WorldWideScience

Sample records for salt water environments

  1. Hygrothermal effect of salt water environments on mechanical properties of carbon/epoxy composites

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Young Eun; Yoon, Sung Ho [Kumoh Nat' l Institute of Technology, Gumi (Korea, Republic of)

    2012-10-15

    In this study, salt water immersion tests were experimentally performed for up to 12 months to investigate the hygrothermal effect of salt water environments on the mechanical properties of carbon/epoxy composites. The composites were manufactured by laminating prepregs composed of carbon plain woven fabric and epoxy resin. The specimens were subjected to temperatures of 35, 55, and 75 .deg. C while being exposed to the salt water environments. Mechanical test results showed that the tensile modulus and tensile strength decreased at a small rate, and the compressive modulus and compressive strength decreased at a relatively larger rate, as the exposure temperature and time increased. The rate of decrease in compressive strength became larger as the exposure temperature became higher. This is because a higher environmental temperature accelerates the salt water uptake; this, in turn, reduces the compressive strength more rapidly.

  2. Hygrothermal effect of salt water environments on mechanical properties of carbon/epoxy composites

    International Nuclear Information System (INIS)

    Hwang, Young Eun; Yoon, Sung Ho

    2012-01-01

    In this study, salt water immersion tests were experimentally performed for up to 12 months to investigate the hygrothermal effect of salt water environments on the mechanical properties of carbon/epoxy composites. The composites were manufactured by laminating prepregs composed of carbon plain woven fabric and epoxy resin. The specimens were subjected to temperatures of 35, 55, and 75 .deg. C while being exposed to the salt water environments. Mechanical test results showed that the tensile modulus and tensile strength decreased at a small rate, and the compressive modulus and compressive strength decreased at a relatively larger rate, as the exposure temperature and time increased. The rate of decrease in compressive strength became larger as the exposure temperature became higher. This is because a higher environmental temperature accelerates the salt water uptake; this, in turn, reduces the compressive strength more rapidly

  3. Salt on roads and the environment (VB)

    DEFF Research Database (Denmark)

    Hessberg, Philipp von; Jørgensen, Michael Søgaard

    2000-01-01

    This report descripes the extent of use of salt on roads in Denmark and the environmental consequences of this. Alternative strategies for reducing the risk of greasy roads and different ways of alleviating the vegetation are also discussed.The different consequences for the environment...... that this report discusses are:- The ground water.- Lakes and streams.- Plants and trees along roads.The consequences for the economy through usage of salt on roads has not been carried out....

  4. Water purification using organic salts

    Science.gov (United States)

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  5. Dispersion of Louisiana crude oil in salt water environment by Corexit 9500A in the presence of natural coastal materials

    Science.gov (United States)

    Tansel, Berrin; Lee, Mengshan; Berbakov, Jillian; Tansel, Derya Z.; Koklonis, Urpiana

    2014-04-01

    Effectiveness of Corexit 9500A for dispersing Louisiana crude oil was evaluated in salt water solutions containing natural materials in relation to salinity and dispersant-to-oil ratio (DOR). Experimental results showed that both salinity and DOR had significant effects on dispersion of Louisiana crude oil in the presence of different natural materials. The natural materials added to the salt water solutions included sea sand (South Beach, Miami, Florida), red mangrove leaves (Rhizophora mangle), seaweed (Sargassum natans), and sea grass (Halodule wrightii). Dispersant effectiveness (amount of oil dispersed into the water) was reduced significantly with increasing salinity with the minimum effectiveness observed in the salinity range between 30 and 50 ppt in all aqueous samples containing natural materials. When significant amounts of floating oil were present, the partially submerged natural materials enhanced the transfer of oil into the water column, which improved the dispersion effectiveness. However, dispersant effectiveness was significantly reduced when the amount of floating oil was relatively small and could not be released back to the water column. Surface tension may not be an adequate parameter for monitoring the effectiveness of dispersants in salt water environment. When distilled water was used (i.e., zero salinity), surface tension was significantly reduced with increasing dispersant concentration. However, there was no clear trend in the surface tension of the salt water solutions (17-51 ppt) containing crude oil and natural materials with increasing dispersant concentration.

  6. A universal salt model based on under-ground precipitation of solid salts due to supercritical water `out-salting'

    Science.gov (United States)

    Rueslåtten, H.; Hovland, M. T.

    2010-12-01

    One of the common characteristics of planets Earth and Mars is that both host water (H2O) and large accumulations of salt. Whereas Earth’s surface-environment can be regarded as ‘water-friendly’ and ‘salt hostile’, the reverse can be said for the surface of Mars. This is because liquid water is stable on Earth, and the atmosphere transports humidity around the globe, whereas on planet Mars, liquid water is unstable, rendering the atmosphere dry and, therefore, ‘salt-friendly’. The riddle as to how the salt accumulated in various locations on those two planets, is one of long-lasting and great debate. The salt accumulations on Earth are traditionally termed ‘evaporites’, meaning that they formed as a consequence of the evaporation of large masses of seawater. How the accumulations on Mars formed is much harder to explain, as an ocean only existed briefly. Although water molecules and OH-groups may exist in abundance in bound form (crystal water, adsorbed water, etc.), the only place where free water is expected to be stable on Mars is within underground faults, fractures, and crevices. Here it likely occurs as brine or in the form of ice. Based on these conditions, a key to understanding the accumulation of large deposits of salt on both planets is linked to how brines behave in the subsurface when pressurized and heated beyond their supercritical point. At depths greater than about 3 km (P>300 bars) water will no longer boil in a steam phase. Rather, it becomes supercritical and will attain the phase of supercritical water vapor (SCRIW) with a specific gravity of typically 0.3 g/cm3. An important characteristic of SCRIW is its inability to dissolve the common sea salts. The salt dissolved in the brines will therefore precipitate as solid particles when brines (seawater on the Earth) move into the supercritical P&T-domain (T>400°C, P>300 bars). Numerical modeling of a hydrothermal system in the Atlantis II Deep of the Red Sea indicates that a

  7. Perovskite nickelates as electric-field sensors in salt water

    Science.gov (United States)

    Zhang, Zhen; Schwanz, Derek; Narayanan, Badri; Kotiuga, Michele; Dura, Joseph A.; Cherukara, Mathew; Zhou, Hua; Freeland, John W.; Li, Jiarui; Sutarto, Ronny; He, Feizhou; Wu, Chongzhao; Zhu, Jiaxin; Sun, Yifei; Ramadoss, Koushik; Nonnenmann, Stephen S.; Yu, Nanfang; Comin, Riccardo; Rabe, Karin M.; Sankaranarayanan, Subramanian K. R. S.; Ramanathan, Shriram

    2018-01-01

    Designing materials to function in harsh environments, such as conductive aqueous media, is a problem of broad interest to a range of technologies, including energy, ocean monitoring and biological applications. The main challenge is to retain the stability and morphology of the material as it interacts dynamically with the surrounding environment. Materials that respond to mild stimuli through collective phase transitions and amplify signals could open up new avenues for sensing. Here we present the discovery of an electric-field-driven, water-mediated reversible phase change in a perovskite-structured nickelate, SmNiO3. This prototypical strongly correlated quantum material is stable in salt water, does not corrode, and allows exchange of protons with the surrounding water at ambient temperature, with the concurrent modification in electrical resistance and optical properties being capable of multi-modal readout. Besides operating both as thermistors and pH sensors, devices made of this material can detect sub-volt electric potentials in salt water. We postulate that such devices could be used in oceanic environments for monitoring electrical signals from various maritime vessels and sea creatures.

  8. Precipitates/Salts Model Calculations for Various Drift Temperature Environments

    International Nuclear Information System (INIS)

    Marnier, P.

    2001-01-01

    The objective and scope of this calculation is to assist Performance Assessment Operations and the Engineered Barrier System (EBS) Department in modeling the geochemical effects of evaporation within a repository drift. This work is developed and documented using procedure AP-3.12Q, Calculations, in support of ''Technical Work Plan For Engineered Barrier System Department Modeling and Testing FY 02 Work Activities'' (BSC 2001a). The primary objective of this calculation is to predict the effects of evaporation on the abstracted water compositions established in ''EBS Incoming Water and Gas Composition Abstraction Calculations for Different Drift Temperature Environments'' (BSC 2001c). A secondary objective is to predict evaporation effects on observed Yucca Mountain waters for subsequent cement interaction calculations (BSC 2001d). The Precipitates/Salts model is documented in an Analysis/Model Report (AMR), ''In-Drift Precipitates/Salts Analysis'' (BSC 2001b)

  9. Perovskite nickelates as electric-field sensors in salt water

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhen; Schwanz, Derek; Narayanan, Badri; Kotiuga, Michele; Dura, Joseph A.; Cherukara, Mathew; Zhou, Hua; Freeland, John W.; Li, Jiarui; Sutarto, Ronny; He, Feizhou; Wu, Chongzhao; Zhu, Jiaxin; Sun, Yifei; Ramadoss, Koushik; Nonnenmann, Stephen S.; Yu, Nanfang; Comin, Riccardo; Rabe, Karin M.; Sankaranarayanan, Subramanian K. R. S.; Ramanathan, Shriram

    2017-12-18

    Designing materials to function in harsh environments, such as conductive aqueous media, is a problem of broad interest to a range of technologies, including energy, ocean monitoring and biological applications(1-4). The main challenge is to retain the stability and morphology of the material as it interacts dynamically with the surrounding environment. Materials that respond to mild stimuli through collective phase transitions and amplify signals could open up new avenues for sensing. Here we present the discovery of an electric-field-driven, water-mediated reversible phase change in a perovskite-structured nickelate, SmNiO35-7. This prototypical strongly correlated quantum material is stable in salt water, does not corrode, and allows exchange of protons with the surrounding water at ambient temperature, with the concurrent modification in electrical resistance and optical properties being capable of multi-modal readout. Besides operating both as thermistors and pH sensors, devices made of this material can detect sub-volt electric potentials in salt water. We postulate that such devices could be used in oceanic environments for monitoring electrical signals from various maritime vessels and sea creatures

  10. Innovative methods to reduce salt water intrusion in harbours

    Science.gov (United States)

    Groenenboom, J.; Uittenbogaard, R.; Hulsen, L.; van der Kaaij, T.; Kielen, N.

    2017-12-01

    The availability of fresh water in densely populated estuarine environments will in the future more often be threatened due to both human (e.g. channel deepening) and natural (sea-level rise, storm surges, extremely low river discharges) causes. Here, the salt water intrusion into the New Waterway, the main navigation channel of the port of Rotterdam, is used as a case study to elaborate on two innovative ways to mitigate the effects of salt water intrusion. The first method is based on the concept that vertical mixing of a salt wedge reduces its intrusion length. The idea is to equip a vessel with cranes that hold perforated tubes close to the bed alongside the vessel. By connecting compressors to the perforated tubes, a bubble screen with an adjustable vertical location can be created. Since the horizontal location of the bubble screens is not fixed, the vessel can sail in the vicinity of the moving salt wedge therewith increasing the effectiveness of the method. Another advantage of this intervention is that it can be deployed temporarily when the urgency for the prevention of salt water intrusion is high. The second method originates from the Port of Rotterdam Authority and is inspired by a small bypass that is present between two parallel channels (New Waterway and Caland Canal) connecting the North Sea to the Port of Rotterdam. Due to the different hydrodynamic characteristics of the hinterland of both channels, a difference in salinity and water level is present between both ends of the bypass. As a result, a lateral inflow of water into the New Waterway occurs at the same moment that the flood velocities transport saline water landwards. The lateral inflow of water into this channel has no momentum in the landward direction and therefore decreases the landward flow velocity and therewith the salt water intrusion. In addition, the inflow drives a vertical circulation that mixes the water column close to the bypass. Similar to the bubble screens mentioned

  11. Precipitates/Salts Model Calculations for Various Drift Temperature Environments

    Energy Technology Data Exchange (ETDEWEB)

    P. Marnier

    2001-12-20

    The objective and scope of this calculation is to assist Performance Assessment Operations and the Engineered Barrier System (EBS) Department in modeling the geochemical effects of evaporation within a repository drift. This work is developed and documented using procedure AP-3.12Q, Calculations, in support of ''Technical Work Plan For Engineered Barrier System Department Modeling and Testing FY 02 Work Activities'' (BSC 2001a). The primary objective of this calculation is to predict the effects of evaporation on the abstracted water compositions established in ''EBS Incoming Water and Gas Composition Abstraction Calculations for Different Drift Temperature Environments'' (BSC 2001c). A secondary objective is to predict evaporation effects on observed Yucca Mountain waters for subsequent cement interaction calculations (BSC 2001d). The Precipitates/Salts model is documented in an Analysis/Model Report (AMR), ''In-Drift Precipitates/Salts Analysis'' (BSC 2001b).

  12. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yuanyuan; Xiang, Feng; Wang, Hong, E-mail: hwang@mail.xjtu.edu.cn, E-mail: suo@seas.harvard.edu [Electronic Materials Research Laboratory, School of Electronics and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, Baohong; Zhou, Jinxiong [State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics and School of Aerospace, Xi' an Jiaotong University, Xi' an 710049 (China); Suo, Zhigang, E-mail: hwang@mail.xjtu.edu.cn, E-mail: suo@seas.harvard.edu [School of Engineering and Applied Sciences, Kavli Institute of Bionano Science and Technology, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2014-10-13

    Polyacrylamide hydrogels containing salt as electrolyte have been used as highly stretchable transparent electrodes in flexible electronics, but those hydrogels are easy to dry out due to water evaporation. Targeted, we try to enhance water retention capacity of polyacrylamide hydrogel by introducing highly hydratable salts into the hydrogel. These hydrogels show enhanced water retention capacity in different level. Specially, polyacrylamide hydrogel containing high content of lithium chloride can retain over 70% of its initial water even in environment with relative humidity of only 10% RH. The excellent water retention capacities of these hydrogels will make more applications of hydrogels become possible.

  13. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt

    International Nuclear Information System (INIS)

    Bai, Yuanyuan; Xiang, Feng; Wang, Hong; Chen, Baohong; Zhou, Jinxiong; Suo, Zhigang

    2014-01-01

    Polyacrylamide hydrogels containing salt as electrolyte have been used as highly stretchable transparent electrodes in flexible electronics, but those hydrogels are easy to dry out due to water evaporation. Targeted, we try to enhance water retention capacity of polyacrylamide hydrogel by introducing highly hydratable salts into the hydrogel. These hydrogels show enhanced water retention capacity in different level. Specially, polyacrylamide hydrogel containing high content of lithium chloride can retain over 70% of its initial water even in environment with relative humidity of only 10% RH. The excellent water retention capacities of these hydrogels will make more applications of hydrogels become possible.

  14. 46 CFR 45.77 - Salt water freeboard.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Salt water freeboard. 45.77 Section 45.77 Shipping COAST... Salt water freeboard. (a) The salt water addition in inches to freeboard applicable to each fresh water mark is obtained by the formula: Addition=Δ/41T where: Δ=displacement in fresh water, in tons of 2,240...

  15. Geophysical, geochemical and hydrological analyses of water-resource vulnerability to salinization: case of the Uburu-Okposi salt lakes and environs, southeast Nigeria

    Science.gov (United States)

    Ukpai, S. N.; Okogbue, C. O.

    2017-11-01

    Until this study, the location and depth of the saline units in Uburu-Okposi salt lake areas and environs have been unknown. This study aimed at delineating the saline lithofacies and dispersal configurations to water bodies, using electrical geophysical methods such as constant separation traversing (CST) and vertical electrical sounding (VES). Results showed weathered zones that represent aquifers mostly at the fourth geoelectric layer: between upper layered aquitards and underlying aquitards at depths 30-140 m. Lateral distribution of resistivity variance was defined by the CST, whereas the VES tool, targeted at low-resistivity zones, detected isolated saline units with less than 10 ohm-m at depths generally >78 m. The saline lithofacies were suspected to link freshwater zones via shear zones, which steer saline water towards the salt lakes and influence the vulnerability of groundwater to salinization. The level of salinization was verified by water sampling and analysis, and results showed general alkaline water type with a mean pH of 7.66. Water pollution was indicated: mean total dissolved solids (TDS) 550 mg/l, electrical conductivity (EC) 510 μS/cm, salinity 1.1‰, Cl- 200 mg/l, N03 -35.5 mg/l, Na+ 19.6 mg/l and Ca2+ 79.3 mg/l. The salinity is controlled by NaCl salt, as deduced from correlation analysis using the software package Statistical Product for Service Solutions (SPSS). Generally, concentrations of dissolved ions in the water of the area are enhanced via mechanisms such as evaporation, dissociation of salts, precipitation run off and leaching of dissolved rock minerals.

  16. Salt concentrations during water production resulting from CO2 storage

    DEFF Research Database (Denmark)

    Walter, Lena; Class, Holger; Binning, Philip John

    2014-01-01

    present in the saline aquifer. The brine can be displaced over large areas and can reach shallower groundwater resources. High salt concentrations could lead to a degradation of groundwater quality. For water suppliers the most important information is whether and how much salt is produced at a water...... displacement and infiltration could result in hazards for human health and the environment and therefore have to be investigated in detail. In this work numerical simulations are performed to estimate the risk related to the displacement of brine. The injected CO2 will displace the brine that is initially...

  17. Plant osmoregulation as an emergent water-saving adaptation under salt-stress conditions

    Science.gov (United States)

    Perri, S.; Entekhabi, D.; Molini, A.

    2017-12-01

    Ecohydrological models have been widely used in studying plant-environment relations and hydraulic traits in response to water, light and nutrient limitations. In this context, models become a tool to investigate how plants exploit available resources to maximize transpiration and growth, eventually pointing out possible pathways to adaptation. In contrast, ecohydrologists have rarely focused on the effects of salinity on plant transpiration, which are commonly considered marginal in terrestrial biomes. The effect of salinity, however, cannot be neglected in the case of salt affected soils - estimated to cover over 9 billion ha worldwide - and in intertidal and coastal ecosystems. The objective of this study is to model the effects of salinity on plant-water relations in order to better understand the interplay of soil hyperosmotic conditions and osmoregulation strategies in determining different transpiration patterns. Salinity reduces the water potential, therefore is expected to affect the plant hydraulics and reduce plant conductance (eventually leading to cavitation for very high salt concentrations). Also, plant adaptation to short and long-term exposure to salinity comes into place to maintain an efficient water and nutrients uptake. We introduce a parsimonious soil-plant-atmosphere continuum (SPAC) model that incorporates parameterizations for morphological, physiological and biochemical mechanisms involving varying salt concentrations in the soil water solution. Transpiration is expressed as a function of soil water salinity and salt-mediated water flows within the SPAC (the conceptual representation of the model is shown in Figure c). The model is used to explain a paradox observed in salt-tolerant plants where maximum transpiration occurs at an intermediate value of salinity (CTr,max), and is lower in more fresh (CTr,max) and more saline (C>CTr,max) conditions (Figure a and b). In particular, we show that - in salt-tolerant species - osmoregulation

  18. Hygroscopic behavior of atmospheric aerosols containing nitrate salts and water-soluble organic acids

    Science.gov (United States)

    Jing, Bo; Wang, Zhen; Tan, Fang; Guo, Yucong; Tong, Shengrui; Wang, Weigang; Zhang, Yunhong; Ge, Maofa

    2018-04-01

    While nitrate salts have critical impacts on environmental effects of atmospheric aerosols, the effects of coexisting species on hygroscopicity of nitrate salts remain uncertain. The hygroscopic behaviors of nitrate salt aerosols (NH4NO3, NaNO3, Ca(NO3)2) and their internal mixtures with water-soluble organic acids were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA). The nitrate salt / organic acid mixed aerosols exhibit varying phase behavior and hygroscopic growth depending upon the type of components in the particles. Whereas pure nitrate salt particles show continuous water uptake with increasing relative humidity (RH), the deliquescence transition is still observed for ammonium nitrate particles internally mixed with organic acids such as oxalic acid and succinic acid with a high deliquescence point. The hygroscopicity of submicron aerosols containing sodium nitrate and an organic acid is also characterized by continuous growth, indicating that sodium nitrate tends to exist in a liquid-like state under dry conditions. It is observed that in contrast to the pure components, the water uptake is hindered at low and moderate RH for calcium nitrate particles containing malonic acid or phthalic acid, suggesting the potential effects of mass transfer limitation in highly viscous mixed systems. Our findings improve fundamental understanding of the phase behavior and water uptake of nitrate-salt-containing aerosols in the atmospheric environment.

  19. Liquid salt environment stress-rupture testing

    Science.gov (United States)

    Ren, Weiju; Holcomb, David E.; Muralidharan, Govindarajan; Wilson, Dane F.

    2016-03-22

    Disclosed herein are systems, devices and methods for stress-rupture testing selected materials within a high-temperature liquid salt environment. Exemplary testing systems include a load train for holding a test specimen within a heated inert gas vessel. A thermal break included in the load train can thermally insulate a load cell positioned along the load train within the inert gas vessel. The test specimen can include a cylindrical gage portion having an internal void filled with a molten salt during stress-rupture testing. The gage portion can have an inner surface area to volume ratio of greater than 20 to maximize the corrosive effect of the molten salt on the specimen material during testing. Also disclosed are methods of making a salt ingot for placement within the test specimen.

  20. Highway deicing salt dynamic runoff to surface water and subsequent infiltration to groundwater during severe UK winters.

    Science.gov (United States)

    Rivett, Michael O; Cuthbert, Mark O; Gamble, Richard; Connon, Lucy E; Pearson, Andrew; Shepley, Martin G; Davis, John

    2016-09-15

    Dynamic impact to the water environment of deicing salt application at a major highway (motorway) interchange in the UK is quantitatively evaluated for two recent severe UK winters. The contaminant transport pathway studied allowed controls on dynamic highway runoff and storm-sewer discharge to a receiving stream and its subsequent leakage to an underlying sandstone aquifer, including possible contribution to long-term chloride increases in supply wells, to be evaluated. Logged stream electrical-conductivity (EC) to estimate chloride concentrations, stream flow, climate and motorway salt application data were used to assess salt fate. Stream loading was responsive to salt applications and climate variability influencing salt release. Chloride (via EC) was predicted to exceed the stream Environmental Quality Standard (250mg/l) for 33% and 18% of the two winters. Maximum stream concentrations (3500mg/l, 15% sea water salinity) were ascribed to salt-induced melting and drainage of highway snowfall without dilution from, still frozen, catchment water. Salt persistance on the highway under dry-cold conditions was inferred from stream observations of delayed salt removal. Streambed and stream-loss data demonstrated chloride infiltration could occur to the underlying aquifer with mild and severe winter stream leakage estimated to account for 21 to 54% respectively of the 70t of increased chloride (over baseline) annually abstracted by supply wells. Deicing salt infiltration lateral to the highway alongside other urban/natural sources were inferred to contribute the shortfall. Challenges in quantifying chloride mass/fluxes (flow gauge accuracy at high flows, salt loading from other roads, weaker chloride-EC correlation at low concentrations), may be largely overcome by modest investment in enhanced data acquisition or minor approach modification. The increased understanding of deicing salt dynamic loading to the water environment obtained is relevant to improved

  1. Purple Salt and Tiny Drops of Water in Meteorites

    Science.gov (United States)

    Taylor, G. J.

    1999-12-01

    Some meteorites, especially those called carbonaceous chondrites, have been greatly affected by reaction with water on the asteroids in which they formed. These reactions, which took place during the first 10 million years of the Solar System's history, formed assorted water-bearing minerals, but nobody has found any of the water that caused the alteration. Nobody, that is, until now. Michael Zolensky and team of scientists from the Johnson Space Center in Houston and Virginia Tech (Blacksburg, Virginia) discovered strikingly purple sodium chloride (table salt) crystals in two meteorites. The salt contains tiny droplets of salt water (with some other elements dissolved in it). The salt is as old as the Solar System, so the water trapped inside the salt is also ancient. It might give us clues to the nature of the water that so pervasively altered carbonaceous chondrites and formed oceans on Europa and perhaps other icy satellites. However, how the salt got into the two meteorites and how it trapped the water remains a mystery - at least for now.

  2. The effects of tree establishment on water and salt dynamics in naturally salt-affected grasslands.

    Science.gov (United States)

    Nosetto, Marcelo D; Jobbágy, Esteban G; Tóth, Tibor; Di Bella, Carlos M

    2007-07-01

    Plants, by influencing water fluxes across the ecosystem-vadose zone-aquifer continuum, can leave an imprint on salt accumulation and distribution patterns. We explored how the conversion of native grasslands to oak plantations affected the abundance and distribution of salts on soils and groundwater through changes in the water balance in naturally salt-affected landscapes of Hortobagy (Hungary), a region where artificial drainage performed approximately 150 years ago lowered the water table (from -2 to -5 m) decoupling it from the surface ecosystem. Paired soil sampling and detailed soil conductivity transects revealed consistently different salt distribution patterns between grasslands and plantations, with shallow salinity losses and deep salinity gains accompanying tree establishment. Salts accumulated in the upper soil layers during pre-drainage times have remained in drained grasslands but have been flushed away under tree plantations (65 and 83% loss of chloride and sodium, respectively, in the 0 to -0.5 m depth range) as a result of a five- to 25-fold increase in infiltration rates detected under plantations. At greater depth, closer to the current water table level, the salt balance was reversed, with tree plantations gaining 2.5 kg sodium chloride m(-2) down to 6 m depth, resulting from groundwater uptake and salt exclusion by tree roots in the capillary fringe. Diurnal water table fluctuations, detected in a plantation stand but not in the neighbouring grasslands, together with salt mass balances suggest that trees consumed approximately 380 mm groundwater per year, re-establishing the discharge regime and leading to higher salt accumulation rates than those interrupted by regional drainage practices more than a century ago. The strong influences of vegetation changes on water dynamics can have cascading consequences on salt accumulation and distribution, and a broad ecohydrological perspective that explicitly considers vegetation-groundwater links is

  3. Hygroscopic behavior of atmospheric aerosols containing nitrate salts and water-soluble organic acids

    Directory of Open Access Journals (Sweden)

    B. Jing

    2018-04-01

    Full Text Available While nitrate salts have critical impacts on environmental effects of atmospheric aerosols, the effects of coexisting species on hygroscopicity of nitrate salts remain uncertain. The hygroscopic behaviors of nitrate salt aerosols (NH4NO3, NaNO3, Ca(NO32 and their internal mixtures with water-soluble organic acids were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA. The nitrate salt ∕ organic acid mixed aerosols exhibit varying phase behavior and hygroscopic growth depending upon the type of components in the particles. Whereas pure nitrate salt particles show continuous water uptake with increasing relative humidity (RH, the deliquescence transition is still observed for ammonium nitrate particles internally mixed with organic acids such as oxalic acid and succinic acid with a high deliquescence point. The hygroscopicity of submicron aerosols containing sodium nitrate and an organic acid is also characterized by continuous growth, indicating that sodium nitrate tends to exist in a liquid-like state under dry conditions. It is observed that in contrast to the pure components, the water uptake is hindered at low and moderate RH for calcium nitrate particles containing malonic acid or phthalic acid, suggesting the potential effects of mass transfer limitation in highly viscous mixed systems. Our findings improve fundamental understanding of the phase behavior and water uptake of nitrate-salt-containing aerosols in the atmospheric environment.

  4. Harvesting Water from Air: Using Anhydrous Salt with Sunlight

    KAUST Repository

    Li, Renyuan

    2018-04-02

    Atmospheric water is abundant alternative water resource, equivalent to 6 times of water in all rivers on Earth. This work screens 14 common anhydrous and hydrated salt couples in terms of their physical and chemical stability, water vapor harvesting and release capacity under relevant application scenarios. Among the salts screened, copper chloride (CuCl2), copper sulfate (CuSO4) and magnesium sulfate (MgSO4) distinguish themselves and are further made into bi-layer water collection devices, with the top layer being photothermal layer while the bottom layer being salt-loaded fibrous membrane. The water collection devices are capable of capturing water vapor out of the air with low relative humidity (down to 15 %) and releasing water under regular and even weakened sunlight (i.e. 0.7 kW/m2). The work shines light on the potential use of anhydrous salt towards producing drinking water in water scarce regions.

  5. Water uptake by salts during the electrolyte processing for thermal batteries

    Science.gov (United States)

    Masset, Patrick; Poinso, Jean-Yves; Poignet, Jean-Claude

    Water uptake of single salts and electrolytes were measured in industrial conditions (dry-room). The water uptake rate ϑ (g h -1 cm -2) was expressed with respect to the apparent area of contact of the salt with atmosphere of the dry room. The water uptake by potassium-based salts was very low. LiF and LiCl salts were found to behave similarly. For LiBr- and LiI-based salts and mixtures, we pointed out a linear relationship between the water uptake and the elapsed time. Water uptake by magnesium oxide reached a limit after 200 h. This work provides a set of data concerning the rate of water uptake by single salts, salt mixtures and magnesia used in thermal battery electrolytes.

  6. Mineral sources of water and their influence on the safe disposal of radioactive wastes in bedded salt deposits

    International Nuclear Information System (INIS)

    Fallis, S.M.

    1973-12-01

    With the increased use of nuclear energy, there will be subsequent increases in high-level radioactive wastes such as Sr 90 , Cs 137 , and Pu 239 . Several agencies have considered the safest possible means to store or dispose of wastes in geologic environments such as underground storage in salt deposits, shale beds, abandoned dry mines, and in clay and shale pits. Salt deposits have received the most favorable attention because they exist in dry environments and because of other desirable properties of halite (its plasticity, gamma-ray shielding, heat dissipation ability, low mining cost, and worldwide abundance). Much work has been done on bedded salt deposits, particularly the Hutchinson Salt Member of the Wellington Formation at Lyons, Kansas. Salt beds heated by the decay of the radioactive wastes may release water by dehydration of hydrous minerals commonly present in evaporite sequences or water present in other forms such as fluid inclusions. More than 80 hydrous minerals are known to occur in evaporite deposits. The occurrences, total water contents (up to 63%) and dehydration temperatures (often less that 150 0 C) of these minerals are given. Since it is desirable to dispose of radioactive wastes in a dry environment, care must be taken that large quantities of water are not released through the heating of hydrous minerals. Seventy-four samples from four cores taken at Lyons, Kansas, were analyzed by x-ray diffraction. The minerals detected were halite, anhydrite, gypsum, polyhalite, dolomite, magnesite, quartz, feldspar, and the clay minerals illite, chlorite, kaolinite, vermiculite, smectite, mixed-layer clay, and corrensite (interstratified chlorite-vermiculite). Of these, gypsum, polyhalite and the clay minerals are all capable of releasing water when heated

  7. Salt balance, fresh water residence time and budget for non ...

    African Journals Online (AJOL)

    Water and salt budgets suggest that in order to balance the inflow and outflow of water at Makoba bay, there is net flux of water from the bay to the open ocean during wet season. Residual salt fluxes between the bay and the open ocean indicate advective salt export. Exchange of water between the bay with the open ocean ...

  8. Bile salts as semiochemicals in fish

    Science.gov (United States)

    Buchinger, Tyler J.; Li, Weiming; Johnson, Nicholas S.

    2014-01-01

    Bile salts are potent olfactory stimuli in fishes; however the biological functions driving such sensitivity remain poorly understood. We provide an integrative review of bile salts as semiochemicals in fish. First, we present characteristics of bile salt structure, metabolism, and function that are particularly relevant to chemical communication. Bile salts display a systematic pattern of structural variation across taxa, are efficiently synthesized, and are stable in the environment. Bile salts are released into the water via the intestine, urinary tract, or gills, and are highly water soluble. Second, we consider the potential role of bile salts as semiochemicals in the contexts of detecting nearby fish, foraging, assessing risk, migrating, and spawning. Lastly, we suggest future studies on bile salts as semiochemicals further characterize release into the environment, behavioral responses by receivers, and directly test the biological contexts underlying olfactory sensitivity.

  9. Isotope geochemistry of water in Gulf Coast Salt Domes

    International Nuclear Information System (INIS)

    Knauth, L.P.; Kumar, M.B.; Martinez, J.D.

    1980-01-01

    Water found as active leaks and isolated pools in the Weeks Island, Jefferson Island, and Belle Isle salt mines of south Louisiana has delta 18 O values ranging from -4 to +11.5% 0 and deltaD values from -2.3 to -53% 0 . One sample from Weeks Island and one from Jefferson Island are isotopically similar to local surface waters and are clearly of meteoric origin. All other samples are too enriched in 18 O to be meteoric waters. In the Weeks Island mine the isotopic data define a linear array given by deltaD=3.0delta 18 O-40.1. Active leaks define the positive end of this array. Isolated pools are interpreted as inactive leaks with initial delta 18 O and deltaD values of +9.1 +- 0.5% 0 and -11% 0 +- 7% 0 , which have subsequently exchanged with water vapor in the mine air to produce the linear array of delta values. The water derived from active leaks in these three mines is too enriched in 18 O and too depleted in D to be connate ocean water or evaporite connate water trapped in the salt. Isotopic composition of water derived from the dehydration of gypsum is probably dissimilar to that of the active leaks. It is unlikely that the water has originated from the dehydration of gypsum. It is also unlikely that isotopic exchange with anhydrite is responsible for observed 18 O enrichments. Nonmeteroric water from the active leaks displays the type of 18 O enrichments characteristic of saline formation waters, where water exchanges isotopically with calcite and clay minerals. It is concluded that the nonmeteoric waters are formation waters which have become incorporated in the salt. From the observed 18 O enrichment it is calculated that formation waters were incorporated during diapiric rise of the salt at a depth of 3--4 km and have been trapped within the salt for 10--13 m.y. Large volumes of salt within salt domes are not naturally penetrated by meteoric groundwaters but can contain limited amounts of trapped formation water

  10. Mineral sources of water and their influence on the safe disposal of radioactive wastes in bedded salt deposits

    Energy Technology Data Exchange (ETDEWEB)

    Fallis, S.M.

    1973-12-01

    With the increased use of nuclear energy, there will be subsequent increases in high-level radioactive wastes such as Sr/sup 90/, Cs/sup 137/, and Pu/sup 239/. Several agencies have considered the safest possible means to store or dispose of wastes in geologic environments such as underground storage in salt deposits, shale beds, abandoned dry mines, and in clay and shale pits. Salt deposits have received the most favorable attention because they exist in dry environments and because of other desirable properties of halite (its plasticity, gamma-ray shielding, heat dissipation ability, low mining cost, and worldwide abundance). Much work has been done on bedded salt deposits, particularly the Hutchinson Salt Member of the Wellington Formation at Lyons, Kansas. Salt beds heated by the decay of the radioactive wastes may release water by dehydration of hydrous minerals commonly present in evaporite sequences or water present in other forms such as fluid inclusions. More than 80 hydrous minerals are known to occur in evaporite deposits. The occurrences, total water contents (up to 63%) and dehydration temperatures (often less that 150/sup 0/C) of these minerals are given. Since it is desirable to dispose of radioactive wastes in a dry environment, care must be taken that large quantities of water are not released through the heating of hydrous minerals. Seventy-four samples from four cores taken at Lyons, Kansas, were analyzed by x-ray diffraction. The minerals detected were halite, anhydrite, gypsum, polyhalite, dolomite, magnesite, quartz, feldspar, and the clay minerals illite, chlorite, kaolinite, vermiculite, smectite, mixed-layer clay, and corrensite (interstratified chlorite-vermiculite). Of these, gypsum, polyhalite and the clay minerals are all capable of releasing water when heated.

  11. Water-bearing explosive containing nitrogen-base salt

    Energy Technology Data Exchange (ETDEWEB)

    Dunglinson, C.; Lyerly, W.M.

    1968-10-21

    A water-bearing explosive composition consists of an oxidizing salt component, a fuel component, and water. A sensitizer is included having an oxygen balance more positive than -150%, and consisting of a salt of an inorganic oxidizing acid and of an acyclic nitrogen base having no more than 2 hydrogen atoms bonded to the basic nitrogen and up to 3 carbons per basic nitrogen, and/or of a phenyl amine. 41 claims.

  12. Wetting and evaporation of salt-water nanodroplets: A molecular dynamics investigation.

    Science.gov (United States)

    Zhang, Jun; Borg, Matthew K; Sefiane, Khellil; Reese, Jason M

    2015-11-01

    We employ molecular dynamics simulations to study the wetting and evaporation of salt-water nanodroplets on platinum surfaces. Our results show that the contact angle of the droplets increases with the salt concentration. To verify this, a second simulation system of a thin salt-water film on a platinum surface is used to calculate the various surface tensions. We find that both the solid-liquid and liquid-vapor surface tensions increase with salt concentration and as a result these cause an increase in the contact angle. However, the evaporation rate of salt-water droplets decreases as the salt concentration increases, due to the hydration of salt ions. When the water molecules have all evaporated from the droplet, two forms of salt crystals are deposited, clump and ringlike, depending on the solid-liquid interaction strength and the evaporation rate. To form salt crystals in a ring, it is crucial that there is a pinned stage in the evaporation process, during which salt ions can move from the center to the rim of the droplets. With a stronger solid-liquid interaction strength, a slower evaporation rate, and a higher salt concentration, a complete salt crystal ring can be deposited on the surface.

  13. Measurement of water lost from heated geologic salt

    International Nuclear Information System (INIS)

    Hohlfelder, J.J.

    1979-07-01

    This report describes three methods used to measure the rate at which water is lost from heated geologic salt. The three methods were employed in each of a series of proof tests which were performed to evaluate instrumentation designed to measure the water-loss rate. It was found that the water lost from heated, 1-kg salt specimens which were measured according to these three methods was consistent to within an average 9 percent

  14. The use of airborne electromagnetic for efficient mapping of salt water intrusion and outflow to the sea

    DEFF Research Database (Denmark)

    Auken, Esben; Kirkegaard, Casper; Ribeiro, Joana

    2010-01-01

    Airborne electromagnetic (AEM) is an efficient tool for mapping groundwater resources in sedimentary environments. AEM delivers a very high data coverage and results in high-resolution electrical images of the subsurface. In particular the time domain methods (TEM) are well suited for mapping o0f...... not only the salt-fresh water boundary in the coastal zone, but also the mixing of fresh-salt-water on the seaside. Even freshwater layers under several meters of brackish water can be mapped. Sufficient depth of investigation is obtained by time domain methods as they have a significant higher transmitter...

  15. Increased salt consumption induces body water conservation and decreases fluid intake.

    Science.gov (United States)

    Rakova, Natalia; Kitada, Kento; Lerchl, Kathrin; Dahlmann, Anke; Birukov, Anna; Daub, Steffen; Kopp, Christoph; Pedchenko, Tetyana; Zhang, Yahua; Beck, Luis; Johannes, Bernd; Marton, Adriana; Müller, Dominik N; Rauh, Manfred; Luft, Friedrich C; Titze, Jens

    2017-05-01

    The idea that increasing salt intake increases drinking and urine volume is widely accepted. We tested the hypothesis that an increase in salt intake of 6 g/d would change fluid balance in men living under ultra-long-term controlled conditions. Over the course of 2 separate space flight simulation studies of 105 and 205 days' duration, we exposed 10 healthy men to 3 salt intake levels (12, 9, or 6 g/d). All other nutrients were maintained constant. We studied the effect of salt-driven changes in mineralocorticoid and glucocorticoid urinary excretion on day-to-day osmolyte and water balance. A 6-g/d increase in salt intake increased urine osmolyte excretion, but reduced free-water clearance, indicating endogenous free water accrual by urine concentration. The resulting endogenous water surplus reduced fluid intake at the 12-g/d salt intake level. Across all 3 levels of salt intake, half-weekly and weekly rhythmical mineralocorticoid release promoted free water reabsorption via the renal concentration mechanism. Mineralocorticoid-coupled increases in free water reabsorption were counterbalanced by rhythmical glucocorticoid release, with excretion of endogenous osmolyte and water surplus by relative urine dilution. A 6-g/d increase in salt intake decreased the level of rhythmical mineralocorticoid release and elevated rhythmical glucocorticoid release. The projected effect of salt-driven hormone rhythm modulation corresponded well with the measured decrease in water intake and an increase in urine volume with surplus osmolyte excretion. Humans regulate osmolyte and water balance by rhythmical mineralocorticoid and glucocorticoid release, endogenous accrual of surplus body water, and precise surplus excretion. Federal Ministry for Economics and Technology/DLR; the Interdisciplinary Centre for Clinical Research; the NIH; the American Heart Association (AHA); the Renal Research Institute; and the TOYOBO Biotechnology Foundation. Food products were donated by APETITO

  16. Influence of salt concentration and topographical position on water ...

    African Journals Online (AJOL)

    Water resource quality (WRQ) is affected by salt concentration and topographical position. Indeed, an increase in salt concentration, which decreases water availability for animal and plant nutrition, and lower altitude, which diminishes the potential for production of hydropower, negatively affects WRQ. Therefore, it is useful ...

  17. Mobilization of arsenic, lead, and mercury under conditions of sea water intrusion and road deicing salt application

    Science.gov (United States)

    Sun, Hongbing; Alexander, John; Gove, Brita; Koch, Manfred

    2015-09-01

    Water geochemistry data from complexly designed salt-solution injection experiments in the laboratory, coastal aquifers of Bangladesh and Italy, taken from the literature, and two salted watersheds of New Jersey, US were collected and analyzed to study the geochemical mechanisms that mobilize As, Pb, and Hg under varied salting conditions. Overall, increased NaCl-concentrations in aquifers and soil are found to increase the release of Pb and Hg into the water. Reducing environments and possible soil dispersion by hydrated Na+ are found to lead to an increase of As-concentration in water. However, the application of a pure NaCl salt solution in the column injection experiment was found to release less As, Pb, and Hg initially from the soil and delay their concentration increase, when compared to the application of CaCl2 and NaCl mixed salts (at 6:4 weight ratio). The concentration correlation dendrogram statistical analyses of the experimental and field data suggest that the release of As, Hg, and Pb into groundwater and the soil solution depends not only on the salt level and content, but also on the redox condition, dissolved organic matter contents, competitiveness of other ions for exchange sites, and source minerals. With the ongoing over-exploration of coastal aquifers from increased pumping, continued sea-level rise, and increased winter deicing salt applications in salted watersheds of many inland regions, the results of this study will help understand the complex relation between the concentrations of As, Pb, and Hg and increased salt level in a coastal aquifer and in soils of a salted watershed.

  18. Diffusion in the pore water of compacted crushed salt

    Energy Technology Data Exchange (ETDEWEB)

    Fluegge, Judith; Herr, Sebastian; Lauke, Thomas; Meleshyn, Artur; Miehe, Ruediger; Ruebel, Andre

    2016-07-15

    Diffusion of dissolved radionuclides in the pore water of compacted crushed salt in the long-term is the most relevant process for the release of radionuclides from a dedicated repository for high-level waste in a salt formation as has been shown in latest safety assessments and research projects /BUH 16/. So far, diffusion coefficients for free water have been applied for the diffusion in pore water in models for long-term safety assessments. This conservative assumption was used, because data on the diffusion coefficient of dissolved substances in crushed salt have been missing. Furthermore, the diffusion coefficient in the pore water was assumed to be constant and independent from the degree of compaction of the crushed salt. The work presented in this report was intended to contribute to fill this gap of knowledge about how the diffusion of radionuclides takes place in the compacted backfill of a repository in salt. For the first time, the pore diffusion coefficient as well as its dependence on the porosity of the crushed salt was determined experimentally by means of through-diffusion experiments using caesium as tracer. The results achieved in this project suggest that the diffusion in compacted crushed salt is not fully comparable to that in a homogeneous, temporally stable porous medium like sand or clay. The results obtained from four diffusion experiments show a remarkably different behaviour and all yield unique concentration versus time plots which includes highly temporal variable tracer fluxes with even full interruptions of the flux for longer periods of time. This effect cannot be explained by assuming a tracer transport by diffusion in a temporarily invariant pore space and / or under temporally invariant experimental conditions. From our point of view, a restructuring of the pore space seems to lead to closed areas of pore water in the sample which may open up again after some time, leading to a variable pore space and hence variable diffusive

  19. Salt Repository Project: Data report on corrosion results obtained from excess-salt corrosion test Matrix 1

    International Nuclear Information System (INIS)

    Haberman, J.H.; Westerman, R.E.

    1987-05-01

    The test discussed in this data report was directed at determining the response of the reference A216 grade WCA steel when it is exposed to anoxic excess-salt conditions at 150 0 C. The environment used in the test was intended to duplicate the intrusion brine scenario (i.e., the formation of brine by the intrusion of water from an outside source into the repository, with the formation of brine through dissolution of salt from the repository horizon). The salt-brine environment used in the test therefore reflected the expected gross salt composition of the repository horizon

  20. Effect of Salt Water in the Production of Concrete | Mbadike ...

    African Journals Online (AJOL)

    In this research work, the effect of salt water in the production of concrete was investigated. A total of ninety (90) concrete cubes were cast for compression strength test i.e. forty five cubes were cast using fresh water and the other forty five cubes were also cast using salt water. Similarly, a total of ninety (90) concrete beams ...

  1. Study of acid-base properties in various water-salt and water-organic solvent mixtures

    International Nuclear Information System (INIS)

    Lucas, M.

    1969-01-01

    Acid-base reactions have been studied in water-salt mixtures and water organic solvent-mixtures. It has been possible to find some relations between the displacement of the equilibria and the numerical value of water activity in the mixture. First have been studied some equilibria H + + B ↔ HB + in salt-water mixtures and found a relation between the pK A value, the solubility of the base and water activity. The reaction HO - + H + ↔ H 2 O has been investigated and a relation been found between pK i values, water activity and the molar concentration of the salt in the mixture. This relation is the same for every mixture. Then the same reactions have been studied in organic solvent-water mixtures and a relation found in the first part of the work have been used with success. So it has been possible to explain easily some properties of organic water-mixture as the shape of the curves of the Hammett acidity function Ho. (authors) [fr

  2. Thermal denitration of high concentration nitrate salts waste water

    International Nuclear Information System (INIS)

    Hwang, D. S.; Oh, J. H.; Choi, Y. D.; Hwang, S. T.; Park, J. H.; Latge, C.

    2003-01-01

    This study investigated the thermodynamic and the thermal decomposition properties of high concentration nitrate salts waste water for the lagoon sludge treatment. The thermodynamic property was carried out by COACH and GEMINI II based on the composition of nitrate salts waste water. The thermal decomposition property was carried out by TG-DTA and XRD. Ammonium nitrate and sodium nitrate were decomposed at 250 .deg. C and 730 . deg. C, respectively. Sodium nitrate could be decomposed at 450 .deg. C in the case of adding alumina for converting unstable Na 2 O into stable Na 2 O.Al 2 O 3 . The flow sheet for nitrate salts waste water treatment was proposed based on the these properties data. These will be used by the basic data of the process simulation

  3. Multiphase CFD modelling of water evaporation and salt precipitation in micro-pores

    NARCIS (Netherlands)

    Twerda, A.; O’Mahoney, T.S.D.; Velthuis, J.F.M.

    2014-01-01

    The precipitation of salt in porous reservoir rocks is an impairment to gas production, particularly in mature fields. Mitigation is typically achieved with regular water washes which dissolve the deposited salt and transport it in the water phase. However, since the process of salt precipitation is

  4. The chemistry of salt-affected soils and waters

    Science.gov (United States)

    Knowledge of the chemistry of salt affected soils and waters is necessary for management of irrigation in arid and semi-arid regions. In this chapter we review the origin of salts in the landscape, the major chemical reactions necessary for prediction of the soil solution composition, and the use of...

  5. Biochemical Changes Associated With Giving PALUDAL Salt In The Drinking Water Of Rats

    International Nuclear Information System (INIS)

    ABD-EL-MONEIM, A.E.; LOTFI, S.A.

    2010-01-01

    Three groups of adult male albino rats were given either tap water (control) or saline water (1 % unrefined paludal salt dissolved in tap water or 1 % pure chemically synthesized NaCl in tap water). The experiment was carried out under hot summer conditions. At the end of 28 days of the treatment, blood samples were collected to follow up the biochemical alterations induced by paludal salt intake in kidney, liver and thyroid function tests besides serum electrolytes since unrefined paludal salt is being used extensively nowadays by Egyptian people as a table salt which comprises risks to human health.The results revealed that drinking water containing high level of either pure or unrefined crude salts led to significant elevation of serum urea, creatinine, sodium, potassium, aspartate amino transferase (AST), alanine amino transferase (ALT) and alkaline phosphatase (ALP). Serum triiodothyronine (T3) and thyroxine (T4) were significantly depressed in both groups received high levels of salt in their drinking water. The level of serum total protein was decreased and albumin was negatively affected by salinity of water especially in paludal group while serum globulin was significantly increased in the other two groups. The biochemical alterations observed in rats as a result of drinking water containing paludal salt were more pronounced than those occurred in rats drank tap water plus pure NaCl.

  6. Protic Salt Polymer Membranes: High-Temperature Water-Free Proton-Conducting Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Gervasio, Dominic Francis [Univ. of Arizona, Tucson, AZ (United States)

    2010-09-30

    This research on proton-containing (protic) salts directly addresses proton conduction at high and low temperatures. This research is unique, because no water is used for proton ionization nor conduction, so the properties of water do not limit proton fuel cells. A protic salt is all that is needed to give rise to ionized proton and to support proton mobility. A protic salt forms when proton transfers from an acid to a base. Protic salts were found to have proton conductivities that are as high as or higher than the best aqueous electrolytes at ambient pressures and comparable temperatures without or with water present. Proton conductivity of the protic salts occurs providing two conditions exist: i) the energy difference is about 0.8 eV between the protic-salt state versus the state in which the acid and base are separated and 2) the chemical constituents rotate freely. The physical state of these proton-conducting salts can be liquid, plastic crystal as well as solid organic and inorganic polymer membranes and their mixtures. Many acids and bases can be used to make a protic salt which allows tailoring of proton conductivity, as well as other properties that affect their use as electrolytes in fuel cells, such as, stability, adsorption on catalysts, environmental impact, etc. During this project, highly proton conducting (~ 0.1S/cm) protic salts were made that are stable under fuel-cell operating conditions and that gave highly efficient fuel cells. The high efficiency is attributed to an improved oxygen electroreduction process on Pt which was found to be virtually reversible in a number of liquid protic salts with low water activity (< 1% water). Solid flexible non-porous composite membranes, made from inorganic polymer (e.g., 10%indium 90%tin pyrophosphate, ITP) and organic polymer (e.g., polyvinyl pyridinium phosphate, PVPP), were found that give conductivity and fuel cell performances similar to phosphoric acid electrolyte with no need for hydration at

  7. Salt water and skin interactions: new lines of evidence

    Science.gov (United States)

    Carbajo, Jose Manuel; Maraver, Francisco

    2018-04-01

    In Health Resort Medicine, both balneotherapy and thalassotherapy, salt waters and their peloids, or mud products are mainly used to treat rheumatic and skin disorders. These therapeutic agents act jointly via numerous mechanical, thermal, and chemical mechanisms. In this review, we examine a new mechanism of action specific to saline waters. When topically administered, this water rich in sodium and chloride penetrates the skin where it is able to modify cellular osmotic pressure and stimulate nerve receptors in the skin via cell membrane ion channels known as "Piezo" proteins. We describe several models of cutaneous adsorption/desorption and penetration of dissolved ions in mineral waters through the skin (osmosis and cell volume mechanisms in keratinocytes) and examine the role of these resources in stimulating cutaneous nerve receptors. The actions of salt mineral waters are mediated by a mechanism conditioned by the concentration and quality of their salts involving cellular osmosis-mediated activation/inhibition of cell apoptotic or necrotic processes. In turn, this osmotic mechanism modulates the recently described mechanosensitive piezoelectric channels.

