design and operating parameters on the bed to the wall heat transfer coefficient. The present experimental and numerical study was conducted to investigate the effects of circulating solid particles on the characteristics of fluid flow, heat transfer and cleaning effect in the fluidized bed vertical shell and tube type heat exchanger with counterflow, at which a variety of solid particles such as glass (3 mmF), aluminum (2˜3 mmF), steel (2˜2.5 mmF), copper (2.5 mmF) and sand (2˜4 mmF) were used in the fluidized bed with a smooth tube. Seven different solid particles have the same volume, and the effects of various parameters such as water flow rates, particle diameter, materials and geometry were investigated. The present experimental and numerical results showed that the flow velocity range for collision of particles to the tube wall was higher with heavier density solid particles, and the increase in heat transfer was in the order of sand, copper, steel, aluminum, and glass. This behaviour might be attributed to the parameters such as surface roughness or particle heat capacity. Fouling examination using 25,500 ppm of ferric oxide (Fe2O3) revealed that the tube inside wall is cleaned by a mild and continuous scouring action of fluidized solid particles. The fluidized solid particles not only keep the surface clean, but they also break up the boundary layer improving the heat transfer coefficient even at low fluid velocities.

  14. Analysis of loss-of-flow transients in the intermediate heat exchanger using the COMMIX code

    International Nuclear Information System (INIS)

    The intermediate heat exchanger (IHX) is an important component of the liquid-metal fast breeder reactor (LMFBR). It plays a very important role in the safe and reliable operation of a nuclear plant. Evaluation of thermal-hydraulic conditions are important in the design and development of a reliable and economical heat exchanger. These evaluations would provide complete maps of the temperature field of both the working fluids and the heat transfer tube. The maps are used for a large range of operating conditions, including nominal as well as off-nominal. Knowledge of temperature and flow distribution in both the shell and the tube side will ensure that the unit will meet its thermal performance requirements. Moreover, information is needed to provide proper evaluation of the thermal performance characteristics of a heat exchanger under the natural circulation conditions that result from a loss of coolant. The flow pattern and the thermal map of a shell-and-tube heat exchanger may be obtained either through actual testing of a scale model or by using analytical methods. To provide these evaluations multidimensional thermal-hydraulic codes are assessed for heat exchanger applications. The purpose of this paper is to present the thermal performance evaluation of the IHX of the Fast Flux Test Facility (FFTF) during a loss-of-coolant transient using the COMMIX-1B code and to compare the results with experimental data

  15. Process heat transfer principles, applications and rules of thumb

    CERN Document Server

    Serth, Robert W

    2014-01-01

    Process Heat Transfer is a reference on the design and implementation of industrial heat exchangers. It provides the background needed to understand and master the commercial software packages used by professional engineers in the design and analysis of heat exchangers. This book focuses on types of heat exchangers most widely used by industry: shell-and-tube exchangers (including condensers, reboilers and vaporizers), air-cooled heat exchangers and double-pipe (hairpin) exchangers. It provides a substantial introduction to the design of heat exchanger networks using pinch technology, the mos

  16. Operational experience and failure analysis of primary coolant heat exchangers of Cirus

    International Nuclear Information System (INIS)

    Cirus is a 40 MWt research reactor located at the Bhabha Atomic Research Centre, Bombay. The reactor utilizes metallic natural uranium fuel cladded in aluminium and the fuel assemblies are cooled by demineralized light water recirculated in a closed loop. The primary coolant rejects the heat to sea water. Six floating head, shell and tube type heat exchangers (five in service and one stand by) are installed on the suction side of primary coolant pumps with primary coolant flowing through shell side and seawater through the tubes. There are two passes on shell side and four passes on tube side. The shell is made of copper bearing carbon steel and tubes of 70:30 cupronickel. Channel and cover are made of silicon bronze. Tubes bundles are identical and interchangeable. The heat exchangers were designed in accordance with the standards of the Tubular Exchanger Manufacturers Association (TEMA) for class R heat exchanger. This paper describes thirty five years of experience with primary coolant heat exchangers, performance evaluation, ageing studies and analysis of damage suffered by tubes in shell entrance region. 6 refs., 1 fig

  17. A chaotic quantum-behaved particle swarm approach applied to optimization of heat exchangers

    International Nuclear Information System (INIS)

    Particle swarm optimization (PSO) method is a population-based optimization technique of swarm intelligence field in which each solution called “particle” flies around in a multidimensional problem search space. During the flight, every particle adjusts its position according to its own experience, as well as the experience of neighboring particles, using the best position encountered by itself and its neighbors. In this paper, a new quantum particle swarm optimization (QPSO) approach combined with Zaslavskii chaotic map sequences (QPSOZ) to shell and tube heat exchanger optimization is presented based on the minimization from economic view point. The results obtained in this paper for two case studies using the proposed QPSOZ approach, are compared with those obtained by using genetic algorithm, PSO and classical QPSO showing the best performance of QPSOZ. In order to verify the capability of the proposed method, two case studies are also presented showing that significant cost reductions are feasible with respect to traditionally designed exchangers. Referring to the literature test cases, reduction of capital investment up to 20% and 6% for the first and second cases, respectively, were obtained. Therefore, the annual pumping cost decreased markedly 72% and 75%, with an overall decrease of total cost up to 30% and 27%, respectively, for the cases 1 and 2, respectively, showing the improvement potential of the proposed method, QPSOZ. - Highlights: ? Shell and d, QPSOZ. - Highlights: ? Shell and tube heat exchanger is minimized from economic view point. ? A new quantum particle swarm optimization (QPSO) combined with Zaslavskii chaotic map sequences (QPSOZ) is proposed. ? Reduction of capital investment up to 20% and 6% for the first and second cases was obtained. ? Annual pumping cost decreased 72% and 75%, with an overall decrease of total cost up to 30% and 27% using QPSOZ.

  18. Mathematical programming model for heat exchanger design through optimization of partial objectives

    International Nuclear Information System (INIS)

    Highlights: • Rigorous design of shell-and-tube heat exchangers according to TEMA standards. • Division of the problem into sets of equations that are easier to solve. • Selected heuristic objective functions based on the physical behavior of the problem. • Sequential optimization approach to avoid solutions stuck in local minimum. • The results obtained with this model improved the values reported in the literature. - Abstract: Mathematical programming can be used for the optimal design of shell-and-tube heat exchangers (STHEs). This paper proposes a mixed integer non-linear programming (MINLP) model for the design of STHEs, following rigorously the standards of the Tubular Exchanger Manufacturers Association (TEMA). Bell–Delaware Method is used for the shell-side calculations. This approach produces a large and non-convex model that cannot be solved to global optimality with the current state of the art solvers. Notwithstanding, it is proposed to perform a sequential optimization approach of partial objective targets through the division of the problem into sets of related equations that are easier to solve. For each one of these problems a heuristic objective function is selected based on the physical behavior of the problem. The global optimal solution of the original problem cannot be ensured even in the case in which each of the sub-problems is solved to global optimality, but at least a very good solution is always guaranteed. Three cases extracted from the literature were studied. The results showed that in all cases the values obtained using the proposed MINLP model containing multiple objective functions improved the values presented in the literature

  19. Bifunctional thermoelectric tube made of tilted multilayer material as an alternative to standard heat exchangers.

    Science.gov (United States)

    Takahashi, Kouhei; Kanno, Tsutomu; Sakai, Akihiro; Tamaki, Hiromasa; Kusada, Hideo; Yamada, Yuka

    2013-01-01

    Enormously large amount of heat produced by human activities is now mostly wasted into the environment without use. To realize a sustainable society, it is important to develop practical solutions for waste heat recovery. Here, we demonstrate that a tubular thermoelectric device made of tilted multilayer of Bi(0.5)Sb(1.5)Te3/Ni provides a promising solution. The Bi(0.5)Sb(1.5)Te3/Ni tube allows tightly sealed fluid flow inside itself, and operates in analogy with the standard shell and tube heat exchanger. We show that it achieves perfect balance between efficient heat exchange and high-power generation with a heat transfer coefficient of 4.0 kW/m(2)K and a volume power density of 10 kW/m(3) using low-grade heat sources below 100°C. The Bi(0.5)Sb(1.5)Te3/Ni tube thus serves as a power generator and a heat exchanger within a single unit, which is advantageous for developing new cogeneration systems in factories, vessels, and automobiles where cooling of excess heat is routinely carried out. PMID:23511347

  20. Bifunctional thermoelectric tube made of tilted multilayer material as an alternative to standard heat exchangers

    Science.gov (United States)

    Takahashi, Kouhei; Kanno, Tsutomu; Sakai, Akihiro; Tamaki, Hiromasa; Kusada, Hideo; Yamada, Yuka

    2013-01-01

    Enormously large amount of heat produced by human activities is now mostly wasted into the environment without use. To realize a sustainable society, it is important to develop practical solutions for waste heat recovery. Here, we demonstrate that a tubular thermoelectric device made of tilted multilayer of Bi0.5Sb1.5Te3/Ni provides a promising solution. The Bi0.5Sb1.5Te3/Ni tube allows tightly sealed fluid flow inside itself, and operates in analogy with the standard shell and tube heat exchanger. We show that it achieves perfect balance between efficient heat exchange and high-power generation with a heat transfer coefficient of 4.0?kW/m2K and a volume power density of 10?kW/m3 using low-grade heat sources below 100°C. The Bi0.5Sb1.5Te3/Ni tube thus serves as a power generator and a heat exchanger within a single unit, which is advantageous for developing new cogeneration systems in factories, vessels, and automobiles where cooling of excess heat is routinely carried out. PMID:23511347

  1. Heat exchange method using natural flow of heat exchange medium

    International Nuclear Information System (INIS)

    Heat exchange is effected in a simple and economical manner by allowing natural flow, i.e., without mechanical compressors, pumps, etc., of a heat exchange fluid such as a conventional refrigerant liquid between two heat exchangers which are exposed to air at different temperatures. The two heat exchangers, which may conveniently take the form of fin-tube heat exchangers, for example, are arranged with one end at a higher elevation than the other, the upper ends of the two exchangers being connected in direct communication and the lower ends being likewise connected. As the refrigerant liquid absorbs heat and evaporates in the heat exchanger exposed to the warmer air the vapor travels through the upper connecting line to the other heat exchanger, where it rejects heat and is condensed, the liquid flows through the lower connecting line back to the first heat exchanger, and so on, with heat exchange between the two air streams or masses occurring during the natural, continuous flow of the refrigerant in gaseous and liquid form

  2. Fault-Tolerant Heat Exchanger

    Science.gov (United States)

    Izenson, Michael G.; Crowley, Christopher J.

    2005-01-01

    A compact, lightweight heat exchanger has been designed to be fault-tolerant in the sense that a single-point leak would not cause mixing of heat-transfer fluids. This particular heat exchanger is intended to be part of the temperature-regulation system for habitable modules of the International Space Station and to function with water and ammonia as the heat-transfer fluids. The basic fault-tolerant design is adaptable to other heat-transfer fluids and heat exchangers for applications in which mixing of heat-transfer fluids would pose toxic, explosive, or other hazards: Examples could include fuel/air heat exchangers for thermal management on aircraft, process heat exchangers in the cryogenic industry, and heat exchangers used in chemical processing. The reason this heat exchanger can tolerate a single-point leak is that the heat-transfer fluids are everywhere separated by a vented volume and at least two seals. The combination of fault tolerance, compactness, and light weight is implemented in a unique heat-exchanger core configuration: Each fluid passage is entirely surrounded by a vented region bridged by solid structures through which heat is conducted between the fluids. Precise, proprietary fabrication techniques make it possible to manufacture the vented regions and heat-conducting structures with very small dimensions to obtain a very large coefficient of heat transfer between the two fluids. A large heat-transfer coefficient favors compact design by making it possible to use a relatively small core for a given heat-transfer rate. Calculations and experiments have shown that in most respects, the fault-tolerant heat exchanger can be expected to equal or exceed the performance of the non-fault-tolerant heat exchanger that it is intended to supplant (see table). The only significant disadvantages are a slight weight penalty and a small decrease in the mass-specific heat transfer.

  3. Evaluation of structural integrity and heat exchange efficiency for dimpled tube type EGR cooler

    International Nuclear Information System (INIS)

    Most of vehicle manufacturers have applied Exhaust Gas Recirculation (EGR) system to the development of diesel engines in order to obtain the high thermal efficiency without NOX and Particulate Matter (PM) emitted from the engine. EGR system, which reflow a cooled exhaust gas from vehicles burning diesel as fuel to a combustion chamber of engine, has been used to solve this problem. In order to confirm the safety of the EGR system, finite element analysis was carried out. The safety of EGR system against temperature variation in the shell and tubes was evaluated through the thermal and structural analysis, and the modal analysis using ANSYS was also performed. Finally, the performance of EGR system was verified through the experiment and numerical simulation using effectiveness-NTU method. Program for the estimation of the heat exchange efficiency of the EGR system with regard to the dimpled tube shape was developed

  4. Dynamic characteristics of heat exchanger tubes vibrating in a tube support plate inactive mode

    International Nuclear Information System (INIS)

    Tubes in shell-and-tube heat exchangers, including nuclear plant steam generators, derive their support from longitudinally positioned tube support plates (TSPs). Typically there is a clearance between the tube and TSP hole. Depending on design and fabrication tolerances, the tube may or may not contract all of the TSPs. Noncontact results in an inactive TSP which can lead to detrimental flow induced tube vibrations under certain conditions dependent on the resulting tube-TSP interaction dynamics and the fluid excitation forces. The purpose of this study is to investigate the tube-TSP interaction dynamics. Results of an experimental study of damping and natural frequency as functions of tube-TSP diametral clearance and TSP thickness are reported. Calculated values of damping ratio and frequency of a tube vibrating within an inactive TSP are also presented together with a comparison of calculated and experimental quantities

  5. Dynamic characteristics of heat exchanger tubes vibrating in a tube support plate inactive mode

    International Nuclear Information System (INIS)

    Tubes in shell-and-tube heat exchangers, including nuclear plant steam generators, derive their support from longitudinally positioned tube support plates (TSPs). Typically there is a clearance between the tube and TSP hole. Depending on design and fabrication tolerances, the tube may or may not contact all of the TSPs. Noncontact results in an inactive TSP which can lead to detrimental flow induced tube vibrations under certain conditions dependent on the resulting tube-TSP interaction dynamics and the fluid excitation forces. The purpose of this study is to investigate the tube-TSP interaction dynamics. Results of an experimental study of damping and natural frequency as functions of tube-TSP diametral clearance and TSP thickness are reported. Calculated values of damping ratio and frequency of a tube vibrating within an inactive TSP are also presented together with a comparison of calculated and experimetnal quantities

  6. Dynamic characteristics of heat exchanger tubes vibrating in a tube support plate inactive mode

    International Nuclear Information System (INIS)

    Tubes in shell-and-tube heat exchangers, including nuclear plant steam generators, derive their support from longitudinally positioned tube support plates (TSPs). Typically, there is a clearance between the tube and TSP hole. Depending on design and fabrication tolerances, the tube may or may not contact all of the TSPs. Non-contact results in an inactive TSP which can lead to detrimental flow-induced tube vibrations under certain conditions dependent on the resulting tube-TSP interaction dynamics and the fluid excitation forces. The purpose of this study is to investigate the tube-TSP interaction dynamics. Results of an experimental study of damping and natural frequency as functions of tube-TSP diametral clearance and TSP thickness are reported. Calculated values damping ratio and frequency of a tube vibrating within an inactive TSP are also presented together with a comparison of calculated and experimental quantities

  7. The Design of Heat Exchangers

    OpenAIRE

    Arturo Reyes-León; Miguel Toledo Velázquez; Pedro Quinto-Diez; Florencio Sánchez-Silva; Juan Abugaber-Francis; Celerino Reséndiz-Rosas

    2011-01-01

    A relation between heat transferred and energy loss, for turbulent flow. In different tube arrangements, is made. The conditions are determined which decide the dimensions and velocities for a heat exchanger. Also, a reference to the economic dimensioning of heat exchangers is presented. In this study, the conditions which a heat exchanger must satisfy represent the best balance between the amounts of material employed. The investigation is restricted to the case of turbulent flow.

  8. The Design of Heat Exchangers

    Directory of Open Access Journals (Sweden)

    Arturo Reyes-León

    2011-09-01

    Full Text Available A relation between heat transferred and energy loss, for turbulent flow. In different tube arrangements, is made. The conditions are determined which decide the dimensions and velocities for a heat exchanger. Also, a reference to the economic dimensioning of heat exchangers is presented. In this study, the conditions which a heat exchanger must satisfy represent the best balance between the amounts of material employed. The investigation is restricted to the case of turbulent flow.

  9. Plate heat exchanger

    International Nuclear Information System (INIS)

    The plate exchanger described includes a series of individual modules joined together, communicating in pairs to delimit two flow circuits separated by two fluids mutually exchanging calories. Each module includes at least one flat frame around a central cavity, at least two apertures made in the frame respectively for the inlet and oulet of the fluids crossing the cavity and at least one opening in the frame for the fluids to pass to a neighbouring module. The frames of the modules form a stack plane upon plane and are isolated by a thin leak-tight sheet parallel to the plane of the frames and separating the fluid substances in two superimposed frames. The heat transfer between these fluids occurs through this thin sheet from one module to the next in the stack

  10. Hybrid Heat Exchangers

    Science.gov (United States)

    Tu, Jianping Gene; Shih, Wei

    2010-01-01

    A hybrid light-weight heat exchanger concept has been developed that uses high-conductivity carbon-carbon (C-C) composites as the heat-transfer fins and uses conventional high-temperature metals, such as Inconel, nickel, and titanium as the parting sheets to meet leakage and structural requirements. In order to maximize thermal conductivity, the majority of carbon fiber is aligned in the fin direction resulting in 300 W/m.K or higher conductivity in the fin directions. As a result of this fiber orientation, the coefficient of thermal expansion (CTE) of the C-C composite in both non-fiber directions matches well with the CTE of various high-temperature metal alloys. This allows the joining of fins and parting sheets by using high-temperature braze alloys.

  11. Two phase heat exchanger symposium

    International Nuclear Information System (INIS)

    This book compiles the papers presented at the conference on the subject of heat transfer mechanics and instrumentation. Theoretical and experimental data are provided in each paper. The topics covered are: temperature effects of steel; optimization of design of two-phase heat exchanges; thermosyphon system and low grade waste heat recovery; condensation heat transfer in plate heat exchangers; forced convective boiling; and performance analysis of full bundle submerged boilers

  12. Preliminary Thermal Stress Analysis for Intermediate Heat Exchanger of Prototype SFR

    International Nuclear Information System (INIS)

    They are a shell-and-tube type heat exchanger with counter-current flow heat exchanger mechanism. Each IHX is rated at 98.175 MWt to accommodate the core heat load of 392.6 MWt. For the interactive heat exchange within the IHX, the secondary sodium (non-radioactive sodium) of 324 .deg. C goes into the IHX inner cylinder from a steam generator and the primary sodium (radioactive sodium) of 545 .deg. C enters into the outside of tube bundle from the hot pool. Due to the temperature difference between the primary sodium and secondary sodium, the thermal expansion differences inevitably occurs so that it is necessary to introduce a bellows so as to absorb the thermal expansion. In this study, we investigated a problem for the structural integrity of the IHX which is conceptually designed by using the thermal and structural analysis. In addition we proposed acceptable design concept, and confirmed its structural integrity following the same procedure. In this paper, the structural integrity about the conceptual design of IHX was reviewed and the design should be changed because of its high stress concentration in the upper tubesheet. In new design, the maximum stress decreases up to a reasonable level in virtue of the thermal shield cylinder to protect the heat transfer from the upper tubesheet to IHX inner cylinder. Also, the design requirement of a bellows for accommodating the thermal expansion of the IHX was developed

  13. Next Generation Microchannel Heat Exchangers

    CERN Document Server

    Ohadi, Michael; Dessiatoun, Serguei; Cetegen, Edvin

    2013-01-01

    In Next Generation Microchannel Heat Exchangers, the authors’ focus on the new generation highly efficient heat exchangers and presentation of novel data and technical expertise not available in the open literature.  Next generation micro channels offer record high heat transfer coefficients with pressure drops much less than conventional micro channel heat exchangers. These inherent features promise fast penetration into many mew markets, including high heat flux cooling of electronics, waste heat recovery and energy efficiency enhancement applications, alternative energy systems, as well as applications in mass exchangers and chemical reactor systems. The combination of up to the minute research findings and technical know-how make this book very timely as the search for high performance heat and mass exchangers that can cut costs in materials consumption intensifies.

  14. Preliminary issues associated with the next generation nuclear plant intermediate heat exchanger design.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Moisseytsev, A.; Majumdar, S.; Shankar, P. S.; Nuclear Engineering Division

    2007-04-05

    The Next Generation Nuclear Plant (NGNP), which is an advanced high temperature gas reactor (HTGR) concept with emphasis on production of both electricity and hydrogen, involves helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas turbine inlet temperature of 900-1000 C. In the indirect cycle system, an intermediate heat exchanger is used to transfer the heat from primary helium from the core to the secondary fluid, which can be helium, nitrogen/helium mixture, or a molten salt. The system concept for the vary high temperature reactor (VHTR) can be a reactor based on the prismatic block of the GT-MHR developed by a consortium led by General Atomics in the U.S. or based on the PBMR design developed by ESKOM of South Africa and British Nuclear Fuels of U.K. This report has made a preliminary assessment on the issues pertaining to the intermediate heat exchanger (IHX) for the NGNP. Two IHX designs namely, shell and tube and compact heat exchangers were considered in the assessment. Printed circuit heat exchanger, among various compact heat exchanger (HX) designs, was selected for the analysis. Irrespective of the design, the material considerations for the construction of the HX are essentially similar, except may be in the fabrication of the units. As a result, we have reviewed in detail the available information on material property data relevant for the construction of HX and made a preliminary assessment of several relevant factors to make a judicious selection of the material for the IHX. The assessment included four primary candidate alloys namely, Alloy 617 (UNS N06617), Alloy 230 (UNS N06230), Alloy 800H (UNS N08810), and Alloy X (UNS N06002) for the IHX. Some of the factors addressed in this report are the tensile, creep, fatigue, creep fatigue, toughness properties for the candidate alloys, thermal aging effects on the mechanical properties, American Society of Mechanical Engineers (ASME) Code compliance information, and performance of the alloys in helium containing a wide range of impurity concentrations. A detailed thermal hydraulic analysis, using a model developed at ANL, was performed to calculate heat transfer, temperature distribution, and pressure drop inside both printed circuit and shell-and-tube heat exchangers. The analysis included evaluation of the role of key process parameters, geometrical factors in HX designs, and material properties. Calculations were performed for helium-to-helium, helium-to-helium/nitrogen, and helium-to-salt HXs. The IHX being a high temperature component, probably needs to be designed using ASME Code Section III, Subsection NH, assuming that the IHX will be classified as a class 1 component. With input from thermal hydraulic calculations performed at ANL, thermal conduction and stress analyses for both compact and shell-and-tube HXs were performed.

  15. Experimental research on heat transfer in a coupled heat exchanger

    OpenAIRE

    Liu Yin; Ma Jing; Zhou Guang-Hui; Guan Ren-Bo

    2013-01-01

    The heat exchanger is a devise used for transferring thermal energy between two or more different temperatures. The widespreadly used heat exchanger can only achieve heat exchange between two substances. In this paper, a coupled heat exchanger is proposed, which includes a finned heat exchanger and a double pipe heat exchanger, for multiple heat exchange simultaneously. An experiment is conducted, showing that the average heating capacity increases more tha...

  16. Tube bundle heat exchanger

    International Nuclear Information System (INIS)

    The heat exchanger consists of tube bundles mounted in parallel. Each bundle consists of a jacket in which tubes for a first coolant are mounted. Straight tubes are connected with their open ends to tube plates which, in turn, are connected to the jacket provided with the inlet and outlet for a second coolant. This passes between the outer surfaces of straight tubes and the inner jacket surface. Spacers are inserted between the tube bundles, this along the whole length of the bundles. The second coolant enters one tube plate through the open ends of inlet tubes. It leaves through the other tube plate of the respective bundle, through the open ends of the outlet tubes. The other open ends of the inlet and/or outlet tubes are inserted in auxiliary tube plates mounted in the jacket on both sides of the tube bundles. (H.S.)

  17. Heat exchanger repair

    International Nuclear Information System (INIS)

    There are two ways to rapir heater tubes in tubular heat exchangers, partial replacement of tubes and a technique called sleeving. In the former case, the defective tube section is cut out, removed, and replaced by a new section butt welded to the old piece of tube which remained in place. In the sleeving technique, a tube sleeve is slid into the defective tube and, after expansion, welded to the original tube. In this case, the welding technique employed is not laser welding, as is often maintained in the literature, but TIG pulsation welding. The results of preliminary tests and the qualification of both processes are outlined in the article; an account is given also of the replacement of the tube sections when repairing condensate coolers. (orig.)

  18. Heat exchanger leakage problem location

    Directory of Open Access Journals (Sweden)

    Jícha Miroslav

    2012-04-01

    Full Text Available Recent compact heat exchangers are very often assembled from numerous parts joined together to separate heat transfer fluids and to form the required heat exchanger arrangement. Therefore, the leak tightness is very important property of the compact heat exchangers. Although, the compact heat exchangers have been produced for many years, there are still technological problems associated with manufacturing of the ideal connection between the individual parts, mainly encountered with special purpose heat exchangers, e.g. gas turbine recuperators. This paper describes a procedure used to identify the leakage location inside the prime surface gas turbine recuperator. For this purpose, an analytical model of the leaky gas turbine recuperator was created to assess its performance. The results obtained are compared with the experimental data which were acquired during the recuperator thermal performance analysis. The differences between these two data sets are used to indicate possible leakage areas.

  19. Aplicación del Método de la Colonia de Hormigas Mixto a la optimización de intercambiadores de calor de tubo y coraza / Application of the Mixed Ant Colony Method to the optimization of tube and shell heat exchangers

    Scientific Electronic Library Online (English)

    Maida-Bárbara, Reyes-Rodríguez; Jorge-Laureano, Moya-Rodríguez; Sergio-Ramón, Pérez-León; Gonzalo, Nápoles-Ruiz.

    2014-08-01

    Full Text Available Los procesos de transferencia de calor son uno de los problemas más importantes a resolver en el campo de la Ingeniería. Entre los equipos más usados en la industria para realizar la transferencia de calor están los intercambiadores de calor de tubo y coraza. En el presente trabajo se desarrolla el [...] procedimiento para la optimización del diseño de estos equipos utilizando el método de Kern y aplicando el algoritmo de la colonia de hormigas. Se aplica el mismo a tres ejemplos concretos y los resultados obtenidos se comparan con los obtenidos aplicando otros métodos de la inteligencia artificial. Se optimizan los principales parámetros geométricos de los intercambiadores de calor de tubo y coraza para lograr un menor costo de los mismos. Se demuestra la eficacia del nuevo procedimiento MACO (Mixed Ant Colony Optimization), en el proceso de optimización desde el punto de vista económico utilizando diferentes casos de estudios. Abstract in english Heat transfer processes are one of the most important problems to be solved in the field of Engineering. Among the most widely used equipment for heat transfer in the industry are the shell and tube heat exchangers. This paper develops the procedure for optimizing the design of shell and tube heat e [...] xchangers using the method of Kern and applying the ant colony algorithm. The procedure has been applied to three specific examples and the results obtained are compared with those obtained by applying other methods of artificial intelligence. The main geometric parameters of shell and tube heat exchangers are optimized, to achieve a lower cost of the exchanger. The efficacy of the new procedure MACO (Mixed Ant Colony Optimization) for the optimization process from economically point of view was demonstrated, using different case studies.

  20. Review of Current Experience on Intermediate Heat Exchanger (IHX) and A Recommended Code Approach

    Energy Technology Data Exchange (ETDEWEB)

    Duane Spencer; Kevin McCoy

    2010-02-02

    The purpose of the ASME/DOE Gen IV Task 7 Part I is to review the current experience on various high temperature reactor intermediate heat exchanger (IHX) concepts. There are several different IHX concepts that could be envisioned for HTR/VHTR applications in a range of temperature from 850C to 950C. The concepts that will be primarily discussed herein are: (1) Tubular Helical Coil Heat Exchanger (THCHE); (2) Plate-Stamped Heat Exchanger (PSHE); (3) Plate-Fin Heat Exchanger (PFHE); and (4) Plate-Machined Heat Exchanger (PMHE). The primary coolant of the NGNP is potentially subject to radioactive contamination by the core as well as contamination from the secondary loop fluid. To isolate the radioactivity to minimize radiation doses to personnel, and protect the primary circuit from contamination, intermediate heat exchangers (IHXs) have been proposed as a means for separating the primary circuit of the NGNP (Next Generation Nuclear Plant) or other process heat application from the remainder of the plant. This task will first review the different concepts of IHX that could be envisioned for HTR/VHTR applications in a range of temperature from 850 to 950 C. This will cover shell-and-tube and compact designs (including the platefin concept). The review will then discuss the maturity of the concepts in terms of design, fabricability and component testing (or feedback from experience when applicable). Particular attention will be paid to the feasibility of developing the IHX concepts for the NGNP with operation expected in 2018-2021. This report will also discuss material candidates for IHX applications and will discuss specific issues that will have to be addressed in the context of the HTR design (thermal aging, corrosion, creep, creep-fatigue, etc). Particular attention will be paid to specific issues associated with operation at the upper end of the creep regime.

  1. Review of Current Experience on Intermediate Heat Exchanger (IHX) and A Recommended Code Approach

    International Nuclear Information System (INIS)

    The purpose of the ASME/DOE Gen IV Task 7 Part I is to review the current experience on various high temperature reactor intermediate heat exchanger (IHX) concepts. There are several different IHX concepts that could be envisioned for HTR/VHTR applications in a range of temperature from 850C to 950C. The concepts that will be primarily discussed herein are: (1) Tubular Helical Coil Heat Exchanger (THCHE); (2) Plate-Stamped Heat Exchanger (PSHE); (3) Plate-Fin Heat Exchanger (PFHE); and (4) Plate-Machined Heat Exchanger (PMHE). The primary coolant of the NGNP is potentially subject to radioactive contamination by the core as well as contamination from the secondary loop fluid. To isolate the radioactivity to minimize radiation doses to personnel, and protect the primary circuit from contamination, intermediate heat exchangers (IHXs) have been proposed as a means for separating the primary circuit of the NGNP (Next Generation Nuclear Plant) or other process heat application from the remainder of the plant. This task will first review the different concepts of IHX that could be envisioned for HTR/VHTR applications in a range of temperature from 850 to 950 C. This will cover shell-and-tube and compact designs (including the platefin concept). The review will then discuss the maturity of the concepts in terms of design, fabricability and component testing (or feedback from experience when applicable). Particular attention will be paid to the feasibility of developing the IHX concepts for the NGNP with operation expected in 2018-2021. This report will also discuss material candidates for IHX applications and will discuss specific issues that will have to be addressed in the context of the HTR design (thermal aging, corrosion, creep, creep-fatigue, etc). Particular attention will be paid to specific issues associated with operation at the upper end of the creep regime.

  2. Experimental and theoretical analysis of the local condensation heat transfer in a plate heat exchanger

    Science.gov (United States)

    Grabenstein, V.; Kabelac, S.

    2012-11-01

    Plate heat exchanger (PHE) are today widely used in industrial heat transfer applications due to their good thermal performance, modest space requirement, easy accessibility to all areas and their lower capital and operating costs as compared to shell-and-tube heat exchangers. Although authoritative models for the design of PHE used as condensers are missing, the number of applications where a PHE is operating as a condenser increases. On the way to a reliable model based on physical approaches for the prediction of heat transfer and pressure drop during the condensation process inside a PHE, the flow and heat interactions as well as their dependence on the geometrical parameters of the corrugated plates and the operating conditions must be studied in detail. In this work the stepwise procedure for the fundamental construction of such a model is described. An experimental setup was built to analyze the characteristics of the two-phase-flow in PHE. A single gap, consisting of two transparent corrugated plates, was tested with a two-phase flow of air/water and also with boiling refrigerant R365mfc. Flow pattern maps were constructed for plates with corrugation angles of 27 and 63 degrees relative to the direction of flow. Investigations of the local heat transfer coefficients and the pressure drop were done with the same plates. The measurement of the local heat transfer coefficients was carried out by the use of the "Temperature Oscillation InfraRed Thermography" (TOIRT) method. Based on these results three main flow patterns are defined: film flow, bubbly flow and slug flow. For each of the three flow patterns an own model for the heat transfer and pressure drop mechanism are developed and the heat transfer coefficient and the friction factor is calculated with different equations depending on the actual steam quality, mass flow and geometrical parameters by means of a flow pattern map. The theory of the flow pattern based prediction models is proved with own experimental data. The measurements were carried out with an experimental setup in a technical scale. The refrigerant cycle works with R134a as refrigerant and involves two PHEs, used as condenser and evaporator, and a 55 kWel compressor for the compression of the vapor phase. The setup allows the measurement of quasi-local heat transfer coefficients inside the PHEs. Additional heat exchangers assure saturated vapor at the inlet and saturated liquid at the outlet of the condenser.

  3. Experimental and theoretical analysis of the local condensation heat transfer in a plate heat exchanger

    International Nuclear Information System (INIS)

    Plate heat exchanger (PHE) are today widely used in industrial heat transfer applications due to their good thermal performance, modest space requirement, easy accessibility to all areas and their lower capital and operating costs as compared to shell-and-tube heat exchangers. Although authoritative models for the design of PHE used as condensers are missing, the number of applications where a PHE is operating as a condenser increases. On the way to a reliable model based on physical approaches for the prediction of heat transfer and pressure drop during the condensation process inside a PHE, the flow and heat interactions as well as their dependence on the geometrical parameters of the corrugated plates and the operating conditions must be studied in detail. In this work the stepwise procedure for the fundamental construction of such a model is described. An experimental setup was built to analyze the characteristics of the two-phase-flow in PHE. A single gap, consisting of two transparent corrugated plates, was tested with a two-phase flow of air/water and also with boiling refrigerant R365mfc. Flow pattern maps were constructed for plates with corrugation angles of 27 and 63 degrees relative to the direction of flow. Investigations of the local heat transfer coefficients and the pressure drop were done with the same plates. The measurement of the local heat transfer coefficients was carried out by the use of the 'Temperature Oscillation InfraRed Thermography' (TOIRe Oscillation InfraRed Thermography' (TOIRT) method. Based on these results three main flow patterns are defined: film flow, bubbly flow and slug flow. For each of the three flow patterns an own model for the heat transfer and pressure drop mechanism are developed and the heat transfer coefficient and the friction factor is calculated with different equations depending on the actual steam quality, mass flow and geometrical parameters by means of a flow pattern map. The theory of the flow pattern based prediction models is proved with own experimental data. The measurements were carried out with an experimental setup in a technical scale. The refrigerant cycle works with R134a as refrigerant and involves two PHEs, used as condenser and evaporator, and a 55 kWel compressor for the compression of the vapor phase. The setup allows the measurement of quasi-local heat transfer coefficients inside the PHEs. Additional heat exchangers assure saturated vapor at the inlet and saturated liquid at the outlet of the condenser.

  4. WASTE HEAT RECOVERY FROM BOILER OF LARGE-SCALE TEXTILE INDUSTRY

    OpenAIRE

    Prateep Pattanapunt; Kanokorn Hussaro; Tika Bunnakand; Sombat Teekasap

    2013-01-01

    Many industrial heating processes generate waste energy in textile industry; especially exhaust gas from the boiler at the same time reducing global warming. Therefore, this article will present a study the way to recovery heat waste from boiler exhaust gas by mean of shell and tube heat exchanger. Exhaust gas from boiler dyeing process, which carries a large amount of heat, energy consumptions could be decrease by using of waste-heat recovery systems. In this study, using ANASYS simulation p...

  5. Simulations of thermal-hydraulic processes in heat exchangers- station of the cogeneration power plant

    Energy Technology Data Exchange (ETDEWEB)

    Studovic, M.; Stevanovic, V.; Ilic, M.; Nedeljkovic, S. [Faculty of Mechanical Engineering of Belgrade (Croatia)

    1995-12-31

    Design of the long district heating system to Belgrade (base load 580 MJ/s) from Thermal Power Station `Nikola Tesla A`, 30 km southwest from the present gas/oil burning boilers in New Belgrade, is being conducted. The mathematical model and computer code named TRP are developed for the prediction of the design basis parameters of heat exchangers station, as well as for selection of protection devices and formulation of operating procedures. Numerical simulations of heat exchangers station are performed for various transient conditions: up-set and abnormal. Physical model of multi-pass, shell and tube heat exchanger in the station represented is by unique steam volume, and with space discretised nodes both for water volume and tube walls. Heat transfer regimes on steam and water side, as well as hydraulic calculation were performed in accordance with TEMA standards for transient conditions on both sides, and for each node on water side. Mathematical model is based on balance equations: mass and energy for lumped parameters on steam side, and energy balances for tube walls and water in each node. Water mass balance is taken as boundary/initial condition or as specified control function. The physical model is proposed for (s) heat exchangers in the station and (n) water and wall volumes. Therefore, the mathematical model consists of 2ns+2, non-linear differential equations, including equations of state for water, steam and tube material, and constitutive equations for heat transfer on steam and water side, solved by the Runge-Kutt method. Five scenarios of heat exchangers station behavior have been simulated with the TRP code and obtained results are presented. (author)

  6. Cost effective heat exchanger network design with mixed materials of construction

    International Nuclear Information System (INIS)

    This paper presents a simple methodology for cost estimation of a near optimal heat exchanger network, which comprises mixed materials of construction. In traditional pinch technology and mathematical programming it is usually assumed that all heat exchangers in a network obey a single cost model. This implies that all heat exchangers in a network are of the same type and use the same materials of construction (an assumption that is unwarranted). The method introduced in this article enables the designer to decomposes the total cost of a heat exchanger into two elements, namely cost of the tubes and cost of the shell, thereby predict a more reliable cost for the network. By subsequent use of the binary variables and evaluation of the physical conditions of the streams, one can assign the streams to pass either through shell or tubes. Whereby, shell and tubes can be of different materials and therefore different cost models can be applied. Another advantage of the approach is that the pressure drop in each side of the exchanger (shell or tubes) can be assessed leading to more accurate evaluation of corresponding heat transfer coefficient for each individual stream. Finally an objective function (total cost) can be defined based on mixed materials of construction and different values of heat transfer coefficients. The proposed model has been utilized in three different case studies and the results are compared with those of a commercially available software (Super Targemmercially available software (Super Target). The comparison shows reductions of more than 17% and 14% in total annual costs in the two cases, and 2.5% reduction in third, confirming the fact that more accurate evaluation of heat transfer coefficient for each individual stream can lead to better network design

  7. Heat exchanger using graphite foam

    Science.gov (United States)

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  8. Milk fouling in heat exchangers.

    OpenAIRE

    Jeurnink, Th.J.M.

    1996-01-01

    The mechanisms of fouling of heat exchangers by milk were studied. Two major fouling mechanisms were indentified during the heat treatment of milk: (i) the formation and the subsequent deposition of activated serum protein molecules as a result of the heat denaturation; (ii) the precipitation of calcium phosphate as a result of the decreased solubility of this salt upon heating. Both foulants are formed in the bulk of the solution and are transported to the surface, where they can be deposite...

  9. Damping of heat exchanger tubes

    International Nuclear Information System (INIS)

    Damping information is required for flow-induced vibration analyses of heat exchangers. There are several possible energy dissipation mechanisms that contribute to overall tube damping, including structural damping, friction damping, tube-to-fluid viscous damping and squeeze-film damping. These mechanisms and their relative contribution to overall tube damping are discussed. The approach is to identify the more important energy dissipation mechanisms and to formulate them in terms of heat exchanger tube parameters. This will give the designer a method to evaluate overall tube damping. The results of recent measurements on a simple two-span heat exchanger tube, on tube bundles in two-phase cross-flow, and on real heat exchangers in the field are disscussed

  10. Numerical simulation of heat exchanger

    International Nuclear Information System (INIS)

    Accurate and detailed knowledge of the fluid flow field and thermal distribution inside a heat exchanger becomes invaluable as a large, efficient, and reliable unit is sought. This information is needed to provide proper evaluation of the thermal and structural performance characteristics of a heat exchanger. It is to be noted that an analytical prediction method, when properly validated, will greatly reduce the need for model testing, facilitate interpolating and extrapolating test data, aid in optimizing heat-exchanger design and performance, and provide scaling capability. Thus tremendous savings of cost and time are realized. With the advent of large digital computers and advances in the development of computational fluid mechanics, it has become possible to predict analytically, through numerical solution, the conservation equations of mass, momentum, and energy for both the shellside and tubeside fluids. The numerical modeling technique will be a valuable, cost-effective design tool for development of advanced heat exchangers

  11. REVIEW OF HEAT TRANSFER ENHANCEMENT IN DIFFERENT TYPES OF BAFFLES AND THEIR ORIENTATIONS.

    OpenAIRE

    Walde, S. P.; Kriplani, V. M.

    2012-01-01

    The use of baffles in channel is commonly used for passive heat transfer enhancement strategy in single phase internal flow. Considering the rapid increase in energy demand, effective heat transfer enhancement techniques have become important task worldwide. Some of the applications of passive heat transfer enhancement strategies are in process industries, thermal regenerator, Shell and tube type heat exchanger, Internal cooling system of gas turbine blades, radiators for space vehicles and a...

  12. Assessment of flow induced vibration in a sodium-sodium heat exchanger

    International Nuclear Information System (INIS)

    The 500 MWe Prototype Fast Breeder Reactor (PFBR) is under construction at Kalpakkam. It is a liquid metal sodium cooled pool type fast reactor with all primary components located inside a sodium pool. The heat produced due to fission in the core is transported by primary sodium to the secondary sodium in a sodium to sodium Intermediate Heat Exchanger (IHX), which in turn is transferred to water in the steam generator. PFBR IHX is a shell and tube type heat exchanger with primary sodium on shell side and secondary sodium in the tube side. Since IHX is one of the critical components placed inside the radioactive primary sodium, trouble-free operation of the IHX is very much essential for power plant availability. To validate the design and the adequacy of the support system provided for the IHX, flow induced vibration (FIV) experiments were carried out in a water test loop on a 60 deg. sector model. This paper discusses the flow induced vibration measurements carried out in 60 deg. sector model of IHX, the modeling criteria, the results and conclusion

  13. Effect of channel configurations for tritium transfer in printed circuit heat exchangers

    International Nuclear Information System (INIS)

    The Next Generation Nuclear Plant (NGNP), a very High temperature Gas-Cooled Reactor (VHTR) concept, will provide the first demonstration of a closed-loop Brayton cycle at a commercial scale of a few hundred megawatts electric and hydrogen production. The power conversion system (PCS) for the NGNP will take advantage of the significantly higher reactor outlet temperatures of the VHTR to provide higher efficiencies than can be achieved in the current generation of light water reactors. Besides demonstrating a system design that can be used directly for subsequent commercial deployment, the NGNP will demonstrate key technology elements that can be used in subsequent advanced power conversion systems for other Generation IV reactors. In anticipation of the design, development and procurement of an advanced power conversion system for the NGNP, the system integration of the NGNP and hydrogen plant was initiated to identify the important design and technology options that must be considered in evaluating the performance of the proposed NGNP. In the VHTR system, an intermediate heat exchanger (IHX), which transfers heat from the reactor core to the electricity or hydrogen production system is one key component, and its effectiveness is directly related to the system overall efficiency. In the VHTRs, the gas fluids used for coolant generally have poor heat transfer capability, so it requires very large surface area for a given condition. For this reason, a compact heat exchanger (CHE), which is widely used in industry especially for gas-to-gas or gas-to-liquid heat exchange is considered as a potential candidate for an IHX replacing the classical shell and tube type heat exchanger. A compact heat exchanger is arbitrary referred to be a heat exchanger having a surface area density greater than 700 m2/m3. The compactness is usually achieved by fins and micro-channels, and leads to the enormous heat transfer enhancement and size reduction. The surface area density is the total heat transfer area divided by the volume of the heat exchanger. In the case of PCHE units, the heat transfer surface area density may be as high as 2,500 m2/m3. This high compactness implies an appreciable reduction in material reducing cost. In this study, heat transfer and tritium penetration analyses have been performed for two different channel configurations of the PCHE; (1) standard and (2) off-set. One of the goals of this study was to determine whether offsetting the hot and cold streams would significantly reduce the tritium flux, and whether or not it would affect the heat transfer significantly. (author)

  14. Corrosion protected reversing heat exchanger

    International Nuclear Information System (INIS)

    A reversing heat exchanger of the plate and fin type having multiple aluminum parting sheets in a stacked arrangement with corrugated fins separating the sheets to form multiple flow paths, means for closing the ends of the sheets, an input manifold arrangement of headers for the warm end of of the exchanger and an output manifold arrangement for the cold end of the exchanger with the input air feed stream header and the waste gas exhaust header having an alloy of zinc and aluminum coated on the inside surface for providing corrosion protection to the stack

  15. Simulation and economic analysis of a liquid-based solar system with a direct-contact liquid-liquid heat exchanger, in comparison to a system with a conventional heat exchanger

    Science.gov (United States)

    Brothers, P.; Karaki, S.

    Using a solar computer simulation package called TRNSYS, simulations of the direct contact liquid-liquid heat exchanger (DCLLHE) solar system and a system with conventional shell-and-tube heat exchanger were developed, based in part on performance measurements of the actual systems. The two systems were simulated over a full year on an hour-by-hour basis at five locations; Boston, Massachusetts, Charleston, South Carolina, Dodge City, Kansas, Madison, Wisconsin, and Phoenix, Arizona. Typically the direct-contact system supplies slightly more heat for domestic hot water and space heating in all locations and about 5 percentage points more cooling as compared to the conventional system. Using a common set of economic parameters and the appropriate federal and state income tax credits, as well as property tax legislation for solar systems in the corresponding states, the results of the study indicate for heating-only systems, the DCLLHE system has a slight life-cycle cost disadvantage compared to the conventional system. For combined solar heating and cooling systems, the DCLLHE has a slight life-cycle cost advantage which varies with location and amounts to one to three percent difference from the conventional system.

  16. Heat exchanger staybolt acceptance criteria

    International Nuclear Information System (INIS)

    The structural integrity demonstration of the primary coolant piping system includes evaluating the structural capacity of each component against a large break or equivalent Double-Ended Guillotine Break. A large break at the inlet or outlet heads of the heat exchangers would occur if the restraint members of the heads become inactive. The structural integrity of the heads is demonstrated by showing the redundant capacity of the staybolts to restrain the head at design conditions and under seismic loadings. The Savannah River Site heat exchanger head is attached to the tubesheet by 84 staybolts. Access to the staybolts is limited due to a welded seal cap over the staybolts. An ultrasonic testing (UT) inspection technique to provide an in-situ examination of the staybolts has recently been developed at SRS. Examination of the staybolts will be performed to ensure their service condition and configuration is within acceptance limits. An acceptance criteria methodology has been developed to disposition flaws reported in the staybolt inspections while ensuring adequate restraint capacity of the staybolts to maintain integrity of the heat exchanger heads against collapse. The methodology includes an approach for the baseline and periodic inspections of the staybolts. The heat exchanger head is analyzed with a three-dimensional finite element model. The restraint provided by the staybolts is evaluated for several postulated cases of inactive or missing staybolts. Evaluation of specific, inactive staybolt configurations based on the UT results can be performed with the finite element model and fracture methodology in this report

  17. Development of Design Criteria for Fluid Induced Structural Vibrations in Steam Generators and Heat Exchangers

    International Nuclear Information System (INIS)

    OAK-B135 Flow-induced vibration in heat exchangers has been a major cause of concern in the nuclear industry for several decades. Many incidents of failure of heat exchangers due to apparent flow-induced vibration have been reported through the USNRC incident reporting system. Almost all heat exchangers have to deal with this problem during their operation. The phenomenon has been studied since the 1970s and the database of experimental studies on flow-induced vibration is constantly updated with new findings and improved design criteria for heat exchangers. In the nuclear industry, steam generators are often affected by this problem. However, flow-induced vibration is not limited to nuclear power plants, but to any type of heat exchanger used in many industrial applications such as chemical processing, refrigeration and air conditioning. Specifically, shell and tube type heat exchangers experience flow-induced vibration due to the high velocity flow over the tube banks. Flow-induced vibration in these heat exchangers leads to equipment breakdown and hence expensive repair and process shutdown. The goal of this research is to provide accurate measurements that can help modelers to validate their models using the measured experimental parameters and thereby develop better design criteria for avoiding fluid-elastic instability in heat exchangers. The research is divided between two primary experimental efforts, the first conducted using water alone (single phase) and the second using a mixture of air or steam and water as the working fluid (two phase). The outline of this report is as follows: After the introduction to fluid-elastic instability, the experimental apparatus constructed to conduct the experiments is described in Chapter 2 along with the measurement procedures. Chapter 3 presents results obtained on the tube array and the flow loop, as well as techniques used in data processing. The project performance is described and evaluated in Chapter 4 followed by a discussion of publications and presentations relevant to the project in Chapter 5, while the conclusions and recommendations for future work are presented in Chapter 6

  18. Heat exchanger with oscillating flow

    Science.gov (United States)

    Scotti, Stephen J. (inventor); Blosser, Max L. (inventor); Camarda, Charles J. (inventor)

    1993-01-01

    Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.

  19. Heat Exchangers Analysis

    Directory of Open Access Journals (Sweden)

    S.C. Pang

    2013-01-01

    Full Text Available Current research performs mathematics correlations between engine speed, coolant flow, vehicle speed and driving gear. A step-by-step procedure is described to obtain the engine cooling system parameters mathematically (include a CFD model. After obtaining the parameters, the thermal equilibrium of engine cooling system is studied thoroughly. The study of thermal equilibrium provides some insights on how to reduce engine cooling load and when the interference of cooling fan is required. A segmented spread sheet model is developed in order to explain the phenomenon which air flow driven by uniform ram air could dissipate higher amount of heat flow than air flow driven by cooling fan. The segmentation analysis concluded that minimum mCp fluid is switched to coolant when the air flow is concentrated at small portion of area.

  20. Ceramic heat exchanger

    Science.gov (United States)

    LaHaye, P.G.; Rahman, F.H.; Lebeau, T.P.; Severin, B.K.

    1998-06-16

    A tube containment system is disclosed. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture. 6 figs.

  1. Heat exchanger for reactor coolant cleanup system

    International Nuclear Information System (INIS)

    A reactor coolant cleanup system of a BWR reactor comprises a regeneration heat exchangers, non-regenerative heat exchangers and a filtration desalter. Main pipelines connected to an inlet and an exit of each of the regenerative heat exchangers are connected with primary and secondary bypass lines bypassing each of the regenerative heat exchangers. Upon inspection of the regenerative heat exchangers, operation of one regenerative heat exchanger among a plurality of regenerative heat exchangers is stopped while the operation is continued using other regenerative heat exchangers. That is, opening/closing valves on the side of the inlet and the exit of one regeneration heat exchanger are closed and opening/closing valves of the bypass pipelines are opened. With such procedures, water from the reactor is not supplied to the inspected regenerative heat exchanger but supplied to other regeneration heat exchangers by way of the bypass lines. Accordingly, one regenerative heat exchanger can be inspected without stopping operation of all regenerative heat exchangers. (I.N.)

  2. 21 CFR 870.4240 - Cardiopulmonary bypass heat exchanger.

    Science.gov (United States)

    2010-04-01

    ...false Cardiopulmonary bypass heat exchanger. 870.4240 Section 870...4240 Cardiopulmonary bypass heat exchanger. (a) Identification. A cardiopulmonary bypass heat exchanger is a device, consisting...

  3. Cryogenic Heat Exchanger with Turbulent Flows

    Science.gov (United States)

    Amrit, Jay; Douay, Christelle; Dubois, Francis; Defresne, Gerard

    2012-01-01

    An evaporator-type cryogenic heat exchanger is designed and built for introducing fluid-solid heat exchange phenomena to undergraduates in a practical and efficient way. The heat exchanger functions at liquid nitrogen temperature and enables cooling of N[subscript 2] and He gases from room temperatures. We present first the experimental results of…

  4. Heat exchanger bypass test procedure

    International Nuclear Information System (INIS)

    The HC-21C Muffle Furnace Process has been experiencing problems with corrosion of the off-gas piping system. During the processing cycle, condensation is forming and corroding the off-gas piping. The corrosion products build up in the rotameters and cause them to be dysfunctional. The condensation is suspected to be occurring in the heat exchanger, so the test will bypass the heat exchanger to verify this. This process test will help to establish a temperature profile for the off-gas system near the rotameter. Also, this information will be used to help determine the location and cause of water condensation that is occurring in the off-gas equipment. The process test will include operating one of the two furnaces in Room 230A to stabilize Pu bearing material. During the test run, various temperature readings will be taken and visual inspections done

  5. High Temperature Composite Heat Exchangers

    Science.gov (United States)

    Eckel, Andrew J.; Jaskowiak, Martha H.

    2002-01-01

    High temperature composite heat exchangers are an enabling technology for a number of aeropropulsion applications. They offer the potential for mass reductions of greater than fifty percent over traditional metallics designs and enable vehicle and engine designs. Since they offer the ability to operate at significantly higher operating temperatures, they facilitate operation at reduced coolant flows and make possible temporary uncooled operation in temperature regimes, such as experienced during vehicle reentry, where traditional heat exchangers require coolant flow. This reduction in coolant requirements can translate into enhanced range or system payload. A brief review of the approaches and challengers to exploiting this important technology are presented, along with a status of recent government-funded projects.

  6. DHE (downhole heat exchangers). [Downhole Heat Exchangers (DHE)

    Energy Technology Data Exchange (ETDEWEB)

    Culver, G.

    1990-11-01

    The use of downhole heat exchangers (DHE) for residential or commercial space and domestic water heating and other applications has several desirable features. Systems are nearly or completely passive -- that is, no or very little geothermal water or steam is produced from the well either reducing or completely eliminating surface environmental concerns and the need for disposal systems or injection wells. Initial cost of pumps and installation are eliminated or reduced along with pumping power costs and maintenance costs associated with pumping often corrosive geothermal fluids. Many residential and small commercial systems do not require circulating pumps because the density difference in the incoming and outgoing sides of the loop are sufficient to overcome circulating friction losses in the entire system. The major disadvantage of DHEs is their dependence on natural heat flow. In areas where geological conditions provide high permeability and a natural hydraulic gradient, DHEs can provide a substantial quantity of heat. A single 500-ft (152 m) well in Klamath Falls, Oregon, supplies over one megawatt thermal and output is apparently limited by the surface area of pipe that can be installed in the well bore. In contrast, DHEs used in conjunction with heat pumps may supply less than 8 KW from a well of similar depth. Here output is limited by conductive heat flow with perhaps a small contribution from convection near the well bore. The highest capacity DHE reported to date, in Turkey, supplies 6 MW thermal from an 820-ft (250 m) well. There were two main goals for this project. The first was to gather, disseminate and exchange internationally information on DHES. The second was to perform experiments that would provide insight into well bore/aquifer interaction and thereby provide more information on which to base DHE designs. 27 refs., 31 figs., 3 tabs.

  7. SAFE gas turbine cycle primary heat exchangers

    Science.gov (United States)

    Reid, Robert S.; Kapernick, Richard J.

    2002-01-01

    Los Alamos National Laboratory and Marshall Space Flight Center are jointly developing two modular heat pipe heat exchangers, collectively named FIGMENT (Fission Inert Gas Metal Exchanger for Non-nuclear Testing). The FIGMENT heat exchangers are designed to transfer power from the SAFE nuclear reactor cores to gas turbine energy converters. A stainless steel prototype heat exchanger will be built during 2002 in preparation for the construction of a larger refractory metal version. Two promising FIGMENT stainless steel heat exchanger concepts are reviewed here. .

  8. Heat Transport Study of the Laminar Heat Pipe Heat Exchanger

    OpenAIRE

    Wei-Keng Lin; Ke Chine Liaw; Min-Zen Tsai; Min-Gung Chu

    2012-01-01

    The purpose of this experiment is to analyze the performance of the Laminar Heat Pipe Heat Exchanger. The test samples were divided two groups, one is the metal corrugated sheet with heat pipe, and the other is the metal corrugated sheet only. By dipping these two group samples into hot water and to see the thermal image by Infrared thermal imager. The results shown the temperature risen of the sheet with heat pipe was faster than that of the sheet without heat pipe. In addition, the bigger o...

  9. Comparison of a Conventional Heat Exchangers with a New Designed Heat Exchanger Experimentally

    Directory of Open Access Journals (Sweden)

    Tansel Koyun

    2014-04-01

    Full Text Available In this study, the air-water heat exchanger designed have been experimentally compared to conventional heat exchangers with and without fin. The same parameters for the three heat exchangers (pump flow, heating power, etc... have been used. In the experiments, speed-flow adjustment has been made to supply heat transfer at an optimum. As a result, during the circulation of water in pipe of the air-water heat exchanger, the corrosion fouling factor has not been formed. In addition, the efficiency of the new designed heat exchanger has been found between fin and finless heat exchanger efficiencies. The results have been shown in the diagrams.

  10. NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger

    International Nuclear Information System (INIS)

    One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor--process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize t cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change heat exchanger with Na as the heat exchanger coolant. In order to design a very efficient and effective heat exchanger one must optimize the design such that we have a high heat transfer and a lower pressure drop, but there is always a trade-off between them. Based on NGNP operational parameters, a heat exchanger analysis with the sodium phase change will be presented to show that the heat exchanger has the potential for highly effective heat transfer, within a small volume at reasonable cost

  11. Heat exchanger for solar water heaters

    Science.gov (United States)

    Cash, M.; Krupnick, A. C.

    1977-01-01

    Proposed efficient double-walled heat exchanger prevents contamination of domestic water supply lines and indicates leakage automatically in solar as well as nonsolar heat sources using water as heat transfer medium.

  12. Analysis Of The Efficiency Improvement Of The Kartini Reactor's Heat Exchanger

    International Nuclear Information System (INIS)

    Analysis of the efficiency improvement of the shell and tube type of the Kartini reactor's Heat Exchanger (HE) have been carried out after the flow direction system was modified from the parallel flow to the counter flow system. The HE was tested by operating the reactor at the power level of 100 k W, until the temperature of the water coolant reached the steady state condition. The efficiency and other HE's parameters was investigated by using the SIMULTANmethod. From the experiment it is known that the inlet and outlet primary and secondary water coolants are Ti = 38oC, To = 35oC, ti 32oC and to = 33oC respectively. The investigation and analysis show that that HE's efficiency is ?= 45,5 % due to U a= 674,79 W/m K, LMT = 3,27 and NTU 0,835. From the analysis can be concluded that the increase of the HE's efficiency is 2.5 % compared to parallel flow and the decrease is 6.7% compared to the HE's efficiency as soon as after having been cleaned in 1994

  13. Nondestructive inspection of the tubes of TRIGA IPR-R1 reactor heat exchanger by eddy current testing

    Energy Technology Data Exchange (ETDEWEB)

    Silva Junior, Silverio F.; Silva, Roger F.; Oliveira, Paulo F., E-mail: silvasf@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Barreto, Erika S.; Ribeiro, Isabela G.; Fraiz, Felipe C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2013-07-01

    The IPR-R1 TRIGA MARK 1 reactor is an open pool type reactor, cooled light water. It is used for research activities, personnel training and radioisotopes production, in operation since 1960 at the Nuclear Technology Development Center - CDTN/CNEN. It operates at a maximum thermal power of 100 kW and usually, the fuel cooling is done by natural circulation. If necessary, an external auxiliary cooling system, with a shell-and-tube type heat exchanger, can be used to improve the water heat removal. As part of the ageing management program of the reactor, a nondestructive evaluation of their heat exchanger stainless steel tubes will be performed, in order to verify its integrity. The examinations will be performed using the eddy current test method, which allows the detection and characterization of structural discontinuities in the wall of the tubes, if existing. For this purpose, probes and reference standards were designed and manufactured at CDTN facilities and test procedures were established and validated. In this paper, a description of the proposed infrastructure as well as the test methodology to be used in the examinations are presented and discussed. (author)

  14. Nondestructive inspection of the tubes of TRIGA IPR-R1 reactor heat exchanger by eddy current testing

    International Nuclear Information System (INIS)

    The IPR-R1 TRIGA MARK 1 reactor is an open pool type reactor, cooled light water. It is used for research activities, personnel training and radioisotopes production, in operation since 1960 at the Nuclear Technology Development Center - CDTN/CNEN. It operates at a maximum thermal power of 100 kW and usually, the fuel cooling is done by natural circulation. If necessary, an external auxiliary cooling system, with a shell-and-tube type heat exchanger, can be used to improve the water heat removal. As part of the ageing management program of the reactor, a nondestructive evaluation of their heat exchanger stainless steel tubes will be performed, in order to verify its integrity. The examinations will be performed using the eddy current test method, which allows the detection and characterization of structural discontinuities in the wall of the tubes, if existing. For this purpose, probes and reference standards were designed and manufactured at CDTN facilities and test procedures were established and validated. In this paper, a description of the proposed infrastructure as well as the test methodology to be used in the examinations are presented and discussed. (author)

  15. Free vibrations of finite circular cylindrical shells and tubes with and without a surrounding fluid

    International Nuclear Information System (INIS)

    Numerical models are evaluated for determining the natural frequencies of thin-walled closed circular cylindrical shells and straight tube bundles in a fluid or without a fluid. Experiments are described to check the reliability of the numerical models. Some of the models are applied for the vibration analysis of some parts of the sodium-steam heat exchangers of the SNR-300 reactor in Kalkar (West Germany). (Auth.)

  16. Thermodynamic Optimization of GSHPS Heat Exchangers

    OpenAIRE

    Ahmad Kahrobaeian; Ali Sharifzadegan; Javad Marzbanrad

    2007-01-01

    In this paper, a new method for determining the optimized dimensions of a ground source heat pump system (GSHPS) heat exchanger is presented. Using the GSHPS is one of the ways for utilization of infinite, clean and renewable energies in the environment. In recent years, due to limitation of physical space for installing the heat exchangers and avoiding the environmental effects on heat exchanger operation, vertical GSHP systems are used more than the other ones. Determination of opt...

  17. Modelling of Multistream LNG Heat Exchangers

    OpenAIRE

    Soler Fossas, Joan

    2011-01-01

    The main goal of this thesis is to find out if a liquefied natural gas multistream heat exchanger numerical model is achievable. This should include several features usually neglected in nowadays available heat exchanger models, such as flow maldistribution, changes in fluid properties and heat exchanger dynamic behaviour. In order to accomplish that objective a simpler case is modelled. Efforts are put in achieving numerical stability.A counter flow natural gas and mixed refrigerant heat exc...

  18. Heat Transport Study of the Laminar Heat Pipe Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Wei-Keng Lin

    2012-11-01

    Full Text Available The purpose of this experiment is to analyze the performance of the Laminar Heat Pipe Heat Exchanger. The test samples were divided two groups, one is the metal corrugated sheet with heat pipe, and the other is the metal corrugated sheet only. By dipping these two group samples into hot water and to see the thermal image by Infrared thermal imager. The results shown the temperature risen of the sheet with heat pipe was faster than that of the sheet without heat pipe. In addition, the bigger of the temperature difference between hot water temperature and ambient temperature, the quicker of the temperature risen for the metal corrugated sheet, and the temperature of the metal corrugated sheet were homogenous as well. For example, when the water temperature is 30?, ambient temperature is 20?, the metal corrugated sheet with heat pipe rise rapidly to 26? within 1 minute, while the metal corrugated sheet without heat pipe rise to 22? only, this temperature difference would be more obvious with the increasing of the hot water temperature. When the hot water temperature is up to 40?, the metal corrugated sheet with heat pipe rise rapidly to 31? within 1 minute, while the metal corrugated sheet without het pipe is still rise up to 22? only. When the hot water temperature is up to 50?, The metal corrugated sheet with heat pipe rise rapidly to 33? within 1 minute, while the sheet without heat pipe still keep at 22?, the results shown the heat pipe affect the temperature rising speed is obvious, and it also implying heat pipe is a very important parameter for the heat transfer rate of the Laminar Heat Pipe Heat Exchanger.

  19. Heat exchanger for nuclear reactors

    International Nuclear Information System (INIS)

    In a pressure vessel of a nuclear reactor heat exchangers are arranged in an annulus around the central reactor core. The heat exchangers consist of three tube banks with tube plates, the planes of the tube plates of the exterior banks running rectangular to those of the inner bank. The inlet and outlet pipes of the tube plates lead through construction openings. Their diameter is slightly larger than the diagonal of a tube bank. The pipes of the outer banks are running through the construction opening on both sides of a central passage. This passage contains exlusively the pipes of the middle plate of the central tube bank. The pipes of the exterior tube banks additionally leave alloys in which those pipes of the other plates of the central bank are running that are arranged sideways of the center. Furthermore, the pipes of one exterior tube bank are displaced against those of the other exterior bank. In this way the construction openings in the prestressed-concrete pressure vessel can be limited to a minimum. (TK)

  20. Improved ceramic heat exchange material

    Science.gov (United States)

    Mccollister, H. L.

    1977-01-01

    Improved corrosion resistant ceramic materials that are suitable for use as regenerative heat exchangers for vehicular gas turbines is reported. Two glass-ceramic materials, C-144 and C-145, have superior durability towards sulfuric acid and sodium sulfate compared to lithium aluminosilicate (LAS) Corning heat exchange material 9455. Material C-144 is a leached LAS material whose major crystalline phase is silica keatite plus mullite, and C-145 is a LAS keatite solid solution (S.S.) material. In comparison to material 9455, material C-144 is two orders of magnitude better in dimensional stability to sulfuric acid at 300 C, and one order of magnitude better in stability to sodium sulfate at 1000 C. Material C-145 is initially two times better in stability to sulfuric acid, and about one order of magnitude better in stability to sodium sulfate. Both C-144 and C-145 have less than 300 ppm delta L/L thermal expansion from ambient to 1000 C, and good dimensional stability of less than approximately 100 ppm delta L/L after exposure to 1000 C for 100 hours. The glass-ceramic fabrication process produced a hexagonal honeycomb matrix having an 85% open frontal area, 50 micrometer wall thickness, and less than 5% porosity.

  1. Comparative Study of Heat Exchangers Using CFD

    OpenAIRE

    Melvinraj C R; Vishal Varghese C

    2014-01-01

    A parallel flow heat exchanger and a corresponding ribbed tube heat exchanger is modeled and numerically analysed using a commercial finite volume CFD package. Pro-E & ANSYS 14.5 softwares are used for the designing and the analysis. CFD predictions of effectiveness of the two heat exchangers are obtained and compared. After selecting the best modeling approach, the sensitivity of the results to particular flow rate is investigated. It is observed that the flow and the tempera...

  2. Analytical Entropy Analysis of Recuperative Heat Exchangers

    OpenAIRE

    Marija Zivic; Zdravko Virag; Antun Galovic

    2003-01-01

    Abstract: The analytical solutions for the temperature variation of two streams in parallel flow, counter flow and cross-flow heat exchangers and related entropy generation due to heat exchange between the streams are presented. The analysis of limiting cases for the relative entropy generation is performed, and corresponding analytical expressions are given. The obtained results may be included in a more general procedure concerning optimal heat exchanger design.

  3. Micro tube heat exchangers for Space Project

    National Aeronautics and Space Administration — Mezzo fabricates micro tube heat exchangers for a variety of applications, including aerospace, automotive racing, Department of Defense ground vehicles,...

  4. High temperature heat exchange: nuclear process heat applications

    International Nuclear Information System (INIS)

    The unique element of the HTGR system is the high-temperature operation and the need for heat exchanger equipment to transfer nuclear heat from the reactor to the process application. This paper discusses the potential applications of the HTGR in both synthetic fuel production and nuclear steel making and presents the design considerations for the high-temperature heat exchanger equipment

  5. Advanced intermediate heat exchanger for FBR

    International Nuclear Information System (INIS)

    A proposal was made to replace secondary sodium loop with an advanced intermediate heat exchanger (AIHX) that contains primary sodium tubing, tertiary water/steam tubing, and thermally connecting secondary heat transfer medium. With using a medium such as Gallium and Pb-Bi this heat exchanger could realize sodium FBR with effectively no possibility of sodium water reaction in the case of SG rupture. The present paper reports the design estimation of this heat exchanger and Pb-Bi experimental test facility to obtain heat transfer performances. (author)

  6. Plate heat exchangers design, applications and performance

    CERN Document Server

    Wang, L; Manglik, R M

    2007-01-01

    Heat exchangers are important, and used frequently in the processing, heat and power, air-conditioning and refrigeration, heat recovery, transportation and manufacturing industries. Such equipment is also important in electronics cooling and for environmental issues like thermal pollution, waste disposal and sustainable development.The present book concerns plate heat exchangers (PHEs), which are one of the most common types in practice. The overall objectives are to present comprehensive descriptions of such heat exchangers and their advantages and limitations, to provide in-depth thermal and

  7. Conjugate heat and mass transfer in heat mass exchanger ducts

    CERN Document Server

    Zhang, Li-Zhi

    2013-01-01

    Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts bridges the gap between fundamentals and recent discoveries, making it a valuable tool for anyone looking to expand their knowledge of heat exchangers. The first book on the market to cover conjugate heat and mass transfer in heat exchangers, author Li-Zhi Zhang goes beyond the basics to cover recent advancements in equipment for energy use and environmental control (such as heat and moisture recovery ventilators, hollow fiber membrane modules for humidification/dehumidification, membrane modules for air purification, desi

  8. Simultaneous synthesis of flexible heat exchanger networks

    OpenAIRE

    Aaltola, Juha

    2003-01-01

    In industry there is still lot of potential to make an energy system more efficient and thereby reduce the waste heat available. On the other hand there is an option to export the waste heat to another industry or to society. When the use of a heat exchanger network is considered for these tasks the optimization framework developed in this work can be implemented to calculate the cost of optimal investments. This thesis presents a framework for generating flexible heat exchanger networks ...

  9. Experimental testing of a direct contact heat exchanger for geothermal brine. Final report, July 1, 1978-February 1, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Urbanek, M.W.

    1979-12-01

    A series of direct contact heat exchanger (DCHX) experiments were conducted at the East Mesa Geothermal Test Site during the period July 1, 1978 to February 1, 1979. The purpose of these tests was to provide additional data necessary to better understand the thermal and hydraulic characteristics of the DCHX binary cycle loop components that may be used to extract energy from geothermal brines. Isobutane and Isopentane were tested as secondary working fluids. The analytical and experimental efforts were directed at the problems of working fluid loss in the effluent brine, carryover of water vapor with the vaporized secondary fluid and the free CO/sub 2/ content of the feed brine. The tests aimed at evaluating the heat transfer performance of various type tubes installed in vertical shell-and-tube secondary fluid condensers. Data was collected while operating a low temperature isopentane cycle with brine preflashed to 210 to 212/sup 0/F; the objective being to gain insight to waste heat recovery applications such as the Arkansas Power and Light project. Possible alternatives for isobutane recovery from the spent brine were investigated. A system was designed and the economic aspects studied.

  10. Heat exchanger for nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Artaud, R.; Aubert, M.; Elbeze, R.; Renaux, C.

    1983-01-04

    Heat exchanger for a nuclear reactor of the type in which the main vessel is sealed by an upper slab, comprises a plurality of substantially straight exchange tubes mounted between on the one hand an upper annular tube plate associated with a secondary fluid discharge chamber and on the other a lower annular tube plate associated with a supply chamber, a ferrule surrounding the said tubes and provided with a discharge orifice for the primary fluid, a central shaft which communicates with the supply chamber , and a supply manifold and a discharge manifold for the secondary fluid, wherein it comprises a supporting ferrule fixed to the periphery of the upper tube plate and sealed at its upper end by a dome, said ferrule having on its outer periphery a supporting flange by the said slab, the manifolds being superimposed in the supporting ferrule and fixed to a horizontal plate, which is itself fixed to the supporting ferrule, the supply manifold being connected by at least one pipe to the upper end of the shaft, the discharge manifold being connected to the discharge chamber also by means of a pipe, whereby the pipes are positioned in the supporting ferrule.

  11. Bifunctional thermoelectric tube made of tilted multilayer material as an alternative to standard heat exchangers

    OpenAIRE

    Takahashi, Kouhei; Kanno, Tsutomu; Sakai, Akihiro; Tamaki, Hiromasa; Kusada, Hideo; Yamada, Yuka

    2013-01-01

    Enormously large amount of heat produced by human activities is now mostly wasted into the environment without use. To realize a sustainable society, it is important to develop practical solutions for waste heat recovery. Here, we demonstrate that a tubular thermoelectric device made of tilted multilayer of Bi0.5Sb1.5Te3/Ni provides a promising solution. The Bi0.5Sb1.5Te3/Ni tube allows tightly sealed fluid flow inside itself, and operates in analogy with the standard shell and tube heat exch...

  12. Heat exchanger network retrofit optimization involving heat transfer enhancement

    International Nuclear Information System (INIS)

    Heat exchanger network retrofit plays an important role in energy saving in process industry. Many design methods for the retrofit of heat exchanger networks have been proposed during the last three decades. Conventional retrofit methods rely heavily on topology modifications which often result in a long retrofit duration and high initial costs. Moreover, the addition of extra surface area to the heat exchanger can prove difficult due to topology, safety and downtime constraints. Both of these problems can be avoided through the use of heat transfer enhancement in heat exchanger network retrofit. This paper presents a novel design approach to solve heat exchanger network retrofit problems based on heat transfer enhancement. An optimisation method based on simulated annealing has been developed to find the appropriate heat exchangers to be enhanced and to calculate the level of enhancement required. The physical insight of enhanced exchangers is also analysed. The new methodology allows several possible retrofit strategies using different retrofit methods be determined. Comparison of these retrofit strategies demonstrates that retrofit modification duration and payback time are reduced when heat transfer enhancement is utilised. Heat transfer enhancement can be also used as a substitute for increased heat exchanger network surface area to reduce retrofit investment costs.

  13. Optimization of parameters of heat exchangers vehicles

    Directory of Open Access Journals (Sweden)

    Andrei MELEKHIN

    2014-09-01

    Full Text Available The relevance of the topic due to the decision of problems of the economy of resources in heating systems of vehicles. To solve this problem we have developed an integrated method of research, which allows to solve tasks on optimization of parameters of heat exchangers vehicles. This method decides multicriteria optimization problem with the program nonlinear optimization on the basis of software with the introduction of an array of temperatures obtained using thermography. The authors have developed a mathematical model of process of heat exchange in heat exchange surfaces of apparatuses with the solution of multicriteria optimization problem and check its adequacy to the experimental stand in the visualization of thermal fields, an optimal range of managed parameters influencing the process of heat exchange with minimal metal consumption and the maximum heat output fin heat exchanger, the regularities of heat exchange process with getting generalizing dependencies distribution of temperature on the heat-release surface of the heat exchanger vehicles, defined convergence of the results of research in the calculation on the basis of theoretical dependencies and solving mathematical model.

  14. Experimental evaluation of vibrations in heat exchangers

    International Nuclear Information System (INIS)

    Flow induced vibrations may produce damage of heat exchangers, condensers and steam generators tubes. To evaluate this problem a set of tests were developed to know the real support state of the tubes, which have great influence on the vibration response. This paper include a description of the tests and the results obtained applying them on a heat exchanger equipment. (author)

  15. Cryogenic heat exchanger with turbulent flows

    International Nuclear Information System (INIS)

    An evaporator-type cryogenic heat exchanger is designed and built for introducing fluid-solid heat exchange phenomena to undergraduates in a practical and efficient way. The heat exchanger functions at liquid nitrogen temperature and enables cooling of N2 and He gases from room temperatures. We present first the experimental results of various parameters which characterize the heat exchanger (efficiency, number of transfer units, heat exchange coefficient, etc) as a function of the mass flow rate of the gas to be cooled. An analysis of the Nu-Re diagram is also presented. All experiments were conducted with N2 gas. The scope of this tool is readily extended to research purposes. (paper)

  16. Testing and plugging power plant heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Sutor, F. [Expando Seal Tools, Inc., Montgomeryville, PA (United States)

    1994-12-31

    Heat Exchanger tubes fail for any number of reasons including but certainly not limited to the cumulative effects of corrosion, erosion, thermal stress and fatigue. This presentation will attempt to identify the most common techniques for determining which tubes are leaking and then introduce the products in use to plug the leaking tubes. For the sake of time I will limit the scope of this presentation to include feedwater heaters and secondary system heat exchangers such as Hydrogen Coolers, Lube Oil Coolers, and nuclear Component Cooling Water, Emergency Cooling Water, Regenerative Heat Recovery heat exchangers.

  17. High temperature alloys and ceramic heat exchanger

    International Nuclear Information System (INIS)

    From the standpoint of energy saving, the future operating temperatures of process heat and gas turbine plants will become higher. For this purpose, ceramics is the most promissing candidate material in strength for application to high-temperature heat exchangers. This report deals with a servey of characteristics of several high-temperature metallic materials and ceramics as temperature-resistant materials; including a servey of the state-of-the-art of ceramic heat exchanger technologies developed outside of Japan, and a study of their application to the intermediate heat exchanger of VHTR (a very-high-temperature gas-cooled reactor). (author)

  18. Component Cooling Heat Exchanger Heat Transfer Capability Operability Monitoring

    International Nuclear Information System (INIS)

    The ultimate heat sink (UHS) is of highest importance for nuclear power plant safe and reliable operation. The most important component in line from safety-related heat sources to the ultimate heat sink water body is a component cooling heat exchanger (CC Heat Exchanger). The Component Cooling Heat Exchanger has a safety-related function to transfer the heat from the Component Cooling (CC) water system to the Service Water (SW) system. SW systems throughout the world have been the root of many plant problems because the water source, usually river, lake, sea or cooling pond, are conductive to corrosion, erosion, biofouling, debris intrusion, silt, sediment deposits, etc. At Krsko NPP, these problems usually cumulate in the summer period from July to August, with higher Sava River (service water system) temperatures. Therefore it was necessary to continuously evaluate the CC Heat Exchanger operation and confirm that the system would perform its intended function in accordance with the plant's design basis, given as a minimum heat transfer rate in the heat exchanger design specification sheet. The Essential Service Water system at Krsko NPP is an open cycle cooling system which transfers heat from safety and non-safety-related systems and components to the ultimate heat sink the Sava River. The system is continuously in operation in all modes of plant operation, including plant shutdown and refueling. However, due to the Sava River impurities and our limited abilities of the water treatment, the system is subject to fouling, sedimentation buildup, corrosion and scale formation, which could negatively impact its performance being unable to satisfy its safety related post accident heat removal function. Low temperature difference and high fluid flows make it difficult to evaluate the CC Heat Exchanger due to its specific design. The important effects noted are measurement uncertainties, nonspecific construction, high heat transfer capacity, and operational specifics (e.g. using CC Heat Exchanger bypass valves for CC temperature control, variation of plant heat loads, pumps performance, and day-night temperature difference, with lagging effects on heat transfer dynamics). Krsko NPP is continuously monitoring the Component Cooling (CC) Heat Exchanger performance using the on-line process information system (PIS). By defining the mathematical algorithm, it is possible to continuously evaluate the CC Heat Exchanger operability by verifying if the heat transfer rate calculation is in accordance with the heat exchanger design specification sheet requirements. These calculations are limited to summer periods only when the bypass valves are neither throttled nor open.(author).

  19. Heat exchanger device and method for heat removal or transfer

    Science.gov (United States)

    Koplow, Jeffrey P

    2013-12-10

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  20. Heat exchanger device and method for heat removal or transfer

    Energy Technology Data Exchange (ETDEWEB)

    Koplow, Jeffrey P

    2015-03-24

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  1. Improved ceramic heat exchanger materials

    Science.gov (United States)

    Rauch, H. W.

    1980-01-01

    The development and evaluation of materials for potential application as heat exchanger structures in automotive gas turbine engines is discussed. Test specimens in the form of small monolithic bars were evaluated for thermal expansion and dimensional stability before and after exposure to sea salt and sulfuric acid, followed by short and long term cycling at temperatures up to 1200 C. The material finally selected, GE-7808, consists of the oxides, ZrO2-MgO-Al2O3-S1O2, and is described generically as ZrMAS. The original version was based on a commercially available cordierite (MAS) frit. However, a clay/talc mixture was demonstrated to be a satisfactory very low cost source of the cordierite (MAS) phase. Several full size honeycomb regenerator cores, about 10.2 cm thick and 55 cm diameter were fabricated from both the frit and mineral versions of GE-7808. The honeycomb cells in these cores had rectangular dimensions of about 0.5 mm x 2.5 mm and a wall thickness of approximately 0.2 mm. The test data show that GE-7808 is significantly more stable at 1100 C in the presence of sodium than the aluminosilicate reference materials. In addition, thermal exposure up to 1100 C, with and without sodium present, results in essentially no change in thermal expansion of GE-7808.

  2. Method of relative comparison of the thermohydraulic efficiency of heat exchange intensification in channels of heat-exchange surfaces

    International Nuclear Information System (INIS)

    One introduces a technique to compare relatively thermohydraulic efficiency of heat transfer intensification in channels of heat exchange surfaces of any design types. It is shown that one should compare thermohydraulic efficiency of heat exchange intensification as to the thermal power of heat exchangers and pressure losses in channels with turbulators and in polished channels of heat exchange surfaces on the basis of dimensions of heat exchangers, their heat exchange surfaces and at similar (as to Re numbers) modes of coolant flow

  3. 14 CFR 23.1125 - Exhaust heat exchangers.

    Science.gov (United States)

    2010-01-01

    ...2010-01-01 false Exhaust heat exchangers. 23.1125 Section 23...System § 23.1125 Exhaust heat exchangers. For reciprocating engine...apply: (a) Each exhaust heat exchanger must be constructed and...

  4. 14 CFR 29.1125 - Exhaust heat exchangers.

    Science.gov (United States)

    2010-01-01

    ...2010-01-01 false Exhaust heat exchangers. 29.1125 Section 29...System § 29.1125 Exhaust heat exchangers. For reciprocating engine...apply: (a) Each exhaust heat exchanger must be constructed and...

  5. 14 CFR 25.1125 - Exhaust heat exchangers.

    Science.gov (United States)

    2010-01-01

    ...2010-01-01 false Exhaust heat exchangers. 25.1125 Section 25...System § 25.1125 Exhaust heat exchangers. For reciprocating engine...apply: (a) Each exhaust heat exchanger must be constructed and...

  6. 40 CFR 63.1435 - Heat exchanger provisions.

    Science.gov (United States)

    2010-07-01

    ...2010-07-01 2010-07-01 true Heat exchanger provisions. 63.1435 Section...Polyols Production § 63.1435 Heat exchanger provisions. (a) The owner...requirements of § 63.104 for heat exchange systems, with the...

  7. Heat exchanger, head and shell acceptance criteria

    Energy Technology Data Exchange (ETDEWEB)

    Lam, P.S.; Sindelar, R.L.

    1992-09-01

    Instability of postulated flaws in the head component of the heat exchanger could not produce a large break, equivalent to a DEGB in the PWS piping, due to the configuration of the head and restraint provided by the staybolts. Rather, leakage from throughwall flaws in the head would increase with flaw length with finite leakage areas that are bounded by a post-instability flaw configuration. Postulated flaws at instability in the shell of the heat exchanger or in the cooling water nozzles could produce a large break in the Cooling Water System (CWS) pressure boundary. An initial analysis of flaw stability for postulated flaws in the heat exchanger head was performed in January 1992. This present report updates that analysis and, additionally, provides acceptable flaw configurations to maintain defined structural or safety margins against flaw instability of the external pressure boundary components of the heat exchanger, namely the head, shell, and cooling water nozzles. Structural and flaw stability analyses of the heat exchanger tubes, the internal pressure boundary of the heat exchangers or interface boundary between the PWS and CWS, were previously completed in February 1992 as part of the heat exchanger restart evaluation and are not covered in this report.

  8. Heat exchanger, head and shell acceptance criteria

    International Nuclear Information System (INIS)

    Instability of postulated flaws in the head component of the heat exchanger could not produce a large break, equivalent to a DEGB in the PWS piping, due to the configuration of the head and restraint provided by the staybolts. Rather, leakage from throughwall flaws in the head would increase with flaw length with finite leakage areas that are bounded by a post-instability flaw configuration. Postulated flaws at instability in the shell of the heat exchanger or in the cooling water nozzles could produce a large break in the Cooling Water System (CWS) pressure boundary. An initial analysis of flaw stability for postulated flaws in the heat exchanger head was performed in January 1992. This present report updates that analysis and, additionally, provides acceptable flaw configurations to maintain defined structural or safety margins against flaw instability of the external pressure boundary components of the heat exchanger, namely the head, shell, and cooling water nozzles. Structural and flaw stability analyses of the heat exchanger tubes, the internal pressure boundary of the heat exchangers or interface boundary between the PWS and CWS, were previously completed in February 1992 as part of the heat exchanger restart evaluation and are not covered in this report

  9. Analysis of a Flooded Heat Exchanger

    Science.gov (United States)

    Fink, Aaron H.; Luyben, William L.

    2015-01-01

    Flooded heat exchangers are often used in industry to reduce the required heat-transfer area and the size of utility control valves. These units involve a condensing vapor on the hot side that accumulates as a liquid phase in the lower part of the vessel. The heat transfer occurs mostly in the vapor space, but the condensate becomes somewhat…

  10. Thermodynamic Optimization of GSHPS Heat Exchangers

    Directory of Open Access Journals (Sweden)

    Ahmad Kahrobaeian

    2007-09-01

    Full Text Available

    In this paper, a new method for determining the optimized dimensions of a ground source heat pump system (GSHPS heat exchanger is presented. Using the GSHPS is one of the ways for utilization of infinite, clean and renewable energies in the environment. In recent years, due to limitation of physical space for installing the heat exchangers and avoiding the environmental effects on heat exchanger operation, vertical GSHP systems are used more than the other ones. Determination of optimum heat exchanger size is one of the most important parameters in the optimization of the heat exchanger design. In this study, optimum length and diameter for the heat exchanger is determined for different mass flows by using the second law of thermodynamics. The optimal length and diameter minimize entropy generation and therefore result in increased efficiency of the heat pump.

    • An initial version of this pa per was published in May of 2004 in the proceedings of Second International Applied Thermodynamics Conference, Istanbul, Turkey.

  11. Expanded microchannel heat exchanger: design, fabrication and preliminary experimental test

    OpenAIRE

    Denkenberger, David C.; Brandemuehl, Michael J.; Pearce, Joshua M.; Zhai, John

    2012-01-01

    This paper first reviews non-traditional heat exchanger geometry, laser welding, practical issues with microchannel heat exchangers, and high effectiveness heat exchangers. Existing microchannel heat exchangers have low material costs, but high manufacturing costs. This paper presents a new expanded microchannel heat exchanger design and accompanying continuous manufacturing technique for potential low-cost production. Polymer heat exchangers have the potential for high effe...

  12. REVIEW OF HEAT TRANSFER ENHANCEMENT IN DIFFERENT TYPES OF BAFFLES AND THEIR ORIENTATIONS.

    Directory of Open Access Journals (Sweden)

    S.P.WALDE

    2012-04-01

    Full Text Available The use of baffles in channel is commonly used for passive heat transfer enhancement strategy in single phase internal flow. Considering the rapid increase in energy demand, effective heat transfer enhancement techniques have become important task worldwide. Some of the applications of passive heat transfer enhancement strategies are in process industries, thermal regenerator, Shell and tube type heat exchanger, Internal cooling system of gas turbine blades, radiators for space vehicles and automobiles, etc. Thepresent paper is a review of different types of baffles and its arrangement. According to recent studies these are known to be economic heat transfer augmentation tools.