  8. Effect of addition of water-soluble salts on the hydrogen generation of aluminum in reaction with hot water

    International Nuclear Information System (INIS)

    Razavi-Tousi, S.S.; Szpunar, J.A.

    2016-01-01

    Aluminum powder was ball milled for different durations of time with different weight percentages of water-soluble salts (NaCl and KCl). The hydrogen generation of each mixture in reaction with hot water was measured. A scanning electron microscope (SEM) as well as energy-dispersive spectroscopy (EDS) were used to investigate the morphology, surfaces and cross sections of the produced particles. The results show that the presence of salts in the microstructure of the aluminum considerably increases the hydrogen generation rate. At shorter milling times, the salt covers the aluminum particles and becomes embedded in layers within the aluminum matrix. At higher milling durations, salt and aluminum phases form composite particles. A higher percentage of the second phase significantly decreases the milling time needed for activation of the aluminum particles. Based on the EDS results from cross sections of the milled particles, a mechanism for improvement of the hydrogen generation rate in the presence of salts is suggested. - Highlights: • Milling and water soluble salts have a synergic effect on hydrogen generation. • Salt and aluminum form composite particles by milling. • Salt is dissolved in water leaving aluminum with much fresh surfaces for the reaction. • The chemical effect of salt on the reaction is negligible compared to its structural effect.

  9. Harvesting Water from Air: Using Anhydrous Salt with Sunlight

    KAUST Repository

    Li, Renyuan; Shi, Yusuf; Shi, Le; Alsaedi, Mossab.; Wang, Peng

    2018-01-01

    Atmospheric water is abundant alternative water resource, equivalent to 6 times of water in all rivers on Earth. This work screens 14 common anhydrous and hydrated salt couples in terms of their physical and chemical stability, water vapor

  10. Quantitative analysis of the hydration of lithium salts in water using multivariate curve resolution of near-infrared spectra

    International Nuclear Information System (INIS)

    Barba, M. Isabel; Larrechi, M. Soledad; Coronas, Alberto

    2016-01-01

    The hydration process of lithium iodide, lithium bromide, lithium chloride and lithium nitrate in water was analyzed quantitatively by applying multivariate curve resolution alternating least squares (MCR-ALS) to their near infrared spectra recorded between 850 nm and 1100 nm. The experiments were carried out using solutions with a salt mass fraction between 0% and 72% for lithium bromide, between 0% and 67% for lithium nitrate and between 0% and 62% for lithium chloride and lithium iodide at 323.15 K, 333.15 K, 343.15 K and 353.15 K, respectively. Three factors were determined for lithium bromide and lithium iodide and two factors for the lithium chloride and lithium nitrate by singular value decomposition (SVD) of their spectral data matrices. These factors are associated with various chemical environments in which there are aqueous clusters containing the ions of the salts and non-coordinated water molecules. Spectra and concentration profiles of non-coordinated water and cluster aqueous were retrieved by MCR-ALS. The amount of water involved in the process of hydration of the various salts was quantified. The results show that the water absorption capacity increases in the following order LiI < LiBr < LiNO_3 < LiCl. The salt concentration at which there is no free water in the medium was calculated at each one of the temperatures considered. The values ranged between 62.6 and 65.1% for LiBr, 45.5–48.3% for LiCl, 60.4–61.2% for LiI and 60.3–63.7% for LiNO_3. These values are an initial approach to determining the concentration as from which crystal formation is favored. - Highlights: • Quantitative analysis of the hydration of lithium salts in water. • The absorption capacity of the electrolytes in function of the salt is evaluated. • The lithium salt concentration is estimated when the crystal formation is favored.

  11. Quantitative analysis of the hydration of lithium salts in water using multivariate curve resolution of near-infrared spectra

    Energy Technology Data Exchange (ETDEWEB)

    Barba, M. Isabel [Group of Research in Applied Thermal Engineering-CREVER, Mechanical Engineering Dept. (Spain); Larrechi, M. Soledad, E-mail: mariasoledad.larrechi@urv.cat [Analytical and Organic Chemistry Dept., Universitat Rovira i Virgili, Tarragona (Spain); Coronas, Alberto [Group of Research in Applied Thermal Engineering-CREVER, Mechanical Engineering Dept. (Spain)

    2016-05-05

    The hydration process of lithium iodide, lithium bromide, lithium chloride and lithium nitrate in water was analyzed quantitatively by applying multivariate curve resolution alternating least squares (MCR-ALS) to their near infrared spectra recorded between 850 nm and 1100 nm. The experiments were carried out using solutions with a salt mass fraction between 0% and 72% for lithium bromide, between 0% and 67% for lithium nitrate and between 0% and 62% for lithium chloride and lithium iodide at 323.15 K, 333.15 K, 343.15 K and 353.15 K, respectively. Three factors were determined for lithium bromide and lithium iodide and two factors for the lithium chloride and lithium nitrate by singular value decomposition (SVD) of their spectral data matrices. These factors are associated with various chemical environments in which there are aqueous clusters containing the ions of the salts and non-coordinated water molecules. Spectra and concentration profiles of non-coordinated water and cluster aqueous were retrieved by MCR-ALS. The amount of water involved in the process of hydration of the various salts was quantified. The results show that the water absorption capacity increases in the following order LiI < LiBr < LiNO{sub 3} < LiCl. The salt concentration at which there is no free water in the medium was calculated at each one of the temperatures considered. The values ranged between 62.6 and 65.1% for LiBr, 45.5–48.3% for LiCl, 60.4–61.2% for LiI and 60.3–63.7% for LiNO{sub 3}. These values are an initial approach to determining the concentration as from which crystal formation is favored. - Highlights: • Quantitative analysis of the hydration of lithium salts in water. • The absorption capacity of the electrolytes in function of the salt is evaluated. • The lithium salt concentration is estimated when the crystal formation is favored.

  12. Biomarkers of waterborne copper exposure in the guppy Poecilia vivipara acclimated to salt water

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Anderson Abel de Souza [Universidade Federal do Rio Grande, Programa de Pós-Graduação em Oceanografia Biológica, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Hoff, Mariana Leivas Müller [Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Klein, Roberta Daniele [Universidade Federal do Rio Grande, Programa de Pós-Graduação em Ciências Fisiológicas – Fisiologia Animal Comparada, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Cardozo, Janaina Goulart [Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Giacomin, Marina Mussoi [Universidade Federal do Rio Grande, Programa de Pós-Graduação em Ciências Fisiológicas – Fisiologia Animal Comparada, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Pinho, Grasiela Lopes Leães [Universidade Federal do Rio Grande, Instituto de Oceanografia, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); and others

    2013-08-15

    Highlights: •Acute effects of waterborne copper were evaluated in the estuarine guppy Poecilia vivipara. •Fishes were acutely exposed to waterborne copper in salt water. •Waterborne copper affects the response of several biochemical and genetic endpoints. •Catalase, reactive oxygen species, antioxidant capacity and lipid peroxidation are responsive to copper exposure. •Copper exposure induces DNA damages in fish erythrocytes. -- Abstract: The responses of a large suite of biochemical and genetic parameters were evaluated in tissues (liver, gills, muscle and erythrocytes) of the estuarine guppy Poecilia vivipara exposed to waterborne copper in salt water (salinity 24 ppt). Activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione reductase, and glutathione S-transferase), metallothionein-like protein concentration, reactive oxygen species (ROS) content, antioxidant capacity against peroxyl radicals (ACAP), and lipid peroxidation (LPO) were evaluated in liver, gills, and muscle. Comet assay score and nuclear abnormalities and micronucleated cell frequency were analyzed in peripheral erythrocytes. The responses of these parameters were evaluated in fish exposed (96 h) to environmentally relevant copper concentrations (5, 9 and 20 μg L{sup −1}). In control and copper-exposed fish, no mortality was observed over the experimental period. Almost all biochemical and genetic parameters proved to be affected by waterborne copper exposure. However, the response of catalase activity in liver, ROS, ACAP and LPO in muscle, gills and liver, and DNA damages in erythrocytes clearly showed to be dependent on copper concentration in salt water. Therefore, the use of these parameters could be of relevance in the scope of biomonitoring programs in salt water environments contaminated with copper.

  13. Salt water intrusion on Uznam Island - 'Wydrzany' water intake

    International Nuclear Information System (INIS)

    Kochaniec, M.

    1999-01-01

    Aquifers of Uznam Island have high risk of saline water intrusion due to geographical and geological location. Hydrogeological and geophysical researchers were taken up in order to evaluate changes in intrusion of saline water into aquifer of Uznam Island. Water intake named 'Wydrzany' was built in south part of island in 1973. Since 1975 geophysical research has shown intrusion of salt water from reservoirs and bedrock due to withdrawn of water. In 1997 geoelectrical researches evaluated changes which have taken place since 1975 in saline water intrusion into aquifers of Uznam Island. The last research result showed that intrusion front moved 1100 m to the centre of island in comparison with situation in 1975. (author)

  14. Amount and nature of occluded water in bedded salt, Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    Fisher, R.S.

    1987-01-01

    The quantity and types of fluids within bedded salt cores from the Permian San Andres Formation, Palo Duro, Texas, were evaluated at the Texas Bureau of Economic Geology. Bedded halite from the San Andres Formation and other salt-bearing units were selected to represent the variety of salt types present, and were then analyzed. The mean water content of ''pure'' samples (more than 90% halite) is 0.4 weight percent, with none observed greater than 1.0 weight percent. Samples that contain more than 10 weight percent clay or mudstone display a trend of increasing water content with increasing clastic material. Chaotic mudstone-halite samples have as much as 5 weight percent water; halite-cemented mudstone interlayers, common throughout the bedded salts, may have water content values as high as 10 to 15 weight percent based on extrapolation of existing data that range from 0 to about 6%. No significant difference exists between the mean water content values of ''pure salt'' from the upper San Andres, lower San Andres Cycle 5, and lower San Andres Cycle 4 salt units. The fraction of total water present as mobile intergranular water is highly variable and not readily predicted from observed properties of the salt sample. The amount of water that would be affected by a high-level nuclear waste repository can be estimated if the volume of halite, the volume of clastic interlayers, and the amount and type of impurity in halite are known. Appendix contains seven vugraphs

  15. Academy President Sadykov on environment, water

    Energy Technology Data Exchange (ETDEWEB)

    1984-06-01

    Soviet scholars, supported by doctrines of Marxism-Leninism, propose to use natural resources without harming the environment. Institutes work on the use of nontraditional but productive ways to protect plants, filter industrial wastes and convert them to other uses, protect soil resources, set up plant and animal preserves, and protect geological conditions in steppe and semi-steppe areas. Scientific research on equipment to clean up wastes is not well established in the Soviet Union. When asked about the ecological harm of land reclamation, the president noted that newly reclaimed lands increase the demand for and increase the salt content of fresh water.

  16. Water management can reinforce plant competition in salt-affected semi-arid wetlands

    Science.gov (United States)

    Coletti, Janaine Z.; Vogwill, Ryan; Hipsey, Matthew R.

    2017-09-01

    The diversity of vegetation in semi-arid, ephemeral wetlands is determined by niche availability and species competition, both of which are influenced by changes in water availability and salinity. Here, we hypothesise that ignoring physiological differences and competition between species when managing wetland hydrologic regimes can lead to a decrease in vegetation diversity, even when the overall wetland carrying capacity is improved. Using an ecohydrological model capable of resolving water-vegetation-salt feedbacks, we investigate why water surface and groundwater management interventions to combat vegetation decline have been more beneficial to Casuarina obesa than to Melaleuca strobophylla, the co-dominant tree species in Lake Toolibin, a salt-affected wetland in Western Australia. The simulations reveal that in trying to reduce the negative effect of salinity, the management interventions have created an environment favouring C. obesa by intensifying the climate-induced trend that the wetland has been experiencing of lower water availability and higher root-zone salinity. By testing alternative scenarios, we show that interventions that improve M. strobophylla biomass are possible by promoting hydrologic conditions that are less specific to the niche requirements of C. obesa. Modelling uncertainties were explored via a Markov Chain Monte Carlo (MCMC) algorithm. Overall, the study demonstrates the importance of including species differentiation and competition in ecohydrological models that form the basis for wetland management.

  17. Laboratory Investigations on the Survival of Bacillus subtilis Spores in Deliquescent Salt Mars Analog Environments.

    Science.gov (United States)

    Nuding, Danielle L; Gough, Raina V; Venkateswaran, Kasthuri J; Spry, James A; Tolbert, Margaret A

    2017-10-01

    Observed features such as recurring slope lineae suggest that liquid water may exist on the surface and near-subsurface of Mars today. The presence of this liquid water, likely in the form of a brine, has important implications for the present-day water cycle, habitability, and planetary protection policies. It is possible that this water is formed, at least partially, by deliquescence of salts, a process during which hygroscopic salts absorb water vapor from the atmosphere and form a saturated liquid brine. We performed laboratory experiments to examine the ability of Bacillus subtilis (B-168) spores, alone or mixed with calcium perchlorate salt (Ca(ClO 4 ) 2 ), to form liquid water via deliquescence under Mars-relevant conditions. Spore survival after exposure to these conditions was examined. An environmental chamber was used to expose the samples to temperature and relative humidity (RH) values similar to those found on Mars, and Raman microscopy was used to identify the phases of water and salt that were present and to confirm the presence of spores. We found that B-168 spores did not condense any detectable water vapor on their own during the diurnal cycle, even at 100% RH. However, when spores were mixed with perchlorate salt, the entire sample deliquesced at low RH values, immersing the spores in a brine solution during the majority of the simulated martian temperature and humidity cycle. After exposure to the simulated diurnal cycles and, in some cases, perchlorate brine, the impact of each environmental scenario on spore survival was estimated by standard plate assay. We found that, if there are deliquescent salts in contact with spores, there is a mechanism for the spores to acquire liquid water starting with only atmospheric water vapor as the H 2 O source. Also, neither crystalline nor liquid Ca(ClO 4 ) 2 is sporicidal despite the low water activity. Key Words: Raman microscopy-Mars-Planetary protection-Salts-Water activity. Astrobiology 17, 997-1008.

  18. Hot water, fresh beer, and salt

    International Nuclear Information System (INIS)

    Crawford, F.S.

    1990-01-01

    In the ''hot chocolate effect'' the best musical scales (those with the finest tone quality, largest range, and best tempo) are obtained by adding salt to a glass of hot water supersaturated with air. Good scales can also be obtained by adding salt to a glass of freshly opened beer (supersaturated with CO 2 ) provided you first (a) get rid of much of the excess CO 2 so as to produce smaller, hence slower, rising bubbles, and (b) get rid of the head of foam, which damps the standing wave and ruins the tone quality. Finally the old question, ''Do ionizing particles produce bubbles in fresh beer?'' is answered experimentally

  19. Hot water, fresh beer, and salt

    Science.gov (United States)

    Crawford, Frank S.

    1990-11-01

    In the ``hot chocolate effect'' the best musical scales (those with the finest tone quality, largest range, and best tempo) are obtained by adding salt to a glass of hot water supersaturated with air. Good scales can also be obtained by adding salt to a glass of freshly opened beer (supersaturated with CO2) provided you first (a) get rid of much of the excess CO2 so as to produce smaller, hence slower, rising bubbles, and (b) get rid of the head of foam, which damps the standing wave and ruins the tone quality. Finally the old question, ``Do ionizing particles produce bubbles in fresh beer?'' is answered experimentally.

  20. Viscosities of oxalic acid and its salts in water and binary aqueous ...

    Indian Academy of Sciences (India)

    Unknown

    Viscosities; oxalic acid and its salts; water + THF mixtures; structure-breakers. 1. Introduction ... has found its application in the organic syntheses as manifested from ... water. In other words, these results indicate that oxalic acid and its salts mix ...

  1. Effects of road salts on groundwater and surface water ...

    Science.gov (United States)

    Road salts are a growing environmental concern in urban watersheds. We examined groundwater (GW) and surface water (SW) dynamics of Na+ and Cl− in Minebank Run (MBR), an urban stream in Maryland, USA. We observed an increasing salinity trend in this restored stream. Current baseflow salinity does not exceed water quality recommendations, but rapid “first flush” storm flow was approximately one-third that of seawater. Comparisons between the upstream and downstream study reaches suggest that a major interstate highway is the primary road salt source. A heavily used road parallels most of MBR and was an additional source to GW concentrations, especially the downstream right bank. A baseflow synoptic survey identified zones of increased salinity. Downstream piezometer wells exhibited increases in salt concentrations and there was evidence that Na+ is exchanging Ca2+ and Mg2+ on soils. SW salt concentrations were generally elevated above GW concentrations. Salinity levels persisted at MBR throughout the year and were above background levels at Bynum Run, a nearby reference stream not bisected by a major highway, suggesting that GW is a long-term reservoir for accumulating road salts. Chronic salinity levels may be high enough to damage vegetation and salinity peaks could impact other biota. Beneficial uses and green infrastructure investments may be at risk from salinity driven degradation. Therefore, road salt may represent an environmental risk that could af

  2. Water in urban planning, Salt Creek Basin, Illinois water management as related to alternative land-use practices

    Science.gov (United States)

    Spieker, Andrew Maute

    1970-01-01

    regarded as an area of potential recharge to the shallow aquifers. Preservation of the effectiveness of these potential recharge areas should be considered in land-use planning. Salt Creek is polluted in times of both low and high flow. Most communities in the basin in Du Page County discharge their treated sewage into the creek, whereas those in Cook County transfer their sewage to plants of the Metropolitan Sanitary District outside the basin. During periods of high runoff, combined storm runoff and overflow from sanitary sewers enter the creek. Such polluted water detracts from the stream's esthetic and recreational potential and poses a threat to ground-water supplies owing to induced recharge of polluted water to shallow aquifers. Alternative approaches .to the pollution problem include improvement of the degree of sewage treatment, detention and treatment of storm runoff, dilution of sewage through flow augmentation, or transfer of sewage from the basin to a central treatment plant. To result in an enhanced environment, the streambed would have to be cleansed of accumulated sludge deposits. The overbank flooding in Salt Creek basin every 2 to 3 years presents problems because of encroachments and developments on the flood plains. Flood plains in an urban area can be managed by identifying them, by recognizing that either their natural storage capacity or equivalent artificial capacity is needed to accommodate floods, and by planning land use accordingly. Examples of effective floodplain management include (1) preservation of greenbelts or regional parks along stream courses, (2) use of flood plains for recreation, parking lots. or other low-intensity uses, (3) use of flood-proofed commercial buildings, and (4) provision for compensatory storage to replace natural storage capacity. Results of poor flood-plain management include uncontrolled residential development and encroachment by fill into natural storage areas where no compensatory storage has been

  3. Laboratory Investigations on the Survival of Bacillus subtilis Spores in Deliquescent Salt Mars Analog Environments

    Science.gov (United States)

    Nuding, Danielle L.; Gough, Raina V.; Venkateswaran, Kasthuri J.; Spry, James A.; Tolbert, Margaret A.

    2017-10-01

    Observed features such as recurring slope lineae suggest that liquid water may exist on the surface and near-subsurface of Mars today. The presence of this liquid water, likely in the form of a brine, has important implications for the present-day water cycle, habitability, and planetary protection policies. It is possible that this water is formed, at least partially, by deliquescence of salts, a process during which hygroscopic salts absorb water vapor from the atmosphere and form a saturated liquid brine. We performed laboratory experiments to examine the ability of Bacillus subtilis (B-168) spores, alone or mixed with calcium perchlorate salt (Ca(ClO4)2), to form liquid water via deliquescence under Mars-relevant conditions. Spore survival after exposure to these conditions was examined. An environmental chamber was used to expose the samples to temperature and relative humidity (RH) values similar to those found on Mars, and Raman microscopy was used to identify the phases of water and salt that were present and to confirm the presence of spores. We found that B-168 spores did not condense any detectable water vapor on their own during the diurnal cycle, even at 100% RH. However, when spores were mixed with perchlorate salt, the entire sample deliquesced at low RH values, immersing the spores in a brine solution during the majority of the simulated martian temperature and humidity cycle. After exposure to the simulated diurnal cycles and, in some cases, perchlorate brine, the impact of each environmental scenario on spore survival was estimated by standard plate assay. We found that, if there are deliquescent salts in contact with spores, there is a mechanism for the spores to acquire liquid water starting with only atmospheric water vapor as the H2O source. Also, neither crystalline nor liquid Ca(ClO4)2 is sporicidal despite the low water activity.

  4. Features of metabolic reactions to various water-salt loads in female rats

    Directory of Open Access Journals (Sweden)

    Anatoliy I Gozhenko

    2018-04-01

    Full Text Available Background. In the previous article we reported that screening registered parameters of water-salt, nitrous and lipid metabolism as well as the neuroendocrine-immune complex found 42 among them who in rats subjected to various water-salt loads, significantly different from that of intact rats, but on average the same group of animals that received liquids with different mineralization and chemical composition. The purpose of this article is to find out the features of the reactions of the parameters of metabolism. Materials and methods. Experiment was performed on 58 healthy female Wistar rats 240-290 g divided into 6 groups. Animals of the first group remained intact, using tap water from drinking ad libitum. Instead, the other rats received the same tap water as well as waters Sophiya, Naftussya, Gertsa and its artificial salt analogue through the probe at a dose of 1,5 mL/100 g of body mass for 6 days. The day after the completion of the drinking course in all rats the parameters of water-salt, nitrous and lipid metabolism were registered. Results. Found that 16 metabolic parameters the maximum deviates from the level of intact rats under the influence of the salt analogue of Gertsa water, a smaller, but tangible effect is made by the Gertsa native water, even less effective waters Sofiya and Naftussya, instead of ordinary water is almost ineffective in relation to these metabolic parameters. The other 19 parameters deviates to a maximum extent from the reference level after the use of water Naftussya, fresh water is less effective, whereas quasi-isotonic liquids are practically inactive for these parameters. The remaining 13 parameters in animals that use normal water, deviates from intact control to the same extent as in the previous pattern, which, apparently, is also due to the stressful effects of the load course. Both Naftussya and Gertsa water and its salt analogue prevent the stress deviations of these parameters. Instead, by

  5. Model-based studies into ground water movement, with water density depending on salt content. Case studies and model validation with respect to the long-term safety of radwaste repositories. Final report

    International Nuclear Information System (INIS)

    Schelkes, K.

    1995-12-01

    Near-to-reality studies into ground water movement in the environment of planned radwaste repositories have to take into account that the flow conditions are influenced by the water density which in turn depends on the salt content. Based on results from earlier studies, computer programs were established that allow computation and modelling of ground water movement in salt water/fresh water systems, and the programs were tested and improved according to progress of the studies performed under the INTRAVAL international project. The computed models of ground water movement in the region of the Gorlebener Rinne showed for strongly simplified model profiles that the developing salinity distribution varies very sensitively in response to the applied model geometry, initial input data for salinity distribution, time frame of the model, and size of the transversal dispersion length. The WIPP 2 INTRAVAL experiment likewise studied a large-area ground water movement system influenced by salt water. Based on the concept of a hydraulically closed, regional ground water system (basin model), a sectional profile was worked out covering all relevant layers of the cap rock above the salt formation planned to serve as a repository. The model data derived to describe the salt water/fresh water movements in this profile resulted in essential enlargements and modifications of the ROCKFLOW computer program applied, (relating to input data for dispersion modelling, particle-tracker, computer graphics interface), and yielded important information for the modelling of such systems (relating to initial pressure data at the upper margin, network enhancement for important concentration boundary conditions, or treatment of permeability contrasts). (orig.) [de

  6. Membrane crystallization for recovery of salts from produced water

    DEFF Research Database (Denmark)

    Quist-Jensen, Cejna Anna; Jensen, Henriette Casper; Ali, Aamer

    Membrane Crystallization (MCr) is a novel technology able to recover freshwater and high-purity salts from complex solutions and therefore, is suggested for a better exploitation of wastewater streams. Unlike other membrane processes, MCr is not limited by high concentrations and, therefore, the ......, the membrane maintained its hydrophobic nature despite that produced water contained oil residues. Conductivity and HPLC was utilized to analyze the quality of the permeate stream......., the solutions can be treated to achieve saturation level. Hereby different salts can be precipitated and directly recovered from various streams. In this study, it is shown that MCr is able to treat produced water by producing clean water and simultaneously NaCl crystals. The recovered crystals exhibited high...

  7. The effect of molten salt on high temperature behavior of stainless steel and titanium alloy with the presence of water vapor

    Science.gov (United States)

    Baharum, Azila; Othman, Norinsan Kamil; Salleh, Emee Marina

    2018-04-01

    The high temperature oxidation experiment was conducted to study the behavior of titanium alloy Ti6A14V and stainless steel 316 in Na2SO4-50%NaCl + Ar-20%O2 (molten salt) and Na2SO4-50%NaCl + Ar-20%O2 + 12% H2O (molten salt + water vapor) environment at 900°C for 30 hours using horizontal tube furnace. The sample then was investigated using weight change measurement analysis and X-ray diffraction (XRD) analysis to study the weight gained and the phase oxidation that occurred. The weight gained of the titanium alloy was higher in molten salt environment compared to stainless steel due to the rapid growth in the oxide scale but showed almost no change of weight gained upon addition of water vapor. This is due to the alloy was fully oxidized. Stainless steel showed more protection and better effect in molten salt environment compared to mixed environment showed by slower weight gain and lower oxidation rate. Meanwhile, the phase oxidation test of the samples showed that the titanium alloy consist of multi oxide layer of rutile (TiO2) and Al2O3 on the surface of the exposed sample. While stainless steel show the formation of both protective Cr-rich oxide and non-protective Fe-rich oxide layer. This can be concluded that stainless steel is better compared to Ti alloy due to slow growing of chromia oxide. Therefore it is proven that stainless steel has better self-protection upon high temperature exposure.

  8. Activity and conformation of lysozyme in molecular solvents, protic ionic liquids (PILs) and salt-water systems.

    Science.gov (United States)

    Wijaya, Emmy C; Separovic, Frances; Drummond, Calum J; Greaves, Tamar L

    2016-09-21

    Improving protein stabilisation is important for the further development of many applications in the pharmaceutical, specialty chemical, consumer product and agricultural sectors. However, protein stabilization is highly dependent on the solvent environment and, hence, it is very complex to tailor protein-solvent combinations for stable protein maintenance. Understanding solvent features that govern protein stabilization will enable selection or design of suitable media with favourable solution environments to retain protein native conformation. In this work the structural conformation and activity of lysozyme in 29 solvent systems were investigated to determine the role of various solvent features on the stability of the enzyme. The solvent systems consisted of 19 low molecular weight polar solvents and 4 protic ionic liquids (PILs), both at different water content levels, and 6 aqueous salt solutions. Small angle X-ray scattering, Fourier transform infrared spectroscopy and UV-vis spectroscopy were used to investigate the tertiary and secondary structure of lysozyme along with the corresponding activity in various solvation systems. At low non-aqueous solvent concentrations (high water content), the presence of solvents and salts generally maintained lysozyme in its native structure and enhanced its activity. Due to the presence of a net surface charge on lysozyme, electrostatic interactions in PIL-water systems and salt solutions enhanced lysozyme activity more than the specific hydrogen-bond interactions present in non-ionic molecular solvents. At higher solvent concentrations (lower water content), solvents with a propensity to exhibit the solvophobic effect, analogous to the hydrophobic effect in water, retained lysozyme native conformation and activity. This solvophobic effect was observed particularly for solvents which contained hydroxyl moieties. Preferential solvophobic effects along with bulky chemical structures were postulated to result in less

  9. Biosignatures of Hypersaline Environments (Salt Crusts) an Analog for Mars

    Science.gov (United States)

    Smith, H. D.; Duncan, A. G.; Davilla, A. F.; McKay, C. P.

    2016-05-01

    Halophilic ecosystems are models for life in extreme environments including planetary surfaces such as Mars. Our research focuses on biosignatures in a salt crusts and the detection of these biomarkers by ground and orbital assests.

  10. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt

    OpenAIRE

    Bai, Yuanyuan; Chen, Baohong; Xiang, Feng; Zhou, Jinxiong; Wang, Hong; Suo, Zhigang

    2014-01-01

    Polyacrylamide hydrogels containing salt as electrolyte have been used as highly stretchable transparent electrodes in flexible electronics, but those hydrogels are easy to dry out due to water evaporation. Targeted, we try to enhance water retention capacity of polyacrylamide hydrogel by introducing highly hydratable salts into the hydrogel. These hydrogels show enhanced water retention capacity in different level. Specially, polyacrylamide hydrogel containing high content of lithium chlorid...

  11. Simulation of water quality for Salt Creek in northeastern Illinois

    Science.gov (United States)

    Melching, Charles S.; Chang, T.J.

    1996-01-01

    Water-quality processes in the Salt Creek watershed in northeastern Illinois were simulated with a computer model. Selected waste-load scenarios for 7-day, 10-year low-flow conditions were simulated in the stream system. The model development involved the calibration of the U.S. Environmental Protection Agency QUAL2E model to water-quality constituent concentration data collected by the Illinois Environmental Protection Agency (IEPA) for a diel survey on August 29-30, 1995, and the verification of this model with water-quality constituent concentration data collected by the IEPA for a diel survey on June 27-28, 1995. In-stream measurements of sediment oxygen demand rates and carbonaceous biochemical oxygen demand (CBOD) decay rates by the IEPA and traveltime and reaeration-rate coefficients by the U.S. Geological Survey facilitated the development of a model for simulation of water quality in the Salt Creek watershed. In general, the verification of the calibrated model increased confidence in the utility of the model for water-quality planning in the Salt Creek watershed. However, the model was adjusted to better simulate constituent concentrations measured during the June 27-28, 1995, diel survey. Two versions of the QUAL2E model were utilized to simulate dissolved oxygen (DO) concentrations in the Salt Creek watershed for selected effluent discharge and concentration scenarios for water-quality planning: (1) the QUAL2E model calibrated to the August 29-30, 1995, diel survey, and (2) the QUAL2E model adjusted to the June 27-28, 1995, diel survey. The results of these simulations indicated that the QUAL2E model adjusted to the June 27-28, 1995, diel survey simulates reliable information for water-quality planning. The results of these simulations also indicated that to maintain DO concentrations greater than 5 milligrams per liter (mg/L) throughout most of Salt Creek for 7-day, 10-year low-flow conditions, the sewage-treatment plants (STP's) must discharge

  12. Enhanced water transport and salt rejection through hydrophobic zeolite pores

    Science.gov (United States)

    Humplik, Thomas; Lee, Jongho; O'Hern, Sean; Laoui, Tahar; Karnik, Rohit; Wang, Evelyn N.

    2017-12-01

    The potential of improvements to reverse osmosis (RO) desalination by incorporating porous nanostructured materials such as zeolites into the selective layer in the membrane has spurred substantial research efforts over the past decade. However, because of the lack of methods to probe transport across these materials, it is still unclear which pore size or internal surface chemistry is optimal for maximizing permeability and salt rejection. We developed a platform to measure the transport of water and salt across a single layer of zeolite crystals, elucidating the effects of internal wettability on water and salt transport through the ≈5.5 Å pores of MFI zeolites. MFI zeolites with a more hydrophobic (i.e., less attractive) internal surface chemistry facilitated an approximately order of magnitude increase in water permeability compared to more hydrophilic MFI zeolites, while simultaneously fully rejecting both potassium and chlorine ions. However, our results also demonstrated approximately two orders of magnitude lower permeability compared to molecular simulations. This decreased performance suggests that additional transport resistances (such as surface barriers, pore collapse or blockages due to contamination) may be limiting the performance of experimental nanostructured membranes. Nevertheless, the inclusion of hydrophobic sub-nanometer pores into the active layer of RO membranes should improve both the water permeability and salt rejection of future RO membranes (Fasano et al 2016 Nat. Commun. 7 12762).

  13. Enhanced water transport and salt rejection through hydrophobic zeolite pores.

    Science.gov (United States)

    Humplik, Thomas; Lee, Jongho; O'Hern, Sean; Laoui, Tahar; Karnik, Rohit; Wang, Evelyn N

    2017-12-15

    The potential of improvements to reverse osmosis (RO) desalination by incorporating porous nanostructured materials such as zeolites into the selective layer in the membrane has spurred substantial research efforts over the past decade. However, because of the lack of methods to probe transport across these materials, it is still unclear which pore size or internal surface chemistry is optimal for maximizing permeability and salt rejection. We developed a platform to measure the transport of water and salt across a single layer of zeolite crystals, elucidating the effects of internal wettability on water and salt transport through the ≈5.5 Å pores of MFI zeolites. MFI zeolites with a more hydrophobic (i.e., less attractive) internal surface chemistry facilitated an approximately order of magnitude increase in water permeability compared to more hydrophilic MFI zeolites, while simultaneously fully rejecting both potassium and chlorine ions. However, our results also demonstrated approximately two orders of magnitude lower permeability compared to molecular simulations. This decreased performance suggests that additional transport resistances (such as surface barriers, pore collapse or blockages due to contamination) may be limiting the performance of experimental nanostructured membranes. Nevertheless, the inclusion of hydrophobic sub-nanometer pores into the active layer of RO membranes should improve both the water permeability and salt rejection of future RO membranes (Fasano et al 2016 Nat. Commun. 7 12762).

  14. Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L.

    Science.gov (United States)

    Zhu, Yong-Xing; Xu, Xuan-Bin; Hu, Yan-Hong; Han, Wei-Hua; Yin, Jun-Liang; Li, Huan-Li; Gong, Hai-Jun

    2015-09-01

    Silicon enhances root water uptake in salt-stressed cucumber plants through up-regulating aquaporin gene expression. Osmotic adjustment is a genotype-dependent mechanism for silicon-enhanced water uptake in plants. Silicon can alleviate salt stress in plants. However, the mechanism is still not fully understood, and the possible role of silicon in alleviating salt-induced osmotic stress and the underlying mechanism still remain to be investigated. In this study, the effects of silicon (0.3 mM) on Na accumulation, water uptake, and transport were investigated in two cucumber (Cucumis sativus L.) cultivars ('JinYou 1' and 'JinChun 5') under salt stress (75 mM NaCl). Salt stress inhibited the plant growth and photosynthesis and decreased leaf transpiration and water content, while added silicon ameliorated these negative effects. Silicon addition only slightly decreased the shoot Na levels per dry weight in 'JinYou 1' but not in 'JinChun 5' after 10 days of stress. Silicon addition reduced stress-induced decreases in root hydraulic conductivity and/or leaf-specific conductivity. Expressions of main plasma membrane aquaporin genes in roots were increased by added silicon, and the involvement of aquaporins in water uptake was supported by application of aquaporin inhibitor and restorative. Besides, silicon application decreased the root xylem osmotic potential and increased root soluble sugar levels in 'JinYou 1.' Our results suggest that silicon can improve salt tolerance of cucumber plants through enhancing root water uptake, and silicon-mediated up-regulation of aquaporin gene expression may in part contribute to the increase in water uptake. In addition, osmotic adjustment may be a genotype-dependent mechanism for silicon-enhanced water uptake in plants.

  15. Isotopic study of water origin in salt mines in Poland

    International Nuclear Information System (INIS)

    Dulinski, M.; Grabczak, J.; Garlicki, A.; Zuber, A.

    1998-01-01

    The most important results of isotopic analyses carried out so far in salt mines in Wieliczka, Bochnia, Klodawa, Wapno and Inowroclaw are presented. Discussion of these results for individual leakages proofs that isotopic methods are fully useful in determining of the origin of water appearing in salt mines. (author)

  16. Electrodialysis-based separation process for salt recovery and recycling from waste water

    Science.gov (United States)

    Tsai, Shih-Perng

    1997-01-01

    A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid.

  17. Rise and fall of road salt contamination of water-supply springs

    Science.gov (United States)

    Werner, Eberhard; Dipretoro, Richard S.

    2006-12-01

    A storage pile of de-icing agent consisting principally of sodium chloride was placed in the recharge area of two springs, and remained there for 2 years. Water flow is through fractures in rocks with low matrix permeability, along a hydraulic gradient developed along fracture zones. Salt contamination in the springs was noticed about 1 year after the salt was placed. When the salt was removed 1 year later, chloride concentrations in the springs exceeded 500 mg/L. Monitoring for the following 5 years showed salt contamination rising for the first year, but receding to normal background after 5 years. Chloride to sodium ratios of the spring waters indicated that some sodium was initially sequestered, probably by ion exchange on clay minerals, in the early part of the monitoring period, and released during the latter part; thereby extending the period of contamination.

  18. Free energy landscape of a minimalist salt bridge model.

    Science.gov (United States)

    Li, Xubin; Lv, Chao; Corbett, Karen M; Zheng, Lianqing; Wu, Dongsheng; Yang, Wei

    2016-01-01

    Salt bridges are essential to protein stability and dynamics. Despite the importance, there has been scarce of detailed discussion on how salt bridge partners interact with each other in distinct solvent exposed environments. In this study, employing a recent generalized orthogonal space tempering (gOST) method, we enabled efficient molecular dynamics simulation of repetitive breaking and reforming of salt bridge structures within a minimalist salt-bridge model, the Asp-Arg dipeptide and thereby were able to map its detailed free energy landscape in aqueous solution. Free energy surface analysis shows that although individually-solvated states are more favorable, salt-bridge states still occupy a noticeable portion of the overall population. Notably, the competing forces, e.g. intercharge attractions that drive the formation of salt bridges and solvation forces that pull the charged groups away from each other, are energetically comparable. As the result, the salt bridge stability is highly tunable by local environments; for instance when local water molecules are perturbed to interact more strongly with each other, the population of the salt-bridge states is likely to increase. Our results reveal the critical role of local solvent structures in modulating salt-bridge partner interactions and imply the importance of water fluctuations on conformational dynamics that involves solvent accessible salt bridge formations. © 2015 The Protein Society.

  19. The Effects of water and salt stresses on germination in two bread ...

    African Journals Online (AJOL)

    use

    2011-12-05

    Dec 5, 2011 ... soluble salts in soil leads to an increase in osmotic pressure of the soil solution, which may limit the absorption of water by the seeds or plant roots. Salt damage to plants is attributed to reduction in water availability, toxicity or specific ions, and nutritional imbalance caused by such ions (James et al., 2006).

  20. Catalytic Conversion of Dihydroxyacetone to Lactic Acid Using Metal Salts in Water

    NARCIS (Netherlands)

    Rasrendra, Carolus B.; Fachri, Boy A.; Makertihartha, I. Gusti B. N.; Adisasmito, Sanggono; Heeres, Hero J.

    2011-01-01

    We herein present a study on the application of homogeneous catalysts in the form of metal salts on the conversion of trioses, such as dihydroxyacetone (DHA), and glyceraldehyde (GLY) to lactic acid (LA) in water. A wide range of metal salts (26 in total) were examined. Al(III) salts were identified

  1. Speciation of Zinc Mixed Ligand Complexes in Salt Water Systems ...

    African Journals Online (AJOL)

    Speciation of Zinc Mixed Ligand Complexes in Salt Water Systems. ... method has been used to study heavy metal interaction in model lake water in KNO3 ... is of no consequential effect because in its normal state, the [OH-] of the lake water is ...

  2. The reaction kinetics of lithium salt with water vapor

    International Nuclear Information System (INIS)

    Balooch, M.; Dinh, L.N.; Calef, D.F.

    2002-01-01

    The interaction of lithium salt (LiH and/or LiD) with water vapor in the partial pressure range of 10 -5 -2657 Pa has been investigated. The reaction probability of water with LiH cleaved in an ultra high vacuum environment was obtained using the modulated molecular beam technique. This probability was 0.11 and independent of LiH surface temperature, suggesting a negligible activation energy for the reaction in agreement with quantum chemical calculations. The value gradually reduced, however, to 0.007 as the surface concentration of oxygen containing product approached full coverage. As the film grew beyond a monolayer, the phase lag of hydrogen product increased from 0 deg. C to 20 deg. C and the reaction probability reduced further until it approached our detection limit (∼10 -4 ). This phase lag was attributed to a diffusion-limited process in this regime. For micrometer thick hydroxide films grown in high moisture concentration environment on LiD and LiH, the reaction probability reduced to ∼4x10 -7 and was independent of exposure time. In this regime of thick hydroxide films (LiOH and/or LiOD), microcracks generated in the films to release stress provided easier pathways for moisture to reach the interface. A modified microscope, capable of both atomic force microscopy and nanoindentation, was also employed to investigate the surface morphology of hydroxide monohydrate (LiOH · H 2 O and/or LiOD · H 2 O) grown on hydroxide at high water vapor partial pressures and the kinetics of this growth

  3. The Synthesis of Calcium Salt from Brine Water by Partial Evaporation and Chemical Precipitation

    Science.gov (United States)

    Lalasari, L. H.; Widowati, M. K.; Natasha, N. C.; Sulistiyono, E.; Prasetyo, A. B.

    2017-02-01

    In this study would be investigated the effects of partial evaporation and chemical precipitation in the formation of calcium salt from brine water resources. The chemical reagents used in the study was oxalate acid (C2H2O4), ammonium carbonate (NH4)2CO3) and ammonium hydroxide (NH4OH) with reagent concentration of 2 N, respectively. The procedure was 10 liters brine water evaporated until 20% volume and continued with filtration process to separate brine water filtrate from residue (salt). Salt resulted from evaporation process was characterized by Scanning Electron Microscopy (SEM), X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) techniques. Filtrate then was reacted with C2H2O4, (NH4)2CO3 and NH4OH reagents to get salt products in atmospheric condition and variation ratio volume brine water/chemicals (v/v) [10/1; 10/5; 10/10; 10/20; 10/30; 10:50; 20/1; 20/5; 20/10; 20/20; 20/30; 20:50]. The salt product than were filtered, dried, measured weights and finally characterized by SEM/EDS and XRD techniques. The result of experiment showed the chemical composition of brine water from Tirta Sanita, Bogor was 28.87% Na, 9.17% Mg, 2.94% Ca, 22.33% O, 0.71% Sr, 30.02% Cl, 1.51% Si, 1.23% K, 0.55% S, 1.31% Al. The chemical composition of salt resulted by partial evaporation was 53.02% Ca, 28.93%O, 9.50% Na, 2.10% Mg, 1.53% Sr, 1.20% Cl, 1.10% Si, 0.63% K, 0.40% S, 0.39% Al. The salt resulted by total evaporation was indicated namely as NaCl. Whereas salt resulted by partial evaporation was CaCO3 with a purity of 90 % from High Score Plus analysis. In the experiment by chemical precipitation was reported that the reagents of ammonium carbonate were more reactive for synthesizing calcium salt from brine water compared to reagents of oxalate acid and ammonium hydroxide. The salts precipitated by NH4OH, (NH4)2CO3, and H2C2O4 reagents were indicated as NaCl, CaCO3 and CaC2O4.H2O, respectively. The techniques of partial evaporation until 20% volume sample of brine water and

  4. Analysis of water content in salt deposits: its application to radioactive waste storage

    International Nuclear Information System (INIS)

    Cuevas Muller, C. de la.

    1993-01-01

    The salt deposits as radioactive storage medium are analyzed. This report studies the physical-chemical characteristics of water into salts deposits, its implications for the safety of the repository, and the transport water release mechanism. The last part analyzes the geochemical numerical data of correlation analysis, geostatistics analysis and interpretation of statistical data

  5. Extraction and LC determination of lysine clonixinate salt in water/oil microemulsions.

    Science.gov (United States)

    Pineros, I; Ballesteros, P; Lastres, J L

    2002-02-01

    A new reversed-phase high performance liquid chromatography method has been developed and validated for the quantitative determination of lysine clonixinate salt in water/oil microemulsions. The mobile phase was acetonitrile-buffer phosphate pH 3.3. Detection was UV absorbance at 252 nm. The precision and accurately of the method were excellent. The established linearity range was 5-60 microg ml(-1) (r(2)=0.999). Microemulsions samples were dispersed with chloroform and extracted lysine clonixinate salt with water. This easy method employing chloroformic extraction has been done three times. The recovery of lysine clonixinate salt from spiked placebo and microemulsion were >90% over the linear range.

  6. Heavy Metals in Salt and Water Samples from Maharloo Lake and their Comparison with Metal Concentrations in Samples from Sirjan, Lar, and Firoozabad Salt Mines

    Directory of Open Access Journals (Sweden)

    Farahnaz Sabet

    2015-03-01

    Full Text Available Maharloo Lake is one of the most important water ecosystems in Iran, which is nowadays exposed to multiple risks and threats due to poor water management, salt extraction, and heavy metal pollution. In this study, the concentrations of such heavy metals as chromium, copper, zinc, arsenic, cadmium, and lead in both water and salt samples collected from areas in the north and south of the lake were determined by atomic absorption (AA-670G after the samples had been digested. Results showed that metal concentrations in the salt samples taken from both the northern and southern areas had identical mean values in the order of Cr> Cu> As> Cd> Pb. An almost similar pattern was detected in metal concentrations in water samples taken from the same areas but with a slight difference in the way they were ordered (Cr> Cu> As> Pb> Cd. It was found that both water and salt samples collected from the northern areas had higher metal concentrations, except for that of Pb which was slightly lower. Comparison of the mean values of metal concentrations in the Salt Lake and those of Sirjan, Lar, and Firoozabad salt mines revealed that copper, cadmium, and lead had their highest concentrations in the Salt Lake while arsenic and chromium recorded their highest values in samples taken from Lar and Firoozabad salt mines, respectively. Based on these findings, it may be concluded that the increased metal concentrations observed in samples from both northern and southern areas of the lake are due to the sewage and effluents from urban, industrial, and hospital sources in Shiraz disposed into the lake as well as such other human activities as farming in the areas around the lake, especially in the northern stretches. These observations call for preventive measures to avoid further water quality degradation in the area.

  7. Calibrating a Salt Water Intrusion Model with Time-Domain Electromagnetic Data

    DEFF Research Database (Denmark)

    Herckenrath, Daan; Odlum, Nick; Nenna, Vanessa

    2013-01-01

    Salt water intrusion models are commonly used to support groundwater resource management in coastal aquifers. Concentration data used for model calibration are often sparse and limited in spatial extent. With airborne and ground-based electromagnetic surveys, electrical resistivity models can......, we perform a coupled hydrogeophysical inversion (CHI) in which we use a salt water intrusion model to interpret the geophysical data and guide the geophysical inversion. We refer to this methodology as a Coupled Hydrogeophysical Inversion-State (CHI-S), in which simulated salt concentrations...... are transformed to an electrical resistivity model, after which a geophysical forward response is calculated and compared with the measured geophysical data. This approach was applied for a field site in Santa Cruz County, California, where a time-domain electromagnetic (TDEM) dataset was collected...

  8. Jahani Salt Diapir, Iran: hydrogeology, karst features and effect on surroundings environment

    Directory of Open Access Journals (Sweden)

    Mahmoud Abirifard

    2017-09-01

    Full Text Available The Jahani Salt Diapir (JSD, with an area of 54 km2, is an active diapir in the Simply Folded Belt of the Zagros Orogeny, in the south of Iran. Most of the available studies on this diapir are focused on tectonics. The hydrogeology, schematic model of flow direction and hydrochemical effects of the JSD on the adjacent water resources are lacking, and thus, are the focus of this study. The morphology of the JSD was reevaluated by fieldwork and using available maps. The physicochemical characteristics of the springs and hydrometric stations were also measured. The vent of the diapir is located 250 m higher than the surrounding glaciers, and covered by small polygonal sinkholes (dolines. The glacier is covered by cap soils, sparse trees and pastures, and contains large sinkholes, numerous shafts, several caves, and 30 brine springs. Two main groups of caves were distinguished. Sub-horizontal or inclined stream passages following the surface valleys and vertical shafts (with short inlet caves at the bottoms of nearly circular blind valleys. Salt exposure is limited to steep slopes. The controlling variables of flow route within salt diapirs are the negligible porosity of the salt rocks at depth more than about ten meters below the ground surface and the rapid halite saturation along the flow route. These mechanisms prevent deep cave development and enforce the emergence points of brine springs with low flow rates and small catchment area throughout the JSD and above the local base of erosion. Tectonics do not affect karst development, because the distributions of sinkholes and brine springs show no preferential directions. The type of spring water is sodium chloride, with a TDS of 320 g/l, and saturated with halite, gypsum, calcite and dolomite. The water balance budget of the JSD indicates that the total recharge water is 1.46 MCM (million cubic meter/a, emerges from 30 brine springs, two springs from the adjacent karstic limestone, and flows into

  9. Sea salts as a potential source of food spoilage fungi.

    Science.gov (United States)

    Biango-Daniels, Megan N; Hodge, Kathie T

    2018-02-01

    Production of sea salt begins with evaporation of sea water in shallow pools called salterns, and ends with the harvest and packing of salts. This process provides many opportunities for fungal contamination. This study aimed to determine whether finished salts contain viable fungi that have the potential to cause spoilage when sea salt is used as a food ingredient by isolating fungi on a medium that simulated salted food with a lowered water activity (0.95 a w ). The viable filamentous fungi from seven commercial salts were quantified and identified by DNA sequencing, and the fungal communities in different salts were compared. Every sea salt tested contained viable fungi, in concentrations ranging from 0.07 to 1.71 colony-forming units per gram of salt. In total, 85 fungi were isolated representing seven genera. One or more species of the most abundant genera, Aspergillus, Cladosporium, and Penicillium was found in every salt. Many species found in this study have been previously isolated from low water activity environments, including salterns and foods. We conclude that sea salts contain many fungi that have potential to cause food spoilage as well as some that may be mycotoxigenic. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Laboratory simulation of salt dissolution during waste removal

    International Nuclear Information System (INIS)

    Wiersma, B.J.; Parish, W.R.

    1997-01-01

    Laboratory experiments were performed to support the field demonstration of improved techniques for salt dissolution in waste tanks at the Savannah River Site. The tests were designed to investigate three density driven techniques for salt dissolution: (1) Drain-Add-Sit-Remove, (2) Modified Density Gradient, and (3) Continuous Salt Mining. Salt dissolution was observed to be a very rapid process as salt solutions with densities between 1.38-1.4 were frequently removed. Slower addition and removal rates and locating the outlet line at deeper levels below the top of the saltcake provided the best contact between the dissolution water and the saltcake. It was observed that dissolution with 1 M sodium hydroxide solution resulted in salt solutions that were within the current inhibitor requirements for the prevention of stress corrosion cracking. This result was independent of the density driven technique. However, if inhibited water (0.01 M sodium hydroxide and 0.011 M sodium nitrite) was utilized, the salt solutions were frequently outside the inhibitor requirements. Corrosion testing at conditions similar to the environments expected during waste removal was recommended

  11. Temporal dynamics of flooding, evaporation, and desiccation cycles and observations of salt crust area change at the Bonneville Salt Flats, Utah

    Science.gov (United States)

    Bowen, Brenda B.; Kipnis, Evan L.; Raming, Logan W.