  13. SAFE Reactor Brayton Cycle Primary Heat Exchangers

    International Nuclear Information System (INIS)

    Gas cooling of power-dense nuclear reactor cores can produce large thermal and stress gradients through sensible temperature changes in the coolant. In-core heat pipes remove heat isothermally and reduce the severity of these gradients. The modular SAFE reactor concept consists of numerous heat pipes that permit core re-assembly during test and preflight integration. The redundancy inherent in the modular heat pipe-based design enhances reactor reliability. The SAFE reactor is designed to operate for extended periods near full power even if several fuel pins or modules fail. Los Alamos National Laboratory and Marshall Space Flight Center are jointly developing two modular heat pipe heat exchangers, collectively named FIGMENT (Fission Inert Gas Metal Exchanger for Non-nuclear Testing). The FIGMENT heat exchangers are designed to transfer power from the SAFE nuclear reactor cores to gas turbine energy converters. A stainless steel prototype heat exchanger will be built in preparation for the construction of a larger refractory metal version. Several promising FIGMENT stainless steel heat exchanger concepts are reviewed here. (authors)

  14. Acceptance criteria for heat exchanger head staybolts

    Energy Technology Data Exchange (ETDEWEB)

    Sindelar, R.L.; Lam, P.S.; Barnes, D.M.; Placr, A.; Morrison, J.M.

    1991-01-01

    Each of the six primary coolant loop systems of the Savannah River Site production reactors contains two parallel single-pass heat exchangers to transfer heat from the primary coolant (D{sub 2}O) to the secondary cooling water (H{sub 2}O). The configuration of the heat exchangers includes a plenary space defined by the heat exchanger tubesheet and the heat exchanger head at both the heat exchanger inlet and outlet to the primary piping. The primary restraint of the heat exchanger head (Type 304 stainless steel) is provided by 84 staybolts (Type 303 stainless steel) which attach to the tubesheet. The staybolts were cap seal-welded in the mid-1960's and are immersed in moderator. Access to inspect the staybolts is limited to a recently-developed ultrasonic technique shooting a beam through the staybolt assembly. Acceptance Criteria to allow disposition of flaws detected by UT inspection have been developed. The structural adequacy to protect against collapse loading of the head is demonstrated by finite element analysis of the head assembly and fracture analysis of flaw postulates in the staybolts. Both normal operation and normal operation plus seismic loading conditions were considered. Several bounding cases containing various configurations of nonactive (exceeding critical flaw size) staybolts were analyzed. The model of the head assembly can be applied to evaluate any active staybolt configurations based on the results from future inspections. 9 refs.

  15. Acceptance criteria for heat exchanger head staybolts

    Energy Technology Data Exchange (ETDEWEB)

    Sindelar, R.L.; Lam, P.S.; Barnes, D.M.; Placr, A.; Morrison, J.M.

    1991-12-31

    Each of the six primary coolant loop systems of the Savannah River Site production reactors contains two parallel single-pass heat exchangers to transfer heat from the primary coolant (D{sub 2}O) to the secondary cooling water (H{sub 2}O). The configuration of the heat exchangers includes a plenary space defined by the heat exchanger tubesheet and the heat exchanger head at both the heat exchanger inlet and outlet to the primary piping. The primary restraint of the heat exchanger head (Type 304 stainless steel) is provided by 84 staybolts (Type 303 stainless steel) which attach to the tubesheet. The staybolts were cap seal-welded in the mid-1960`s and are immersed in moderator. Access to inspect the staybolts is limited to a recently-developed ultrasonic technique shooting a beam through the staybolt assembly. Acceptance Criteria to allow disposition of flaws detected by UT inspection have been developed. The structural adequacy to protect against collapse loading of the head is demonstrated by finite element analysis of the head assembly and fracture analysis of flaw postulates in the staybolts. Both normal operation and normal operation plus seismic loading conditions were considered. Several bounding cases containing various configurations of nonactive (exceeding critical flaw size) staybolts were analyzed. The model of the head assembly can be applied to evaluate any active staybolt configurations based on the results from future inspections. 9 refs.

  16. Mathematical Modeling of Spiral Heat Exchanger

    OpenAIRE

    Probal Guha , Vaishnavi Unde

    2014-01-01

    Compact Heat Exchangers (CHEs) are increasingly being used on small and medium scale industries. Due to their compact size and efficient design, they facilitate more efficient heat transfer. Better heat transfer would imply lesser fuel consumption for the operations of the plant, giving improvement to overall efficiency. This reduction in consumption of fuel is a step towards sustainable development. This report exclusively deals with the study the spiral heat ...

  17. Heat transfer from oriented heat exchange areas

    OpenAIRE

    Vantuch Martin; Huzvar Jozef; Kapjor Andrej

    2014-01-01

    This paper deals with the transfer of heat-driven heat transfer surface area in relation to the construction of the criterion equation for “n” horizontal pipe one about another. On the bases of theoretical models have been developed for calculating the thermal performance of natural convection by Churilla and Morgan, for various pipe diameters and temperatures. These models were compared with models created in CFD-Fluent Ansys the same boundary conditions. The aim of the analyse of heat a...

  18. Heat exchanger fouling: Prediction, measurement, and mitigation

    Science.gov (United States)

    The US Department of Energy (DOE), Office of Industrial Programs (OIP) sponsors the development of innovative heat exchange systems. Fouling is a major and persistent cost associated with most industrial heat exchangers and nationally wastes an estimated 2.9 Quads per year. To predict and control fouling, three OIP projects are currently exploring heat exchanger fouling in specific industrial applications. A fouling probe has been developed to determine empirically the fouling potential of an industrial gas stream and to derive the fouling thermal resistance. The probe is a hollow metal cylinder capable of measuring the average heat flux along the length of the tube. The local heat flux is also measured by a heat flux meter embedded in the probe wall. The fouling probe has been successfully tested in the laboratory at flue gas temperatures up to 2200 F and a local heat flux up to 41,000 BTU/hr sq ft. The probe has been field tested at a coal-fired boiler plant. Future tests at a municipal waste incinerator are planned. Two other projects study enhanced heat exchanger tubes, specifically the effect of enhanced surface geometries on the tube bundle performance. Both projects include fouling in a liquid heat transfer fluid. Identifying and quantifying the factors affecting fouling in these enhanced heat transfer tubes will lead to techniques to mitigate fouling.

  19. Earth Air Heat Exchanger in Parallel Connection

    Directory of Open Access Journals (Sweden)

    ManojkumarDubey1 , Dr. J.L.Bhagoria2 , Dr. Atullanjewar

    2013-06-01

    Full Text Available The temperature of earth at a certain depth about 2 to 3m the temperature of ground remains nearly constant throughout the year. This constant temperature is called the undisturbed temperature of earth which remains higher than the outside temperature in winter and lower than the outside temperature in summer. When ambient air is drawn through buried pipes, the air is cooled in summer and heated in winter, before it is used for ventilation. The earth air heat exchanger can fulfil in both purpose heating in winter and cooling in summer. This paper investigates the experimental studies on earth air heat exchanger system in parallel connection in the summer climate.

  20. Lightweight Thermal Storage Heat Exchangers Project

    National Aeronautics and Space Administration — This SBIR proposal aims to develop thermal energy storage heat exchangers that are significantly lighter and higher conductance than the present art which involves...

  1. Ageing management of heavy water heat exchangers

    International Nuclear Information System (INIS)

    In all the nuclear power stations, it is mandatory to monitor the health of all heavy water heat exchangers - such as shutdown cooling heat exchangers, bleed coolers, moderator heat exchangers, pre-cooling heat exchangers etc in order to avoid any tube failure resulting in release of radioactivity to secondary side. Hence, these equipment are subjected to regulatory inspections. Even though very stringent requirements at design stage and fabrication stage are followed. In-service inspection of the tubing by eddy current is the most powerful method to assess the health of the tubes. This paper describes eddy current method followed for in-service inspection of tubes and how the defect level is assessed. The basis for plugging of the tubes based on the criteria given in the American Society of Mechanical Engineers (ASME) section XI and US Nuclear Regulatory Guides are also discussed. (author)

  2. Fatigue Testing of Heat-Exchanger Tubes

    Science.gov (United States)

    Ackerman, P.

    1984-01-01

    Acclerated fatigue-life testing of heat-exchanger tubes simplified by technique that substitutes mechanical side load for thermally-generated axisymmetric stress. Load amplitudes adjusted to produce strains equivalent to those produced by anticipated thermal stress.

  3. Stirling Engine With Radial Flow Heat Exchangers

    Science.gov (United States)

    Vitale, N.; Yarr, George

    1993-01-01

    Conflict between thermodynamical and structural requirements resolved. In Stirling engine of new cylindrical configuration, regenerator and acceptor and rejector heat exchangers channel flow of working gas in radial direction. Isotherms in regenerator ideally concentric cylinders, and gradient of temperature across regenerator radial rather than axial. Acceptor and rejector heat exchangers located radially inward and outward of regenerator, respectively. Enables substantial increase in power of engine without corresponding increase in diameter of pressure vessel.

  4. Design concept for vessels and heat exchangers

    International Nuclear Information System (INIS)

    A design concept for vessels and heat exchangers against internal and external loads resulting from normal operation and accident is shown. A definition and explanation of the operating conditions and stress levels are given. A description of the type of analysis (stress, fatigue, deformation, stability, earthquake and vibration) is presented in detail, also including technical guidelines which are used for the vessels and heat exchangers and their individual structure parts. (Author)

  5. Device for supporting flat heat exchange packets for recuperative heat exchange

    International Nuclear Information System (INIS)

    A honeycombed structure of the supporting framework allows to place very closely a great number of adjacent tube-shaped cases which contain the heat exchanger sets connected in parallel. Thus individual components of the heat exchangers are easily accessible fact which is of great advantage for heat exchangers operating in HTRs being subject to high dynamic loads which are due to pressure- and temperature variations. (GL)

  6. Performance Investigation of Plate Type Heat Exchanger (A Case Study)

    OpenAIRE

    Simarpreet Singh; Sanjeev Jakhar

    2014-01-01

    Heat exchanger is a thermodynamic system which is most commonly used in the process industry for exchanging heat energy between the fluids. flowing in the same or opposite direction. It is desired that effectiveness of heat exchanger should remain as large as possible. Heat exchanger's performance may be improved by the addition of fins or corrugations. These investigations include design of plate type heat exchanger, heat transfer enhancement, flow phenomenon and cleanliness ...

  7. Design of common heat exchanger network for batch processes

    International Nuclear Information System (INIS)

    Heat integration of energy streams is very important for the efficient energy recovery in production systems. Pinch technology is a very useful tool for heat integration and maximizing energy efficiency. Creating of heat exchangers network as a common solution for systems in batch mode that will be applicable in all existing time slices is very difficult. This paper suggests a new methodology for design of common heat exchanger network for batch processes. Heat exchanger network designs were created for all determined repeatable and non-repeatable time periods – time slices. They are the basis for creating the common heat exchanger network. The common heat exchanger network as solution, satisfies all heat-transfer needs for each time period and for every existing combination of selected streams in the production process. This methodology use split of some heat exchangers into two or more heat exchange units or heat exchange zones. The reason for that is the multipurpose use of heat exchangers between different pairs of streams in different time periods. Splitting of large heat exchangers would maximize the total heat transfer usage of heat exchange units. Final solution contains heat exchangers with the minimum heat load as well as the minimum need of heat transfer area. The solution is applicable for all determined time periods and all existing stream combinations. - Highlights: •Methodology for design of energy efficient systems in batch processes. •Common Heat Exchanger Network solution based on designs with Pinch technology. •Multipurpose use of heat exchangers in batch processes

  8. Research of heat exchange rate of the pulsating heat pipe

    Directory of Open Access Journals (Sweden)

    Kravets V. Yu.

    2010-02-01

    Full Text Available Given article presents experimental research of heat transfer characteristics of the pulsating heat pipe (PHP which consists of seven coils with 1 mm inner diameter. Water was used as the heat carrier. PHP construction, measuring circuit and research technique are presented. It is shown that under PHP functioning there are two characteristic modes of operation, which can be distinguished by values of thermal resistance. PHP heat exchange features are disclosed.

  9. Heat transfer 1982; Proceedings of the Seventh International Conference, Technische Universitaet Muenchen, Munich, West Germany, September 6-10, 1982. Volume 6 - General papers: Combined heat and mass transfer, particle heat transfer, heat exchangers, industrial heat transfer, heat transfer in energy utilization

    Science.gov (United States)

    Grigull, U.; Hahne, E.; Stephan, K.; Straub, J.

    Laboratory and operational studies of heat transfer (HT) are presented. Such topics as the irreversibility of HT and mass transfer (MT), HT in disperse systems at high temperatures, fixed-bed reactors with submerged tube bundles, HT and MT in a low-speed turbulent boundary layer with condensation, multilayer insulation blankets for spacecraft applications, HT and MT in transpiration-cooled turbine blades, and finite-element analysis of HT in a solid with radiation and ablation are discussed. Contributions are included on the design of shell-and-tube heat exchangers to avoid flow-induced vibration, HT and MT in air-conditioning cooling coils, a friction-factor correlation for the offset strip-fin matrix, convective HT in gas-turbine combustion chambers, thermal-energy storage systems, turbulent buoyant HT in enclosures containing fire sources, a phase-change dry/wet cooling system for power plants, and the effect of secondary flow on HT in solar collector tubes. For individual items see A83-43014 to A83-43024

  10. Phase Change Material Heat Exchanger Life Test

    Science.gov (United States)

    Lillibridge, Sean; Stephan, Ryan

    2009-01-01

    Low Lunar Orbit (LLO) poses unique thermal challenges for the orbiting space craft, particularly regarding the performance of the radiators. The IR environment of the space craft varies drastically from the light side to the dark side of the moon. The result is a situation where a radiator sized for the maximal heat load in the most adverse situation is subject to freezing on the dark side of the orbit. One solution to this problem is to implement Phase Change Material (PCM) Heat Exchangers. PCM Heat Exchangers act as a "thermal capacitor," storing thermal energy when there is too much being produced by the space craft to reject to space, and then feeding that energy back into the thermal loop when conditions are more favorable. Because they do not use an expendable resource, such as the feed water used by sublimators and evaporators, PCM Heat Exchangers are ideal for long duration LLO missions. In order to validate the performance of PCM Heat Exchangers, a life test is being conducted on four n-Pentadecane, carbon filament heat exchangers. Fluid loop performance, repeatability, and measurement of performance degradation over 2500 melt-freeze cycles will be performed.

  11. Heat Exchanger With Internal Pin Elements

    Science.gov (United States)

    Gerstmann, Joseph (Framingham, MA); Hannon, Charles L. (Arlington, MA)

    2004-01-13

    A heat exchanger/heater comprising a tubular member having a fluid inlet end, a fluid outlet end and plurality of pins secured to the interior wall of the tube. Various embodiments additionally comprise a blocking member disposed concentrically inside the pins, such as a core plug or a baffle array. Also disclosed is a vapor generator employing an internally pinned tube, and a fluid-heater/heat-exchanger utilizing an outer jacket tube and fluid-side baffle elements, as well as methods for heating a fluid using an internally pinned tube.

  12. 40 CFR 63.1409 - Heat exchange system provisions.

    Science.gov (United States)

    2010-07-01

    ...where the cooling water enters and exits each heat exchanger or any combination of heat exchangers. (i) For samples taken at the entrance...samples taken at the entrance and exit of each heat exchanger or any combination of heat exchangers,...

  13. 40 CFR 63.104 - Heat exchange system requirements.

    Science.gov (United States)

    2010-07-01

    ...where the cooling water enters and exits each heat exchanger or any combination of heat exchangers. (i) For samples taken at the entrance...samples taken at the entrance and exit of each heat exchanger or any combination of heat exchangers in...

  14. The dry heat exchanger calorimeter system

    International Nuclear Information System (INIS)

    A radiometric isothermal heat flow calorimeter and preconditioner system that uses air instead of water as the heat exchange medium has been developed at Mound. The dry heat exchanger calorimeter is 42 inches high by 18 inches in diameter and the preconditioner is a 22 inch cube, making it extremely compact compared to existing units. The new system is ideally suited for transportable, stand-alone, or glovebox applications. Preliminary tests of the system have produced sample measurements with standard deviations less than 0.25% and sample errors less than 0.50%. These tests have shown that the dry heat exchanger system will yield acceptance data with an accuracy comparable to those of Mound water bath systems now in use. 4 figs., 1 tab

  15. The dry heat exchanger calorimeter system

    International Nuclear Information System (INIS)

    This paper reports on a radiometric isothermal heat flow calorimeter and preconditioner system that uses air instead of water as the heat exchange medium which has been developed for use with nuclear material. The dry heat exchanger calorimeter is 42 in. high by 18 in. in diameter and the preconditioner is a 22 in. cube, making it extremely compact compared to existing units. The new system is ideally suited for transportable, stand-alone, or glovebox applications. Preliminary tests of the system have produced sample measurements with standard deviations less than 0.25% and sample errors less than 0.50%. These tests have shown that the dry heat exchanger system will yield acceptable data with an accuracy comparable to those of Mound water bath systems now in use

  16. Heat exchanger with auxiliary cooling system

    International Nuclear Information System (INIS)

    A heat exchanger with an auxiliary cooling system is described which is capable of cooling a nuclear reactor should the normal cooling mechanism become inoperable. A cooling coil is disposed around vertical heat transfer tubes that carry secondary coolant therethrough and is located in a downward flow of primary coolant that passes in heat transfer relationship with both the cooling coil and the vertical heat transfer tubes. A third coolant is pumped through the cooling coil which absorbs heat from the primary coolant which increases the downward flow of the primary coolant thereby increasing the natural circulation of the primary coolant through the nuclear reactor

  17. Decontamination of Primary Heat Exchanger Heat Transfer Plate in HANARO

    International Nuclear Information System (INIS)

    In HANARO, a multi-purpose research reactor, a 30 MWth open-tank-in-pool type, a plate type primary heat exchanger transfers the reactor core residual heat absorbed by a primary coolant to a secondary coolant. There was a leakage in the gasket of the no. one heat exchanger after about five years of normal operation. The leaking heat transfer plate pack was replaced with a new one and decontaminated. This paper describes the method of decontaminating the radioactivity of the no. 1 heat exchanger used plate pack and the results. A chemical treatment method was applied to the decontamination. This treatment method consists of cleaning the used plate with a hydro jet after properly depositing it in a scale agent

  18. RECITAL SCRUTINY ON TUBE-INTUBE COMPACT HEAT EXCHANGERS

    OpenAIRE

    V.NATARAJAN,; Senthil Kumar, Dr P.

    2011-01-01

    This paper focused on the investigational cram of the recital characteristics of tube-in-tube compact heat exchangers. Experiments are conducted in the compact heat exchangers with R-134a and liquefiedpetroleum gas. The effectiveness of the heat exchangers was calculated using the experiment data and it was found that the effectiveness of heat exchanger-1 is above 75 and heat exchanger-2 is above 84% for R-134a.The effectiveness of heat exchanger-1 is about 60% and heat exchanger-2 is about 8...

  19. Simulation of induction heating process with radiative heat exchange

    Directory of Open Access Journals (Sweden)

    A. Kachel

    2007-05-01

    Full Text Available Purpose: Numerical modelling of induction heating process is a complex issue. It needs analysis of coupled electromagnetic and thermal fields. Calculation models for electromagnetic field analysis as well as thermal field analysis need simplifications. In case of thermal field calculations, correct modelling of radiative heat exchange between the heated charge and inductor’s thermal insulation is essential. Most commercial calculation programs enabling coupled analysis of electromagnetic and thermal fields do not allow taking into consideration radiative heat exchange between calculation model components, which limits thermal calculations only to the charge area. The paper presents a supplementation of the program Flux 2D with radiative heat exchange procedures.Design/methodology/approach: Commercial program Flux 2D designed for coupled electromagnetic and thermal calculation (based on finite element method was supplemented with authors program for radiative heat exchange based on numerical integration of classic equations.Findings: Supplementation EM-T calculations with radiative heat exchange between charge and inductor enables to calculate thermal insulation parameters and increase precision of modelling.Research limitations/implications: Procedures for radiative heat exchange enables calculation of two surfaces (flat or cylindrical with finite dimensions. The surfaces can be displaced relative to each other (charge shorter or longer than thermal insulation of inductor. Material of surfaces is modelled as: flat, diffuse, radiant surfaces absorb energy evenly in the whole spectrum (grey bodies. The whole system is modelled as in a steady thermal state (quasi-steady.Originality/value: Authors program extends Flux 2D features with a possibility for calculating radiative heat transfer. The application of radiative process is possible between all components of the studied model, not only for the boundary conditions.

  20. Numerical Simulation of Passive Residual Heat Removal Heat Exchanger

    International Nuclear Information System (INIS)

    FLUENT software was employed to simulate the temperature-field and flow-field of AP1000 passive residual heat removal heat exchanger (PRHR HX), and investigate its heat-transferring and flow characteristics. Through comparative analysis of the distributions of temperature-field and flow-field in different locations at the same time, and the variations of temperature-field and flow-field in the same location at different time, heat-transferring process and natural convection situation of PRHR HX were understood deeply. It contributes to analyze the natural circulation capacity of PRHR HX, and provides some references for the effective operation of passive residual heat removal system. (authors)

  1. Modeling particle deposition on HVAC heat exchangers

    International Nuclear Information System (INIS)

    Fouling of fin-and-tube heat exchangers by particle deposition leads to diminished effectiveness in supplying ventilation and air conditioning. This paper explores mechanisms that cause particle deposition on heat exchanger surfaces. We present a model that accounts for impaction, diffusion, gravitational settling, and turbulence. Simulation results suggest that some submicron particles deposit in the heat exchanger core, but do not cause significant performance impacts. Particles between 1 and 10(micro)m deposit with probabilities ranging from 1-20% with fin edge impaction representing the dominant mechanism. Particles larger than 10(micro)m deposit by impaction on refrigerant tubes, gravitational settling on fin corrugations, and mechanisms associated with turbulent airflow. The model results agree reasonably well with experimental data, but the deposition of larger particles at high velocities is underpredicted. Geometric factors, such as discontinuities in the fins, are hypothesized to be responsible for the discrepancy

  2. Heat exchanger for coal gasification process

    Science.gov (United States)

    Blasiole, George A. (Greensburg, PA)

    1984-06-19

    This invention provides a heat exchanger, particularly useful for systems requiring cooling of hot particulate solids, such as the separated fines from the product gas of a carbonaceous material gasification system. The invention allows effective cooling of a hot particulate in a particle stream (made up of hot particulate and a gas), using gravity as the motive source of the hot particulate. In a preferred form, the invention substitutes a tube structure for the single wall tube of a heat exchanger. The tube structure comprises a tube with a core disposed within, forming a cavity between the tube and the core, and vanes in the cavity which form a flow path through which the hot particulate falls. The outside of the tube is in contact with the cooling fluid of the heat exchanger.

  3. Heat exchanger containing a component capable of discontinuous movement

    Science.gov (United States)

    Wilson, David Gordon (Winchester, MA)

    2002-01-01

    Regenerative heat exchangers are described for transferring heat between hot and cold fluids. The heat exchangers have seal-leakage rates significantly less than those of conventional regenerative heat exchangers because the matrix is discontinuously moved and is releasably sealed while in a stationary position. Both rotary and modular heat exchangers are described. Also described are methods for transferring heat between a hot and cold fluid using the discontinuous movement of matrices.

  4. NUMERICAL SIMULATION OF VERTICAL GROUND HEAT EXCHANGERS FOR GROUND SOURCE HEAT PUMPS

    OpenAIRE

    Jalaluddin

    2011-01-01

    Abstract: This paper presents the numerical simulation of several types of vertical ground heat exchangers. The ground heat exchangers (GHEs) such as U-tube, double-tube and multi-tube were simulated using the commercial CFD software FLUENT. Water flows through the heat exchangers and exchanges the heat to the ground. The inlet and outlet water temperatures, flow rate, and heat exchange rate are presented. The heat exchange rates in discontinuous short-time period of operation ...

  5. AP600 passive residual heat removal heat exchanger test

    International Nuclear Information System (INIS)

    The AP600 reactor is a pressurized water reactor being designed to utilize a passive residual heat removal (PRHR) heat exchanger as the safety grade means for residual heat removal. The PRHR heat exchanger is utilized during many design basis events and is especially important in mitigating non-loss-of-coolant accidents such as loss of normal feedwater and feedwater line break. The PRHR system transfers decay heat from the reactor coolant system to the containment by heating and boiling the water in the in-containment refueling water storage tank (IRWST). The steam produced transfers heat to the atmosphere by condensing on the inside of the containment shell. The condensate is collected by gutters on the containment shell and is returned to the IRWST, which provides a heat sink for an indefinite amount of time. The PRHR test facility is a prototypical representation of the PRHR heat exchanger with respect to tube material, diameter, pitch, and tube length, such that the gravity-induced flow characteristics in the pool are representative of the design. The main scaling parameter for the pool is the pool volume per tube, which preserves the buoyancy and pool mixing effects. A generalized PRHR boiling correlation was developed using the approach given by Rohsenow such that pressure effects can be induced

  6. Heat exchanger design for desalination plants

    International Nuclear Information System (INIS)

    The Office of Saline Water (OSW) accomplished a very large amount of significant work related to the design and performance of large heat exchanger bundles and enhanced heat transfer surfaces. This work was undertaken to provide basic technical and economic data for the design of distillation plants for the desalination of seawater, and should be of value to other industrial applications as well. The OSW work covers almost every aspect of heat exchanger design, and ranges academic research to data gathering on commercial desalting plants. Exchanger design configurations include multistage flash plant condensers, vertical tube falling film and upflow evaporators, and horizontal tube spray film evaporators. Unfortunately, the data is scattered through a large number of reports of which many are concerned primarily with factors other than heat transfer, and the quality of reporting and the quality of the data are far from consistent. This report catalogues and organizes the heat exchanger data developed by the OSW. Some analysis as to the validity of the data is made and ranges of performance that can be expected are given. Emphasis is placed on the vertical tube, falling film evaporators. A thorough analysis of the large literature file that was surveyed was not possible. No analysis was made of the quality of original data, but apparent data discrepancies are pointed out where such discrepancies happen to be found

  7. Carbon nanotube heat-exchange systems

    Science.gov (United States)

    Hendricks, Terry Joseph (Arvada, CO); Heben, Michael J. (Denver, CO)

    2008-11-11

    A carbon nanotube heat-exchange system (10) and method for producing the same. One embodiment of the carbon nanotube heat-exchange system (10) comprises a microchannel structure (24) having an inlet end (30) and an outlet end (32), the inlet end (30) providing a cooling fluid into the microchannel structure (24) and the outlet end (32) discharging the cooling fluid from the microchannel structure (24). At least one flow path (28) is defined in the microchannel structure (24), fluidically connecting the inlet end (30) to the outlet end (32) of the microchannel structure (24). A carbon nanotube structure (26) is provided in thermal contact with the microchannel structure (24), the carbon nanotube structure (26) receiving heat from the cooling fluid in the microchannel structure (24) and dissipating the heat into an external medium (19).

  8. Comparative analysis of compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    N. Bartel; M. Chen; V.P. Utgikar; X. Sun; I.H. Kim; R. Christensen; P. Sabharwall

    2015-04-01

    A comparative evaluation of alternative compact heat exchanger designs for use as the intermediate heat exchanger in advanced nuclear reactor systems is presented in this article. Candidate heat exchangers investigated included the Printed circuit heat exchanger (PCHE) and offset strip-fin heat exchanger (OSFHE). Both these heat exchangers offer high surface area to volume ratio (a measure of compactness [m2/m3]), high thermal effectiveness, and overall low pressure drop. Helium–helium heat exchanger designs for different heat exchanger types were developed for a 600 MW thermal advanced nuclear reactor. The wavy channel PCHE with a 15° pitch angle was found to offer optimum combination of heat transfer coefficient, compactness and pressure drop as compared to other alternatives. The principles of the comparative analysis presented here will be useful for heat exchanger evaluations in other applications as well.

  9. Modelling Heat Exchangers for Domestic Boilers

    OpenAIRE

    Teixeira, S. F. C. F.; Teixeira, J. C. F.

    2000-01-01

    In the present paper the thermal behaviour of fin-tube heat exchangers is modeled. Particular attention has been given to the plate fins. The heat fluxes in the fins are described using a finite volume technique to discretize the energy equation. The thermal interactions with the water in the tubes and the surrounding air are treated as external boundaries, using appropriate relationships for forced convection in pipes and flat plates. The numerical results are presented in terms of dimension...

  10. Numerical Simulations of Recovery Heat Exchangers.

    Czech Academy of Sciences Publication Activity Database

    Novotný, P.; Vít, T.; Dan?ová, Petra

    Prague : Institute of Thermomechanics AS CR, v. v. i., 2011 - (Fuis, V.), s. 439-442 ISBN 978-80-87012-33-8. [Engineering Mechanics 2011 /17./. Svratka (CZ), 09.05.2011-12.05.2011] Grant ostatní: GA TA ?R(CZ) TA01020313 Institutional research plan: CEZ:AV0Z20760514 Keywords : recovery heat exchanger s * heat recovery * numerical simulations Subject RIV: BJ - Thermodynamics

  11. Heat exchanger and method for its production

    International Nuclear Information System (INIS)

    The patent refers to heat exchangers, preferably to steam generators for nuclear power stations, in which the parallel tubes are fixed to each other by welding to distancing elements. A method is described for the fabrication by a welding machine, so that the number of necessary tests can be reduced drastically. (P.K.)

  12. Tube-in-shell heat exchangers

    International Nuclear Information System (INIS)

    A method is described for repairing a defective tube weld in a heat exchanger. A sleeve is inserted within the tube to bridge the defect, one end of the sleeve being brazed to the tube and the other end bonded to the tube sheet by explosive welding. (author)

  13. Exergo-ecological evaluation of heat exchanger

    Directory of Open Access Journals (Sweden)

    Stanek Wojciech

    2014-01-01

    Full Text Available Thermodynamic optimization of thermal devices requires information about the influence of operational and structural parameters on its behaviour. The interconnections among parameters can be estimated by tools such as CFD, experimental statistic of the deviceetc. Despite precise and comprehensive results obtained by CFD, the time of computations is relatively long. This disadvantage often cannot be accepted in case of optimization as well as online control of thermal devices. As opposed to CFD the neural network or regression is characterized by short computational time, but does not take into account any physical phenomena occurring in the considered process. The CFD model of heat exchanger was built using commercial package Fluent/Ansys. The empirical model of heat exchanger has been assessed by regression and neural networks based on the set of pseudo-measurements generated by the exact CFD model. In the paper, the usage of the developed empirical model of heat exchanger for the minimisation of TEC is presented. The optimisationconcerns operational parameters of heat exchanger. The TEC expresses the cumulative exergy consumption of non-renewable resources. The minimization of the TEC is based on the objective function formulated by Szargut. However, the authors extended the classical TEC by the introduction of the exergy bonus theory proposed by Valero. The TEC objective function fulfils the rules of life cycle analysis because it contains the investment expenditures (measured by the cumulative exergy consumption of non-renewable natural resources, the operation of devices and the final effects of decommissioning the installation.

  14. New plates for different types of plate heat exchangers

    OpenAIRE

    Fernandes, Carla S.; Dias, Ricardo P.; Maia, João M.

    2008-01-01

    The first patent for a plate heat exchanger was granted in 1878 to Albretch Dracke, a German inventor. The commercial embodiment of these equipments has become available in 1923. However, the plate heat exchanger development race began in the 1930’s and these gasketed plate and frame heat exchangers were mainly used as pasteurizers (e.g. for milk and beer). Industrial plate heat exchangers were introduced in the 1950’s and initially they were converted dairy models. Brazed plate heat exch...

  15. Tube-in-shell heat exchangers

    International Nuclear Information System (INIS)

    Tube-in-shell heat exchangers normally comprise a bundle of parallel tubes within a shell container, with a fluid arranged to flow through the tubes in heat exchange with a second fluid flowing through the shell. The tubes are usually end supported by the tube plates that separate the two fluids, and in use the tube attachments to the tube plates and the tube plates can be subject to severe stress by thermal shock and frequent inspection and servicing are required. Where the heat exchangers are immersed in a coolant such as liquid Na such inspection is difficult. In the arrangement described a longitudinally extending central tube is provided incorporating axially spaced cylindrical tube plates to which the opposite ends of the tubes are attached. Within this tube there is a tubular baffle that slidably seals against the wall of the tube between the cylindrical tube plates to define two co-axial flow ducts. These ducts are interconnected at the closed end of the tube by the heat exchange tubes and the baffle comprises inner and outer spaced walls with the interspace containing Ar. The baffle is easily removable and can be withdrawn to enable insertion of equipment for inspecting the wall of the tube and tube attachments and to facilitate plugging of defective tubes. Cylindrical tube plates are believed to be superior for carrying pressure loads and resisting the effects of thermal shock. Some protection against thermal shock can be effected by arranging that the secondary heat exchange fluid is on the tube side, and by providing a thermal baffle to prevent direct impingement of hot primary fluid on to the cylindrical tube plates. The inner wall of the tubular baffle may have flexible expansible region. Some nuclear reactor constructions incorporating such an arrangement are described, including liquid metal reactors. (U.K.)

  16. Fabrication and testing of microchannel heat exchangers

    Science.gov (United States)

    Cuta, Judith M.; Bennett, Wendy D.; McDonald, Carolyn E.; Ravigururajan, T. S.

    1995-09-01

    Micro-channel heat-exchanger test articles were fabricated and performance tested. The heat exchangers are being developed for innovative applications, and have been shown to be capable of handling heat loads of up to 100 W/cm2. The test articles were fabricated to represent two different designs for the micro-channel portion of the heat exchanger. One design consists of 166 micro-channels etched in silicon substrate, and a second design consists of 54 micro-channels machined in copper substrate. The devices were tested in an experimental loop designed for performance testing in single- and two-phase flow with water and R124. Pressure and liquid subcooling can be regulated over the range of interest, and a secondary heat removal loop provides stable loop performance for steady-state tests. The selected operating pressures are approximately 0.344 MPa for distilled water and 0.689 MPa for R124. The temperature ranges are 15.5 to 138 C for distilled water and 15.5 to 46 C for R-124. The mass flow range 7.6 X 10-8 to 7.6 X 10MIN5 kg/min for both distilled water and R124.

  17. Materials development for HTGR heat exchangers

    International Nuclear Information System (INIS)

    Some versions of the HTGR generate high primary coolant gas temperatures (8500 to 9500C) and exchange this heat, through intermediate heat exchangers (IHX's), to a secondary loop for higher temperature process heat applications. Although IHX's for these systems are typically pressure-balanced (low-stress) units, their design involves several challenges, including the potential interactions between structural materials and impurities present in the HTGR primary coolant. Considerable work is required to qualify materials for IHX applications, including detailed mechanical property characterization, determination of environmental influences on performance, provision of welding materials and procedures for producing joints of adequate strength and integrity, and provisions for wear protection. Some of the work currently under way addressing these issues is described

  18. Triple loop heat exchanger for an absorption refrigeration system

    Science.gov (United States)

    Reimann, Robert C. (Lafayette, NY)

    1984-01-01

    A triple loop heat exchanger for an absorption refrigeration system is disclosed. The triple loop heat exchanger comprises portions of a strong solution line for conducting relatively hot, strong solution from a generator to a solution heat exchanger of the absorption refrigeration system, conduit means for conducting relatively cool, weak solution from the solution heat exchanger to the generator, and a bypass system for conducting strong solution from the generator around the strong solution line and around the solution heat exchanger to an absorber of the refrigeration system when strong solution builds up in the generator to an undesirable level. The strong solution line and the conduit means are in heat exchange relationship with each other in the triple loop heat exchanger so that, during normal operation of the refrigeration system, heat is exchanged between the relatively hot, strong solution flowing through the strong solution line and the relatively cool, weak solution flowing through the conduit means. Also, the strong solution line and the bypass system are in heat exchange relationship in the triple loop heat exchanger so that if the normal flow path of relatively hot, strong solution flowing from the generator to an absorber is blocked, then this relatively, hot strong solution which will then be flowing through the bypass system in the triple loop heat exchanger, is brought into heat exchange relationship with any strong solution which may have solidified in the strong solution line in the triple loop heat exchanger to thereby aid in desolidifying any such solidified strong solution.

  19. Heat exchangers with several heat exchanger matrices mounted in a common casing for separately conducted media

    International Nuclear Information System (INIS)

    The heat exchanger is suited for plants with a closed gas cycle such as, e. g., HTR with a helium turbine or drive units for vehicles. It contains heat exchanger matrices running parallel to each other and formed by the folds of a uniformly folded band and by walls covering the saddles of the folds. Two neighbouring matrices each are combined to form a heat exchanger unit and supported between supporting walls. The heat exchanger unit is not firmly connected with these supporting walls and therefore can easily to be inserted or dismounted. For sealing purposes, the fold saddles are contacting the supporting walls because of the high pressure of the meUWIdium, Ior the remaining seals between hp and lp-compartments labyrinth boxes being provided. (UWI)

  20. Thermal induced flow oscillations in heat exchangers for supercritical fluids

    Science.gov (United States)

    Friedly, J. C.; Manganaro, J. L.; Krueger, P. G.

    1972-01-01

    Analytical model has been developed to predict possible unstable behavior in supercritical heat exchangers. From complete model, greatly simplified stability criterion is derived. As result of this criterion, stability of heat exchanger system can be predicted in advance.

  1. Preliminary SP-100/Stirling heat exchanger designs

    International Nuclear Information System (INIS)

    Analytic modeling of several heat exchanger concepts to couple the SP-100 nuclear reactor lithium loop and the Space Stirling Power Convertor (SSPC) was performed. Four 25 kWe SSPC's are used to produce the required 100 kW of electrical power. This design work focused on the interface between a single SSPC and the primary lithium loop. Manifolding to separate and collect the four channel flow was not modeled. This work modeled two separate types of heat exchanger interfaces (conductive coupling and radiative coupling) to explore their relative advantages and disadvantages. The minimum mass design of the conductively coupled concepts was 18 kg or 0.73 kg/kWe for a single 25 kWe convertor. The minimum mass radiatively coupled concept was 41 kg or 1.64 kg/kWe. The direct conduction heat exchanger provides a lighter weight system because of its ability to operate the Stirling convertor evaporator at higher heat fluxes than those attainable by the radiatively coupled systems. Additionally the conductively coupled concepts had relatively small volumes and provide potentially simpler assembly. Their disadvantages were the tight tolerances and material joining problems associated with this refractory to superalloy interface. The advantages of the radiatively coupled designs were the minimal material interface problems

  2. Preliminary thermal sizing of intermediate heat exchanger for NHDD system

    International Nuclear Information System (INIS)

    Nuclear Hydrogen Development and Demonstration (NHDD) system is a Very High Temperature gascooled Reactor (VHTR) coupled with hydrogen production systems. Intermediate heat exchanger transfers heat from the nuclear reactor to the hydrogen production system. This study presented the sensitivity analysis on a preliminary thermal sizing of the intermediate heat exchanger. Printed Circuit Heat Exchanger (PCHE) was selected for the thermal sizing because the printed circuit heat exchanger has the largest compactness among the heat exchanger types. The analysis was performed to estimate the effect of key parameters including the operating condition of the intermediate system, the geometrical factors of the PCHE, and the working fluid of the intermediate system.

  3. Performance Investigation of Plate Type Heat Exchanger (A Case Study

    Directory of Open Access Journals (Sweden)

    Simarpreet Singh

    2014-04-01

    Full Text Available Heat exchanger is a thermodynamic system which is most commonly used in the process industry for exchanging heat energy between the fluids. flowing in the same or opposite direction. It is desired that effectiveness of heat exchanger should remain as large as possible. Heat exchanger's performance may be improved by the addition of fins or corrugations. These investigations include design of plate type heat exchanger, heat transfer enhancement, flow phenomenon and cleanliness factor. In process plants, this type of heat exchange is generally used for recovering heat content of exhaust steam. However, with the flow of fluid for a long period, fouling occurs on the plate surface. Therefore, it is required to investigate the effect of fouling, wherever the heat exchanger is installed. An extensive experimental investigation has been carried out under clean and dirty condition of the said plate type heat exchanger. Heat transfer and flow data were collected in experiment. From collected data heat transfer rate, overall heat transfer coefficient, fouling factor and cleanliness factor were evaluated. Based upon the cleanliness factor data, next date of cleanliness for plate type heat exchanger was predicted. It is felt that the outcome of the present research work may be quite useful for efficient operation of plate type heat exchanger installed in Process plants.

  4. Experimental evaluation of water surface heat exchange

    International Nuclear Information System (INIS)

    An investigation was conducted at Indian Point Power Station to determine the heat exchange rate between a water surface and the atmosphere. Experimental data were obtained using two sets of evaporation pans. One set of pans was located on the Hudson River near the power plant intake structure, to simulate the natural environment, including normal wave action. The other set of pans was placed on shore. The experimental heat transfer values obtained with the on-river pans were found to be considerably higher than values predicted from certain semiempirical formulae and than those obtained with the on-shore testing pans. 5 refs

  5. Selection of materials for heat exchangers

    International Nuclear Information System (INIS)

    This paper provides a frame work for selecting heat exchangers materials especially those used in nuclear power plants. Typical examples of materials selection for heat exchanger tubing of nuclear power plants and condensers are presented. The paper brings out also, the importance of continued intensive R and D in materials in order to enhance the reliability and reduce cost by improving upon the existing materials by minor additions of alloying elements or new materials. The properties of Cr- Mo - alloys with minor additions of W, V, Nb and N are discussed in view of their use at elevated temperatures in the power industry. These alloys were found to provide considerable operation flexibility due to their low expansion coefficient and high thermal conductivity in comparison with the austenitic stainless steels. Also, the Ni base alloy Inconel 617. Could be selected for his excellent combination of creep and hot corrosion resistance up to a temperature of a 50 degree C. 2 figs., 7 tabs

  6. Gentilly-2 moderator heat exchanger repair

    International Nuclear Information System (INIS)

    At the time of an unscheduled outage for a problem with the fuelling machine, an operator noted a sound coming from the inlet moderator heat exchanger 3211-HX1. The noise was reported as a loose object knocking around between the tubesheet and the inlet piping. Upon separating the tubesheet from the Heat Exchanger, the tubesheet overlay and tubes extensions were found severely damaged. The repair work would be required to be performed insitu in a highly contaminated environment during end of the year where obtaining manpower resources were difficult. The team work between Hydro-Quebec and Babcock and Wilcox Canada Nuclear Services and use of non-conventional tooling was a big part of the success for this project. The repair started on December 21st, 2007 and the vessel was turned over to HQ on January 24, 2008. (author)

  7. Heat Exchanger for Motor Vehicle Cooling System

    OpenAIRE

    Thuliez, Jean-Luc; Chevroulet, Tristan; Stoll, Daniel

    1997-01-01

    Heat exchanger for a motor vehicle cooling system including a sleeve-like meter hermetically mounted on, and surrounding, a hollow tubular chassis meter of the vehicle. The sleeve is provided with inlets and outlets communicating with the space between the sleeve and the chassis meter and vehicle coolant flows through the inlet and outlet. Air, flowing over the outside surface of the sleeve and the inside surface of the chassis meter, cools the vehicle coolant. SMH - MCC Smart, car concepts (...