    2017-12-01

    The Bonneville Salt Flats (BSF) in Utah is a dynamic saline playa environment responding to natural and anthropogenic forces. Over the last century, the saline groundwater from below BSF has been harvested to produce potash via evaporative mining, mostly used as agricultural fertilizers, while the surface halite crust has provided a significant recreational site for land speed racing. Perceptions of changes in the salt crust through time have spurred debates about land use and management; however, little is known about the timescales of natural change as the salt crust responds to climatic parameters that drive flooding, evaporation, and desiccation (FED) cycles that control surface salt growth and dissolution. Climate data over the last 30 years are examined to identify annual patterns in surface water balance at BSF to identify annual and seasonal climate constraints on FED cycles. Landsat satellite data from 1986 to the present are used to map the areal extent of the surface halite salt crust at BSF at the end of the desiccation season (between August 15 and October 30) annually. Overall, the observed area of the desiccation-stage BSF halite crust has varied from a maximum of 156 km2 in 1993 to a minimum of 72 km2 in 2014 with an overall trend of declining area of halite observed over the 30 years of analysis. Climatic variables that influence FED cycles and seasonal salt dissolution and precipitation have also varied through this time period; however, the relationship between surface water fluxes and salt crust area do not clearly correlate, suggesting that other processes are influencing the extent of the salt. Intra-annual analyses of salt area and weather illustrate the importance of ponded surface water, wind events, and microtopography in shaping a laterally extensive but thin and ephemeral halite crust. Examination of annual to decadal changes in salt crust extent and environmental parameters at BSF provides insights into the processes driving change and

  12. Chlorine-containing salts as water ice nucleating particles on Mars

    Science.gov (United States)

    Santiago-Materese, D. L.; Iraci, L. T.; Clapham, M. E.; Chuang, P. Y.

    2018-03-01

    Water ice cloud formation on Mars largely is expected to occur on the most efficient ice nucleating particle available. Salts have been observed on the Martian surface and have been known to facilitate water cloud formation on Earth. We examined heterogeneous ice nucleation onto sodium chloride and sodium perchlorate substrates under Martian atmospheric conditions, in the range of 150 to 180 K and 10-7 to 10-5 Torr water partial pressure. Sub-155 K data for the critical saturation ratio (Scrit) suggests an exponential model best describes the temperature-dependence of nucleation onset of water ice for all substrates tested. While sodium chloride does not facilitate water ice nucleation more easily than bare silicon, sodium perchlorate does support depositional nucleation at lower saturation levels than other substrates shown and is comparable to smectite-rich clay in its ability to support cloud initiation. Perchlorates could nucleate water ice at partial pressures up to 40% lower than other substrates examined to date under Martian atmospheric conditions. These findings suggest air masses on Mars containing uplifted salts such as perchlorates could form water ice clouds at lower saturation ratios than in air masses absent similar particles.

  13. Determination of calcium salt solubility with changes in pH and P(CO(2)), simulating varying gastrointestinal environments.

    Science.gov (United States)

    Goss, Sandra L; Lemons, Karen A; Kerstetter, Jane E; Bogner, Robin H

    2007-11-01

    The amount of calcium available for absorption is dependent, in part, on its sustained solubility in the gastrointestinal (GI) tract. Many calcium salts, which are the calcium sources in supplements and food, have pH-dependent solubility and may have limited availability in the small intestine, the major site of absorption. The equilibrium solubility of four calcium salts (calcium oxalate hydrate, calcium citrate tetrahydrate, calcium phosphate, calcium glycerophosphate) were determined at controlled pH values (7.5, 6.0, 4.5 and solubility of calcium carbonate was also measured at pH 7.5, 6.0 and 4.5 with two CO(2) environments (0.3 and 152 mmHg) above the solution. The precipitation profile of CaCO(3) was calculated using in-vivo data for bicarbonate and pH from literature and equilibrium calculations. As pH increased, the solubility of each calcium salt increased. However, in distilled water each salt produced a different pH, affecting its solubility value. Although calcium citrate does have a higher solubility than CaCO(3) in water, there is little difference when the pH is controlled at pH 7.5. The partial pressure of CO(2) also played a role in calcium carbonate solubility, depressing the solubility at pH 7.5. The calculations of soluble calcium resulted in profiles of available calcium, which agreed with previously published in-vivo data on absorbed calcium. The experimental data illustrate the impact of pH and CO(2) on the solubility of many calcium salts in the presence of bicarbonate secretions in the intestine. Calculated profiles using in-vivo calcium and bicarbonate concentrations demonstrate that large calcium doses may not further increase intestinal calcium absorption once the calcium carbonate solubility product has been reached.

  14. Separation and Fixation of Toxic Components in Salt Brines Using a Water-Based Process

    International Nuclear Information System (INIS)

    Franks, Carrie J.; Quach, Anh P.; Birnie, Dunbar P.; Ela, Wendell P.; Saez, Avelino E.; Zelinski, Brian J.; Smith, Harry D.; Smith, Gary Lynn L.

    2004-01-01

    Efforts to implement new water quality standards, increase water reuse and reclamation, and minimize the cost of waste storage motivate the development of new processes for stabilizing waste water residuals that minimize waste volume, water content and the long-term environmental risk from related by products. This work explores the use of an aqueous-based emulsion process to create an epoxy/rubber matrix for separating and encapsulating waste components from salt laden, arsenic contaminated, amorphous iron hydrate sludges. Such sludges are generated from conventional water purification precipitation/adsorption processes, used to convert aqueous brine streams to semi-solid waste streams, such as ion exchange/membrane separation, and from other precipitative heavy metal removal operations. In this study, epoxy and polystyrene butadiene (PSB) rubber emulsions are mixed together and then combined with a surrogate sludge. The surrogate sludge consists of amorphous iron hydrate with 1 part arsenic fixed to the surface of the hydrate per 10 parts iron mixed with sodium nitrate and chloride salts and water. The resulting emulsion is cured and dried at 80 C to remove water. Microstructure characterization by electron microscopy confirms that the epoxy/PSB matrix surrounds and encapsulates the arsenic laden amorphous iron hydrate phase while allowing the salt to migrate to internal and external surfaces of the sample. Salt extraction studies indicate that the porous nature of the resulting matrix promotes the separation and removal of as much as 90% of the original salt content in only one hours time. Long term leaching studies based on the use of the infinite slab diffusion model reveal no evidence of iron migration or, by inference, arsenic migration, and demonstrate that the diffusion coefficients of the unextracted salt yield leachability indices within regulations for non-hazardous landfill disposal. Because salt is the most mobile species, it is inferred that arsenic

  15. Anatomical adaptations of cynodon dactylon (l.) pers., from the salt range Pakistan, to salinity stress. I. root and stem anatomy

    International Nuclear Information System (INIS)

    Hameed, M.; Ashraf, M.; Naz, N.; Al-qurainy, F.

    2010-01-01

    A naturally adapted salt tolerant population of Cynodon dactylon (L.) Pers., from highly saline soils of Uchhali Lake, the Salt Range, Pakistan was evaluated for root and stem anatomical modifications. A population from the normal (non-saline) soils of the Faisalabad region was also collected for comparison. Both populations were subjected to salt stress hydroponically. The salt treatments used were: control (0 mM salt), 50, 100, 150 and 200 mM NaCl in 0.5 strength Hoagland's nutrient solution. The Salt Range population showed specific root and stem anatomical adaptations for its better survival under harsh saline environments. Increased exodermis and sclerenchyma, endodermis, cortex and pith parenchyma in roots were critical for checking water loss and enhancing water storage capability. In stem, increased stem area (succulence), increased epidermis and sclerenchyma thicknesses (preventing water loss), increased cortex thickness (increasing water storage), and increased number and area of vascular tissue (increased water conduction) seemed to be crucial for its better survival under harsh saline environments. (author)

  16. Response of cotton, alfalfa, and cantaloupe to foliar-deposited salt in an arid environment

    International Nuclear Information System (INIS)

    Hofmann, W.C.; Karpiscak, M.M.; Bartels, P.G.

    1987-01-01

    The cooling towers at the Palo Verde Nuclear Generating Station (PVNGS), located 80 km west of Phoenix, AZ, will release as estimated 2.1 Mg/d of particulates (primarily salts) into the atmosphere when the station is in full operation. The saline drift will disperse and settle onto agricultural fields surrounding the station. Field studies were conducted in 1983 to investigate the influence of foliar-applied saline aerosol on crop growth, foliar injury, and tissue elemental concentration on cotton (Gossypium hirsutum L.), alfalfa (medicago sativa L.), and cantaloupe (Cucumis melo L.) in an arid environment. The treatment aerosol solutions simulated treated wastewater effluent and included all essential plant nutrients and other elements, including trace concentrations of heavy metals. The treatments included unsprayed plots, and plots sprayed with salt solutions at 0 (distilled water), 8, 83, and 415 kg/(ha yr). The alfalfa received an additional 829 kg/(ha yr) treatment. The species were evaluated in separate experiments on Mohave clay loam and Sonoita sandy loam soils (Typic Haplargid) near Marana, AZ. Cotton treated with 415 kg/(ha yr) had significantly less chlorosis and tended to be slightly taller than the cotton in the unsprayed plots. The alfalfa treated at a rate of 829 kg/(ha yr) showed significantly more leaf margin necrosis than did the unsprayed alfalfa. In the cantaloupe, there were no visually apparent differences among salt treatments. Hand-harvested cotton plots had a significant reduction is seed cotton yield at the 415 kg/(ha yr) treatment. A similar though nonsignificant, trend towards reduced yield with increased salt treatment was observed in machine-harvested cotton plots

  17. An alternating voltage battery with two salt-water oscillators

    Science.gov (United States)

    Cervellati, Rinaldo; Soldà, Roberto

    2001-05-01

    We built a simple alternating voltage battery that periodically reverses value and sign of its electromotive force (emf). This battery consists of two coupled concentration salt-water oscillators that are phase shifted by initially extracting some drops of salt solution from one of the two oscillators. Although the actual frequency (period: ˜30 s) and emf (˜±55 mV) is low, our battery is suitable to demonstrate a practical application of oscillating systems in the physical, chemical, or biological laboratory for undergraduates. Interpretation of the phenomenon is given.

  18. Hydrologic environment of the Silurian salt deposits in parts of Michigan, Ohio, and New York

    Science.gov (United States)

    Norris, Stanley E.

    1978-01-01

    The aggregate thickness of evaporites (salt, gypsum, and anhydrite) in the Silurian Salina sequence in Michigan exceeds 1200 feet in areas near the periphery of the Michigan basin, where the salt beds are less than 3000 feet below land surface. In northeast Ohio the aggregate thickness of salt beds is as much as 200 feet in places, and in western New York it is more than 500 feet, where th beds are less than 3000 feet deep. The salt-bearing rocks dip regionally on the order of 50 feet per mile; those in Michigan dip toward the center of the Michigan basin, and those in Ohio and New York, in the Appalachian basin, dip generally southward. The rocks in both basins thicken downdip. Minor folds and faults occur in the salt-bearing rocks in all three states. Some of this defrmation has been attenuated or absorbed bo the salt beds. Occuring near the middle of thick sedimentary sequences, the salt beds are bounded aboe and below by beds containing water having dissolved-solids concentrations several times that seawter. The brines occur commonly in discrete zones of high permeability at specific places in the stratigraphic sequence. In northeast Ohio two prominent brine zones are recognized by the driller, the Devonian Oriskany Sandstone, or 'first water' zone, above the Salina Formation, and the Newburg or 'second water' zone below the Salina. In each aquifer there is a vertical component of hydraulic head, but little brine probably moves through the salt beds because their permeability is extremely low. Also, ther is little evidence of dissolution of the salt in areas distant from the outcrop, suggesting that if brine does move through the salt, movement is at a slow enough rate so that, in combination with the saturated or near-saturated condition of the water, it precludes significant dissolution. Principal brine movement is probably in the permeable zones in the direction of the hydraulic gradient. Two areas in Michigan and one area each in Ohio and New York appear

  19. RESPONSE OF CHILE PEPPER (Capsicum annuum L. TO SALT STRESS AND ORGANIC AND INORGANIC NITROGEN SOURCES: II. NITROGEN AND WATER USE EFFICIENCIES, AND SALT TOLERANCE

    Directory of Open Access Journals (Sweden)

    Marco Antonio Huez Lopez

    2011-07-01

    Full Text Available The response to two nitrogen sources on water and nitrogen use efficiencies, and tolerance of salt-stressed chile pepper plants (Capsicum annuum L. cv. Sandia was investigated in a greenhouse experiment. Low, moderate and high (1.5, 4.5, and 6.5 dS m-1 salinity levels, and two rates of organic-N fertilizer (120 and 200 kg ha-1 and 120 kg ha-1 of inorganic fertilizer as ammonium nitrate were arranged in randomized complete block designs replicated four times. The liquid organic-N source was an organic, extracted with water from grass clippings. Water use decreased about 19 and 30% in moderate and high salt-stressed plants. Water use efficiency decreased only in high salt-stressed plants. Nitrogen use efficiency decreased either by increased salinity or increased N rates. An apparent increase in salt tolerance was noted when plants were fertilized with organic-N source compared to that of inorganic-N source.

  20. Process for the treatment of salt water

    Energy Technology Data Exchange (ETDEWEB)

    Hull, R J

    1966-06-12

    A procedure is described for the treatment of salty or brackish water for the production of steam, which is directly utilized afterward, either in a condensed form as sweet water or deoxidized for injection into oil formations for raising the temperature thereof and other uses. The water-purification treatment is continuous, and is of the type in which the salty or brackish water is passed in direct heat exchange relationship with the steam produced for preheating the water up to a temperature where some of the dissolved ions of calcium and magnesium are precipitated in the form of insoluble salts. In the passage of the preheated water being purified, a zone is created for the completion of the reaction. A part of the water is retained in this reaction zone while the other part is being passed in indirect heat exchange relationship with a heating means, for converting this part of the water into steam. All of the steam obtained in the latter described heat exchange is utilized in the water purification, and/or added to the produced steam, as first noted.

  1. Ground Water is a Chronic Source of Chloride to Surface Water of an Urban Stream Exposed to Road Salt in a Chesapeake Bay Watershed

    Science.gov (United States)

    Mayer, P.; Doheny, E.; Kaushal, S.; Groffman, P.; Striz, E.

    2006-05-01

    Recent evidence from the mid-Atlantic suggests that freshwater supplies are threatened by chronic chloride inputs from road salts applied to improve highway safety. Elevated chloride levels also may limit the ability of aquatic systems to microbially process nitrate nitrogen, a nutrient whose elevated levels pose human and ecological threats. Understanding the behavior of chloride in urban watersheds where road salts are applied is critical to predicting subsequent impacts to ecosystem health and drinking water supplies. Here we report on a long-term study of water chemistry in Minebank Run, a recently restored stream in an urban watershed of Towson, MD that receives chronic chloride inputs from the 695 Beltway highway and connecting arteries. Chloride, sodium, and specific conductance were greatly elevated in the both surface water and ground water of Minebank Run, spiking in correspondence to road salt application in the winter. Chloride levels were consistently higher in ground water of the bank side of a minor roadway and downstream of the 695 Beltway. Surface water chloride levels remained elevated throughout the year apparently because ground water continued to supply surface water with chloride even after road salt application ceased. Thus, ground water may represent a chronic source of chloride to surface water, thereby contributing to the upward trend in freshwater salinity in urbanizing areas. Stream susceptibility to road salt impacts may depend upon ground water hydrology and stream geomorphology. However, geomorphic stream restoration practices widely used in the mid-Atlantic are not designed to address salinity effects. Source control of road salts may be necessary to reduce environmental risk.

  2. Brine reuse in ion-exchange softening: salt discharge, hardness leakage, and capacity tradeoffs.

    Science.gov (United States)

    Flodman, Hunter R; Dvorak, Bruce I

    2012-06-01

    Ion-exchange water softening results in the discharge of excess sodium chloride to the aquatic environment during the regeneration cycle. In order to reduce sodium chloride use and subsequent discharge from ion-exchange processes, either brine reclaim operations can be implemented or salt application during regeneration can be reduced. Both result in tradeoffs related to loss of bed volumes treated per cycle and increased hardness leakage. An experimentally validated model was used to compare concurrent water softening operations at various salt application quantities with and without the direct reuse of waste brine for treated tap water of typical midwestern water quality. Both approaches were able to reduce salt use and subsequent discharge. Reducing salt use and discharge by lowering the salt application rate during regeneration consequently increased hardness leakage and decreased treatment capacity. Single or two tank brine recycling systems are capable of reducing salt use and discharge without increasing hardness leakage, although treatment capacity is reduced.

  3. Salt-assisted and salt-suppressed sol-gel transitions of methylcellulose in water.

    Science.gov (United States)

    Xu, Y; Wang, C; Tam, K C; Li, L

    2004-02-03

    The effects of various salts on the sol-gel transition of aqueous methylcellulose (MC) solutions have been studied systematically by means of a micro differential scanning calorimeter. It was found that the heating process was endothermic while the cooling process was exothermic for both MC solutions with and without salts. The addition of salts did not change the patterns of gelation and degelation of MC. However, the salts could shift the sol-gel transition and the gel-sol transition to lower or higher temperatures from a pure MC solution, depending on the salt type. These opposite effects were termed the salt-assisted and salt-suppressed sol-gel transitions. Either the salt-assisted transition or the salt-suppressed sol-gel transition was a function of salt concentration. In addition, each salt was found to have its own concentration limit for producing a stable aqueous solution of MC at a given concentration of MC, which was related to the anionic charge density of the salt. Cations were proved to have weaker effects than anions. The "salt-out strength", defined as the salt effect per mole of anion, was obtained for each anion studied. The thermodynamic mechanisms involved in the salt-assisted and salt-suppressed sol-gel transitions are discussed.

  4. Plasmachemical synthesis of nanopowders of yttria and zirconia from dispersed water-salt-organic mixtures

    Science.gov (United States)

    Novoselov, Ivan; Karengin, Alexander; Shamanin, Igor; Alyukov, Evgeny; Gusev, Alexander

    2018-03-01

    Article represents results on theoretical and experimental research of yttria and zirconia plasmachemical synthesis in air plasma from water-salt-organic mixtures "yttrium nitrate-water-acetone" and "zirconyl nitrate-water-acetone". On the basis of thermotechnical calculations the influence of organic component on lower heat value and adiabatic combustion temperature of water-salt-organic mixtures as well as compositions of mixtures providing their energy-efficient plasma treatment were determined. The calculations found the influence of mass fraction and temperature of air plasma supporting gas on the composition of plasma treatment products. It was determined the conditions providing yttria and zirconia plasmachemical synthesis in air plasma. During experiments it was b eing carried out the plasmachemical synthesis of yttria and zirconia powders in air plasma flow from water -salt-organic mixtures. Analysis of the results for obtained powders (scanning electron microscopy, X-ray diffraction analysis, BET analysis) confirm nanostructure of yttria and zirconia.

  5. The Effects of Road Salt on Lithobates clamitans Tadpoles

    OpenAIRE

    Lim, Rachel; Bernal, Ximena; Siddons, Spencer

    2017-01-01

    In areas that see heavy snowfall and icy roads, road salt is used to improve driving conditions. However, after snow melts, road salt does not disappear. Instead, it dissolves into melted snow and flows into bodies of water where amphibians breed and live. Altering the salinity of the environment has been seen to affect different species of frogs. It is unclear, however, whether those findings generalize to other anurans. Here, we examined how exposure to road salt affects the development of ...

  6. Thermal imaging of levitated fresh and salt water drops during laser irradiation

    Science.gov (United States)

    Brownell, Cody; Biggs, Harrison

    2017-11-01

    Simulation of high energy laser propagation and scattering in the maritime environment is problematic, due to the high likelihood of turbulence, fog, and rain or sea spray within the beam path. Considering large water drops (diameters of approximately 1-mm), such as those found in a light rain, an incident high energy laser will lead to rapid evaporation of the water drop as it traverses the beam path. In this work we present surface temperature measurements of a water drop obtained using a FLIR IR camera. The drop is acoustically levitated, and subject to a continuous wave laser with a wavelength of 1070-nm and a mean irradiance of approximately 800 W/cm2. These measurements show that the steady-state surface temperature of the drop is well below the saturation temperature, and for pure substances the equilibrium temperature decreases with decreasing drop volume similar to observations with smaller aqueous aerosols. Temperature non-uniformity within the drop is also assessed from statistics of the surface temperature fluctuations. Preliminary results from irradiated salt water drops show notably different behavior from fresh water drops, including temperature spikes as the drop volume decreases and occasional nucleate boiling. Acknowledge support from ONR #N00014-17-WX-00031.

  7. Evaluating the influence of road salt on water quality of Ohio rivers over time

    International Nuclear Information System (INIS)

    Dailey, Kelsey R.; Welch, Kathleen A.; Lyons, W. Berry

    2014-01-01

    Highlights: • Road salt impact on central Ohio rivers was investigated via Cl − and Na + data. • Rivers with consistent past data displayed increasing trends in concentration. • Cl − and Na + showed increased concentration and flux downstream near urban areas. • Cl − /Br − mass ratios in waters suggest the origin of Cl − is in part from road salt. • 36 Cl/Cl ratios indicate a substantial dissolved halite component in the rivers. - Abstract: Anthropogenic inputs have largely contributed to the increasing salinization of surface waters in central Ohio, USA. Major anthropogenic contributions to surface waters are chloride (Cl − ) and sodium (Na + ), derived primarily from inputs such as road salt. In 2012–2013, central Ohio rivers were sampled and waters analyzed for comparison with historical data. Higher Cl − and Na + concentrations and fluxes were observed in late winter as a result of increased road salt application during winter months. Increases in both chloride/bromide (Cl − /Br − ) ratios and nitrate (N-NO 3 − ) concentrations and fluxes were observed in March 2013 relative to June 2012, suggesting a mixture of road salt and fertilizer runoff influencing the rivers in late winter. For some rivers, increased Cl − and Na + concentrations and fluxes were observed at downstream sites near more urban areas of influence. Concentrations of Na + were slightly lower than respective Cl − concentrations (in equivalents). High Cl − /Br − mass ratios in the Ohio surface waters indicated the source of Cl − was likely halite, or road salt. In addition, analysis of 36 Cl/Cl ratios revealed low values suggestive of a substantial dissolved halite component, implying the addition of “old” Cl − into the water system. Temporal trend analysis via the Mann–Kendall test identified increasing trends in Cl − and Na + concentration beginning in the 1960s at river locations with more complete historical datasets. An increasing trend in

  8. Modeling of Dense Water Production and Salt Transport from Alaskan Coastal Polynyas

    Science.gov (United States)

    Signorini, Sergio R.; Cavalieri, Donald J.

    2000-01-01

    The main significance of this paper is that a realistic, three-dimensional, high-resolution primitive equation model has been developed to study the effects of dense water formation in Arctic coastal polynyas. The model includes realistic ambient stratification, realistic bottom topography, and is forced by time-variant surface heat flux, surface salt flux, and time-dependent coastal flow. The salt and heat fluxes, and the surface ice drift, are derived from satellite observations (SSM/I and NSCAT sensors). The model is used to study the stratification, salt transport, and circulation in the vicinity of Barrow Canyon during the 1996/97 winter season. The coastal flow (Alaska coastal current), which is an extension of the Bering Sea throughflow, is formulated in the model using the wind-transport regression. The results show that for the 1996/97 winter the northeastward coastal current exports 13% to 26% of the salt produced by coastal polynyas upstream of Barrow Canyon in 20 to 30 days. The salt export occurs more rapidly during less persistent polynyas. The inclusion of ice-water stress in the model makes the coastal current slightly weaker and much wider due to the combined effects of surface drag and offshore Ekman transport.

  9. Salt resistance genes revealed by functional metagenomics from brines and moderate-salinity rhizosphere within a hypersaline environment

    Directory of Open Access Journals (Sweden)

    Salvador eMirete

    2015-10-01

    Full Text Available Hypersaline environments are considered one of the most extreme habitats on earth and microorganisms have developed diverse molecular mechanisms of adaptation to withstand these conditions. The present study was aimed at identifying novel genes involved in salt resistance from the microbial communities of brines and the rhizosphere from the Es Trenc saltern (Mallorca, Spain. The microbial diversity assessed by pyrosequencing of 16S rRNA gene libraries revealed the presence of communities that are typical in such environments. Metagenomic libraries from brine and rhizosphere samples, were transferred to the osmosensitive strain Escherichia coli MKH13, and screened for salt resistance. As a result, eleven genes that conferred salt resistance were identified, some encoding for well known proteins previously related to osmoadaptation as a glycerol and a proton pump, whereas others encoded for proteins not previously related to this function in microorganisms as DNA/RNA helicases, an endonuclease III (Nth and hypothetical proteins of unknown function. Furthermore, four of the retrieved genes were cloned and expressed in Bacillus subtilis and they also exhibited salt resistance in this bacterium, broadening the spectrum of bacterial species where these genes can operate. This is the first report of salt resistance genes recovered from metagenomes of a hypersaline environment.

  10. Effect of different levels of water consumptive use of squash under drip irrigation system on salt distribution, yield and water use efficiency

    International Nuclear Information System (INIS)

    Abd El-Moniem, M.; El-Gendy, R.W.; Gadalla, A.M.; Hamdy, A.; Zeedan, A.

    2006-01-01

    This study aims to trace the distribution of salts and fertilizers through drip irrigation system and the response of squash (yield and water use efficiency) to irrigation treatments, i.e. T1 (100 % ETc), T2 (75 % ETc) and T3 (50 % ETc). This study was carried out in Inshas sandy soil at the farm of Soil and Water Research Department, Nuclear Research Centre, Atomic Energy Authority, Egypt. Soil samples were taken from three sites (0, 12.5 and 25 cm distance from the emitters between drippers and laterals lines) for evaluating the salt content (horizontal and vertical directions within the soil depths). The obtained data pointed out that salt accumulation was noticed at the surface layer and was affected by the direction of soil water movement (horizontal and vertical motion). The highest salt concentrations were in 75 % and 50 % ETc treatments between emitters and laterals. As for the three sites, salt concentration behaved in the sequence: 25 >12.5 > 0 cm sites. For squash yield, the first treatment produced high yield without significant differences between the second treatment so, 75 % ETc treatment was considered the best one for saving water

  11. Corrosive gas generation potential from chloride salt radiolysis in plutonium environments

    International Nuclear Information System (INIS)

    Tandon, L.; Allen, T.H.; Mason, R.E.; Penneman, R.A.

    1999-01-01

    The specific goal of this project was to evaluate the magnitude and practical significance of radiation effects involving mixtures of chloride salts and plutonium dioxide (PuO 2 ) sealed in stainless steel containers and stored for up to 50 yr, after stabilization at 950 C and packaging according to US Department of Energy (DOE) standards. The potential for generating chemically aggressive molecular chlorine (and hydrogen chloride by interaction with adsorbed water or hydrogen gas) by radiolysis of chloride ions was studied. To evaluate the risks, an annotated bibliography on chloride salt radiolysis was created with emphasis on effects of plutonium alpha radiation. The authors present data from the material identification and surveillance (MIS) project obtained from examination and analysis of representative PuO 2 items from various DOE sites, including the headspace gas analysis data of sealed mixtures of PuO 2 and chloride salts following long-term storage

  12. Study Orientation Ply of Fiberglass on Blade Salt Water Pump Windmill using Abaqus

    Science.gov (United States)

    Badruzzaman, B.; Sifa, A.

    2018-02-01

    Windmill is one tool to generate energy from wind energy is converted into energy motion, salt production process still using traditional process by utilizing windmill to move sea water to salt field With a windmill driven water system, a horizontal axis type windmill with an average windmill height of 3-4 m, with a potential wind speed of 5-9 m / s, the amount of blade used for salt water pumps as much as 4 blades, one of the main factor of the windmill component is a blade, blade designed for the needs of a salt water pump by using fiberglass material. On layer orientation 0°,30°,45°,60° and 90° with layer number 10 and layer thickness 2 mm, the purpose of this study was to determine the strength of fiberglass that was influenced by the orientation of the layer, and to determine the orientation of fiberglass layer before making. This method used Finite Element Analysis method using ABAQUS, with homogenous and heterogeneous layer parameters. The simulation result shows the difference in von misses value at an angle of 0°, 30°, 45°,60° homogeneous value is greater than heterogeneous value, whereas in orientation 90 heterogeneous values have value 1,689e9 Pa, greater than homogenous 90 orientation value of 1,296e9 Pa.

  13. Definition of the waste package environment for a repository located in salt

    International Nuclear Information System (INIS)

    Clark, D.E.; Bradley, D.J.

    1983-01-01

    The expected environmental conditions for emplaced waste packages in a salt repository are simulated in the materials testing program to evaluate performance. Synthetic brines, based on the analyses of actual brines (both intrusion and inclusion), are used for corrosion and leach testing. Elevated temperatures (to 150 0 C) and radiation fields of up to 10 3 rad/h are employed as conservative conditions to bracket expected performance and provide data for worst case scenarios. Obtaining a precise definition of the waste package environment in a salt repository and its change with time is closely tied to detailed site characterization of the candidate salt repository horizon. It is expected that field testing can augment some of the materials testing currently under way and can provide increased confidence in the predicted site-specific near-field conditions. 17 references, 5 figures, 1 table

  14. Non-isothermal desorption and nucleate boiling in a water-salt droplet LiBr

    Directory of Open Access Journals (Sweden)

    Misyura Sergey Ya.

    2018-01-01

    Full Text Available Experimental data on desorption and nucleate boiling in a droplet of LiBr-water solution were obtained. An increase in salt concentration in a liquid-layer leads to a considerable decrease in the rate of desorption. The significant decrease in desorption intensity with a rise of initial mass concentration of salt has been observed. Evaporation rate of distillate droplet is constant for a long time period. At nucleate boiling of a water-salt solution of droplet several characteristic regimes occur: heating, nucleate boiling, desorption without bubble formation, formation of the solid, thin crystalline-hydrate film on the upper droplet surface, and formation of the ordered crystalline-hydrate structures during the longer time periods. For the final stage of desorption there is a big difference in desorption rate for initial salt concentration, C0, 11% and 51%. This great difference in the rate of desorption is associated with significantly more thin solution film for C0 = 11% and higher heat flux.

  15. Potential of duckweed (Lemna minor) for removal of nitrogen and phosphorus from water under salt stress.

    Science.gov (United States)

    Liu, Chunguang; Dai, Zheng; Sun, Hongwen

    2017-02-01

    Duckweed plays a major role in the removal of nitrogen (N) and phosphorus (P) from water. To determine the effect of salt stress on the removal of N and P by duckweed, we cultured Lemna minor, a common species of duckweed, in N and P-rich water with NaCl concentrations ranging from 0 to 100 mM for 24 h and 72 h, respectively. The results show that the removal capacity of duckweed for N and P was reduced by salt stress. Higher salt stress with longer cultivation period exerts more injury to duckweed and greater inhibition of N and P removal. Severe salt stress (100 mM NaCl) induced duckweed to release N and P and even resulted in negative removal efficiencies. The results indicate that L. minor should be used to remove N and P from water with salinities below 75 mM NaCl, or equivalent salt stress. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Consolidating and water repellent treatments applied to wet and salt contaminated granite

    Directory of Open Access Journals (Sweden)

    Silva, B.

    2000-03-01

    Full Text Available A comparison was made of the efficacy of two consolidants and two water repellents applied to samples of granite under optimum conditions, with the efficacy of the same products applied to the granite in the presence of soluble salts or water. The amount of product absorbed and the amount of dry polymer remaining after treatment were compared. The results show that the presence of water and soluble salts in the stone significantly modifies the consumption of the products (in particular the water repellents and also the level of dry polymer retained. The water repellents were found to be much less effective when the substrate contained salts, whereas the presence of water did not appear to influence their efficacy. The lack of correlation between uptake, active dry polymer, and efficacy led to the conclusion that the presence of salts or water markedly changes the kinetics of the polymerization of the products.

    Se analiza la eficacia de dos consolidantes y dos hidrofugantes aplicados a rocas graníticas en condiciones óptimas comparativamente a la eficacia de los mismos productos aplicados sobre los mismos sustratos conteniendo cierta cantidad de sales solubles o de agua. Se compara la cantidad de producto absorbido y la cantidad de materia seca presente tras el curado. Los resultados indican que la presencia de agua y de sales solubles en la piedra modifica significativamente el consumo de los productos, sobre todo el de los hidrofugantes, así como la cantidad de materia seca. Se observa, asimismo, un fuerte detrimento en la eficacia de los hidrofugantes cuando el sustrato contiene sales mientras que, al contrario, la presencia de agua no parece infiuir en dicha eficacia. La falta de correlación entre el consumo, materia seca activa y eficacia lleva a concluir que la presencia de sales o agua modifica sensiblemente la cinética de la polimeración de los productos.

  17. Modeling of Soil Water and Salt Dynamics and Its Effects on Root Water Uptake in Heihe Arid Wetland, Gansu, China

    Directory of Open Access Journals (Sweden)

    Huijie Li

    2015-05-01

    Full Text Available In the Heihe River basin, China, increased salinity and water shortages present serious threats to the sustainability of arid wetlands. It is critical to understand the interactions between soil water and salts (from saline shallow groundwater and the river and their effects on plant growth under the influence of shallow groundwater and irrigation. In this study, the Hydrus-1D model was used in an arid wetland of the Middle Heihe River to investigate the effects of the dynamics of soil water, soil salinization, and depth to water table (DWT as well as groundwater salinity on Chinese tamarisk root water uptake. The modeled soil water and electrical conductivity of soil solution (ECsw are in good agreement with the observations, as indicated by RMSE values (0.031 and 0.046 cm3·cm−3 for soil water content, 0.037 and 0.035 dS·m−1 for ECsw, during the model calibration and validation periods, respectively. The calibrated model was used in scenario analyses considering different DWTs, salinity levels and the introduction of preseason irrigation. The results showed that (I Chinese tamarisk root distribution was greatly affected by soil water and salt distribution in the soil profile, with about 73.8% of the roots being distributed in the 20–60 cm layer; (II root water uptake accounted for 91.0% of the potential maximal value when water stress was considered, and for 41.6% when both water and salt stress were considered; (III root water uptake was very sensitive to fluctuations of the water table, and was greatly reduced when the DWT was either dropped or raised 60% of the 2012 reference depth; (IV arid wetland vegetation exhibited a high level of groundwater dependence even though shallow groundwater resulted in increased soil salinization and (V preseason irrigation could effectively increase root water uptake by leaching salts from the root zone. We concluded that a suitable water table and groundwater salinity coupled with proper irrigation

  18. Residual fluxes of water, salt and suspended sediment in the Beypore Estuary

    Digital Repository Service at National Institute of Oceanography (India)

    AnilKumar, N.; Revichandran, C.; Sankaranarayanan, V.N.; Josanto, V.

    The monthly trends of the residual fluxes of salt and water and the transportation of suspended sediments in the Beypore estuarine system, Kerala, India were examined. At the river mouth the water flux was directed seaward during the postmonsoon...

  19. Oil spill research : salt water and fresh water

    International Nuclear Information System (INIS)

    Goodman, R.

    2006-01-01

    The difference in oil spill response activities between marine and freshwater environments were reviewed. Although containment, recovery and in-situ burning remain the same in both environments, the fate of oil is different due to water density and salinity considerations. The lower energy of lakes and the lack of major currents changes the advection of the oil. Rivers have high currents, and wind speed and direction are highly influenced by topographic effects. Tidal action is not a consideration for the inland situation, but water levels in rivers can change due to sudden rain events or the action of control devices upstream from the spill. Typically, the volume of oil released in freshwater environments is lower than in marine tanker situations, but spills from pipelines or a major train derailment can exceed 1000 m 3 . Since the use of water for human consumption and irrigation is another important factor in inland spills, it is important to have a means of obtaining information on the dynamics of spills and a system for archiving the response activities, such as the shoreline cleanup assessment technique (SCAT)and resulting cleanup. It was suggested that research studies must be undertaken to improve response strategies for freshwater spills. These include the dynamics of oil in freshwater environments such as rivers, lakes and sloughs; the role of oil-fine interactions in freshwater situations; the process involved in the formation of tar balls; and, the dynamics of oil in a freshwater situation. The response techniques that must be developed to improve the response to freshwater spills include techniques to remove oil from the bottom; techniques to filter and remove oil from the water column; and, development and testing of dispersants for freshwater environments

  20. Analysing monthly sectorial water use and its influence on salt intrusion induced water shortage in urbanized deltas

    NARCIS (Netherlands)

    Yao, Mingtian; Yan, Dan; Kabat, Pavel; Huang, Heqing; Hutjes, Ronald W.A.; Werners, Saskia E.

    2016-01-01

    Urbanizing delta regions face seasonal water shortages induced by rising salt intrusion. Decreasing river discharge is readily listed as the major cause of water shortage events. Yet, observations of river discharge often fail to support this attribution. Evidence of the association between

  1. The effects of pre-salting methods on salt and water distribution of heavily salted cod, as analyzed by 1H and 23Na MRI, 23Na NMR, low-field NMR and physicochemical analysis

    DEFF Research Database (Denmark)

    Guðjónsdóttir, María; Traoré, Amidou; Jónsson, Ásbjörn

    2015-01-01

    The effect of different pre-salting methods (brine injection with salt with/without polyphosphates, brining and pickling) on the water and salt distribution in dry salted Atlantic cod (Gadus morhua) fillets was studied with proton and sodium NMR and MRI methods, supported by physicochemical analy...

  2. Water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine salt domes, northeast Texas salt-dome basin

    International Nuclear Information System (INIS)

    Carr, J.E.; Halasz, S.J.; Liscum, F.

    1980-11-01

    This report contains water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine Salt Domes in the northeast Texas salt-dome basin. Water-quality data were compiled for aquifers in the Wilcox Group, the Carrizo Sand, and the Queen City Sand. The data include analyses for dissolved solids, pH, temperature, hardness, calcium, magnesium, sodium, bicarbonate, chloride, and sulfate. Water-quality and streamflow data were obtained from 63 surface-water sites in the vicinity of the domes. These data include water discharge, specific conductance, pH, water temperature, and dissolved oxygen. Samples were collected at selected sites for analysis of principal and selected minor dissolved constituents

  3. Determination of the water insoluble residuum in potassium salts using gamma logging

    International Nuclear Information System (INIS)

    Mishin, G.T.; Gavrilova, L.I.

    1976-01-01

    For potassium salts the relationship has been established between the concentration of heavy radioelements (the uranium-radium and thorium series) and the content of the water-insoluble, residue which is mainly represented by the clay-iodine fraction. A method is described for determining the content of the insoluble residue with the aid of PRKS-2 equipment. The results are given of experimental investigations aimed at studying the content of the insoluble residue in salts along the section of rising production wells. The results of the determination of the insoluble residue in potassium salts define their quality with an accuracy sufficient for industrial purposes

  4. Exceptionally fast water desalination at complete salt rejection by pristine graphyne monolayers.

    Science.gov (United States)

    Xue, Minmin; Qiu, Hu; Guo, Wanlin

    2013-12-20

    Desalination that produces clean freshwater from seawater holds the promise of solving the global water shortage for drinking, agriculture and industry. However, conventional desalination technologies such as reverse osmosis and thermal distillation involve large amounts of energy consumption, and the semipermeable membranes widely used in reverse osmosis face the challenge to provide a high throughput at high salt rejection. Here we find by comprehensive molecular dynamics simulations and first principles modeling that pristine graphyne, one of the graphene-like one-atom-thick carbon allotropes, can achieve 100% rejection of nearly all ions in seawater including Na(+), Cl(-), Mg(2+), K(+) and Ca(2+), at an exceptionally high water permeability about two orders of magnitude higher than those for commercial state-of-the-art reverse osmosis membranes at a salt rejection of ~98.5%. This complete ion rejection by graphyne, independent of the salt concentration and the operating pressure, is revealed to be originated from the significantly higher energy barriers for ions than for water. This intrinsic specialty of graphyne should provide a new possibility for the efforts to alleviate the global shortage of freshwater and other environmental problems.

  5. Titanium for salt water service

    International Nuclear Information System (INIS)

    Gadiyar, H.S.; Shibad, P.R.

    1980-01-01

    Titanium has potential as major material of construction in desalination plants, in condensers and heat exchangers, in view of its excellent corrosion resistance to salt water upto at least 120deg C. The advantages of titanium in such applications are brought out. The various specific problems such as pitting, crevice and galvanic corrosion and the preventive methods, for adopting titanium have been discussed. The hydriding problem can be overcome by suitably controlling the operating parameters such as temperature and surface preparation. A case has been made to prove the economic viability of titanium in comparison to Al-brass and Cu-Ni alloy. The future of titanium seems to be very promising in view of the negligible tube failures and outages. (auth.)

  6. Effects of salt and water stress on plant biomass and photosynthetic ...

    African Journals Online (AJOL)

    Water deficit led to earlier peaks of net photosynthetic rate (PN) during the day. Relative rate of electron transport (ETR) decreased, but optimal quantum yield of photosystem II (Fv/Fm) showed no significant difference (P<0.05) with water deficit (from 60 to 20% FC); soil salt significantly decreased PN and transpiration rate ...

  7. Using a Cell Phone to Investigate the Skin Depth Effect in Salt Water

    Science.gov (United States)

    Rayner, John

    2017-01-01

    This paper describes an experimental investigation of the skin depth effect for electromagnetic waves in salt water using a cell phone that is immersed to a critical depth where it no longer responds when called. We show that this critical depth is directly proportional to the theoretical skin depth for a range of salt concentrations.

  8. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Salt Lake City, Utah. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the first is the Surface Project, and the second is the Ground Water Project. For the UMTRA Project site known as the Vitro site, near Salt Lake City, Utah, Surface Project cleanup occurred from 1985 to 1987. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. A risk assessment is the process of describing a source of contamination and showing how that contamination may reach people and the environment. The amount of contamination people or the environment may be exposed to is calculated and used to characterize the possible health or environmental effects that may result from this exposure. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Vitro site. The results of this report and further site characterization of the Vitro site will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

  9. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Salt Lake City, Utah. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the first is the Surface Project, and the second is the Ground Water Project. For the UMTRA Project site known as the Vitro site, near Salt Lake City, Utah, Surface Project cleanup occurred from 1985 to 1987. The UMTRA Project's second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. A risk assessment is the process of describing a source of contamination and showing how that contamination may reach people and the environment. The amount of contamination people or the environment may be exposed to is calculated and used to characterize the possible health or environmental effects that may result from this exposure. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Vitro site. The results of this report and further site characterization of the Vitro site will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards

  10. Salts in soil and water within the arid climate zone. Effects on engineering geology, exemplified from Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Jergman, K.

    1981-01-01

    In the arid climate zone, where the potential evaporation is much higher than the precipitation, soil and water generally are enriched by salts. In this research project it has been pointed out how salts affect engineering geology in different ways. The extensive study of the Al Khafji area in Saudi Arabia has shown that salts have affected soil and water so that - the crust hardness has increased due to a development of duricrust. The strength of the upper part of the crust is similar to weak rock. - the coastal terrace area moves vertically - groundwater affects the salinization of the soil profile A general description of the effect of salts on engineering geology can be summarized as below: The precipitated salts affect the profile so that 1.Stability changes. 2.Swelling alternatively contraction can occur due to variations of the water content. 3.Vegetation growth becomes difficult or impossible. 4.Excavation work is difficult. 5.Aggregate sources are affected. 6.Concrete corrosion is caused. 7.There is demand for proper field and laboratory tests and for special design criteria.The occurance of salts in the water causes due special conditions that 1.The soil profile is enriched by salts 2. The plants are damaged. 3.Concrete corrosion is developed. 4.The water is not suitable for drinking or irrigation purposes. 5. The density increases to such an extent that it effects the direction of the groundwater flow.

  11. Method for excluding salt and other soluble materials from produced water

    Science.gov (United States)

    Phelps, Tommy J [Knoxville, TN; Tsouris, Costas [Oak Ridge, TN; Palumbo, Anthony V [Oak Ridge, TN; Riestenberg, David E [Knoxville, TN; McCallum, Scott D [Knoxville, TN

    2009-08-04

    A method for reducing the salinity, as well as the hydrocarbon concentration of produced water to levels sufficient to meet surface water discharge standards. Pressure vessel and coflow injection technology developed at the Oak Ridge National Laboratory is used to mix produced water and a gas hydrate forming fluid to form a solid or semi-solid gas hydrate mixture. Salts and solids are excluded from the water that becomes a part of the hydrate cage. A three-step process of dissociation of the hydrate results in purified water suitable for irrigation.

  12. Signal transduction pathways involved in intestinal salt and water secretion

    NARCIS (Netherlands)

    W. van den Berghe (Nina)

    1992-01-01

    textabstractThis thesis describes some novel aspects of the regulation of salt and water secretion in the intestinal epithelium. This process is not unique for the intestine, but a common and necessary function of many other organs, including the stomach (gastric juice), kidney (urine), sweatglands

  13. Removal of Oil Spills from Salt Water by Magnesium, Calcium ...

    African Journals Online (AJOL)

    Magnesium, calcium carbonates and oxides that are widely used in cement industries were employed in studying sorption of petroleum oil spills from salt water at different condition parameters such as temperature, loading weight, degree of salinity. Treatment of magnesium, calcium carbonates and oxides by dodecyl ...

  14. Temperature and salt addition effects on the solubility behaviour of some phenolic compounds in water

    International Nuclear Information System (INIS)

    Noubigh, Adel; Abderrabba, Manef; Provost, Elise

    2007-01-01

    Solubility-temperature dependence data for six phenolic compounds (PhC), contained in olive mill wastewater (OMWW), in water and in some chloride salts (KCl, NaCl, and LiCl) aqueous solutions have been presented and solution standard molar enthalpies (Δ sol H 0 ) were determined using Van't Hoff plots. The temperature was varied from 293.15 K to 318.15 K. Solubility data were estimated using a thermostated reactor and HPLC analysis. It has been observed that solubility, in pure water and in aqueous chloride solutions, increases with increasing temperature. The salting-out LiCl > NaCl > KCl order obtained at 298.15 K is confirmed. Results were interpreted in terms of the salt hydration shells and the ability of the solute to form hydrogen-bond with water. The standard molar Gibbs free energies of transfer of PhC (Δ tr G 0 ) from pure water to aqueous solutions of the chloride salts have been calculated from the solubility data. In order to estimate the contribution of enthalpic and entropic terms, standard molar enthalpies (Δ tr H 0 ) and entropies (Δ tr S 0 ) of transfer have also been calculated. The decrease in solubility is correlated to the positive Δ tr G 0 value which is mainly of enthalpic origin

  15. Localized corrosion of high performance metal alloys in an acid/salt environment

    Science.gov (United States)

    Macdowell, L. G.; Ontiveros, C.

    1991-01-01

    Various vacuum jacketed cryogenic supply lines at the Space Shuttle launch site at Kennedy Space Center use convoluted flexible expansion joints. The atmosphere at the launch site has a very high salt content, and during a launch, fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the thin walled 304L stainless steel flex hoses. A search was done to find a more corrosion resistant replacement material. The study focussed on 19 metal alloys. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, and long term exposure at a beach corrosion testing site. Based on the results of these tests, several nickel based alloys were found to have very high resistance to this corrosive environment. Also, there was excellent agreement between the electrochemical tests and the actual beach exposure tests. This suggests that electrochemical testing may be useful for narrowing the field of potential candidate alloys before subjecting samples to long term beach exposure.

  16. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching.

    Directory of Open Access Journals (Sweden)

    Yaming Zhai

    Full Text Available To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt, quality, irrigation water use efficiency (IWUE and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1, 320 mm (W2 and 360 mm (W3, and the salinity levels were 1.0 dS/m (F, 3.0 dS/m (S1 and 5.0 dS/m (S2. Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym. After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual, and was recommended as the saline water irrigation scheme for tomatoes in northern China.

  17. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching.

    Science.gov (United States)

    Zhai, Yaming; Yang, Qian; Wu, Yunyu

    2016-01-01

    To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt), quality, irrigation water use efficiency (IWUE) and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1), 320 mm (W2) and 360 mm (W3), and the salinity levels were 1.0 dS/m (F), 3.0 dS/m (S1) and 5.0 dS/m (S2). Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm) of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym). After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual), and was recommended as the saline water irrigation scheme for tomatoes in northern China.

  18. Salt Fog Testing Iron-Based Amorphous Alloys

    International Nuclear Information System (INIS)

    Rebak, Raul B.; Aprigliano, Louis F.; Day, S. Daniel; Farmer, Joseph C.

    2007-01-01

    Iron-based amorphous alloys are hard and highly corrosion resistant, which make them desirable for salt water and other applications. These alloys can be produced as powder and can be deposited as coatings on any surface that needs to be protected from the environment. It was of interest to examine the behavior of these amorphous alloys in the standard salt-fog testing ASTM B 117. Three different amorphous coating compositions were deposited on 316L SS coupons and exposed for many cycles of the salt fog test. Other common engineering alloys such as 1018 carbon steel, 316L SS and Hastelloy C-22 were also tested together with the amorphous coatings. Results show that amorphous coatings are resistant to rusting in salt fog. Partial devitrification may be responsible for isolated rust spots in one of the coatings. (authors)

  19. Study Effect of Salt Washing Process on Content and Iodium Stability of Salt

    Directory of Open Access Journals (Sweden)

    Nelson Saksono

    2010-10-01

    Full Text Available Effect of Salt Washing Process on Content and Iodium Stability of Salt. Salt washing process should increase the saltquality. It should clean the salt from sludge or clay and also reduce the impurity compound such as Mg, Ca and the reductor content. The objective of these reseach is to assess the effect of washing process on the content og hygroscopic impurities compound (Ca and Mg, and reductor content of salt. The research also investigate the water absorbing, pH, KIO3 content as function of time to obtain effect of washing process on KIO3 stability in salt. The experiment result shows that the lowest content of Mg and reductor compound 0.016 % wt and 2.65 ppm respectively which is reached at the fi ne salt washing process using 27 % wt brine. The analysis of water content indicates an increase the Ca and Mg content, causing an water absorbtion in salt , However the effect on pH the is not clear.

  20. Evaporation of a sessile water drop and a drop of aqueous salt solution.

    Science.gov (United States)

    Misyura, S Y

    2017-11-07

    The influence of various factors on the evaporation of drops of water and aqueous salt solution has been experimentally studied. Typically, in the studies of drop evaporation, only the diffusive vapor transfer, radiation and the molecular heat conduction are taken into account. However, vapor-gas convection plays an important role at droplet evaporation. In the absence of droplet boiling, the influence of gas convection turns out to be the prevailing factor. At nucleate boiling, a prevailing role is played by bubbles generation and vapor jet discharge at a bubble collapse. The gas convection behavior for water and aqueous salt solution is substantially different. With a growth of salt concentration over time, the influence of the convective component first increases, reaches an extremum and then significantly decreases. At nucleate boiling in a salt solution it is incorrect to simulate the droplet evaporation and the heat transfer in quasi-stationary approximation. The evaporation at nucleate boiling in a liquid drop is divided into several characteristic time intervals. Each of these intervals is characterized by a noticeable change in both the evaporation rate and the convection role.

  1. Shallow transient liquid water environments on present-day mars, and their implications for life

    Science.gov (United States)

    Jones, Eriita G.

    2018-05-01

    The identification and characterisation of subsurface liquid water environments on Mars are of high scientific interest. Such environments have the potential to support microbial life, and, more broadly, to develop our understanding of the habitability of planets and moons beyond Earth. Given our current state of knowledge of life on Earth, three pre-requisites are necessary for an environment to be considered 'habitable' and therefore capable of supporting terrestrial-like life: energy, biogenic elements, and liquid water with a sufficiently high water activity. The surface of Mars today is predominately cold and dry, and any liquid water exposed to the atmosphere will vaporise or freeze on timescales of hours to days. These conditions have likely persisted for much of the last 10 million years, and perhaps longer. Despite this, briny liquid water flows (Recurrent Slope Linea) have been observed in a number of locations in the present-day. This review examines evidence from the Phoenix Lander (2008) and the Mars Science Laboratory (2012-current), to assess the occurrence of habitable conditions in the shallow Martian regolith. It will be argued that shallow, transient, liquid water brines are potentially habitable by microbial life, are likely a widespread occurrence on Mars, and that future exploration aimed at finding present-day habitable conditions and potential biology should 'follow the salt'.