  8. Plating Patches On Heat-Exchanger Jackets

    Science.gov (United States)

    Loureiro, Henry; Kubik, Frank

    1989-01-01

    Permanent repairs made without welding. Technique used to repair nickel-alloy nozzle jacket of Space Shuttle main engine. Applicable to other metal heat-exchanger jackets with similar configurations. Does not require welding, brazing, soldering, or other operations involving high temperatures and consequent damage to surrounding areas. Portion of jacket around damaged area removed by grinding and polishing out to edges adjacent to tube/jacket braze bonds. Spaces between tubes filled with wax preventing contamination of spaces during subsequent plating.

  9. Optimal Operation of Parallel Heat Exchanger Networks

    OpenAIRE

    Aaltvedt, Stian

    2013-01-01

    Optimal operation of parallel heat exchanger networks is desirable for many processesaiming to achieve increased supply and potentially higher profit. The aimis to control the final outlet temperature within a certain range, which in manycases includes a trade off between maximum outlet temperature and minimumoperating costs.The goal with this study has been to investigate the performance of the selfoptimizingJäschke temperature control variable, proposed by post doctor JohannesJäsc...

  10. Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array

    Energy Technology Data Exchange (ETDEWEB)

    Agyenim, Francis; Smyth, Mervyn [Centre for Sustainable Technologies, Ulster University, Newtownabbey BT37 0QB (United Kingdom); Eames, Philip [Electronic and Electrical Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom)

    2010-01-15

    An experimental energy storage system has been designed using an horizontal shell and tube heat exchanger incorporating a medium temperature phase change material (PCM) with a melting point of 117.7 C. Two experimental configurations consisting of a control unit with one heat transfer tube and a multitube unit with four heat transfer tubes were studied. The thermal characteristics in the systems have been analysed using isothermal contour plots and temperature time curves. Temperature gradients along the three directions of the shell and tube systems; axial, radial and angular directions have been analysed and compared. The phase change in the multitube system was dominated by the effect of convective heat transfer compared to conductive heat transfer in the control system. The temperature gradient in the PCM during phase change was greatest in the radial direction for both the control and multitube systems. The temperature gradients recorded in the axial direction for the control and multitube systems during the change of phase were respectively 2.5 and 3.5% that of the radial direction, indicating essentially a two-dimensional heat transfer in the PCM. The onset of natural convection through the formation of multiple convective cells in the multitube system significantly altered the shape of the solid liquid interface fluid flow and indicates the requirement for an in-depth study of multitube arrangements. (author)

  11. CHARACTERIZATION OF HEAT TRANSFER AND EVAPORATIVE COOLING OF HEAT EXCHANGERS FOR SORPTION BASED SOLAR COOLING APPLICATIONS

    OpenAIRE

    Gonza?lez Morales, Ce?sar Augusto

    2013-01-01

    The content of this Master thesis is the characterization of three different cross unmixed flow heat exchangers. All of the heat exchangers have different inner geometries and dimensions. In order to perform the characterization of these heat exchangers, measurements of heat transfer were done under different conditions: five different temperatures at the inlet of the sorption side, different mass flow for both inlet sides of the heat exchangers.The heat transfer measurements were done with a...

  12. Fabrication experiments for large helix heat exchangers

    International Nuclear Information System (INIS)

    The helical tube has gained increasing attention as a heat transfer element for various kinds of heat exchangers over the last decade. Regardless of reactor type and heat transport medium, nuclear steam generators of the helix type are now in operation, installlation, fabrication or in the project phase. As a rule, projects are based on the extrapolation of existing technologies. In the particlular case of steam generators for HTGR power stations, however, existing experience is with steam generators of up to about 2 m diameter whereas several projects involve units more than twice as large. For this reason it was felt that a fabrication experiment was necessary in order to verify the feasibility of modern steam generator designs. A test rig was erected in the SULZER steam generator shops at Mantes, France, and skilled personnel and conventional production tools were employed in conducting experiments relating to the coiling, handling and threading of large helices. (Auth.)

  13. Expanded microchannel heat exchanger: design, fabrication and preliminary experimental test

    CERN Document Server

    Denkenberger, David C; Pearce, Joshua M; Zhai, John; 10.1177/0957650912442781

    2012-01-01

    This paper first reviews non-traditional heat exchanger geometry, laser welding, practical issues with microchannel heat exchangers, and high effectiveness heat exchangers. Existing microchannel heat exchangers have low material costs, but high manufacturing costs. This paper presents a new expanded microchannel heat exchanger design and accompanying continuous manufacturing technique for potential low-cost production. Polymer heat exchangers have the potential for high effectiveness. The paper discusses one possible joining method - a new type of laser welding named "forward conduction welding," used to fabricate the prototype. The expanded heat exchanger has the potential to have counter-flow, cross-flow, or parallel-flow configurations, be used for all types of fluids, and be made of polymers, metals, or polymer-ceramic precursors. The cost and ineffectiveness reduction may be an order of magnitude or more, saving a large fraction of primary energy. The measured effectiveness of the prototype with 28 micro...

  14. Heat Exchanger Design for Solar Gas-Turbine Power Plant

    OpenAIRE

    Yakah, Noah

    2012-01-01

    The aim of this project is to select appropriate heat exchangers out of available gas-gas heat exchangers for used in a proposed power plant. The heat exchangers are to be used in the power plant for the purposes of waste heat recovery, recuperation and intercooling.In selecting an optimum heat exchanger for use, the PCHE was identified as the best candidate for waste heat recovery and recuperation. In order to ascertain the viability of this assertion the PCHE was designed and a 1D modeling ...

  15. Microchannel Heat Exchangers with Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y.; Ohadi, M.M.; Radermacher, R.

    2001-09-15

    The objective of the present study was to determine the performance of CO{sub 2} microchannel evaporators and gas coolers in operational conditions representing those of residential heat pumps. A set of breadboard prototype microchannel evaporators and gas coolers was developed and tested. The refrigerant in the heat exchangers followed a counter cross-flow path with respect to the airflow direction. The test conditions corresponded to the typical operating conditions of residential heat pumps. In addition, a second set of commercial microchannel evaporators and gas coolers was tested for a less comprehensive range of operating conditions. The test results were reduced and a comprehensive data analysis, including comparison with the previous studies in this field, was performed. Capacity and pressure drop of the evaporator and gas cooler for the range of parameters studied were analyzed and are documented in this report. A gas cooler performance prediction model based on non-dimensional parameters was also developed and results are discussed as well. In addition, in the present study, experiments were conducted to evaluate capacities and pressure drops for sub-critical CO{sub 2} flow boiling and transcritical CO{sub 2} gas cooling in microchannel heat exchangers. An extensive review of the literature failed to indicate any previous systematic study in this area, suggesting a lack of fundamental understanding of the phenomena and a lack of comprehensive data that would quantify the performance potential of CO{sub 2} microchannel heat exchangers for the application at hand. All experimental tests were successfully conducted with an energy balance within {+-}3%. The only exceptions to this were experiments at very low saturation temperatures (-23 C), where energy balances were as high as 10%. In the case of evaporators, it was found that a lower saturation temperature (especially when moisture condensation occurs) improves the overall heat transfer coefficient significantly. However, under such conditions, air side pressure drop also increases when moisture condensation occurs. An increase in airflow rate also increases the overall heat transfer coefficient. Air side pressure drop mainly depends on airflow rate. For the gas cooler, a significant portion of the heat transfer occurred in the first heat exchanger module on the refrigerant inlet side. The temperature and pressure of CO{sub 2} significantly affect the heat transfer and fluid flow characteristics due to some important properties (such as specific heat, density, and viscosity). In the transcritical region, performance of CO{sub 2} strongly depends on the operating temperature and pressure. Semi-empirical models were developed for predictions of CO{sub 2} evaporator and gas cooler system capacities. The evaporator model introduced two new factors to account for the effects of air-side moisture condensate and refrigerant outlet superheat. The model agreed with the experimental results within {+-}13%. The gas cooler model, based on non-dimensional parameters, successfully predicted the experimental results within {+-}20%. Recommendations for future work on this project include redesigning headers and/or introducing flow mixers to avoid flow mal-distribution problems, devising new defrosting techniques, and improving numerical models. These recommendations are described in more detail at the end of this report.

  16. AUTOMATIC EVOLUTION OF HEAT EXCHANGER NETWORKS WITH SIMULTANEOUS HEAT EXCHANGER DESIGN

    Scientific Electronic Library Online (English)

    F.S., LIPORACE; F.L.P., PESSOA; E.M., QUEIROZ.

    1999-03-01

    Full Text Available Recently, a new software (AtHENS) that automatically synthesizes a heat exchanger network with minima consumption of utilities was developed. This work deals with the next step, which represents the evolution of the initial network. Hence, new procedures to identify and break loops are incorporated, [...] for which a new algorithm is proposed. Also, a heat exchanger design procedure which uses the available pressure drop to determine the film coefficient on the tube side and shell side is added, providing the utilization of more realistic heat exchangers in the network during its optimization. Results obtained from a case study point to the possibility of equipment design having a strong influence on the network synthesis.

  17. PENGARUH TEBAL ISOLASI TERMAL TERHADAP EFEKTIVITAS PLATE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Ekadewi Anggraini Handoyo

    2000-01-01

    Full Text Available In a heat exchanger, there is heat transferred either from the surrounding or to the surrounding, which is not expected. A thermal insulator is used to reduce this heat transfer. The effectiveness of a heat exchanger will increase if the heat loss to surrounding can be reduced. Theoretically, the thicker the insulator the smaller the heat loss in a plate heat exchanger. A research is carried on to study the effect of an insulator thickness on heat exchanger effectiveness. The insulators used are glasswool and rockwool. It turns out that the effectiveness is increasing until a maximum point, and then decreasing when the thickness of the insulator is increasing. Abstract in Bahasa Indonesia : Dalam suatu heat exchanger selalu terjadi perpindahan panas ke atau dari lingkungan yang tidak diharapkan. Untuk mengurangi perpindahan panas ini digunakan isolator termal. Efektivitas heat exchanger akan meningkat jika panas yang hilang ke atau dari lingkungan dapat dikurangi. Secara teoritis untuk heat exchanger berbentuk kotak semakin tebal isolator termal yang digunakan semakin kecil panas mengalir ke atau dari lingkungan. Dalam penelitian ini dicari pengaruh ketebalan isolator termal terhadap efektivitas suatu plate heat exchanger. Percobaan dilakukan untuk 2 jenis isolator, yaitu glasswool dan rockwool. Hasil yang didapat adalah efektivitas akan meningkat sampai harga tertentu dan kemudian akan berkurang dengan penambahan ketebalan isolator termal. Kata kunci: isolator termal, efektivitas, plate heat exchanger.

  18. Heat Exchanger Anchors for Thermo-active Tunnels

    OpenAIRE

    Mimouni, Thomas; Dupray, Fabrice; Minon, Sophie; Laloui, Lyesse

    2013-01-01

    Shallow geothermal power represents an important energy resource for the heating and cooling of the buildings. Due to relatively low temperature levels encountered at shallow depths in the soil, between 10°C and 20°C, heat pumps are required to process the extracted heat, forming the so called ground source heat pump system. Different types of heat exchangers with the ground were developed in order to optimize the heat exchanges, from simple geothermal loops grouted in boreholes reaching dept...

  19. Characteristics of heat flow in recuperative heat exchangers

    Directory of Open Access Journals (Sweden)

    Lalovi? Milisav

    2005-01-01

    Full Text Available A simplified model of heat flow in cross-flow tube recuperative heat exchangers (recuperators was presented in this paper. One of the purposes of this investigation was to analyze changes in the values of some parameters of heat transfer in recuperators during combustion air preheating. The logarithmic mean temperature (Atm and overall heat transfer coefficient (U, are two basic parameters of heat flow, while the total heated area surface (A is assumed to be constant. The results, presented as graphs and in the form of mathematical expressions, were obtained by analytical methods and using experimental data. The conditions of gaseous fuel combustions were defined by the heat value of gaseous fuel Qd = 9263.894 J.m-3, excess air ratio ?= 1.10, content of oxygen in combustion air ?(O2 = 26%Vol, the preheating temperature of combustion air (cold fluid outlet temperature tco = 100-500°C, the inlet temperature of combustion products (hot fluid inlet temperature thi = 600-1100°C.

  20. Auxiliary heat-exchanger flow-distribution test

    International Nuclear Information System (INIS)

    The Auxiliary Heat Exchanger Flow Distribution Test was the first part of a test program to develop a water-cooled (tube-side), compact heat exchanger for removing heat from the circulating gas in a High-Temperature Gas-Cooled Reactor (HTGR). The function of this heat exchanger is to provide emergency cooldown for the HTGR. It is designed to operate over a wide range of helium or helium mixture conditions from depressurized to pressurized reactor operations

  1. Heat transfer analysis of flat and louvered fin-and-tube heat exchangers using CFD

    OpenAIRE

    Carija, Z.; Frankovic, B.

    2008-01-01

    This paper analyzes the fluid flow and heat exchange on the air side of a multi-row fin-and-tube heat exchanger. A comparison is given between fin-and-tube heat exchanger characteristics with flat and louvered fins in a wider range of operating conditions defined by Reynolds number (based on fin spacing and air frontal velocities). The detailed representation of calculated data for the louvered heat exchanger shows significantly better heat transfer characteristics and a ...

  2. Design of a liquid metals heat exchanger

    International Nuclear Information System (INIS)

    The method that has been used in this design is that of the summation of the partial resistances to the heat transference, permitting to obtain the value of the total coefficient of heat transfer which will be equal to the reciprocal of the summation of all the resistances. The obtained exchanger is of tubes and rod type shield with the primary sodium flowing through the tubes and the secondary sodium flowing in counter-current through the shield. The shield has a nominal diameter of 6 inches and the bundle of tubes is formed by 31 tubes with a nominal diameter of 1/2 inch. The shield as well as the tubes are of stainless steel. The total heat transfer area is of 7.299 square meters, and the effective length of heat transfer is of 3.519 meters. After sizing the interchanger it was proceeded to simulate its functioning through a computer program in which the effective length of heat transfer was divided in 150 points in such a way that according to the integration of the distinct parameters along these points a comparison can finally be made between the design values and those of the simulation, which show a concordance. (author)

  3. Characterization of various losses in a cryogenic counterflow heat exchanger

    Science.gov (United States)

    Aminuddin, Mohammad; Zubair, Syed M.

    2014-11-01

    A detailed assessment of irreversibility, predominantly heat in-leak and axial wall conduction, is essential in accurately predicting the performance of high effectiveness heat exchangers employed in cryogenic applications. Integration into a refrigeration system as well requires consideration of parasitic heat loss by conduction from exchanger cold end to the adjacent components. Governing equations incorporating these effects in a counterflow exchanger are solved numerically and the model predictions evaluated for heat exchanger ineffectiveness and heat loss by conduction. The optimum performance mandates minimization of both. Although ineffectiveness decreases at higher longitudinal conduction, cold end loss increases with deterioration of the overall performance. Utilizing lower heat capacity rate hot fluid, nevertheless, reduces the cold end loss. Heat in-leak is relatively high with concurrent consideration of axial wall conduction and has adverse consequence on heat exchanger effectiveness. Analysis of the net heat transferred to lower stages of refrigeration reveals a critical NTU.

  4. Aerodynamics of heat exchangers for high-altitude aircraft

    Science.gov (United States)

    Drela, Mark

    1996-01-01

    Reduction of convective beat transfer with altitude dictates unusually large beat exchangers for piston- engined high-altitude aircraft The relatively large aircraft drag fraction associated with cooling at high altitudes makes the efficient design of the entire heat exchanger installation an essential part of the aircraft's aerodynamic design. The parameters that directly influence cooling drag are developed in the context of high-altitude flight Candidate wing airfoils that incorporate heat exchangers are examined. Such integrated wing-airfoil/heat-exchanger installations appear to be attractive alternatives to isolated heat.exchanger installations. Examples are drawn from integrated installations on existing or planned high-altitude aircraft.

  5. Heat exchange tube acoustic excitation response analysis

    International Nuclear Information System (INIS)

    In the present paper, heat exchange tube resistance to an acoustic field, is studied particularly in the case where the tubes are to be located either at the suction or discharge end of a compressor or upstream from a sonic relief valve or even mounted between these two elements. The aim is to estimate the stress levels involved with a view to arriving at a tube lifetime assessment, from which could be derived a preliminary design calculation method to be used by the design engineering teams at preliminary project stage

  6. Fluid dynamical considerations on heat exchanger networks

    Scientific Electronic Library Online (English)

    A. J. M., Vieira; F. L. P., Pessoa; E. M., Queiroz.

    2000-03-01

    Full Text Available The synthesis and analysis of heat exchanger networks are issues of great industrial interest due to the possibilities of decreasing plant costs, through the reduction of the utilities consumption and/or the number of equipments, in a grassroot design or retrofitting an existent network. The present [...] paper explores a new design algorithm based on the Total Annual Cost (TAC) optimization for a thermal equipment, with mean tubeside and shellside flow velocities constraints, studying also the influence of pumping cost in the network’s final cost.

  7. Finned heat exchanger. Ib. General and basic aspects

    International Nuclear Information System (INIS)

    This paper is a review of the main literature studies about the finned heat exchanger modelling and simulation. Finned heat exchangers are used in cryogenic industry, nuclear industry, food industry, medicine, etc.. The aspects concerning the air circulation through the heat exchanger component tubes are studied, as well as those involved in the thermal transfer from technological fluid to wall or from fin to air. A particular attention is devoted to the physical and mathematical complete models of finned heat exchangers, as well as to the criterial relationship for the calculation of the partial heat transfer to air (?2), fin efficiency (?a) and friction coefficient (f). Details are also given about the influence of the thermal contact resistance on the finned heat exchanger performance. This study is a useful tool for a correct technological sizing of this type of heat exchangers. (authors)

  8. Simulation Studies on A Cross Flow Plate Fin Heat Exchanger

    Directory of Open Access Journals (Sweden)

    M. Thirumarimurugan

    2008-01-01

    Full Text Available Compact heat exchangers which were initially developed for the aerospace industries in the1940s have been considerably improved in the past few years. The main reasons for the goodperformance of compact heat exchangers are their special design which includes turbulent which inturn use high heat transfer coefficient and resists fouling, and maximum temperature driving forcebetween the hot and cold fluids. Numerous types use special enhancement techniques to achieve therequired heat transfer in smaller plot areas and, in many cases, less initial investment. One such type ofcompact heat exchanger is the Plate-fin heat exchanger. The complexity of compact heat exchangerdesign equations results from the exchangers unique ability to transfer heat between multiple processstreams and a wide array of possible flow configurations. This paper presents the performanceevaluation of cross flow plate fin heat exchanger with several different Gas-Liquid systems.Experimental results such as exchanger effectiveness, overall heat transfer coefficients were calculatedfor the flow systems of Cross flow Heat Exchangers. A steady state model for the outlet temperature ofboth the cold and hot fluid and overall heat transfer coefficient of a plate-fin cross flow heat exchangerwas developed and simulated using MATLAB, which was verified with the experiments conducted.

  9. Fouling and corrosion of freshwater heat exchangers

    International Nuclear Information System (INIS)

    Fouling in freshwater heat exchangers (HX) costs the Canadian nuclear power industry millions of dollars annually in replacement energy and capital equipment. The main reasons are loss of heat transfer and corrosion. Underdeposit pitting is the predominant corrosion mechanism. Erosion corrosion has also been observed. Failure analyses, field studies, and laboratory research have provided us with information to help explain the reasons for reduced performance. Newly installed HX tubing immediately becomes colonized with a complex community of bacteria in a slimey organic matrix. The biofilm itself produces corrosive species and in addition it promotes the attachment of sediment particles and the deposition of calcareous material. The result is a thick, adherent deposit which creates crevices, concentrates aggressive species and alters the system's hydrodynamics

  10. New waste heat district heating system with combined heat and power based on absorption heat exchange cycle in China

    International Nuclear Information System (INIS)

    A new waste heat district heating system with combined heat and power based on absorption heat exchange cycle (DHAC) was developed to increase the heating capacity of combined heat and power (CHP) through waste heat recovery, and enhance heat transmission capacity of the existing primary side district heating network through decreasing return water temperature by new type absorption heat exchanger (AHE). The DHAC system and a conventional district heating system based on CHP (CDH) were analyzed in terms of both thermodynamics and economics. Compared to CDH, the DHAC increased heating capacity by 31% and increased heat transmission capacity of the existing primary side district heating network by 75%. The results showed that the exergetic efficiency of DHAC was 10.41% higher and the product exergy monetary cost was 36.6¥/GJ less than a CHD. DHAC is an effective way to increase thermal utilization factor of CHP, and to reduce district heating cost. - Highlights: ? Absorption heat pumps are used to recover waste heat in CHP. ? Absorption heat exchanger can reduce exergy loss in the heat transfer process. ? New waste heat heating system (DHAC) can increase heating capacity of CHP by 31%. ? DHAC can enhance heat transmission capacity of the primary pipe network by 75%. ? DHAC system has the higher exergetic efficiency and the better economic benefit.

  11. Entropy resistance minimization: An alternative method for heat exchanger analyses

    International Nuclear Information System (INIS)

    In this paper, the concept of entropy resistance is proposed based on the entropy generation analyses of heat transfer processes. It is shown that smaller entropy resistance leads to larger heat transfer rate with fixed thermodynamic force difference and smaller thermodynamic force difference with fixed heat transfer rate, respectively. For the discussed two-stream heat exchangers in which the heat transfer rates are not given and the three-stream heat exchanger with prescribed heat capacity flow rates and inlet temperatures of the streams, smaller entropy resistance leads to larger heat transfer rate. For the two-stream heat exchangers with fixed heat transfer rate, smaller entropy resistance leads to larger effectiveness. Furthermore, it is shown that smaller values of the concepts of entropy generation numbers and modified entropy generation number do not always correspond to better performance of the discussed heat exchangers. - Highlights: • The concept of entropy resistance is defined for heat exchangers. • The concepts based on entropy generation are used to analyze heat exchangers. • Smaller entropy resistance leads to better performance of heat exchangers. • The applicability of entropy generation minimization is conditional

  12. Investigation of Brazed Plate Heat Exchangers With Variable Chevron Angles

    OpenAIRE

    Muthuraman, S.

    2013-01-01

    - Experiments to measure the condensation heat transfer coefficient and the pressure drop in brazed plate heat exchangers (BPHEs) were performed with the refrigerants R410A and R22. Brazed plate heat exchangers with different chevron angles of 45°, 35°, and 20° were used. Varying the mass flux, the condensation temperature, and the vapor quality of the refrigerant, we measured the condensation heat transfer coefficient and the pressure drops. Both the heat transfer coefficient and the pres...

  13. Condensation in horizontal heat exchanger tubes

    International Nuclear Information System (INIS)

    Many innovative reactor concepts for Generation III nuclear power plants use passive safety equipment for residual heat removal. These systems use two phase natural circulation. Heat transfer to the coolant results in a density difference providing the driving head for the required mass flow. By balancing the pressure drop the system finds its operational mode. Therefore the systems depend on a strong link between heat transfer and pressure drop determining the mass flow through the system. In order to be able to analyze these kind of systems with the help of state of the art computer codes the implemented numerical models for heat transfer, pressure drop or two phase flow structure must be able to predict the system performance in a wide parameter range. Goal of the program is to optimize the numerical models and therefore the performance of computer codes analyzing passive systems. Within the project the heat transfer capacity of a heat exchanger tube will be investigated. Therefore the tube will be equipped with detectors, both temperature and pressure, in several directions perpendicular to the tube axis to be able to resolve the angular heat transfer. In parallel the flow structure of a two phase flow inside and along the tube will be detected with the help of x-ray tomography. The water cooling outside of the tube will be realized by forced convection. It will be possible to combine the flow structure measurement with an angular resolved heat transfer for a wide angular resolved heat transfer for a wide parameter range. The test rig is set up at the TOPLFOW facility at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), so that it will be possible to vary the pressure between 5 and 70 bar. The steam mass content will be varied between 0 and 100 percent. The results will be compared to the large scaled Emergency Condenser Tests performed at the INKA test facility in Karlstein (Germany). The paper will explain the test setup and the status of the project will be presented. (authors)

  14. Bank of heat exchangers intended for liquid cooling or heating

    International Nuclear Information System (INIS)

    The invention concerns the heat exchangers cooling a significant volume of water, by straight natural air draught, such as the towers or the draught ducts of dry type air coolers. In a compact form, they enable water cooling problems to be solved in certain industrial installations such as isotope separation plants. The design of this bank of exchangers is also such that its cost is considerably diminished in relation to that of conventional banks. To this effect, this bank is composed of one or several rows of thin flexible plastic pockets forming as many water or other liquid sheets, connected to intake and discharge collectors and arranged one after the other and separated by air flow gaps. These pockets are suspended from one of their ends to hangers fixed to the assembly frame whilst restrictors prevent the pockets from swelling so avoiding any contact between them in order to maintain the air circulation gaps between them

  15. Finned heat exchangers. Ia. General and basic aspects

    International Nuclear Information System (INIS)

    This paper is a review of the main literature studies about the finned heat exchanger modelling and simulation. Finned heat exchangers are used in cryogenic industry, nuclear industry, food industry, medicine, etc. The aspects concerning the air circulation through the heat exchanger component tubes are studied, as well as those involved in the thermal transfer from technological fluid to wall or from fin to air. A particular attention is devoted to the physical and mathematical complete models of finned heat exchangers, as well as to the criterial relationship for the calculation of the partial thermal transfer to air, ?2, fin efficiency, ?a and friction coefficient, f. Details are also given about the influence of the thermal contact resistance on the finned heat exchanger performance. This study is a useful tool for a correct technological sizing of this heat exchanger type. (authors)

  16. Performance of multiple mini-tube heat exchangers as an internal heat exchanger of a vapor-injection cycle heat pump

    Science.gov (United States)

    Jang, Jin Yong; Jeong, Ji Hwan

    2015-05-01

    A multiple mini-tube (MMT) heat exchanger was considered as an internal heat exchanger of vapor-injection cycle heat pump. Heat transfer and pressure drop in multiple mini-tube heat exchangers were numerically and experimentally investigated. Results show that the best performance of the MMT heat exchanger can be obtained when the intermediate-pressure two-phase refrigerant is supplied to the shell-side and this refrigerant reaches a saturated vapor state at the exit of the heat exchanger.

  17. Polymer spiral film gas-liquid heat exchanger for waste heat recovery in exhaust gases

    OpenAIRE

    Breton, Antoine

    2012-01-01

    In this master thesis report the development of an innovative spiral heat exchanger based on polymer materials is described. Building prototypes, erection of a test bench and firsts tests of the heat exchanger are presented. The heat exchanger prototype survived all tests especially several days in contact with aggressive gases. A facility integrating a Diesel exhaust gases production has been developed to test this heat exchanger design. Performance results obtained during the tes...

  18. Heat transfer entropy resistance for the analyses of two-stream heat exchangers and two-stream heat exchanger networks

    International Nuclear Information System (INIS)

    The entropy generation minimization method is often used to analyze heat transfer processes from the thermodynamic viewpoint. In this paper, we analyze common heat transfer processes with the concept of entropy generation, and propose the concept of heat transfer entropy resistance. It is found that smaller heat transfer entropy resistance leads to smaller equivalent thermodynamic force difference with prescribed heat transfer rate and larger heat transfer rate with prescribed equivalent thermodynamic force difference. With the concept of heat transfer entropy resistance, the performance of two-stream heat exchangers (THEs) and two-stream heat exchanger networks (THENs) is analyzed. For the cases discussed in this paper, it is found that smaller heat transfer entropy resistance always leads to better heat transfer performance for THEs and THENs, while smaller values of the entropy generation, entropy generation numbers and revised entropy generation number do not always. -- Highlights: • The concept of entropy resistance is defined. • The minimum entropy resistance principle is developed. • Smaller entropy resistance leads to better heat transfer

  19. Analysis of supercritical carbon dioxide heat exchangers in cooling process

    OpenAIRE

    Chen, Yang; Lundqvist, Per

    2006-01-01

    Carbon dioxide transcritical cycles have become more and more investigated during the last decade. For all systems operating with such a cycle, there will be at least one heat exchanger to either heat or cool the supercritical carbon dioxide. Unlike in the sub-critical region, the supercritical carbon dioxide’s thermophysical properties will have sharp variations in the region close to its critical point. This variation has a significant influence on the shape of the heat exchanger’s temp...

  20. Turbulence Model Comparison for Compact Plate Heat Exchanger Design Application.

    OpenAIRE

    Vitillo, F.; Cachon, L.; Millan, P; Reulet, P.; Laroche, E.

    2014-01-01

    In the framework of the Gas-Power Conversion System for the Advanced Sodium Technological Reactor for Industrial Demonstration (ASTRID) project design, works done at CEA are focused on the design of the sodium-gas heat exchanger. Compact plate heat exchangers are indicated as the most suitable technology for such applications. An innovative compact heat exchanger geometry is proposed in this paper: its innovationconsists increatinga 3D mixing flow. The proposed geometry has also very good mec...

  1. Heat exchanger development at Reaction Engines Ltd.

    Science.gov (United States)

    Varvill, Richard

    2010-05-01

    The SABRE engine for SKYLON has a sophisticated thermodynamic cycle with heat transfer between the fluid streams. The intake airflow is cooled in an efficient counterflow precooler, consisting of many thousand small bore thin wall tubes. Precooler manufacturing technology has been under investigation at REL for a number of years with the result that flightweight matrix modules can now be produced. A major difficulty with cooling the airflow to sub-zero temperatures at low altitude is the problem of frost formation. Frost control technology has been developed which enables steady state operation. The helium loop requires a top cycle heat exchanger (HX3) to deliver a constant inlet temperature to the main turbine. This is constructed in silicon carbide and the feasibility of manufacturing various matrix geometries has been investigated along with suitable joining techniques. A demonstration precooler will be made to run in front of a Viper jet engine at REL's B9 test facility in 2011. This precooler will incorporate full frost control and be built from full size SABRE engine modules. The facility will incorporate a high pressure helium loop that rejects the absorbed heat to a bath of liquid nitrogen.

  2. Liquid-Liquid Heat Exchanger With Zero Interpath Leakage Project

    National Aeronautics and Space Administration — Future manned spacecraft will require thermal management systems that effectively and safely control the temperature in inhabited modules. Interface heat exchangers...

  3. Analysis of fabrication process for AP1000 passive residual heat removal heat exchanger

    International Nuclear Information System (INIS)

    This paper introduces the design parameters of the passive residual heat removal heat exchanger for American advanced passive pressurized water reactor (AP1000), describes the fabrication process for the head, tubesheet, heat exchange tube, corrugated plate and support frame assembly of the heat exchanger, mainly in terms of material, forging, welding, and heat treatment, and also analyzes the crucial steps for the support frame assembling, tubesheet plate welding, tube penetration welding of C tube bundle, closure/head welding, heat treatment, hydraulic (pressure) test, and etc. in the process of heat exchanger assembling. (author)

  4. Experimental study of passive residual heat removal system with air cooled heat exchanger

    International Nuclear Information System (INIS)

    The objective of this work is to investigate the heat removal capability of the passive Residual heat removal(RHR) heat exchanger in the advanced PWR system. Two test models were made to simulate the RHR heat exchanger. The one is the single bundle test model which consisted of a finned tubular heat exchanger unit. The other is the multi-bundle test model which has the finned tubular heat exchanger consisting of ten bundles of tubular units. The maximum heat removal capabilities of each model were investigated. The effects of chimney and elevation were observed

  5. A new ejector heat exchanger based on an ejector heat pump and a water-to-water heat exchanger

    International Nuclear Information System (INIS)

    Highlights: • EHE is based on the reverse Carnot cycle and current heat transfer mechanisms. • EHE can decrease the return water temperature in the PHN to 35 °C. • EHE can increase the heating capacity of the existed PHN by approximately 43%. • The return water temperature in the PHN is much lower than that in the SHN. • EHE has a simpler structure, lower manufacture cost, and better regulation characteristics. - Abstract: As urban construction has been developing rapidly in China, urban heating load has been increasing continually. Heating capacity of the existed primary heating network (PHN) cannot meet district heating requirements of most metropolises in northern China. A new type of ejector heat exchanger (EHE) based on an ejector heat pump and a water-to-water heat exchanger (WWHE) was presented to increase the heating capacity of the existed PHN, and the EHE was also analyzed in terms of laws of thermodynamics. A new parameter, the exergy distribution ratio (EDR), is introduced, which is adopted to analyze regulation characteristics of the EHE. We find that the EHE shows better performance when EDR ranges from 44% to 63%. EHE can decrease the temperature of return water in the PHN to 35 °C, therefore, this can increase the heating capacity of existed PHN by about 43%. The return water with lower temperature in the PHN could recover more low-grade waste heat in industrial systems. Because of its smaller volume and lower investment, EHEs could be applied more appropriately in district heating systems for long-distance heating and waste heat district heating systems

  6. A comparison of heat transfer enhancement in medium temperature thermal energy storage heat exchanger using fins and multitubes

    Energy Technology Data Exchange (ETDEWEB)

    Agyenim, Francis [Welsh School of Architecture, Cardiff Univ., Wales (United Kingdom); Eames, Philip [School of Engineering, Univ. of Warwick, Coventry (United Kingdom); Smyth, Mervyn [Centre for Sustainable Technologies, Univ. of Ulster, Newtownabbey (United Kingdom)

    2008-07-01

    Experimental studies using a medium temperature phase change material (PCM) Erythritol, melting point 117.7 C, in a horizontal shell and tube system have been undertaken. The experimental programme investigated the suitability of Erythritol (a sugar based material) to deliver a near constant thermal energy to be used for the hot side of LiBr/water absorption cooling system. Four experimental configurations, consisting a base model with no heat enhancement (control system), systems enhanced with circular and longitudinal fins and a multitube system were studied. Experiments were conducted at the same inlet heat transfer fluid temperature of 140 C and mass flow rate of 30 kg min{sup 1} for the different configurations. The results presented include experimentally determined isotherm plots for the final melt illustrating the heat transfer characteristics of the systems and quantitative information relating to the transient change in temperature during the charging and discharging processes. The experimental results indicate that the multitube system achieved the best charging performance with the shortest melt time due to the presence of convection but showed large subcooling during the discharge process. The presence of longitudinal fins improved the conduction heat transfer significantly during the charging process due to increased heat transfer surface area and also reduced the level of subcooling during the discharge process. The circular finned system showed no significant improvement in melt time and size and as such would not be worthy of further development. (orig.)

  7. WASTE HEAT RECOVERY FROM BOILER OF LARGE-SCALE TEXTILE INDUSTRY

    Directory of Open Access Journals (Sweden)

    Prateep Pattanapunt

    2013-01-01

    Full Text Available Many industrial heating processes generate waste energy in textile industry; especially exhaust gas from the boiler at the same time reducing global warming. Therefore, this article will present a study the way to recovery heat waste from boiler exhaust gas by mean of shell and tube heat exchanger. Exhaust gas from boiler dyeing process, which carries a large amount of heat, energy consumptions could be decrease by using of waste-heat recovery systems. In this study, using ANASYS simulation performs a thermodynamics analysis. An energy-based approach is performed for optimizing the effective working condition for waste-heat recovery with exhaust gas to air shell and tube heat exchanger. The variations of parameters, which affect the system performance such as, exhaust gas and air temperature, velocity and mass flow rate and moisture content is examined respectively. From this study, it was found that heat exchanger could be reduced temperature of exhaust gases and emission to atmosphere and the time payback is the fastest. The payback period was determined about 6 months for investigated ANSYS. The air is circulated in four passes from the top to the bottom of the test section, in overall counter-flow with exhaust gas. The front area is 1720�1720 mm, the flow length 7500 mm, the inner and outer diameter of exhaust gas is 800 mm, the tube assembly consist of 196 tubes, the tube diameter is 76.2 mm, the tube thickness is 2.6 mm, the tube length is 4500 mm, the tube length of air inner and outer is 500 mm. The result show that, the boiler for superheated type there are exhaust gas temperature is 190°C, 24% the moisture content of fuel and there are palm kernel shell 70 tons day-1 which there are the high temperature after the heat exchanger, 150°C. It was occurred acid rain. The hot air from heat exchanger process can be reduced the moisture of palm kernel shell fuel to 15%.The fuel consumption is reduced by about 2.05% (322.72 kJ kg-1, while the shell and tube heat exchanger outlet exhaust gas temperature decreases from 190 to 150°C.

  8. Potential of geothermal heat exchangers for office building climatisation

    Energy Technology Data Exchange (ETDEWEB)

    Eicker, Ursula; Vorschulze, Christoph [Centre of Applied Research Sustainable Energy Technologies zafh.net, University of Applied Sciences Stuttgart, Schellingstrasse 24, 70174 Stuttgart (Germany)

    2009-04-15

    Low depth geothermal heat exchangers can be efficiently used as a heat sink for building energy produced during summer. If annual average ambient temperatures are low enough, direct cooling of a building is possible. Alternatively the heat exchangers can replace cooling towers in combination with active cooling systems. In the current work, the performance of vertical and horizontal geothermal heat exchangers implemented in two office building climatisation projects is evaluated. A main result of the performance analysis is that the ground coupled heat exchangers have good coefficients of performance ranging from 13 to 20 as average annual ratios of cold produced to electricity used. Best performance is reached, if the ground cooling system is used to cool down high temperature ambient air. The maximum heat dissipation per meter of ground heat exchanger measured was lower than planned and varied between 8 W m{sup -1} for the low depth horizontal heat exchangers up to 25 W m{sup -1} for the vertical heat exchangers. The experimental results were used to validate a numerical simulation model, which was then used to study the influence of soil parameters and inlet temperatures to the ground heat exchangers. The power dissipation varies by {+-}30% depending on the soil conductivity. The heat conductivity of vertical tube filling material influences performance by another {+-}30% for different materials. Depending on the inlet temperature level to the ground heat exchanger, the dissipated power increases from 2 W m{sup -1} for direct cooling applications at 20 C up to 52 W m{sup -1} for cooling tower substitutions at 40 C. This directly influences the cooling costs, which vary between 0.12 and 2.8EUR kW h{sup -1}. As a result of the work, planning and operation recommendations for the optimal choice of ground coupled heat exchangers for office building cooling can be given. (author)

  9. The LUX prototype detector: Heat exchanger development

    International Nuclear Information System (INIS)

    The LUX (large underground xenon) detector is a two-phase xenon time projection chamber (TPC) designed to search for WIMP–nucleon dark matter interactions. As with all noble element detectors, continuous purification of the detector medium is essential to produce a large (>1ms) electron lifetime; this is necessary for efficient measurement of the electron signal which in turn is essential for achieving robust discrimination of signal from background events. In this paper, we describe the development of a novel purification system deployed in a prototype detector. The results from the operation of this prototype indicated heat exchange with an efficiency above 94% up to a flow rate of 42 slpm, allowing for an electron drift length greater than 1 m to be achieved in approximately 2 days and sustained for the duration of the testing period

  10. The LUX prototype detector: Heat exchanger development

    Energy Technology Data Exchange (ETDEWEB)

    Akerib, D.S. [Department of Physics, Case Western Reserve University, Cleveland, OH 44106 (United States); Bai, X. [South Dakota School of Mines and Technology, 501 East St Joseph St., Rapid City, SD 57701 (United States); Bedikian, S. [Yale University, Department of Physics, 217 Prospect St., New Haven, CT 06511 (United States); Bernstein, A. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94551 (United States); Bolozdynya, A. [National Research Nuclear University MEPHI, Faculty of the Experimental and Theoretical Physics, Kashirskoe Sh., 31, Moscow 115409 (Russian Federation); Bradley, A. [Department of Physics, Case Western Reserve University, Cleveland, OH 44106 (United States); Cahn, S.B. [Yale University, Department of Physics, 217 Prospect St., New Haven, CT 06511 (United States); Carr, D. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94551 (United States); Chapman, J.J. [Brown University, Department of Physics, 182 Hope St., Providence, RI 02912 (United States); Clark, K., E-mail: kjc20@psu.edu [Department of Physics, Case Western Reserve University, Cleveland, OH 44106 (United States); Classen, T. [University of California Davis, Department of Physics, One Shields Ave., Davis, CA 95616 (United States); Curioni, A. [Yale University, Department of Physics, 217 Prospect St., New Haven, CT 06511 (United States); Dahl, C.E. [Department of Physics, Case Western Reserve University, Cleveland, OH 44106 (United States); Dazeley, S. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94551 (United States); Viveiros, L. de [Brown University, Department of Physics, 182 Hope St., Providence, RI 02912 (United States); Dragowsky, M. [Department of Physics, Case Western Reserve University, Cleveland, OH 44106 (United States); Druszkiewicz, E. [University of Rochester, Department of Physics and Astronomy, Rochester, NY 14627 (United States); and others

    2013-05-01

    The LUX (large underground xenon) detector is a two-phase xenon time projection chamber (TPC) designed to search for WIMP–nucleon dark matter interactions. As with all noble element detectors, continuous purification of the detector medium is essential to produce a large (>1ms) electron lifetime; this is necessary for efficient measurement of the electron signal which in turn is essential for achieving robust discrimination of signal from background events. In this paper, we describe the development of a novel purification system deployed in a prototype detector. The results from the operation of this prototype indicated heat exchange with an efficiency above 94% up to a flow rate of 42 slpm, allowing for an electron drift length greater than 1 m to be achieved in approximately 2 days and sustained for the duration of the testing period.

  11. Condensing Heat Exchanger with Hydrophilic Antimicrobial Coating

    Science.gov (United States)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor)

    2014-01-01

    A multi-layer antimicrobial hydrophilic coating is applied to a substrate of anodized aluminum, although other materials may form the substrate. A silver layer is sputtered onto a thoroughly clean anodized surface of the aluminum to about 400 nm thickness. A layer of crosslinked, silicon-based macromolecular structure about 10 nm thickness overlies the silver layer, and the outermost surface of the layer of crosslinked, silicon-based macromolecular structure is hydroxide terminated to produce a hydrophilic surface with a water drop contact angle of less than 10.degree.. The coated substrate may be one of multiple fins in a condensing heat exchanger for use in the microgravity of space, which has narrow channels defined between angled fins such that the surface tension of condensed water moves water by capillary flow to a central location where it is pumped to storage. The antimicrobial coating prevents obstruction of the capillary passages.

  12. Radiant heat exchange measurements for Tore Supra

    International Nuclear Information System (INIS)

    In order to minimize the energy consumption of the low temperature cryogenic system connected to the superconducting magnet of TORE-SUPRA, heat exchange from thermal radiation between the vacuum vessels and the thermal shields has been studied. Accordingly large scale cold and hot walls of T.S. have been simulated in a model with reduced dimensions. In this model, the experiment consists in the measurement of the thermal radiated power between two concentric cylindrical surfaces of stainless steel under vacuum conditions. The temperature of the external cylinder was kept constant at 80 K. The internal cylinder was bakeable up to 2500C. Various surface treatments were applied on the two cylinders (mechanical polishing and metal deposition of Al, Ag, Ni)

  13. Simulation Studies on A Cross Flow Plate Fin Heat Exchanger

    OpenAIRE

    Thirumarimurugan, M.; Kannadasan, T.; Ramasamy, E.

    2008-01-01

    Compact heat exchangers which were initially developed for the aerospace industries in the1940s have been considerably improved in the past few years. The main reasons for the goodperformance of compact heat exchangers are their special design which includes turbulent which inturn use high heat transfer coefficient and resists fouling, and maximum temperature driving forcebetween the hot and cold fluids. Numerous types use special enhancement techniques to achieve therequired heat transfer in...

  14. Experimental investigation of passive residual heat removal system with air cooled heat exchanger

    International Nuclear Information System (INIS)

    The objective of this work is to obtain the Performance test data for the passive residual heat removal (RHR) heat exchanger in the advanced PWR. The RHR heat exchanger is designed to remove the decay heat with combined effects of the natural circulation of water by means of the thermosyphon at the inside and the natural convection of the air at the outside. Two test models were made to simulate the RHR heat exchanger. The one is the single bundle test model which consisted of a finned tubular heat exchanger unit. The other is the multi-bundle test model which has the finned tubular heat exchanger consisting of ten bundles of tubular units. The Maximum heat removal capabilities of each model were investigated. The cooling water flow rates by the thermosyphon were measured and were in good agreement with the theoretical predictions. The effects of chimney and elevation between the heater and the heat exchanger were investigated

  15. Heat Recovery Ventilation for Housing: Air-to-Air Heat Exchangers.

    Science.gov (United States)

    Corbett, Robert J.; Miller, Barbara

    The air-to-air heat exchanger (a fan powered ventilation device that recovers heat from stale outgoing air) is explained in this six-part publication. Topic areas addressed are: (1) the nature of air-to-air heat exchangers and how they work; (2) choosing and sizing the system; (3) installation, control, and maintenance of the system; (4) heat

  16. Combined Steady-State and Dynamic Heat Exchanger Experiment

    Science.gov (United States)

    Luyben, William L.; Tuzla, Kemal; Bader, Paul N.

    2009-01-01

    This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…

  17. The influence of heat exchanger design on the synthesis of heat exchanger networks

    OpenAIRE

    Liporace F.S.; Pessoa F. L. P.; Queiroz E. M.

    2000-01-01

    Heat exchanger network (HEN) synthesis has been traditionally performed without accounting for a more detailed unit design, which is important since the final HEN may require unfeasible units. Recently, publications on this matter have appeared, as well as softwares that simultaneously perform synthesis and units design. However, these publications do not clearly show the influence of the new added features on the final HEN. Hence, this work aims at showing that units' design can strongly aff...

  18. Influence of supercritical ORC parameters on plate heat exchanger design

    International Nuclear Information System (INIS)

    The applications of Organic Rankine Cycle (ORC) appear to be growing in the field of waste heat utilization. This thermodynamic cycle can be successfully used in the field of biomass combustion, geothermal systems or solar desalination systems, providing efficient systems. In the last years, a very intense investigation on the utilization of low temperature waste heat for supplying ORC systems has brought new research potential in the area of thermodynamic optimisation of this cycle. More specifically, the use of supercritical fluid parameters in the ORC processes seems to become more and more attractive leading to lower exergy destruction systems together with higher heat utilization systems. However, the investigation of the heat exchanger design and the heat exchange coefficients is of high importance for these applications as the effective heat transfer reflects on the overall process energetic and exergetic efficiency. It is important to study the relatively unknown heat transfer mechanisms around the critical point to improve both the heat exchanger surface and the design algorithms. The aim of this paper is to investigate the influence of the ORC parameters on the heat exchanger design. More specifically, the basic parameters of the design of the heat exchangers will be defined in the cases of supercritical fluid parameters and the convective coefficients as well as resulting heat transfer surface will be calculated for various fluid parameters. - Highlights: various fluid parameters. - Highlights: ? Optimisation of the heat exchanger partitioning. ? Comparison of proposed correlations for calculating heat transfer coefficients. ? Calculation of the heat transfer coefficients under supercritical fluid parameters. ? Calculation of the necessary heat transfer surface. ? Calculation of the heat exchanger efficiency under supercritical fluid parameters.

  19. Ceramic heat exchangers for gas turbines or turbojets

    Science.gov (United States)

    Boudigues, S.; Fabri, J.

    The required performance goals and several proposed designs for SiC heat exchangers for aerospace turbines are presented. Ceramic materials are explored as a means for achieving higher operating temperatures while controlling the weight and cost of the heat exchangers. Thermodynamic analyses and model tests by ONERA have demonstrated the efficacy of introducing a recooling cycle and placing the heat exchangers between stages of the turbine. Sample applications are discussed for small general aviation aircraft and subsonic missiles equipped with single-flux exchangers. A double-flux exchanger is considered for an aircraft capable of Mach 0.8 speed and at least 11 km altitude for cruise. Finally, the results of initial attempts to manufacture SiC honeycomb heat exchangers are detailed.

  20. Reactor safety research section probability of heat exchanger leaks

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, D.S.; Shine, E.P.; Copeland, W.J.

    1992-02-01

    Three heat exchangers (HXs) were changed out after the December 1991 leak of Process Water to the Savannah River. This leaves 6 of the original 304 stainless steel heat exchangers which will remain in K-Reactor for restart. This report discusses SRS site specific data which were used to estimate the probability of a leak within a one-year period as a function of leak rate and root cause in these six heat exchangers in conjunction with six new heat exchangers presently in service in K-Reactor. Based on several assumptions and statistical models, SRS data indicate that the total probability of a leak occurring during a one-year period in K-Reactor with 6 original (304 stainless steel) and 6 new (316-L or SEA-CURE) heat exchangers, with a leak rate greater than 20, 40 or 90 pounds/hr, is 0.013, 0.004 or 0.0005, respectively.

  1. Circulating heat exchangers for oscillating wave engines and refrigerators

    Science.gov (United States)

    Swift, Gregory W.; Backhaus, Scott N.

    2003-10-28

    An oscillating-wave engine or refrigerator having a regenerator or a stack in which oscillating flow of a working gas occurs in a direction defined by an axis of a trunk of the engine or refrigerator, incorporates an improved heat exchanger. First and second connections branch from the trunk at locations along the axis in selected proximity to one end of the regenerator or stack, where the trunk extends in two directions from the locations of the connections. A circulating heat exchanger loop is connected to the first and second connections. At least one fluidic diode within the circulating heat exchanger loop produces a superimposed steady flow component and oscillating flow component of the working gas within the circulating heat exchanger loop. A local process fluid is in thermal contact with an outside portion of the circulating heat exchanger loop.

  2. Test results of a Stirling engine utilizing heat exchanger modules with an integral heat pipe

    Science.gov (United States)

    Skupinski, Robert C.; Tower, Leonard K.; Madi, Frank J.; Brusk, Kevin D.

    1993-01-01

    The Heat Pipe Stirling Engine (HP-1000), a free-piston Stirling engine incorporating three heat exchanger modules, each having a sodium filled heat pipe, has been tested at the NASA-Lewis Research Center as part of the Civil Space Technology Initiative (CSTI). The heat exchanger modules were designed to reduce the number of potential flow leak paths in the heat exchanger assembly and incorporate a heat pipe as the link between the heat source and the engine. An existing RE-1000 free-piston Stirling engine was modified to operate using the heat exchanger modules. This paper describes heat exchanger module and engine performance during baseline testing. Condenser temperature profiles, brake power, and efficiency are presented and discussed.

  3. Test results of a Stirling engine utilizing heat exchanger modules with an integral heat pipe

    Science.gov (United States)

    Skupinski, Robert C.; Tower, Leonard K.; Madi, Frank J.; Brusk, Kevin D.

    1993-04-01

    The Heat Pipe Stirling Engine (HP-1000), a free-piston Stirling engine incorporating three heat exchanger modules, each having a sodium filled heat pipe, has been tested at the NASA-Lewis Research Center as part of the Civil Space Technology Initiative (CSTI). The heat exchanger modules were designed to reduce the number of potential flow leak paths in the heat exchanger assembly and incorporate a heat pipe as the link between the heat source and the engine. An existing RE-1000 free-piston Stirling engine was modified to operate using the heat exchanger modules. This paper describes heat exchanger module and engine performance during baseline testing. Condenser temperature profiles, brake power, and efficiency are presented and discussed.

  4. Plate heat exchangers: review of transport phenomena and design procedures

    Energy Technology Data Exchange (ETDEWEB)

    Focke, W.W.

    1983-02-01

    The Chilton-Colburn analogy for momentum and heat transfer is not valid for plate heat exchangers. However, for the turbulent regime a correlation exists between heat transfer and energy dissipation. Turbulence models based on an energy dissipation analogy may, therefore, provide a good basis for predicting the flow and heat transfer in plate heat exchangers. Flow distribution to plates is a critical aspect of plate heat exchanger performance, particularly where cooling of highly viscous and non-Newtonian fluids are involved and give rise to laminar flow. For this flow regime very little information is available. Design flexibility is obtained by using chevron plates of different corrugation angles in one exchanger. The existence of optimal angles has been identified.

  5. CFD Based Evaluation Of Effectiveness Of Counter Flow Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Gurpreet Kour

    2014-04-01

    Full Text Available Engineers are continually being asked to improve effectiveness of heat transfer equipments. These requests may arise as a result of the need to increase profitability or accommodate capital limitations. Processes which use heat transfer equipment i.e. heat exchanger must frequently be improved for these reasons. Artifical roughness is important technique for enhancing the effectiveness of heat exchanger. In this work effectiveness of smooth as well as roughened tube in heat exchanger is theoretically investigated by using ring type roughness geometry. The performance obtained is then compared with smooth tube. Ringed tube has a significant effect on effectiveness of heat exchanger. The effectiveness is 3.2 times as compared with plane tube was reported. The effectiveness found to be increased with increasing roughness and decreasing pitch between the rings.

  6. Flat tube heat exchangers – Direct and indirect noise levels in heat pump applications

    International Nuclear Information System (INIS)

    In the outdoor unit of an air-source heat pump the fan is a major noise source. The noise level from the fan is dependent on its state of operation: high air-flow and high pressure drop often result in higher noise levels. In addition, an evaporator that obstructs an air flow is a noise source in itself, something that may contribute to the total noise level. To be able to reduce the noise level, heat exchanger designs other than the common finned round tubes were investigated in this study. Three types of heat exchanger were evaluated to detect differences in noise level and air-side heat transfer performance at varying air flow. The measured sound power level from all the heat exchangers was low in comparison to the fan sound power level (direct effect). However, the heat exchanger design was shown to have an important influence on the sound power level from the fan (indirect effect). One of the heat exchangers with flat tubes was found to have the lowest sound power level, both direct and indirect, and also the highest heat transfer rate. This type of flat tube heat exchanger has the potential to reduce the overall noise level of a heat pump while maintaining heat transfer efficiency. - Highlights: •The direct noise from a heat exchanger is negligible in heat pump applications. •The design of the heat exchanger highly influences the noise from an outdoor unit. •Flat tube heat exchangers can reduce the noise from the outdoor unit of a heat pump. •Flat tube heat exchangers can increase the energy efficiency of a heat pump

  7. Corrosion of heat exchanger materials under heat transfer conditions

    International Nuclear Information System (INIS)

    Severe pitting has occurred in moderator heat exchangers tubed with Incoloy-800 in Pickering Nuclear Generating Station. The pitting originated on the cooling side (outside) of the tubes and perforation occurred in less than two years. It was known from corrosion testing at CRNL that Incoloy-800 was not susceptible to pitting in Lake Ontario water under isothermal conditions. Corrosion testing with heat transfer across the tube wall was carried out, and it was noted that severe pitting could occur under deposits formed on the tubes in silty Lake Ontario water. Subsequent testing, carried out in co-operation with Ontario Hydro Research Division, investigated the pitting resistance of other candidate tubing alloys: Incoloy-825, 904 L stainless steel, AL-6X, Inconel-625, 70:30 Cu:Ni, titanium, Sanicro-30 and Sanicro-281. Of these, only titanium and Sanicro-28 have not suffered some degree of pitting attack in silt-containing Lake Ontario Water. In the absence of silt, and hence deposits, no pitting took place on any of the alloys tested

  8. Corrosion of heat exchanger materials under heat transfer conditions

    International Nuclear Information System (INIS)

    Severe pitting has occurred in moderator heat exchangers tubed with Incoloy-800 in Pickering Nuclear Generating Station. The pitting originated on the cooling water side (outside) of the tubes and perforation occurred in less than two years. It was known from corrosion testing at Chalk River Laboratories that Incoloy-800 was not susceptible to pitting in Lake Ontario water under isothermal conditions. Corrosion testing with heat transfer across the tube wall was carried out, and it was noted that severe pitting could occur under deposits formed on the tubes in silty Lake Ontario water. Subsequent testing carried out in co-operation with Ontario Hydro Research Division, investigated the pitting resistance of other candidate tubing alloys: Incoloy-825, 904 L stainless steel, AL-6X, Inconel 625, 70:30 Cu:Ni, titanium, Sanicro-30 and Sanicro-28. Of these, only titanium and Sanicro-28 have not suffered some degree of pitting attack in silt-containing Lake Ontario water. In the absence of silt, and hence deposits, no pitting took place on any of the alloys tested. (author). 3 refs., 4 tabs., 6 figs

  9. Improvement of heat transfer by means of ultrasound: Application to a double-tube heat exchanger.

    Science.gov (United States)

    Legay, M; Simony, B; Boldo, P; Gondrexon, N; Le Person, S; Bontemps, A

    2012-11-01

    A new kind of ultrasonically-assisted heat exchanger has been designed, built and studied. It can be seen as a vibrating heat exchanger. A comprehensive description of the overall experimental set-up is provided, i.e. of the test rig and the acquisition system. Data acquisition and processing are explained step-by-step with a detailed example of graph obtained and how, from these experimental data, energy balance is calculated on the heat exchanger. It is demonstrated that ultrasound can be used efficiently as a heat transfer enhancement technique, even in such complex systems as heat exchangers. PMID:22546297

  10. Heat exchanger with a central area coaxial pipes and peripheral exchange area

    International Nuclear Information System (INIS)

    This invention concerns an exchanger with indirect transmission of heat between two fluids, that includes a central area formed of two coaxial pipes and a peripheral exchange area enclosed in an outer ring. Both these areas have counter current circulation. A chamber for collecting the partially cooled fluid from one of the coaxial pipes and for feeding the peripheral exchange area is float fitted with respect to the outer ring. This invention particularly applies to secondary water vaporization exchangers in heat exchange systems for electricity generating nuclear power stations, in which the primary fluid is water under pressure or a melted alkaline metal

  11. Dynamic responses of heat exchanger tube banks

    International Nuclear Information System (INIS)

    Understanding and modeling fluid/structure interaction in cylinder bundles is a basic requirement in the development of analytical methods and guidelines for designing LMFBR heat exchanger and reactor fuel assemblies that are free from component vibration problems. As a step toward satisfying this requirement, an analytical and experimental study of tube banks vibrating in liquids is presented. A general method of analysis is presented for free and forced vibrations of tube banks including tube/fluid interaction, and numerical results are given for tube banks subjected to various types of excitations. Two cantilevered tubes were tested in a water tank, and the natural frequencies and forced responses of coupled motion were measured. Experimental data and analytical results are in reasonably good agreement. The analytical method presented is currently being extended to account for the flowing fluid in tube banks and will be used in the development of the mathematical models for crossflow- and parallel-flow-induced vibrations of tube bundles. Those models will be useful in predicting the response of tube bundles and in design to avoid detrimental vibration

  12. Performance of tubes-and plate fins heat exchangers

    International Nuclear Information System (INIS)

    By means of a two-dimensional analysis performance, and using local heat transfer coefficients, the plate fin temperature distribution, the air bulk temperature along the stream path and the fin efficiency can be obtained, for several Reynolds numbers and fin materials. Herein are also presented the average heat transfer coefficients for isothermal plate fins, referring to heat exchangers with central-tube and rear-tube row and to two-row tubes heat exchangers configurations. It is possible to obtain the real tax or the real area of heat transfer, using the average hea transfer coefficients for isothermal plate fins and the fin efficiency. (Author)

  13. Investigation of Brazed Plate Heat Exchangers With Variable Chevron Angles

    Directory of Open Access Journals (Sweden)

    S. Muthuraman

    2013-08-01

    Full Text Available - Experiments to measure the condensation heat transfer coefficient and the pressure drop in brazed plate heat exchangers (BPHEs were performed with the refrigerants R410A and R22. Brazed plate heat exchangers with different chevron angles of 45°, 35°, and 20° were used. Varying the mass flux, the condensation temperature, and the vapor quality of the refrigerant, we measured the condensation heat transfer coefficient and the pressure drops. Both the heat transfer coefficient and the pressure drop increased proportionally with the mass flux and the vapor quality and inversely with the condensation temperature and the chevron angle.

  14. Temperatures and Heat Flows in a Soil Enclosing a Slinky Horizontal Heat Exchanger

    OpenAIRE

    Pavel Neuberger; Radomír Adamovský; Michaela Še?ová

    2014-01-01

    Temperature changes and heat flows in soils that host “slinky”-type horizontal heat exchangers are complex, but need to be understood if robust quantification of the thermal energy available to a ground-source heat pump is to be achieved. Of particular interest is the capacity of the thermal energy content of the soil to regenerate when the heat exchangers are not operating. Analysis of specific heat flows and the specific thermal energy regime within the soil, including that captured by ...

  15. 40 CFR 63.11499 - What are the standards and compliance requirements for heat exchange systems?

    Science.gov (United States)

    2010-07-01

    ...standards and compliance requirements for heat exchange systems? (a) If the cooling water flow rate in your heat exchange system is equal to or...reactor as the surrogate indicator of heat exchanger system leaks when complying...

  16. Development of ceramic heat exchanger component for extreme environments

    International Nuclear Information System (INIS)

    Based on our own ceramic fabrication technologies, the development of SiC based materials and sub-scale mock-up will be carried out by developing the following technologies for high temperature ceramic process heat exchanger and intermediate heat exchanger, which will be applied in the operating temperature ranges of 400-900 .deg. C : - Optimum fabrication technologies for high temperature compact heat exchanger - Design, machining and bonding of heat exchanger unit cell - Analysis of corrosion and long term degradation behaviors of SiC based ceramics in a high temperature sulfuric acid - Analysis and simulation of heat transfer and stress distribution of heat exchanger mock-up · The unit heat transfer plate of the compact SiC heat exchanger with a density of more 98% TD and the size of 100 x 100 mm was successfully fabricated and related technologies such as compaction, reaction sintering, machining were established. · The fabrication technologies such as design, stacking, sinter-forging, bonding of the sub-scale mock-up of a plate-type SiC heat exchanger were also developed. And the sub-scaled mock-up heat exchanger with a size of 100 x 100 x 60 mm were successfully fabricated. · The long term corrosion test in sulfuric acid were carried out for 200 days. The amounts of the weight changes were less than 0.3 g/cm2. The tendency of the weigh gain from corrosion was saturated after 100 days. · The development of the bonding technologies between SiC plates were also performed. Various bonding technologies like forming bonding, pyro bonding and sinter bonding were compared. Based on analyses of the strength, microstructures and fracture behaviors, the sinter bonding was considered as a best candidate process. · For sinter bonding, a feasibility study on a new bonding technology using nano SiC powder and hot pressing were being performing

  17. Study of transient behavior of finned coil heat exchangers

    Science.gov (United States)

    Rooke, S. P.; Elissa, M. G.

    1993-01-01

    The status of research on the transient behavior of finned coil cross-flow heat exchangers using single phase fluids is reviewed. Applications with available analytical or numerical solutions are discussed. Investigation of water-to-air type cross-flow finned tube heat exchangers is examined through the use of simplified governing equations and an up-wind finite difference scheme. The degenerate case of zero air-side capacitance rate is compared with available exact solution. Generalization of the numerical model is discussed for application to multi-row multi-circuit heat exchangers.

  18. Heat exchanger and water tank arrangement for passive cooling system

    Science.gov (United States)

    Gillett, J.E.; Johnson, F.T.; Orr, R.S.; Schulz, T.L.

    1993-11-30

    A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tube sheets mounted to the tank connections so that the tube sheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tube sheets on a square pitch and then on a rectangular pitch there between. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight. 6 figures.

  19. Experiments for performance enhancement of the innovative heat exchanger

    International Nuclear Information System (INIS)

    In present study, three dimension numerical analysis of Heatric PCHE is performed and compared to existing experimental data. And according to the results, the parameters to influence on thermal-hydraulic performance of PCHE have been derived and a Parametric study for the derived parameters has been performed. Based on these results, a new shape of channel in heat exchanger has been designed. And, performing three dimensional numerical analysis of a new designed heat exchanger and existing PCBE, thermal-hydraulic performance of the new designed heat exchanger has been validated numerically. And, the loop for experiments is designed for experimental investigation

  20. Heat exchanger for cooling a liquid metal by air

    International Nuclear Information System (INIS)

    According to the invention, the heat exchanger has an array of vertical tubes arranged along one or, preferentially, several cylindrical and coaxial rows and two toroidal collectors; the tubes are extending between the upper and the lower toroidal collectors. A deflector and a casing enveloping the tubes allow the cooling air to flow in contact with the tubes between a vertical inlet conduit and a vertical outlet conduit. The invention applies, more particularly, to heat exchangers used for cooling the secondary liquid sodium coming from a sodium-sodium heat exchanger immerged in the vessel of a fast neutron reactor

  1. Temperatures and Heat Flows in a Soil Enclosing a Slinky Horizontal Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Pavel Neuberger

    2014-02-01

    Full Text Available Temperature changes and heat flows in soils that host “slinky”-type horizontal heat exchangers are complex, but need to be understood if robust quantification of the thermal energy available to a ground-source heat pump is to be achieved. Of particular interest is the capacity of the thermal energy content of the soil to regenerate when the heat exchangers are not operating. Analysis of specific heat flows and the specific thermal energy regime within the soil, including that captured by the heat-exchangers, has been characterised by meticulous measurements. These reveal that high concentrations of antifreeze mix in the heat-transfer fluid of the heat exchanger have an adverse impact on heat flows discharged into the soil.

  2. The influence of heat exchanger design on the synthesis of heat exchanger networks

    Directory of Open Access Journals (Sweden)

    F.S. Liporace

    2000-12-01

    Full Text Available Heat exchanger network (HEN synthesis has been traditionally performed without accounting for a more detailed unit design, which is important since the final HEN may require unfeasible units. Recently, publications on this matter have appeared, as well as softwares that simultaneously perform synthesis and units design. However, these publications do not clearly show the influence of the new added features on the final HEN. Hence, this work aims at showing that units' design can strongly affect the final HEN. Improvements on heat transfer area and total annual cost estimations, which influence the HEN structural evolution, are the main responsible for that. It is also shown the influence of some design bounds settings, which can indicate an unfeasible unit design and, therefore, the need for a new match search or the maintenance of a loop. An example reported in the literature is used to illustrate the discussion.

  3. The influence of heat exchanger design on the synthesis of heat exchanger networks

    Scientific Electronic Library Online (English)

    F.S., Liporace; F.L.P., Pessoa; E.M., Queiroz.

    2000-12-01

    Full Text Available Heat exchanger network (HEN) synthesis has been traditionally performed without accounting for a more detailed unit design, which is important since the final HEN may require unfeasible units. Recently, publications on this matter have appeared, as well as softwares that simultaneously perform synth [...] esis and units design. However, these publications do not clearly show the influence of the new added features on the final HEN. Hence, this work aims at showing that units' design can strongly affect the final HEN. Improvements on heat transfer area and total annual cost estimations, which influence the HEN structural evolution, are the main responsible for that. It is also shown the influence of some design bounds settings, which can indicate an unfeasible unit design and, therefore, the need for a new match search or the maintenance of a loop. An example reported in the literature is used to illustrate the discussion.

  4. Thermal behavior of a heat exchanger module for seasonal heat storage

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2012-01-01

    Experimental and theoretic investigations are carried out to study the heat transfer capacity rate of a heat exchanger module for seasonal heat storage with sodium acetate trihydrate (SAT) supercooling in a stable way. A sandwich heat storage test module has been built with the phase change material (PCM) storage box in between two plate heat exchangers. Charge of the PCM storage is investigated experimentally with solid phase SAT as initial condition. Discharge of the PCM storage with the presence of crystallization is studied experimentally. Fluid flow and heat transfer in the PCM module are theoretically investigated by Computational Fluid Dynamics (CFD) calculations. The heat transfer rates between the PCM storage and the heating fluid/cooling fluid in the plate heat exchangers are determined. The CFD calculated temperatures are compared to measured temperatures. Based on the studies, recommendations on how best to transfer heat to and from the seasonal heat storage module are given.

  5. Slotting Fins of Heat Exchangers to Provide Thermal Breaks

    Science.gov (United States)

    Scull, Timothy D.

    2003-01-01

    Heat exchangers that include slotted fins (in contradistinction to continuous fins) have been invented. The slotting of the fins provides thermal breaks that reduce thermal conduction along flow paths (longitudinal thermal conduction), which reduces heat-transfer efficiency. By increasing the ratio between transverse thermal conduction (the desired heat-transfer conduction) and longitudinal thermal conduction, slotting of the fins can be exploited to (1) increase heat-transfer efficiency (thereby reducing operating cost) for a given heat-exchanger length or to (2) reduce the length (thereby reducing the weight and/or cost) of the heat exchanger needed to obtain a given heat transfer efficiency. By reducing the length of a heat exchanger, one can reduce the pressure drop associated with the flow through it. In a case in which slotting enables the use of fins with thermal conductivity greater than could otherwise be tolerated on the basis of longitudinal thermal conduction, one can exploit the conductivity to make the fins longer (in the transverse direction) than they otherwise could be, thereby making it possible to make a heat exchanger that contains fewer channels and therefore, that weighs less, contains fewer potential leak paths, and can be constructed from fewer parts and, hence, reduced cost.

  6. Application of transient analysis methodology to heat exchanger performance monitoring

    International Nuclear Information System (INIS)

    A transient testing technique is developed to evaluate the thermal performance of industrial scale heat exchangers. A Galerkin-based numerical method with a choice of spectral basis elements to account for spatial temperature variations in heat exchangers is developed to solve the transient heat exchanger model equations. Testing a heat exchanger in the transient state may be the only viable alternative where conventional steady state testing procedures are impossible or infeasible. For example, this methodology is particularly suited to the determination of fouling levels in component cooling water system heat exchangers in nuclear power plants. The heat load on these so-called component coolers under steady state conditions is too small to permit meaningful testing. An adequate heat load develops immediately after a reactor shutdown when the exchanger inlet temperatures are highly time-dependent. The application of the analysis methodology is illustrated herein with reference to an in-situ transient testing carried out at a nuclear power plant. The method, however, is applicable to any transient testing application

  7. Evaluation of fluid bed heat exchanger optimization parameters. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    Uncertainty in the relationship of specific bed material properties to gas-side heat transfer in fluidized beds has inhibited the search for optimum bed materials and has led to over-conservative assumptions in the design of fluid bed heat exchangers. An experimental program was carried out to isolate the effects of particle density, thermal conductivity, and heat capacitance upon fluid bed heat transfer. A total of 31 tests were run with 18 different bed material loads on 12 material types; particle size variations were tested on several material types. The conceptual design of a fluidized bed evaporator unit was completed for a diesel exhaust heat recovery system. The evaporator heat transfer surface area was substantially reduced while the physical dimensions of the unit increased. Despite the overall increase in unit size, the overall cost was reduced. A study of relative economics associated with bed material selection was conducted. For the fluidized bed evaporator, it was found that zircon sand was the best choice among materials tested in this program, and that the selection of bed material substantially influences the overall system costs. The optimized fluid bed heat exchanger has an estimated cost 19% below a fin augmented tubular heat exchanger; 31% below a commercial design fluid bed heat exchanger; and 50% below a conventional plain tube heat exchanger. The comparisons being made for a 9.6 x 10/sup 6/ Btu/h waste heat boiler. The fluidized bed approach potentially has other advantages such as resistance to fouling. It is recommended that a study be conducted to develop a systematic selection of bed materials for fluidized bed heat exchanger applications, based upon findings of the study reported herein.

  8. SILICON CARBIDE CERAMICS FOR COMPACT HEAT EXCHANGERS

    International Nuclear Information System (INIS)

    Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making high dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure which allows complete conversion of the carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low chemical reactivity and porosity while the cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800 C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm-3 (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process was studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal conductivities of most commercial SiC materials are much lower due to phonon scattering by impurities (e.g., sintering aids located at the grain boundaries of these materials). The thermal conductivity of our SiC was determined using the laser flash method and it is 214 W/mK at 373 K and 64 W/mK at 1273 K. These values are very close to those of pure SiC and are much higher than those of SiC materials made by industrial processes. This SiC made by our LSI process meets the thermal properties required for use in high temperature heat exchanger. Cellulose and phenolic resin carbons lack the well-defined atomic structures associated with common carbon allotropes. Atomic-scale structure was studied using high resolution transmission electron microscopy (HRTEM), nitrogen gas adsorption and helium gas pycnometry. These studies revealed that cellulose carbon exhibits a very high degree of atomic disorder and angstrom-scale porosity. It has a density of only 93% of that of pure graphite, with primarily sp2 bonding character and a low concentration of graphene clusters. Phenolic resin carbon shows more structural order and substantially less angstrom-scale porosity. Its density is 98% of that of pure graphite, and Fourier transform analysis of its TEM micrographs has revealed high concentrations of sp3 diamond and sp2 graphene nano-clusters. This is the first time that diamond nano-clusters have been observed in carbons produced from phenolic resin. AC and DC electrical measurements were made to follow the thermal conversion of microcrystalline cellulose to carbon. This study identifies five regions of electrical conductivity that can be directly correlated to the chemical decomposition and microstructural evolution during carbonization. In Region I, a decrease in overall AC conductivity occurs due to the initial loss of the polar groups from cellulose molecules. In Region II, the AC conductivity starts to increase with heat treatment temperature due to the formation and growth of conducting carbon clusters. In Region III, a further increase of AC conductivity with increasing heat treatment temperature is observed.

  9. SILICON CARBIDE CERAMICS FOR COMPACT HEAT EXCHANGERS

    Energy Technology Data Exchange (ETDEWEB)

    DR. DENNIS NAGLE; DR. DAJIE ZHANG

    2009-03-26

    Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making high dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure which allows complete conversion of the carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low chemical reactivity and porosity while the cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800 C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm{sup -3} (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process was studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal conductivities of most commercial SiC materials are much lower due to phonon scattering by impurities (e.g., sintering aids located at the grain boundaries of these materials). The thermal conductivity of our SiC was determined using the laser flash method and it is 214 W/mK at 373 K and 64 W/mK at 1273 K. These values are very close to those of pure SiC and are much higher than those of SiC materials made by industrial processes. This SiC made by our LSI process meets the thermal properties required for use in high temperature heat exchanger. Cellulose and phenolic resin carbons lack the well-defined atomic structures associated with common carbon allotropes. Atomic-scale structure was studied using high resolution transmission electron microscopy (HRTEM), nitrogen gas adsorption and helium gas pycnometry. These studies revealed that cellulose carbon exhibits a very high degree of atomic disorder and angstrom-scale porosity. It has a density of only 93% of that of pure graphite, with primarily sp2 bonding character and a low concentration of graphene clusters. Phenolic resin carbon shows more structural order and substantially less angstrom-scale porosity. Its density is 98% of that of pure graphite, and Fourier transform analysis of its TEM micrographs has revealed high concentrations of sp3 diamond and sp2 graphene nano-clusters. This is the first time that diamond nano-clusters have been observed in carbons produced from phenolic resin. AC and DC electrical measurements were made to follow the thermal conversion of microcrystalline cellulose to carbon. This study identifies five regions of electrical conductivity that can be directly correlated to the chemical decomposition and microstructural evolution during carbonization. In Region I, a decrease in overall AC conductivity occurs due to the initial loss of the polar groups from cellulose molecules. In Region II, the AC conductivity starts to increase with heat treatment temperature due to the formation and growth of conducting carbon clusters. In Region III, a further increase of AC conductivity with increasing heat treatment temperature is obs

  10. Process Heat Exchanger Options for the Advanced High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-06-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  11. Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-04-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  12. Fabrication and Analysis of Counter Flow Helical Coil Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Swapnil Ahire

    2014-09-01

    Full Text Available Heat recovery is the capture of energy contained in fluids otherwise that would be lost from a facility. Heat sources may include heat pumps, chillers, steam condensate lines, hot flue gases from boiler, hot air associated with kitchen and laundry facilities, exhaust gases of the engines, power-generation equipment. Helical coil heat exchanger is one of the devices which are used for the heat recovery system. A heat exchanger is a device used to transfer heat between two or more fluids with different temperatures for various application including power plants, nuclear reactors, refrigeration & air condition system, automotive industries, heat recovery system, chemical processing and food industries. Common examples of heat exchangers in everyday use are air pre-heaters and conditioners, automobile radiators, condensers, evaporators, and coolers In present paper analysis of counter flow heat exchanger is done and then variations of various dimensionless numbers i.e. Reynolds Number, Nusselt’s Number and Dean’s number are studied.

  13. Heat Pipe Heat Exchangers with Double Isolation Layers for Prevention of Interpath Leakage Project

    National Aeronautics and Space Administration — Advanced Cooling Technologies, Inc. (ACT), supported by Hamilton Sundstrand, proposes to develop a heat pipe heat exchanger that is low mass and provides two levels...

  14. 1-MWE heat exchangers for OTEC. Final design report

    Energy Technology Data Exchange (ETDEWEB)

    Sprouse, A.M.

    1980-06-19

    The design of a 1 MWe OTEC heat exchanger is documented, including the designs of the evaporator and associated systems, condenser, instrumentation, and materials for corrosion/erosion control and fabrication processes. (LEW)

  15. Modular heat exchangers for consolidated nuclear steam generator

    International Nuclear Information System (INIS)

    This invention relates to a group of modular heat exchangers of the type having a steam chamber, a feedwater chamber, and a feedwater tube passing through the steam chamber to establish fluid communication with the feed chamber

  16. Phase Change Material (PCM) Heat Exchanger Development Project

    National Aeronautics and Space Administration — Project has identified two PCM HX concepts that will be designed, developed and demonstrated on-board the International Space Station (ISS):The first heat exchanger...

  17. High Effectiveness Heat Exchanger for Cryogenic Refrigerators Project

    National Aeronautics and Space Administration — We propose an innovative high performance cryogenic heat exchanger manufactured of titanium by photo-etching and diffusion bonding. This is a parallel plate design...

  18. Oscillating side-branch enhancements of thermoacoustic heat exchangers

    Science.gov (United States)

    Swift, Gregory W.

    2003-05-13

    A regenerator-based engine or refrigerator has a regenerator with two ends at two different temperatures, through which a gas oscillates at a first oscillating volumetric flow rate in the direction between the two ends and in which the pressure of the gas oscillates, and first and second heat exchangers, each of which is at one of the two different temperatures. A dead-end side branch into which the gas oscillates has compliance and is connected adjacent to one of the ends of the regenerator to form a second oscillating gas flow rate additive with the first oscillating volumetric flow rate, the compliance having a volume effective to provide a selected total oscillating gas volumetric flow rate through the first heat exchanger. This configuration enables the first heat exchanger to be configured and located to better enhance the performance of the heat exchanger rather than being confined to the location and configuration of the regenerator.

  19. Noise spectra measured on the Dragon reactor primary heat exchanges

    International Nuclear Information System (INIS)

    The frequency spectra of secondary water flow and tube wall temperatures have been measured on Dragon primary heat exchangers. No indication of tube wall temperature oscillations leading to tube burnout was found from the noise spectra analysed. (author)

  20. Damping of multispan heat exchanger tubes. Pt. 2: in liquids

    International Nuclear Information System (INIS)

    Damping information is required for flow-induced vibration analyses of heat exchanger tubes. This paper treats the question of damping of multispan heat exchanger tubes in liquids. There are three important energy dissipation mechanisms that contribute to damping in liquids. These are: viscous damping between tube and liquid, squeeze-film damping in the clearance between tube and tube-support and friction damping at the tube-support. These mechanisms are discussed and formulated in terms of heat exchanger tube parameters. The available experimental data on damping in liquids are reviewed and analysed. Semi-empirical expressions have been developed to formulate damping. These expressions are recommended for design purposes. This study is interesting in the nuclear industry for it often uses heat exchangers

  1. Turbulence and heat exchange under ice

    OpenAIRE

    Sirevaag, Anders

    2003-01-01

    Turbulent fluxes of heat and salt were measured under sea ice at four different locations around Spitsbergen. In Kongsfjorden on West Spitsbergen additional measurements of heat fluxes in the ice and in the atmosphere were done and compared in an air/sea/ice heat budget. Ocean heat flux in Kongsfjorden is about 13 W/m2 and comparison with the other heat fluxes at the ice/ocean interface shows a good agreement. From the heat budget at the ice/ocean interface, the ice growth during three subseq...

  2. Characteristics of fluid flow and heat transfer in a fluidized heat exchanger with circulating solid particles

    International Nuclear Information System (INIS)

    The commercial viability of heat exchanger is mainly dependent on its long-term fouling characteristic because the fouling increase the pressure loss and degrades the thermal performance of a heat exchanger. An experimental study was performed to investigate the characteristics of fluid flow and heat transfer in a fluidized bed heat exchanger with circulating various solid particles. The present work showed that the higher densities of particles had higher drag force coefficients, and the increases in heat transfer were in the order of sand, copper, steel, aluminum, and glass below Reynolds number of 5,000

  3. Computer aided heat transfer analysis in a laboratory scaled heat exchanger unit

    International Nuclear Information System (INIS)

    In this study. an explanation of a laboratory scaled heat exchanger unit and a software which is developed to analyze heat transfer. especially to use it in heat transfer courses, are represented. Analyses carried out in the software through sample values measured in the heat exchanger are: (l) Determination of heat transfer rate, logarithmic mean temperature difference and overall heat transfer coefficient; (2)Determination of convection heat transfer coefficient inside and outside the tube and the effect of fluid velocity on these; (3)Investigation of the relationship between Nusselt Number. Reynolds Number and Prandtl Number by using multiple non-linear regression analysis. Results are displayed on the screen graphically

  4. Simulation of stirred yoghurt processing in plate heat exchangers

    OpenAIRE

    Fernandes, Carla S.; Dias, Ricardo P.; No?brega, Joa?o M.; Afonso, Isabel A.; Melo, Luis F.; Maia, Joa?o M.

    2005-01-01

    In the present work, simulations of stirred yoghurt processing in a plate heat exchanger were performed using computational fluid dynamics (CFD) calculations and the results compared with experimental data, showing a very good agreement. A Herschel–Bulkley model for the viscosity and an Arrhenius-type term for the temperature dependence were used to model the thermo-rheological behaviour of yoghurt. The heat exchanger used in this study operates in a parallel arrangement, thus simplif...

  5. Fin Distance Effect at Tube-Fin Heat Exchanger

    Science.gov (United States)

    Lemfeld, F.; Muller, M.; Frana, K.

    2013-04-01

    Article deals with numerical simulation of the Tube-Fin heat exchanger. Several distances between fins are examined with intence of increasing the cooling output of the heat exchanger. Geometrical model consists of set of 2 fins with input and output area. Calculations covers the area of the gap from 2.25 mm to 4 mm with new fin geometry. For the numerical silumation was used software Ansys Fluent.

  6. Surface interactions and deposit growth in fouling of heat exchangers

    OpenAIRE

    Oliveira, Rosa?rio; Melo, L. F.; Pinheiro, Maria Manuela; Vieira, M. J.

    1993-01-01

    Fouling of heat exchangers is a costly problem in industJ)'. There is a need for a better understanding of the phenomena involved in the build up of deposits on surfaces. The paper reviews the basic mechanisms of fouling, emphasizing their rdle in determining the overall fouling rate. Mass transfer, adhesion, chemical or biological reactions can be the rate limiting processes depending on the design and operating conditions of the heat exchanger. Reference is made to the most c...

  7. Thermal performance modeling of cross-flow heat exchangers

    CERN Document Server

    Cabezas-Gómez, Luben; Saíz-Jabardo, José Maria

    2014-01-01

    This monograph introduces a numerical computational methodology for thermal performance modeling of cross-flow heat exchangers, with applications in chemical, refrigeration and automobile industries. This methodology allows obtaining effectiveness-number of transfer units (e-NTU) data and has been used for simulating several standard and complex flow arrangements configurations of cross-flow heat exchangers. Simulated results have been validated through comparisons with results from available exact and approximate analytical solutions. Very accurate results have been obtained over wide ranges

  8. Thermal design heat sinks, thermoelectrics, heat pipes, compact heat exchangers, and solar cells

    CERN Document Server

    Lee, H S

    2010-01-01

    The proposed is written as a senior undergraduate or the first-year graduate textbook,covering modern thermal devices such as heat sinks, thermoelectric generators and coolers, heat pipes, and heat exchangers as design components in larger systems. These devices are becoming increasingly important and fundamental in thermal design across such diverse areas as microelectronic cooling, green or thermal energy conversion, and thermal control and management in space, etc. However, there is no textbook available covering this range of topics. The proposed book may be used as a capstone design cours

  9. Investigation of effect of oblique ridges on heat transfer in plate heat exchangers

    OpenAIRE

    Novosád Jan; Dvo?ák Václav

    2014-01-01

    This article deals with numerical investigation of flow in plate heat exchangers. These are counterflow heat exchangers formed by plates. These plates are shaped by the ridges to intensify heat transfer. The objective of the work is the investigation of effect of straight oblique triangular ridges for increasing of heat transfer and pressure losses. The ridges on adjacent plates intersect and thus form a channel of complex shape. The research includes various types of ridges with different fi...

  10. Applications of two-phase flow and heat transfer in compact heat exchangers

    OpenAIRE

    Lintern, Andrew Charles

    2008-01-01

    Three applications of two-phase flow and heat transfer in plate-fin heat exchangers have been studied. A dephlegmator is a heat exchanger in which reflux condensation of a vapour mixture occurs, and plate-fln versions have importance in cryogenic gas separation processes. Numerical calculations for different binary mixtures show that the number of transfer units can be expressed as a simple function of the inlet vapour state and flow rate, heat load, and channel geometry. Th...

  11. DOE/ANL/HTRI heat exchanger tube vibration data bank

    Energy Technology Data Exchange (ETDEWEB)

    Halle, H.; Chenoweth, J.M.; Wambsganss, M.W.

    1981-01-01

    This addendum to the DOE/ANL/HTRI Heat Exchanger Tube Vibration Data Bank includes 16 new case histories of field experiences. The cases include several exchangers that did not experience vibration problems and several for which acoustic vibration was reported.

  12. A fundamentally new approach to air-cooled heat exchangers.

    Energy Technology Data Exchange (ETDEWEB)

    Koplow, Jeffrey P.

    2010-01-01

    We describe breakthrough results obtained in a feasibility study of a fundamentally new architecture for air-cooled heat exchangers. A longstanding but largely unrealized opportunity in energy efficiency concerns the performance of air-cooled heat exchangers used in air conditioners, heat pumps, and refrigeration equipment. In the case of residential air conditioners, for example, the typical performance of the air cooled heat exchangers used for condensers and evaporators is at best marginal from the standpoint the of achieving maximum the possible coefficient of performance (COP). If by some means it were possible to reduce the thermal resistance of these heat exchangers to a negligible level, a typical energy savings of order 30% could be immediately realized. It has long been known that a several-fold increase in heat exchanger size, in conjunction with the use of much higher volumetric flow rates, provides a straight-forward path to this goal but is not practical from the standpoint of real world applications. The tension in the market place between the need for energy efficiency and logistical considerations such as equipment size, cost and operating noise has resulted in a compromise that is far from ideal. This is the reason that a typical residential air conditioner exhibits significant sensitivity to reductions in fan speed and/or fouling of the heat exchanger surface. The prevailing wisdom is that little can be done to improve this situation; the 'fan-plus-finned-heat-sink' heat exchanger architecture used throughout the energy sector represents an extremely mature technology for which there is little opportunity for further optimization. But the fact remains that conventional fan-plus-finned-heat-sink technology simply doesn't work that well. Their primary physical limitation to performance (i.e. low thermal resistance) is the boundary layer of motionless air that adheres to and envelops all surfaces of the heat exchanger. Within this boundary layer region, diffusive transport is the dominant mechanism for heat transfer. The resulting thermal bottleneck largely determines the thermal resistance of the heat exchanger. No one has yet devised a practical solution to the boundary layer problem. Another longstanding problem is inevitable fouling of the heat exchanger surface over time by particulate matter and other airborne contaminants. This problem is especially important in residential air conditioner systems where often little or no preventative maintenance is practiced. The heat sink fouling problem also remains unsolved. The third major problem (alluded to earlier) concerns inadequate airflow to heat exchanger resulting from restrictions on fan noise. The air-cooled heat exchanger described here solves all of the above three problems simultaneously. The 'Air Bearing Heat Exchanger' provides a several-fold reduction in boundary layer thickness, intrinsic immunity to heat sink fouling, and drastic reductions in noise. It is also very practical from the standpoint of cost, complexity, ruggedness, etc. Successful development of this technology is also expected to have far reaching impact in the IT sector from the standpointpoint of solving the 'Thermal Brick Wall' problem (which currently limits CPU clocks speeds to {approx}3 GHz), and increasing concern about the the electrical power consumption of our nation's information technology infrastructure.