  2. Fluoride Increase in Saliva and Dental Biofilm due to a Meal Prepared with Fluoridated Water or Salt: A Crossover Clinical Study.

    Science.gov (United States)

    Lima, Carolina V; Tenuta, Livia M A; Cury, Jaime A

    2018-06-07

    Knowledge about fluoride delivery to oral fluids from foods cooked with fluoridated water and salt is scarce, and no study has evaluated fluoride concentrations in saliva or biofilm during meal consumption. In this randomized double-blind crossover study, 12 volunteers ingested meals (rice, beans, meat, and legumes) prepared with nonfluoridated water and salt (control group), fluoridated water (0.70 mg F/L; water group), and fluoridated salt (183.7 mg F/kg; salt group). Whole saliva was collected before meal ingestion, during mastication, and up to 2 h after meal ingestion. Dental biofilm was collected before and immediately after meal ingestion. Fluoride concentrations in saliva and dental biofilm were determined by an ion-specific electrode. The mean (±standard deviation; n = 4) fluoride concentrations in meals prepared for the control, water, and salt groups were 0.039 ± 0.01, 0.43 ± 0.04, and 1.71 ± 0.32 μg F/g, respectively. The three groups had significantly different fluoride concentrations in saliva collected during mastication (p water > control). The fluoride concentration in saliva returned to baseline 30 min after meal ingestion in the water group but remained high for up to 2 h in the salt group (p = 0.002). The fluoride concentration in biofilm fluid differed only between the salt and control groups (p = 0.008). The mastication of foods cooked with fluoridated water and salt increases fluoride concentrations in oral fluids and may contribute to the local effect of these community-based fluoride interventions on caries control. © 2018 S. Karger AG, Basel.

  3. UMTRA Project water sampling and analysis plan, Salt Lake City, Utah. Revision 1

    International Nuclear Information System (INIS)

    1995-06-01

    This water sampling and analysis plan describes planned, routine ground water sampling activities at the US Department of Energy Uranium Mill Tailings Remedial Action Project site in Salt Lake City, Utah. This plan identifies and justifies sampling locations, analytical parameters, detection limits, and sampling frequencies for routine monitoring of ground water, sediments, and surface waters at monitoring stations on the site

  4. Exceptionally fast water desalination at complete salt rejection by pristine graphyne monolayers

    International Nuclear Information System (INIS)

    Xue, Minmin; Qiu, Hu; Guo, Wanlin

    2013-01-01

    Desalination that produces clean freshwater from seawater holds the promise of solving the global water shortage for drinking, agriculture and industry. However, conventional desalination technologies such as reverse osmosis and thermal distillation involve large amounts of energy consumption, and the semipermeable membranes widely used in reverse osmosis face the challenge to provide a high throughput at high salt rejection. Here we find by comprehensive molecular dynamics simulations and first principles modeling that pristine graphyne, one of the graphene-like one-atom-thick carbon allotropes, can achieve 100% rejection of nearly all ions in seawater including Na + , Cl − , Mg 2+ , K + and Ca 2+ , at an exceptionally high water permeability about two orders of magnitude higher than those for commercial state-of-the-art reverse osmosis membranes at a salt rejection of ∼98.5%. This complete ion rejection by graphyne, independent of the salt concentration and the operating pressure, is revealed to be originated from the significantly higher energy barriers for ions than for water. This intrinsic specialty of graphyne should provide a new possibility for the efforts to alleviate the global shortage of freshwater and other environmental problems. (paper)

  5. Effect of road deicing salt on the susceptibility of amphibian embryos to infection by water molds.

    Science.gov (United States)

    Karraker, Nancy E; Ruthig, Gregory R

    2009-01-01

    Some causative agents of amphibian declines act synergistically to impact individual amphibians and their populations. In particular, pathogenic water molds (aquatic oomycetes) interact with environmental stressors and increase mortality in amphibian embryos. We documented colonization of eggs of three amphibian species, the wood frog (Rana sylvatica), the green frog (Rana clamitans), and the spotted salamander (Ambystoma maculatum), by water molds in the field and examined the interactive effects of road deicing salt and water molds, two known sources of mortality for amphibian embryos, on two species, R. clamitans and A. maculatum in the laboratory. We found that exposure to water molds did not affect embryonic survivorship in either A. maculatum or R. clamitans, regardless of the concentration of road salt to which their eggs were exposed. Road salt decreased survivorship of A. maculatum, but not R. clamitans, and frequency of malformations increased significantly in both species at the highest salinity concentration. The lack of an effect of water molds on survival of embryos and no interaction between road salt and water molds indicates that observations of colonization of these eggs by water molds in the field probably represent a secondary invasion of unfertilized eggs or of embryos that had died of other causes. Given increasing salinization of freshwater habitats on several continents and the global distribution of water molds, our results suggest that some amphibian species may not be susceptible to the combined effects of these factors, permitting amphibian decline researchers to devote their attention to other potential causes.

  6. Environmental assessment of water-salt regime of irrigated soils in the Central-Chernozem Region of Russia

    Science.gov (United States)

    Alaeva, Liliia; Negrobova, Elena; Jablonskikh, Lidiia; Rumyantseva, Irina

    2016-04-01

    A large part of Central Chernozem Region is located in the zone of risky agriculture. This led to intensive use of soil in the irrigation system. Therefore, a detailed analysis of water-salt regime of irrigated soils required for ecological state assessment of soils for irrigation. In the investigated area the fone component of the soil cover on the levelled plateau are chernozems. On the slopes formed a meadow-chernozem soils. Parent material is a cover loess-like calcareous non-saline clay. In these soils, our studies found component-quantitative composition of the aqueous extract, the chemism of salinity, which allowed us to make conclusions about the direction of the salinisation process in soils when used in the system of irrigated agriculture. By quantity water extract chernozems are non-saline, the ratio of anions and cations are chloride-sulphate magnesium-calcium salinization. In the composition of easily soluble salts dominated by Ca(HCO3)2. On sum of toxic salts in the soils are non-saline. This type and chemism of salinity deep brackish groundwater (more than 5 m) can be actively used in the system of rational irrigation. The meadow-chernozem soils formed under conditions of increased surface and soil moisture in the shallow brackish water at a depth of 3-5 m. These soils by quantity water extract are non-saline, anionic-cationic ratio - chloride-sulphate magnesium-calcium salinization. Permanent components of salt associations are Ca(HCO3)2, MgCl2, Na2SO4. On sum of toxic salts in the soil is not saline throughout the profile. The chemism of salinity and the proximity of groundwater at irregular watering can lead to the rise of groundwater level, the development of gleyed and sodium alkalinization. Thus, the introduction of intensive irrigated agriculture on chernozems and hydromorphic analogues may lead to the development in them of negative consequences. The most dynamic indicator is the water-salt regime, the systematic monitoring and control which

  7. UMTRA project water sampling and analysis plan, Salt Lake City, Utah

    International Nuclear Information System (INIS)

    1994-06-01

    Surface remedial action was completed at the Salt Lake City, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project site in the fall of 1987. Results of water sampling for the years 1992 to 1994 indicate that site-related ground water contamination occurs in the shallow unconfined aquifer (the uppermost aquifer). With respect to background ground water quality, contaminated ground water in the shallow, unconfined aquifer has elevated levels of chloride, sodium, sulfate, total dissolved solids, and uranium. No contamination associated with the former tailings pile occurs in levels exceeding background in ground water in the deeper confined aquifer. This document provides the water sampling and analysis plan for ground water monitoring at the former uranium processing site in Salt Lake City, Utah (otherwise known as the ''Vitro'' site, named after the Vitro Chemical Company that operated the mill). All contaminated materials removed from the processing site were relocated and stabilized in a disposal cell near Clive, Utah, some 85 miles west of the Vitro site (known as the ''Clive'' disposal site). No ground water monitoring is being performed at the Clive disposal site, since concurrence of the remedial action plan by the US Nuclear Regulatory Commission and completion of the disposal cell occurred before the US Environmental Protection Agency issued draft ground water standards in 1987 (52 FR 36000) for cleanup, stabilization, and control of residual radioactive materials at the disposal site. In addition, the likelihood of post-closure impact on the ground water is minimal to nonexistent, due to the naturally poor quality of the ground water. Water sampling activities planned for calendar year 1994 consist of sampling ground water from nine monitor wells to assess the migration of contamination within the shallow unconfined aquifer and sampling ground water from two existing monitor wells to assess ground water quality in the confined aquifer

  8. Characterization of two-phase mixture (petroleum, salted water or gas) by gamma radiation transmission

    International Nuclear Information System (INIS)

    Eichlt, Jair Romeu

    2003-01-01

    A mathematical description was accomplished to determine the discrimination of a substance in a two-phase mixture, for one beam system, using the five energy lines (13.9, 17.8,26.35 and 59,54 keV) of the 241 Am source. The mathematical description was also accomplished to determine the discrimination of two substances in a three-phase mixture, for a double beam system.. he simulated mixtures for the one beam system were petroleum/salted water or gas. The materials considered in these simulations were: four oils types, denominated as A, B, Bell and Generic, one kind of natural gas and salted water with the following salinities: 35.5, 50, 100, 150, 200, 250 and 300 kg/m 3 of Na Cl. The simulation for the one beam system consisted of a box with acrylic walls and other situation with a box of epoxi walls reinforced with fiber of carbon. The epoxi with carbon fiber was used mainly due to the fact that this material offers little attenuation to the fotons and it resists great pressures. With the results of the simulations it was calculated tables of minimum discrimination for each possible two-phase mixture with petroleum, gas and salted water at several salinities. These discrimination tables are the theoretical forecasts for experimental measurements, since they supply the minimum mensurable percentage for each energy line, as well as the ideal energy for the measurement of each mixture, or situation. The simulated discrimination levels were tested employing experimental arrangements with conditions and materials similar to those of the simulations, for the case of box with epoxi wall reinforced with carbon fiber, at the energies of 20.8 and 59.54 keV. It was obtained good results. For example, for the mixture of salted water (35.5 kg/m 3 ) in paraffin (simulating the petroleum), it was obtained an experimental discrimination minimum of 10% of salted water for error statistics of 5% in I and I o , while the theoretical simulation foresaw the same discrimination level

  9. Where in the Marsh is the Water (and When)?: Measuring and modeling salt marsh hydrology for ecological and biogeochemical applications

    Science.gov (United States)

    Salt marsh hydrology presents many difficulties from a measurement and modeling standpoint: the bi-directional flows of tidal waters, variable water densities due to mixing of fresh and salt water, significant influences from vegetation, and complex stream morphologies. Because o...

  10. Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber

    Directory of Open Access Journals (Sweden)

    Shiwen eWang

    2015-09-01

    Full Text Available Although the effects of silicon application on enhancing plant salt tolerance have been widely investigated, the underlying mechanism has remained unclear. In this study, seedlings of cucumber, a medium silicon accumulator plant, grown in 0.83 mM silicon solution for two weeks were exposed to 65 mM NaCl solution for another one week. The dry weight and shoot/root ratio were reduced by salt stress, but silicon application significantly alleviated these decreases. The chlorophyll concentration, net photosynthetic rate, transpiration rate and leaf water content were higher in plants treated with silicon than in untreated plants under salt stress conditions. Further investigation showed that salt stress decreased root hydraulic conductance (Lp, but that silicon application moderated this salt-induced decrease in Lp. The higher Lp in silicon-treated plants may account for the superior plant water balance. Moreover, silicon application significantly decreased Na+ concentration in the leaves while increasing K+ concentration. Simultaneously, both free and conjugated types of polyamines were maintained at high levels in silicon-treated plants, suggesting that polyamines may be involved in the ion toxicity. Our results indicate that silicon enhances the salt tolerance of cucumber through improving plant water balance by increasing the Lp and reducing Na+ content by increasing polyamine accumulation.

  11. Temperature and salt addition effects on the solubility behaviour of some phenolic compounds in water

    Energy Technology Data Exchange (ETDEWEB)

    Noubigh, Adel [Laboratoire de Physico-chimie des materiaux, IPEST, BP51, 2070 La MARSA (Tunisia)]. E-mail: Adel.anoubigh@ipest.rnu.tn; Abderrabba, Manef [Laboratoire de Physico-chimie des materiaux, IPEST, BP51, 2070 La MARSA (Tunisia); Provost, Elise [Laboratoire Chimie et procedes, ENSTA, 32 Rue de Boulevard Victor, 75739 Paris, Cedex 15 (France)

    2007-02-15

    Solubility-temperature dependence data for six phenolic compounds (PhC), contained in olive mill wastewater (OMWW), in water and in some chloride salts (KCl, NaCl, and LiCl) aqueous solutions have been presented and solution standard molar enthalpies ({delta}{sub sol} H {sup 0}) were determined using Van't Hoff plots. The temperature was varied from 293.15 K to 318.15 K. Solubility data were estimated using a thermostated reactor and HPLC analysis. It has been observed that solubility, in pure water and in aqueous chloride solutions, increases with increasing temperature. The salting-out LiCl > NaCl > KCl order obtained at 298.15 K is confirmed. Results were interpreted in terms of the salt hydration shells and the ability of the solute to form hydrogen-bond with water. The standard molar Gibbs free energies of transfer of PhC ({delta}{sub tr} G {sup 0}) from pure water to aqueous solutions of the chloride salts have been calculated from the solubility data. In order to estimate the contribution of enthalpic and entropic terms, standard molar enthalpies ({delta}{sub tr} H {sup 0}) and entropies ({delta}{sub tr} S {sup 0}) of transfer have also been calculated. The decrease in solubility is correlated to the positive {delta}{sub tr} G {sup 0} value which is mainly of enthalpic origin.

  12. Salt power - Is Neptune's ole salt a tiger in the tank

    Science.gov (United States)

    Wick, G. S.

    1980-02-01

    Methods of exploiting the 24 atm osmotic pressure difference between fresh and salt water to generate energy include reverse electrodialysis, wherein 80 millivolts of electricity cross each ion-selective membrane placed between solutions of fresh and salt water. Pressure-retarded osmosis, using pumps and pressure chambers, relies on semipermeable membranes that allow fresh water to flow into saline, with power generated by the permeated water being released through a turbine. In reverse vapor compression, water vapor rapidly transfers from fresh water to salt water in an evacuated chamber (due to the vapor pressure difference between them), and power can be extracted using 24 m diameter turbine blades. Environmental concerns include protecting estuaries from stress, managing sediments, and protecting marine animals, while filtration would be needed to keep the membranes free from corrosion, biological fouling, or silting.

  13. Characteristis of Soil Water and Salt Spatial Variations in the Spring Season in Typical Yellow River Delta Areas of Kenli County, China

    Directory of Open Access Journals (Sweden)

    WANG Zhuo-ran

    2015-04-01

    Full Text Available The Yellow River Delta as an important area of reserved land resources, is faced with the problem of soil salinization. Grasping the status of soil water and salt as well as their spatial variation rules is an important foundation of prevention, control and use of soil salinization. This study selected Kenli County of the Yellow River Delta, obtained soil water and salt content data through field survey and lab experiments, and analyzed the status of soil water and salt as well as their spatial variation rules using statistics, GIS interpolation and buffer analysis methods. The results showed that the general salt content in the study area was mainly moderate. Salt content increased from soil surfacelayer to underlayer and salt content in each layer was significantly correlated. The areas with high saltness in surfacelayer, middlelayer and underlayer soil mainly distributed in the east near the Bohai Sea in Kenli County, while the areas with lower saltness mainly distributed in the southwest. Soil salt contents showed the trends of decrease, and soil water contents showed the trends of decrease first and then increase with the increase in distance to Bohai Sea. Stretching from the Yellow River, soil salt content showed increase tendency with the increase in distance to the Yellow River, and water content decreased first and then increased. The order from high saltness to low of different vegetation types was naked land>suaeda glauca>tamarix>vervain>reed>couch grass>paddy>cotton>winter wheat>maize, the order of different geomorphic types was depression>slightly sloping ground>slow hillock>beach heights. This study preliminary delineates soil water and salt status as well as their spatial variation rules in the spring season of the study area, and provides scientific basis for soil resource sustainable utilization in the Yellow River Delta.

  14. Cloud-point measurement for (sulphate salts + polyethylene glycol 15000 + water) systems by the particle counting method

    International Nuclear Information System (INIS)

    Imani, A.; Modarress, H.; Eliassi, A.; Abdous, M.

    2009-01-01

    The phase separation of (water + salt + polyethylene glycol 15000) systems was studied by cloud-point measurements using the particle counting method. The effect of three kinds of sulphate salt (Na 2 SO 4 , K 2 SO 4 , (NH 4 ) 2 SO 4 ) concentration, polyethylene glycol 15000 concentration, mass ratio of polymer to salt on the cloud-point temperature of these systems have been investigated. The results obtained indicate that the cloud-point temperatures decrease linearly with increase in polyethylene glycol concentrations for different salts. Also, the cloud points decrease with an increase in mass ratio of salt to polymer.

  15. MzPIP2;1: An Aquaporin Involved in Radial Water Movement in Both Water Uptake and Transportation, Altered the Drought and Salt Tolerance of Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lin Wang

    Full Text Available Plants are unavoidably subjected to various abiotic stressors, including high salinity, drought and low temperature, which results in water deficit and even death. Water uptake and transportation play a critical role in response to these stresses. Many aquaporin proteins, localized at different tissues, function in various transmembrane water movements. We targeted at the key aquaporin in charge of both water uptake in roots and radial water transportation from vascular tissues through the whole plant.The MzPIP2;1 gene encoding a plasma membrane intrinsic protein was cloned from salt-tolerant apple rootstock Malus zumi Mats. The GUS gene was driven by MzPIP2;1 promoter in transgenic Arabidopsis. It indicated that MzPIP2;1 might function in the epidermal and vascular cells of roots, parenchyma cells around vessels through the stems and vascular tissues of leaves. The ectopically expressed MzPIP2;1 conferred the transgenic Arabidopsis plants enhanced tolerance to slight salt and drought stresses, but sensitive to moderate salt stress, which was indicated by root length, lateral root number, fresh weight and K+/Na+ ratio. In addition, the possible key cis-elements in response to salt, drought and cold stresses were isolated by the promoter deletion experiment.The MzPIP2;1 protein, as a PIP2 aquaporins subgroup member, involved in radial water movement, controls water absorption and usage efficiency and alters transgenic plants drought and salt tolerance.

  16. Corrosion of candidate iron-base waste package structural barrier materials in moist salt environments

    International Nuclear Information System (INIS)

    Westerman, R.E.; Pitman, S.G.

    1984-11-01

    Mild steels are considered to be strong candidates for waste package structural barrier (e.g., overpack) applications in salt repositories. Corrosion rates of these materials determined in autoclave tests utilizing a simulated intrusion brine based on Permian Basin core samples are low, generally <25 μm (1 mil) per year. When the steels are exposed to moist salts containing simulated inclusion brines, the corrosion rates are found to increase significantly. The magnesium in the inclusion brine component of the environment is believed to be responsible for the increased corrosion rates. 1 reference, 4 figures, 2 tables

  17. Effects of middle-term land reclamation on nickel soil-water interaction: a case study from reclaimed salt marshes of Po River Delta, Italy.

    Science.gov (United States)

    Di Giuseppe, Dario; Melchiorre, Massimiliano; Faccini, Barbara; Ferretti, Giacomo; Coltorti, Massimo

    2017-09-26

    Reclaimed salt marshes are fragile environments where water salinization and accumulation of heavy metals can easily occur. This type of environment constitutes a large part of the Po River Delta (Italy), where intensive agricultural activities take place. Given the higher Ni background of Po River Delta soils and its water-soluble nature, the main aim of this contribution is to understand if reclamation can influence the Ni behavior over time. In this study, we investigated the geochemical features of 40 soils sampled in two different localities from the Po River Delta with different reclamation ages. Samples of salt marsh soils reclaimed in 1964 were taken from Valle del Mezzano while soils reclaimed in 1872 were taken nearby Codigoro town. Batch solubility tests and consecutive determination of Ni in pore-water were compared to bulk physicochemical compositions of soils. Bulk Ni content of the studied soils is naturally high, since these soils originated from Po River sediments derived from the erosion of ultramafic rocks. Moreover, it seems that Ni concentration increases during soil evolution, being probably related to the degradation of serpentine. Instead, the water-soluble Ni measured in the leaching tests is greater in soils recently reclaimed compared to the oldest soils. Soil properties of two soil profiles from a reclaimed wetland area were examined to determine soil evolution over one century. Following reclamation, pedogenic processes of the superficial horizons resulted in organic matter mineralization, pH buffer, and a decrease of Ni water solubility from recently to evolved reclaimed soil.

  18. Thermodynamic modelling of phase equilibrium for water + poly(Ethylene glycol + salt aqueous two-phase systems

    Directory of Open Access Journals (Sweden)

    R.A.G. Sé

    2002-04-01

    Full Text Available The NRTL (nonrandom, two-liquid model, expressed in mass fraction instead of mole fraction, was used to correlate liquid-liquid equilibria for aqueous two-phase polymer-salt solutions. New interaction energy parameters for this model were determined using reported data on the water + poly(ethylene glycol + salt systems, with different molecular masses for PEG and the salts potassium phosphate, sodium sulfate, sodium carbonate and magnesium sulfate. The correlation of liquid-liquid equilibrium is quite satisfactory.

  19. Chloride dynamics in a restored urban stream and the influence of road salts on water quality

    Science.gov (United States)

    Understanding the connection between road salts and water quality is essential to assess the implications for human health and ecosystem services from these widely used de-icers. Preliminary analysis identified a probable connection between road salt application and a stream wat...

  20. Water potential in soil and Atriplex nummularia (phytoremediator halophyte) under drought and salt stresses.

    Science.gov (United States)

    de Melo, Hidelblandi Farias; de Souza, Edivan Rodrigues; de Almeida, Brivaldo Gomes; Mulas, Maurizio

    2018-02-23

    Atriplex nummularia is a halophyte widely employed to recover saline soils and was used as a model to evaluate the water potentials in the soil-plant system under drought and salt stresses. Potted plants grown under 70 and 37% of field capacity irrigated with solutions of NaCl and of a mixture of NaCl, KCl, MgCl 2 and CaCl 2 reproducing six electrical conductivity (EC): 0, 5, 10, 20, 30, and 40 dS m -1 . After 100 days, total water (Ψ w, plant ) and osmotic (Ψ o, plant ) potentials at predawn and midday and Ψ o, soil , matric potential (Ψ m, soil ) and Ψ w, soil were determined. The type of ion in the irrigation water did not influence the soil potential, but was altered by EC. The soil Ψ o component was the largest contributor to Ψ w, soil . Atriplex is surviving ECs close to 40 dS m -1 due to the decrease in the Ψ w . The plants reached a Ψ w of approximately -8 MPa. The water potentials determined for different moisture levels, EC levels and salt types showed huge importance for the management of this species in semiarid regions and can be used to recover salt affected soils.

  1. Mixtures of lecithin and bile salt can form highly viscous wormlike micellar solutions in water.

    Science.gov (United States)

    Cheng, Chih-Yang; Oh, Hyuntaek; Wang, Ting-Yu; Raghavan, Srinivasa R; Tung, Shih-Huang

    2014-09-02

    The self-assembly of biological surfactants in water is an important topic for study because of its relevance to physiological processes. Two common types of biosurfactants are lecithin (phosphatidylcholine) and bile salts, which are both present in bile and involved in digestion. Previous studies on lecithin-bile salt mixtures have reported the formation of short, rodlike micelles. Here, we show that lecithin-bile salt micelles can be further induced to grow into long, flexible wormlike structures. The formation of long worms and their resultant entanglement into transient networks is reflected in the rheology: the fluids become viscoelastic and exhibit Maxwellian behavior, and their zero-shear viscosity can be up to a 1000-fold higher than that of water. The presence of worms is further confirmed by data from small-angle neutron and X-ray scattering and from cryo-transmission electron microscopy (cryo-TEM). We find that micellar growth peaks at a specific molar ratio (near equimolar) of bile salt:lecithin, which suggests a strong binding interaction between the two species. In addition, micellar growth also requires a sufficient concentration of background electrolyte such as NaCl or sodium citrate that serves to screen the electrostatic repulsion of the amphiphiles and to "salt out" the amphiphiles. We postulate a mechanism based on changes in the molecular geometry caused by bile salts and electrolytes to explain the micellar growth.

  2. Coping with Salt Water Habitats: Metabolic and Oxidative Responses to Salt Intake in the Rufous-Collared Sparrow

    Directory of Open Access Journals (Sweden)

    Pablo Sabat

    2017-09-01

    Full Text Available Many physiological adjustments occur in response to salt intake in several marine taxa, which manifest at different scales from changes in the concentration of individual molecules to physical traits of whole organisms. Little is known about the influence of salinity on the distribution, physiological performance, and ecology of passerines; specifically, the impact of drinking water salinity on the oxidative status of birds has been largely ignored. In this study, we evaluated whether experimental variations in the salt intake of a widely-distributed passerine (Zontotrichia capensis could generate differences in basal (BMR and maximum metabolic rates (Msum, as well as affect metabolic enzyme activity and oxidative status. We measured rates of energy expenditure of birds after 30-d acclimation to drink salt (SW or tap (fresh water (TW and assessed changes in the activity of mitochondrial enzymes (cytochrome c oxidase and citrate synthase in skeletal muscle, heart, and kidney. Finally, we evaluated the oxidative status of bird tissues by means of total antioxidant capacity (TAC and superoxide dismutase activities and lipid oxidative damage (Malondialdehyde, MDA. The results revealed a significant increase in BMR but not Msum, which resulted in a reduction in factorial aerobic scope in SW- vs. TW-acclimated birds. These changes were paralleled with increased kidney and intestine masses and catabolic activities in tissues, especially in pectoralis muscle. We also found that TAC and MDA concentrations were ~120 and ~400% higher, respectively in the liver of animals acclimated to the SW- vs. TW-treatment. Our study is the first to document changes in the oxidative status in birds that persistently drink saltwater, and shows that they undergo several physiological adjustments that range that range in scale from biochemical capacities (e.g., TAC and MDA to whole organism traits (e.g., metabolic rates. We propose that the physiological changes observed

  3. Salt repository project site study plan for water resources: Revision 1

    International Nuclear Information System (INIS)

    1987-12-01

    The Site Study Plan for Water Resources describes a field program consisting of surface-water and ground-water characterization. The surface-water studies will determine the drainage basin characteristics (i.e., topography, soils, land use), hydrometeorology, runoff to streams and playas, and surface-water quality (i.e., offsite pollution sources in playa lakes and in streams). The environmental ground-water studies will focus on ground-water quality characterization. The site study plan describes for each study the need for the study, study design, data management and use, schedule of proposed activities, and quality assurance. These studies will provide data needed to satisfy requirements contained in, or derived from, the Salt Repository Projects Requirements Document. 78 refs., 8 figs., 5 tabs

  4. Causes and Consequences of Water Flux on the Example of Transverse Heading Mina in the Salt Mine "Wieliczka" / Przyczyny i Skutki Dopływu Wody na Przykładzie Poprzeczni Mina w Kopalni Soli "Wieliczka"

    Science.gov (United States)

    Gonet, Andrzej; Stryczek, Stanisław; Brudnik, Krzysztof

    2012-11-01

    The causes of disastrous water flux in the historical Salt Mine "Wieliczka" have been presented on the example of transverse heading Mina at the IV level at a depth of 175 m bsl. The complex geological setting of direct environment of the transverse heading Mina has been described paying attention to unfavorable hydrogeological conditions in the northern part of the salt deposit. The main activities oriented to limiting the water hazard in the Salt Mine "Wieliczka" and the reconstruction of inner safety pillar, which had been seriously damaged by mining activities, have been analyzed. A selection of objects inside the mine, saved from flooding thanks to protection works has been visualized in photos.

  5. A Kirkwood-Buff derived force field for alkaline earth halide salts

    Science.gov (United States)

    Naleem, Nawavi; Bentenitis, Nikolaos; Smith, Paul E.

    2018-06-01

    The activity and function of many macromolecules in cellular environments are coupled with the binding of divalent ions such as calcium or magnesium. In principle, computer simulations can be used to understand the molecular level aspects of how many important macromolecules interact with ions. However, most of the force fields currently available often fail to accurately reproduce the properties of divalent ions in aqueous environments. Here we develop classical non-polarizable force fields for the aqueous alkaline earth metal halides (MX2), where M = Mg2+, Ca2+, Sr2+, Ba2+ and X = Cl-, Br-, I-, which can be used in bimolecular simulations and which are compatible with the Simple Point Charge/Extended (SPC/E) water model. The force field parameters are specifically developed to reproduce the experimental Kirkwood-Buff integrals for aqueous solutions and thereby the experimental activity derivatives, partial molar volumes, and excess coordination numbers. This ensures that a reasonable balance between ion-ion, ion-water, and water-water distributions is obtained. However, this requires a scaling of the cation to water oxygen interaction strength in order to accurately reproduce the integrals. The scaling factors developed for chloride salts are successfully transferable to the bromide and iodide salts. Use of these new models leads to reasonable diffusion constants and dielectric decrements. However, the performance of the models decreases with increasing salt concentration (>4m), and simulations of the pure crystals exhibited unstable behavior.

  6. PIXE measurements of drinking water of Salt Lake, Calcutta, India

    International Nuclear Information System (INIS)

    Sudarshan, M.; Dutta, R.K.; Vijayan, V.; Chintalapudi, S.N.

    2000-01-01

    A study of the trace elemental concentration in drinking water from Salt Lake City, a residential locality in Calcutta, India, was carried out using the proton induced X-ray emission (PIXE) technique. Samples were collected from overhead tanks, where drinking water is stored for supply to all parts of this residential area. A chelating agent (NaDDTC) was used for the pre-concentration of the trace elements. A large number of elements, namely Ca, Ti, Mn, Fe, Co, Ni, Cu, Zn, As, Sr, Ba, Tl and Pb were detected and the results are discussed

  7. PIXE measurements of drinking water of Salt Lake, Calcutta, India

    Energy Technology Data Exchange (ETDEWEB)

    Sudarshan, M.; Dutta, R.K.; Vijayan, V.; Chintalapudi, S.N. E-mail: snc@gamma.iuc.res.in

    2000-08-01

    A study of the trace elemental concentration in drinking water from Salt Lake City, a residential locality in Calcutta, India, was carried out using the proton induced X-ray emission (PIXE) technique. Samples were collected from overhead tanks, where drinking water is stored for supply to all parts of this residential area. A chelating agent (NaDDTC) was used for the pre-concentration of the trace elements. A large number of elements, namely Ca, Ti, Mn, Fe, Co, Ni, Cu, Zn, As, Sr, Ba, Tl and Pb were detected and the results are discussed.

  8. The influence of road salts on water quality in a restored urban stream (Columbus, OH)

    Science.gov (United States)

    Understanding the connection between road salts and water quality is essential to assess the implications for human health and ecosystem services. To assess the effects of the restoration on water quality, surface and ground water have been monitored at Minebank Run, MD since 20...

  9. Elimination of 137Cs from trefoil (leaf and stem), ''Mitsuba'', cryptotaenia japonica hassk, boiled in a distilled and salted waters

    International Nuclear Information System (INIS)

    Motegi, Misako; Miyake, Sadaaki; Ohsawa, Takashi; Nakazawa, Kiyoaki; Izumo, Yoshiro

    1999-01-01

    Elimination of 137 Cs from highly accumulated trefoil (leaf and stem) through boiling in distilled and salted water were investigated in relation to study the effect of cooking and processing on biochemical states of radionuclides (RI) contaminating in foods. 137 Cs was hardly eliminated from the trefoil immersed in a distilled water at room temperature (about 15degC) during 10 min. 137 Cs was considerably eliminated from the trefoil when boiled in a distilled water, 0.3-3.0% salt concentration of the water and soy sauce: about 40-60% (after 2 min), 70-85% (5 min) and 80-90% (10 min), respectively. Elimination of 137 Cs in the soy sauce (e.g. 77.0±2.9%, at 1% salt concentration after 10 min) was restrictive comparing to that in the salt water (93.4±2.3%). These results are expected to contribute to evaluate the radiation exposure to man when a boiled trefoil contaminating with 137 Cs was ingested. (author)

  10. Behavior of gellan in aqueous-salt solutions and oilfield saline water

    Directory of Open Access Journals (Sweden)

    Zhanar Nurakhmetova

    2015-09-01

    Full Text Available The influence of storage time and temperature on the behavior of low acyl gellan (LAG was studied by viscometry and 1H NMR spectroscopy without salt addition. The viscometric results revealed that the effectiveness of salts to enhance gelation of gellan changes in the following order: BaСl2>CaCl2»MgCl2>KCl>NaCl. The sol-gel and liquid-solid phase transitions of gellan solutions were observed upon addition of oilfield water containing 73 g L-1 of alkaline and alkaline earth metal ions. The effectiveness of salts to induce the separation of liquid and solid phases changes in the sequence: NaCl>KCl>MgCl2»CaCl2»BaСl2. The hydrodynamic behavior of 0.5 wt.% gellan solution injected into the sand pack model with high (20 Darcy and lower (2 Darcy permeability is useful to model the oil reservoirs in the process of enhanced oil recovery.

  11. Concentration of involatile salts at evaporating water surfaces

    International Nuclear Information System (INIS)

    Gardner, G.C.

    1988-02-01

    Safety cases for the PWR often need to know how much of the soluble salts in the water will evaporate with the steam during flashing and when the steam is discharged to the atmosphere. Some ideal evaporating systems to give guidance. Simple formulae are derived for the surface concentration relative to the bulk concentration. An analysis is also presented which derives a formula for the mass transfer process in the steam due to both diffusion and convection, which arises from the evaporation process. The convection process will usually dominate. (author)

  12. Expected environment for waste packages in a salt repository

    International Nuclear Information System (INIS)

    Pederson, L.R.; Clark, D.E.; Hodges, F.N.; McVay, G.L.; Rai, D.

    1983-01-01

    This paper discusses results of recent efforts to define the very near-field (within approximately 2 m) environmental conditions to which waste packages will be exposed in a salt repository. These conditions must be considered in the experimental design for waste package materials testing, which includes corrosion of barrier materials and leaching of waste forms. Site-specific brine compositions have been determined, and standard brine compositions have been selected for testing purposes. Actual brine compositions will vary depending on origin, temperature, irradiation history, and contact with irradiated rock salt. Results of irradiating rock salt, synthetic brines, rock salt/brine mixtures, and reactions of irradiated rock salt with brine solutions are reported. 38 references, 3 figures, 2 tables

  13. WATER AND SALT METABOLISM IN THE GERIATRIC SYNDROMES

    Directory of Open Access Journals (Sweden)

    Carlos G. Musso

    2010-01-01

    Full Text Available Geriatrics has already described four syndromes of its own: confusional syndrome, incontinence (fecal and/or urinary, and gait disorders and immobility syndrome, naming them geriatric giants. This name reflects their prevalence and great importance in the elderly. Ageing process induces many changes in renal physiology such as a reduction in glomerular filtration rate (senile hyponatremia, and water and sodium reabsorbtion capability. Besides, there are particular water and salt metabolism alteration characteristics of the geriatric syndromes, such as dehydration and hypernatremia in psychiatric disturbances as well as hyponatremia in patients suffering from immobility syndrome. The geriatric giants and nephrogeriatric physiology changes, are a good example of feed-back between geriatric syndromes, clinical entities characteristics in the elderly that predispose and potentiate each other, leading to catastrophic clinical events.

  14. Environmental aspects of produced-water salt releases in onshore and coastal petroleum-producing areas of the conterminous U.S. - a bibliography

    Science.gov (United States)

    Otton, James K.

    2006-01-01

    Environmental effects associated with the production of oil and gas have been reported since the first oil wells were drilled in the Appalachian Basin in Pennsylvania and Kentucky in the early to mid-1800s. The most significant of these effects are the degradation of soils, ground water, surface water, and ecosystems they support by releases of suspended and dissolved hydrocarbons and co-produced saline water. Produced water salts are less likely than hydrocarbons to be adsorbed by mineral phases in the soil and sediment and are not subject to degradation by biologic processes. Sodium is a major dissolved constituent in most produced waters and it causes substantial degradation of soils through altering of clays and soil textures and subsequent erosion. Produced water salts seem to have the most wide-ranging effects on soils, water quality, and ecosystems. Trace elements, including boron, lithium, bromine, fluorine, and radium, also occur in elevated concentrations in some produced waters. Many trace elements are phytotoxic and are adsorbed and may remain in soils after the saline water has been flushed away. Radium-bearing scale and sludge found in oilfield equipment and discarded on soils pose additional hazards to human health and ecosystems. This bibliography includes studies from across the oil- and natural-gas-producing areas of the conterminous United States that were published in the last 80 yrs. The studies describe the effects of produced water salts on soils, water quality, and ecosystems. Also included are reports that describe (1) the inorganic chemistry of produced waters included in studies of formation waters for various purposes, (2) other sources of salt affecting water quality that may be mistaken for produced water effects, (3) geochemical and geophysical techniques that allow discrimination of salt sources, (4) remediation technologies designed to repair damage caused to soils and ground water by produced water salts, and (5) contamination by

  15. Inhibition of salt precipitation, corrosion and corrosion fatigue of steel in neutral environments

    International Nuclear Information System (INIS)

    Mikhajlovskij, V.Ya.; Slobodyan, Z.V.; Soprunyuk, N.G.; Ivanov, A.M.

    1983-01-01

    Processes of salt precipitation, corrosion under dynamic and static conditions, are studied as well as corrosion fatigue of 20 and 40Kh steels in neutral aqueous media without and with the addition of compounds of several classes. The solution of calcium bicarbonate with the initial concentration [Ca(HCO 3 ) 2 ]=1.3 g/l and 3% NaCl solution in distilled water are used for investigation. The effectiveness index of salt precipitation inhibitor is determined by the change in the rate of calcium bicarbonate transformation into carbonate. The combination of results obtained permits to make the conclusion that tripolyphosphate and pyrophosphoric acid are rather perspective inhibitors of complex effect with low protective concentrations

  16. [Effect of shifting sand burial on evaporation reduction and salt restraint under saline water irrigation in extremely arid region].

    Science.gov (United States)

    Zhang, Jian-Guo; Zhao, Ying; Xu, Xin-Wen; Lei, Jia-Qiang; Li, Sheng-Yu; Wang, Yong-Dong

    2014-05-01

    The Taklimakan Desert Highway Shelterbelt is drip-irrigated with high saline groundwater (2.58-29.70 g x L(-1)), and shifting sand burial and water-salt stress are most common and serious problems in this region. So it is of great importance to study the effect of shifting sand burial on soil moisture evaporation, salt accumulation and their distribution for water saving, salinity restraint, and suitable utilization of local land and water resources. In this study, Micro-Lysimeters (MLS) were used to investigate dynamics of soil moisture and salt under different thicknesses of sand burial (1, 2, 3, 4, and 5 cm), and field control experiments of drip-irrigation were also carried out to investigate soil moisture and salt distribution under different thicknesses of shifting sand burial (5, 10, 15, 20, 25, 30, 35, and 40 cm). The soil daily and cumulative evaporation decreased with the increase of sand burial thickness in MLS, cumulative evaporation decreased by 2.5%-13.7% compared with control. And evaporative inhibiting efficiency increased with sand burial thickness, evaporative inhibiting efficiency of 1-5 cm sand burial was 16.7%-79.0%. Final soil moisture content beneath the interface of sand burial increased with sand burial thickness, and it increased by 2.5%-13.7% than control. The topsoil EC of shifting sand in MLS decreased by 1.19-6.00 mS x cm(-1) with the increasing sand burial thickness, whereas soil salt content beneath the interface in MLS increased and amplitude of the topsoil salt content was higher than that of the subsoil. Under drip-irrigation with saline groundwater, average soil moisture beneath the interface of shifting sand burial increased by 0.4% -2.0% compare with control, and the highest value of EC was 7.77 mS x cm(-1) when the sand burial thickness was 10 cm. The trend of salt accumulation content at shifting sand surface increased firstly, and then decreased with the increasing sand burial thickness. Soil salt contents beneath the

  17. Surface and ground water quality in a restored urban stream affected by road salts

    Science.gov (United States)

    In 2001 research began in Minebank Run, MD to examine the impact of restoration on water quality. Our research area was to determine if road salts in the surface and ground waters are detrimental to the stream channel restoration. The upstream reach (UP), above the Baltimore I-...

  18. The Effects of Salt Water on the Slow Crack Growth of Soda Lime Silicate Glass

    Science.gov (United States)

    Hausmann, Bronson D.; Salem, Jonathan A.

    2016-01-01

    The slow crack growth parameters of soda-lime silicate were measured in distilled and salt water of various concentrations in order to determine if stress corrosion susceptibility is affected by the presence of salt and the contaminate formation of a weak sodium film. Past research indicates that solvents effect the rate of crack growth, however, the effects of salt have not been studied. The results indicate a small but statistically significant effect on the slow crack growth parameters A and n. However, for typical engineering purposes, the effect can be ignored.

  19. Salt Content in Ready-to-Eat Food and Bottled Spring and Mineral Water Retailed in Novi Sad.

    Science.gov (United States)

    Paplović, Ljiljana B Trajković; Popović, Milka B; Bijelović, Sanja V; Velicki, Radmila S; Torović, Ljilja D

    2015-01-01

    Salt intake above 5 g/person/day is a strong independent risk factor for hypertension, stroke and cardiovascular diseases. Published studies indicate that the main source of salt in human diet is processed ready-to-eat food, contributing with 65-85% to daily salt intake. The aim of this paper was to present data on salt content of ready-to-eat food retailed in Novi Sad, Serbia, and contribution of the salt contained in 100 g of food to the recommended daily intake of salt for healthy and persons with cardiovascular disease (CVD) risk. In 1,069 samples of ready-to-eat food, salt (sodium chloride) content was calculated based on chloride ion determined by titrimetric method, while in 54 samples of bottled water sodium content was determined using flame-photometry. Food items in each food group were categorized as low, medium or high salt. Average salt content of each food group was expressed as a percentage of recommended daily intake for healthy and for persons with CVD risk. Average salt content (g/100 g) ranged from 0.36 ± 0.48 (breakfast cereals) to 2.32 ± 1.02 (grilled meat). The vast majority of the samples of sandwiches (91.7%), pizza (80.7%), salami (73.9%), sausages (72.9%), grilled meat (70.0%) and hard cheese (69.6%) had a high salt profile. Average amount of salt contained in 100 g of food participated with levels ranging from 7.2% (breakfast cereals) to 46.4% (grilled meat) and from 9.6% to 61.8% in the recommended daily intake for healthy adult and person with CVD risk, respectively. Average sodium content in 100 ml of bottled spring and mineral water was 0.33 ± 0.30 mg and 33 ± 44 mg, respectively. Ready-to-eat food retailed in Novi Sad has high hidden salt content, which could be considered as an important contributor to relatively high salt consumption of its inhabitants.

  20. Leaching due to hygroscopic water uptake in cemented waste containing soluble salts

    DEFF Research Database (Denmark)

    Brodersen, K.

    1992-01-01

    conditions, condensation of water vapour will result in generation of a certain amount of liquid in the form of a strong salt solution. The volume of liquid may well exceed the storage capacity of the pore system in the cemented material and in the release of a limited amount of free contaminated solution......Considerable amounts of easily soluble salts such as sodium nitrate, sulphate, or carbonate are introduced into certain types of cemented waste. When such materials are stored in atmospheres with high relative humidity or disposed or by shallow land burial under unsaturated, but still humid....... A model of the quantitative aspects for the equilibrium situation is presented. Experiments with hygroscopic water uptake support the model and give indications about the rate of the process. The release mechanism is only thought to be important for radionuclides which are not fixed in a low...

  1. Determination of water-soluble vitamins using a colorimetric microbial viability assay based on the reduction of water-soluble tetrazolium salts.

    Science.gov (United States)

    Tsukatani, Tadayuki; Suenaga, Hikaru; Ishiyama, Munetaka; Ezoe, Takatoshi; Matsumoto, Kiyoshi

    2011-07-15

    A method for the determination of water-soluble vitamins using a colorimetric microbial viability assay based on the reduction of the tetrazolium salt {2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt (WST-8)} via 2-methyl-1,4-napthoquinone (NQ) was developed. Measurement conditions were optimized for the microbiological determination of water-soluble vitamins, such as vitamin B(6), biotin, folic acid, niacin, and pantothenic acid, using microorganisms that have a water-soluble vitamin requirement. A linear relationship between absorbance and water-soluble vitamin concentration was obtained. The proposed method was applied to determine the concentration of vitamin B(6) in various foodstuffs. There was good agreement between vitamin B(6) concentrations determined after 24h using the WST-8 colorimetric method and those obtained after 48h using a conventional method. The results suggest that the WST-8 colorimetric assay is a useful method for the rapid determination of water-soluble vitamins in a 96-well microtiter plate. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. The material flow of salt

    International Nuclear Information System (INIS)

    Kostick, D.S.

    1993-01-01

    Salt (NaCl) is a universal mineral commodity used by virtually every person in the world. Although a very common mineral today, at one time it was considered as precious as gold in certain cultures. This study traces the material flow of salt from its origin through the postconsumer phase of usage. The final disposition of salt in the estimated 14,000 different uses, grouped into several macrocategories, is traced from the dispersive loss of salt into the environment to the ultimate disposal of salt-base products into the waste stream after consumption. The base year for this study is 1990, in which an estimated 196 million short tons of municipal solid waste was discarded by the US population. Approximately three-fourths of domestic salt consumed is released to the environment and unrecovered while about one-fourth is discharged to landfills and incinerators as products derived from salt. Cumulative historical domestic production, trade, and consumption data have been compiled to illustrate the long-term trends within the US salt industry and the cumulative contribution that highway deicing salt has had on the environment. Salt is an important component of drilling fluids in well drilling. It is used to flocculate and to increase the density of the drilling fluid in order to overcome high down-well gas pressures. Whenever drilling activities encounter salt formations, salt is added to the drilling fluid to saturate the solution and minimize the dissolution within the salt strata. Salt is also used to increase the set rate of concrete in cemented casings. This subsector includes companies engaged in oil, gas, and crude petroleum exploration and in refining and compounding lubricating oil. It includes SIC major groups 13 and 29. 13 refs., 14 figs., 6 tabs

  3. Iodine Intake Estimation from the Consumption of Instant Noodles, Drinking Water and Household Salt in Indonesia.

    Science.gov (United States)

    Sutrisna, Aang; Knowles, Jacky; Basuni, Abas; Menon, Ravi; Sugihantono, Anung

    2018-03-08

    The objective of this study was to assess the contribution of iodine intake from iodised household salt, iodised salt in instant noodles, and iodine in ground water in five regions of Indonesia. Secondary data analysis was performed using the 2013 Primary Health Research Survey, the 2014 Total Diet Study, and data from food industry research. Iodine intake was estimated among 2719 children, 10-12 years of age (SAC), 13,233 women of reproductive age (WRA), and 578 pregnant women (PW). Combined estimated iodine intake from the three stated sources met 78%, 70%, and 41% of iodine requirements for SAC, WRA and PW, respectively. Household salt iodine contributed about half of the iodine requirements for SAC (49%) and WRA (48%) and a quarter for PW (28%). The following variations were found: for population group, the percentage of estimated dietary iodine requirements met by instant noodle consumption was significantly higher among SAC; for region, estimated iodine intake was significantly higher from ground water for WRA in Java, and from household salt for SAC and WRA in Kalimantan and Java; and for household socio-economic status (SES), iodine intake from household salt was significantly higher in the highest SES households. Enforcement of clear implementing regulations for iodisation of household and food industry salt will promote optimal iodine intake among all population groups with different diets.

  4. Iodine Intake Estimation from the Consumption of Instant Noodles, Drinking Water and Household Salt in Indonesia

    Directory of Open Access Journals (Sweden)

    Aang Sutrisna

    2018-03-01

    Full Text Available The objective of this study was to assess the contribution of iodine intake from iodised household salt, iodised salt in instant noodles, and iodine in ground water in five regions of Indonesia. Secondary data analysis was performed using the 2013 Primary Health Research Survey, the 2014 Total Diet Study, and data from food industry research. Iodine intake was estimated among 2719 children, 10–12 years of age (SAC, 13,233 women of reproductive age (WRA, and 578 pregnant women (PW. Combined estimated iodine intake from the three stated sources met 78%, 70%, and 41% of iodine requirements for SAC, WRA and PW, respectively. Household salt iodine contributed about half of the iodine requirements for SAC (49% and WRA (48% and a quarter for PW (28%. The following variations were found: for population group, the percentage of estimated dietary iodine requirements met by instant noodle consumption was significantly higher among SAC; for region, estimated iodine intake was significantly higher from ground water for WRA in Java, and from household salt for SAC and WRA in Kalimantan and Java; and for household socio-economic status (SES, iodine intake from household salt was significantly higher in the highest SES households. Enforcement of clear implementing regulations for iodisation of household and food industry salt will promote optimal iodine intake among all population groups with different diets.

  5. Separation of Ground and Low Vegetation Signatures in LiDAR Measurements of Salt-Marsh Environments

    NARCIS (Netherlands)

    Wang, C.; Menenti, M.; Stoll, M.P.; Feola, A.; Belluco, E.; Marani, M.

    2009-01-01

    Light detection and ranging (LiDAR) has been shown to have a great potential in the accurate characterization of forest systems; however, its application to salt-marsh environments is challenging because the characteristic short vegetation does not give rise to detectable differences between first

  6. The Distribution of Road Salt in Private Drinking Water Wells in a Southeastern New York Suburban Township.

    Science.gov (United States)

    Kelly, Victoria R; Cunningham, Mary Ann; Curri, Neil; Findlay, Stuart E; Carroll, Sean M

    2018-05-01

    We used a GIS analysis of sodium and chloride concentrations in private water wells in a southeastern New York township to describe the pattern of distribution of road salt in aquifers tapped for drinking water. The primary source of road salt was sodium chloride, and sodium and chloride concentrations were significantly correlated ( = 0.80, road ( = 0.76, road had higher concentrations of chloride than wells that were higher than the nearest road, but this occurred only when the nearest road was >30 m from the wells ( road type (major or minor roads). Surface geology and hydrologic soil class had significant effects ( road salt contamination of groundwater is unevenly distributed and is affected by landscape factors that can be used to guide well testing and best management practices of deicing salt distribution. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Elimination of {sup 137}Cs from trefoil (leaf and stem), ``Mitsuba``, cryptotaenia japonica hassk, boiled in a distilled and salted waters

    Energy Technology Data Exchange (ETDEWEB)

    Motegi, Misako; Miyake, Sadaaki; Ohsawa, Takashi; Nakazawa, Kiyoaki [Saitama Inst. of Public Health (Japan); Izumo, Yoshiro

    1999-07-01

    Elimination of {sup 137}Cs from highly accumulated trefoil (leaf and stem) through boiling in distilled and salted water were investigated in relation to study the effect of cooking and processing on biochemical states of radionuclides (RI) contaminating in foods. {sup 137}Cs was hardly eliminated from the trefoil immersed in a distilled water at room temperature (about 15degC) during 10 min. {sup 137}Cs was considerably eliminated from the trefoil when boiled in a distilled water, 0.3-3.0% salt concentration of the water and soy sauce: about 40-60% (after 2 min), 70-85% (5 min) and 80-90% (10 min), respectively. Elimination of {sup 137}Cs in the soy sauce (e.g. 77.0{+-}2.9%, at 1% salt concentration after 10 min) was restrictive comparing to that in the salt water (93.4{+-}2.3%). These results are expected to contribute to evaluate the radiation exposure to man when a boiled trefoil contaminating with {sup 137}Cs was ingested. (author)

  8. Salt Marshes as Sources and Sinks of Silica

    Science.gov (United States)

    Carey, J.; Fulweiler, R. W.