  13. Heat exchanger with vertical flexible tubes of the 'descending' type

    International Nuclear Information System (INIS)

    This invention concerns a heat exchanger with vertical flexible tubes of the 'descending' type, particularly intended for the evaporation of a saline solution. For the record, a vertical tube heat exchanger for heating a secondary fluid by a primary fluid is of the 'descending' type when the secondary fluid flows by gravity in thin films along the outside of the tubes in which the primary fluid is flowing. Specifically, the purpose of this invention is a heat exchanger of the above type comprising new arrangements for fixing the tubes by their upper ends and the creation on the outside of these tubes of a thin continuous descending film of secondary fluid to be heated

  14. Forced convection heat exchange inside porous sintered metals

    International Nuclear Information System (INIS)

    Methods and results of investigating heat exchange in the process of liquid flow inside porous sintered metals have been analyzed. It has been shown that experimental data available include extremely conflicting correlations between heat transfer coefficient and Reynolds number, porosity, and relative wall thickness. Scattering of the data can attain one order of magnitude. The volume coefficient of heat transfer inside pores determined in papers does not correspond to its real value in the initial equations of the inner problem of porous cooling. Calculating and experimental method of determining the heat transfer coefficient has been developed and realized on the unit of radiation heating. More accurate experimental data on intraporous heat exchange have been obtained. It has been established that relative wall thickness does not affect the intensity of heat transfer inside pores

  15. Materials for nuclear diffusion-bonded compact heat exchangers

    International Nuclear Information System (INIS)

    This paper discusses the characteristics of materials used in the manufacture of diffusion bonded compact heat exchangers. Heatric have successfully developed a wide range of alloys tailored to meet process and customer requirements. This paper will focus on two materials of interest to the nuclear industry: dual certified SS316/316L stainless steel and nickel-based alloy Inconel 617. Dual certified SS316/316L is the alloy used most widely in the manufacture of Heatric's compact heat exchangers. Its excellent mechanical and corrosion resistance properties make it a good choice for use with many heat transfer media, including water, carbon dioxide, liquid sodium, and helium. As part of Heatric's continuing product development programme, work has been done to investigate strengthening mechanisms of the alloy; this paper will focus in particular on the effects of nitrogen addition. Another area of Heatric's programme is Alloy 617. This alloy has recently been developed for diffusion bonded compact heat exchanger for high temperature nuclear applications, such as the intermediate heat exchanger (IHX) for the very high temperature nuclear reactors for production of electricity, hydrogen and process heat. This paper will focus on the effects of diffusion bonding process and cooling rate on the properties of alloy 617. This paper also compares the properties and discusses the applications of these two alloys to compact heat exchangers for various nuclear processes. (author)

  16. PS1 satellite refrigerator heat exchanger: Failure of the LN2 heat exchanger to low pressure helium

    International Nuclear Information System (INIS)

    The PS1 heat exchanger is one of three prototype heat exchangers built by Atomic Welders before Meyer was given the contract to build the Satellite Refrigerator Heat Exchanger components. This heat exchanger was first put into operation in July 1983. In November 1991, this heat exchanger experienced a failure in the shell of heat exchanger 1 causing nitrogen to contaminate the helium in the refrigerator. The resulting contamination plugged heat exchanger 3. The break occurred at a weld that connects a 0.25 inch thick ring to heat exchanger 1. The failure appears to be a fatigue of the shell due to temperature oscillations. The flow rate through the break was measured to be 1.0 scfm for a pressure drop over the crack of 50 psi. An ANSYS analysis of the failure area indicates that the stress would be 83,000 psi if the metal did not yield. This is based on cooling down the shell to 80K from 300K with the shell side helium on the outside of the shell at 300K. This is the largest change in temperature that occurs during operation. During normal operations, the temperature swings are not nearly this large, however temperatures down to 80K are not unusual (LN2 overflowing pot). The highest temperatures are typically 260K. The analysis makes no attempt to estimate the stress concentration factor at this weld but there is no doubt that it is greater than 1. No estimate as to the number of cycles to cause failure was calculated nor any estimate as to the actual number of cycles was made

  17. A Freezable Heat Exchanger for Space Suit Radiator Systems

    Science.gov (United States)

    Nabity, James A.; Mason, Georgia R.; Copeland, Robert J.; Trevino, Luis a.

    2008-01-01

    During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut s metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 1.58 kg (3.48 lbm), an additional 3.6 kg (8 lbm) of water are loaded into the unit, most of which is sublimated and lost to space, thus becoming the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the astronaut during an EVA can reduce the amount of expendable water consumed in the sublimator. Radiators have no moving parts and are thus highly reliable. Past freezable radiators have been too heavy, but the weight can be greatly reduced by placing a small and freeze tolerant heat exchanger between the astronaut and radiator, instead of making the very large radiator freeze tolerant. Therefore, the key technological innovation to improve space suit radiator performance was the development of a lightweight and freezable heat exchanger that accommodates the variable heat load generated by the astronaut. Herein, we present the heat transfer performance of a newly designed heat exchanger that endured several freeze / thaw cycles without any apparent damage. The heat exchanger was also able to continuously turn down or turn up the heat rejection to follow the variable load.

  18. Perkins Tube: a noteworthy contribution to heat exchanger technology

    Energy Technology Data Exchange (ETDEWEB)

    Reay, D.A.

    1982-01-01

    This paper describes the history of the Perkins Tube, its construction, performance, and applications. Information on patents is also included. This type of heat exchanger was successfully used for waste heat recovery for more than a century, operating with high pressure hot water.

  19. Handbook for heat exchangers and tube banks design

    CERN Document Server

    Annaratone, Donatello

    2010-01-01

    The motion of fluids is never in parallel- or counter-flow in heat exchangers and tube banks, leading to complexities in the equations for calculating their transferred heat and temperatures. This review of the topic includes 70 design and verification tables.

  20. Construction of Air-Cooled Heat Exchanger in Reprocessing Plant

    International Nuclear Information System (INIS)

    A large scale Air-Cooled Heat Exchanger for Rokkasho Reprocessing Plant, Aomori prefecture, has been constructed and is now under pre-operation. It is classified as 'aseismic class As', as a key facility of safety equipment from the perspective of the final cooling unit of nuclear decayed heat generated by spent fuel stored in a pool. Design criteria of heat transfer, mechanical construction, winterization and corrosion prevention for this type of exchanger are shown in comparison with an exchanger for general refinery service. The aseismic design method for the exchanger is also shown including a fan driving unit as the rotational equipment referred to in the JEAG4601-1991 Supplement. According to the pre-operation report, the maximum amplitude of vibration at a typical bearing of the fan shaft measured about 50 micro meters peak to peak. Other operational data showed good results compared to design conditions. (author)

  1. Renormalized anisotropic exchange for representing heat assisted magnetic recording media

    Science.gov (United States)

    Jiao, Yipeng; Liu, Zengyuan; Victora, R. H.

    2015-05-01

    Anisotropic exchange has been incorporated in a description of magnetic recording media near the Curie temperature, as would be found during heat assisted magnetic recording. The new parameters were found using a cost function that minimized the difference between atomistic properties and those of renormalized spin blocks. Interestingly, the anisotropic exchange description at 1.5 nm discretization yields very similar switching and magnetization behavior to that found at 1.2 nm (and below) discretization for the previous isotropic exchange. This suggests that the increased accuracy of anisotropic exchange may also reduce the computational cost during simulation.

  2. Experimental study of heat transfer in a heat exchanger with rectangular channels

    International Nuclear Information System (INIS)

    This paper presents the results of an experimental study related to characterisation of a mini channel heat exchanger. Such heat exchanger may be used in water cooling of electronic components. The results obtained show the efficiency of this exchanger even with very low water flow rates. Indeed, in spite of the importance of the extracted heat fluxes which can reach about 50Kw/m2, the temperature of the cooled Aluminium bloc remained always lower than the tolerated threshold of 80 degree in electronic cooling. Moreover, several thermal characteristics such as equivalent thermal resistance of the exchanger, the average internal convective heat transfer coefficient and the increase in the temperature of the cooling water have been measured. The results presented have been obtained with in quinconcerectangular mini-channel heat exchanger, with a hydraulic diameter Dh = 2mm. NOMENCLATURE h D Hydraulic diameter (mm). int

  3. The design and fabrication of a Stirling engine heat exchanger module with an integral heat pipe

    Science.gov (United States)

    Schreiber, Jeffrey G.

    1988-01-01

    The conceptual design of a free-piston Stirling Space Engine (SSE) intended for space power applications has been generated. The engine was designed to produce 25 kW of electric power with heat supplied by a nuclear reactor. A novel heat exchanger module was designed to reduce the number of critical joints in the heat exchanger assembly while also incorporating a heat pipe as the link between the engine and the heat source. Two inexpensive verification tests are proposed. The SSE heat exchanger module is described and the operating conditions for the module are outlined. The design process of the heat exchanger modules, including the sodium heat pipe, is briefly described. Similarities between the proposed SSE heat exchanger modules and the LeRC test modules for two test engines are presented. The benefits and weaknesses of using a sodium heat pipe to transport heat to a Stirling engine are discussed. Similarly, the problems encountered when using a true heat pipe, as opposed to a more simple reflux boiler, are described. The instruments incorporated into the modules and the test program are also outlined.

  4. Compact interior heat exchangers for CO{sub 2} mobile heat pumping systems

    Energy Technology Data Exchange (ETDEWEB)

    Hafner, Armin

    2003-07-01

    The natural refrigerant carbon dioxide (CO{sub 2}) offers new possibilities for design of flexible, efficient and environmentally safe mobile heat pumping systems. As high-efficient car engines with less waste heat are developed, extra heating of the passenger compartment is needed in the cold season. A reversible transcritical CO{sub 2} system with gliding temperature heat rejection can give high air delivery temperature which results in rapid heating of the passenger compartment and rapid defogging or defrosting of windows. When operated in cooling mode, the efficiency of transcritical CO{sub 2} systems is higher compared to common (HFC) air conditioning systems, at most dominant operating conditions. Several issues were identified for the design of compact interior heat exchangers for automotive reversible CO{sub 2} heat pumping systems. Among theses issues are: (1) Refrigerant flow distribution, (2) Heat exchanger fluid flow circuiting, (3) Air temperature uniformity downstream of the heat exchanger, (4) Minimization of temperature approach, (5) Windshield flash fogging due to retained water inside the heat exchanger, (6) Internal beat conduction in heating mode operation, and (7) Refrigerant side pressure drop In order to provide a basis for understanding these issues, the author developed a calculation model and set up a test facility and investigated different prototype heat exchangers experimentally.

  5. Integrated system of nuclear reactor and heat exchanger

    International Nuclear Information System (INIS)

    The invention concerns PWRs in which the heat exchanger is associated with a pressure vessel containing the core and from which it can be selectively detached. This structural configuration applies to electric power generating uses based on land or on board ships. An existing reactor of this kind is fitted with a heat exchanger in which the tubes are 'U' shaped. This particular design of heat exchangers requires that the ends of the curved tubes be solidly maintained in a tube plate of great thickness, hence difficult to handle and to fabricate and requiring unconventional fine control systems for the control rods and awkward coolant pump arrangements. These complications limit the thermal power of the system to level below 100 megawatts. On the contrary, the object of this invention is to provide a one-piece PWR reactor capable of reaching power levels of 1500 thermal megawatts at least. For this, a pressure vessel is provided in the cylindrical assembly with not only a transversal separation on a plane located between the reactor and the heat exchanger but also a cover selectively detachable which supports the fine control gear of the control rods. Removing the cover exposes a part of the heat exchanger for easy inspection and maintenance. Further, the heat exchanger can be removed totally from the pressure vessel containing the core by detaching the cylindrical part, which composes the heat exchanger section, from the part that holds the reactor core on a level witthat holds the reactor core on a level with the transversal separation

  6. Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge

    2011-04-01

    The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. The intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding.

  7. Laminar fluid flow and heat transfer in a fin-tube heat exchanger with vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Yanagihara, J.I.; Rodriques, R. Jr. [Polytechnic School of Univ. of Sao Paolo, Sao Paolo (Brazil). Dept. of Mechanical Engineering

    1996-12-31

    Development of heat transfer enhancement techniques for fin-tube heat exchangers has great importance in industry. In recent years, heat transfer augmentation by vortex generators has been considered for use in plate fin-tube heat exchangers. The present work describes a numerical investigation about the influence of delta winglet pairs of vortex generators on the flow structure and heat transfer of a plate fin-tube channel. The Navier-Stokes and Energy equations are solved by the finite volume method using a boundary-fitted coordinate system. The influence of vortex generators parameters such as position, angle of attack and aspect ratio were investigated. Local and global influences of vortex generators in heat transfer and flow losses were analyzed by comparison with a model using smooth fin. The results indicate great advantages of this type of geometry for application in plate fin-tube heat exchangers, in terms of large heat transfer enhancement and small pressure loss penalty. (author)

  8. Wall mounted heat exchanger characterization. [cryogenic propellant tanks

    Science.gov (United States)

    Bullard, B. R.

    1975-01-01

    Analytical models are presented for describing the heat and mass transfer and the energy distribution in the contents of a cryogenic propellant tank, under varying gravity levels. These models are used to analytically evaluate the effectiveness of a wall heat exchanger as a means of controlling the pressure in the tank during flight and during fill operations. Pressure and temperature histories are presented for tanks varying in size from 4 to 22.5 feet in diameter and gravity levels from 0-1. Results from the subscale test program, utilizing both non-cryogenic and cryogenic fluid, designed to evaluate a tank wall heat exchanger are described and compared with the analytical models. Both the model and test results indicate that a passive tank wall heat exchanger can effectively control tank pressure. However, the weight of such a system is considerably higher than that of an active mixer system.

  9. Practical thermodynamic tools for heat exchanger design engineers

    International Nuclear Information System (INIS)

    This book provides an approach to the design of heat exchanger equipment as is used throughout the mechanical and chemical industries, offering practical information that goes beyond the present state of this applied art. It introduces a number of guidelines to be satisfied by physical laws in thermal engineering, treating thermodynamics, fluid mechanics, and heat transfer as a unified body of knowledge. This is followed by a discussion of the Bernouli theorem and friction factor, with a comparison of the many equations proposed. There is coverage of the complexities of two-phase flow, illustrated by equipment in the refrigeration industry. Contains detailed examples of a variety of heat exchangers, and introduces reduced properties for boiling and condensation. Text concludes with a discussion of departure from ideal analytical conditions in heat exchangers

  10. Energy and capital targets for constrained heat exchanger networks

    Scientific Electronic Library Online (English)

    L.C., Santos; R.J., Zemp.

    2000-12-01

    Full Text Available A new procedure for estimating area and capital cost targets of constrained heat exchanger networks is presented. The method allows for match constrained networks and exchangers with more than one tube pass. The procedure is based on modelling the problem as a non-linear formulation where the forbid [...] den exchanger matches are included as constraints and the temperature difference correction due to multipass exchangers is included in the model. The difficulty of converging to a solution due to the additional non-linear constraints imposed by the multipass exchangers required the use of a two-level approach: at the inner level, the area targets for simple pass exchangers are obtained, and at the outer level the temperature difference required for multipass exchangers are computed and fed back to the inner level. The procedure is repeated until an appropriate tolerance between two iterations was achieved. A comparison between the estimated exchanger areas and costs estimated by the new procedure and the area and costs obtained from the final heat exchanger design shows a very good agreement.

  11. Sprinkled Heat Exchangers in Evaporation Mode

    Directory of Open Access Journals (Sweden)

    Pospisil J.

    2013-04-01

    Full Text Available The paper presents research on the heat transfer at sprinkled tube bundles situated in a test chamber at atmospheric pressure and low-pressure. Dynamic effects of physical quantities influencing the heat transfer coefficient during boiling are examined experimentally. Experimental results were achieved by means of balance measuring using thermocouple probes and by analysis of thermal diagrams created during operation periods.

  12. Sprinkled Heat Exchangers in Evaporation Mode

    OpenAIRE

    Pospisil J.; Snajdarek L.; Kracik P.

    2013-01-01

    The paper presents research on the heat transfer at sprinkled tube bundles situated in a test chamber at atmospheric pressure and low-pressure. Dynamic effects of physical quantities influencing the heat transfer coefficient during boiling are examined experimentally. Experimental results were achieved by means of balance measuring using thermocouple probes and by analysis of thermal diagrams created during operation periods.

  13. Analysis of heat transfers inside counterflow plate heat exchanger augmented by an auxiliary fluid flow.

    Science.gov (United States)

    Khaled, A-R A

    2014-01-01

    Enhancement of heat transfers in counterflow plate heat exchanger due to presence of an intermediate auxiliary fluid flow is investigated. The intermediate auxiliary channel is supported by transverse conducting pins. The momentum and energy equations for the primary fluids are solved numerically and validated against a derived approximate analytical solution. A parametric study including the effect of the various plate heat exchanger, and auxiliary channel dimensionless parameters is conducted. Different enhancement performance indicators are computed. The various trends of parameters that can better enhance heat transfer rates above those for the conventional plate heat exchanger are identified. Large enhancement factors are obtained under fully developed flow conditions. The maximum enhancement factors can be increased by above 8.0- and 5.0-fold for the step and exponential distributions of the pins, respectively. Finally, counterflow plate heat exchangers with auxiliary fluid flows are recommended over the typical ones if these flows can be provided with the least cost. PMID:24719572

  14. Fast reactor power plant design having heat pipe heat exchanger

    Science.gov (United States)

    Huebotter, Paul R. (Western Springs, IL); McLennan, George A. (Downers Grove, IL)

    1985-01-01

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  15. Fast reactor power plant design having heat pipe heat exchanger

    Science.gov (United States)

    Huebotter, P.R.; McLennan, G.A.

    1984-08-30

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  16. An analysis of the PRHR system heat exchanger performance

    International Nuclear Information System (INIS)

    A study on the thermal hydraulic characteristics of the Passive Residual Heat Removal(PRHR) system employed in Advanced Light Water Reactors(ALWR) has been performed. A simple one-dimensional lumped parameter model has been developed to predict the time dependent primary system temperature resulting from the heat transfer through the heat exchanger tube to the In-containment Refueling Water Storage Tank. Three time-dependent governing equations and one constitutive equation for the heat exchanger are discretized and a simplified computer program has been developed using Newton-Raphson method. For verification of the developed computer program, the calculation results are compared with the analysis data reported in the Westinghouse Standard Safety Analysis Report(SSAR). Overall results are similar to those of SSAR. The sensitivity analyses for important design parameters of the heat exchanger such as tube wall thickness, tube length, and tube inner diameters are also performed to see the effects on heat transfer rate through the heat exchanger tube

  17. Plastic heat exchangers: a state-of-the-art review

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D; Holtz, R E; Koopman, R N; Marciniak, T J; MacFarlane, D R

    1979-07-01

    Significant increases in energy utilization efficiency can be achieved through the recovery of low-temperature rejected heat. This energy conserving possibility provides incentive for the development of heat exchangers which could be employed in applications where conventional units cannot be used. Some unique anticorrosion and nonstick characteristics of plastics make this material very attractive for heat recovery where condensation, especially sulfuric acid, and fouling occur. Some of the unique characteristics of plastics led to the commercial success of DuPont's heat exchangers utilizing polytetrafluoroethylene (trade name Teflon) tubes. Attributes which were exploited in this application were the extreme chemical inertness of the material and its flexibility, which enabled utilization in odd-shaped spaces. The wide variety of polymeric materials available ensures chemical inertness for almost any application. Lower cost, compoundability with fillers to improve thermal/mechanical properties, and versatile fabrication methods are incentives for many uses. Also, since many plastics resist corrosion, they can be employed in lower temperature applications (< 436 K), where condensation can occur and metal units have been unable to function. It is clear that if application and design can be merged to produce a cost-effective alternate to present methods of handling low-temperature rejected heat, then there is significant incentive for plastic heat exchangers, to replace traditional metallic heat exchangers or to be used in services where metals are totally unsuited.

  18. Analysis of Heat Transfers inside Counterflow Plate Heat Exchanger Augmented by an Auxiliary Fluid Flow

    OpenAIRE

    A.-R. A. Khaled

    2014-01-01

    Enhancement of heat transfers in counterflow plate heat exchanger due to presence of an intermediate auxiliary fluid flow is investigated. The intermediate auxiliary channel is supported by transverse conducting pins. The momentum and energy equations for the primary fluids are solved numerically and validated against a derived approximate analytical solution. A parametric study including the effect of the various plate heat exchanger, and auxiliary channel dimensionless parameters is conduct...

  19. Experimental Heat Transfer Studies of Water in Corrugated Plate Heat Exchangers: Effect of Corrugation Angle

    OpenAIRE

    B Sreedhara Rao, Varun S.

    2014-01-01

    : In the present investigations heat transfer studies are made in three different types of corrugated plate heat exchangers having a length of 30 cm and width of 10 cm. The corrugated channel has a spacing of 5 mm. Three different corrugation angles are used in this study which are 300 , 400 and 500 . Water is taken as test fluid as well as the heating medium. The wall temperatures are measured along the length of exchanger at seven different locations by...

  20. Advanced heat-pipe heat exchanger and microprocessor-based modulating burner controls development

    Science.gov (United States)

    Lowenstein, A.; Cohen, B.; Feldman, S.; Marsala, J.; Spatz, M.; Smith, E.; Tandler, J.

    1988-02-01

    The work presented includes: (1) the development of a heat-pipe condensing heat exchanger; (2) the development of a nominal 100,000 Btu/hr modulating air/gas valve; (3) the experimental performance studies of a water/copper thermosyphons; (4) the field operation of a six-zone warm-air heating system; (5) the adaptation of a conventional venturi-type burner to modulation; and (6) the results of a one-day workshop for manufacturers of HVAC equipment on heat-pipe heat exchangers. Several of the accomplishments of the project included: An air/gas valve was adapted to furnaces with heat-pipe and drum-type heat exchangers, providing these furnaces with over a 5 to 1 turndown capability. A six-zone warm-air heating system was tested for two winters with the modulating furnaces previously described. A data base for the application of copper/water thermosyphons was started. A ten-tube heat-pipe heat exchanger was incorporated into a conventional heat exchanger with only a small increase in the furnace's dimensions.

  1. Carbon-Fiber Brush Heat Exchangers

    Science.gov (United States)

    Knowles, Timothy R.

    2004-01-01

    Velvetlike and brushlike pads of carbon fibers have been proposed for use as mechanically compliant, highly thermally conductive interfaces for transferring heat. A pad of this type would be formed by attaching short carbon fibers to either or both of two objects that one desires to place in thermal contact with each other. The purpose of using a thermal-contact pad of this or any other type is to reduce the thermal resistance of an interface between a heat source and a heat sink.

  2. Effect of nanoparticles on heat transfer in mini double-pipe heat exchangers in turbulent flow

    Science.gov (United States)

    Aghayari, Reza; Maddah, Heydar; Ashori, Fatemeh; Hakiminejad, Afshin; Aghili, Mehdi

    2015-03-01

    In this work, heat transfer of a fluid containing nanoparticles of aluminum oxide with the water volume fraction (0.1-0.3) percent has been reported. Heat transfer of the fluid containing nano water aluminum oxide with a diameter of about 20 nm in a horizontal double pipe counter flow heat exchanger under turbulent flow conditions was studied. The results showed that the heat transfer of nanofluid in comparison with the heat transfer of fluid is slightly higher than 12 percent.

  3. Development of User-Friendly Software to Design Dairy Heat Exchanger and Performance Evaluation

    Directory of Open Access Journals (Sweden)

    DipankarMandal

    2015-02-01

    Full Text Available The paper proposes a calculation algorithm and development of a software in Visual Basic(Visual Studio 2012 Express Desktop used in heat transfer studies when different heat exchangers are involved (e.g. Helical Type Triple Tube Heat Exchanger , Plate Type Heat Exchanger.It includes the easy calculation of heat transfer coefficient and followed by the design and simulation of heat exchanger design parameter by inputting general known parameters of a heat exchanger into the developed software—-?DAIRY –HE ?. A parametric study is conducted using the software interface to determine the length of tubes or dimensions of heat exchanger.

  4. Compact heat exchanger technologies for the HTRs recuperator application

    International Nuclear Information System (INIS)

    Modern HTR nuclear power plants which are now under development (projects GT-MHR, PBMR) are based on the direct cycle concept. This concept leads to a more important efficiency compared to the steam cycle but requires the use of high performance components such as an helium/helium heat exchanger called recuperator to guarantee the cycle efficiency. Using this concept, a net plant efficiency of around 50% can be achieved in the case of an electricity generating plant. As geometric constraints are particularly important for such a gas reactor to limit the size of the primary vessels, compact heat exchangers operating at high pressure and high temperature are attractive potential solutions for the recuperator application. In this frame, Framatome and CEA have reviewed the various technologies of compact heat exchangers used in industry. The first part of the paper will give a short description of the heat exchangers technologies and their ranges of application. In a second part, a selection of potential compact heat exchangers technologies are proposed for the recuperator application. This selection will be based upon their capabilities to cope with the operating conditions parameters (pressure, temperature, flow rate) and with other parameters such as fouling, corrosion, compactness, weight, maintenance and reliability. (author)

  5. Intensification of heat exchange processes in cryogenic plants and systems

    International Nuclear Information System (INIS)

    This paper reports on heat exchange processes and apparatus that are responsible for efficient and reliable performance of cryogenic equipment. Certain institutes and companies in USSR have performed extensive investigations, engineering and test works to intensify heat exchange processes and to improve designs of heat exchange apparatus. Presently, the cryogenic platts and systems are furnished with the apparatus wherein use is made of effective heat exchange components of various designs. Thus, when manufacturing coiled condenser-evaporators, liquid subcoolers for large air separation plants, and coolers for cryogenic product storage systems, use is made of aluminum tubes with external transverse finning of various fin heights. To manufacture the coolers and gasificators for various cryogenic product, tubes with external capillary-porous coating, as well as tubes with internal longitudinal fining using notched aluminum packing find wide application. Plate-fin aluminum heat exchangers with various packings are used in cooling units, condenser-evaporators and cryogenic liquid subcoolers. Copper tubes with wire-type external transversal finning are employed for helium liquefier and refrigerator apparatus

  6. Experimental investigation of water sprayed finned heat exchanger tube bundles

    International Nuclear Information System (INIS)

    Experimental investigations have been made to study the performance of two finned tube-bundle heat exchangers (FORGO type) when wetted by water sprays. The heat exchangers are designed to cool water in a dry cooling tower. The test-elements had a frontal area of 1 m2. The water sprays were created by 20 nozzles, 200 mm in front of the heat exchangers. Air velocities at the inlet of the coolers were in the range 0,8 m/s to 12 m/s and initial temperature differences ITD reached 45 degrees C. The test facility was designed to determine the combined latent and sensible heat fluxes in the wetted heat exchanger, the airside pressure drop and the air humidity and temperature at the exchanger inlet and outlet, and to measure the weight of the water wetting the cooler's surface. The sprayed test elements were investigated in different positions, but most of the experiments were carried out in the position with the fins horizontal

  7. Heat exchangers selection, rating, and thermal design

    CERN Document Server

    Kakaç, Sadik; Pramuanjaroenkij, Anchasa

    2012-01-01

    Praise for the Bestselling Second EditionThe first edition of this work gathered in one place the essence of important information formerly scattered throughout the literature. The second edition adds the following new information: introductory material on heat transfer enhancement; an application of the Bell-Delaware method; new correlation for calculating heat transfer and friction coefficients for chevron-type plates; revision of many of the solved examples and the addition of several new ones.-MEMagazine

  8. Isolation condenser with shutdown cooling system heat exchanger

    International Nuclear Information System (INIS)

    A process is described for cooling a nuclear boiling water reactor, the reactor having a reactor core for heating reactor coolant to generate steam, a turbine-generator for receiving the steam and generating electric power, and a feedwater system for receiving spent steam and providing feedwater back into the reactor, the process comprising: providing a condenser cooling shell; filling the condenser cooling shell with nonradioactive coolant; providing a heat exchange loop transpiercing the shell for effecting heat exchange with the nonradioactive coolant; connecting the loop in a shunt independent of the turbine generator during emergency shutdown of the reactor to dissipate heat from the steam and the rector coolant; and venting the nonradioactive coolant to atmopshere when the nonradioactive coolant is heated to boiling

  9. Liquid Salt Heat Exchanger Technology for VHTR Based Applications

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark; Sridhara, Kumar; Allen, Todd; Peterson, Per

    2012-10-11

    The objective of this research is to evaluate performance of liquid salt fluids for use as a heat carrier for transferring high-temperature process heat from the very high-temperature reactor (VHTR) to chemical process plants. Currently, helium is being considered as the heat transfer fluid; however, the tube size requirements and the power associated with pumping helium may not be economical. Recent work on liquid salts has shown tremendous potential to transport high-temperature heat efficiently at low pressures over long distances. This project has two broad objectives: To investigate the compatibility of Incoloy 617 and coated and uncoated SiC ceramic composite with MgCl2-KCl molten salt to determine component lifetimes and aid in the design of heat exchangers and piping; and, To conduct the necessary research on the development of metallic and ceramic heat exchangers, which are needed for both the helium-to-salt side and salt-to-process side, with the goal of making these heat exchangers technologically viable. The research will consist of three separate tasks. The first task deals with material compatibility issues with liquid salt and the development of techniques for on-line measurement of corrosion products, which can be used to measure material loss in heat exchangers. Researchers will examine static corrosion of candidate materials in specific high-temperature heat transfer salt systems and develop an in situ electrochemical probe to measure metallic species concentrations dissolved in the liquid salt. The second task deals with the design of both the intermediate and process side heat exchanger systems. Researchers will optimize heat exchanger design and study issues related to corrosion, fabrication, and thermal stresses using commercial and in-house codes. The third task focuses integral testing of flowing liquid salts in a heat transfer/materials loop to determine potential issues of using the salts and to capture realistic behavior of the salts in a small scale prototype system. This includes investigations of plugging issues, heat transfer, pressure drop, and the corrosion and erosion of materials in the flowing system.

  10. Air-side particulate fouling of microchannel heat exchangers: Experimental comparison of air-side pressure drop and heat transfer with plate-fin heat exchanger

    OpenAIRE

    Bell, Ian; Groll, Eckhard

    2011-01-01

    In this study, the air-side pressure drop and heat transfer performance of plate-fin and microchannel coils were tested under clean and fouled conditions. The heat exchangers were tested with two different types of dust, ASHRAE Standard Dust and Arizona Road Test Dust. The ASHRAE Standard Dust was found to have a very significant impact on the pressure drop of the microchannel heat exchanger, increasing the air-side pressure drop of the microchannel heat exchanger over 200% for a dust injec...

  11. System design package: Maxi-therm S-101 heating module, passive heat exchanger

    Science.gov (United States)

    1977-01-01

    This document is the specification which establishes the requirements for the design, installation, and performance of a passive heat exchanger module with auxiliary heaters for use with solar heating systems. It designates the Interim Performance Criteria applicable to the subsystem and defines any deviations. This document also includes the manufacturing instructions and required materials and parts for the Maxitherm S101 Heating Module.

  12. Inverse heat transfer problem in digital temperature control in plate fin and tube heat exchangers

    Science.gov (United States)

    Taler, Dawid; Sury, Adam

    2011-12-01

    The aim of the paper is a steady-state inverse heat transfer problem for plate-fin and tube heat exchangers. The objective of the process control is to adjust the number of fan revolutions per minute so that the water temperature at the heat exchanger outlet is equal to a preset value. Two control techniques were developed. The first is based on the presented mathematical model of the heat exchanger while the second is a digital proportional-integral-derivative (PID) control. The first procedure is very stable. The digital PID controller becomes unstable if the water volumetric flow rate changes significantly. The developed techniques were implemented in digital control system of the water exit temperature in a plate fin and tube heat exchanger. The measured exit temperature of the water was very close to the set value of the temperature if the first method was used. The experiments showed that the PID controller works also well but becomes frequently unstable.

  13. Experimental investigation on heat transfer analysis of conical coil heat exchanger with 90° cone angle

    Science.gov (United States)

    Purandare, Pramod S.; Lele, Mandar M.; Gupta, Raj Kumar

    2015-03-01

    In the present study, an experimental investigation on thermal performance of the conical coil heat exchanger with 90° conical coil heat exchanger is reported. Three different conical coil heat exchangers of same mean coil diameter (Dm = 200 mm) with different tube diameters ( di = 8, 10, 12.5 mm) are analyzed under steady state condition. The analysis is carried out for the tube side hot fluid flow range of 10-100 lph ( Re = 500-5,000), while the shell side flow range of 30-90 lph. The data available from experimentation leads to evaluate heat transfer coefficients for inside and outside the tube of the conical coil heat exchanger by Wilsons plot method. The calculations are further extended to estimate Nusselt Number ( Nu) and effectiveness. The empirical correlations are proposed for predicting Nu and the outlet temperatures of hot and cold fluids. The predicted empirical correlations show reasonable agreement with the experimental results within the given range of parameters.

  14. Materials, Turbomachinery and Heat Exchangers for Supercritical CO2 Systems

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark; Nellis, Greg; Corradini, Michael

    2012-10-19

    The objective of this project is to produce the necessary data to evaluate the performance of the supercritical carbon dioxide cycle. The activities include a study of materials compatibility of various alloys at high temperatures, the heat transfer and pressure drop in compact heat exchanger units, and turbomachinery issues, primarily leakage rates through dynamic seals. This experimental work will serve as a test bed for model development and design calculations, and will help define further tests necessary to develop high-efficiency power conversion cycles for use on a variety of reactor designs, including the sodium fast reactor (SFR) and very high-temperature gas reactor (VHTR). The research will be broken into three separate tasks. The first task deals with the analysis of materials related to the high-temperature S-CO{sub 2} Brayton cycle. The most taxing materials issues with regard to the cycle are associated with the high temperatures in the reactor side heat exchanger and in the high-temperature turbine. The system could experience pressures as high as 20MPa and temperatures as high as 650°C. The second task deals with optimization of the heat exchangers required by the S-CO{sub 2} cycle; the S-CO{sub 2} flow passages in these heat exchangers are required whether the cycle is coupled with a VHTR or an SFR. At least three heat exchangers will be required: the pre-cooler before compression, the recuperator, and the heat exchanger that interfaces with the reactor coolant. Each of these heat exchangers is unique and must be optimized separately. The most challenging heat exchanger is likely the pre-cooler, as there is only about a 40°C temperature change but it operates close to the CO{sub 2} critical point, therefore inducing substantial changes in properties. The proposed research will focus on this most challenging component. The third task examines seal leakage through various dynamic seal designs under the conditions expected in the S-CO{sub 2} cycle, including supercritical, choked, and two-phase flow conditions.

  15. Water Vapor and Heat Exchanges over Lakes

    OpenAIRE

    Vercauteren, Nikki

    2011-01-01

    Quantifying the interaction of the atmosphere and water surfaces is of great importance for water resources management, climate studies of ocean-atmosphere exchange and regional climate in coastal areas. Atmospheric dynamics over water surfaces have generally received less attention than land-atmosphere interactions due to difficulties in operating field studies. In this research we are trying to improve the physical parameterizations of lake-atmosphe...

  16. USING LIGA BASED MICROFABRICATION TO IMPROVE OVERALL HEAT TRANSFER EFFICIENCY OF PRESSURIZED WATER REACTOR: I. Effects of Different Micro Pattern on Overall Heat Transfer

    International Nuclear Information System (INIS)

    The Pressurized Water Reactors (PWRs in Figure 1) were originally developed for naval propulsion purposes, and then adapted to land-based applications. It has three parts: the reactor coolant system, the steam generator and the condenser. The Steam generator (a yellow area in Figure 1) is a shell and tube heat exchanger with high-pressure primary water passing through the tube side and lower pressure secondary feed water as well as steam passing through the shell side. Therefore, a key issue in increasing the efficiency of heat exchanger is to improve the design of steam generator, which is directly translated into economic benefits. The past research works show that the presence of a pin-fin array in a channel enhances the heat transfer significantly. Hence, using microfabrication techniques, such as LIGA, micro-molding or electroplating, some special microstructures can be fabricated around the tubes in the heat exchanger to increase the heat-exchanging efficiency and reduce the overall size of the heat-exchanger for the given heat transfer rates. In this paper, micro-pin fins of different densities made of SU-8 photoresist are fabricated and studied to evaluate overall heat transfer efficiency. The results show that there is an optimized micro pin-fin configuration that has the best overall heat transfer effects

  17. Remote field eddy current examination of heat exchangers

    International Nuclear Information System (INIS)

    Heat exchanger tubes can be examined for metal loss using remote field eddy current (RFEC). RFEC is an electromagnetic technique that produces a fast, economical, and thorough heat exchanger tube assessment. With RFEC services available, damaged tubes can be found and plugged, keeping heat exchangers operating near peak efficiency and reducing the risk of an unplanned shutdown. The technique is becoming well recognised in industry. RFEC uses a low-frequency field to penetrate ferromagnetic tube walls which are not practical to inspect with conventional eddy current. Internal and external metal loss is detected with nearly equal sensitivity. RFEC data from the field are presented with examples of different types of metal loss signals

  18. Preliminary results of statistical dynamic experiments on a heat exchanger

    International Nuclear Information System (INIS)

    The inherent noise signals present in a heat exchanger have been recorded and analysed in order to determine some of the statistical dynamic characteristics of the heat exchanger. These preliminary results show that the primary side temperature frequency response may be determined by analysing the inherent noise. The secondary side temperature frequency response and cross coupled temperature frequency responses between primary and secondary are poorly determined because of the presence of a non-stationary noise source in the secondary circuit of this heat exchanger. This may be overcome by correlating the dependent variables with an externally applied noise signal. Some preliminary experiments with an externally applied random telegraph type of signal are reported. (author)

  19. Flow-induced vibration of component cooling water heat exchangers

    International Nuclear Information System (INIS)

    This paper presents an evaluation of flow-induced vibration problems of component cooling water heat exchangers in one of Taipower's nuclear power stations. Specifically, it describes flow-induced vibration phenomena, tests to identify the excitation mechanisms, measurement of response characteristics, analyses to predict tube response and wear, various design alterations, and modifications of the original design. Several unique features associated with the heat exchangers are demonstrated, including energy-trapping modes, existence of tube-support-plate (TSP)-inactive modes, and fluidelastic instability of TSP-active and -inactive modes. On the basis of this evaluation, the difficulties and future research needs for the evaluation of heat exchangers are identified. 11 refs., 19 figs., 3 tabs

  20. The advantages of minichannel heat exchangers; De voordelen van minichannelwarmtewisselaars

    Energy Technology Data Exchange (ETDEWEB)

    Kauffeld, M. [Institute of Refrigeratfon, Air Conditioning and Environrnental Engineering, Karlsruhe University of Applied Sciences, Karlsruhe (Germany)

    2011-11-15

    This article gives an overview of the application of minichannel heat exchangers in stationary refrigeration and air-conditioning systems. Benefits employing minichannel heat exchangers are reduced global warming impact of the refrigeration and air-conditioning system due to increased efficiency and reduced refrigerant charge, as well as improved recyclability, reduced size and weight as well as cost of the heat exchanger. [Dutch] Dit artikel geeft een overzicht van de toepassing van minichannelwarmtewisselaars in stationaire koel- en airconditioningsystemen. Voordelen van het gebruik van minichannelwarmtewisselaars zijn de verminderde invloed op de opwarming van de aarde van de koel- en airconditioningsystemen als gevolg van verhoogde efficientie en vermindering van koudemiddel, alsook een verbeterde recyclebaarheid, kleinere afmetingen, gewicht en kostprijs van de warmtewisselaar.

  1. Application of Genetic Algorithm on Heat Exchanger Network Optimization

    OpenAIRE

    Shahram Ghanizadeh; Mojtaba Sedigh Fazli

    2013-01-01

    Synthesis of Heat Exchanger Networks (HENs) is inherently a Mixed Integer and Nonlinear Programming (MINLP) problem. Solving such problems leads to difficulties in optimization of continuous and binary variables. This study presents a new efficient and robust method in which structural parameters are optimized by G.A. and continuous variables are handled due to a modified objective function for maximum energy recovery. Node representation is used for addressing the exchangers and networks con...

  2. Heat exchange mediated by a quantum system.

    Science.gov (United States)

    Panasyuk, George Y; Levin, George A; Yerkes, Kirk L

    2012-08-01

    We consider heat transfer between two thermal reservoirs mediated by a quantum system using the generalized quantum Langevin equation. The thermal reservoirs are treated as ensembles of oscillators within the framework of the Drude-Ullersma model. General expressions for the heat current and thermal conductance are obtained for arbitrary coupling strength between the reservoirs and the mediator and for different temperature regimes. As an application of these results we discuss the origin of Fourier's law in a chain of large but finite subsystems coupled to each other by the quantum mediators. We also address a question of anomalously large heat current between the scanning tunneling microscope (STM) tip and substrate found in a recent experiment. The question of minimum thermal conductivity is revisited in the framework of scaling theory as a potential application of the developed approach. PMID:23005731

  3. THE STUDY OF HEAT EXCHANGE DYNAMICS OF VENTILATION EMISSIONS ON HEAT UTILIZATION WITH CONSIDERATION FOR WATER VAPOUR CONDENSATION

    Directory of Open Access Journals (Sweden)

    V. S. Ezhov

    2010-10-01

    Full Text Available Problem statement. Known corrosion-resistant air heaters made from glass tubes have not received wide acceptance because of some defects (low mechanical strength, temperature deformation, complexity and unreliability of assemblies, etc., whereas the structure of insulated glazing heat exchange devices has some advantages. The aim of present paper is to study heat exchange dynamics of venti-lation emissions in insulated glazing air heater on heat utilization with considera-tion for water vapor condensation.Results and conclusions. The study of heat exchange in channel insulated glazing heat exchanger at heat utilization of corrosion-active ventilation emissions is car-ried out with consideration for water vapour condensation on heat-exchange sur-faces. It is shown that the rate of heat exchange under longitudinal flow of vertical glass surfaces air heated and steam-and-air cooled is 15—20 % lower than the rate of heat exchange at air cooling.