    2014-12-01

    The role of salt marshes in controlling silica exchange between terrestrial and marine environments is unclear. In some studies, large quantities of dissolved silica (DSi) appear to be exported from marshes via tidal exchange, potentially fueling future diatom production in adjacent waters. In contrast, other studies report insignificant DSi export and found instead that salt marshes appeared to be Si sinks. Further, few studies examine salt marsh Si export in relation to inorganic nitrogen (DIN) and phosphorus (DIP). We address these uncertainties by quantifying net fluxes of DSi and biogenic Si (BSi), as well as DIN and DIP during the spring and summer in a relatively undisturbed southern New England salt marsh (Narragansett Bay, USA). Our data demonstrates that during the spring, when estuarine waters are deplete in DSi, the marsh serves as a net sink of BSi (132 mol h-1) and a source of DSi (31 mol h-1) to the estuary. The spring DIN:DSi ratios of ebbing water were more than five times lower than flood waters. Most importantly, the DSi export rates (6.5 x103 mol d-1 km-2) are an order of magnitude larger than the export by rivers in the region (115 mol d-1 km-2), indicating the marsh tidal exchange is vital in supplying the Si necessary for spring diatom blooms in the estuary. Conversely, during the summer the marsh served as a net Si sink, importing on average 59 mol DSi h-1 and 39 mol BSi h-1. These data highlight that the role of salt marshes in silica cycling appears to have a strong seasonality. We hypothesize that net import of Si increases the residence time of Si in estuarine systems, providing an important and previously over-looked ecosystem service. In the absence of salt marshes, ~5.1 x 104 kmol of Si would be exported from this system during the growing season, possibly decreasing Si availability and altering phytoplankton species composition in the estuary.

  9. On the hydrophilicity of polyzwitterion poly (N,N-dimethyl-N-(3-(methacrylamido)propyl)ammoniopropane sulfonate) in water, deuterated water, and aqueous salt solutions.

    Science.gov (United States)

    Hildebrand, Viet; Laschewsky, André; Zehm, Daniel

    2014-01-01

    A series of zwitterionic model polymers with defined molar masses up to 150,000 Da and defined end groups are prepared from sulfobetaine monomer N,N-dimethyl-N-(3-(methacrylamido)propyl)ammoniopropanesulfonate (SPP). Polymers are synthesized by reversible addition-fragmentation chain transfer polymerization (RAFT) using a functional chain transfer agent labeled with a fluorescent probe. Their upper critical solution temperature-type coil-to-globule phase transition in water, deuterated water, and various salt solutions is studied by turbidimetry. Cloud points increase with polyzwitterion concentration and molar mass, being considerably higher in D2O than in H2O. Moreover, cloud points are strongly affected by the amount and nature of added salts. Typically, they increase with increasing salt concentration up to a maximum value, whereas further addition of salt lowers the cloud points again, mostly down to below freezing point. The different salting-in and salting-out effects of the studied anions can be correlated with the Hofmeister series. In physiological sodium chloride solution and in phosphate buffered saline (PBS), the cloud point is suppressed even for high molar mass samples. Accordingly, SPP-polymers behave strongly hydrophilic under most conditions encountered in biomedical applications. However, the direct transfer of results from model studies in D2O, using, e.g. (1)H NMR or neutron scattering techniques, to 'normal' systems in H2O is not obvious.

  10. Thickening agent for flood water in secondary recovery of oil and for other aqueous salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Roth, H H

    1966-04-14

    Alkenyl-aromatic polymer sulfonates are good thickeners for some aqueous solutions, but addition of salts to such solutions reduces the desirable viscosity. High-molecular, water-soluble alkenyl-aromatic polymers which carry sulfonic acid or sulfonate groups substituted at the aromatic nuclei yield thickened solutions (e.g., for waterflooding) which are not influenced by the presence of water-soluble salts. Such polymers are derivatives of polyvinyltoluene, alone or in combination with about 5% acrylonitrile. It was also found that such thickening agents are less adsorbed on the rock matrix in a waterflood formation. (1 claim)

  11. In-Drift Precipitates/Salts Analysis

    International Nuclear Information System (INIS)

    Mariner, P.

    2001-01-01

    As directed by a written development plan (CRWMS M and O 1999a), an analysis of the effects of salts and precipitates on the repository chemical environment is to be developed and documented in an Analyses/Model Report (AMR). The purpose of this analysis is to assist Performance Assessment Operations (PAO) and the Engineered Barrier Performance Department in modeling the geochemical environment within a repository drift, thus allowing PAO to provide a more detailed and complete in-drift geochemical model abstraction and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999). The purpose of this ICN is to qualify and document qualification of the AMR's technical products. The scope of this document is to develop a model of the processes that govern salt precipitation and dissolution and resulting water composition in the Engineered Barrier System (EBS). This model is developed to serve as a basis for the in-drift geochemical modeling work performed by PAO and is to be used in subsequent PAO analyses including the EBS physical and chemical model abstraction effort. However, the concepts may also apply to some near and far field geochemical processes and can have conceptual application within the unsaturated zone and saturated zone transport modeling efforts. The intended use of the model developed in this report is to estimate, within an appropriate level of confidence, the pH, chloride concentration, and ionic strength of water on the drip shield or other location within the drift during the post-closure period. These estimates are based on evaporative processes that are subject to a broad range of potential environmental conditions and are independent of the presence or absence of backfill. An additional intended use is to estimate the environmental conditions required for complete vaporization of water. The presence and composition of liquid water

  12. In-Drift Precipitates/Salts Analysis

    Energy Technology Data Exchange (ETDEWEB)

    P. Mariner

    2001-01-10

    As directed by a written development plan (CRWMS M&O 1999a), an analysis of the effects of salts and precipitates on the repository chemical environment is to be developed and documented in an Analyses/Model Report (AMR). The purpose of this analysis is to assist Performance Assessment Operations (PAO) and the Engineered Barrier Performance Department in modeling the geochemical environment within a repository drift, thus allowing PAO to provide a more detailed and complete in-drift geochemical model abstraction and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999). The purpose of this ICN is to qualify and document qualification of the AMR's technical products. The scope of this document is to develop a model of the processes that govern salt precipitation and dissolution and resulting water composition in the Engineered Barrier System (EBS). This model is developed to serve as a basis for the in-drift geochemical modeling work performed by PAO and is to be used in subsequent PAO analyses including the EBS physical and chemical model abstraction effort. However, the concepts may also apply to some near and far field geochemical processes and can have conceptual application within the unsaturated zone and saturated zone transport modeling efforts. The intended use of the model developed in this report is to estimate, within an appropriate level of confidence, the pH, chloride concentration, and ionic strength of water on the drip shield or other location within the drift during the post-closure period. These estimates are based on evaporative processes that are subject to a broad range of potential environmental conditions and are independent of the presence or absence of backfill. An additional intended use is to estimate the environmental conditions required for complete vaporization of water. The presence and composition of liquid water

  13. Two planets: Earth and Mars - One salt model: The Hydrothermal SCRIW-Model

    Science.gov (United States)

    Hovland, M. T.; Rueslaatten, H.; Johnsen, H. K.; Indreiten, T.

    2011-12-01

    One of the common characteristics of planets Earth and Mars is that both host water (H2O) and large accumulations of salt. Whereas Earth's surface-environment can be regarded as 'water-friendly' and 'salt hostile', the reverse can be said for the surface of Mars. This is because liquid water is stable on Earth, and the atmosphere transports humidity around the globe, whereas on planet Mars, liquid water is unstable, rendering the atmosphere dry and, therefore, 'salt-friendly'. The riddle as to how the salt accumulated in various locations on those two planets is one of long-lasting and great debate. The salt accumulations on Earth are traditionally termed 'evaporites', meaning that they formed by the evaporation of large masses of seawater. How the accumulations on Mars formed is much harder to explain, with a similar model, as surface water, representing a large ocean only existed briefly. Although water molecules and OH-groups may exist in abundance in bound form (crystal water, adsorbed water, etc.), the only place where free water is expected to be stable on Mars is within underground faults, fractures, and crevices. Here it likely occurs as brine or in the form of ice. Based on these conditions, a key to understanding the accumulation of large deposits of salt on both planets is linked to how brines behave in the subsurface when pressurized and heated beyond their supercritical point. At depths greater than about 3 km (i.e., a pressure, P>300 bars) water will no longer boil in a steam phase. Rather, it becomes supercritical and will form a supercritical water 'vapor' (SCRIW) with a specific gravity of typically 0.3 g/cm3. An important characteristic of SCRIW is its inability to dissolve the common sea salts. The salt dissolved in the brines will therefore precipitate as solid particles when brines (seawater on the Earth) move into the supercritical P&T-domain (above 400 C and 300 bars). Numerical modeling of a hydrothermal system in the Atlantis II Deep of the

  14. Analysis of genetic and genotype X environment interaction effects for agronomic traits of rice (oryza sativa l.) in salt tolerance

    International Nuclear Information System (INIS)

    Zhou, H.K.; Hayat, Y.; Fang, L.J.; Guo, R.F.; He, J.M.; Xu, H.M.

    2010-01-01

    A diallel cross experiment of 4 rice (Oryza sativa L.) female and 6 male varieties was conducted to study the genetic effects and their interaction with salt-stress condition of 7 agronomic traits in normal and salt-stressed planting conditions. The panicle length (PL), effective number of panicles per plant (ENP), plumped number of grains per panicles (PNG), total number of grains per panicles (TNG), 1000-grain weight (W), seed setting ratio (SSR) and grain weight per plant (PGW), were investigated. A genetic model including additive effect, dominance effect and their interaction effects with environment (ADE) was employed for analysis of data. It was observed that significant (p<0.05) additive effects, dominance effects, additive X environment interaction effects and dominance X environment interaction effects exist for most of the agronomic traits of rice. In addition, significant (p<0.05) narrow sense heritabilities of ENP, PNG, TNG, W and PGW were found, indicating that the genetic performance of these traits are greatly affected by salt stress condition. A significant (p<0.05) negative correlations in the additive effects and additive X environment interaction effects detected between ENP and PNG suggesting that selection on increasing of ENP can reduce PNG. In addition, there exist a highly significant (p<0.01) positive dominance correlation among the dominance effects of the ENP, PNG and TNG, which shows that it is possible to breed salt-tolerant rice variety by coordinating large panicle and multi-panicle in utilization of heterosis. (author)

  15. Study of the multiplication and kinetic effects of salt mixtures and salt blanket micromodels on thermal neutron spectra of heavy water MAKET facility

    International Nuclear Information System (INIS)

    Titarenko, Yu.E.; Batyaev, V.F.; Borovlev, S.P.; Gladkikh, N.G.; Igumnov, M.M.; Legostaev, V.O.; Karpikhin, E.I.; Konev, V.N.; Kushnerev, Yu.T.; Ryazhsky, V.I.; Spiridonov, V.G.; Chernyavsky, E.V.; Shvedov, O.V.

    2009-10-01

    The main goal of the Project is to study and evaluate nuclear characteristics of materials and isotopes involved in processes of irradiated nuclear fuel transmutation. This principal task is subdivided into 9 subtasks subject to the neutron or proton source used, the type of the nuclear process under study, isotope collection, characteristics of which are to be investigated, etc. In the presented extract of the Project Activity report the measurements there were used the MAKET zero-power heavy-water reactor in the measurements there was employed a large set of minor actinide samples highly enriched with the main isotope. The samples were obtained with mass-separator SM-2 (VNIIEF). At the heavy-water reactor MAKET (ITEP) there were measured multiplying and kinetic characteristics of salt mixtures basing on the spectra of fast and thermal neutrons. The salt mixtures of zirconium and sodium fluorides were available in salt blanket models (SBM) of cylindrical shape. There were measured the neutron spectra formed by this micro-model as well as the effective fission cross-sections of neptunium, plutonium, americium and curium isotopes caused by SBM neutrons. The neutron spectra in the measurement positions were determined from activation reaction rates. (author)

  16. The water balance of the urban Salt Lake Valley: a multiple-box model validated by observations

    Science.gov (United States)

    Stwertka, C.; Strong, C.

    2012-12-01

    A main focus of the recently awarded National Science Foundation (NSF) EPSCoR Track-1 research project "innovative Urban Transitions and Arid-region Hydro-sustainability (iUTAH)" is to quantify the primary components of the water balance for the Wasatch region, and to evaluate their sensitivity to climate change and projected urban development. Building on the multiple-box model that we developed and validated for carbon dioxide (Strong et al 2011), mass balance equations for water in the atmosphere and surface are incorporated into the modeling framework. The model is used to determine how surface fluxes, ground-water transport, biological fluxes, and meteorological processes regulate water cycling within and around the urban Salt Lake Valley. The model is used to evaluate the hypotheses that increased water demand associated with urban growth in Salt Lake Valley will (1) elevate sensitivity to projected climate variability and (2) motivate more attentive management of urban water use and evaporative fluxes.

  17. A review of environmental impacts of salts from produced waters on aquatic resources

    Science.gov (United States)

    Farag, Aïda M.; Harper, David D.

    2014-01-01

    Salts are frequently a major constituent of waste waters produced during oil and gas production. These produced waters or brines must be treated and/or disposed and provide a daily challenge for operators and resource managers. Some elements of salts are regulated with water quality criteria established for the protection of aquatic wildlife, e.g. chloride (Cl−), which has an acute standard of 860 mg/L and a chronic standard of 230 mg/L. However, data for establishing such standards has only recently been studied for other components of produced water, such as bicarbonate (HCO3−), which has acute median lethal concentrations (LC50s) ranging from 699 to > 8000 mg/L and effects on chronic toxicity from 430 to 657 mg/L. While Cl− is an ion of considerable importance in multiple geographical regions, knowledge about the effects of hardness (calcium and magnesium) on its toxicity and about mechanisms of toxicity is not well understood. A multiple-approach design that combines studies of both individuals and populations, conducted both in the laboratory and the field, was used to study toxic effects of bicarbonate (as NaHCO3). This approach allowed interpretations about mechanisms related to growth effects at the individual level that could affect populations in the wild. However, additional mechanistic data for HCO3−, related to the interactions of calcium (Ca2 +) precipitation at the microenvironment of the gill would dramatically increase the scientific knowledge base about how NaHCO3 might affect aquatic life. Studies of the effects of mixtures of multiple salts present in produced waters and more chronic effect studies would give a better picture of the overall potential toxicity of these ions. Organic constituents in hydraulic fracturing fluids, flowback waters, etc. are a concern because of their carcinogenic properties and this paper is not meant to minimize the importance of maintaining vigilance with respect to potential organic contamination.

  18. [Monitoring of water and salt transport in silt and sandy soil during the leaching process].

    Science.gov (United States)

    Fu, Teng-Fei; Jia, Yong-Gang; Guo, Lei; Liu, Xiao-Lei

    2012-11-01

    Water and salt transport in soil and its mechanism is the key point of the saline soil research. The dynamic rule of water and transport in soil during the leaching process is the theoretical basis of formation, flush, drainage and improvement of saline soil. In this study, a vertical infiltration experiment was conducted to monitor the variation in the resistivity of silt and sandy soil during the leaching process by the self-designed automatic monitoring device. The experimental results showed that the peaks in the resistivity of the two soils went down and faded away in the course of leaching. It took about 30 minutes for sandy soil to reach the water-salt balance, whereas the silt took about 70 minutes. With the increasing leaching times, the desalination depth remained basically the same, being 35 cm for sandy soil and 10 cm for the silt from the top to bottom of soil column. Therefore, 3 and 7 leaching processes were required respectively for the complete desalination of the soil column. The temporal and spatial resolution of this monitoring device can be adjusted according to the practical demand. This device can not only achieve the remote, in situ and dynamic monitoring data of water and salt transport, but also provide an effective method in monitoring, assessment and early warning of salinization.

  19. The role of succulent halophytes in the water balance of salt marsh rodents.

    Science.gov (United States)

    Coulombe, Harry N

    1970-09-01

    The role of succulent halophytes in the water balance and ecology of salt marsh rodents is dependent upon an evaluation of the composition of the available sources and the physiological properties of their potential consumers. Studies of the osmotic properties of succulent halophytes from southern California coastal salt marshes are presented, together with experiments regarding the utilization of Common Pickleweed (Salicornia virginica L.) by indigenous populations of cricetid rodents (harvest mouse Reithrodontomys megalotis limicola Von Bloecker, and meadow-mouse Microtus californicus stephensi Von Bloecker). These data are discussed in relation to other available information concerning the ecology of coastal salt marshes, particularly in western North America.Extruded sap of Common Pickleweed was found to have a mean total osmotic pressure (TOP) of 1,450 mOsm/liter, with an average chloride ion content of 876 mEq/liter (about 70% of the TOP). A related species, Salicornia subterminale, had a slightly lower TOP (1,300 mOsm/liter), of which about 29% was accounted for by chloride ion concentration. Sea Blight (Suaeda fruticosa) was the only species in which the TOP correlated with the distance from the tide level; sap TOP increased away from the lagoon's edge. In both Sea Blight and Common Pickle weed, TOP was not directly related to chloride content, indicating the importance of other osmotically active solutes.Harvest mice were placed on three experimental regimes: 1) millet seeds only, 2) pickleweed only, and 3) pickleweed and millet seed. Meadow mice were tested on the last regime only. Harvest mice survived best on a strict millet seed diet; when Salicornia was consumed to a detectable extent, the mice did not survive. Meadow mice, however, could survive using Salicornia as a dietary source in conjunction with seeds. Kidney electrolyte concentrating abilities indicated that harvest mice should be able to utilize pickleweed; this was not confirmed in my

  20. Relating road salt to exceedances of the water quality standard for chloride in New Hampshire streams.

    Science.gov (United States)

    Trowbridge, Philip R; Kahl, J Steve; Sassan, Dari A; Heath, Douglas L; Walsh, Edward M

    2010-07-01

    Six watersheds in New Hampshire were studied to determine the effects of road salt on stream water quality. Specific conductance in streams was monitored every 15 min for one year using dataloggers. Chloride concentrations were calculated from specific conductance using empirical relationships. Stream chloride concentrations were directly correlated with development in the watersheds and were inversely related to streamflow. Exceedances of the EPA water quality standard for chloride were detected in the four watersheds with the most development. The number of exceedances during a year was linearly related to the annual average concentration of chloride. Exceedances of the water quality standard were not predicted for streams with annual average concentrations less than 102 mg L(-1). Chloride was imported into three of the watersheds at rates ranging from 45 to 98 Mg Cl km(-2) yr(-1). Ninety-one percent of the chloride imported was road salt for deicing roadways and parking lots. A simple, mass balance equation was shown to predict annual average chloride concentrations from streamflow and chloride import rates to the watershed. This equation, combined with the apparent threshold for exceedances of the water quality standard, can be used for screening-level TMDLs for road salt in impaired watersheds.

  1. Electrochemical energy: the green face of the salt-affected lands

    International Nuclear Information System (INIS)

    Ashraf, M.; Mahmood, K.; Waheed, A.

    2013-01-01

    A high soluble salt content make the salt-stressed terrestrial and the aquatic habitats electrically more active than the normal ecosystems. The salt-tolerant plants and the microbial populations adapted to the salt-stressed environments have developed special mechanisms to resist the ionic and the osmotic stresses. The study evaluated the bioelectricity or electrochemical energy potential of soil and bio-resources of a salt-affected land. The electrical conductivity and the charge resistance ability exhibited the various categories of salt-tolerant plants suitable for a range of salt-stressed conditions and the root activities including extrusion of proton (H+) in the rooting media. The microbial biofilms formed with plant roots, soil particles and the solid surface by exo-polysaccharides producing biofilm bacteria could regulate and monitor ion flux across the bio-membranes and the electrode surfaces. The ionic gradients thus created by plants and the microbial processes could be a continuous and uninterrupted valuable source of bio-energy of the salt-stressed and contaminated soil and water habitats. The bio-energy can be harnessed and utilized by especially designed microbial biofuel cells (MBFC). The biofilms developed on anode or cathode of MBFC could act as half cells for source and sink of the electrons released during oxidation reduction processes carried by microbial consortia while the exo-polysaccharides, the microbial biopolymer could support transfer of charge to the electrodes. The salt-affected soil and the soil organic matter constituents, microbial biopolymers and the brackish water, as a mediators and the cathode passivation inhibitors, thus could help enhance and increase the output intensity of the electrochemical energy and efficiency of the biofuel cells. The study suggested an enormous potential of the salt-affected lands for non-conventional renewable bio-energy source useful in the remote areas and for the small power requiring electrical

  2. Tamarisk (Salt Cedar) Infestations in Northwestern Nevada Mapped Using Landsat TM Imagery and GIS Layers

    Science.gov (United States)

    Sengupta, D.; Geraci, C.; Kolkowitz, S.

    2004-12-01

    Tamarisk, also known as salt cedar (Tamarix sp.) is a prevalent invasive species that has infested many riparian areas in the southwestern United States. Mature salt cedar plants are resistant to high stress environments and fare well in drought conditions, mainly due to their extensive root systems that derive much of their sustenance from the water table rather than surface water and precipitation. The salt cedar root systems have altered hydrological patterns by tapping into underlying aquifers. This has decreased water available for recreational use, regional ecology and plant diversity. Many states have implemented salt cedar monitoring programs at the local level, but the problem of large-scale mapping of this invasive species has continued to be a challenge to land management agencies. Furthermore, inaccessible and unexplored areas continue to be absent in the mapping process. In August 2004, using field data consisting of large areas as training sets for classification of Landsat TM imagery, the DEVELOP student research team at NASA Ames Research Center generated a preliminary map of areas that that were susceptible to salt cedar growth for a region in northwestern Nevada. In addition to the remote sensing-based classification of satellite imagery, the team used the variables of elevation and estimated distance to the water table in conjunction with collected field data and knowledge of salt cedar growth habits to further refine the map. The team has further extended the mapping of key environmental factors of water availability for salt cedar, soil types and species distribution in regions infested by salt cedar. The investigation was carried out by 1) improving an existing GIS layer for water access using a suitable interpolation method, 2) including a GIS layer for soils associated with salt cedar growth and 3) completing field work to evaluate species distribution and regions of presence or absence of salt cedar. The outcome of this project served to

  3. Plastic pollutants in water environment

    Directory of Open Access Journals (Sweden)

    Mrowiec Bożena

    2017-12-01

    Full Text Available Nowadays, wide applications of plastics result in plastic waste being present in the water environment in a wide variety of sizes. Plastic wastes are in water mainly as microplastics (the size range of 1 nm to < 5 mm. Microplastics have been recognized as an emerging threat, as well as ecotoxicological and ecological risk for water ecosystems. In this review are presented some of the physicochemical properties of plastic materials that determine their toxic effect on the aquatic environment. Wastewater treatment plants (WWTPs are mentioned as one of main sources of microplastics introduced into fresh water, and rivers are the pathways for the transportation of the pollutants to seas and oceans. But, effluents from tertiary wastewater treatment facilities can contain only minimally microplastic loads. The issue of discharge reduction of plastic pollutants into water environment needs activities in the scope of efficient wastewater treatment, waste disposal, recycling of plastic materials, education and public involvement.

  4. Plastic pollutants in water environment

    OpenAIRE

    Mrowiec Bożena

    2017-01-01

    Nowadays, wide applications of plastics result in plastic waste being present in the water environment in a wide variety of sizes. Plastic wastes are in water mainly as microplastics (the size range of 1 nm to < 5 mm). Microplastics have been recognized as an emerging threat, as well as ecotoxicological and ecological risk for water ecosystems. In this review are presented some of the physicochemical properties of plastic materials that determine their toxic effect on the aquatic environment....

  5. Influence of Roads on the Surrounding Natural Environment - Vegetation, Soil, and Ground Water

    Science.gov (United States)

    1980-02-01

    lands. The spreading of salt to combat slipperiness and to hold down the dust results in the pollution of the ground water near the highways under...Among meadow-type forests elm , ash, and alder forests are particularly sensitive to reduced water availability, while meadow-oak, meadow-beech, and... slipperiness on more heavily travelled roads (primarily K_ _ - -41- NaCi), dust-binding on gravel roads (road salt/CaClg/ and previouslv road lye

  6. Water-in-oil-in-water double emulsion for the delivery of starter cultures in reduced-salt moromi fermentation of soy sauce.

    Science.gov (United States)

    Devanthi, Putu Virgina Partha; Linforth, Robert; El Kadri, Hani; Gkatzionis, Konstantinos

    2018-08-15

    This study investigated the application of water-oil-water (W 1 /O/W 2 ) double emulsions (DE) for yeast encapsulation and sequential inoculation of Zygosaccharomyces rouxii and Tetragenococcus halophilus in moromi stage of soy sauce fermentation with reduced NaCl and/or substitution with KCl. Z. rouxii and T. halophilus were incorporated in the internal W 1 and external W 2 phase of DE, respectively. NaCl reduction and substitution promoted T. halophilus growth to 8.88 log CFU/mL, accompanied with faster sugar depletion and enhanced lactic acid production. Reducing NaCl without substitution increased the final pH (5.49) and decreased alcohols, acids, esters, furan and phenol content. However, the application of DE resulted in moromi with similar microbiological and physicochemical characteristics to that of high-salt. Principal component analysis of GC-MS data demonstrated that the reduced-salt moromi had identical aroma profile to that obtained in the standard one, indicating the feasibility of producing low-salt soy sauce without compromising its quality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress.

    Science.gov (United States)

    Sheng, Min; Tang, Ming; Chen, Hui; Yang, Baowei; Zhang, Fengfeng; Huang, Yanhui

    2008-09-01

    The influence of arbuscular mycorrhizal (AM) fungus Glomus mosseae on characteristics of the growth, water status, chlorophyll concentration, gas exchange, and chlorophyll fluorescence of maize plants under salt stress was studied in the greenhouse. Maize plants were grown in sand and soil mixture with five NaCl levels (0, 0.5, 1.0, 1.5, and 2.0 g/kg dry substrate) for 55 days, following 15 days of non-saline pretreatment. Under salt stress, mycorrhizal maize plants had higher dry weight of shoot and root, higher relative chlorophyll content, better water status (decreased water saturation deficit, increased water use efficiency, and relative water content), higher gas exchange capacity (increased photosynthetic rate, stomatal conductance and transpiration rate, and decreased intercellular CO(2) concentration), higher non-photochemistry efficiency [increased non-photochemical quenching values (NPQ)], and higher photochemistry efficiency [increased the maximum quantum yield in the dark-adapted state (Fv/Fm), the maximum quantum yield in the light-adapted sate (Fv'/Fm'), the actual quantum yield in the light-adapted steady state (phiPSII) and the photochemical quenching values (qP)], compared with non-mycorrhizal maize plants. In addition, AM symbiosis could trigger the regulation of the energy biturcation between photochemical and non-photochemical events reflected in the deexcitation rate constants (kN, kN', kP, and kP'). All the results show that G. mosseae alleviates the deleterious effect of salt stress on plant growth, through improving plant water status, chlorophyll concentration, and photosynthetic capacity, while the influence of AM symbiosis on photosynthetic capacity of maize plants can be indirectly affected by soil salinity and mycorrhizae-mediated enhancement of water status, but not by the mycorrhizae-mediated enhancement of chlorophyll concentration and plant biomass.

  8. A history of salt.

    Science.gov (United States)

    Cirillo, M; Capasso, G; Di Leo, V A; De Santo, N G

    1994-01-01

    The medical history of salt begins in ancient times and is closely related to different aspects of human history. Salt may be extracted from sea water, mineral deposits, surface encrustations, saline lakes and brine springs. In many inland areas, wood was used as a fuel source for evaporation of brine and this practice led to major deafforestation in central Europe. Salt played a central role in the economies of many regions, and is often reflected in place names. Salt was also used as a basis for population censuses and taxation, and salt monopolies were practised in many states. Salt was sometimes implicated in the outbreak of conflict, e.g. the French Revolution and the Indian War of Independence. Salt has also been invested with many cultural and religious meanings, from the ancient Egyptians to the Middle Ages. Man's innate appetite for salt may be related to his evolution from predominantly vegetarian anthropoids, and it is noteworthy that those people who live mainly on protein and milk or who drink salty water do not generally salt their food, whereas those who live mainly on vegetables, rice and cereals use much more salt. Medicinal use tended to emphasize the positive aspects of salt, e.g. prevention of putrefaction, reduction of tissue swelling, treatment of diarrhea. Evidence was also available to ancient peoples of its relationship to fertility, particularly in domestic animals. The history of salt thus represents a unique example for studying the impact of a widely used dietary substance on different important aspects of man's life, including medical philosophy.

  9. Arbuscular Mycorrhizal Symbiosis Alleviates Salt Stress in Black Locust through Improved Photosynthesis, Water Status, and K+/Na+ Homeostasis

    Science.gov (United States)

    Chen, Jie; Zhang, Haoqiang; Zhang, Xinlu; Tang, Ming

    2017-01-01

    Soil salinization and the associated land degradation are major and growing ecological problems. Excess salt in soil impedes plant photosynthetic processes and root uptake of water and nutrients such as K+. Arbuscular mycorrhizal (AM) fungi can mitigate salt stress in host plants. Although, numerous studies demonstrate that photosynthesis and water status are improved by mycorrhizae, the molecular mechanisms involved have received little research attention. In the present study, we analyzed the effects of AM symbiosis and salt stress on photosynthesis, water status, concentrations of Na+ and K+, and the expression of several genes associated with photosynthesis (RppsbA, RppsbD, RprbcL, and RprbcS) and genes coding for aquaporins or membrane transport proteins involved in K+ and/or Na+ uptake, translocation, or compartmentalization homeostasis (RpSOS1, RpHKT1, RpNHX1, and RpSKOR) in black locust. The results showed that salinity reduced the net photosynthetic rate, stomatal conductance, and relative water content in both non-mycorrhizal (NM) and AM plants; the reductions of these three parameters were less in AM plants compared with NM plants. Under saline conditions, AM fungi significantly improved the net photosynthetic rate, quantum efficiency of photosystem II photochemistry, and K+ content in plants, but evidently reduced the Na+ content. AM plants also displayed a significant increase in the relative water content and an evident decrease in the shoot/root ratio of Na+ in the presence of 200 mM NaCl compared with NM plants. Additionally, mycorrhizal colonization upregulated the expression of three chloroplast genes (RppsbA, RppsbD, and RprbcL) in leaves, and three genes (RpSOS1, RpHKT1, and RpSKOR) encoding membrane transport proteins involved in K+/Na+ homeostasis in roots. Expression of several aquaporin genes was regulated by AM symbiosis in both leaves and roots depending on soil salinity. This study suggests that the beneficial effects of AM symbiosis on

  10. Arbuscular Mycorrhizal Symbiosis Alleviates Salt Stress in Black Locust through Improved Photosynthesis, Water Status, and K+/Na+ Homeostasis.

    Science.gov (United States)

    Chen, Jie; Zhang, Haoqiang; Zhang, Xinlu; Tang, Ming

    2017-01-01

    Soil salinization and the associated land degradation are major and growing ecological problems. Excess salt in soil impedes plant photosynthetic processes and root uptake of water and nutrients such as K + . Arbuscular mycorrhizal (AM) fungi can mitigate salt stress in host plants. Although, numerous studies demonstrate that photosynthesis and water status are improved by mycorrhizae, the molecular mechanisms involved have received little research attention. In the present study, we analyzed the effects of AM symbiosis and salt stress on photosynthesis, water status, concentrations of Na + and K + , and the expression of several genes associated with photosynthesis ( RppsbA, RppsbD, RprbcL , and RprbcS ) and genes coding for aquaporins or membrane transport proteins involved in K + and/or Na + uptake, translocation, or compartmentalization homeostasis ( RpSOS1, RpHKT1, RpNHX1 , and RpSKOR ) in black locust. The results showed that salinity reduced the net photosynthetic rate, stomatal conductance, and relative water content in both non-mycorrhizal (NM) and AM plants; the reductions of these three parameters were less in AM plants compared with NM plants. Under saline conditions, AM fungi significantly improved the net photosynthetic rate, quantum efficiency of photosystem II photochemistry, and K + content in plants, but evidently reduced the Na + content. AM plants also displayed a significant increase in the relative water content and an evident decrease in the shoot/root ratio of Na + in the presence of 200 mM NaCl compared with NM plants. Additionally, mycorrhizal colonization upregulated the expression of three chloroplast genes ( RppsbA, RppsbD , and RprbcL ) in leaves, and three genes ( RpSOS1, RpHKT1 , and RpSKOR ) encoding membrane transport proteins involved in K + /Na + homeostasis in roots. Expression of several aquaporin genes was regulated by AM symbiosis in both leaves and roots depending on soil salinity. This study suggests that the beneficial

  11. Investigation of phyco-remediation of road salt run-off with marine microalgae Nannochloropsis gaditana.

    Science.gov (United States)

    Devasya, Roopa; Bassi, Amarjeet

    2017-11-15

    Phyco-remediation is an environmental-friendly method, which involves the application of beneficial microalgae to treat wastewater-containing pollutants for a diverse range of conditions. Several industrial processes generate hyper saline wastewater, which is a significant challenge for conventional wastewater treatment, and the disposal of saline waters also has a negative impact on the environment. Road salt run-off is one such saline wastewater stream not currently treated and one that contributes significantly to negatively impacting receiving bodies of water. In this study, Nannochloropsis microalgae were able to assimilate >95% of the nitrates within 8 days in road salt concentrations ranging from 2.6% to 4.4% under phototrophic cultivation mode. Biomass yields of 1-2 g/l of culture were obtained with the maximum lipid of 22% (g/g) biomass in the road salt media. The crude road salt media provided all the essential micronutrients needed for algal cultivation. The fatty acid composition analysis of the obtained lipid composed of C16 and C18 over 45% of FAME are suitable for biofuel. This study has established that the use of road salt containing nitrate and phosphate nutrients will support the growth of marine micro algae for remediation of a waste water system that are the concern at winter-prevalent regions.

  12. Determination of potassium concentration in salt water for residual beta radioactivity measurements

    International Nuclear Information System (INIS)

    Suarez-Navarro, J.A.; Pujol, Ll.

    2004-01-01

    High interferences may arise in the determination of potassium concentration in salt water. Several analytical methods were studied to determine which method provided the most accurate measurements of potassium concentration. This study is relevant for radiation protection because the exact amount of potassium in water samples must be known for determinations of residual beta activity concentration. The fitting algorithm of the calibration curve and estimation of uncertainty in potassium determinations were also studied. The reproducibility of the proposed analytical method was tested by internal and external validation. Furthermore, the residual beta activity concentration of several Spanish seawater and brackish river water samples was determined using the proposed method

  13. Renal excretion of water in men under hypokinesia and physical exercise with fluid and salt supplementation

    Science.gov (United States)

    Zorbas, Yan G.; Federenko, Youri F.; Togawa, Mitsui N.

    It has been suggested that under hypokinesia (reduced number of steps/day) and intensive physical exercise, the intensification of fluid excretion in men is apparently caused as a result of the inability of the body to retain optimum amounts of water. Thus, to evaluate this hypothesis, studies were performed with the use of fluid and sodium chloride (NaCl) supplements on 12 highly trained physically healthy male volunteers aged 19-24 years under 364 days of hypokinesis (HK) and a set of intensive physical exercises (PE). They were divided into two groups with 6 volunteers per group. The first group of subjects were submitted to HK and took daily fluid and salt supplements in very small doses and the second group of volunteers were subjected to intensive PE and fluid-salt supplements. For the simulation of the hypokinetic effect, both groups of subjects were kept under an average of 4000 steps/day. During the prehypokinetic period of 60 days and under the hypokinetic period of 364 days water consumed and eliminated in urine by the men, water content in blood, plasma volume, rate of glomerular filtration, renal blood flow, osmotic concentration of urine and blood were measured. Under HK, the rate of renal excretion of water increased considerably in both groups. The additional fluid and salt intake failed to normalize water balance adequately under HK and PE. It was concluded that negative water balance evidently resulted not from shortage of water in the diet but from the inability of the body to retain optimum amounts of fluid under HK and a set of intensive PEs.

  14. Study for the water penetration chemistry of bentonite under temperature gradation environment

    International Nuclear Information System (INIS)

    Hara, Naohiro; Imakita, Tsuyoshi

    2003-02-01

    This work have been studied for the water fluctuation in time and space in case of the ground water penetration into the unsaturated bentonite with development of the necessary test equipment. The test equipment necessary for this test, was designed on consideration of the adiabatic condition, sensors for pH, salt and water measurement. The thickness of the bentonite specimen was set to 10 cm and the temperature slope was enable to set between 80degC and 100degC at the both end of the specimen. The water for penetration was pushed by gas constant pressure up to 1 MPa. The glass electrode for pH, electric conductivity for salinity and moisture sensor for lower water content and water sensor for higher were used as the sensors. The fluctuation of salt and water in the ground water penetration test to bentonite was estimated. The sensor data were treated as parametric data, because those data could not calibrated in those high temperature and under those high bentonite swollen pressure. For another development should be needed for water sensor. (author)

  15. Material Research on Salt Hydrates for Seasonal Heat Storage Application in a Residential Environment

    Energy Technology Data Exchange (ETDEWEB)

    Ferchaud, C.J.; Zondag, H.A.; De Boer, R. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2013-09-15

    Water vapor sorption in salt hydrates is a promising method to realize seasonal solar heat storage in the residential sector. Several materials already showed promising performance for this application. However, the stability of these materials needs to be improved for long-term (30 year) application in seasonal solar heat storages. The purpose of this article is to identify the influence of the material properties of the salt hydrates on the performance and the reaction kinetics of the sorption process. The experimental investigation presented in this article shows that the two salt hydrates Li2SO4.H2O and CuSO4.5H2O can store and release heat under the operating conditions of a seasonal solar heat storage in a fully reversible way. However, these two materials show differences in terms of energy density and reaction kinetics. Li2SO4.H2O can release heat with an energy density of around 0.80 GJ/m{sup 3} within 4 hours of rehydration at 25C, while CuSO4.5H2O needs around 130 hours at the same temperature to be fully rehydrated and reaches an energy density of 1.85 GJ/m{sup 3}. Since the two salts are dehydrated and hydrated under the same conditions, this difference in behavior is directly related to the intrinsic properties of the materials.

  16. Salt Block II: description and results

    International Nuclear Information System (INIS)

    Hohlfelder, J.J.

    1980-06-01

    A description of and results from the Salt Block II experiment, which involved the heating of and measurement of water transport within a large sample of rock salt, are presented. These results include the measurement of water released into a heated borehole in the sample as well as measured temperatures within the salt. Measured temperatures are compared with the results of a mathematical model of the experiment

  17. Improved Design and Fabrication of Hydrated-Salt Pills

    Science.gov (United States)

    Shirron, Peter J.; DiPirro, Michael J.; Canavan, Edgar R.

    2011-01-01

    A high-performance design, and fabrication and growth processes to implement the design, have been devised for encapsulating a hydrated salt in a container that both protects the salt and provides thermal conductance between the salt and the environment surrounding the container. The unitary salt/container structure is known in the art as a salt pill. In the original application of the present design and processes, the salt is, more specifically, a hydrated paramagnetic salt, for use as a refrigerant in a very-low-temperature adiabatic demagnetization refrigerator (ADR). The design and process can also be applied, with modifications, to other hydrated salts. Hydrated paramagnetic salts have long been used in ADRs because they have the desired magnetic properties at low temperatures. They also have some properties, disadvantageous for ADRs, that dictate the kind of enclosures in which they must be housed: Being hydrated, they lose water if exposed to less than 100-percent relative humidity. Because any dehydration compromises their magnetic properties, salts used in ADRs must be sealed in hermetic containers. Because they have relatively poor thermal conductivities in the temperature range of interest (<0.1 K), integral thermal buses are needed as means of efficiently transferring heat to and from the salts during refrigeration cycles. A thermal bus is typically made from a high-thermal-conductivity met al (such as copper or gold), and the salt is configured to make intimate thermal contact with the metal. Commonly in current practice (and in the present design), the thermal bus includes a matrix of wires or rods, and the salt is grown onto this matrix. The density and spacing of the conductors depend on the heat fluxes that must be accommodated during operation.

  18. Calculating salt loads to Great Salt Lake and the associated uncertainties for water year 2013; updating a 48 year old standard

    Science.gov (United States)

    Shope, Christopher L.; Angeroth, Cory E.

    2015-01-01

    Effective management of surface waters requires a robust understanding of spatiotemporal constituent loadings from upstream sources and the uncertainty associated with these estimates. We compared the total dissolved solids loading into the Great Salt Lake (GSL) for water year 2013 with estimates of previously sampled periods in the early 1960s.We also provide updated results on GSL loading, quantitatively bounded by sampling uncertainties, which are useful for current and future management efforts. Our statistical loading results were more accurate than those from simple regression models. Our results indicate that TDS loading to the GSL in water year 2013 was 14.6 million metric tons with uncertainty ranging from 2.8 to 46.3 million metric tons, which varies greatly from previous regression estimates for water year 1964 of 2.7 million metric tons. Results also indicate that locations with increased sampling frequency are correlated with decreasing confidence intervals. Because time is incorporated into the LOADEST models, discrepancies are largely expected to be a function of temporally lagged salt storage delivery to the GSL associated with terrestrial and in-stream processes. By incorporating temporally variable estimates and statistically derived uncertainty of these estimates,we have provided quantifiable variability in the annual estimates of dissolved solids loading into the GSL. Further, our results support the need for increased monitoring of dissolved solids loading into saline lakes like the GSL by demonstrating the uncertainty associated with different levels of sampling frequency.

  19. Evaluation of polyacrylamide gels with accelerator ammonium salts for water shutoff in ultralow temperature reservoirs: Gelation performance and application recommendations

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2016-03-01

    Full Text Available Water shutoff in ultralow temperature reservoirs has received great attention in recent years. In previous study, we reported a phenol-formaldehyde-based gel formula with ammonium salt which can provide a gelation time between 2 hrs and 2 days at 25 °C. However, systematic evaluation and field recommendations of this gel formula when encountering complex reservoirs environment are not addressed. In this paper, how and why such practical considerations as water composition, temperature, pH, weight ratio of formaldehyde to resorcinol and contaminant Fe3+ to affect the gelation performance are examined. Brookfield DV-III and scanning electron microscopy (SEM are employed respectively for viscosity measurement and microstructure analysis. SEM results further illustrate the mechanism of the effect of salinity on gelation performance. It reveals that crosslinking done by covalent bond has great advantage for gel stability under high salinity environment. The target gel formula can provide desirable gelation time below 60 °C, perfect for 15–45 °C, while it is unfeasible to use high salinity to delay gelation at 60 °C. We summarized the effect of salinity on gelation performance of different gel formulas from the present study and published literature. The summarized data can provide important guideline for gel formula design before conducting any kinds of experiments. The variation of gelation performance at different salinity may be dominated by the interaction between crosslinker-salt-polymer, not only limited to “charge-screening effect” and “ion association” proposed by several authors. We hope the analysis encouraging further investigations. Some recommendations for field application of this gel are given in the end of this paper.

  20. Ultrasonic-assisted synthesis of aqueous CdTe/CdS QDs in salt water bath heating

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yinglian [College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province (China); College of Food Science and Engineering, Qingdao Agricultural University of China, Qingdao 266109, Shandong Province (China); Li, Chunsheng; Xu, Ying [College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province (China); Wang, Dongfeng, E-mail: wangdf@ouc.edu.cn [College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province (China)

    2014-09-01

    Highlights: • Ultrasonic promotes formation of crystal nucleus and QDs were synthesized in 0.5 h. • The new heating method provides a PLQY of up to 97.13%. • The synthesis mechanism of the core shell structure of the CdTe/CdS QDs was inferred. • The preparation method was efficient, simple and clean. - Abstract: A novel simple method for fast and efficient synthesis of aqueous CdTe/CdS quantum dots (QDs) with core–shell structure was developed by using salt water bath heating with the ultrasonic-assisted technique in this paper. The formation of crystal nucleus was promoted by ultrasonic and CdTe/CdS QDs with blue fluorescence were synthesized only in 0.5 h. The heat source was bath heating in salt water solution at 60% NaCl and the heating temperature could reach 105 °C. The heating method solved the biggest drawback of low photoluminescence quantum yield (PLQY) of ordinal bath heating in water. The preparation was cheap, simple and had less pollution to the environment. The properties of the CdTe/CdS QDs were thoroughly investigated by ultraviolet–visible (UV–vis), photoluminescence (PL), transmission electron microscope (TEM), laser size analysis, fourier transform infrared spectra (FTIR), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS). Different CdTe/CdS QDs with core shell structure were efficiently synthesized and the maximum PLQY could reach 97.13% when refluxing at 105 °C for 2 h. These QDs exhibited uniform dispersity, high fluorescence intensity, good optical property and long life of fluorescent. The synthesis mechanism of the core shell structure of the QDs was inferred that the Cd{sup 2+} might coordinate with sulfur (S) as well as thiol propionate (–SCH{sub 2}CH{sub 2}COO{sup −1}) to constitute two relatively thick compound layers on the QDs surface as passive shells.

  1. The effect of water and salt stresses on the phosphorus content and acid phosphatase activity in oilseed rape

    Directory of Open Access Journals (Sweden)

    Stanisław Flasiński

    2014-01-01

    Full Text Available Oilseed rape plants responded to water and salt stresses (-0.5 MPa, PEG 6000 and NaCI by reduction of the fresh and dry weights of shoots and roots. When PEG was used, the ratio of dry weights of roots:shoots surpassed that of controls. The leaf protein content increased considerably. The phosphorus content decreased only in the roots, most significantly after three days of stress. Immediately after the stresses were induced, an increase in the acid phosphatase (AP activity was noted. Water and salt stresses caused four- and two-fold increases in AP activity in leaves, respectively. Changes in the enzyme activity were negligible in stems and roots. There are nine forms of AP in young leaves of oilseed rape. In the stressed plants, from No. 5 revealed lower activity and forms Nos 8 and 9, higher activities than in the control. The increase in AP activity was directly accompanied by the decrease in the water potential of the tissues. Oilseed rape is considerably less sensitive to salt stress than to water stress, which is manifested as the lower inhibition of plant growth and also by a smaller increase in acid phosphatase activity.

  2. Normotensive blood pressure in pregnancy: the role of salt and aldosterone.

    Science.gov (United States)

    Gennari-Moser, Carine; Escher, Geneviève; Kramer, Simea; Dick, Bernhard; Eisele, Nicole; Baumann, Marc; Raio, Luigi; Frey, Felix J; Surbek, Daniel; Mohaupt, Markus G

    2014-02-01

    A successful pregnancy requires an accommodating environment. Salt and water availability are critical for plasma volume expansion. Any changes in sodium intake would alter aldosterone, a hormone previously described beneficial in pregnancy. To date, it remains ambiguous whether high aldosterone or high salt intake is preferable. We hypothesized that increased aldosterone is a rescue mechanism and appropriate salt availability is equally effective in maintaining a normotensive blood pressure (BP) phenotype in pregnancy. We compared normotensive pregnant women (n=31) throughout pregnancy with young healthy female individuals (n=31-62) and performed salt sensitivity testing within the first trimester. Suppression of urinary tetrahydro-aldosterone levels by salt intake as measured by gas chromatography-mass spectrometry and urinary sodium excretion corrected for creatinine, respectively, was shifted toward a higher salt intake in pregnancy (Ppregnancy, neither high urinary tetrahydro-aldosterone nor sodium excretion was correlated with higher BP. In contrast, in nonpregnant women, systolic BP rose with aldosterone (Ppregnancy without causing aldosterone-induced hypertension. Second, salt seems to aid in BP lowering in pregnancy for reasons incompletely elucidated, yet involving renin suppression and potentially placental sensing mechanisms. Further research should identify susceptible individuals and clarify effector mechanisms.

  3. ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance

    DEFF Research Database (Denmark)

    Bouchabke-Coussa, O.; Quashie, M.L.; Seoane, Jose Miguel

    2008-01-01

    's improved tolerance to reduced water supply may be explained by its lower transpiration rate and better water use efficiency (WUE), which was assessed by carbon isotope discrimination and gas exchange measurements. esk1 alleles were also shown to be more tolerant to salt stress. Transcriptomic analysis......Background: Drought is a major social and economic problem resulting in huge yield reduction in the field. Today's challenge is to develop plants with reduced water requirements and stable yields in fluctuating environmental conditions. Arabidopsis thaliana is an excellent model for identifying...... as a key gene involved in plant water economy as well as cold acclimation and salt tolerance. Results: All esk1 mutants were more tolerant to freezing, after acclimation, than their wild type counterpart. esk1 mutants also showed increased tolerance to mild water deficit for all traits measured. The mutant...

  4. Precision Monitoring of Water Level in a Salt Marsh with Low Cost Tilt Loggers

    Science.gov (United States)

    Sheremet, Vitalii A.; Mora, Jordan W.

    2016-04-01

    Several salt pannes and pools in the Sage Lot tidal marsh of Waquoit Bay system, MA were instrumented with newly developed Arm-and-Float water level gauges (utilizing accelerometer tilt logger) permitting to record water level fluctuations with accuracy of 1 mm and submillimeter resolution. The methodology of the instrument calibration, deployment, and elevation control are described. The instrument performance was evaluated. Several month long deployments allowed us to analyze the marsh flooding and draining processes, study differences among the salt pannes. The open channel flow flooding-draining mechanism and slower seepage were distinguished. From the drain curve the seepage rate can be quantified. The seepage rate remains approximately constant for all flooding draining episodes, but varies from panne to panne depending on bottom type and location. Seasonal differences due to the growth of vegetation are also recorded. The analysis of rain events allows us to estimate the catch area of subbasins in the marsh. The implication for marsh ecology and marsh accretion are discussed. The gradual sea level rise coupled with monthly tidal datum variability and storm surges result in migration and development of a salt marsh. The newly developed low cost instrumentation allows us to record and analyze these changes and may provide guidance for the ecological management.

  5. Stomatal density and metabolic determinants mediate salt stress adaptation and water use efficiency in basil (Ocimum basilicum L.).

    Science.gov (United States)

    Barbieri, Giancarlo; Vallone, Simona; Orsini, Francesco; Paradiso, Roberta; De Pascale, Stefania; Negre-Zakharov, Florence; Maggio, Albino

    2012-11-15

    Increasing salinity tolerance and water-use efficiency in crop plants are two major challenges that agriculture must face in the next decades. Many physiological mechanisms and molecular components mediating crop response to environmental stresses have been identified. However, the functional inter-links between stress adaptation responses have not been completely understood. Using two basil cultivars (Napoletano and Genovese) with contrasting ability to respond to salt stress, here we demonstrate that reduced stomatal density, high ascorbate level and polyphenol oxidase (PPO) activity coordinately contribute to improve basil adaptation and water use efficiency (WUE) in saline environment. The constitutively reduced stomatal density was associated with a "delayed" accumulation of stress molecules (and growth inhibiting signals) such as abscisic acid (ABA) and proline, in the more tolerant Genovese. Leaf volatile profiling also revealed cultivar-specific patterns, which may suggest a role for the volatile phenylpropanoid eugenol and monoterpenes in conferring stress tolerance via antioxidant and signalling functions. Copyright © 2012 Elsevier GmbH. All rights reserved.