  4. Full analysis of low finned tube heat exchangers

    International Nuclear Information System (INIS)

    In this paper, first the governing parameters characterizing low-finned tubes are reviewed. Second, the more important of the available performance correlations are compared with the available experimental data. The most reliable one can be employed to develop a pressure drop relationship, which has already been used in an algorithm for exchanger sizing. Also a means for the identification of advantages of low-finned tube heat exchangers over plain tube units has been developed. It has been recognized that for low-finned tube units there are some potential benefits to place certain liquids, particularly with high viscosities, in the shell side of heat exchangers rather than the tube side. These benefits can be obtained in both reduction of surface area and the number of shells required for a given duty. They result in heat exchangers, which are more compact and are also easier to construct. The performance evaluation of low-finned units, in terms of area benefits is not discussed in this paper. However, the results of this study will complete the author's investigation for low-finned tubes heat exchangers

  5. Exergy optimization in a steady moving bed heat exchanger.

    Science.gov (United States)

    Soria-Verdugo, A; Almendros-Ibáñez, J A; Ruiz-Rivas, U; Santana, D

    2009-04-01

    This work provides an energy and exergy optimization analysis of a moving bed heat exchanger (MBHE). The exchanger is studied as a cross-flow heat exchanger where one of the phases is a moving granular medium. The optimal MBHE dimensions and the optimal particle diameter are obtained for a range of incoming fluid flow rates. The analyses are carried out over operation data of the exchanger obtained in two ways: a numerical simulation of the steady-state problem and an analytical solution of the simplified equations, neglecting the conduction terms. The numerical simulation considers, for the solid, the convection heat transfer to the fluid and the diffusion term in both directions, and for the fluid only the convection heat transfer to the solid. The results are compared with a well-known analytical solution (neglecting conduction effects) for the temperature distribution in the exchanger. Next, the analytical solution is used to derive an expression for the exergy destruction. The optimal length of the MBHE depends mainly on the flow rate and does not depend on particle diameter unless they become very small (thus increasing sharply the pressure drop). The exergy optimal length is always smaller than the thermal one, although the difference is itself small. PMID:19426351

  6. Materials problems and enhancements for LWR heat exchangers in Taiwan

    International Nuclear Information System (INIS)

    This paper summarizes the investigated results of corrosion-related failures in LWR heat exchangers (main condensers and feedwater heaters) in Taiwan, including galvanic corrosion in Al-bronze tubesheets, erosion-corrosion in Cu-10Ni alloy tubes in both steam side and water side, and pitting corrosion in AISI 304 S. S. tubes of feedwater heaters. It also discusses the successes of various remedial actions implemented in the field for resolving these problems, and then some further investigations in LWR heat exchanger are described

  7. Mechanical design of heat exchangers and pressure vessel components

    International Nuclear Information System (INIS)

    The twenty-two chapters in this book are prefaced by brief descriptions of the computer codes referenced or listed within the pages that follow. The first chapter, which contains an outline of the more accepted heat-exchanger types and basic design considerations, is followed by another outlining various design-stress criteria. The next twenty chapters contain considerable detailed information concerning the design and operation of heat exchangers. The authors devote 121 pages to one of the most important design considerations, flow-induced vibration. Another chapter is dedicated to methods of seismic analysis. The remaining chapters address mechanical and thermal design as well as manufacturing

  8. Heat exchangers for high-temperature thermodynamic cycles

    International Nuclear Information System (INIS)

    The special requirements of heat exchangers for high temperature thermodynamic cycles are outlined and discussed with particular emphasis on cost and thermal stress problems. Typical approaches that have been taken to a comprehensive solution intended to meet all of the many boundary conditions are then considered by examining seven typical designs including liquid-to-liquid heat exchangers for nuclear plants, a heater for a closed cycle gas turbine coupled to a fluidized bed coal combustion chamber, steam generators for nuclear plants, a fossil fuel-fired potassium boiler, and a potassium condenser-steam generator. (auth)

  9. Transfer coefficients for plate fin and elliptical tube heat exchangers

    International Nuclear Information System (INIS)

    In order to determine transfer coefficients for plate fin and elliptical tube exchangers, mass transfer experiments have been performed using the naphthalene sublimation technique. By means of the heat-mass transfer analogy, the results can be converted to heat transfer results. The transfer coefficients were compared with those for circular tube exchangers and the comparison revealed no major differences. This is a positive outcome, since the use of elliptical tubes may reduce substantially the pressure drop, without affecting the transfer characteristics.(Author)

  10. Experimental study on the cross flow air cooled plate heat exchanger using fin with electric pump.

    Directory of Open Access Journals (Sweden)

    Pankaj kumar mishra

    2013-03-01

    Full Text Available Experimental study on the cross flow air cooled plate heat exchanger using fin with electric pump was performed. Two prototype plate heat exchanger were manufactured in a stack of single wave plates and double plates in parallel. Cooling air flows through the plate heat exchanger in across wise direction against internal cooling water. In this study prototype heat exchanger were tested in a laboratoryscale experiments. From test double wave plates heatexchanger shows approximately 52.50 % enhanced heat transfer performance compare to single wave plates heat exchanger . However double wave heat exchanger costs 30%additional pressure drop .

  11. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    Energy Technology Data Exchange (ETDEWEB)

    Mittereder, N.; Poerschke, A.

    2013-11-01

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season. Upon completion of the monitoring phase, measurements revealed that the initial TRNSYS simulated horizontal sub-slab ground loop heat exchanger fluid temperatures and heat transfer rates differed from the measured values. To determine the cause of this discrepancy, an updated model was developed utilizing a new TRNSYS subroutine for simulating sub-slab heat exchangers. Measurements of fluid temperature, soil temperature, and heat transfer were used to validate the updated model.

  12. CFD simulation of air to air enthalpy heat exchanger

    International Nuclear Information System (INIS)

    Highlights: • A CFD model capable of modelling conjugate heat and mass transfer processes. • A mesh independence studies and a CFD model validation have been conducted. • Effects of flow direction on the effectiveness have been examined. • Performance parameters were sensible and latent effectiveness and pressure drop. - Abstract: A CFD model which supports conjugate heat and mass transfer problem representation across the membrane of air-to-air energy recovery heat exchangers has been developed. The model consists of one flow passage for the hot stream and another for the adjacent cold stream. Only half of each flow passage volume has been modelled on each side of the membrane surface. Three dimensional, steady state and laminar flow studies have been conducted using a commercial CFD package. The volumetric species transport model has been adopted to describe the H2O and air gas mixtures. Mesh dependency has been examined and followed by validation of the CFD model against published data. Furthermore, effects of flow direction at the inlet of the heat exchanger on its thermal effectiveness have been investigated. Simulation results are presented and analysed in terms of sensible effectiveness, latent effectiveness and pressure drop across the membrane heat exchanger. Results have shown that counter-flow configuration has greater sensitivity to the mesh centre perpendicular distance from the membrane when compared to the other two flow configurations (cross-/parallel-flow). However, the lateral mesh element length has shown minimal effect on the thermal effectiveness of the enthalpy heat exchanger. For the quasi-flow heat exchanger, a perpendicular flow direction to the inlets has been found to produce a higher performance in contrast to the non-perpendicular flow

  13. Fouling detection in heat exchangers by Takagi-Sugeno observers

    International Nuclear Information System (INIS)

    The phenomenon of fouling in heat exchangers is currently an important topic. Indeed, the fouling is a costly issue that increases the energy loss (directly or indirectly through an over-sizing of the equipment), and therefore increases the water consumption. As a side effect, fouling increases CO2 consumption that leads to environmental consequences. Fouling can be detected either on local scale, using expensive and specific sensors or on global scale. Global estimation of fouling can be done by measuring the variation of the mass of the exchanger, or by estimating the efficiency of the exchanger through the transfer coefficient. These two methods require very restricting conditions: a powered exchanger to measure mass variation and a steady state exchanger to estimate the efficiency. The work introduced in this thesis deals with the development of non-linear observers that detect fouling early enough to start an efficient cleaning process. As a beginning, a finite element model of a counter current tubular exchanger was proposed. Then three approaches, based on non-linear Takagi-Sugeno observers, were suggested to detect early fouling in heat exchangers. First approach consisted in a set of observers that estimated the parameters of fouling effect through an interpolation method. The second approach proposed a polynomial Takagi-Sugeno observer, using the theory of sums of squares. Finally, a observer of Takagi-Sugeno type with unknown inputs was developed. As a conclusion, a comparison between those different methods was done. (author)

  14. YAG laser cladding to heat exchanger flange in actual plant

    International Nuclear Information System (INIS)

    This paper is a sequel to ''Development of YAG Laser Cladding Technology to Heat Exchanger Flange'' presented in ICONE-8. A YAG Laser cladding technology is a permanent repairing and preventive maintenance method for heat exchanger's flange (channel side) seating surface which is degraded by the corrosion in long term operation. The material of this flange is carbon steel, and that of cladding wire is type 316 stainless steel so as to have high corrosion resistance. In former paper above, the soundness of cladding layers were presented to be verified. This channel side flange is bolted with tube sheet (shell side) through metal gasket. As the tube sheet side is already cladded a corrosion resistant material, it needs to apply the repairing and preventive maintenance method to only channel side. In 2000 this technology had been performed to the actual heat exchanger (Residual Heat Removal Heat Exchanger; RHR Hx) flange in domestic nuclear power plant. This paper described the outline, special equipment, and our total evaluation for this actual laser cladding work. And also several technical subjects which we should solve and/or improve for the next project was presented. (author)

  15. Optimization of heat exchanger networks using genetic algorithms

    International Nuclear Information System (INIS)

    Most thermal processes encountered in the power industry (chemical, metallurgical, nuclear and thermal power stations) necessitate the transfer of large amounts of heat between fluids having different thermal potentials. A common practice applied to achieve such a requirement consists of using heat exchangers. In general, each current of fluid is conveniently cooled or heated independently from each other in the power plant. When the number of heat exchangers is large enough, however, a convenient arrangement of different flow currents may allow a considerable reduction in energy consumption to be obtained (Linnhoff and Hidmarsh, 1983). In such a case the heat exchangers form a 'Heat Exchanger Network' (HEN) that can be optimized to reduce the overall energy consumption. This type of optimization problem, involves two separates calculation procedures. First, it is necessary to optimize the topology of the HEN that will permit a reduction in energy consumption to be obtained. In a second step the power distribution across the HEN should be optimized without violating the second law of thermodynamics. The numerical treatment of this kind of problem requires the use of both discrete variables (for taking into account each heat exchanger unit) and continuous variables for handling the thermal load of each unit. It is obvious that for a large number of heat exchangers, the use of conventional calculation methods, i.e., Simplexe, becomes almost impossible. Therefore, in thicomes almost impossible. Therefore, in this paper we present a 'Genetic Algorithm' (GA), that has been implemented and successfully used to treat complex HENs, containing a large number of heat exchangers. As opposed to conventional optimization techniques that require the knowledge of the derivatives of a function, GAs start the calculation process from a large population of possible solutions of a given problem (Goldberg, 1999). Each possible solution is in turns evaluated according to a 'fitness' criterion obtained from an objective equation. This equation must completely describe the optimization problem to be handled, i.e., maximization or minimization. The best solutions are then retained and Genetic operators such as crossover and mutation are then applied in order to reproduce a new population of solutions that have a better fitness than the previous ones. These processes of crossover, mutation and selection are repeated until a suitable convergence criterion is able to stop the procedure. It is important to point out that GAs handle a coded form of each possible solution (for instance binary coded solutions) that represent the individuals, i.e., chromosomes of a population, instead of handling the solution to the problem itself. In order to carry out the synthesis of HEN we have implemented two different coded populations; one population is used to code for the topology of the HEN and the second for the heat load handled by each heat exchanger (Lewin et al., 1998). Ck is a coefficient used to adjust the degree of penalty. This approach has been used to treat several HEN problems taken from the open literature. In general the results obtained with the proposed algorithm are in excellent agreement with those obtained by using conventional techniques, i.e., Simplexe. We have found that the use of GAs also permits other satisfactory solutions corresponding to different heat exchanger topologies and thermal load distributions to be obtained. Further, we were able to handle HENs containing more than 15 heat exchanges, that were impossible to solve using conventional methods. However, it is important to point out that the proposed technique is not appropriate to handle HENs that require the division of currents. (author)

  16. Spacecraft Radiator Freeze Protection Using a Regenerative Heat Exchanger

    Science.gov (United States)

    Ungar, Eugene K.; Schunk, Richard G.

    2011-01-01

    An active thermal control system architecture has been modified to include a regenerative heat exchanger (regenerator) inboard of the radiator. Rather than using a radiator bypass valve a regenerative heat exchanger is placed inboard of the radiators. A regenerator cold side bypass valve is used to set the return temperature. During operation, the regenerator bypass flow is varied, mixing cold radiator return fluid and warm regenerator outlet fluid to maintain the system setpoint. At the lowest heat load for stable operation, the bypass flow is closed off, sending all of the flow through the regenerator. This lowers the radiator inlet temperature well below the system set-point while maintaining full flow through the radiators. By using a regenerator bypass flow control to maintain system setpoint, the required minimum heat load to avoid radiator freezing can be reduced by more than half compared to a radiator bypass system.

  17. Comparisons of Heat Transfer Performance of a Closed-looped Oscillating Heat Pipe and Closed-looped Oscillating Heat Pipe with Check Valves Heat Exchangers

    Directory of Open Access Journals (Sweden)

    P. Meena

    2008-01-01

    Full Text Available This research was to study the comparisons of heat transfer performance of closed-looped oscillating heat pipe and closed-looped oscillating heat pipe with check valves heat exchangers with R134a, Ethanol and water were used as the working fluids. A set of heat pipe heat exchanger (CLOHP and CLOHP/CV were made of copper tubes in combination of following dimension: 2.03 mm inside diameter: 40 turns, with 20, 10 and 20 cm for evaporator, adiabatic and condenser sections lengths. The working fluid was filled in the tube at the filling ratio of 50%. The evaporator section was given heat by heater while the condenser section was cooled by air. The adiabatic section was properly insulated. In the test operation, it could be concluded as follows. It indicated that the heat transfer performance of closed-looped oscillating heat pipe with check valves heat exchanger better than closed-looped oscillating heat exchanger.

  18. Isothermal compressor/gas-bubble to liquid heat exchanger (ICHX)

    International Nuclear Information System (INIS)

    The cost of a fusion reactor would be reduced by replacing helium compressors and intercoolers with an isothermal liquid jet compressor and direct-contact heat exchanger (ICHX). The ICHX is fundamentally a water-jet ejector coupled to a water-circulating and heat-removal system. Analytical modeling and small-scale tests indicate that none of the ICHX configurations we investigated had efficiencies high enough to be useful in the proposed application

  19. Measuring thermal characteristics of the heat exchanger

    OpenAIRE

    Syka Tomáš; K?ourek Jind?ich; K?s Michal

    2012-01-01

    New Technologies Research Centre at the University of West Bohemia in Pilsen uses middle-sized wind tunnel experimental facility. The tunnel equipment is extended in order to let us measure also heat transfer: the main wind tunnel duct itself forms the opened cooling air circuit, one closed circuit is there for water based coolant ?ow and one more closed circuit forms the hot compressed air loop. In this article, the typical measurement of the thermal characteristics of the common waterair ...

  20. Double tube heat exchanger with novel enhancement: Part II - single phase convective heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tiruselvam, R.; Chin, W.M.; Raghavan, Vijay R. [OYL Sdn. Bhd., Research and Application Department, Kuala Lumpur (Malaysia)

    2012-08-15

    The study is conducted to evaluate the heat transfer characteristics of two new and versatile enhancement configurations in a double tube heat exchanger annulus. The novelty is that they are usable in single phase forced convection, evaporation and condensation. Heat transfer coefficients are determined by the Wilson Plot technique in laminar and turbulent flow and correlations are proposed for Nusselt numbers. Comparisons are then made between heat transfer and flow friction. (orig.)

  1. Comparative study of rotating regenerators and heat-pipe heat exchangers

    Science.gov (United States)

    MacMichael, D. B. A.; Reay, D. A.; Foster, E. L.

    1980-07-01

    A heat wheel was purchased and installed for air to air heat recovery on a Terylene fiber drying and setting oven at ICI Wilton. At the same time a heat pipe heat exchanger was prepared at IRD and tested under controlled conditions. The heat wheel was then replaced by the heat pipe unit. During this procedure measurements were made regularly to monitor the performance of the oven and the heat exchangers. Neither of the heat exchangers attained their rated conditions. It was concluded that recuperative energy conservation is technically and economically feasible, provided that attention is paid to the problems of air flow control and minimizing installation costs. It was also realized that a good saving could be made by paying attention to stray leaks from the oven and by reducing the exhaust air flow from the setting sections. On the question of comparative performance of the two heat exchangers it is not possible to propose that one type is preferable to the other, although the heat wheel created more problems in respect of maintaining airflow.

  2. Experimental analysis of an air–water heat pump with micro-channel heat exchanger

    International Nuclear Information System (INIS)

    A multi-port extruded (MPE) aluminium flat tube air heat exchanger was compared to a round tube finned coil (FC). The MPE heat exchanger has parallel flow vertical tube configuration with headers in horizontal position and conventional folded louvred fins. The two heat exchangers were mounted on a 10 kW cooling capacity R410A packaged air heat pump. They were sized to approximately obtain the same cooling and heating capacities in chiller and heating mode, respectively. Climatic room steady state tests without frosting phenomena occurring during heat pump operation, demonstrated that the round tube and the flat tube heat exchanger performance are comparable. The MPE heat exchanger was tested with different refrigerant inlet distributor/outlet tubes configurations to investigate the effect of liquid refrigerant distribution. Cycling frosting/defrosting operations were tested with two equivalent machines placed in parallel outdoor and working at full load condition, one of the units was equipped with the MPE heat exchanger while the other mounted a standard finned coil. Penalization factors were analytically introduced to evaluate frosting associated heating energy and energy efficiency degradation. Test results indicate that both the heat pumps are penalized by frost formation but both the penalization factors are higher for the MPE-unit than the FC-unit one in the ?6 to 4 °C air dry bulb temperature range. For the two units, a roughly linear dependence of the heati roughly linear dependence of the heating energy penalization factor and of the energy efficiency factor from the difference between outdoor air and saturated air at the evaporation temperature humidity ratio can be pointed out. - Highlights: ? A multi-port aluminium flat tube heat exchanger was compared to a round tube finned one in a heat pump application. ? In steady state tests without frosting the round and the flat tube heat exchanger are comparable. ? Different inlet distributor/outlet tubes configurations were tested to investigate liquid distribution. ? Cycling frosting/defrosting operations were compared with two machines placed in parallel outdoor.

  3. Heat transfer to immiscible liquid mixtures in a spiral plate heat exchanger

    OpenAIRE

    Sathiyan, S.; Murali Rangarajan; S.Ramachandran

    2013-01-01

    This work presents new predictive correlations for heat transfer to immiscible liquid-liquid mixtures in a spiral plate heat exchanger. Liquid-liquid heat transfer studies were carried out in spiral plate heat exchangers for the water-octane, water-kerosene, and water-dodecane systems. For each composition of the mixture, the mass flow rate of the cold fluid was varied, keeping that of the hot fluid and the fluid inlet temperatures constant. Two-phase cold flow rates were in the laminar range...

  4. Investigation of Condensing Ice Heat Exchangers for MTSA Technology Development

    Science.gov (United States)

    Padilla, Sebastian; Powers, Aaron; Ball, Tyler; Lacomini, Christie; Paul, Heather L.

    2009-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal, carbon dioxide (CO2) and humidity control for a Portable Life Support Subsystem (PLSS). Metabolically-produced CO2 present in the ventilation gas of a PLSS is collected using a CO2-selective adsorbent via temperature swing adsorption. The temperature swing is initiated through cooling to well below metabolic temperatures. Cooling is achieved with a sublimation heat exchanger using water or liquid carbon dioxide (L CO2) expanded below sublimation temperature when exposed to low pressure or vacuum. Subsequent super heated vapor, as well as additional coolant, is used to further cool the astronaut. The temperature swing on the adsorbent is then completed by warming the adsorbent with a separate condensing ice heat exchanger (CIHX) using metabolic heat from moist ventilation gas. The condensed humidity in the ventilation gas is recycled at the habitat. The water condensation from the ventilation gas represents a significant source of potential energy for the warming of the adsorbent bed as it represents as much as half of the energy potential in the moist ventilation gas. Designing a heat exchanger to efficiently transfer this energy to the adsorbent bed and allow the collection of the water is a challenge since the CIHX will operate in a temperature range from 210K to 280K. The ventilation gas moisture will first freeze and then thaw, sometimes existing in three phases simultaneously.

  5. A heat exchanger analogy of automotive paint ovens

    International Nuclear Information System (INIS)

    Computational prediction of vehicle temperatures in an automotive paint oven is essential to predict paint quality and manufacturability. The complex geometry of vehicles, varying scales in the flow, transient nature of the process, and the tightly coupled conjugate heat transfer render the numerical models computationally very expensive. Here, a novel, simplified model of the oven is developed using an analogy to a three-stream cross flow heat exchanger that transfers heat from air to a series of moving bodies and supporting carriers. The analogous heat exchanger equations are developed and solved numerically. Steady state Computational Fluid Dynamics (CFD) simulations are carried out to model the flow field and to extract the heat transfer coefficients around the body and carriers. The air temperature distribution from the CFD models is used as a boundary condition in the analogous model. Correction coefficients are used in the analogy to take care of various assumptions. These are determined from existing test data. The same corrections are used to predict air temperatures for a modified configuration of the oven and a different vehicle. The method can be used to conduct control volume analysis of ovens to determine energy efficiency, and to study new vehicle or oven designs. -- Highlights: • Analogy of an automotive paint oven as a three stream cross flow heat exchanger. • The three streams are vehicle bodies, carriers and hot air. • Convection coefficients and inlet air stream temperatures from steady CFD simulations. • Analogy useful for overall energy efficiency analysis of conveyor ovens in general

  6. Confirmation of effectiveness of horizontal heat exchanger for PCCS

    International Nuclear Information System (INIS)

    Two kinds of experiments were performed to confirm the effectiveness of a horizontal heat exchanger for Passive Containment Cooling System (PCCS) to prevent containment break due to overpressurization during a severe accident in a next generation BWR. Analysis tools were prepared based on the experiments to predict system responses including the thermal-hydraulic behavior in the heat exchanger. Fundamental thermal-hydraulic experiment was performed first using a single condenser tube to confirm the capability of a horizontal condenser tube of the heat exchanger. It was confirmed that steam is condensed completely with small degradation by non-condensable gas and small pressure loss across the condenser tube without any instability. New condensation and degradation models were proposed and installed into the codes to predict the thermal-hydraulic behavior accurately in the primary side of the horizontal heat exchanger. Large-scale experiment was performed next using a tube bundle experimental facility to confirm the total performance of the horizontal heat exchanger and to prepare analysis codes. Flow regime in the secondary side was found to change from bubbly to churn-like flows with elevation in the tube bundle. Effects of such flow regime transition, however, were little on the heat removal distribution among the tubes. No instability was induced in the primary flows, either. One-dimensional RELAP5 code was thermally coupled with a multi-dimensional ACE-3D code to d with a multi-dimensional ACE-3D code to predict the multi-channel primary-side flows and multi-dimensional secondary-side flows simultaneously. System analysis was performed using RELAP5 and MELCORE codes being validated using the results of both experiments. The PCCS using the horizontal heat exchanger succeeded to prevent the containment break for more than one day during a typical severe accident scenario TQUV, while the containment may break without the PCCS. According to the experiment and analysis results, the effectiveness of the horizontal heat exchanger for PCCS was confirmed. (authors)

  7. 74 heat borehole heat exchangers heat and cool a congress centre; 74 EWS heizen und kuehlen Kongresszentrum

    Energy Technology Data Exchange (ETDEWEB)

    Klaentschi, P. T.

    2010-07-01

    This article takes a look at the largest geothermal energy system in Switzerland in which 74 borehole heat exchangers supply heating and cooling power for a congress centre in the City of St. Gall. The owners stipulated that heating and cooling should be provided using renewable resources. Along with the congress centre with seminar and meeting facilities, the complex also contains several apartments and a wellness centre. Cooling with the borehole heat exchangers is discussed, as is the storage of warm water and cold water in large storage tanks. Also, the distribution of heat and cold in the complex is discussed.

  8. Xenon recirculation-purification with a heat exchanger

    International Nuclear Information System (INIS)

    Liquid-xenon based particle detectors have been dramatically growing in size during the last years, and are now exceeding the one-ton scale. The required high xenon purity is usually achieved by continuous recirculation of xenon gas through a high-temperature getter. This challenges the traditional way of cooling these large detectors, since in a thermally well insulated detector, most of the cooling power is spent to compensate losses from recirculation. The phase change during recondensing requires five times more cooling power than cooling the gas from ambient temperature to -1000C (173 K). Thus, to reduce the cooling power requirements for large detectors, we propose to use the heat from the purified incoming gas to evaporate the outgoing xenon gas, by means of a heat exchanger. Generally, a heat exchanger would appear to be only of very limited use, since evaporation and liquefaction occur at zero temperature difference. However, the use of a recirculation pump reduces the pressure of the extracted liquid, forces it to evaporate, and thus cools it down. We show that this temperature difference can be used for an efficient heat exchange process. We investigate the use of a commercial parallel plate heat exchanger with a small liquid xenon detector. Although we expected to be limited by the available cooling power to flow rates of about 2 SLPM, rates in excess of 12 SLPM can easily be sustained, limited only by the pump speed and the impedance of the flohe pump speed and the impedance of the flow loop. The heat exchanger operates with an efficiency of (96.8±0.5)%. This opens the possibility for fast xenon gas recirculation in large-scale experiments, while minimizing thermal losses.

  9. Numerical computation of 3D heat transfer in complex parallel heat exchangers using generalized Graetz modes

    OpenAIRE

    Pierre, Charles; Bouyssier, Julien; Gournay, Fre?de?ric; Plouraboue?, Franck

    2014-01-01

    We propose and develop a variational formulation dedicated to the simulation of parallel convective heat exchanger that handles possibly complex input/output conditions as well as connection between pipes. It is based on a spectral method that allows to re-cast three-dimensional heat exchangers into a two-dimensional eigenvalue problem, named the generalized Graetz problem. Our formulation handles either convective, adiabatic, or prescribed temperature at the entrance or at the exit of the e...

  10. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    Science.gov (United States)

    Phillips, B.A.; Zawacki, T.S.

    1998-07-21

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use, as the heat transfer medium, the working fluid of the absorption system taken from the generator at a location where the working fluid has a rich liquor concentration. 5 figs.

  11. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    Science.gov (United States)

    Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI)

    1998-07-21

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use, as the heat transfer medium, the working fluid of the absorption system taken from the generator at a location where the working fluid has a rich liquor concentration.

  12. Theoretical and experimental modelling of a heat pipe heat exchanger for high temperature nuclear reactor technology

    International Nuclear Information System (INIS)

    High temperature heat sources are becoming an ever-increasing imperative in the processing industries for the production of various plastics, fertilisers, coal-to-liquid fuel and hydrogen generation. Current high temperature reactor technology is capable of producing reactor coolant temperatures in excess of 950 °C. At these temperatures, tritium which is a radioactive contaminant found in the reactor coolant stream, is able to contaminate the secondary stream by diffusing through the steel retaining wall of the heat exchanger between the reactor coolant and secondary process coolant stream. Current regulations therefore require an extra intermediate heat transfer loop to ensure no cross contamination. A novel heat pipe heat exchanger design is presented which circumvents the need for an intermediate coolant loop. This is done by physically separating the reactor coolant and secondary coolant by two pipe walls and a vapour section and a liquid section. A theoretical transient heat transfer model of such a device is presented. The model uses separate hot gas heating fluid and cold water cooling fluid control volumes, and for the internal working fluid a control volume consisting of a liquid and its vapour in equilibrium with each other. A 2 kW rated experimental model was constructed and tested, using Dowtherm-A as working fluid, to validate the heat pipe heat exchanger theoretical model and design. By determining the boiling heat transfer coefficient through the use of an experimentally formulated correlation it was shown that the theoretical model is indeed able to simulate the characteristic chaotic behaviour, due to the boiling and condensation processes, of the device to within a reasonable level of accuracy. It is concluded that the theoretical simulation model can be used to predict the performance of a higher temperature sodium-charged heat pipe heat exchanger, provided suitable boiling and condensation heat transfer coefficients are used. -- Highlights: • A natural circulation thermosyphon-type heat pipe heat exchanger is considered. • Useful in high temperature nuclear reactor technology. • Tritium diffusion resistant high temperature heat exchanger. • No high pressure shell heat exchanger, pipework and pump needed. • A theoretical model is experimentally validated

  13. Dual Expander Cycle Rocket Engine with an Intermediate, Closed-cycle Heat Exchanger

    Science.gov (United States)

    Greene, William D. (Inventor)

    2008-01-01

    A dual expander cycle (DEC) rocket engine with an intermediate closed-cycle heat exchanger is provided. A conventional DEC rocket engine has a closed-cycle heat exchanger thermally coupled thereto. The heat exchanger utilizes heat extracted from the engine's fuel circuit to drive the engine's oxidizer turbomachinery.

  14. Air Circulation and Heat Exchange under Reduced Pressures

    Science.gov (United States)

    Rygalov, Vadim; Wheeler, Raymond; Dixon, Mike; Hillhouse, Len; Fowler, Philip

    Low pressure atmospheres were suggested for Space Greenhouses (SG) design to minimize sys-tem construction and re-supply materials, as well as system manufacturing and deployment costs. But rarified atmospheres modify heat exchange mechanisms what finally leads to alter-ations in thermal control for low pressure closed environments. Under low atmospheric pressures (e.g., lower than 25 kPa compare to 101.3 kPa for normal Earth atmosphere), convection is becoming replaced by diffusion and rate of heat exchange reduces significantly. During a period from 2001 to 2009, a series of hypobaric experiments were conducted at Space Life Sciences Lab (SLSLab) NASA's Kennedy Space Center and the Department of Space Studies, University of North Dakota. Findings from these experiments showed: -air circulation rate decreases non-linearly with lowering of total atmospheric pressure; -heat exchange slows down with pressure decrease creating risk of thermal stress (elevated leaf tem-peratures) for plants in closed environments; -low pressure-induced thermal stress could be reduced by either lowering system temperature set point or increasing forced convection rates (circulation fan power) within certain limits; Air circulation is an important constituent of controlled environments and plays crucial role in material and heat exchange. Theoretical schematics and mathematical models are developed from a series of observations. These models can be used to establish optimal control algorithms for low pressure environments, such as a space greenhouse, as well as assist in fundamental design concept developments for these or similar habitable structures.

  15. Teaching Heat Exchanger Network Synthesis Using Interactive Microcomputer Graphics.

    Science.gov (United States)

    Dixon, Anthony G.

    1987-01-01

    Describes the Heat Exchanger Network Synthesis (HENS) program used at Worcester Polytechnic Institute (Massachusetts) as an aid to teaching the energy integration step in process design. Focuses on the benefits of the computer graphics used in the program to increase the speed of generating and changing networks. (TW)

  16. A novel compact heat exchanger using gap flow mechanism

    Science.gov (United States)

    Liang, J. S.; Zhang, Y.; Wang, D. Z.; Luo, T. P.; Ren, T. Q.

    2015-02-01

    A novel, compact gap-flow heat exchanger (GFHE) using heat-transfer fluid (HTF) was developed in this paper. The detail design of the GFHE coaxial structure which forms the annular gap passage for HTF is presented. Computational fluid dynamics simulations were introduced into the design to determine the impacts of the gap width and the HTF flow rate on the GFHE performance. A comparative study on the GFHE heating rate, with the gap widths ranged from 0.1 to 1.0 mm and the HTF flow rates ranged from 100 to 500 ml/min, was carried out. Results show that a narrower gap passage and a higher HTF flow rate can yield a higher average heating rate in GFHE. However, considering the compromise between the GFHE heating rate and the HTF pressure drop along the gap, a 0.4 mm gap width is preferred. A testing loop was also set up to experimentally evaluate the GFHE capability. The testing results show that, by using 0.4 mm gap width and 500 ml/min HTF flow rate, the maximum heating rate in the working chamber of the as-made GFHE can reach 18 °C/min, and the average temperature change rates in the heating and cooling processes of the thermal cycle test were recorded as 6.5 and 5.4 °C/min, respectively. These temperature change rates can well satisfy the standard of IEC 60068-2-14:2009 and show that the GFHE developed in this work has sufficient heat exchange capacity and can be used as an ideal compact heat exchanger in small volume desktop thermal fatigue test apparatus.

  17. Design of cryogenic heat exchangers for a superconducting magnet

    Energy Technology Data Exchange (ETDEWEB)

    Chrusciel, W.A.; Tao, B.Y.; Ventura, S.A.

    1976-10-26

    Computer programs were written to design and simulate the behavior of three heat exchangers for cooling supercritical helium to approximately 4.3/sup 0/K at 4 atm. Helium, at 1, 3, or 5 gm/sec, is cooled by passing it through 0.635-cm-diam copper tubing immersed in a liquid nitrogen bath, through a copper, concentric tube, counter-current heat exchanger, and then through 0.635-cm copper tubing immersed in a liquid helium bath. The helium then enters a superconducting test magnet and finally passes through the annulus of the countercurrent exchanger before venting to the atmosphere. Several acceptable designs are presented that meet design and space limitations.

  18. Design of cryogenic heat exchangers for a superconducting magnet

    International Nuclear Information System (INIS)

    Computer programs were written to design and simulate the behavior of three heat exchangers for cooling supercritical helium to approximately 4.30K at 4 atm. Helium, at 1, 3, or 5 gm/sec, is cooled by passing it through 0.635-cm-diam copper tubing immersed in a liquid nitrogen bath, through a copper, concentric tube, counter-current heat exchanger, and then through 0.635-cm copper tubing immersed in a liquid helium bath. The helium then enters a superconducting test magnet and finally passes through the annulus of the countercurrent exchanger before venting to the atmosphere. Several acceptable designs are presented that meet design and space limitations

  19. Studi Eksperimen Analisa Performa Compact Heat Exchanger Louvered Fin Flat Tube untuk pemanfaatan Waste Energy

    Directory of Open Access Journals (Sweden)

    Taqwim Ismail

    2014-03-01

    Full Text Available Waste Heat Recovery merupakan instalasi yang digunakan untuk memanfaatkan kembali waste energy seperti exhaust gas. Penelitian dilakukan pada compact heat exchanger tipe louvered fin flat tube sebagai salah satu komponen penyusun waste heat recovery system. Eksperimen dilakukan dengan mendesain compact heat exchanger tipe louvered fin flat tube kemudian dilakukan pengujian pada compact heat exchanger yang telah didesain. Pengujian dilakukan dengan memberikan tiga variasi kecepatan putaran fan sisi exhaust gas, yaitu 0.2, 0.3, dan 0.4 m/s untuk mengetahui unjuk kerja yang berbeda dari compact heat exchanger yang telah didesain.  Hasil yang didapatkan dari studi eksperimen ini adalah dimensi dari compact heat exchanger tipe louvered fin flat tube dan beberapa parameter yang menunjukkan unjuk kerja dari compact heat exchanger seperti nilai heat transfer baik dari sisi air maupun sisi exhaust gas, effectiveness, number of transfer unit (NTU, overall heat transfer coefficient, dan  ?TLMTD dari compact heat exchanger.

  20. Review of Heat Transfer Augmentation Within A Plate Heat Exchanger By Different Shapes Of Ribs

    Directory of Open Access Journals (Sweden)

    A. D. Yadav

    2013-05-01

    Full Text Available Heat transfer augmentation techniques (passive, active or a combination of passive and active methods are commonly used in areas such as process industries, heating and cooling in evaporators, thermal power plants, air-conditioning equipment, refrigerators, radiators for space vehicles, automobiles, etc. Passive techniques, where inserts are used in the flow passage to augment the heat transfer rate, are advantageous compared with active techniques, because the insert manufacturing process is simple and these techniques can be easily employed in an existing heat exchanger. In design of compact heat exchangers, passive techniques of heat transfer augmentation can play an important role if a proper passive insert configuration can be selected according to the heat exchanger working condition (both flow and heat transfer conditions. In the past decade, several studies on the passive techniques of heat transfer augmentation have been reported. Twisted tapes, wire coils, ribs, fins, dimples, etc., are the most commonly used passive heat transfer augmentation tools. In the present paper, emphasis is given to works dealing with different shapes of ribs, and there arrangement because, according to recent studies, these are known to be economic heat transfer augmentation tools. The present review is organized in four different sections: circular ribs with staggered at 90º; circular ribs with staggered at 45º, triangular ribs with staggered at 90ºand triangular ribs with staggered at 45º.

  1. Assessment of thermoelectric module with nanofluid heat exchanger

    International Nuclear Information System (INIS)

    For applications such as cooling of electronic devices, it is a common practice to sandwich the thermoelectric module between an integrated chip and a heat exchanger, with the cold-side of the module attached to the chip. This configuration results thermal contact resistances in series between the chip, module, and heat exchanger. In this paper, an appraisal of thermal augmentation of thermoelectric module using nanofluid-based heat exchanger is presented. The system under consideration uses commercially available thermoelectric module, 27 nm Al2O3-H2O nanofluid, and a heat source to replicate the chip. The volume fraction of nanofluid is varied between 0% and 2%. At optimum input current conditions, experimental simulations were performed to measure the transient and steady-state thermal response of the module to imposed isoflux conditions. Data collected from the nanofluid-based exchanger is compared with that of deionized water. Results show that there exist a lag-time in thermal response between the module and the heat exchanger. This is attributed to thermal contact resistance between the two components. A comparison of nanofluid and deionized water data reveals that the temperature difference between the hot- and cold-side, ?T = Th - Tc ? 0, is almost zero for nanofluid whereas ?T > 0 for water. When ?T ? 0, the contribution of Fourier effect to the overall heating is approximately zero hence enhancins approximately zero hence enhancing the module cooling capacity. Experimental evidence further shows that temperature gradient across the thermal paste that bonds the chip and heat exchanger is much lower for the nanofluid than for deionized water. Low temperature gradient results in low resistance to the flow of heat across the thermal paste. The average thermal contact resistance, R = ?T/Q, is 0.18 and 0.12 deg. C/W, respectively for the deionized water and nanofluid. For the range of optimum current, 1.2 ? current ? 4.1 A, considered in this study, the COP ranges between 1.96 and 0.68

  2. A new waste heat district heating system with combined heat and power (CHP) based on ejector heat exchangers and absorption heat pumps

    International Nuclear Information System (INIS)

    A new waste heat district heating system with CHP based on ejector heat exchangers and absorption heat pumps (DH-EHE) is presented to decrease heating energy consumption of existing CHP systems by recovering waste heat of exhausted steam from a steam turbine, which could also increase heat transmission capacity of the primary heating network (PHN) by decreasing temperature of the return water of existing PHN. A new ejector heat exchanger based on ejector refrigeration cycle is invented to decrease temperature of the return water of PHN to 30 °C under the designed case. DH-EHE is analyzed in terms of laws of thermodynamics and economics. Compared to conventional district heating systems with CHP (CDH), DH-EHE can decrease consumption of steam extracted from a steam turbine by 41.4% and increase heat transmission capacity of the existing PHN by 66.7% without changing the flow rate of circulating water. The heating cost of DH-EHE is 8.62 ¥/GJ less than that of CDH. Compared to CDH, the recovery period of additional investment of DH-EHE is about two years. DH-EHE shows better economic and environmental benefits, which is promising for both district heating systems for long-distance heat transmission and waste heat district heating systems. - Highlights: • Heating capacity of this new heating system increases by 41% by waste heat recovery. • Temperature of return water of the primary heating network can be reduced to 30 °C. • Heating cost of new heating system is 8.62¥/GJ less than that of conventional one. • The recovery period of additional investment of new heating system is about 2 years. • This new heating system shows better economic and environmental benefits

  3. Optimizing the Heat Exchanger Network of a Steam Reforming System

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh; Korsgaard, Anders Risum

    2004-01-01

    Proton Exchange Membrane (PEM) based combined heat and power production systems are highly integrated energy systems. They may include a hydrogen production system and fuel cell stacks along with post combustion units optionally coupled with gas turbines. The considered system is based on a natural gas steam reformer along with gas purification reactors to generate clean hydrogen suited for a PEM stack. The temperatures in the various reactors in the fuel processing system vary from around 1000°C to the stack temperature at 80°C. Furthermore, external heating must be supplied to the endothermic steam reforming reaction and steam must be generated. The dependence of the temperature profiles on conversion in shift reactors for gas purification is also significant. The optimum heat integration in the system is thus imperative in order to minimize the need for hot and cold utilities. A rigorous 1D stationary numerical system model was used and process integration techniques for optimizing the heat exchanger network for the reforming unit are proposed. Objective is to minimize the system cost. Keywords: Fuel cells; Steam Reforming; Heat Exchanger Network (HEN) Synthesis; MINLP.

  4. Novel Power Electronics Three-Dimensional Heat Exchanger: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, K.; Cousineau, J.; Lustbader, J.; Narumanchi, S.

    2014-08-01

    Electric drive systems for vehicle propulsion enable technologies critical to meeting challenges for energy, environmental, and economic security. Enabling cost-effective electric drive systems requires reductions in inverter power semiconductor area. As critical components of the electric drive system are made smaller, heat removal becomes an increasing challenge. In this paper, we demonstrate an integrated approach to the design of thermal management systems for power semiconductors that matches the passive thermal resistance of the packaging with the active convective cooling performance of the heat exchanger. The heat exchanger concept builds on existing semiconductor thermal management improvements described in literature and patents, which include improved bonded interface materials, direct cooling of the semiconductor packages, and double-sided cooling. The key difference in the described concept is the achievement of high heat transfer performance with less aggressive cooling techniques by optimizing the passive and active heat transfer paths. An extruded aluminum design was selected because of its lower tooling cost, higher performance, and scalability in comparison to cast aluminum. Results demonstrated a heat flux improvement of a factor of two, and a package heat density improvement over 30%, which achieved the thermal performance targets.

  5. New intermediate heat exchanger for loop type LMFBR

    International Nuclear Information System (INIS)

    Secondary sodium loop elimination is proposed for the loop type LMFBR with using Advanced Intermediate Heat Exchanger (AIHX) for reduction in size and cost. This heat exchanger contains primary sodium tubes, and tertiary water tubes in a tank filled with intermediate heat transfer media. A concept verifying experiment was performed with using Ga as the intermediate medium in natural convective region to low velocity forced circulation. From the experimental correlation, AIHX - steam generator was conceptually designed. In order to use Pb or Pb-Bi for intermediate medium, a thermal interaction of Pb and Pb-Bi with water was studied experimentally. Interactions ware found to be suppressed under pressurized condition of two to three bars, and possibility of intense interaction could be ruled out. (authors)

  6. The computational optimization of heat exchange efficiency in stack chimneys

    Energy Technology Data Exchange (ETDEWEB)

    Van Goch, T.A.J.

    2012-02-15

    For many industrial processes, the chimney is the final step before hot fumes, with high thermal energy content, are discharged into the atmosphere. Tapping into this energy and utilizing it for heating or cooling applications, could improve sustainability, efficiency and/or reduce operational costs. Alternatively, an unused chimney, like the monumental chimney at the Eindhoven University of Technology, could serve as an 'energy channeler' once more; it can enhance free cooling by exploiting the stack effect. This study aims to identify design parameters that influence annual heat exchange in such stack chimney applications and optimize these parameters for specific scenarios to maximize the performance. Performance is defined by annual heat exchange, system efficiency and costs. The energy required for the water pump as compared to the energy exchanged, defines the system efficiency, which is expressed in an efficiency coefficient (EC). This study is an example of applying building performance simulation (BPS) tools for decision support in the early phase of the design process. In this study, BPS tools are used to provide design guidance, performance evaluation and optimization. A general method for optimization of simulation models will be studied, and applied in two case studies with different applications (heating/cooling), namely; (1) CERES case: 'Eindhoven University of Technology monumental stack chimney equipped with a heat exchanger, rejects heat to load the cold source of the aquifer system on the campus of the university and/or provides free cooling to the CERES building'; and (2) Industrial case: 'Heat exchanger in an industrial stack chimney, which recoups heat for use in e.g. absorption cooling'. The main research question, addressing the concerns of both cases, is expressed as follows: 'what is the optimal set of design parameters so heat exchange in stack chimneys is optimized annually for the cases in which a stack chimney heat exchanger is used for heating or cooling applications, what is the expected performance and how do the design parameters relate to this performance'. Simulation models were developed in the BPS tool ESP-r. The most important design parameters and their relative influence on the performance indicators were analysed based on sensitivity analysis (SA). From this analysis general design guidelines were derived ('optimal set of design parameters'). A multi objective optimization of the design parameters was performed on the simulation models, using the responsive surface methods and artificial neural network capabilities of optimization environment ModEContier to speed up the iteration process. In this optimization, 'heat exchange in stack chimneys is optimized annually'. The uncertainty in the optimized results has been analysed using uncertainty analysis (UA). Finally, the appropriateness of deploying a complex, high resolution simulation has been evaluated by studying current modelling resolution selection methodology found in literature.