  6. Containment of solidified liquid hazardous waste in domal salt

    International Nuclear Information System (INIS)

    Domenico, P.A.; Lerman, A.

    1992-01-01

    In recent years, the solidification of hazardous liquid waste has become a viable option in waste management. The solidification process results in an increased volume but more stable waste form that must be disposed of or stored in a dry environment. An environment of choice in south central Texas is domal salt. The salt dome currently under investigation has a water content of 0.002 percent by weight and a permeability less than one nanodarcy. A question that must be addressed is whether a salt dome has a particular set of attributes that will prevent the release of contaminants to the environment. From a regulatory perspective, a ''no migration'' petition must be approved by the U.S.E.P.A. for the containment facility. By ''no migration'' it is implied that the waste must be contained for 10,000 years. A demonstration that this condition will be met will require model calculations and such models must be based on the physical and chemical characteristics of the waste form and the geologic environment. In particular, the models must address the rate of brine infiltration into the caverns, providing information on how fast an immobile solid waste form could convert to a more mobile liquid state. Additionally, the potential for migration by both diffusion and advection is of concern. Lastly, given a partially saturated cavern, the question of how far gaseous waste will be transported over the 10,000 year containment period must also be addressed. Results indicate that the containment capabilities of domal salt are exceptional. A nominal volume of brine will seep into the cavern and most voids between the injected solidified waste pellets will remain unsaturated. Very small quantities of hazardous constituents will be leached from the waste pellets

  7. Novel ordered structures in the mixture of water/organic solvent/salts investigated by neutron scattering

    International Nuclear Information System (INIS)

    Sadakane, Koichiro

    2013-01-01

    The effect of an antagonistic salt on the phase behavior and nanoscale structure of a mixture of water/organic solvent was investigated by visual inspection, optical microscope, and small-angle neutron scattering (SANS). The addition of the antagonistic salt, namely sodium tetraphenylborate (NaBPh 4 ), induces the shrinking of the two-phase region in contrast to the case in which a normal (hydrophilic) salt is added. Below the phase separation point, the SANS profiles cannot be described by the Ornstein-Zernike function owing to the existence of a long-range periodic structure. With increasing salt concentration, the critical exponents change from the values of 3D-Ising and approach those of 2D-Ising. Furthermore, an ordered phase with multilamellar (onion) structures was confirmed in an off-critical mixture of D 2 O and 3-methylpyridine containing 85 mM of a NaBPh 4 although no surfactants or polymers are contained. (author)

  8. Residual fluxes of salt and water in the Azhikode estuary, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Pylee, A.; Varma, P.U.; Revichandran, C.

    hours at all stations and the data were analysed to provide estimates of the residual fluxes of water and salt. The interpolated data for the non-dimensional depth was used for computation of depth, tide and cross sectional averages. A net seaward flow...

  9. Water in the oceanic lithosphere: Salt Lake Crater xenoliths, Oahu, Hawaii

    Science.gov (United States)

    Peslier, A. H.; Bizimis, M.

    2010-12-01

    Water can be present in nominally anhydrous minerals of peridotites in the form of hydrogen bonded to structural oxygen. Such water in the oceanic upper mantle could have a significant effect on its physical and chemical properties. However, the water content of the MORB source has been inferred indirectly from the compositions of basalts. Direct determinations on abyssal peridotites are scarce because they have been heavily hydrothermally altered. Here we present the first water analyses of minerals from spinel peridotite xenoliths of Salt Lake Crater, Oahu, Hawaii, which are exceptionally fresh. These peridotites are thought to represent fragments of the Pacific oceanic lithosphere that was refertilized by alkalic Hawaiian melts. A few have unradiogenic Os and radiogenic Hf isotopes and may be fragments of an ancient ( 2 Ga) depleted and recycled lithosphere. Water contents in olivine (Ol), orthopyroxene (Opx), and clinopyroxene (Cpx) were determined by FTIR spectrometry. Preliminary H_{2}O contents show ranges of 8-10 ppm for Ol, 151-277 ppm for Opx, and 337-603 ppm for Cpx. Reconstructed bulk rock H_{2}O contents range from 88-131 ppm overlapping estimates for the MORB source. Water contents between Ol minerals of the same xenolith are heterogeneous and individual OH infrared bands vary within a mineral with lower 3230 cm^{-1} and higher 3650-3400 cm^{-1} band heights from core to edge. This observation suggests disturbance of the hydrogen in Ol likely occurring during xenolith entrainment to the surface. Pyroxene water contents are higher than most water contents in pyroxenes from continental peridotite xenoliths and higher than those of abyssal peridotites. Cpx water contents decrease with increasing degree of depletion (e.g. increasing Fo in Ol and Cr# in spinel) consistent with an incompatible behavior of water. However Cpx water contents also show a positive correlation with LREE/HREE ratios and LREE concentrations consistent with refertilization. Opx

  10. Water in the Oceanic Lithosphere: Salt Lake Crater Xenoliths, Oahu, Hawaii

    Science.gov (United States)

    Peslier, Anne H.; Bizimis, Michael

    2010-01-01

    Water can be present in nominally anhydrous minerals of peridotites in the form of hydrogen bonded to structural oxygen. Such water in the oceanic upper mantle could have a significant effect on its physical and chemical properties. However, the water content of the MORB source has been inferred indirectly from the compositions of basalts. Direct determinations on abyssal peridotites are scarce because they have been heavily hydrothermally altered. Here we present the first water analyses of minerals from spinel peridotite xenoliths of Salt Lake Crater, Oahu, Hawaii, which are exceptionally fresh. These peridotites are thought to represent fragments of the Pacific oceanic lithosphere that was refertilized by alkalic Hawaiian melts. A few have unradiogenic Os and radiogenic Hf isotopes and may be fragments of an ancient (2 Ga) depleted and recycled lithosphere. Water contents in olivine (Ol), orthopyroxene (Opx), and clinopyroxene (Cpx) were determined by FTIR spectrometry. Preliminary H_{2}O contents show ranges of 8-10 ppm for Ol, 151-277 ppm for Opx, and 337-603 ppm for Cpx. Reconstructed bulk rock H_{2}O contents range from 88-131 ppm overlapping estimates for the MORB source. Water contents between Ol minerals of the same xenolith are heterogeneous and individual OH infrared bands vary within a mineral with lower 3230 cm^{-1} and higher 3650-3400 cm^{-1} band heights from core to edge. This observation suggests disturbance of the hydrogen in Ol likely occurring during xenolith entrainment to the surface. Pyroxene water contents are higher than most water contents in pyroxenes from continental peridotite xenoliths and higher than those of abyssal peridotites. Cpx water contents decrease with increasing degree of depletion (e.g. increasing Fo in Ol and Cr# in spinel) consistent with an incompatible behavior of water. However Cpx water contents also show a positive correlation with LREE/HREE ratios and LREE concentrations consistent with refertilization. Opx water

  11. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.

    Science.gov (United States)

    Hudait, Arpa; Molinero, Valeria

    2014-06-04

    Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by

  12. Mg-Sulfate Salts as Possible Water Reservoirs in Martian Regolith

    Science.gov (United States)

    Vaniman, D. T.; Bish, D. L.; Chipera, S. J.; Carey, J. W.; Feldman, W. C.

    2003-12-01

    Neutron spectrometer data from the Mars Odyssey orbiter provide evidence of high water-equivalent hydrogen abundance in some near-equatorial locations on Mars. In broad regions shallow (duricrust indicate that Mg and S are correlated and that ˜10% of an Mg-sulfate salt is a likely cementing agent. However, the range of possible Mg sulfates is large. Epsomite (7-hydrate, 51% water) and hexahydrite (6-hydrate, 47% water) are the most hydrated; both form structures of isolated SO4 tetrahedra with isolated octahedral sites consisting of Mg coordinated by six H2O molecules (epsomite has an extra H2O in addition to the six required to coordinate with Mg). Pentahydrite (5-hydrate, 43% water) has infinite chains of alternating SO4 tetrahedra and Mg octahedra, with 4/5 of the water forming apices in octahedral sites. Starkeyite (4-hydrate, 37% water) has clusters of two SO4 tetrahedra and two Mg octahedra, linked only by hydrogen bonds. The Mg-sulfate sanderite (2-hydrate, 23% water) is rare and has poorly known structure. Kieserite (1-hydrate, 13% water) is relatively common in evaporite deposits and has a framework structure of infinite tetrahedral-octahedral chains cross-linked by hydrogen bonds. The stability of Mg-sulfate hydrates under martian near-surface conditions depends on their structures; those with excess water beyond that required to form the octahedral Mg site (e.g., epsomite, pentahydrite) lose that excess readily. Experiments with epsomite and hexahydrite indicate great sensitivity to environmental conditions; epsomite is not stable at 295 K at relative humidity (RH) values less than about 55%, below which hexahydrite is the observed phase. More importantly, hexahydrite - with all water coordinated to Mg in octahedral sites - is unstable at pressures less than ˜20 mtorr. X-ray diffraction analysis of hexahydrite held at 20 mtorr for six hours shows that structural degradation is slow at 100 K but becomes obvious in 1 hour at 273 K. Thermogravimetric

  13. Influence of water and salt solutions on UVB irradiation of normal skin and psoriasis

    International Nuclear Information System (INIS)

    Boer, J.; Schothorst, A.A.; Boom, B.; Suurmond, D.; Hermans, J.

    1982-01-01

    The influence of tap-water (TW) and salt solutions on the minimal erythema dose (MED) was investigated for normal human skin and uninvolved skin of psoriasis patients. MED (UVB) determinations on the forearm revealed that: (1) the MED definitely decreases whenever the arm is immersed in TW or NaCl solutions with a low concentration (4%) prior to UVB exposure, whereas almost saturated NaCl solution (26%), as well as locum Dead Sea water (LDSW), do not produce a change in the MED, and (2) the decrease in MED obtained by wetting the skin with TW was no longer present when the skin was allowed to dry for 20 min. A decrease in water uptake by skin (in vivo) and by callus (in vitro) was found as the salt concentration of the external solution increased. It is proposed that water taken up by the skin plays an important role in the sensitivity of the skin to UVB exposure. Bathing in TW or 4% NaCl prior to UVB exposure offered a slight to moderate improvement in psoriasis over UVB irradiation alone. Finally, it was shown that there is no obvious difference in clearance of the psoriatic skin between a bath in TW, 4% NaCl, or LDSW prior to UVB exposure. (orig.)

  14. Oxygation enhances growth, gas exchange and salt tolerance of vegetable soybean and cotton in a saline vertisol.

    Science.gov (United States)

    Bhattarai, Surya P; Midmore, David J

    2009-07-01

    Impacts of salinity become severe when the soil is deficient in oxygen. Oxygation (using aerated water for subsurface drip irrigation of crop) could minimize the impact of salinity on plants under oxygen-limiting soil environments. Pot experiments were conducted to evaluate the effects of oxygation (12% air volume/volume of water) on vegetable soybean (moderately salt tolerant) and cotton (salt tolerant) in a salinized vertisol at 2, 8, 14, 20 dS/m EC(e). In vegetable soybean, oxygation increased above ground biomass yield and water use efficiency (WUE) by 13% and 22%, respectively, compared with the control. Higher yield with oxygation was accompanied by greater plant height and stem diameter and reduced specific leaf area and leaf Na+ and Cl- concentrations. In cotton, oxygation increased lint yield and WUE by 18% and 16%, respectively, compared with the control, and was accompanied by greater canopy light interception, plant height and stem diameter. Oxygation also led to a greater rate of photosynthesis, higher relative water content in the leaf, reduced crop water stress index and lower leaf water potential. It did not, however, affect leaf Na+ or Cl- concentration. Oxygation invariably increased, whereas salinity reduced the K+ : Na+ ratio in the leaves of both species. Oxygation improved yield and WUE performance of salt tolerant and moderately tolerant crops under saline soil environments, and this may have a significant impact for irrigated agriculture where saline soils pose constraints to crop production.

  15. Corrosion of carbon steel in saturated high-level waste salt solutions

    International Nuclear Information System (INIS)

    Wiersma, B.J.; Parish, W.R.

    1997-01-01

    High level waste stored as crystallized salts is to be removed from carbon steel tanks by water dissolution. Dissolution of the saltcake must be performed in a manner which will not impact the integrity of the tank. Corrosion testing was performed to determine the amount of corrosion inhibitor that must be added to the dissolution water in order to ensure that the salt solution formed would not induce corrosion degradation of the tank materials. The corrosion testing performed included controlled potential slow strain rate, coupon immersion, and potentiodynamic polarization tests. These tests were utilized to investigate the susceptibility of the cooling coil material to stress corrosion cracking in the anticipated environments. No evidence of SCC was observed in any of the tests. Based on these results, the recommended corrosion requirements were that the temperature of the salt solution be less than 50 degrees C and that the minimum hydroxide concentration be 0.4 molar. It was also recommended that the hydroxide concentration not stay below 0.4 molar for longer than 45 days

  16. Evidence of the Earliest Salt Production Found in China

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Being critical in the development of the human civilization, the ancient salt-making has been an important research issue for both historians and archaeologists. Since salt dissolves in water, it is difficult to tell whether the salt in archaeological samples was caused by human production of salt or underground water. So how to judge the existence of salt production has been a world-wide problem in archaeology and archaeometry.

  17. Community solar salt production in Goa, India.

    Science.gov (United States)

    Mani, Kabilan; Salgaonkar, Bhakti B; Das, Deepthi; Bragança, Judith M

    2012-12-01

    Traditional salt farming in Goa, India has been practised for the past 1,500 years by a few communities. Goa's riverine estuaries, easy access to sea water and favourable climatic conditions makes salt production attractive during summer. Salt produced through this natural evaporation process also played an important role in the economy of Goa even during the Portuguese rule as salt was the chief export commodity. In the past there were 36 villages involved in salt production, which is now reduced to 9. Low income, lack of skilled labour, competition from industrially produced salt, losses incurred on the yearly damage of embankments are the major reasons responsible for the reduction in the number of salt pans.Salt pans (Mithagar or Mithache agor) form a part of the reclaimed waterlogged khazan lands, which are also utilised for aquaculture, pisciculture and agriculture. Salt pans in Goa experience three phases namely, the ceased phase during monsoon period of June to October, preparatory phase from December to January, and salt harvesting phase, from February to June. After the monsoons, the salt pans are prepared manually for salt production. During high tide, an influx of sea water occurs, which enters the reservoir pans through sluice gates. The sea water after 1-2 days on attaining a salinity of approximately 5ºBé, is released into the evaporator pans and kept till it attains a salinity of 23 - 25ºBé. The brine is then released to crystallizer pans, where the salt crystallises out 25 - 27ºBé and is then harvested.Salt pans form a unique ecosystem where succession of different organisms with varying environmental conditions occurs. Organisms ranging from bacteria, archaea to fungi, algae, etc., are known to colonise salt pans and may influence the quality of salt produced.The aim of this review is to describe salt farming in Goa's history, importance of salt production as a community activity, traditional method of salt production and the biota

  18. Nanoscopic characterization of the water vapor-salt interfacial layer reveals a unique biphasic adsorption process

    Science.gov (United States)

    Yang, Liu; He, Jianfeng; Shen, Yi; Li, Xiaowei; Sun, Jielin; Czajkowsky, Daniel M.; Shao, Zhifeng

    2016-08-01

    Our quantitative understanding of water adsorption onto salt surfaces under ambient conditions is presently quite poor owing to the difficulties in directly characterizing this interfacial layer under these conditions. Here we determine the thickness of the interfacial layer on NaCl at different relative humidities (RH) based on a novel application of atomic force spectroscopy and capillary condensation theory. In particular, we take advantage of the microsecond-timescale of the capillary condensation process to directly resolve the magnitude of its contribution in the tip-sample interaction, from which the interfacial water thickness is determined. Further, to correlate this thickness with salt dissolution, we also measure surface conductance under similar conditions. We find that below 30% RH, there is essentially only the deposition of water molecules onto this surface, typical of conventional adsorption onto solid surfaces. However, above 30% RH, adsorption is simultaneous with the dissolution of ions, unlike conventional adsorption, leading to a rapid increase of surface conductance. Thus, water adsorption on NaCl is an unconventional biphasic process in which the interfacial layer not only exhibits quantitative differences in thickness but also qualitative differences in composition.

  19. Responses of Water and Salt Parameters to Groundwater Levels for Soil Columns Planted with Tamarix chinensis

    Science.gov (United States)

    Xia, Jiangbao; Zhao, Ximei; Chen, Yinping; Fang, Ying; Zhao, Ziguo

    2016-01-01

    Groundwater is the main water resource for plant growth and development in the saline soil of the Yellow River Delta in China. To investigate the variabilities and distributions of soil water and salt contents at various groundwater level (GL), soil columns with planting Tamarix chinensis Lour were established at six different GL. The results demonstrated the following: With increasing GL, the relative soil water content (RWC) declined significantly, whereas the salt content (SC) and absolute soil solution concentration (CS) decreased after the initial increase in the different soil profiles. A GL of 1.2 m was the turning point for variations in the soil water and salt contents, and it represented the highest GL that could maintain the soil surface moist within the soil columns. Both the SC and CS reached the maximum levels in these different soil profiles at a GL of 1.2 m. With the raise of soil depth, the RWC increased significantly, whereas the SC increased after an initial decrease. The mean SC values reached 0.96% in the top soil layer; however, the rates at which the CS and RWC decreased with the GL were significantly reduced. The RWC and SC presented the greatest variations at the medium (0.9–1.2 m) and shallow water levels (0.6 m) respectively, whereas the CS presented the greatest variation at the deep water level (1.5–1.8 m).The RWC, SC and CS in the soil columns were all closely related to the GL. However, the correlations among the parameters varied greatly within different soil profiles, and the most accurate predictions of the GL were derived from the RWC in the shallow soil layer or the SC in the top soil layer. A GL at 1.5–1.8 m was moderate for planting T. chinensis seedlings under saline groundwater conditions. PMID:26730602

  20. Responses of Water and Salt Parameters to Groundwater Levels for Soil Columns Planted with Tamarix chinensis.

    Science.gov (United States)

    Xia, Jiangbao; Zhao, Ximei; Chen, Yinping; Fang, Ying; Zhao, Ziguo

    2016-01-01

    Groundwater is the main water resource for plant growth and development in the saline soil of the Yellow River Delta in China. To investigate the variabilities and distributions of soil water and salt contents at various groundwater level (GL), soil columns with planting Tamarix chinensis Lour were established at six different GL. The results demonstrated the following: With increasing GL, the relative soil water content (RWC) declined significantly, whereas the salt content (SC) and absolute soil solution concentration (CS) decreased after the initial increase in the different soil profiles. A GL of 1.2 m was the turning point for variations in the soil water and salt contents, and it represented the highest GL that could maintain the soil surface moist within the soil columns. Both the SC and CS reached the maximum levels in these different soil profiles at a GL of 1.2 m. With the raise of soil depth, the RWC increased significantly, whereas the SC increased after an initial decrease. The mean SC values reached 0.96% in the top soil layer; however, the rates at which the CS and RWC decreased with the GL were significantly reduced. The RWC and SC presented the greatest variations at the medium (0.9-1.2 m) and shallow water levels (0.6 m) respectively, whereas the CS presented the greatest variation at the deep water level (1.5-1.8 m).The RWC, SC and CS in the soil columns were all closely related to the GL. However, the correlations among the parameters varied greatly within different soil profiles, and the most accurate predictions of the GL were derived from the RWC in the shallow soil layer or the SC in the top soil layer. A GL at 1.5-1.8 m was moderate for planting T. chinensis seedlings under saline groundwater conditions.

  1. Responses of Water and Salt Parameters to Groundwater Levels for Soil Columns Planted with Tamarix chinensis.

    Directory of Open Access Journals (Sweden)

    Jiangbao Xia

    Full Text Available Groundwater is the main water resource for plant growth and development in the saline soil of the Yellow River Delta in China. To investigate the variabilities and distributions of soil water and salt contents at various groundwater level (GL, soil columns with planting Tamarix chinensis Lour were established at six different GL. The results demonstrated the following: With increasing GL, the relative soil water content (RWC declined significantly, whereas the salt content (SC and absolute soil solution concentration (CS decreased after the initial increase in the different soil profiles. A GL of 1.2 m was the turning point for variations in the soil water and salt contents, and it represented the highest GL that could maintain the soil surface moist within the soil columns. Both the SC and CS reached the maximum levels in these different soil profiles at a GL of 1.2 m. With the raise of soil depth, the RWC increased significantly, whereas the SC increased after an initial decrease. The mean SC values reached 0.96% in the top soil layer; however, the rates at which the CS and RWC decreased with the GL were significantly reduced. The RWC and SC presented the greatest variations at the medium (0.9-1.2 m and shallow water levels (0.6 m respectively, whereas the CS presented the greatest variation at the deep water level (1.5-1.8 m.The RWC, SC and CS in the soil columns were all closely related to the GL. However, the correlations among the parameters varied greatly within different soil profiles, and the most accurate predictions of the GL were derived from the RWC in the shallow soil layer or the SC in the top soil layer. A GL at 1.5-1.8 m was moderate for planting T. chinensis seedlings under saline groundwater conditions.

  2. A prototype for communitising technology: Development of a smart salt water desalination device

    Science.gov (United States)

    Fakharuddin, F. M.; Fatchurrohman, N.; Puteh, S.; Puteri, H. M. A. R.

    2018-04-01

    Desalination is defined as the process that removes minerals from saline water or commonly known as salt water. Seawater desalination is becoming an attractive source of drinking water in coastal states as the costs for desalination declines. The purpose of this study is to develop a small scale desalination device and able to do an analysis of the process flow by using suitable sensors. Thermal technology was used to aid the desalination process. A graphical user interface (GUI) for the interface was made to enable the real time data analysis of the desalination device. ArduinoTM microcontroller was used in this device in order to develop an automatic device.

  3. Modeling Episodic Ephemeral Brine Lake Evaporation and Salt Crystallization on the Bonneville Salt Flats, Utah

    Science.gov (United States)

    Liu, T.; Harman, C. J.; Kipnis, E. L.; Bowen, B. B.

    2017-12-01

    Public concern about apparent reductions in the areal extent of the Bonneville Salt Flat (BSF) and perceived changes in inundation frequency has motivated renewed interest in the hydrologic and geochemical behavior of this salt playa. In this study, we develop a numerical modeling framework to simulate the relationship between hydrometeorologic variability, brine evaporation and salt crystallization processes on BSF. The BSF, locates in Utah, is the remnant of paleo-lake Bonneville, and is capped by up to 1 meter of salt deposition over a 100 km2 area. The BSF has two distinct hydrologic periods each year: a winter wet periods with standing surface brine and the summer dry periods when the brine is evaporated, exposing the surface salt crust. We develop a lumped non-linear dynamical models coupling conservation expressions from water, dissolved salt and thermal energy to investigate the seasonal and diurnal behavior of brine during the transition from standing brine to exposed salt at BSF. The lumped dynamic models capture important nonlinear and kinetic effects introduced by the high ionic concentration of the brine, including the pronounced effect of the depressed water activity coefficient on evaporation. The salt crystallization and dissolution rate is modeled as a kinetic process linearly proportional to the degree of supersaturation of brine. The model generates predictions of the brine temperature and the solute and solvent masses controlled by diurnal net radiation input and aerodynamic forcing. Two distinct mechanisms emerge as potential controls on salt production and dissolution: (1) evapo-concentration and (2) changes in solubility related to changes in brine temperature. Although the evaporation of water is responsible for ultimate disappearance of the brine each season ,variation in solubility is found to be the dominant control on diurnal cycles of salt precipitation and dissolution in the BSF case. Most salt is crystallized during nighttime, but the

  4. Testing a 1-D Analytical Salt Intrusion Model and the Predictive Equation in Malaysian Estuaries

    Science.gov (United States)

    Gisen, Jacqueline Isabella; Savenije, Hubert H. G.

    2013-04-01

    Little is known about the salt intrusion behaviour in Malaysian estuaries. Study on this topic sometimes requires large amounts of data especially if a 2-D or 3-D numerical models are used for analysis. In poor data environments, 1-D analytical models are more appropriate. For this reason, a fully analytical 1-D salt intrusion model, based on the theory of Savenije in 2005, was tested in three Malaysian estuaries (Bernam, Selangor and Muar) because it is simple and requires minimal data. In order to achieve that, site surveys were conducted in these estuaries during the dry season (June-August) at spring tide by moving boat technique. Data of cross-sections, water levels and salinity were collected, and then analysed with the salt intrusion model. This paper demonstrates a good fit between the simulated and observed salinity distribution for all three estuaries. Additionally, the calibrated Van der Burgh's coefficient K, Dispersion coefficient D0, and salt intrusion length L, for the estuaries also displayed a reasonable correlations with those calculated from the predictive equations. This indicates that not only is the salt intrusion model valid for the case studies in Malaysia but also the predictive model. Furthermore, the results from this study describe the current state of the estuaries with which the Malaysian water authority in Malaysia can make decisions on limiting water abstraction or dredging. Keywords: salt intrusion, Malaysian estuaries, discharge, predictive model, dispersion

  5. 40 CFR 721.562 - Substituted alkylamine salt.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted alkylamine salt. 721.562 Section 721.562 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.562 Substituted alkylamine salt...

  6. Industrial water pollution, water environment treatment, and health risks in China.

    Science.gov (United States)

    Wang, Qing; Yang, Zhiming

    2016-11-01

    The negative health effects of water pollution remain a major source of morbidity and mortality in China. The Chinese government is making great efforts to strengthen water environment treatment; however, no studies have evaluated the effects of water treatment on human health by water pollution in China. This study evaluated the association between water pollution and health outcomes, and determined the extent to which environmental regulations on water pollution may lead to health benefits. Data were extracted from the 2011 and 2013 China Health and Retirement Longitudinal Study (CHARLS). Random effects model and random effects Logit model were applied to study the relationship between health and water pollution, while a Mediator model was used to estimate the effects of environmental water treatment on health outcomes by the intensity of water pollution. Unsurprisingly, water pollution was negatively associated with health outcomes, and the common pollutants in industrial wastewater had differential impacts on health outcomes. The effects were stronger for low-income respondents. Water environment treatment led to improved health outcomes among Chinese people. Reduced water pollution mediated the associations between water environment treatment and health outcomes. The results of this study offer compelling evidence to support treatment of water pollution in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Trace metals behaviour during salt and fresh water mixing in the Venice Lagoon

    International Nuclear Information System (INIS)

    Ghermandi, G.; Campolieti, D.; Cecchi, R.; Costa, F.; Zaggia, L.; Zonta, R.

    1993-01-01

    Preliminary results of an investigation on trace metals behaviour in the estuarine system of the Dese River (Venice Lagoon) are described. Hydrodynamical and water chemical-physical measurements and PIXE concentrations analysis on size-fractionated samples emphasize the complexity of the processes occurring in the area of salt and fresh water mixing. Suspended load variations in the bottom layer of the water column, which may be mostly ascribed to resuspension, regulate the trace metal concentrations and seem to play a fundamental role in the transport of pollutants in shallow water areas of the estuary. The behaviour of dissolved metals is masked by the presence of suspended matter, but some relationships with chemical-physical variables are distinguishable, furnishing information on the processes affecting their concentration in the system. (orig.)

  8. High pressure study of water-salt systems, phase equilibria, partitioning, thermodynic properties and implication for large icy worlds hydrospheres.

    Science.gov (United States)

    Journaux, B.; Brown, J. M.; Abramson, E.; Petitgirard, S.; Pakhomova, A.; Boffa Ballaran, T.; Collings, I.

    2017-12-01

    Water salt systems are predicted to be present in deep hydrosphere inside water-rich planetary bodies, following water/rock chemical interaction during early differentiation stages or later hydrothermal activity. Unfortunately the current knowledge of the thermodynamic and physical properties of aqueous salt mixtures at high pressure and high temperature is still insufficient to allow realistic modeling of the chemical or dynamic of thick planetary hydrospheres. Recent experimental results have shown that the presence of solutes, and more particularly salts, in equilibrium with high pressure ices have large effects on the stability fields, buoyancy and chemistry of all the phases present at these extreme conditions. Effects currently being investigated by our research group also covers ice melting curve depressions that depend on the salt species and incorporation of solutes inside the crystallographic lattice of high pressure ices. Both of these could have very important implication at the planetary scale, enabling thicker/deeper liquid oceans, and allowing chemical transportation through the high pressure ice layer in large icy worlds. We will present the latest results obtained in-situ using diamond anvil cell, coupled with Synchrotron X-Ray diffraction, Raman Spectroscopy and optical observations, allowing to probe the crystallographic structure, equations of state, partitioning and phase boundary of high pressure ice VI and VII in equilibrium with Na-Mg-SO4-Cl ionic species at high pressures (1-10 GPa). The difference in melting behavior depending on the dissolved salt species was characterized, suggesting differences in ionic speciation at liquidus conditions. The solidus P-T conditions were also measured as well as an increase of lattice volumes interpreted as an outcome of ionic incorporation in HP ice during incongruent crystallization. The measured phase diagrams, lattice volumes and important salt incorporations suggest a more complex picture of the

  9. Identification of hazards for water environment in the Upper Silesian Coal Basin caused by the discharge of salt mine water containing particularly harmful substances and radionuclides

    Directory of Open Access Journals (Sweden)

    Jan Bondaruk

    2015-01-01

    Full Text Available The Upper Silesian urban-industrial agglomeration is one of the most industrialized areas in Europe. The intense industrialization should be attributed mostly to the presence of coal and other minerals deposits and its extraction. Mining areas of hard coal mines comprise approximately 25% of the total catchment area of watercourses in the area of Upper Silesian Coal Basin, including the river basin of the Upper Oder River and the Little Vistula River. The mining, its scope and depth, duration of mining works, extraction systems being used and the total volume of the drainage fundamentally affect the conditions of groundwater and surface water in the studied area. In this paper, an overall characteristics of the coal mining industry in the area of USCB was made, including the issues of its influence on water environment in the light of the requirements of the Water Framework Directive (WFD and its guidelines transposed into Polish law. An analysis of the collected data, obtained from collieries, relating to the quantity and quality of water flowing into the workings and discharged to surface watercourses, was performed. An approach to the requirements for wastewater discharge into the environment by these enterprises was presented regarding the physicochemical parameters, possible harmful substances and radionuclides measured in mine waters. The main goal of the paper is to recognize the condition of surface water bodies in the area of Upper Silesian Coal Basin and to make the assessment of the biological condition using Ecological Risk Assessment and bioindication methods.

  10. Thermal performances of molten salt steam generator

    International Nuclear Information System (INIS)

    Yuan, Yibo; He, Canming; Lu, Jianfeng; Ding, Jing

    2016-01-01

    Highlights: • Thermal performances of molten salt steam generator were experimentally studied. • Overall heat transfer coefficient reached maximum with optimal molten salt flow rate. • Energy efficiency first rose and then decreased with salt flow rate and temperature. • Optimal molten salt flow rate and temperature existed for good thermal performance. • High inlet water temperature benefited steam generating rate and energy efficiency. - Abstract: Molten salt steam generator is the key technology for thermal energy conversion from high temperature molten salt to steam, and it is used in solar thermal power station and molten salt reactor. A shell and tube type molten salt steam generator was set up, and its thermal performance and heat transfer mechanism were studied. As a coupling heat transfer process, molten salt steam generation is mainly affected by molten salt convective heat transfer and boiling heat transfer, while its energy efficiency is also affected by the heat loss. As molten salt temperature increased, the energy efficiency first rose with the increase of heat flow absorbed by water/steam, and then slightly decreased for large heat loss as the absorbed heat flow still rising. At very high molten salt temperature, the absorbed heat flow decreased as boiling heat transfer coefficient dropping, and then the energy efficiency quickly dropped. As the inlet water temperature increased, the boiling region in the steam generator remarkably expanded, and then the steam generation rate and energy efficiency both rose with the overall heat transfer coefficient increasing. As the molten salt flow rate increased, the wall temperature rose and the boiling heat transfer coefficient first increased and then decreased according to the boiling curve, so the overall heat transfer coefficient first increased and then decreased, and then the steam generation rate and energy efficiency of steam generator both had maxima.

  11. Effect of water in salt repositories. Final report

    International Nuclear Information System (INIS)

    Baes, C.F. Jr.; Gilpatrick, L.O.; Kitts, F.G.; Bronstein, H.R.; Shor, A.J.

    1983-09-01

    Additional results confirm that during most of the consolidation of polycrystalline salt in brine, the previously proposed rate expression applies. The final consolidation, however, proceeds at a lower rate than predicted. The presence of clay hastens the consolidation process but does not greatly affect the previously observed relationship between permeability and void fraction. Studies of the migration of brine within polycrystalline salt specimens under stress indicate that the principal effect is the exclusion of brine as a result of consolidation, a process that evidently can proceed to completion. No clear effect of a temperature gradient could be identified. A previously reported linear increase with time of the reciprocal permeability of salt-crystal interfaces to brine was confirmed, though the rate of increase appears more nearly proportional to the product of sigma ΔP rather than sigma ΔP 2 (sigma is the uniaxial stress normal to the interface and ΔP is the hydraulic pressure drop). The new results suggest that a limiting permeability may be reached. A model for the permeability of salt-crystal interfaces to brine is developed that is reasonably consistent with the present results and may be used to predict the permeability of bedded salt. More measurements are needed, however, to choose between two limiting forms of the model

  12. Effect of water in salt repositories. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Baes, C.F. Jr.; Gilpatrick, L.O.; Kitts, F.G.; Bronstein, H.R.; Shor, A.J.

    1983-09-01

    Additional results confirm that during most of the consolidation of polycrystalline salt in brine, the previously proposed rate expression applies. The final consolidation, however, proceeds at a lower rate than predicted. The presence of clay hastens the consolidation process but does not greatly affect the previously observed relationship between permeability and void fraction. Studies of the migration of brine within polycrystalline salt specimens under stress indicate that the principal effect is the exclusion of brine as a result of consolidation, a process that evidently can proceed to completion. No clear effect of a temperature gradient could be identified. A previously reported linear increase with time of the reciprocal permeability of salt-crystal interfaces to brine was confirmed, though the rate of increase appears more nearly proportional to the product of sigma ..delta..P rather than sigma ..delta..P/sup 2/ (sigma is the uniaxial stress normal to the interface and ..delta..P is the hydraulic pressure drop). The new results suggest that a limiting permeability may be reached. A model for the permeability of salt-crystal interfaces to brine is developed that is reasonably consistent with the present results and may be used to predict the permeability of bedded salt. More measurements are needed, however, to choose between two limiting forms of the model.

  13. Environment Of Underground Water And Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeong Sang

    1998-02-15

    This book deals with environment of underground water and pollution, which introduces the role of underground water in hydrology, definition of related study of under water, the history of hydro-geology, basic conception of underground water such as origin of water, and hydrogeologic characteristic of aquifers, movement of underground water, hydrography of underground water and aquifer test analysis, change of an underground water level, and water balance analysis and development of underground water.

  14. Ecosystem-groundwater interactions under changing land uses: Linking water, salts, and carbon across central Argentina

    Science.gov (United States)

    Jobbagy, E. G.; Nosetto, M. D.; Santoni, C. S.; Jackson, R. B.

    2007-05-01

    Although most ecosystems display a one-way connection with groundwater based on the regulation of deep water drainage (recharge), this link can become reciprocal when the saturated zone is shallow and plants take up groundwater (discharge). In what context is the reciprocal link most likely? How is it affected by land use changes? Has it consequences on salt and carbon cycling? We examine these questions across a precipitation gradient in the Pampas and Espinal of Argentina focusing on three vegetation change situations (mean annual rainfall): afforestation of humid (900-1300 mm) and subhumid grassland (700-900 mm/yr of rainfall), annual cultivation of subhumid grasslands (700-800 mm/yr), and annual cultivation of semiarid forests (500-700 mm). Humid and subhumid grasslands have shallow (measurements. Groundwater contributions enhance carbon uptake in plantations compared to grasslands as suggested by aboveground biomass measurements and satellite vegetation indexes from sites with and without access to groundwater. Where rainfall is 15 m deep) and recharge under natural conditions is null. The establishment of crops, however, triggers the onset of recharge, as evidenced by vadose zones getting wetter and leached of atmospheric chloride. Cropping may cause water table raises leading to a two-way coupling of ecosystems and groundwater in the future, as it has been documented for similar settings in Australia and the Sahel. In the Pampas land use change interacts with groundwater consumption leading to higher carbon uptake (humid and subhumid grasslands) and salt accumulation (subhumid grasslands). In the Espinal (semiarid forest) land use change currently involves a one-way effect on groundwater recharge that may switch to a reciprocal connection if regional water table raises occur. Neglecting the role of groundwater in flat sedimentary plains can obscure our understanding of carbon and salt cycling and curtail our attempts to sustain soil and water resources under

  15. Geomechanics considerations for through-and near-salt well design

    International Nuclear Information System (INIS)

    Willson, S.M.; Fredrich, Joanne T.

    2005-01-01

    Over the next decade a significant amount of exploration and new field developments will take place in salt provinces around the world - in the deepwater Gulf of Mexico, and offshore Angola, Brazil, and North and West Africa. Salt formations provide both opportunities and challenges to the design and construction of the often complex wells to be drilled in these locations. An overview of the many geomechanical considerations necessary to ensure successful well construction when drilling in through-, sub- and near-salt environments is presented. The structural styles of deformed sediments adjacent to salt, combined with stress perturbations caused by the presence of salt, are used to assess the risk of encountering zones that might cause wellbore instability or lost-circulation problems. Well design examples are provided that show how near- and through-salt uncertainties may be included within a geomechanical well design for required mud weights while drilling. Salt is found in many hydrocarbon basins around the world. Significant deposits exist in the Gulf of Mexico (GoM), offshore West Africa and Brazil, in the Southern North Sea, Egypt, and the Middle East (Figure 1(1)). In deep water offshore North America, the GoM and offshore Nova Scotia (NE Canada) are notable areas of current oil and gas exploration and production. Significant exploration activity is also targeting areas offshore Angola and Brazil. The extent of deepwater exploration in the GoM is illustrated in Figure 2 that shows the steady march into deeper water, together with a focusing of efforts in the Sigsbee Escarpment areas of Green Canyon, Walker Ridge and Atwater Valley. The deepest wells in the GoM are reaching true vertical depths of up to 32,000 feet, with maximum-recorded downhole pressures in excess of 26,000 psi and bottomhole temperatures in excess of 400 F. Such wells may penetrate considerable thicknesses of salt - up to 20,000 feet of salt is not unheard of. With substantial discoveries

  16. Water Uptake By Mars Salt Analogs: An Investigation Of Stable Aqueous Solutions On Mars Using Raman Microscopy

    Science.gov (United States)

    Nuding, D.; Gough, R. V.; Jorgensen, S. K.; Tolbert, M. A.

    2013-12-01

    To understand the formation of briny aqueous solutions on Mars, a salt analog was developed to closely match the individual cation and anion concentrations as reported by the Wet Chemistry Laboratory aboard the Phoenix Lander. ';Instant Mars' is a salt analog developed to fully encompass the correct concentrations of magnesium, calcium, potassium, sodium, perchlorate, chloride, and sulfate ions. Using environmental Raman microscopy, we have studied the water uptake by the Instant Mars analog as a function of temperature and relative humidity. Water uptake was monitored using Raman spectroscopy in combination with optical microscopy. A MicroJet droplet generator was used to generate 30 μm diameter particles that were deposited onto a quartz disc. The particles undergo visual transformations as the relative humidity (RH) is increased and the presence of water uptake is confirmed by Raman spectroscopy. At -30° C, water uptake begins at ~ 35% RH as humidity is increased. The water uptake is marked by the growth of a sulfate peak at 990 cm-1, an indicator that sulfate has undergone a phase transition into an aqueous state. As the RH continues to increase, the peak in the O-H region (~3500 cm-1) broadens as more liquid water accumulates in the particles. The Instant Mars particles achieve complete deliquescence at 68% RH, indicated both visually and with Raman spectroscopy. The gradual water uptake observed suggests that deliquescence of the Instant Mars particles is not an immediate process, but that it occurs in steps marked by the deliquescence of the individual salts. Perhaps of even more significance is the tendency for the Instant Mars particles to remain aqueous at low humidity as RH is decreased. Raman spectra indicate that liquid water is present as low as 2% RH at -30° C. Ongoing work will examine the phase of Instant Mars particles under simulated Martian surface and subsurface conditions to gain insight into the possibility for aqueous solutions on Mars

  17. Alfalfa root role in osmotic adjustment under salt stress (abstract)

    International Nuclear Information System (INIS)

    Ibriz, M.; Ghorri, M.; Alami, T.; El Guilli, M.; El- Moidaoui, M.; Benbella, M.

    2005-01-01

    The aim of this work was to evaluate the effect of the sodium chloride on the morpho physiological characteristics of Alfalfa (Medicago sativa L.). The characteristics taken into consideration dry matter production of shoot and root (DMS, DMR), root volume (RV), proline content (PS, PR), included total soluble sugar (SSS; SSR) and chlorophyll a, band (a+b). Salt tolerance of the six genotypes was characterised by capacity to growth in salt environment, buildup of osmoregulating compounds (proline and solubles sugar) and a less inhibition of photosynthesis process (decrease of chlorophyll pigment content). Important genotypes differences were observed for each parameter, which make possible a better understanding of the Alfalfa adaptation mechanisms. The results show that the salt stress has a significant influence on the growth of this plants by decreasing the production of dry matter and :)f the root volume. The most important decreases were clear at the 12 g/l concentration mainly upon the Australian variety (Siriver).Thus the most tolerant to salt stress was the Demnate genotype (Dem04) which presented the lowest decrease percentage. The salt effect upon the plant physiological characteristics causes a decrease of the relative water content and chlorophyll a, b and (a+b) content. It also causes an increase of the relative loss of water, the total soluble sugars (SSS; SSR) and the proline contents (PS, PR). Thus, we found a high correlation between the proline and sugar contents of shoot and root and also between these substances and shoot and root dry matter production. (author)

  18. Evaluation of the salt deposition on the canister surface of concrete cask. Part 3. Long-term measurement of salt concentration in air and evaluation of the salt deposition

    International Nuclear Information System (INIS)

    Wataru, Masumi; Takeda, Hirofumi

    2015-01-01

    To realize the dry storage using concrete cask in Japan, it is important to develop the evaluation method of the SCC of the canister. One of the key issues is sea salt deposition on the canister surface during the storage period. If the amount of salt deposition exceeds the critical value, the SCC may occur. The amount of salt deposition depends on the ambient air condition. We developed the measurement device of salt in air to make clear the ambient condition. The device sucks the air including sea salt and the sea salt dissolves in water. We analyze the water including sea salt. This device works automatically for one or two months. In this study, the performance of this device was verified comparing the data obtained by the air sampler using filter pack. In Yokosuka area of CRIEPI, we measured the ambient air condition using this device for three years. Furthermore, we performed the salt deposition test using the small ducts in the same area. The ambient air including sea salt flows in the duct and the sea salt deposits on the test specimen put on the duct inner surface. We took out the specimen after certain time and measured the salt amount on the test specimen. Using these data, we obtained the relation between the salt deposition and the time on this ambient condition. The results of this study are useful to evaluate the SCC of the canister. (author)

  19. Extraction of vanadium from campo Alegre de Lourdes (BA, Brazil) Fe-Ti-V ore by partial reduction/magnetic concentration/salt roasting/hot water leaching

    International Nuclear Information System (INIS)

    Alcantara, E.M.; Ogasawara, T.; Silva, F.T. da; Fontes, E.F.

    1988-01-01

    A process under development at COPPE/UFRJ to rocover vanadium from a titaniferous magnetite type ore from Campo Alegre de Lourdes (Bahia, Brazil), throxgh magnetizing roasting/magnetic concentration/ salt roasting/hot water leaching, is described. The results of the experimental work carried cut up to present are in qualitative agrement with those of othar studies on salt roasting/water leaching of titaniferous magnetites. Is is discussed the existing relationship between the maximum percentags of vanadium extraction in the leaching and the salt roasting conditions. (author) [pt

  20. Crop production in salt affected soils: A biological approach

    Energy Technology Data Exchange (ETDEWEB)

    Malik, K A [National Inst. for Biotechnology and Genetic Engineering (NIBGE), Faisalabad (Pakistan)

    1995-01-01

    Plant are susceptible to various stresses, affecting growth productivity. Among the abiotic stresses, soil salinity is most significant and prevalent in both developed and developing countries. As a result, good productive lands are being desertified at a very high pace. To combat this problem various approaches involving soil management and drainage are underway but with little success. It seems that a durable solution of the salinity and water-logging problems may take a long time and we may have to learn to live with salinity and to find other ways to utilize the affected lands fruitfully. A possible approach could be to tailor plants to suit the deleterious environment. The saline-sodic soils have excess of sodium, are impermeable, have little or no organic matter and are biologically almost dead. Introduction of a salt tolerant crop will provide a green cover and will improve the environment for biological activity, increase organic matter and will improve the soil fertility. The plant growth will result in higher carbon dioxide levels, and would thus create acidic conditions in the soil which would dissolve the insoluble calcium carbonate and will help exchange sodium with calcium ions on the soil complex. The biomass produced could be used directly as fodder or by the use of biotechnological and other procedures it could be converted into other value added products. However, in order to tailor plants to suit these deleterious environments, acquisition of better understanding of the biochemical and genetic aspects of salt tolerance at the cellular/molecular level is essential. For this purpose model systems have been carefully selected to carry out fundamental basic research that elucidates and identifies the major factors that confer salt tolerance in a living system. With the development of modern biotechnological methods it is now possible to introduce any foreign genetic material known to confer salt tolerance into crop plants. (Abstract Truncated)

  1. Research on the compressive strength of basic magnesium salts and cyanide slag solidified body

    Science.gov (United States)

    Tu, Yubo; Han, Peiwei; Ye, Shufeng; Wei, Lianqi; Zhang, Xiaomeng; Fu, Guoyan; Yu, Bo

    2018-02-01

    The solidification of cyanide slag by using basic magnesium salts could reduce pollution and protect the environment. Experiments were carried out to investigate the effects of age, mixing amount of cyanide slag, water cement ratio and molar ratio of MgO to MgSO4 on the compressive strength of basic magnesium salts and cyanide slag solidified body in the present paper. It was found that compressive strength of solidified body increased with the increase of age, and decreased with the increase of mixing amount of cyanide slag and water cement ratio. The molar ratio of MgO to MgSO4 should be controlled in the range from 9 to 11 when the mixing amount of cyanide slag was larger than 80 mass%.

  2. Precipitates/Salts Model Sensitivity Calculation

    International Nuclear Information System (INIS)

    Mariner, P.

    2001-01-01

    The objective and scope of this calculation is to assist Performance Assessment Operations and the Engineered Barrier System (EBS) Department in modeling the geochemical effects of evaporation on potential seepage waters within a potential repository drift. This work is developed and documented using procedure AP-3.12Q, ''Calculations'', in support of ''Technical Work Plan For Engineered Barrier System Department Modeling and Testing FY 02 Work Activities'' (BSC 2001a). The specific objective of this calculation is to examine the sensitivity and uncertainties of the Precipitates/Salts model. The Precipitates/Salts model is documented in an Analysis/Model Report (AMR), ''In-Drift Precipitates/Salts Analysis'' (BSC 2001b). The calculation in the current document examines the effects of starting water composition, mineral suppressions, and the fugacity of carbon dioxide (CO 2 ) on the chemical evolution of water in the drift

  3. High temperature corrosion studies on friction welded low alloy steel and stainless steel in air and molten salt environment at 650 oC

    International Nuclear Information System (INIS)

    Arivazhagan, N.; Narayanan, S.; Singh, Surendra; Prakash, Satya; Reddy, G.M.

    2012-01-01

    Highlights: → Thermogravimetric analysis on friction welded AISI 304 with AISI 4140 exposed in air and molten salt environment. → Comparative study on friction welded AISI 4140 with AISI 304 exposed in air, Na 2 SO 4 -60%V 2 O 5 and NaCl-50%Na 2 SO 4 at 650 o C. → SEM/EDAX, XRD analysis on corroded dissimilar AISI 304 and AISI 4140 materials. -- Abstract: The investigation on high-temperature corrosion resistance of the weldments is necessary for prolonged service lifetime of the components used in corrosive environments. This paper reports on the performance of friction welded low alloy steel AISI 4140 and stainless steel AISI 304 in air as well as molten salt environment of Na 2 SO 4 -60%V 2 O 5 and NaCl-50%Na 2 SO 4 at 650 o C. This paper reports several studies carried out for characterizing the weldments corrosion behavior. Initially thermogravimetric technique was used to establish the kinetics of corrosion. For analyzing the corrosion products, X-ray diffraction, scanning electron microscopy/energy-dispersive analysis and electron probe micro analysis techniques were used. From the results of the experiments, it is observed that the weldments suffered accelerated corrosion in NaCl-Na 2 SO 4 environment and showed spalling/sputtering of the oxide scale. Furthermore, corrosion resistance of weld interface was found to be lower than that of parent metals in molten salt environment. Weight gain kinetics in air oxidation studies reveals a steady-state parabolic rate law while the kinetics with salt deposits displays multi-stage growth rates. Moreover NaCl is the main corrosive species in high temperature corrosion, involving mixtures of NaCl and Na 2 SO 4 which is responsible for formation of internal attack.

  4. [Influence of removing iodized salt on children's goiter status in areas with high iodine in drinking water].

    Science.gov (United States)

    Lu, Shengmin; Xu, Dong; Wang, Yuchun; Du, Yonggui; Jia, Lihui; Liang, Suoli

    2015-05-01

    To explore the changes of goiter prevalence of children living in areas with high iodine in drinking water after removing iodized salt from their diet. Three towns with median water iodine of 150 - 300 μg/L were selected randomly in Hengshui city of Hebei province of China. A total of 452 and 459 children in the 3 towns were randomly selected to measure thyroid volume by ultrasound before and after removing iodized salt, respectively. Their goiter status was judged using the criteria of age-specific thyroid volume recommended by the WHO. After removing iodized salt, the overall goiter prevalence in the three towns significantly decreased from 24.56% (111/452) to 5.88% (27/459) (P < 0.01). The goiter prevalence in 8, 9 and 10 year-old children decreased respectively from 33.70% (31/92), 23.32% (45/193) and 20.96% (35/167) to 6.10% (10/164), 5.52% (9/163) and 6.06% (8/132). The goiter prevalence in boys and girls decreased from 27.05% (66/244) and 21.63% (45/208 ) to 6.66% (15/226 ) and 5.15% (12/233), respectively. The decreases in children's goiter prevalence across gender and age group were all significant. Children's goiter prevalence decreased significantly after removing iodized salt from their diet for about one and half years in the HIA in Hebei province.

  5. Salt toxicosis in waterfowl in North Dakota

    Science.gov (United States)

    Windingstad, Ronald M.; Kartch, Fred X.; Stroud, Richard K.; Smith, Milton R.

    1987-01-01

    About 150 waterfowl died and another 250 became weak and lethargic from suspected salt poisoning after using White Lake, a highly saline lake in Mountrail County, North Dakota. Frigid temperatures made fresh water unavailable, forcing the birds to ingest the saline waters with resultant toxic effects. Sick birds recovered when removed from the salt water and released into fresh water marshes. Brain sodium levels were higher in dead geese submitted for necropsy than in controls.

  6. Extraction mechanism of sulfamethoxazole in water samples using aqueous two-phase systems of poly(propylene glycol) and salt

    Energy Technology Data Exchange (ETDEWEB)

    Xie Xueqiao; Wang Yun; Han Juan [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Yan Yongsheng, E-mail: yys@ujs.edu.cn [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2011-02-14

    Based on the poly(propylene glycol){sub 400} (PPG{sub 400})-salt aqueous two-phase system (ATPS), a green, economical and effective sample pretreatment technique coupled with high performance liquid chromatography was proposed for the separation and determination of sulfamethoxazole (SMX). The extraction yield of SMX in PPG{sub 400}-salt ATPS is influenced by various factors, including the salt species, the amount of salt, pH, and the temperature. Under the optimum conditions, most of SMX was partitioning into the polymer-rich phase with the average extraction efficiency of 99.2%, which may be attributed to the hydrophobic interaction and salting-out effect. This extraction technique has been successfully applied to the analysis of SMX in real water samples with the recoveries of 96.0-100.6%, the detection limits of 0.1 {mu}g L{sup -1}, and the linear ranges of 2.5-250.0 {mu}g L{sup -1}.

  7. Effects of sea-level rise on salt water intrusion near a coastal well field in southeastern Florida

    Science.gov (United States)

    Langevin, Christian D.; Zygnerski, Michael

    2013-01-01

    A variable-density groundwater flow and dispersive solute transport model was developed for the shallow coastal aquifer system near a municipal supply well field in southeastern Florida. The model was calibrated for a 105-year period (1900 to 2005). An analysis with the model suggests that well-field withdrawals were the dominant cause of salt water intrusion near the well field, and that historical sea-level rise, which is similar to lower-bound projections of future sea-level rise, exacerbated the extent of salt water intrusion. Average 2005 hydrologic conditions were used for 100-year sensitivity simulations aimed at quantifying the effect of projected rises in sea level on fresh coastal groundwater resources near the well field. Use of average 2005 hydrologic conditions and a constant sea level result in total dissolved solids (TDS) concentration of the well field exceeding drinking water standards after 70 years. When sea-level rise is included in the simulations, drinking water standards are exceeded 10 to 21 years earlier, depending on the specified rate of sea-level rise.

  8. Reactions of nitrate salts with ammonia in supercritical water

    International Nuclear Information System (INIS)

    Dell'Orco, P.C.; Gloyna, E.F.; Buelow, S.J.

    1997-01-01

    Reactions involving nitrate salts and ammonia were investigated in supercritical water at temperatures from 450 to 530 C and pressures near 300 bar. Reaction products included nitrite, nitrogen gas, and nitrous oxide. Observed reaction rates and product distributions provided evidence for a free-radical reaction mechanism with NO 2 , NO, and NH 2 · as the primary reactive species at supercritical conditions. In the proposed elementary mechanism, the rate-limiting reaction step was determined to be the hydrolysis of MNO 3 species, which resulted in the formation of nitric acid and subsequently NO 2 . A simple second-order reaction model was used to represent the data. In developing an empirical kinetic model, nitrate and nitrate were lumped as an NO x - reactant. Empirical kinetic parameters were developed for four MNO x /NH 3 reacting systems, assuming first orders in both NH 3 and NO x - . Observed MNO x /NH 3 reaction rates and mechanisms suggest immediately a practical significance of these reactions for nitrogen control strategies in supercritical water oxidation processes

  9. Salinity measurement in water environment with a long period grating based interferometer

    International Nuclear Information System (INIS)

    Possetti, G R C; Kamikawachi, R C; Muller, M; Fabris, J L; Prevedello, C L

    2009-01-01

    In this work, a comparative study of the behaviour of an in-fibre Mach–Zehnder interferometer for salinity measurement in a water solution is presented. The fibre transducer is composed of two nearly identical long period gratings forming an in-series 7.38 cm long device written in the same fibre optic. Two inorganic and one organic salts (NaCl, KCl, NaCOOH) were characterized within the concentration range from 0 to 150 g L −1 . For the long period grating interferometer, the average obtained sensitivities were −6.61, −5.58 and −3.83 pm/(g L −1 ) for the above salts, respectively, or equivalently −40.8, −46.5 and −39.1 nm RIU −1 . Salinity measured by means of fibre refractometry is compared with measurements obtained using an Abbe refractometer as well as via electrical conductivity. For the long period grating refractometer, the best resolutions attained were 1.30, 1.54 and 2.03 g of salt per litre for NaCl, KCl and NaCOOH, respectively, about two times better than the resolutions obtained by the Abbe refractometer. An average thermal sensitivity of 53 pm °C −1 was measured for the grating transducer immersed in water, indicating the need for the thermal correction of the sensor. Resolutions for the same ionic constituent in different salts are also analysed

  10. Consequences of Climate Change, Eutrophication, and Other Anthropogenic Impacts to Coastal Salt Marshes: Multiple Stressors Reduce Resiliency and Sustainability

    Science.gov (United States)

    Coastal salt marshes provide a wide variety of ecosystem services, including habitat for protected vertebrates and ecologically valuable invertebrate fauna, flood protection, and improvements in water quality for adjacent marine and estuarine environments. Here, we consider the ...

  11. Characterization of hydraulic connections between mine shaft and caprock based on time series analysis of water level changes for the flooded Asse I salt mine in northern Germany

    Energy Technology Data Exchange (ETDEWEB)

    Brauchler, Ralf; Mettier, Ralph; Schulte, Peter [AF-Consult Switzerland AG, Baden (Switzerland); Fuehrboeter, Jens Fred [Bundesamt fuer Strahlenschutz, Salzgitter (Germany)

    2015-07-01

    In the context of safe enclosure of nuclear waste in salt formations, one of the main challenges is potential water inflow into the excavations. In this context, the hydraulic relationship between the abandoned Asse I salt mine and the salt dissolution network at the base of the caprock of the Asse salt structure in northern Germany is characterized by utilizing time series analysis of water level changes. The data base comprises a time series of water level measurements over eight years with a temporal resolution of 15 minutes (in general) and up to 2 minutes for specific intervals. The water level measurements were collected in the shaft of the flooded mine, which is filled with ground rock salt until a depth of 140 m, and a deep well, which is screened in 240 m depth at the salt dissolution zone at the base of the caprock. The distance between the well and the shaft is several hundred meters. Since the beginning of the continuous observations in the 1970s, the shaft has shown periodically abrupt declines of the water level of several meters occurring in intervals of approx. 8 to 10 years. The time series analysis consists of trend, Fourier-, autocorrelation and cross-correlation analysis. The analysis showed that during times with small water level changes the measured water level in the well and the shaft are positively correlated whereas during the abrupt water level drops in the shaft, the measured water levels between the shaft and the well are negatively correlated. A potential explanation for this behavior is that during times with small changes, the measured water levels in the well and in the shaft are influenced by the same external events with similar response times. In contrast, during the abrupt water level decline events in the shaft, a negatively correlated pressure signal is induced in the well, which supports the assumption of a direct hydraulic connection between the shaft and the well via flooded excavations and the salt dissolution network

  12. Characterization of hydraulic connections between mine shaft and caprock based on time series analysis of water level changes for the flooded Asse I salt mine in northern Germany

    International Nuclear Information System (INIS)

    Brauchler, Ralf; Mettier, Ralph; Schulte, Peter; Fuehrboeter, Jens Fred

    2015-01-01

    In the context of safe enclosure of nuclear waste in salt formations, one of the main challenges is potential water inflow into the excavations. In this context, the hydraulic relationship between the abandoned Asse I salt mine and the salt dissolution network at the base of the caprock of the Asse salt structure in northern Germany is characterized by utilizing time series analysis of water level changes. The data base comprises a time series of water level measurements over eight years with a temporal resolution of 15 minutes (in general) and up to 2 minutes for specific intervals. The water level measurements were collected in the shaft of the flooded mine, which is filled with ground rock salt until a depth of 140 m, and a deep well, which is screened in 240 m depth at the salt dissolution zone at the base of the caprock. The distance between the well and the shaft is several hundred meters. Since the beginning of the continuous observations in the 1970s, the shaft has shown periodically abrupt declines of the water level of several meters occurring in intervals of approx. 8 to 10 years. The time series analysis consists of trend, Fourier-, autocorrelation and cross-correlation analysis. The analysis showed that during times with small water level changes the measured water level in the well and the shaft are positively correlated whereas during the abrupt water level drops in the shaft, the measured water levels between the shaft and the well are negatively correlated. A potential explanation for this behavior is that during times with small changes, the measured water levels in the well and in the shaft are influenced by the same external events with similar response times. In contrast, during the abrupt water level decline events in the shaft, a negatively correlated pressure signal is induced in the well, which supports the assumption of a direct hydraulic connection between the shaft and the well via flooded excavations and the salt dissolution network

  13. Where Does Road Salt Go - a Static Salt Model

    Science.gov (United States)

    Yu, C. W.; Liu, F.; Moriarty, V. W.

    2017-12-01

    Each winter, more than 15 million tons of road salt is applied in the United States for the de-icing purpose. Considerable amount of chloride in road salt flows into streams/drainage systems with the snow melt runoff and spring storms, and eventually goes into ecologically sensitive low-lying areas in the watershed, such as ponds and lakes. In many watersheds in the northern part of US, the chloride level in the water body has increased significantly in the past decades, and continues an upward trend. The environmental and ecological impact of the elevated chloride level can no longer be ignored. However although there are many studies on the biological impact of elevated chloride levels, there are few investigations on how the spatially distributed road salt application affects various parts of the watershed. In this presentation, we propose a static road salt model as a first-order metric to address spacial distribution of salt loading. Derived from the Topological Wetness Index (TWI) in many hydrological models, this static salt model provides a spatial impact as- sessment of road salt applications. To demonstrate the effectiveness of the static model, National Elevation Dataset (NED) of ten-meter resolution of Lake George watershed in New York State is used to generate the TWI, which is used to compute a spatially dis- tributed "salt-loading coefficient" of the whole watershed. Spatially varying salt applica- tion rate is then aggregated, using the salt-loading coefficients as weights, to provide salt loading assessments of streams in the watershed. Time-aggregated data from five CTD (conductivity-temperature-depth) sensors in selected streams are used for calibration. The model outputs and the sensor data demonstrate a strong linear correlation, with the R value of 0.97. The investigation shows that the static modeling approach may provide an effective method for the understanding the input and transport of road salt to within watersheds.

  14. Specific investigations related to salt rock behaviour

    International Nuclear Information System (INIS)

    Vons, L.H.

    1985-01-01

    In this paper results are given of work in various countries in rather unrelated areas of research. Nevertheless, since the studies have been undertaken to better understand salt behaviour, both from mechanical and chemical points of view, some connection between the studies can be found. In the French contribution the geological conditions have been investigated that might promote or prevent the formation of salt domes from layers in view of possible use of the latter type of formation. This was done theoretically by the finite element method, and a start was made with centrifuge tests. The density of a number of samples from salt and overburden from the Bresse basin was measured and it was shown that a favourable condition exists in this region for waste disposal. In the German contribution various subjects are touched upon, one being the effect of water on the mobility in the early stages of salt dome formation. Evidence was found for an anisotropy in salt. One Dutch contribution describes results of studies on the effect of small amounts of water on the rheology of salt. The results imply that flow laws obtained for salt at rapid strain rates and/or low confining pressure cannot be reliably extrapolated to predict the long term behaviour of wet or even very dry material under natural conditions. Preliminary results on the effect of water upon ion-mobility indicate a certain pseudo-absorptive capacity of salt e.g. for Sr

  15. Freshwater-Brine Mixing Zone Hydrodynamics in Salt Flats (Salar de Atacama)

    Science.gov (United States)

    Marazuela, M. A.; Vázquez-Suñé, E.; Custodio, E.; Palma, T.; García-Gil, A.

    2017-12-01

    The increase in the demand of strategic minerals for the development of medicines and batteries require detailed knowledge of the salt flats freshwater-brine interface to make its exploitation efficient. The interface zone is the result of a physical balance between the recharged and evaporated water. The sharp interface approach assumes the immiscibility of the fluids and thus neglects the mixing between them. As a consequence, for miscible fluids it is more accurate and often needed to use the mixing zone concept, which results from the dynamic equilibrium of flowing freshwater and brine. In this study, we consider two and three-dimensional scale approaches for the management of the mixing zone. The two-dimensional approach is used to understand the dynamics and the characteristics of the salt flat mixing zone, especially in the Salar de Atacama (Atacama salt flat) case. By making use of this model we analyze and quantify the effects of the aquitards on the mixing zone geometry. However, the understanding of the complex physical processes occurring in the salt flats and the management of these environments requires the adoption of three-dimensional regional scale numerical models. The models that take into account the effects of variable density represent the best management tool, but they require large computational resources, especially in the three-dimensional case. In order to avoid these computational limitations in the modeling of salt flats and their valuable ecosystems, we propose a three-step methodology, consisting of: (1) collection, validation and interpretation of the hydrogeochemical data, (2) identification and three-dimensional mapping of the mixing zone on the land surface and in depth, and (3) application of a water head correction to the freshwater and mixed water heads in order to compensate the density variations and to transform them to brine water heads. Finally, an evaluation of the sensibility of the mixing zone to anthropogenic and

  16. Phytodesalinization potential of Typha angustifolia, Juncus maritimus, and Eleocharis palustris for removal of de-icing salts from runoff water.

    Science.gov (United States)

    Guesdon, Gaëlle; de Santiago-Martín, Ana; Galvez-Cloutier, Rosa

    2016-10-01

    Typha angustifolia, Juncus maritimus, and Eleocharis palustris were evaluated for de-icing salt removal from runoff water. Plants were exposed to a range of de-icing salt levels (0.2, 0.7, 4, 8, and 13 dS m(-1)) in laboratory-scale subsurface constructed wetlands (CWs) for 2 months under greenhouse conditions. Effluent characteristics, plant height, biomass, and Cl and Na removal rates and uptake were monitored. More water volume was retained in CWs of T. angustifolia (∼60 %) than of J. maritimus and E. palustris (∼37.5 %), which accounted for the electrical conductivity increase in effluents (1.3-1.9-fold). Based on the NaCl removal rate, T. angustifolia showed the greatest phytodesalinization ability (31-60 %) with the highest removal at the lowest salt levels (0.2-0.7 dS m(-1)), followed by J. maritimus (22-36 %) without differences in removal among levels, and E. palustris (3-26 %) presenting a removal rate highly decreased with increasing salt levels. Plant height and biomass were stimulated at low de-icing salt levels, but, at higher levels, T. angustifolia and E. palustris growth was inhibited (tolerance index ∼67 and 10 %, respectively, in the worst cases). Salt amounts in aboveground biomass in g m(-2) differed among levels and ranged as follows: 13.6-29.1 (Cl), 4.2-9.3 (Na; T. angustifolia); 7.0-12.0 (Cl), 2.7-6.4 (Na; J. maritimus); and 0.9-7.6 (Cl), 0.3-1.6 (Na; E. palustris). Chloride and Na translocation decreased with de-icing salt increase in T. angustifolia, while no significant differences were found in J. maritimus, which is interesting for harvesting purposes.

  17. [Changes in the renin-angiotensin-aldosterone system and water-salt exchange in mining workers in coal mines].

    Science.gov (United States)

    Rebrov, B A

    1996-01-01

    Blood and urine content of electrolytes and creatinine was determined in 76 essentially healthy miners before and after work shift, as was activity of plasma renin, blood plasma level of aldosterone and its urinary excretion, with the aid of radioimmunoassay. The greatest activity of the renin-angiotensine-aldosterone system (RAAS) occurred in those individuals engaged in hard physical labour under most harsh conditions of underground workings, this being recordable not only is response to the load but also from the very start. Controls and miners doing jobs of medium-level strenuousness demonstrated changes in the correlations between RAAS and water-salt balance after the work shift as compared with those before the work shift, while in those miners engaged in hard work correlations RAAS-water-salt exchange remained practically the same throughout the study.

  18. Experimental results on salt concrete for barrier elements made of salt concrete in a repository for radioactive waste in a salt mine

    International Nuclear Information System (INIS)

    Gutsch, Alex-W.; Preuss, Juergen; Mauke, Ralf

    2012-01-01

    The Bartensleben rock salt mine in Germany was used as a repository for low and intermediate level radioactive waste from 1971 to 1991 and from 1994 to 1998. The repository with an overall volume of about 6 million m 3 has to be closed. Salt concrete is used for the refill of the voids of the repository. The concrete mixtures contain crushed salt instead of natural aggregates as the void filling material should be as similar to the salt rock as possible. Very high requirements regarding low heat development and little or even no cracking during concrete hardening had to be fulfilled even for the barrier elements made from salt concrete which separate the radioactive waste from the environment. Requirements for the salt concrete were set up with regard to the fluidity of the fresh concrete during the hardening process and its durability. In the view of a comprehensive numerical calculations of the temperature development and thermal stresses in the massive salt concrete elements of the backfill of the voids, experimental results for material properties of the salt concrete are presented: mixture of the salt concrete, thermodynamic properties (adiabatic heat release, thermal dilatation, thermal conductivity and heat capacity), mechanical short term properties, creep (under tension, under compression), autogenous shrinkage

  19. Review: Water recovery from brines and salt-saturated solutions: operability and thermodynamic efficiency considerations for desalination technologies.

    Science.gov (United States)

    Vane, Leland M

    2017-03-08

    When water is recovered from a saline source, a brine concentrate stream is produced. Management of the brine stream can be problematic, particularly in inland regions. An alternative to brine disposal is recovery of water and possibly salts from the concentrate. This review provides an overview of desalination technologies and discusses the thermodynamic efficiencies and operational issues associated with the various technologies particularly with regard to high salinity streams. Due to the high osmotic pressures of the brine concentrates, reverse osmosis, the most common desalination technology, is impractical. Mechanical vapor compression which, like reverse osmosis, utilizes mechanical work to operate, is reported to have the highest thermodynamic efficiency of the desalination technologies for treatment of salt-saturated brines. Thermally-driven processes, such as flash evaporation and distillation, are technically able to process saturated salt solutions, but suffer from low thermodynamic efficiencies. This inefficiency could be offset if an inexpensive source of waste or renewable heat could be used. Overarching issues posed by high salinity solutions include corrosion and the formation of scales/precipitates. These issues limit the materials, conditions, and unit operation designs that can be used.

  20. High temperature salting of fish mince

    OpenAIRE

    Talabi, S.O.; Sorinmade, S.O.; Nwanekezie, R.U.; Aliu, A.

    1986-01-01

    Freshly caught miscellaneous fish were transported to the laboratory, gutted and washed before mechanical separation into bone and mince. Seven batches of the mince were then treated with seven different concentrations (Wt/Wt) of sodium chloride before cooking. The cooked mince was divided into two groups, pressed and unpressed. Percentage residual salt of the salted cooked mince, cooked water and salted pressed mince was determined. Also, the moisture content of the salted cooked mince and s...

  1. Exogenous ascorbic acid increases resistance to salt of Silybum ...

    African Journals Online (AJOL)

    However, irrigation with salt water enhanced carotenoids and antioxidant enzyme activities. The detrimental effects of salt water were ameliorated by application of 100 ppm ascorbic acid (vitamin C). The inductive role of vitamin was associated with the improvement of seed germination, growth, plant water status, ...

  2. Gases in molten salts

    CERN Document Server

    Tomkins, RPT

    1991-01-01

    This volume contains tabulated collections and critical evaluations of original data for the solubility of gases in molten salts, gathered from chemical literature through to the end of 1989. Within the volume, material is arranged according to the individual gas. The gases include hydrogen halides, inert gases, oxygen, nitrogen, hydrogen, carbon dioxide, water vapor and halogens. The molten salts consist of single salts, binary mixtures and multicomponent systems. Included also, is a special section on the solubility of gases in molten silicate systems, focussing on slags and fluxes.

  3. pH-potentiometric determination of solubility of barely soluble organic extracting agents in water and aqueous solutions of neutral salts

    International Nuclear Information System (INIS)

    Pavlovskaya, E.M.; Charykov, A.K.; Tikhomirov, V.I.

    1977-01-01

    A pH-potentiometric method has been used to estimate the solubility of chloroform, benzene and nitrobenzene in water. The desalting effect is studied of alkali metal chlorides on chloroform solubility to establish the following phenomenological series of alkali metal cations by their desalting action: Li + + + + + . The non-conformity of chloroform solubility values in water-isoactive solutions of different salts is indicative of the high specificity of desalting processes with respect to the chemical nature of the desalting cation. Salt effects also essentially depend on the chemical nature of the desalted substance, particularly on its acid-base properties

  4. Distinct Osmoadaptation Strategies in the Strict Halophilic and Halotolerant Bacteria Isolated from Lunsu Salt Water Body of North West Himalayas.

    Science.gov (United States)

    Vaidya, Shivani; Dev, Kamal; Sourirajan, Anuradha

    2018-07-01

    Two strict halophilic bacterial strains, Halobacillus trueperi SS1, and Halobacillus trueperi SS3, and three halotolerant bacterial strains, Shewanella algae SS2, Halomonas venusta SS5, and Marinomonas sp. SS8 of Lunsu salt water body, Himachal Pradesh, India, were selected to study the mechanism of salt tolerance and the role of osmolytes therein. A combination of flame photometry, chromatographic and colorimetric assays was used to study the mechanism of salt tolerance in the selected strict halophilic and halotolerant bacterial strains. The strict halophiles and, one of the halotolerants, Marinomonas sp. SS8 were found to utilize both "salt-in strategy" and "accumulation of compatible solutes strategy" for osmoregulation in hypersaline conditions. On the contrary, the remaining two halotolerants used "accumulation of compatible solutes strategy" under saline stress and not the "salt-in strategy". The present study suggests towards distinct mechanisms of salt tolerance in the two classes, wherein strict halophiles accumulate compatible solutes as well as adopt salt-in strategy, while the halotolerant bacteria accumulate a range of compatible solutes, except Marinomonas sp. SS8, which utilizes both the strategies to combat salt stress.

  5. Pore Pressure and Field stress variation from Salt Water Injection; A case Study from Beaver Lodge Field in Williston Basin

    Science.gov (United States)

    Mohammed, R. A.; Khatibi, S.

    2017-12-01

    One of the major concerns in producing from oil and gas reservoirs in North American Basins is the disposal of high salinity salt water. It is a misconception that Hydro frack triggers Earthquakes, but due to the high salinity and density of water being pumped to the formation that has pore space of the rock already filled, which is not the case in Hydro-frack or Enhanced Oil Recovery in which fracturing fluid is pumped into empty pore space of rocks in depleted reservoirs. A review on the Bakken history showed that the concerns related to induce seismicity has increased over time due to variations in Pore pressure and In-situ stress that have shown steep changes in the region over the time. In this study, we focused on Pore pressure and field Stress variations in lower Cretaceous Inyan Kara and Mississippian Devonian Bakken, Inyan Kara is the major source for class-II salt-water disposal in the basin. Salt-water disposal is the major cause for induced seismicity. A full field study was done on Beaver Lodge Field, which has many salt-water disposal wells Adjacent to Oil and Gas Wells. We analyzed formation properties, stresses, pore-pressure, and fracture gradient profile in the field and. The constructed Mechanical Earth Model (MEM) revealed changes in pore pressure and stresses over time due to saltwater injection. Well drilled in the past were compared to recently drilled wells, which showed much stress variations. Safe mud weight Window of wells near proximity of injection wells was examined which showed many cases of wellbore instabilities. Results of this study will have tremendous impact in studying environmental issues and the future drilling and Fracking operations.

  6. Precipitates/Salts Model Sensitivity Calculation

    Energy Technology Data Exchange (ETDEWEB)

    P. Mariner

    2001-12-20

    The objective and scope of this calculation is to assist Performance Assessment Operations and the Engineered Barrier System (EBS) Department in modeling the geochemical effects of evaporation on potential seepage waters within a potential repository drift. This work is developed and documented using procedure AP-3.12Q, ''Calculations'', in support of ''Technical Work Plan For Engineered Barrier System Department Modeling and Testing FY 02 Work Activities'' (BSC 2001a). The specific objective of this calculation is to examine the sensitivity and uncertainties of the Precipitates/Salts model. The Precipitates/Salts model is documented in an Analysis/Model Report (AMR), ''In-Drift Precipitates/Salts Analysis'' (BSC 2001b). The calculation in the current document examines the effects of starting water composition, mineral suppressions, and the fugacity of carbon dioxide (CO{sub 2}) on the chemical evolution of water in the drift.

  7. Effect of sea-level rise on salt water intrusion near a coastal well field in southeastern Florida.

    Science.gov (United States)

    Langevin, Christian D; Zygnerski, Michael

    2013-01-01

    A variable-density groundwater flow and dispersive solute transport model was developed for the shallow coastal aquifer system near a municipal supply well field in southeastern Florida. The model was calibrated for a 105-year period (1900 to 2005). An analysis with the model suggests that well-field withdrawals were the dominant cause of salt water intrusion near the well field, and that historical sea-level rise, which is similar to lower-bound projections of future sea-level rise, exacerbated the extent of salt water intrusion. Average 2005 hydrologic conditions were used for 100-year sensitivity simulations aimed at quantifying the effect of projected rises in sea level on fresh coastal groundwater resources near the well field. Use of average 2005 hydrologic conditions and a constant sea level result in total dissolved solids (TDS) concentration of the well field exceeding drinking water standards after 70 years. When sea-level rise is included in the simulations, drinking water standards are exceeded 10 to 21 years earlier, depending on the specified rate of sea-level rise. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  8. Magnetostratigraphy and 230Th dating of a drill core from the southeastern Qaidam Basin: Salt lake evolution and tectonic implications

    Directory of Open Access Journals (Sweden)

    An-Dong Chen

    2018-05-01

    Full Text Available The Qarhan Salt Lake area is the Quaternary depocenter of the Qaidam Basin, and carries thick lacustrine sediments, as well as rich potassium and magnesium salt deposits. The abundant resources and thick sediments in this lake provide an ideal place for the study of biogas formation and preservation, salt lake evolution, and the uplift of the Tibetan Plateau. In this study, we attempt to construct a paleomagnetic and 230Th age model and to obtain information on tectonic activity and salt lake evolution through detailed studies on a 1300-m-long drill core (15DZK01 from the northwestern margin of the Qarhan Salt Lake area (Dongling Lake. Based on gypsum 230Th dating, the age of the uppermost clastic deposit was calculated to be around 0.052 Ma. The polarity sequence consist of 13 pairs of normal and reversed zones, which can be correlated with subchrons C2r.1r-C1n of the geomagnetic polarity timescale (GPTS 2012 (from ∼2.070 Ma to ∼0.052 Ma. Sedimentary characteristics indicate that Dongling Lake witnessed freshwater environment between ∼2.070 Ma and 1.546 Ma. During this period, the sedimentary record reflects primarily lakeshore, shallow-water and swamp environments, representing favourable conditions for the formation of hydrocarbon source rocks. Between 1.546 Ma and ∼0.052 Ma, the Dongling Lake was in sulphate deposition stage, which contrasts with the central Qarhan Salt Lake area, where this stage did not occur in the meantime. During this stage, Dongling Lake was in a shallow saltwater lake environment, but several periods of reduced salinity occurred during this stage. During the late Pleistocene at ∼0.052 Ma, the Dongling Lake experienced uplift due to tectonic activity, and saltwater migrated through the Sanhu Fault to the central Qarhan Salt Lake area, resulting in the absence of halite deposition stage. The residual saline water was concentrated into magnesium-rich brine due to the lack of freshwater, and few

  9. Moderate (20%) fructose-enriched diet stimulates salt-sensitive hypertension with increased salt retention and decreased renal nitric oxide.

    Science.gov (United States)

    Gordish, Kevin L; Kassem, Kamal M; Ortiz, Pablo A; Beierwaltes, William H

    2017-04-01

    Previously, we reported that 20% fructose diet causes salt-sensitive hypertension. In this study, we hypothesized that a high salt diet supplemented with 20% fructose (in drinking water) stimulates salt-sensitive hypertension by increasing salt retention through decreasing renal nitric oxide. Rats in metabolic cages consumed normal rat chow for 5 days (baseline), then either: (1) normal salt for 2 weeks, (2) 20% fructose in drinking water for 2 weeks, (3) 20% fructose for 1 week, then fructose + high salt (4% NaCl) for 1 week, (4) normal chow for 1 week, then high salt for 1 week, (5) 20% glucose for 1 week, then glucose + high salt for 1 week. Blood pressure, sodium excretion, and cumulative sodium balance were measured. Systolic blood pressure was unchanged by 20% fructose or high salt diet. 20% fructose + high salt increased systolic blood pressure from 125 ± 1 to 140 ± 2 mmHg ( P  fructose + high salt than either high salt, or glucose + high salt (114.2 ± 4.4 vs. 103.6 ± 2.2 and 98.6 ± 5.6 mEq/Day19; P  fructose + high salt group compared to high salt only: 5.33 ± 0.21 versus 7.67 ± 0.31 mmol/24 h; P  fructose + high salt group (2139 ± 178  μ mol /24 hrs P  fructose predisposes rats to salt-sensitivity and, combined with a high salt diet, leads to sodium retention, increased blood pressure, and impaired renal nitric oxide availability. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  10. Effects of salt pond restoration on benthic flux: Sediment as a source of nutrients to the water column

    Science.gov (United States)

    Topping, Brent R.; Kuwabara, James S.; Carter, James L.; Garrettt, Krista K.; Mruz, Eric; Piotter, Sarah; Takekawa, John Y.

    2016-01-01

    Understanding nutrient flux between the benthos and the overlying water (benthic flux) is critical to restoration of water quality and biological resources because it can represent a major source of nutrients to the water column. Extensive water management commenced in the San Francisco Bay, Beginning around 1850, San Francisco Bay wetlands were converted to salt ponds and mined extensively for more than a century. Long-term (decadal) salt pond restoration efforts began in 2003. A patented device for sampling porewater at varying depths, to calculate the gradient, was employed between 2010 and 2012. Within the former ponds, the benthic flux of soluble reactive phosphorus and that of dissolved ammonia were consistently positive (i.e., moving out of the sediment into the water column). The lack of measurable nitrate or nitrite concentration gradients across the sediment-water interface suggested negligible fluxes for dissolved nitrate and nitrite. The dominance of ammonia in the porewater indicated anoxic sediment conditions, even at only 1 cm depth, which is consistent with the observed, elevated sediment oxygen demand. Nearby openestuary sediments showed much lower benthic flux values for nutrients than the salt ponds under resortation. Allochthonous solute transport provides a nutrient advective flux for comparison to benthic flux. For ammonia, averaged for all sites and dates, benthic flux was about 80,000 kg/year, well above the advective flux range of −50 to 1500 kg/year, with much of the variability depending on the tidal cycle. By contrast, the average benthic flux of soluble reactive phosphorus was about 12,000 kg/year, of significant magnitude, but less than the advective flux range of 21,500 to 30,000 kg/year. These benthic flux estimates, based on solute diffusion across the sediment-water interface, reveal a significant nutrient source to the water column of the pond which stimulates algal blooms (often autotrophic). This benthic source may be

  11. Environmental consequences of the Retsof Salt Mine roof collapse

    Science.gov (United States)

    Yager, Richard M.

    2013-01-01

    In 1994, the largest salt mine in North America, which had been in operation for more than 100 years, catastrophically flooded when the mine ceiling collapsed. In addition to causing the loss of the mine and the mineral resources it provided, this event formed sinkholes, caused widespread subsidence to land, caused structures to crack and subside, and changed stream flow and erosion patterns. Subsequent flooding of the mine drained overlying aquifers, changed the groundwater salinity distribution (rendering domestic wells unusable), and allowed locally present natural gas to enter dwellings through water wells. Investigations including exploratory drilling, hydrologic and water-quality monitoring, geologic and geophysical studies, and numerical simulation of groundwater flow, salinity, and subsidence have been effective tools in understanding the environmental consequences of the mine collapse and informing decisions about management of those consequences for the future. Salt mines are generally dry, but are susceptible to leaks and can become flooded if groundwater from overlying aquifers or surface water finds a way downward into the mined cavity through hundreds of feet of rock. With its potential to flood the entire mine cavity, groundwater is a constant source of concern for mine operators. The problem is compounded by the viscous nature of salt and the fact that salt mines commonly lie beneath water-bearing aquifers. Salt (for example halite or potash) deforms and “creeps” into the mined openings over time spans that range from years to centuries. This movement of salt can destabilize the overlying rock layers and lead to their eventual sagging and collapse, creating permeable pathways for leakage of water and depressions or openings at land surface, such as sinkholes. Salt is also highly soluble in water; therefore, whenever water begins to flow into a salt mine, the channels through which it flows increase in diameter as the surrounding salt dissolves

  12. Hydrologic connections between environmental and societal change at the Bonneville Salt Flats, Utah

    Science.gov (United States)

    Bowen, B. B.; Harman, C. J.; Kipnis, E. L.; Liu, T.; Bernau, J. A.; Horel, J.

    2017-12-01

    The Bonneville Salt Flats (BSF) is an ephemeral and valued salt pan in northwestern Utah where a century of land speed racing and potash mining have created a complex and intertwined social and hydrologic system. The character of BSF changes on daily, weekly, monthly, annual, and geologic time scales in response to fluctuations in water balance, solute flux, and groundwater flow which is impacted by both local meteorology and water management associated with potash mining. In addition, the texture of the salt surface is changed by land use including racing activities, which impacts water fluxes through the crust. Ongoing research is focused on characterizing physical changes in the BSF environment and attributing observed changes in the landscape to specific processes and drivers. Five years of field observations and sampling, analyses of satellite imagery dating back the 1980s, and geochemical analysis of surface brines have shown that spatiotemporal changes in surface water and fluctuations in the surface salt footprint are linked to both climate and land use. Climate data over the last 30 years are examined to identify annual patterns in surface water balance at BSF to identify annual and seasonal climate constraints on flooding, evaporation, and desiccation cycles. A new weather station installed in the Fall of 2016 in the middle of BSF allows for unprecedented analyses of halite surface dynamics. Spatiotemporally dispersed stable isotope analyses of BSF surface brine samples constrain brine sources and evolution. An understanding of the processes that change the surface composition and texture through time inform interpretation of subsurface saline deposits at BSF. The wide range of temporal and spatial scales of observation help to guide to best management practices of this iconic natural resource.

  13. Physiological and proteomic analyses of salt stress response in the halophyte Halogeton glomeratus.

    Science.gov (United States)

    Wang, Juncheng; Meng, Yaxiong; Li, Baochun; Ma, Xiaole; Lai, Yong; Si, Erjing; Yang, Ke; Xu, Xianliang; Shang, Xunwu; Wang, Huajun; Wang, Di

    2015-04-01

    Very little is known about the adaptation mechanism of Chenopodiaceae Halogeton glomeratus, a succulent annual halophyte, under saline conditions. In this study, we investigated the morphological and physiological adaptation mechanisms of seedlings exposed to different concentrations of NaCl treatment for 21 d. Our results revealed that H. glomeratus has a robust ability to tolerate salt; its optimal growth occurs under approximately 100 mm NaCl conditions. Salt crystals were deposited in water-storage tissue under saline conditions. We speculate that osmotic adjustment may be the primary mechanism of salt tolerance in H. glomeratus, which transports toxic ions such as sodium into specific salt-storage cells and compartmentalizes them in large vacuoles to maintain the water content of tissues and the succulence of the leaves. To investigate the molecular response mechanisms to salt stress in H. glomeratus, we conducted a comparative proteomic analysis of seedling leaves that had been exposed to 200 mm NaCl for 24 h, 72 h and 7 d. Forty-nine protein spots, exhibiting significant changes in abundance after stress, were identified using matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS/MS) and similarity searches across EST database of H. glomeratus. These stress-responsive proteins were categorized into nine functional groups, such as photosynthesis, carbohydrate and energy metabolism, and stress and defence response. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  14. Relative Humidity and the Susceptibility of Austenitic Stainless Steel to Stress Corrosion Cracking in an impure Plutonium Oxide Environment

    Energy Technology Data Exchange (ETDEWEB)

    Zapp, P.; Duffey, J.; Lam, P.; Dunn, K.

    2010-05-05

    Laboratory tests to investigate the corrosivity of moist plutonium oxide/chloride salt mixtures on 304L and 316L stainless steel coupons showed that corrosion occurred in selected samples. The tests exposed flat coupons for pitting evaluation and 'teardrop' stressed coupons for stress corrosion cracking (SCC) evaluation at room temperature to various mixtures of PuO{sub 2} and chloride-bearing salts for periods up to 500 days. The exposures were conducted in sealed containers in which the oxide-salt mixtures were loaded with about 0.6 wt % water from a humidified helium atmosphere. Observations of corrosion ranged from superficial staining to pitting and SCC. The extent of corrosion depended on the total salt concentration, the composition of the salt and the moisture present in the test environment. The most significant corrosion was found in coupons that were exposed to 98 wt % PuO{sub 2}, 2 wt % chloride salt mixtures that contained calcium chloride and 0.6 wt% water. SCC was observed in two 304L stainless steel teardrop coupons exposed in solid contact to a mixture of 98 wt % PuO{sub 2}, 0.9 wt % NaCl, 0.9 wt % KCl, and 0.2 wt % CaCl{sub 2}. The cracking was associated with the heat-affected zone of an autogenous weld that ran across the center of the coupon. Cracking was not observed in coupons exposed to the headspace gas above the solid mixture, or in coupons exposed to other mixtures with either no CaCl{sub 2} or 0.92 wt% CaCl{sub 2}. SCC was present where the 0.6 wt % water content exceeded the value needed to fully hydrate the available CaCl{sub 2}, but was absent where the water content was insufficient. These results reveal the significance of the relative humidity in the austenitic stainless steels environment to their susceptibility to corrosion. The relative humidity in the test environment was controlled by the water loading and the concentration of the hydrating salts such as CaCl{sub 2}. For each salt or salt mixture there is a threshold

  15. Hydration patterns and salting effects in sodium chloride solution.

    Science.gov (United States)

    Li, Weifeng; Mu, Yuguang

    2011-10-07

    The salting effects of 2M sodium chloride electrolyte are studied based on a series of model solutes with properties ranging from hydrophobic to hydrophilic. Generally, hydrophobic solutes will be salted out and hydrophilic solutes will be salted in by NaCl solution. The solvation free energy changes are highly correlated with Kirkwood-Buff integrals. The underlying mechanism resorts to the preferential binding of ions and water to solutes. Our results demonstrate that the salting effect not only depends on the salt's position in Hofmeister series, but also on the solutes' specifics. Taking the hydration free energies of solutes and ions as independent variables, a schematic diagram of salting effects is suggested. The resolved multifaceted salting effects rely on the sensitive balance of the tripartite interaction among solutes, ions, and water. © 2011 American Institute of Physics

  16. Salt Rejection of Non-Ionic Polymeric Membranes

    DEFF Research Database (Denmark)

    Bo, P.; Stannett, V.

    1976-01-01

    A modified solution-diffusion model for the description of salt and water transport through homogeneous membranes is introduced. It is compared with the current solution-diffusion model and the combined flow-diffusion model for the description of transport under reverse osmosis conditions....... The advantage of the modified description over the current solution-diffusion model is the inclusion of a salt-water coupling transport coefficient which allows the description to be extended to membranes of high water permeability (high water content). The advantage of the modified solution-diffusion model...

  17. Chemical characterisation of himalayan rock salt

    International Nuclear Information System (INIS)

    Hassan, A.U.; Din, M.U.

    2017-01-01

    Present study involves the chemical evaluation of rock salt samples collected from the plugging sites of Himalayan salt (Khewra salt mines and Kalabagh salt mines) for their moisture content, water insoluble matter, calcium, magnesium, sulphate content and trace minerals such as Fe,Cu,Cd,Pb,As,Ag and Zn determined by atomic absorption spectroscopy. Moisture content of Khewra and Kalabagh salt samples ranged from 0.03 wt. % to 0.09 wt. % and 0.06 % to 0.08 %, respectively. Water insoluble matter ranged from 0.08 wt. % to 1.4 wt. % and 1.5 wt. % to 2.8wt. % for Khewra and Kalabagh salt samples, respectively. Sulphate content for Khewra salt sample was from 0.39 % to 0.91 % and for Kalabagh salt mines from 0.75 wt. % to 0.95 wt. %. For Khewra salt mines calcium ranged 0.15 wt. % to 0.32 wt. % and for Kalabagh salt samples from 0.1 wt. % to 0.27 wt. %. Magnesium ranged from 0.11 wt. % to 0.35 wt. % for Khewra salt mines, while for Kalabagh salt samples its range was 0.18 wt. % to 0.89 wt. %. Trace metals had the concentration ranges between 0.2 to 1.85 mg/kg for copper; between 0.21 to 0.42 mg/kg for manganese; between 0.04 to 0.06 mg/kg for zinc; between 0.12 to 0.18 mg/kg for arsenic and between 0.03 and 0.05 mg/kg for lead while cadmium content was either below the method's detection limits or in very trace amounts. The results show that the concentrations of all the parameters studied are below the limits set by World Health Organization (WHO) and Food and Agriculture Organization (FAO). Therefore, it can be concluded from the paper that the Himalayan salt from the plugging sites of Khewra and Kalabagh salt mines are safe to use. (author)

  18. Proceedings of the technical meetings 'Water, radioactivity and environment'

    International Nuclear Information System (INIS)

    Perceval, Olivier; Foulquier, Luc; Canneva, Guillem; Jedor, Beatrice; Genthon, Benedicte; Vicaud, Alain; Skrzypczak, Julien; Gibeaux, Audrey; Phrommavanh, Vannapha; Descostes, Michael; Tognelli, Antoine; Calmet, Dominique; Leprieur, Fabrice; Pignol, David; Thybaud, Eric; Feray, Christine; Leclerc, Elisabeth; Maitre, Melanie; Calmon, Philippe; Marang, Laura; Beaugelin-Seiller, Karine; Garnier-Laplace, Jacqueline; Leprieur, Fabrice; Philippot, Benoit; Hemidy, Pierre-Yves; Devin, Patrick; Perrier, Gilles; CALVEZ, Marianne; Descamps, E.; Preveral, S.; Brutesco, C.; Ginet, N.; Escofier, C.; Garcia, D.; Pignol, D.; Ansaldi, M.; Rodrigue, A.; Bazin, I.; Cholat, P.; Bailly-Du-Bois, Pascal; Fievet, Bruno; Godinot, Claire; Eyrolle-Boyer, Frederique; Antonelli, Christelle; Tournieux, Damien; Augeray, Celine; Galliez, Kevin; Baconet, I.; Cavaliere, N.; Dias Varela, D.; Foulon, L.; Laconici, C.; Lorand, H.; Mouton, M.; Siscard, N.; Tarlette, L.; Loyen, Jeanne; Gleizes, Marc; Vidal, R.; Borgia, Cecile; Hemidy, Pierre-Yves; Fouchet, Loic; Gontier, G.; Grignard, G.; Drozdzak, Jegodz; Leermakers, Martine; Brun, Frederic; Ameon, Roselyne; Gleizes, Marc; Maulard, Alain; Moine, Jerome; Tchilian, Nathalie; Paillard, Herve; Gaid, Abdelkader; Wittmann, Erich; Boucherie, Christophe; Devin, Patrick

    2014-12-01

    These technical days were organized by the 'Environment section' of the French Society of Radiation Protection (SFRP). Their aim was to review the current state of water use, management and monitoring, in particular in the nuclear industry, both on the radiological and chemical aspects. This document brings together the available presentations (slides) together with their corresponding abstracts (in French) and dealing with: 1 - Environmental issues linked to water and aquatic ecosystems contamination by micropollutants (O. Perceval); 2 - 50 years of radioecology in aquatic environments (L. Foulquier); 3 - Regulation and organisation of the French administration for water and aquatic ecosystems management (G. Canneva); 4 -European and French regulations about the radiological quality of drinking water (B. Jedor); 5 - Water samplings and liquid effluents from nuclear facilities: regulation, authorisations, prescriptions (B. Genthon); 6 - Water needs of a NPP (A. Vicaud); 7 - Water management at old uranium mining sites (A. Gibeaux); 8 - Mobile system for liquid effluents treatment (J. Skrzypczak); 9 - Water: an essential vector for the transfer of radioactive and chemical compounds in the underground (A. Tognelli); 10 - Environmental guide values for aquatic ecosystems protection (E. Thybaud); 11 - Prioritisation work for radioactive and chemical compounds to be monitored in aquatic environments in the framework of the environment perennial lab (E. Leclerc); 12 - Liquid radioactive effluents in continental aquatic environments: why and how estimating the impact? (K. Beaugelin-Seiller); 13 - Sustainable water management: standards, a compulsory tool (D. Calmet); 14 - Water sampling: from theory to practice (F. Leprieur, B. Philippot); 15 - Prototype for the detection of toxic compounds in the environment (D. Pignol); 16 - Nuclear metrology and water: new available and developing techniques (C. Augeray, K. Galliez); 17 - Measurement of the uranium and radium bio

  19. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Science.gov (United States)

    2010-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting under...

  20. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Science.gov (United States)

    2010-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject to...

  1. Distribution and behavior of tritium in the Coolant-Salt Technology Facility

    International Nuclear Information System (INIS)

    Mays, G.T.; Smith, A.N.; Engel, J.R.

    1977-04-01

    A 1000-MW(e) Molten-Salt Breeder Reactor (MSBR) is expected to produce 2420 Ci/day of tritium. As much as 60 percent of the tritium produced may be transported to the reactor steam system (assuming no retention by the secondary coolant salt), where it would be released to the environment. Such a release rate would be unacceptable. Experiments were conducted in an engineering-scale facility--the Coolant-Salt Technology Facility (CSTF)--to examine the potential of sodium fluoroborate, the proposed coolant salt for an MSBR, for sequestering tritium. The salt was believed to contain chemical species capable of trapping tritium. A series of 5 experiments--3 transient and 2 steady-state experiments--was conducted from July of 1975 through June of 1976 where tritium was added to the CSTF. The CSTF circulated sodium fluoroborate at temperatures and pressures typical of MSBR operating conditions. Results from the experiments indicated that over 90 percent of tritium added at steady-state conditions was trapped by sodium fluoroborate and appeared in the off-gas system in a chemically combined (water-soluble) form and that a total of approximately 98 percent of the tritium added at steady-state conditions was removed through the off-gas system overall

  2. Arcellacea (testate amoebae) as bio-indicators of road salt contamination in lakes.

    Science.gov (United States)

    Roe, Helen M; Patterson, R Timothy

    2014-08-01

    Winter deicing operations occur extensively in mid- to high-latitude metropolitan regions around the world and result in a significant reduction in road accidents. Deicing salts can, however, pose a major threat to water quality and aquatic organisms. In this paper, we examine the utility of Arcellacea (testate amoebae) for monitoring lakes that have become contaminated by winter deicing salts, particularly sodium chloride. We analysed 50 sediment samples and salt-related water property variables (chloride concentrations; conductivity) from 15 lakes in the Greater Toronto Area and adjacent areas of southern Ontario, Canada. The sampled lakes included lakes in proximity to major highways and suburban roads and control lakes in forested settings away from road influences. Samples from the most contaminated lakes, with chloride concentrations in excess of 400 mg/l and conductivities of >800 μS/cm, were dominated by species typically found in brackish and/or inhospitable lake environments and by lower faunal diversities (lowest Shannon diversity index values) than samples with lower readings. Q-R-mode cluster analysis and detrended correspondence analysis (DCA) resulted in the recognition of four assemblage groupings. These reflect varying levels of salt contamination in the study lakes, along with other local influences, including nutrient loading. The response to nutrients can, however, be isolated if the planktic eutrophic indicator species Cucurbitella tricuspis is removed from the counts. The findings show that the group has considerable potential for biomonitoring in salt-contaminated lakes, and their presence in lake sediment cores may provide significant insights into long-term benthic community health, which is integral for remedial efforts.

  3. Evaluation of salt content in school meals

    Directory of Open Access Journals (Sweden)

    Cláudia Alexandra Colaço Lourenço Viegas

    2015-04-01

    Full Text Available OBJECTIVE: High blood pressure is a major rick factor for cardiovascular disease, and it is closely associated with salt intake. Schools are considered ideal environments to promote health and proper eating habits. Therefore the objective of this study was to evaluate the amount of salt in meals served in school canteens and consumers' perceptions about salt. METHODS: Meals, including all the components (bread, soup, and main dish were retrieved from school canteens. Salt was quantified by a portable salt meter. For food perception we constructed a questionnaire that was administered to high school students. RESULTS: A total of 798 food samples were analysed. Bread had the highest salt content with a mean of 1.35 g/100 g (SD=0.12. Salt in soups ranged from 0.72 g/100 g to 0.80 g/100 g (p=0.05 and, in main courses, from 0.71 g/100 to 0.97 g/100g (p=0.05. The salt content of school meals is high with a mean value of 2.83 to 3.82 g of salt per meal. Moreover, a high percentage of students consider meals neither salty nor bland, which shows they are used to the intensity/amount of salt consumed. CONCLUSION: The salt content of school meals is high, ranging from 2 to 5 times more than the Recommended Dietary Allowances for children, clearly exceeding the needs for this population, which may pose a health risk. Healthy choices are only possible in environments where such choices are possible. Therefore, salt reduction strategies aimed at the food industry and catering services should be implemented, with children and young people targeted as a major priority.

  4. Neutronics study on hybrid reactor cooled by helium, water and molten salt

    International Nuclear Information System (INIS)

    Li Zaixin; Feng Kaiming; Zhang Guoshu; Zheng Guoyao; Zhao Fengchao

    2009-01-01

    There is no serious magnetohydrodynamics (MHD) problem when helium,water or molten salt of Flibe flows in high magnetic field. Thus helium, water and Flibe were proposed as candidate of coolant for fusion-fission hybrid reactor based on magnetic confinement. The effect on neutronics of hybrid reactor due to coolant was investigated. The analyses of neutron spectra and fuel breeding of blanket with different coolants were performed. Variations of tritium breeding ratio (TBR), blanket energy multiplication (M) and keff with operating time were also studied. MCNP code was used for neutron transport simulation. It is shown that spectra change greatly with different coolants. The blanket with helium exhibits very hard spectrum and good tritium breeding ability. And fission reactions are mainly from fast neutron. The blanket with water has soft spectrum and high energy multiplication factor. However, it needs to improve TBR. The blanket with Flibe has hard spectrum and less energy release. (authors)

  5. Thermophysical properties of reconsolidating crushed salt.

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Stephen J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Urquhart, Alexander [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-03-01

    Reconsolidated crushed salt is being considered as a backfilling material placed upon nuclear waste within a salt repository environment. In-depth knowledge of thermal and mechanical properties of the crushed salt as it reconsolidates is critical to thermal/mechanical modeling of the reconsolidation process. An experimental study was completed to quantitatively evaluate the thermal conductivity of reconsolidated crushed salt as a function of porosity and temperature. The crushed salt for this study came from the Waste Isolation Pilot Plant (WIPP). In this work the thermal conductivity of crushed salt with porosity ranging from 1% to 40% was determined from room temperature up to 300°C, using two different experimental methods. Thermal properties (including thermal conductivity, thermal diffusivity and specific heat) of single-crystal salt were determined for the same temperature range. The salt was observed to dewater during heating; weight loss from the dewatering was quantified. The thermal conductivity of reconsolidated crushed salt decreases with increasing porosity; conversely, thermal conductivity increases as the salt consolidates. The thermal conductivity of reconsolidated crushed salt for a given porosity decreases with increasing temperature. A simple mixture theory model is presented to predict and compare to the data developed in this study.