  7. VHTR engineering design study: intermediate heat exchanger program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-11-01

    The work reported is the result of a follow-on program to earlier Very High Temperature Reactor (VHTR) studies. The primary use of the VHTR is to provide heat for various industrial processes, such as hydrocarbon reforming and coal gasification. For many processes the use of an intermediate heat transfer barrier between the reactor coolant and the process is desirable; for some processes it is mandatory. Various intermediate heat exchanger (IHX) concepts for the VHTR were investigated with respect to safety, cost, and engineering design considerations. The reference processes chosen were steam-hydrocarbon reforming, with emphasis on the chemical heat pipe, and steam gasification of coal. The study investigates the critically important area of heat transfer between the reactor coolant, helium, and the various chemical processes.

  8. A Numerical Study of a Double Pipe Latent Heat Thermal Energy Storage System

    Science.gov (United States)

    Tabassum, Tonny

    Solar energy is an intermittent supply source of energy. To efficiently utilize this free renewable energy source some form of thermal energy storage devices are necessary. Phase change materials (PCMs), because of their high energy density storage capacity and near isothermal phase change characteristics, have proven to be promising candidates for latent heat thermal energy storage (LHTES) devices. Among the various LHTES devices for low temperature residential heating and cooling applications, the shell-and-tube type heat exchanging devices are the most simple to operate and can be easily fabricated. This work numerically investigates the buoyancy driven heat transfer process during melting (charging) of a commercial paraffin wax as PCM filling the annulus of a horizontal double pipe heat exchanger. The heated working fluid (water) is passing through the central tube of the annulus at a sufficiently high flow-rate and thereby maintaining an almost isothermal wall temperature at the inner pipe which is higher than the melting temperature of the PCM. The transient, two-dimensional coupled laminar momentum and energy equations for the model are suitably non-dimensionalized and are solved numerically using the enthalpy-porosity approach. Time-wise evolutions of the flow patterns and temperature distributions are presented through velocity vector fields and isotherm plots. In this study, two types of PCM filled annuli, a plain annulus and a strategically placed longitudinal finned annulus, are studied. The total energy stored, the total liquid fraction and the energy efficiency at different melting times are evaluated for three different operating conditions and the results are compared between the plain and finned annuli. The present study will provide guidelines for system thermal performance and design optimization of the shell-and-tube LHTES devices. .

  9. Heat transfer in liquid metal heat exchangers at mixed convection in an intertube space

    International Nuclear Information System (INIS)

    Results of complex calculation-theoretical and experimental study of heat transfer in fast liquid metal reactor heat exchangers are presented. Formulas to calculate coefficients of effective heat conductivity in three-component media and heat transfer to liquid metal and gaseous coolants, when they flow around a tube bundle at an angle, are obtained. The main complex criteria for similarity of temperature fields in model and full-scale heat exchangers during on-coming and following convections are clarified. Heat transfer coefficients on a stabilized section for corridor and staggered arrangement of tubes is a bundle are obtained experimentally. The boundary of recirculation modes and degree of capacity decrease during mixed convection are established mixed convection are established

  10. Air-side heat transfer characteristics of spiral-type circular fin-tube heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Mooyeon; Kang, Taehyung; Kim, Yongchan [Department of Mechanical Engineering, Korea University, Anam-dong, Sungbuk-ku, Seoul 136-713 (Korea)

    2010-03-15

    The objective of this study is to investigate the air-side heat transfer characteristics of spiral-type circular fin-tube heat exchangers used as evaporators in household refrigerators. The j-factors of the tested heat exchangers under non-frosting conditions were measured by varying the fin pitch, number of tube rows, and fin alignment. The j-factors of the spiral-type circular fin-tube heat exchangers were analyzed as a function of heat exchanger geometries and then compared with those of the flat plate fin-tube heat exchangers with discrete fins. Two empirical correlations of the j-factors were developed separately for the inline and the staggered fin alignment as a function of the Reynolds number, number of tube rows, and dimensionless fin pitch normalized by the hydraulic diameter. The mean deviation of the predictions using the present correlations from the measured data was 4.78% for the inline fin alignment and 6.02% for the staggered fin alignment. (author)

  11. Intensification of heat and mass transfer by ultrasound: Application to heat exchangers and membrane separation processes.

    Science.gov (United States)

    Gondrexon, N; Cheze, L; Jin, Y; Legay, M; Tissot, Q; Hengl, N; Baup, S; Boldo, P; Pignon, F; Talansier, E

    2015-07-01

    This paper aims to illustrate the interest of ultrasound technology as an efficient technique for both heat and mass transfer intensification. It is demonstrated that the use of ultrasound results in an increase of heat exchanger performances and in a possible fouling monitoring in heat exchangers. Mass transfer intensification was observed in the case of cross-flow ultrafiltration. It is shown that the enhancement of the membrane separation process strongly depends on the physico-chemical properties of the filtered suspensions. PMID:25216897

  12. Flow and heat-transfer at the intake of a radially symmetrical longitudinal flow heat exchanger

    International Nuclear Information System (INIS)

    At the admission section of a radially symmetrical longitudinal flow heat exchanger, cross flow of the tubes occurs. The cross flow is followed by an inclined flow, which turns over to a well-balanced longitudinal flow along the tubes. At two heat exchanger models (tube pitch S? = 1.5, S? = 2.0) the velocity distribution, the pressure-drop and the heat-transfer is determined experimentally. By the variation of the boundary-conditions, the influence of the geometry, the mass flow, the tube pitch and the position of the first spacer is shown in this investigation. Finally the experimental datas are compared with results of calculations. (orig.)

  13. Experimental Investigation of Ice Phase Change Material Heat Exchangers

    Science.gov (United States)

    Leimkuehler, Thomas O.; Stephan, Ryan A.

    2012-01-01

    Phase change materials (PCM) may be useful for spacecraft thermal control systems that involve cyclical heat loads or cyclical thermal environments. Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. This can result in a decreased turndown ratio for the radiator and a reduced system mass. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents an overview of the results of this investigation from the past three years.

  14. Multi-channel heat exchanger-reactor using arborescent distributors: A characterization study of fluid distribution, heat exchange performance and exothermic reaction

    International Nuclear Information System (INIS)

    A multi-functional heat exchanger-reactor comprising arborescent (tree-like) distributors and collector, 16 mini-channels in parallel and T-mixers is introduced in this paper. Flow distribution property, pressure drop and heat exchange performance of proposed heat exchanger-reactor are tested and discussed. Firstly, flow distribution uniformity is characterized by CFD simulation and then qualitatively confirmed by visualization experiment. Results show that for total flowrates ranging from 5 mL s?1 to 20 mL s?1, good distribution uniformity is obtained, with maximum flowrate deviation less than 10%. Then, experiments of heat exchange between hot and cold water are carried out. High values of overall heat transfer coefficient ranging from 2000 to 5000 W m?2 °C?1 are obtained under our working conditions. The volumetric heat exchange capability (UA/V) is found to be around 200 kW m?3 °C?1, showing a high heat exchange capability with compact design. The roles of end-effect and non-established flow are discussed and are supposed to be responsible for efficient heat transfer. Finally a typical fast exothermic reaction, neutralization between acid and basic solutions, is carried out to test the thermal control capability of the studied heat exchanger-reactor. Results indicate that isothermal condition could be realized by circulating appropriate flowrate of coolant through the heat exchanger. The design of heat exchanger-reactor with arborescent distributor and collector makes possible the application of multi-channel systems. This paper introduces systematically the successful integration of heat exchanger-reactor and its performance evaluation. - Highlights: • A design of mini scale, multichannel heat exchanger-reactor is proposed. • Uniform distribution for parallel channels is obtained with arborescent structure. • High global heat exchange coefficient is found experimentally. • Thermal control capability is verified with an exothermic reaction

  15. Heat transfer processes in parallel-plate heat exchangers of thermoacoustic devices – numerical and experimental approaches

    OpenAIRE

    Jaworski, Artur J; Piccolo, Antonio

    2012-01-01

    This paper addresses the issues of heat transfer in oscillatory flow conditions, which are typically found in thermoacoustic devices. The analysis presented concerns processes taking place in the individual “channels” of the parallel-plate heat exchangers (HX), and is a mixture of experimental and numerical approaches. In the experimental part, the paper describes the design of experimental apparatus to study the thermal-fluid processes controlling heat transfer in thermoacous...

  16. Analysis of heat flow and "channelling" in a scraped-surface heat exchanger

    OpenAIRE

    Fitt, AD; Lee, MEM; PLEASE, CP

    2007-01-01

    Scraped-surface heat exchangers (SSHEs) are widely used in industries that manufacture and thermally process fluids; in particular, the food industry makes great use of such devices. Current understanding of the heat flow and fluid dynamics in SSHEs is predominantly based on empirical evidence. In this study a theoretical approach (based on asymptotic analysis) is presented for analysing both the flow and heat transfer in an idealised SSHE (a cylindrical annulus) for Newtonian fluids. The the...

  17. Comparing studies for an optimization of steam-heated tube bundle heat exchangers

    International Nuclear Information System (INIS)

    The problems of designing an apparatus are to be shown by the example of the steam-heated tube bundle heat exchanger, and optimizations are to be carried through by relevant examples. From the results of the optimization, a set of apparatus types is to be derived where the dimensions of the shell and the heat pipes as well as the length of the tube bundle are to be determined by as few data as possible. (orig./TK)

  18. New ceramic heat exchangers with enhanced heat transfer properties for recuperative gas burners

    OpenAIRE

    Fino, Paolo

    2011-01-01

    Heat recovery from waste gas is a major key process for increasing efficiency of thermal processes. The aim of the present work is to increase heat transfer coeffi cients of ceramic heat exchangers of recuperative burners using highly structured surface elements created from a textile precursor. The paper describes the chosen geometries and their thermal behavior, the ceramization process and the preliminary design of the new recuperative burners

  19. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.

    Science.gov (United States)

    de Jong, J A; Wijnant, Y H; de Boer, A

    2014-03-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic systems. The model is implementable in existing (quasi-)1D thermoacoustic codes, such as DeltaEC. Examples of generated results show good agreement with literature results. The model allows for arbitrary wave phasing; however, it is shown that the wave phasing does not significantly influence the heat transfer. PMID:24606258

  20. Major heat exchanger performance in Ontario Hydro-operated CANDU nuclear generating stations

    International Nuclear Information System (INIS)

    The performance of heat exchangers is described in terms of their impact on the unit in the form of forced outages and deratings as well as incapability due to scheduled outages. Some major problems with heat exchangers are highlighted. (auth)

  1. A study of defrosting behavior according to surface characteristics in a fin-tube heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.S.; Kim, J.M.; Jhee, S. [Hanyang University, Seoul (Korea)

    1999-11-01

    In this study, the defrosting behaviors according to the surface characteristics in the fin-tube heat exchanger is experimentally examined. It is found that the draining rate of the hydrophilic and hydrophobic heat exchangers are evenly dispersed during defrosting, compared with that of the bare one. It is caused by the high density frost for the hydrophilic heat exchanger, and surface characteristic for the hydrophobic heat exchanger, respectively. The rest period of the hydrophilic and hydrophobic heat exchangers are shorter and their weight of residual water are smaller than those of the bare heat exchanger. The hydrophilic and hydrophobic heat exchangers are more effective than the bare one in terms of defrosting efficiency, and the hydrophobic heat exchanger is better than the hydrophilic one. 8 refs., 7 figs.

  2. Fabrication of Wire Mesh Heat Exchangers for Waste Heat Recovery Using Wire-Arc Spraying

    Science.gov (United States)

    Rezaey, R.; Salavati, S.; Pershin, L.; Coyle, T.; Chandra, S.; Mostaghimi, J.

    2014-04-01

    Waste heat can be recovered from hot combustion gases using water-cooled heat exchangers. Adding fins to the external surfaces of the water pipes inserted into the hot gases increases their surface area and enhances heat transfer, increasing the efficiency of heat recovery. A method of increasing the heat transfer surface area has been developed using a twin wire-arc thermal spray system to generate a dense, high-strength coating that bonds wire mesh to the outside surfaces of stainless steel pipes through which water passes. At the optimum spray distance of 150 mm, the oxide content, coating porosity, and the adhesion strength of the coating were measured to be 7%, 2%, and 24 MPa, respectively. Experiments were done in which heat exchangers were placed inside a high-temperature oven with temperature varying from 300 to 900 °C. Several different heat exchanger designs were tested to estimate the total heat transfer in each case. The efficiency of heat transfer was found to depend strongly on the quality of the bond between the wire meshes and pipes and the size of openings in the wire mesh.

  3. Heat transfer and pressure drop characteristics of nanofluids in a plate heat exchanger.

    Science.gov (United States)

    Kwon, Y H; Kim, D; Li, C G; Lee, J K; Hong, D S; Lee, J G; Lee, S H; Cho, Y H; Kim, S H

    2011-07-01

    In this paper, the heat transfer characteristics and pressure drop of the ZnO and Al2O3 nanofluids in a plate heat exchanger were studied. The experimental conditions were 100-500 Reynolds number and the respective volumetric flow rates. The working temperature of the heat exchanger was within 20-40 degrees C. The measured thermophysical properties, such as thermal conductivity and kinematic viscosity, were applied to the calculation of the convective heat transfer coefficient of the plate heat exchanger employing the ZnO and Al2O3 nanofluids made through a two-step method. According to the Reynolds number, the overall heat transfer coefficient for 6 vol% Al2O3 increased to 30% because at the given viscosity and density of the nanofluids, they did not have the same flow rates. At a given volumetric flow rate, however, the performance did not improve. After the nanofluids were placed in the plate heat exchanger, the experimental results pertaining to nanofluid efficiency seemed inauspicious. PMID:22121605

  4. Mass and Heat Transfer Analysis of Membrane Humidifier with a Simple Lumped Mass Model

    International Nuclear Information System (INIS)

    The performance of proton exchange membrane fuel cell (PEMFC) is seriously changed by the humidification condition which is intrinsic characteristics of the PEMFC. Typically, the humidification of fuel cell is carried out with internal or external humidifier. A membrane humidifier is applied to the external humidification of residential power generation fuel cell due to its convenience and high performance. In this study, a simple static model is constructed to understand the physical phenomena of the membrane humidifier in terms of geometric parameters and operating parameters. The model utilizes the concept of shell and tube heat exchanger but the model is also able to estimate the mass transport through the membrane. Model is constructed with FORTRAN under Matlab/Simulink ? environment to keep consistency with other components model which we already developed. Results shows that the humidity of wet gas and membrane thickness are critical parameters to improve the performance of the humidifier

  5. Optimal Allocation of Heat Exchanger Inventory Associated with Fixed Power Output or Fixed Heat Transfer Rate Input

    OpenAIRE

    Costea, M.; Petrescu, S.; Le Saos, K.; Michel Feidt

    2002-01-01

    The purpose of this study is to determine the optimal distribution of the heat transfer surface area or conductance among the Stirling engine heat exchangers when the minimum of the total heat transfer surface area of the heat exchangers is sought. The optimization procedure must fulfill one of the following constraints: (1) fixed power output of the engine, (2) fixed heat transfer rate available at the source, or (3) fixed power output and heat transfer rate at the source. Internal and exter...

  6. Experimental study on the cross flow air cooled plate heat exchanger using fin with electric pump.

    OpenAIRE

    Pankaj kumar mishra

    2013-01-01

    Experimental study on the cross flow air cooled plate heat exchanger using fin with electric pump was performed. Two prototype plate heat exchanger were manufactured in a stack of single wave plates and double plates in parallel. Cooling air flows through the plate heat exchanger in across wise direction against internal cooling water. In this study prototype heat exchanger were tested in a laboratoryscale experiments. From test double wave plates heatexchanger shows approximately 52.50 % enh...

  7. Fluidized bed heat exchanger with water cooled air distributor and dust hopper

    Science.gov (United States)

    Jukkola, Walfred W. (Westport, CT); Leon, Albert M. (Mamaroneck, NY); Van Dyk, Jr., Garritt C. (Bethel, CT); McCoy, Daniel E. (Williamsport, PA); Fisher, Barry L. (Montgomery, PA); Saiers, Timothy L. (Williamsport, PA); Karstetter, Marlin E. (Loganton, PA)

    1981-11-24

    A fluidized bed heat exchanger is provided in which air is passed through a bed of particulate material containing fuel. A steam-water natural circulation system is provided for heat exchange and the housing of the heat exchanger has a water-wall type construction. Vertical in-bed heat exchange tubes are provided and the air distributor is water-cooled. A water-cooled dust hopper is provided in the housing to collect particulates from the combustion gases and separate the combustion zone from a volume within said housing in which convection heat exchange tubes are provided to extract heat from the exiting combustion gases.

  8. 46 CFR 54.15-15 - Relief devices for unfired steam boilers, evaporators, and heat exchangers (modifies UG-126).

    Science.gov (United States)

    2010-10-01

    ...steam boilers, evaporators, and heat exchangers (modifies UG-126). 54...steam boilers, evaporators, and heat exchangers (modifies UG-126...safety valve setting. (f) A heat exchanger with liquid in the shell...

  9. Optimum Design of Heat Exchangers Networks Part -I: Software Development

    International Nuclear Information System (INIS)

    In this paper, we have developed a computerized framework for Heat Exchanger Network Synthesis (HENS) with optimality conditions of achieving the least operating and capital cost. The framework of HEN design involves the development three-computer programs, which applied sequentially to design an optimum HEN. The first program Automatic Minimum Utilities [AMU] developed for automatic formulation of LP equations, these equations can be solved by the optimization software [LINDO] to predict minimum hot and cold utilities. The second program based on Vertical Heat Transfer Method [VHTM] for predicting minimum overall heat transfer area and defining the optimum ?bTmin. The third program [Mod.RESHEX] developed for targeting of heat transfer area and automatic synthesis of HEN. This program represents the modifications and development of RESHEX method to overcome the design defects, which appeared on original RESHEX applications

  10. Corrosion of materials for heat exchangers and the countermeasures

    International Nuclear Information System (INIS)

    When the materials for heat exchangers are selected, the heat transfer performance, mechanical strength, workability, cost, corrosion resistance and so on are taken in consideration. Most of the failure of heat exchangers is due to corrosion, and the corrosion failure on cooling water side occurs frequently, to which attention is not paid much usually. The rate of occurrence of corrosion failure is overwhelmingly high in heating tubes, and the failure owing to cooling water exceeds that owing to process fluid. The material of heating tubes is mostly aluminum brass, and local failure such as pitting corrosion or stress corrosion cracking holds a majority. The cause of corrosion failure due to cooling water is mostly the poor water quality. The mechanism of corrosion of metals can be explained by the electrochemical reaction between the metals and solutions. As for the factors affecting corrosion, dissolved oxygen, pH, Cl- ions, temperature, flow velocity, and foreign matters are enumerated. Copper alloys are sensitive to the effect of polluted sea water. Erosion corrosion is caused by eddies and bubbles owing to high flow velocity, and impingement attack is caused by scratching foreign matters. The quality of fresh water affects corrosion more than sea water in case of copper alloys. The preliminary examination of water quality is essential. (Kako, I.)

  11. Optimal Allocation of Heat Exchanger Inventory Associated with Fixed Power Output or Fixed Heat Transfer Rate Input

    Directory of Open Access Journals (Sweden)

    M. Costea

    2002-03-01

    Full Text Available The purpose of this study is to determine the optimal distribution of the heat transfer surface area or conductance among the Stirling engine heat exchangers when the minimum of the total heat transfer surface area of the heat exchangers is sought. The optimization procedure must fulfill one of the following constraints: (1 fixed power output of the engine, (2 fixed heat transfer rate available at the source, or (3 fixed power output and heat transfer rate at the source. Internal and external irreversibilities of the Stirling engine are considered. An analytic approach, when heat transfer occurs at small temperature differences at the heat reservoirs, provides several restrictions with regard to variables of the model. A sensitivity analysis of the minimum of the total heat transfer surface area of the heat exchangers with respect to these variables and parameters is presented. The results show optimal temperatures of the working fluid and optimum allocation of heat exchanger inventory.

  12. Humidification Performance of Heat and Moisture Exchangers for Pediatric Use

    OpenAIRE

    Yusuke Chikata; Chihiro Sumida; Jun Oto; Hideaki Imanaka; Masaji Nishimura

    2012-01-01

    Background. While heat and moisture exchangers (HMEs) have been increasingly used for humidification during mechanical ventilation, the efficacy of pediatric HMEs has not yet been fully evaluated. Methods. We tested ten pediatric HMEs when mechanically ventilating a model lung at respiratory rates of 20 and 30?breaths/min and pressure control of 10, 15, and 20?cmH2O. The expiratory gas passed through a heated humidifier. We created two rates of leakage: 3.2?L/min (small) and 5.1?L/min...

  13. Solid-State Additive Manufacturing for Heat Exchangers

    Science.gov (United States)

    Norfolk, Mark; Johnson, Hilary

    2015-03-01

    Energy densities in devices are increasing across many industries including power generation, high power electronics, manufacturing, and automotive. Increasingly, there is a need for very high efficiency thermal management devices that can pull heat out of a small area at higher and higher rates. Metal additive manufacturing (AM) technologies have the promise of creating parts with complex internal geometries required for integral thermal management. However, this goal has not been met due to constraints in fusion-based metal 3D printers. This work presents a new strategy for metal AM of heat exchangers using an ultrasonic sheet lamination approach.

  14. Thermal, elastoplastic, and creep analyses of heat exchanger piping

    International Nuclear Information System (INIS)

    For the research and development project of high temperature heat exchangers, which is in active progress under the sponsorship of the Ministry of International Trade and Industry centering round IHI's Nuclear Power Development Office, Technical Development, the author has derived formulae for the thermal, elastoplastic, and creep analyses of frame structures, on which a computer program to calculate the inelastic behavior of a heat exchanger piping was developed. The load incremental procedure was employed in these analyses, and the incremental equilibrium equation was obtained by the virtual displacement principle. The element stiffness was calculated by numerical integration to evaluate accurately the incremental stress-strain relation at each integral point. The validity of this formulation was recognized through calculations with some samples and comparison between those calculation results and theoretical solutions. (auth.)

  15. Design of a ceramic heat exchanger for sulfuric acid decomposition

    International Nuclear Information System (INIS)

    It has been proposed that compact ceramic heat exchangers can be used for high temperature, corrosive applications. This paper discusses the development and optimization of a microchannel heat exchanger for the decomposition of sulfuric acid as part of the hydrogen producing sulfur iodine thermo-chemical cycle. The optimization process combines thermalhydraulic and structural modelling (UNLV) with empirical corrosion, performance and validation testing (Ceramatec, Inc.). The optimization process included an investigation of various materials of construction based on material, mechanical and corrosion properties. Within the designs investigated, micro-channel features were varied to adjust the cross-sectional profiles and the 'tortuosity' of the serpentine flow paths to increase the thermal performance while maintaining low pressure drops and thermo-mechanical stresses within system. The results of these coupled optimization efforts and the associated overall performance improvement will be reported. (author)

  16. The root caused analysis of leakaged heat exchanger tube

    International Nuclear Information System (INIS)

    AISI type 316L stainless steel was used as a heat exchanger tube material in an inter-cooler column. After less than a year of operation, severe corrosion failures occurred and a transverse opening leakage was observed on one of the heat exchanger tubes. The failed tube was carefully analyzed using various metallurgical laboratory equipments. The root cause of the tube leakage was believed due to the presence of horizontal micro and macro pores as a hydrogen gas entrapment during casting of the parent ingot. The overlapped and gaping pores formed notch on the shell side of the tube surface, and it increasingly evident when the use of a high-energy water-jet and metal brush as cleaning procedure results in an establishment of pitting type local-action corrosion cells penetrated the tube wall. As a result, corrosive fluid in the tube side dissolved into the cooling water, accelerating the corrosion process.

  17. Condensing Heat Exchanger Concept Developed for Space Systems

    Science.gov (United States)

    Hasan, Mohammad M.; Nayagam, Vedha

    2005-01-01

    The current system for moisture removal and humidity control for the space shuttles and the International Space Station uses a two-stage process. Water first condenses onto fins and is pulled through "slurper bars." These bars take in a two-phase mixture of air and water that is then separated by the rotary separator. A more efficient design would remove the water directly from the air without the need of an additional water separator downstream. For the Condensing Heat Exchanger for Space Systems (CHESS) project, researchers at the NASA Glenn Research Center in collaboration with NASA Johnson Space Center are designing a condensing heat exchanger that utilizes capillary forces to collect and remove water and that can operate in varying gravitational conditions including microgravity, lunar gravity, and Martian gravity.

  18. Explosive welding in pressure vessels and heat exchangers. Chapter 7

    International Nuclear Information System (INIS)

    The origins of explosive welding and the bonding mechanisms are given. The limiting conditions for achieving welding and the practical implications of these are outlined. The types of joint and interface obtainable - with almost any combination of metals - are described briefly. The properties, particularly mechanical, and methods of testing the joints are indicated. The advantages and scope of explosive welding techniques in pressure vessel and heat exchanger technology - the cladding of tubeplates, shell plates and connections and the various techniques for joining tubes to tubeplates - are described in some detail and compared with alternative techniques such as roll bonding and fusion welding. Fabrication techniques for clad components, which may involve fusion welding, are described. Explosive plugging - a repair technique finding increasing use in heat exchangers - is also discussed and examples of the exceptionally high integrity in service given. Finally new techniques currently being developed are mentioned. (author)

  19. The Design, Fabrication, and Testing of Composite Heat Exchange Coupons

    Science.gov (United States)

    Quade, Derek J.; Meador, Michael A.; Shin, Euy-Sik; Johnston, James C.; Kuczmarski, Maria A.

    2011-01-01

    Several heat exchanger (HX) test panels were designed, fabricated and tested at the NASA Glenn Research Center to explore the fabrication and performance of several designs for composite heat exchangers. The development of these light weight, high efficiency air-liquid test panels was attempted using polymer composites and carbon foam materials. The fundamental goal of this effort was to demonstrate the feasibility of the composite HX for various space exploration and thermal management applications including Orion CEV and Altair. The specific objectives of this work were to select optimum materials, designs, and to optimize fabrication procedures. After fabrication, the individual design concept prototypes were tested to determine their thermal performance and to guide the future development of full-size engineering development units (EDU). The overall test results suggested that the panel bonded with pre-cured composite laminates to KFOAM Grade L1 scored above the other designs in terms of ease of manufacture and performance.

  20. Analysis of the flow structure and heat transfer in a vertical mantle heat exchanger

    DEFF Research Database (Denmark)

    Knudsen, SØren; Morrison, GL

    2005-01-01

    The flow structure inside the inner tank and inside the mantle of a vertical mantle heat exchanger was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the inner tank and in the mantle were measured using a Particle Image Velocimetry (PIV) system. A Computational Fluid Dynamics (CFD) model of the vertical mantle heat exchanger was also developed for a detailed evaluation of the heat flux at the mantle wall and at the tank wall. The flow structure was evaluated for both high and low temperature incoming flows and for both initially mixed and initially stratified inner tank and mantle. The analysis of the heat transfer showed that the flow in the mantle near the inlet is mixed convection flow and that the heat transfer is dependent on the mantle inlet temperature relative to the core tank temperature at the mantle level. (C) 2004 Elsevier Ltd. All rights reserved.

  1. Heat exchangers and thermal energy storage concepts for the off-gas heat of steelmaking devices

    International Nuclear Information System (INIS)

    The fluctuating thermal emissions of electric arc furnaces require energy storage systems to provide downstream consumers with a continuous amount of thermal energy or electricity. Heat recovery systems based on thermal energy storage are presented. A comparison of different thermal energy storage systems has been performed. For the purpose, suitable heat exchangers for the off-gas heat have been developed. Dynamic process simulations of the heat recovery plants were necessary to check the feasibility of the systems and consider the non-steady-state off-gas emissions of the steelmaking devices. The implementation of a pilot plant into an existing off-gas duct of an electric arc furnace was required to check the real behavior of the heat exchanger and determine suitable materials in view of corrosion issues. The pilot plant is presented in this paper.

  2. Heat exchangers and thermal energy storage concepts for the off-gas heat of steelmaking devices

    Science.gov (United States)

    Steinparzer, T.; Haider, M.; Fleischanderl, A.; Hampel, A.; Enickl, G.; Zauner, F.

    2012-11-01

    The fluctuating thermal emissions of electric arc furnaces require energy storage systems to provide downstream consumers with a continuous amount of thermal energy or electricity. Heat recovery systems based on thermal energy storage are presented. A comparison of different thermal energy storage systems has been performed. For the purpose, suitable heat exchangers for the off-gas heat have been developed. Dynamic process simulations of the heat recovery plants were necessary to check the feasibility of the systems and consider the non-steady-state off-gas emissions of the steelmaking devices. The implementation of a pilot plant into an existing off-gas duct of an electric arc furnace was required to check the real behavior of the heat exchanger and determine suitable materials in view of corrosion issues. The pilot plant is presented in this paper.

  3. A REVIEW ON EFFECT OF VORTEX GENERATORS ON FLOW CHARACTERISTICS AND HEAT TRANSFER IN HEAT EXCHANGERS

    Directory of Open Access Journals (Sweden)

    S.A.Wani

    2015-02-01

    Full Text Available The development of high-performance thermal systems has increased interest in heat transfer enhancement techniques. The high thermal performance enhancement of heat exchanger systems is needed to use energy source efficiently due to the sky-rocketing prices of petroleum and coal fuels. Heat exchangers are widely used in industry both for cooling and heating. Insertion of turbulator in the flow passage is one of the favorable passive heat transfer augmentation techniques due to their advantages of easy fabrication, operation as well as low maintenance. The purpose of this experiment is to find the efficient shape and size of the vortex generator by using and comparing various types of Winglet pairs.

  4. Horizontal Heat Exchanger Design and Analysis for Passive Heat Removal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Vierow, Karen

    2005-08-29

    This report describes a three-year project to investigate the major factors of horizontal heat exchanger performance in passive containment heat removal from a light water reactor following a design basis accident LOCA (Loss of Coolant Accident). The heat exchanger studied in this work may be used in advanced and innovative reactors, in which passive heat removal systems are adopted to improve safety and reliability The application of horizontal tube-bundle condensers to passive containment heat removal is new. In order to show the feasibility of horizontal heat exchangers for passive containment cooling, the following aspects were investigated: 1. the condensation heat transfer characteristics when the incoming fluid contains noncondensable gases 2. the effectiveness of condensate draining in the horizontal orientation 3. the conditions that may lead to unstable condenser operation or highly degraded performance 4. multi-tube behavior with the associated secondary-side effects This project consisted of two experimental investigations and analytical model development for incorporation into industry safety codes such as TRAC and RELAP. A physical understanding of the flow and heat transfer phenomena was obtained and reflected in the analysis models. Two gradute students (one funded by the program) and seven undergraduate students obtained research experience as a part of this program.

  5. Mechanical design of a sodium heated steam generator

    International Nuclear Information System (INIS)

    FBTR steam generator is a once through type unit consisting of four 12.5 MW thermal modules generating a total of 74 tons per hour of steam at 125 bar and 4800C. This paper outlines the mechanical design of such type of steam generator with emphasis on special design problems associated with this type of sodium to water steam heat exchanger, namely, thermal cycling of transition zone where nucleate boiling changes over to film boiling, application of pressure vessel design criteria for transient pressures, thermal stress evaluation resulting from differential expansion between shell and tube in this typical configuration, sodium headers support design, thermal sleeve, design, thermal shock analysis in thick tubes, thermal stress resulting from stratification and stability of expansion bends against vibration. Some of the possible design changes for the future large size steam generator are outlined. (author)

  6. Overhaul Of The Heat Exchanger System Of RSG-Gas

    International Nuclear Information System (INIS)

    The first overhaul of RSG-Gas heat exchanger (HE 01)after 13 year operation had been done in May 21 until June 2, 2000. The result showed that the dimension of the some holes at the inlet side of HE 01 has shrunk but not at the outlet side. The shrank holes, then were cleaned using jet cleaner and aluminium pipe. The overhaul of HE 02 will be performed in the next period

  7. Production of heat exchange riffled tubes of stainless steels

    International Nuclear Information System (INIS)

    Drawing process of tubes made of stainless steels using the copper coating at short (fixed) and long (movable) mandrels is studied. Experimental series of tubes with longitudinal currugations made of the 12Kh18N10T steel are produced. Technique of production of heat-exchange tubes with longitudinal flutes, made of stainless steels by drawing using copper coating deposited out of salt melt

  8. Eddy current detection of corrosion damage in heat exchanger tubes

    International Nuclear Information System (INIS)

    Eddy current is often the most effective nondestructive test method available for in-service inspection of small bore tubing in heat exchangers. The basic principles, advantages and shortcomings of the technique are outlined. Typical eddy current indications from corrosion-related defects such as stress corrosion cracks, pitting and tube denting under support plates are presented. Eddy current signals from features such as magnetite deposits and ferromagnetic inclusions which might be mistaken for defects are also discussed. (auth)

  9. Semi-modular heat exchanger for nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Artaud, R.; Aubert, M.; Elbeze, R.; Jogand, P.

    1982-09-07

    Heat exchanger of a nuclear reactor is described, whose vessel is sealed by a slab, the exchanger being of the type which has within a vertically axed outer ferrule a plurality of heat exchange modules with substantially straight tubes. Each of the said modules has a secondary fluid inlet chamber and a secondary fluid outlet chamber and means for introducing and removing the primary fluid with respect to the exchange modules, wherein it comprises a base plate peripherally fixed to the said outer ferrule, means for supporting the outer ferrule by the slab, supporting ferrules for the modules, each ferrule traversing the base plate and being connected on the one hand to the upper end of the module and on the other to the said base plate. A plurality of pipes for the supply and removal of the secondary fluid sealingly traverse the base plate, a supply manifold and a discharge manifold for the secondary fluid positioned within the outer ferrule above the base plate. Said manifolds are respectively connected to the supply and discharge pipes of the secondary fluid, means for supporting the manifolds and a plurality of biological protection plates are positioned within the outer ferrule above the base plate and level with the slab, said protection plates are supported by the manifold supporting means permitting the passage of the secondary fluid and discharge pipes.

  10. COMPARATIVE THERMAL ANALYSIS OF HELIXCHANGER WITH SEGMENTAL HEAT EXCHANGER USING BELL-DELAWARE METHOD

    OpenAIRE

    S. Pavithran; P. V. Hadgekar; S.S. Shinde

    2012-01-01

    Heat exchangers are important heat transfer apparatus in oil refining, chemical engineering, environmental protection, electric power generation etc. The present work modifies the existing Bell-Delaware method used for conventional heat exchanger, taking into consideration the helical geometry of Helixchanger. Thermal analysis was carried out to study the impacts of various baffle inclination angles on fluid flow and heat transfer of heat exchangers with helical baffles. The analysis was con...

  11. Development of a heat exchanger root-cause analysis methodology

    International Nuclear Information System (INIS)

    The objective of this work is to determine a generic methodology for approaching the accurate identification of the root cause of component failure. Root-cause determinations are an everyday challenge to plant personnel, but they are handled with widely differing degrees of success due to the approaches, levels of diagnostic expertise, and documentation. The criterion for success is simple: If the root cause of the failure has truly been determined and corrected, the same causal failure relationship will not be demonstrated again in the future. The approach to root-cause analysis (RCA) element definition was to first selectively choose and constrain a functionally significant component (in this case a component cooling water to service water heat exchanger) that has demonstrated prevalent failures. Then a root cause of failure analysis was performed by a systems engineer on a large number of actual failure scenarios. The analytical process used by the engineer was documented and evaluated to abstract the logic model used to arrive at the root cause. For the case of the heat exchanger, the actual root-cause diagnostic approach is described. A generic methodology for the solution of the root cause of component failure is demonstrable for this general heat exchanger sample

  12. Heat exchanger bypass system for an absorption refrigeration system

    Science.gov (United States)

    Reimann, Robert C. (Lafayette, NY)

    1984-01-01

    A heat exchanger bypass system for an absorption refrigeration system is disclosed. The bypass system operates to pass strong solution from the generator around the heat exchanger to the absorber of the absorption refrigeration system when strong solution builds up in the generator above a selected level indicative of solidification of strong solution in the heat exchanger or other such blockage. The bypass system includes a bypass line with a gooseneck located in the generator for controlling flow of strong solution into the bypass line and for preventing refrigerant vapor in the generator from entering the bypass line during normal operation of the refrigeration system. Also, the bypass line includes a trap section filled with liquid for providing a barrier to maintain the normal pressure difference between the generator and the absorber even when the gooseneck of the bypass line is exposed to refrigerant vapor in the generator. Strong solution, which may accumulate in the trap section of the bypass line, is diluted, to prevent solidification, by supplying weak solution to the trap section from a purge system for the absorption refrigeration system.

  13. Utilization of Porous Media for Condensing Heat Exchangers

    Science.gov (United States)

    Tuan, George C.

    2006-01-01

    The use of porous media as a mean of separating liquid condensate from the air stream in condensing heat exchangers has been explored in the past inside small plant growth chambers and in the Apollo Command Module. Both applications used a cooled porous media made of sintered stainless steel to cool and separate condensation from the air stream. However, the main issues with the utilization of porous media in the past have been the deterioration of the porous media over long duration, such as clogging and changes in surface wetting characteristics. In addition, for long duration usage, biofilm growth from microorganisms on the porous medial would also be an issue. In developing Porous Media Condensing Heat Exchangers (PMCHX) for future space applications, different porous materials and microbial growth control methods will need to be explored. This paper explores the work performed at JSC and GRC to evaluate different porous materials and microbial control methods to support the development of a Porous Media Condensing Heat Exchanger. It outlines the basic principles for designing a PMCHX and issues that were encountered and ways to resolve those issues. The PMCHX has potential of mass, volume, and power savings over current CHX and water separator technology and would be beneficial for long duration space missions.

  14. Fouling of HVAC fin and tube heat exchangers

    International Nuclear Information System (INIS)

    Fin and tube heat exchangers are used widely in residential, commercial and industrial HVAC applications. Invariably, indoor and outdoor air contaminants foul these heat exchangers. This fouling can cause decreased capacity and efficiency of the HVAC equipment as well as indoor air quality problems related to microbiological growth. This paper describes laboratory studies to investigate the mechanisms that cause fouling. The laboratory experiments involve subjecting a 4.7 fins/cm (12 fins/inch) fin and tube heat exchanger to an air stream that contains monodisperse particles. Air velocities ranging from 1.5-5.2 m/s (295 ft/min-1024 ft/min) and particle sizes from 1-8.6(micro)m are used. The measured fraction of particles that deposit as well as information about the location of the deposited material indicate that particles greater than about 1(micro)m contribute to fouling. These experimental results are used to validate a scaling analysis that describes the relative importance of several deposition mechanisms including impaction, Brownian diffusion, turbophoresis, thermophoresis, diffusiophoresis, and gravitational settling. The analysis is extended to apply to different fin spacings and particle sizes typical of those found in indoor air

  15. Development of compact heat exchanger with diffusion welding

    International Nuclear Information System (INIS)

    A plate fin type compact heat exchanger (PFCHX) normally uses brazing for connecting plates and fins. However, the reliability of brazing is insufficient when PFCHXs are used for a long duration as primary or secondary components in nuclear plants. Particularly, PFCHXs used as a recuperator of gas-turbine plant with the High Temperature Gas-cooled Reactor (HTGR) or Intermediate Heat Exchanger (IHX) in future generation HTGRs need high reliability in a high temperature region. We have been developing the PFCHX with diffusion welding between plates and fins. The tensile and creep strength in the diffusion welds are superior to those in the brazing especially in high temperature condition. The developing PFCHX consisting of Ni based Hastelloy XR plates is expected to be used over 900 deg. C. Prior to the development of a full scale PFCHX, the small PFCHXs with the diffusion welding were designed, manufactured and installed in a test loop to investigate the welding strength and reliability. The early tests showed that reliability of the diffusion welding is very high, and the PFCHX with the diffusion has a possibility for the IHX or recuperator. Thermal performance tests were also carried out to obtain effective thermal conductance. This paper describes the design and test results of the small compact heat exchanger with the diffusion welding. (author). 5 refs, 8 figs, 3 tabs

  16. Heat transfer in heat exchangers of sodium cooled fast reactor systems

    International Nuclear Information System (INIS)

    The present paper describes the heat transfer in heat exchangers of sodium cooled fast reactors. Practical empirical correlations regarding heat transfer coefficients for intermediate heat exchangers (IHXs) and air coolers (ACs) were derived using test data obtained at the fast reactor 'Monju' and 'Joyo' and also at the 50 MW steam generator facility (50 MW SG). The correlation proposed by Seban and Shimazaki was applicable to estimate the heat transfer coefficients in both flows of IHX, i.e., primary and secondary flows, when the Peclet number was larger than 30. When the Peclet number for shell-side was small, the Nusselt number decreased as a function of the Peclet number. It was clarified that this characteristic was not caused by the heat conduction in flow direction. The heat conduction effect can be neglected even in the natural circulation conditions of the Monju plant. As for the heat transfer coefficient of AC provided in the secondary heat transport system of the fast breeder reactor, data in the above mentioned three facilities were evaluated. As a result, empirical correlations were derived for the average heat transfer coefficients of a large capacity finned air cooler made of stainless steel. These correlations could contribute to analyze the plant dynamics with better accuracy than before

  17. Fabrication, assembly and heat transfer testing of low-profile copper-based microchannel heat exchangers

    International Nuclear Information System (INIS)

    Low-profile, Cu-based microchannel heat exchangers (MHEs) with different geometric dimensions were fabricated, bonded and assembled. A transient liquid phase (TLP) process was used for bonding of Cu-based MHEs with total thicknesses ranging from 600 µm to 1700 µm. The structural integrity of TLP-bonded Cu MHEs was examined. Device-level heat transfer testing was performed on a series of Cu-based MHEs to study the influence of microchannel dimensions on overall heat transfer performance, corroborated by computational results from a simple 2D finite element analysis. The present results demonstrate the promise of low-profile metallic MHEs for high heat flux cooling applications

  18. Effective Heat Transfer Enhancement in Finned Tube Heat Exchanger with Different Fin Profiles

    OpenAIRE

    J.A.Livingston; Selvakumar, P

    2013-01-01

    During cross flow in a heat exchanger, heat transfer in the front portion of the tube is more compared to back portion of the tube. This is due to less formation of vortices at the backside of the tube. For uniform heat transfer to take place throughout the tube, it is necessary to increase the vortex formation at the rear side of the tube. The aim of this study is to explore the possibilities of improving the flow structure and thereby increasing uniform heat transfer around the tubes by int...

  19. Effective Heat Transfer Enhancement in Finned Tube Heat Exchanger with Different Fin Profiles

    OpenAIRE

    Livingston, J. A.; Selvakumar, P.

    2013-01-01

    During cross flow in a heat exchanger, heat transfer in the front portion of the tube is more compared to back portion of the tube. This is due to less formation of vortices at the backside of the tube. For uniform heat transfer to take place throughout the tube, it is necessary to increase the vortex formation at the rear side of the tube. The aim of this study is to explore the possibilities of improving the flow structure and thereby increasing uniform heat transfer...

  20. Modeling heat efficiency, flow and scale-up in the corotating disc scraped surface heat exchanger

    DEFF Research Database (Denmark)

    Friis, Alan; Szabo, Peter

    2002-01-01

    A comparison of two different scale corotating disc scraped surface heat exchangers (CDHE) was performed experimentally. The findings were compared to predictions from a finite element model. We find that the model predicts well the flow pattern of the two CDHE's investigated. The heat transfer performance predicted by the model agrees well with experimental observations for the laboratory scale CDHE whereas the overall heat transfer in the scaled-up version was not in equally good agreement. The lack of the model to predict the heat transfer performance in scale-up leads us to identify the key dimensionless parameters relevant for scale-up.