  6. Geologic appraisal of Paradox basin salt deposits for water emplacement

    Science.gov (United States)

    Hite, Robert J.; Lohman, Stanley William

    1973-01-01

    Thick salt deposits of Middle Pennsylvanian age are present in an area of 12,000 square miles in the Paradox basin of southeast Utah and southwest Colorado. The deposits are in the Paradox Member of the Hermosa Formation. The greatest thickness of this evaporite sequence is in a troughlike depression adjacent to the Uncompahgre uplift on the northeast side of the basin.The salt deposits consist of a cyclical sequence of thick halite units separated by thin units of black shale, dolomite, and anhydrite. Many halite units are several hundred feet thick and locally contain economically valuable potash deposits.Over much of the Paradox basin the salt deposits occur at depths of more than 5,000 feet. Only in a series of salt anticlines located along the northeastern side of the basin do the salt deposits rise to relatively shallow depths. The salt anticlines can be divided geographically and structurally into five major systems. Each system consists of a long undulating welt of thickened salt over which younger rocks are arched in anticlinal form. Locally there are areas along the axes of the anticlines where the Paradox Member was never covered by younger sediments. This allowed large-scale migration of Paradox strata toward and up through these holes in the sediment cover forming diapiric anticlines.The central or salt-bearing cores of the anticlines range in thickness from about 2,500 to 14,000 feet. Structure in the central core of the salt anticlines is the result of both regional-compression and flowage of the Paradox Member into the anticlines from adjacent synclines. Structure in the central cores of the salt anticlines ranges from relatively undeformed beds to complexly folded and faulted masses, in which stratigraphic continuity is undemonstrable.The presence of thick cap rock .over many of the salt anticlines is evidence of removal of large volumes of halite by groundwater. Available geologic and hydrologic information suggests that this is a relatively slow

  7. Comparative analysis of Pu spread resistance of chemico-technological (out of pile) complexes of electronuclear molten salt and heavy water blanket facilities for transmutation

    International Nuclear Information System (INIS)

    Volk, V.I.; Vakhrushin, A.Yu.; Gorbunov, V.F.; Kushnikov, V.V.

    1997-01-01

    Technological processes used for radiochemical reprocessing of molten salt and heavy water blankets of an electronuclear facility for Pu transmutation and Pu distribution in those processes are characterized. Below the major parameters are given that affect the resistance of the technological to Pu proliferation. Types of Pu migration: process losses, accident related losses, theft. Factors affecting migration are total inventory of Pu in a reprocessing complex, purity of Pu and its compounds, chemical condition of Pu, the feasibility of equipping technological processes with instruments of control. The comparative analysis carried out taking into account the above parameters established that the technological processes related to heavy water blanket reprocessing, specifically a homogeneous (solution) option, are much more resistant to Pu proliferation, including both Pu migration to the environment and the unsanctioned withdrawal of Pu from the technological process. 5 refs., 4 figs

  8. Determination of strontium isotopic composition in natural waters: examples of application in subsurface waters of the coastal zone of Bragantina region, Para, BR

    International Nuclear Information System (INIS)

    Bordalo, Adriana Oliveira; Moura, Candido Augusto Veloso; Scheller, Thomas

    2007-01-01

    Analytical procedures used for determining the concentrations and isotope composition of strontium in subsurface waters, by mass spectrometry, are described. Sampling was performed in coastal plateaus, salt marsh and mangrove environments in the coastal region of Para. Coastal plateau waters have δ 87 Sr between 1.51 and 6.26 per mille and Sr concentration bellow 58 ppb. Salt marsh waters show δ 87 Sr between 0.55 and 0.90 per mille and Sr concentration between 93 and 114 ppm, while mangrove waters have δ 87 Sr per mille around zero and Sr concentration above 15 ppm. Differences in the 87 Sr/ 86 Sr ratio in these subsurface waters are detected, as well as seasonal variations in the coastal plateau waters. (author)

  9. Increase of urban lake salinity by road deicing salt

    International Nuclear Information System (INIS)

    Novotny, Eric V.; Murphy, Dan; Stefan, Heinz G.

    2008-01-01

    Over 317,000 tonnes of road salt (NaCl) are applied annually for road deicing in the Twin Cities Metropolitan Area (TCMA) of Minnesota. Although road salt is applied to increase driving safety, this practice influences environmental water quality. Thirteen lakes in the TCMA were studied over 46 months to determine if and how they respond to the seasonal applications of road salt. Sodium and chloride concentrations in these lakes were 10 and 25 times higher, respectively, than in other non-urban lakes in the region. Seasonal salinity/chloride cycles in the lakes were correlated with road salt applications: High concentrations in the winter and spring, especially near the bottom of the lakes, were followed by lower concentrations in the summer and fall due to flushing of the lakes by rainfall runoff. The seasonal salt storage/flushing rates for individual lakes were derived from volume-weighted average chloride concentration time series. The rate ranged from 9 to 55% of a lake's minimum salt content. In some of the lakes studied salt concentrations were high enough to stop spring turnover preventing oxygen from reaching the benthic sediments. Concentrations above the sediments were also high enough to induce convective mixing of the saline water into the sediment pore water. A regional analysis of historical water quality records of 38 lakes in the TCMA showed increases in lake salinity from 1984 to 2005 that were highly correlated with the amount of rock salt purchased by the State of Minnesota. Chloride concentrations in individual lakes were positively correlated with the percent of impervious surfaces in the watershed and inversely with lake volume. Taken together, the results show a continuing degradation of the water quality of urban lakes due to application of NaCl in their watersheds

  10. Energy-water-environment nexus underpinning future desalination sustainability

    KAUST Repository

    Shahzad, Muhammad Wakil

    2017-03-11

    Energy-water-environment nexus is very important to attain COP21 goal, maintaining environment temperature increase below 2°C, but unfortunately two third share of CO2 emission has already been used and the remaining will be exhausted by 2050. A number of technological developments in power and desalination sectors improved their efficiencies to save energy and carbon emission but still they are operating at 35% and 10% of their thermodynamic limits. Research in desalination processes contributing to fuel World population for their improved living standard and to reduce specific energy consumption and to protect environment. Recently developed highly efficient nature-inspired membranes (aquaporin & graphene) and trend in thermally driven cycle\\'s hybridization could potentially lower then energy requirement for water purification. This paper presents a state of art review on energy, water and environment interconnection and future energy efficient desalination possibilities to save energy and protect environment.

  11. Hydrology and Salt Balance in a Large, Hypersaline Coastal Lagoon: Lagoa de Araruama, Brazil

    Science.gov (United States)

    Kjerfve, Björn; Schettini, C. A. F.; Knoppers, Bastiaan; Lessa, Guilherme; Ferreira, H. O.

    1996-06-01

    Lagoa de Araruama in the state of Rio de Janeiro, Brazil, is a hypersaline coastal lagoon as a result of semi-arid climate conditions, a small drainage basin and a choked entrance channel. The lagoon has been continuously hypersaline for at least 4·5 centuries, but the mean salinity has varied substantially. It has recently decreased from 57 to 52 as indicated by density (salinity) measurements between 1965 and 1990. Analysis of more than 20 years of salinity time series data, in addition to monthly lagoon cruises to measure the spatial salinity distribution, indicate that the lagoon salinity largely fluctuates in response to the difference between evaporation and precipitation. The major factor explaining the long-term trend of decreasing salinity in the lagoon is the constant pumping of 1 m 3s -1of freshwater to the communities surrounding the lagoon from an adjacent watershed, and subsequent discharge of this water into Lagoa de Araruama. The net salt budget is primarily a balance between the advective import of salt from the coastal ocean and eddy diffusive export of salt to the ocean, although the extensive mining of salt from the lagoon during past decades is also a small but significant contribution to the salt budget. The flushing half-life is proposed as a useful time scale of water exchange, is calculated based on a combination of hydrological and tidal processes, and is excellent for comparison of lagoons and assessing water quality changes. The flushing half-life measures 83·5 days for Lagoa de Araruama, considerably longer than for most other coastal lagoons. The proposed dredging of a second ocean channel to Lagoa de Araruama is probably not a good idea. It is likely to accelerate the decrease of lagoon salinity and somewhat improve the lagoon water exchange. At the same time, this will eliminate the apparent buffering capacity provided by the hypersaline environment, and thus may potentially cause water quality problems.

  12. ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance

    Directory of Open Access Journals (Sweden)

    Yu Agnes

    2008-12-01

    Full Text Available Abstract Background Drought is a major social and economic problem resulting in huge yield reduction in the field. Today's challenge is to develop plants with reduced water requirements and stable yields in fluctuating environmental conditions. Arabidopsis thaliana is an excellent model for identifying potential targets for plant breeding. Drought tolerance in the field was successfully conferred to crops by transferring genes from this model species. While involved in a plant genomics programme, which aims to identify new genes responsible for plant response to abiotic stress, we identified ESKIMO1 as a key gene involved in plant water economy as well as cold acclimation and salt tolerance. Results All esk1 mutants were more tolerant to freezing, after acclimation, than their wild type counterpart. esk1 mutants also showed increased tolerance to mild water deficit for all traits measured. The mutant's improved tolerance to reduced water supply may be explained by its lower transpiration rate and better water use efficiency (WUE, which was assessed by carbon isotope discrimination and gas exchange measurements. esk1 alleles were also shown to be more tolerant to salt stress. Transcriptomic analysis of one mutant line and its wild-type background was carried out. Under control watering conditions a number of genes were differentially expressed between the mutant and the wild type whereas under mild drought stress this list of genes was reduced. Among the genes that were differentially expressed between the wild type and mutant, two functional categories related to the response to stress or biotic and abiotic stimulus were over-represented. Under salt stress conditions, all gene functional categories were represented equally in both the mutant and wild type. Based on this transcriptome analysis we hypothesise that in control conditions the esk1 mutant behaves as if it was exposed to drought stress. Conclusion Overall our findings suggest that the

  13. Crystallization of DNA fragments from water-salt solutions, containing 2-methylpentane-2,3-diol.

    Science.gov (United States)

    Osica, V D; Sukharevsky, B Y; Vasilchenko, V N; Verkin, B I; Polyvtsev, O F

    1976-09-01

    Fragments of calf thymus DNA have been crystallized by precipitation from water-salt solutions, containing 2-methylpentane-2,3-diol (MPD). DNA crystals usually take the form either of spherulites up to 100 mu in diameter or of needles with the length up to 50 mu. No irreversible denaturation of DNA occurs during the crystallization process. X-ray diffraction from dense slurries of DNA crystals yields crystalline powder patterns.

  14. 40 CFR 721.3629 - Triethanolamine salts of fatty acids.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Triethanolamine salts of fatty acids... Substances § 721.3629 Triethanolamine salts of fatty acids. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as triethanolamine salts of fatty...

  15. THE HYDROLOGIC CYCLE, UNIDIRECTIONAL CHARTER OF THE DISSOLVED SALTS AND SUSPENDED LOAD

    Directory of Open Access Journals (Sweden)

    Nicolae Florea

    2012-12-01

    Full Text Available In this paper it is underlined that the hydrologic cycle in nature, reversible and regenerating of fresh water, carries out also an unidirectional and irreversible circulation – by means of a fragment of the hydrologic cycle – of the dissolved salts and stream’s suspended load, entailed by the water drained from continents to ocean. The trend is to transfer soluble salts from land to ocean in the same time with the running water on land in the portion of the hydrologic cycle which refers to the water transfer from continents to ocean in order to equilibrate the annual water balance of the hydrologic cycle. But, one can realize here and there some local salt accumulations in salt soils or in salt lakes within areas without drainage in arid climate; these salts accumulations are cases of local hydrologic cycles „grafted” along the way of water on land (to ocean. The energy necessary to the hydrologic cycle in nature is delivered by the Sun, and the entropy remains at a low level as a consequence of the elimination in this cycle of water vapors with high entropy, and of the receiving of liquid or solid water with low entropy, so that the annual level of entropy is maintained at a low level.

  16. Agreement between 24-hour salt ingestion and sodium excretion in a controlled environment.

    Science.gov (United States)

    Lerchl, Kathrin; Rakova, Natalia; Dahlmann, Anke; Rauh, Manfred; Goller, Ulrike; Basner, Mathias; Dinges, David F; Beck, Luis; Agureev, Alexander; Larina, Irina; Baranov, Victor; Morukov, Boris; Eckardt, Kai-Uwe; Vassilieva, Galina; Wabel, Peter; Vienken, Jörg; Kirsch, Karl; Johannes, Bernd; Krannich, Alexander; Luft, Friedrich C; Titze, Jens

    2015-10-01

    Accurately collected 24-hour urine collections are presumed to be valid for estimating salt intake in individuals. We performed 2 independent ultralong-term salt balance studies lasting 105 (4 men) and 205 (6 men) days in 10 men simulating a flight to Mars. We controlled dietary intake of all constituents for months at salt intakes of 12, 9, and 6 g/d and collected all urine. The subjects' daily menus consisted of 27 279 individual servings, of which 83.0% were completely consumed, 16.5% completely rejected, and 0.5% incompletely consumed. Urinary recovery of dietary salt was 92% of recorded intake, indicating long-term steady-state sodium balance in both studies. Even at fixed salt intake, 24-hour urine collection for sodium excretion (UNaV) showed infradian rhythmicity. We defined a ±25 mmol deviation from the average difference between recorded sodium intake and UNaV as the prediction interval to accurately classify a 3-g difference in salt intake. Because of the biological variability in UNaV, only every other daily urine sample correctly classified a 3-g difference in salt intake (49%). By increasing the observations to 3 consecutive 24-hour collections and sodium intakes, classification accuracy improved to 75%. Collecting seven 24-hour urines and sodium intake samples improved classification accuracy to 92%. We conclude that single 24-hour urine collections at intakes ranging from 6 to 12 g salt per day were not suitable to detect a 3-g difference in individual salt intake. Repeated measurements of 24-hour UNaV improve precision. This knowledge could be relevant to patient care and the conduct of intervention trials. © 2015 American Heart Association, Inc.

  17. Self-Healing Characteristics of Damaged Rock Salt under Different Healing Conditions

    Directory of Open Access Journals (Sweden)

    Lin Li

    2013-08-01

    Full Text Available Salt deposits are commonly regarded as ideal hosts for geologic energy reservoirs. Underground cavern construction-induced damage in salt is reduced by self-healing. Thus, studying the influencing factors on such healing processes is important. This research uses ultrasonic technology to monitor the longitudinal wave velocity variations of stress-damaged rock salts during self-recovery experiments under different recovery conditions. The influences of stress-induced initial damage, temperature, humidity, and oil on the self-recovery of damaged rock salts are analyzed. The wave velocity values of the damaged rock salts increase rapidly during the first 200 h of recovery, and the values gradually increase toward stabilization after 600 h. The recovery of damaged rock salts is subjected to higher initial damage stress. Water is important in damage recovery. The increase in temperature improves damage recovery when water is abundant, but hinders recovery when water evaporates. The presence of residual hydraulic oil blocks the inter-granular role of water and restrains the recovery under triaxial compression. The results indicate that rock salt damage recovery is related to the damage degree, pore pressure, temperature, humidity, and presence of oil due to the sealing integrity of the jacket material.

  18. Sol-gel processing with inorganic metal salt precursors

    Science.gov (United States)

    Hu, Zhong-Cheng

    2004-10-19

    Methods for sol-gel processing that generally involve mixing together an inorganic metal salt, water, and a water miscible alcohol or other organic solvent, at room temperature with a macromolecular dispersant material, such as hydroxypropyl cellulose (HPC) added. The resulting homogenous solution is incubated at a desired temperature and time to result in a desired product. The methods enable production of high quality sols and gels at lower temperatures than standard methods. The methods enable production of nanosize sols from inorganic metal salts. The methods offer sol-gel processing from inorganic metal salts.

  19. Improving crop water use efficiency using carbon isotope discrimination

    International Nuclear Information System (INIS)

    Serraj, R.

    2006-01-01

    Water scarcity, drought and salinity are among the most important environmental constraints challenging crop productivity in the arid and semi-arid regions of the world, especially the rain-fed production systems. The current challenge is to enhance food security in water-limited and/or salt-affected areas for the benefit of resource-poor farmers in developing countries. There is also an increasing need that water use in agriculture should focus on improvement in the management of existing water resources and enhancing crop water productivity. The method based on carbon-13 discrimination in plant tissues has a potentially important role in the selection and breeding of some crop species for increased water use efficiency in some specific environments. Under various water-limited environments, low delta in the plants, indicating low carbon isotope discrimination has been generally associated with high transpiration efficiency (TE). In contrast, for well-watered environments many positive genotypic correlations have been reported between delta and grain yield indicating potential value in selecting for greater delta in these environments. Few studies have been reported on the impact of selection for delta on adaptation and grain yield in saline environments. Studies of the impact of genetic selection for greater and lower delta are currently coordinated by the Soil and water Management and Crop Nutrition Section (SWMCN) of the Joint FAO/IAEA Division. A Coordinated Research Project (CRP) is currently on-going on the Selection for Greater Agronomic Water-Use Efficiency in Wheat and Rice using Carbon Isotope Discrimination (D1-20 08). The overall objective of this project is to contribute to increasing the agronomic water-use efficiency of wheat and rice production, where agronomic water-use efficiency is defined as grain yield/total water use including both transpiration and evaporation. The CRP is also aiming at increasing wheat productivity under drought and rice

  20. Salt Plug Formation Caused by Decreased River Discharge in a Multi-channel Estuary

    Science.gov (United States)

    Shaha, Dinesh Chandra; Cho, Yang-Ki

    2016-01-01

    Freshwater input to estuaries may be greatly altered by the river barrages required to meet human needs for drinking water and irrigation and prevent salt water intrusion. Prior studies have examined the salt plugs associated with evaporation and salt outwelling from tidal salt flats in single-channel estuaries. In this work, we discovered a new type of salt plug formation in the multi-channel Pasur River Estuary (PRE) caused by decreasing river discharges resulting from an upstream barrage. The formation of a salt plug in response to changes in river discharge was investigated using a conductivity-temperature-depth (CTD) recorder during spring and neap tides in the dry and wet seasons in 2014. An exportation of saline water from the Shibsa River Estuary (SRE) to the PRE through the Chunkhuri Channel occurred during the dry season, and a salt plug was created and persisted from December to June near Chalna in the PRE. A discharge-induced, relatively high water level in the PRE during the wet season exerted hydrostatic pressure towards the SRE from the PRE and thereby prevented the intrusion of salt water from the SRE to the PRE. PMID:27255892

  1. Polder effects on sediment-to-soil conversion: water table, residual available water capacity, and salt stress interdependence.

    Science.gov (United States)

    Radimy, Raymond Tojo; Dudoignon, Patrick; Hillaireau, Jean Michel; Deboute, Elise

    2013-01-01

    The French Atlantic marshlands, reclaimed since the Middle Age, have been successively used for extensive grazing and more recently for cereal cultivation from 1970. The soils have acquired specific properties which have been induced by the successive reclaiming and drainage works and by the response of the clay dominant primary sediments, that is, structure, moisture, and salinity profiles. Based on the whole survey of the Marais Poitevin and Marais de Rochefort and in order to explain the mechanisms of marsh soil behavior, the work focuses on two typical spots: an undrained grassland since at least 1964 and a drained cereal cultivated field. The structure-hydromechanical profiles relationships have been established thanks to the clay matrix shrinkage curve. They are confronted to the hydraulic functioning including the fresh-to-salt water transfers and to the recording of tensiometer profiles. The CE1/5 profiles supply the water geochemical and geophysical data by their better accuracy. Associated to the available water capacity calculation they allow the representation of the parallel evolution of the residual available water capacity profiles and salinity profiles according to the plant growing and rooting from the mesophile systems of grassland to the hygrophile systems of drained fields.

  2. The simplified convergence rate calculation for salt grit backfilled caverns in rock salt

    International Nuclear Information System (INIS)

    Navarro, Martin

    2013-03-01

    Within the research and development project 3609R03210 of the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, different methods were investigated, which are used for the simplified calculation of convergence rates for mining cavities in salt rock that have been backfilled with crushed salt. The work concentrates on the approach of Stelte and on further developments based on this approach. The work focuses on the physical background of the approaches. Model specific limitations are discussed and possibilities for further development are pointed out. Further on, an alternative approach is presented, which implements independent material laws for the convergence of the mining cavity and the compaction of the crushed salt backfill.

  3. Salt disposal of heat-generating nuclear waste

    International Nuclear Information System (INIS)

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United

  4. Salt disposal of heat-generating nuclear waste.

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from

  5. Hydrochlorothiazide-induced 131I excretion facilitated by salt and water

    International Nuclear Information System (INIS)

    Beyer, K.H. Jr.; Fehr, D.M.; Gelarden, R.T.; White, W.J.; Lang, C.M.; Vesell, E.S.

    1981-01-01

    Salt intake is restricted under clinical conditions for which thiazide diuretics are customarily used. Dietary iodide intake offsets any effect of thiazide on iodide loss. However, our correlation coefficients relating Na+ to Cl- to I- excretion indicate that as thiazide administration or sodium chloride intake increases renal Na+ and Cl- excretion, I- reabsorption by the nephron coordinately decreases. Increased sodium chloride and water intake by the dog doubled I-excretion rates. Hydrochlorothiazide increased the sodium chloride and water enhanced I-excretion rate as much as eight-fold. Without added NaCl, hydrochlorothiazide increased the excretion rate of 131I by three- to eightfold, acutely. Within five to seven days after 131I oral administration, hydrochlorothiazide (1 or 2 mg/kg twice daily) doubled the rate of 131I disappearance from plasma, reduced the fecal output of 131I, and increased its rate of renal excretion. When hydrochlorothiazide was administered, as much 131I was excreted in the first 24 hours as occurred in 48 hours when sodium chloride and water were given without hydrochlorothiazide. Thiazide administration in customary clinical dosage twice a day with substantial sodium chloride and water for the first two days after exposure to 131I, should therefore facilitate the safe excretion of 131I. This accelerated removal of 131I might be enhanced even more if thyroid uptake of 131I is blocked by administration of potassium iodide, as judged by the greater 131I recovery from thyroidectomized dogs

  6. 40 CFR 721.10097 - Disubstituted benzenesulfonic acid, alkali metal salt (generic).

    Science.gov (United States)

    2010-07-01

    ... chemical substance identified generically as disubstituted benzenesulfonic acid, alkali metal salt (PMN P... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Disubstituted benzenesulfonic acid, alkali metal salt (generic). 721.10097 Section 721.10097 Protection of Environment ENVIRONMENTAL...

  7. Salt effects on isotope partitioning and their geochemical implications: An overview

    International Nuclear Information System (INIS)

    Horita, J.; Cole, D.R.; Fortier, S.M.

    1996-01-01

    Essential to the use of stable isotopes as natural tracers and geothermometers is the knowledge of equilibrium isotope partitioning between different phases and species, which is usually a function of temperature only. The one exception known to date is oxygen and hydrogen isotope fractionation between liquid water and other phases (steam, gases, minerals), which changes upon the addition of salts to water, i.e., the isotope salt salt effect. Our knowledge of this effect, the difference between activity and composition (a-X) of isotopic water molecules in salt solutions, is very limited and controversial, especially at elevated temperatures. For the last several years, we have been conducting a detailed, systematic experimental study at Oak Ridge National Laboratory to determine the isotope salt effects from room temperature to elevated temperatures (currently to 500 degree C). From this effort, a simple, coherent picture of the isotope salt effect is emerging, that differs markedly from the complex results reported in the literature. In this communication, we present an overview on the isotope salt effect, obtained chiefly from our study. Observed isotope salt effects in salt solutions are significant even at elevated temperatures. The importance and implications of the isotope salt effect for isotopic studies of brine-dominated systems are also discussed in general terms

  8. Numerical modelling of two-layer shallow water flow in microtidal salt-wedge estuaries: Finite volume solver and field validation

    Directory of Open Access Journals (Sweden)

    Krvavica Nino

    2017-03-01

    Full Text Available A finite volume model for two-layer shallow water flow in microtidal salt-wedge estuaries is presented in this work. The governing equations are a coupled system of shallow water equations with source terms accounting for irregular channel geometry and shear stress at the bed and interface between the layers. To solve this system we applied the Q-scheme of Roe with suitable treatment of source terms, coupling terms, and wet-dry fronts. The proposed numerical model is explicit in time, shock-capturing and it satisfies the extended conservation property for water at rest. The model was validated by comparing the steady-state solutions against a known arrested salt-wedge model and by comparing both steady-state and time-dependant solutions against field observations in Rječina Estuary in Croatia. When the interfacial friction factor λi was chosen correctly, the agreement between numerical results and field observations was satisfactory.

  9. Groundwater and surface water dynamics of Na and Cl in an urban stream: effects of road salts

    Science.gov (United States)

    AbstractRoad salts are a growing environmental and health concern in urban watersheds. We examined groundwater (GW) and surface water (SW) dynamics of Na and Cl in an urban stream, Minebank Run (MBR), MD. We observed an increasing salinity trend in this restored stream. Current b...

  10. Problems of evaluating isotope analysis of concentrated salt solutions in potash mines

    International Nuclear Information System (INIS)

    Schmiedl, H.D.

    1980-01-01

    Three problems of quantitative evaluation of analytic D and 18 O isotope data of concentrated salt solutions are discussed: (1) Consideration of the influence of admixtures of hydrated salts in determining meteoric or marine water fractions in a concentrated salt solution, (2) analytic accuracy and detection limits in determining meteoric water in salt solutions, and (3) processes of isotopic exchange with reservoir rock and sample matrix

  11. The Corrosion Behavior of Cold-Rolled 304 Stainless Steel In Salt Spray Environments

    International Nuclear Information System (INIS)

    Chiang, M.F.; Young, M.C.; Huang, J.Y.

    2011-01-01

    Saline corrosion is one of the major degradation mechanisms for stainless steel type 304 (SS304) dry storage cask during the spent fuel interim storage period. Slow strain rate test (SSRT) and neutral salt spray test (NSS) were performed at 85 degrees Celsius and 200 degrees Celsius with 0.5 wt% sodium chloride mist sprayed on the cold-rolled SS304 specimens of different degrees of reduction in this study. The weight changes of the NSS specimens tested at 85 degrees Celsius for 2000 hours differed greatly from those at 200 degrees Celsius. The weight loss of NSS specimens was not significant at 85 degrees Celsius but the weight gain decreased gradually with increasing the cold-rolled reduction. The yield strength (YS) and ultimate tensile stress (UTS) values obtained from the SSRT tests for lightly cold-rolled specimens in the salt spray environment at 85 degrees Celsius and 200 degrees Celsius are slightly lower than in air. But for those with 20% reductions, the specimen strengths were no longer changed by the saline corrosion. The preliminary results demonstrated that the quality and performance of cold-rolled SS304 is acceptable for fabrication of dry storage casks. However, more work on the corrosion behavior of cold-rolled stainless steel in the saline atmosphere is needed to better understand its long-term performance.

  12. Detection of plant adaptation responses to saline environment in rhizosphere using microwave sensing

    International Nuclear Information System (INIS)

    Shimomachi, T.; Kobashikawa, C.; Tanigawa, H.; Omoda, E.

    2008-01-01

    The physiological adaptation responses in plants to environmental stress, such as water stress and salt stress induce changes in physicochemical conditions of the plant, since formation of osmotic-regulatory substances can be formed during the environmental adaptation responses. Strong electrolytes, amino acids, proteins and saccharides are well-known as osmoregulatory substances. Since these substances are ionic conductors and their molecules are electrically dipolar, it can be considered that these substances cause changes in the dielectric properties of the plant, which can be detected by microwave sensing. The dielectric properties (0.3 to 3GHz), water content and water potential of plant leaves which reflect the physiological condition of the plant under salt stress were measured and analyzed. Experimental results showed the potential of the microwave sensing as a method for monitoring adaptation responses in plants under saline environment and that suggested the saline environment in rhizosphere can be detected noninvasively and quantitatively by the microwave sensing which detects the changes in complex dielectric properties of the plant

  13. GmWRKY53, a water- and salt-inducible soybean gene for rapid dissection of regulatory elements in BY-2 cell culture

    Science.gov (United States)

    Tripathi, Prateek; Rabara, Roel C.; Lin, Jun; Rushton, Paul J.

    2013-01-01

    Drought is the major cause of crop losses worldwide. Water stress-inducible promoters are important for understanding the mechanisms of water stress responses in crop plants. Here we utilized tobacco (Nicotiana tabacum L.) Bright Yellow 2 (BY-2) cell system in presence of polyethylene glycol, salt and phytohormones. Extension of the system to 85 mM NaCl led to inducibility of up to 10-fold with the water stress and salt responsive soybean GmWRKY53 promoter. Upon ABA and JA treatment fold inducibility was up to 5-fold and 14-fold, respectively. Thus, we hypothesize that GmWRKY53 could be used as potential model candidate for dissecting drought regulatory elements as well as understanding crosstalk utilizing a rapid heterologous system of BY-2 culture. PMID:23511199

  14. Salt lakes of Western Australia - Natural abiotic formation of volatile organic compounds

    Science.gov (United States)

    Krause, T.; Studenroth, S.; Mulder, I.; Tubbesing, C.; Kotte, K.; Ofner, J.; Junkermann, W.; Schöler, H. F.

    2012-04-01

    Western Australia is a semi-/arid region that is heavily influenced by global climate change and agricultural land use. The area is known for its many ephemeral saline and hypersaline lakes with a wide range of hydrogeochemical parameters that have gradually changed over the last fifty years. Historically, the region was covered by eucalyptus trees and shrubs, but was cleared mainly within 10 years after WWII to make room for wheat and live stock. After the clearance of the deep rooted native plants the groundwater started to rise, bringing increased amounts of dissolved salts and minerals to the surface and discharging them into streams and lakes. Thus most of Western Australia is influenced by secondary salinisation (soil salting) [1]. Another problem is that the discharged minerals affect the pH of ground and surface water, which ranges from acidic to slightly basic. During the 2011 campaign surface water was measured with a pH between 2.5 and 7.1. Another phenomenon in Western Australia is the decrease of rainfall over the last decades assumed to be linked to the secondary salinisation. The rising saline and mineral rich groundwater increases the biotical and abiotical activity of the salt lakes. Halogenated and non-halogenated volatile organic compounds emitted from those lakes undergo fast oxidation and chemical reactions to form small particles modifying cloud microphysics and thus suppressing rain events [2]. Our objective is to gain a better understanding of this extreme environment with its hypersaline acidic lakes with regard to the potential abiotic formation of volatile organic compounds and its impact on the local climate. In spring 2011 fifty-three sediment samples from ten salt lakes in the Lake King region where taken, freeze-dried and ground. In order to simulate the abiotic formation of volatile organic compounds the soil samples were resuspended with water in gas-tight headspace vials. The headspace was measured using a purge and trap GC

  15. Criticality considerations for salt-cake disolution in DOE waste tanks

    International Nuclear Information System (INIS)

    Trumble, E.F.; Niemer, K.A.

    1995-01-01

    A large amount of high-level waste is being stored in the form of salt cake at the Savannah River site (SRS) in large (1.3 x 106 gal) underground tanks awaiting startup of the Defense Waste Processing Facility (DWPF). This salt cake will be dissolved with water, and the solution will be fed to DWPF for immobilization in borosilicate glass. Some of the waste that was transferred to the tanks contained enriched uranium and plutonium from chemical reprocessing streams. As water is added to these tanks to dissolve the salt cake, the insoluble portion of this fissile material will be left behind in the tank as the salt solution is pumped out. Because the salt acts as a diluent to the fissile material, the process of repeated water addition, salt dissolution, and salt solution removal will act as a concentrating mechanism for the undissolved fissile material that will remain in the tank. It is estimated that tank 41 H at SRS contains 20 to 120 kg of enriched uranium, varying from 10 to 70% 235 U, distributed nonuniformly throughout the tank. This paper discusses the criticality concerns associated with the dissolution of salt cake in this tank. These concerns are also applicable to other salt cake waste tanks that contain significant quantities of enriched uranium and/or plutonium

  16. DENITRIFICATION ENZYME ACTIVITY OF FRINGE SALT MARSHES IN NEW ENGLAND (USA)

    Science.gov (United States)

    Coastal salt marshes are a buffer between the uplands and adjacent coastal waters in New England (USA). With increasing N loads from developed watersheds, salt marshes could play an important role in the water quality maintenance of coastal waters. In this study we examined seaso...

  17. Assessment and Comparison of salt Content in Mangrove Plants in Sri Lanka

    Directory of Open Access Journals (Sweden)

    N. P. Dissanayake

    2009-09-01

    Full Text Available Due to the predicted threats of global warming and sea level rise, the salt tolerance and salt accumulative abilities of plants have become popular contentious topics. Mangroves are one of the major groups of salt tolerant plants and several mechanisms are known as instrumental in their salt tolerance. Salt excretion through leaf drop is given as one, but its validity is questioned by some recent works compelling the necessity for further studies. Knowledge of the salt contents in different mangrove plants is a pre requisite for such studies. Hence, this study aimed to quantify and compare the salt content in mature leaves of nine mangrove species in Sri Lanka., i.e. Aegiceras corniculatum, Avicennia marina, Avicennia officinalis, Bruguiera gymnorrhiza, Bruguiera sexangula, Ceriops tagal, Excoecaria agallocha, Lumnitzera racemosa, Rhizophora apiculata and Rhizophora mucronata which are growing in the same mangrove system; the Rekawa lagoon in Sri Lanka. Two species of non mangrove plants, Gliricidia sepium and Artocarpus heterophyllus, which were growing in inland areas were also selected for comparison. The concentration of Na+ in leaves was considered as a measure of the salt concentration. The Na+ in leaves was extracted by acid digestion and quantified by flame photometry. The salt content of mangroves was measured under two contrasting hydrological situations: at the highest and lowest water levels of the lagoon. Rekawa lagoon can be considered as a ‘barrier built estuary’, the highest water level occurs when the lagoon mouth is blocked due to the formation of the sand bar and the water level is increased by fresh water inflow, inundating the total mangrove area and decreasing the soil/water salinity. The water level of the lagoon becomes lowest when the lagoon mouth is opened (naturally or by dredging and lagoon water is flushed out to the sea. Then the salinity of lagoon water becomes high due to sea water influx. The results showed

  18. Hydrology and surface morphology of the Bonneville Salt Flats and Pilot Valley Playa, Utah

    Science.gov (United States)

    Lines, Gregory C.

    1979-01-01

    The Bonneville Salt Flats and Pilot Valley are in the western part of the Great Salt Lake Desert in northwest Utah. The areas are separate, though similar, hydrologic basins, and both contain a salt crust. The Bonneville salt crust covered about 40 square miles in the fall of 1976, and the salt crust in Pilot Valley covered 7 square miles. Both areas lack any noticeable surface relief (in 1976, 1.3 feet on the Bonneville salt crust and 0.3 foot on the Pilot Valley salt crust).The salt crust on the Salt Flats has been used for many years for automobile racing, and brines from shallow lacustrine deposits have been used for the production of potash. In recent years, there has been an apparent conflict between these two major uses of the area as the salt crust has diminished in both thickness and extent. Much of the Bonneville Racetrack has become rougher, and there has also been an increase in the amount of sediment on the south end of the racetrack. The Pilot Valley salt crust and surrounding playa have been largely unused.Evaporite minerals on the Salt Flats and the Pilot Valley playa are concentrated in three zones: (1) a carbonate zone composed mainly of authigenic clay-size carbonate minerals, (2) a sulfate zone composed mainly of authigenic gypsum, and (3) a chloride zone composed of crystalline halite (the salt crust). Five major types of salt crust were recognized on the Salt Flats, but only one type was observed in Pilot Valley. Geomorphic differences in the salt crust are caused by differences in their hydrologic environments. The salt crusts are dynamic features that are subject to change because of climatic factors and man's activities.Ground water occurs in three distinct aquifers in much of the western Great Salt Lake Desert: (1) the basin-fill aquifer, which yields water from conglomerate in the lower part of the basin fill, (2) the alluvial-fan aquifer, which yields water from sand and gravel along the western margins of both playas, and (3) the

  19. [Effects of salt stress on physiological characters and salt-tolerance of Ulmus pumila in different habitats].

    Science.gov (United States)

    Liu, Bing-Xiang; Wang, Zhi-Gang; Liang, Hai-Yong; Yang, Min-Sheng

    2012-06-01

    Taking the Ulmus pumila seedlings from three different habitats (medium-, mild-, and non-saline soils) as test materials, an experiment was conducted to study their salt-tolerance thresholds and physiological characteristic under different levels (0, 2, 4, 6, 8, and 10 g X kg(-1)) of salt stress. With increasing level of the salt stress, the seedlings taken from medium- and mild- saline habitats had a lower increment of leaf membrane permeability, Na+ content, and Na+/K+ but a higher increment of leaf proline, soluble sugar, and K+ contents, and a lower decrement of leaf starch content, net photosynthetic rate, transpiration rate, intercellular CO2 concentration, and stomatic conductance, as compared with the seedlings taken from non-saline habitat. The salt-tolerance thresholds of the seedlings taken from different habitats were in the order of medium- saline habitat (7.76 g X kg(-1)) > mild- saline habitat (7.37 g X kg(-1)) > non-saline habitat (6.95 g X kg(-1)). It was suggested that the U. pumila seedlings in medium- and mild-saline habitats had a stronger adaptability to saline soil environment than the U. pumila seedlings in non-saline soil environment.

  20. Saline agriculture in Mediterranean environments

    Directory of Open Access Journals (Sweden)

    Albino Maggio

    2011-03-01

    Full Text Available Salinization is increasingly affecting world's agricultural land causing serious yield loss and soil degradation. Understanding how we could improve crop productivity in salinized environments is therefore critical to meet the challenging goal of feeding 9.3 billion people by 2050. Our comprehension of fundamental physiological mechanisms in plant salt stress adaptation has greatly advanced over the last decades. However, many of these mechanisms have been linked to salt tolerance in simplified experimental systems whereas they have been rarely functionally proven in real agricultural contexts. In-depth analyses of specific crop-salinity interactions could reveal important aspects of plant salt stress adaptation as well as novel physiological/agronomic targets to improve salinity tolerance. These include the developmental role of root vs. shoot systems respect to water-ion homeostasis, morphological vs. metabolic contributions to stress adaptation, developmental processes vs. seasonal soil salinity evolution, residual effects of saline irrigation in non-irrigated crops, critical parameters of salt tolerance in soil-less systems and controlled environments, response to multiple stresses. Finally, beneficial effects of salinization on qualitative parameters such as stress-induced accumulation of high nutritional value secondary metabolites should be considered, also. In this short review we attempted to highlight the multifaceted nature of salinity in Mediterranean agricultural systems by summarizing most experimental activity carried out at the Department of Agricultural Engineering and Agronomy of University of Naples Federico II in the last few years.

  1. Trifolium isthmocarpum Brot, a salt-tolerant wild leguminous forage crop in salt-affected soils

    Directory of Open Access Journals (Sweden)

    Kawtar Bennani

    2013-08-01

    Full Text Available Plant scientists are investigating the potential of previously unexploited legume species where environmental and biological stresses constrain the use of more conventional forage crops or where these species are better suited to the needs of sustainable agriculture. Trifolium isthmocarpum Brot., Moroccan clover, occurs as a weed in different habitats in Morocco. It grows in moderately saline areas, where traditional forage legumes cannot be cultivated; however, it has not been widely studied despite its good palatability. The salt tolerance was studied between natural field conditions and glasshouse. The extensive field studies have recorded the species in many different habitats ranging from healthy agricultural lands to abandoned saline areas. The plants maintained high nodulation capacity (ranging between 60% and 97% and nitrogenase activities (average 2.04 µmol C2H4 plant-1 h-1 in different habitats. Shoot systems of plants collected from salt-affected soils exhibited higher concentrations of Na+ and Cl- than those collected from healthy soils. Greenhouse experiments showed that germination percentage and vigor value of the studied species was not significantly (P > 0.05 affected at 160 mM NaCl, and that 25% of the germination ability was maintained when growing on substrats containing 240 mM NaCl. The growth rate of seedlings was not signicantly affected by 160 mM NaCl but was reduced by 38% under 240 mM NaCl. Leaf succulence and indices of leaf water status did not differ among the salt treatments, whereas relative water content was reduced by only 8% and water content at saturation increased by about 12% at high salt concentrations in the growing medium. This study suggest recommending the cultivation of T. isthmocarpum in salt-affected soils, which are widespread and pose a problem for the farmers of Morocco and other countries in the world’s arid belt.

  2. Long-distance flights and high-risk breeding by nomadic waterbirds on desert salt lakes.

    Science.gov (United States)

    Pedler, Reece D; Ribot, Raoul F H; Bennett, Andrew T D

    2018-02-01

    Understanding and conserving mobile species presents complex challenges, especially for animals in stochastic or changing environments. Nomadic waterbirds must locate temporary water in arid biomes where rainfall is highly unpredictable in space and time. To achieve this they need to travel over vast spatial scales and time arrival to exploit pulses in food resources. How they achieve this is an enduring mystery.  We investigated these challenges in the colonial-nesting Banded Stilt (Cladorhynchus leucocephalus), a nomadic shorebird of conservation concern. Hitherto, Banded Stilts were hypothesized to have only 1-2 chances to breed during their long lifetime, when flooding rain fills desert salt lakes, triggering mass-hatching of brine shrimp. Over 6 years, we satellite tagged 57 individuals, conducted 21 aerial surveys to detect nesting colonies on 14 Australian desert salt lakes, and analyzed 3 decades of Landsat and MODIS satellite imagery to quantify salt-lake flood frequency and extent. Within days of distant inland rainfall, Banded Stilts flew 1,000-2,000 km to reach flooded salt lakes. On arrival, females laid over half their body weight in eggs. We detected nesting episodes across the species' range at 7 times the frequency reported during the previous 80 years. Nesting colonies of thousands formed following minor floods, yet most were subsequently abandoned when the water rapidly evaporated prior to egg hatching. Satellite imagery revealed twice as many flood events sufficient for breeding-colony initiation as recorded colonies, suggesting that nesting at remote sites has been underdetected. Individuals took risk on uncertain breeding opportunities by responding to frequent minor flood events between infrequent extensive flooding, exemplifying the extreme adaptability and trade-offs of species exploiting unstable environments. The conservation challenges of nest predation by overabundant native gulls and anthropogenic modifications to salt lakes filling

  3. Jahani salt diapir, Iran: Hydrogeology, karst features and effect on surroundings environment

    Czech Academy of Sciences Publication Activity Database

    Abirifard, M.; Raeisi, E.; Zarei, M.; Zare, M.; Filippi, Michal; Bruthans, J.; Talbot, J.

    2017-01-01

    Roč. 46, č. 3 (2017), s. 445-457 ISSN 0392-6672 Institutional support: RVO:67985831 Keywords : salt diapir * brine spring * sinkhole * flow model * halite dissolution * salt karst Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 1.439, year: 2016

  4. Stress corrosion cracking of austenitic weld deposits in a salt spray environment

    Energy Technology Data Exchange (ETDEWEB)

    Cai, J.B. [Institute of Materials Engineering, National Taiwan Ocean University, Keelung 202, Taiwan (China); Yu, C.; Shiue, R.K. [Department of Materials Engineering, National Taiwan University, Taipei 106, Taiwan (China); Tsay, L.W., E-mail: b0186@mail.ntou.edu.tw [Institute of Materials Engineering, National Taiwan Ocean University, Keelung 202, Taiwan (China)

    2015-10-15

    ER 308L and 309LMo were utilized as the filler metals for the groove and overlay welds of a 304L stainless steel substrate, which was prepared via a gas tungsten arc-welding process in multiple passes. U-bend and weight-loss tests were conducted by testing the welds in a salt spray containing 10 wt% NaCl at 120 °C. The dissolution of the skeletal structure in the fusion zone (FZ) caused the stress corrosion cracking (SCC) of the weld. The FZ in the cold-rolled condition showed the longest single crack length in the U-bend tests. Moreover, sensitization treatment at 650 °C for 10 h promoted the formation of numerous fine cracks, which resulted in a high SCC susceptibility. The weight loss of the deposits was consistent with the SCC susceptibility of the welds in a salt spray. The 309LMo deposit was superior to the 308L deposit in the salt spray. - Highlights: • ER 308L and 309LMo were utilized as fillers for the groove and overlay welds of a 304L SS. • U-bend and weight-loss tests in a salt spray containing 10 wt% NaCl at 120 °C were performed. • The dissolution of solidified structure caused the SCC of the welds in a salt spray. • Sensitization treatment increased the weight loss and SCC susceptibility of the deposits. • The weight loss of the weld deposits was related to their SCC susceptibility in a salt spray.

  5. Stress corrosion cracking of austenitic weld deposits in a salt spray environment

    International Nuclear Information System (INIS)

    Cai, J.B.; Yu, C.; Shiue, R.K.; Tsay, L.W.

    2015-01-01

    ER 308L and 309LMo were utilized as the filler metals for the groove and overlay welds of a 304L stainless steel substrate, which was prepared via a gas tungsten arc-welding process in multiple passes. U-bend and weight-loss tests were conducted by testing the welds in a salt spray containing 10 wt% NaCl at 120 °C. The dissolution of the skeletal structure in the fusion zone (FZ) caused the stress corrosion cracking (SCC) of the weld. The FZ in the cold-rolled condition showed the longest single crack length in the U-bend tests. Moreover, sensitization treatment at 650 °C for 10 h promoted the formation of numerous fine cracks, which resulted in a high SCC susceptibility. The weight loss of the deposits was consistent with the SCC susceptibility of the welds in a salt spray. The 309LMo deposit was superior to the 308L deposit in the salt spray. - Highlights: • ER 308L and 309LMo were utilized as fillers for the groove and overlay welds of a 304L SS. • U-bend and weight-loss tests in a salt spray containing 10 wt% NaCl at 120 °C were performed. • The dissolution of solidified structure caused the SCC of the welds in a salt spray. • Sensitization treatment increased the weight loss and SCC susceptibility of the deposits. • The weight loss of the weld deposits was related to their SCC susceptibility in a salt spray.

  6. Dissolution of the Mors salt dome

    International Nuclear Information System (INIS)

    Lindstroem Jensen, K.E.

    1982-01-01

    Regardless of the interpretation of the measured salinity profiles above the Mors salt dome, they can at most be the result of dissolution rates of about 0.004 mm per year. This means that it would take more than 2.5 mill. years to dissolve 10 m of salt. Variations in groun water velocity and cap rock porosity will not significantly change this condition. The stability of the Mors salt dome is therefore not affected by dissolution of the dome. (EG)

  7. [Study on quality standards of decoction pieces of salt Alpinia].

    Science.gov (United States)

    Li, Wenbing; Hu, Changjiang; Long, Lanyan; Huang, Qinwan; Xie, Xiuqiong

    2010-12-01

    To establish the quality criteria for decoction pieces of salt Alpinia. Decoction pieces of salt Alpinia were measured with moisture, total ash, acid-insoluble ash, water-extract and volatile oils according to the procedures recorded in the Chinese Pharmacopoeia 2010. The content of Nootkatone was determined by HPLC, and NaCl, by chloridion electrode method. We obtained results of total ash, acid-insoluble ash, water-extract and volatile oils of 10 batches of decoction pieces of salt Alpinia moisture; Meanwhile we set the HPLC and chloridion electrode method. This research established a fine quality standard for decoction pieces of salt Alpinia.

  8. Genetic Adaptation to Salt Stress in Experimental Evolution of Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Aifen; Hillesland, Kristina; He, Zhili; Joachimiak, Marcin; Zane, Grant; Dehal, Paramvir; Arkin, Adam; Stahl, David; Wall, Judy; Hazen, Terry; Zhou, Jizhong; Baidoo, Edward; Benke, Peter; Mukhopadhyay, Aindrila

    2010-05-17

    High salinity is one of the most common environmental stressors. In order to understand how environmental organisms adapt to salty environment, an experiment evolution with sulfate reducing bacteria Desulfovibrio vugaris Hildenborough was conducted. Control lines and salt-stressed lines (6 lines each) grown in minimal medium LS4D or LS4D + 100 mM NaCl were transferred for 1200 generations. The salt tolerance was tested with LS4D supplemented with 250 mM NaCl. Statistical analysis of the growth data suggested that all lines adapted to their evolutionary environment. In addition, the control lines performed better than the ancestor with faster growth rate, higher biomass yield and shorter lag phase under salty environment they did not evolve in. However, the salt-adapted lines performed better than the control lines on measures of growth rate and yield under salty environment, suggesting that the salt?evolved lines acquired mutations specific to having extra salt in LS4D. Growth data and gene transcription data suggested that populations tended to improve till 1000 generations and active mutations tended to be fixed at the stage of 1000 generations. Point mutations and insertion/deletions were identified in isolated colonies from salt-adapted and control lines via whole genome sequencing. Glu, Gln and Ala appears to be the major osmoprotectant in evolved salt-stressed line. Ongoing studies are now characterizing the contribution of specific mutations identified in the salt-evolved D. vulgaris.

  9. Solution of tasks concerning protection of underground waters and environment

    International Nuclear Information System (INIS)

    Dubinchuk, V.T.; Polyakov, V.A.

    1988-01-01

    Use of environment isotopes and indicators in solving problems concerning protection of underground waters and environment is discussed. The applied methods permit to study dynamics of underground waters and to estimate risk of their contamination; to follow the surface and underground waters interrelations using data on infiltration recharge estimation etc. Complex nuclear-geophysical and isotope studies may be applied to detect hindered water exchange zones where liquid industrial waste disposals could be placed with minimum damage to environment. 48 refs.; 74 figs.; 22 tabs

  10. Plant aquaporins: new perspectives on water and nutrient uptake in saline environment.

    Science.gov (United States)

    del Martínez-Ballesta, M C; Silva, C; López-Berenguer, C; Cabañero, F J; Carvajal, M

    2006-09-01

    The mechanisms of salt stress and tolerance have been targets for genetic engineering, focusing on ion transport and compartmentation, synthesis of compatible solutes (osmolytes and osmoprotectants) and oxidative protection. In this review, we consider the integrated response to salinity with respect to water uptake, involving aquaporin functionality. Therefore, we have concentrated on how salinity can be alleviated, in part, if a perfect knowledge of water uptake and transport for each particular crop and set of conditions is available.

  11. Ground water input to coastal salt ponds of southern Rhode Island estimated using 226Ra as a tracer.

    Science.gov (United States)

    Scott, M K; Moran, S B

    2001-01-01

    The naturally occurring radionuclide 226Ra (t1/2 = 1600 years) was used as a tracer to determine ground water input to Point Judith, Potter, Green Hill and Ninigret ponds in southern Rhode Island. Measurements of 226Ra activity were made in samples collected from salt ponds, pore waters, sediments, and local ground water wells during June-August, 1997. These results were combined with a simple box model to derive ground water input fluxes of 0.1-0.3 cm3 cm-2 d-1 (2-5 x 10(7) L d-1), which are comparable to previous estimates of ground water input to these ponds.

  12. Brine Transport Experiments in Granular Salt

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Amy B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-06

    To gain confidence in the predictive capability of numerical models, experimental validation must be performed to ensure that parameters and processes are correctly simulated. The laboratory investigations presented herein aim to address knowledge gaps for heat-generating nuclear waste (HGNW) disposal in bedded salt that remain after examination of prior field and laboratory test data. Primarily, we are interested in better constraining the thermal, hydrological, and physicochemical behavior of brine, water vapor, and salt when moist salt is heated. The target of this work is to use run-of-mine (RoM) salt; however during FY2015 progress was made using high-purity, granular sodium chloride.

  13. Saltstone: cement-based waste form for disposal of Savannah River Plant low-level radioactive salt waste

    International Nuclear Information System (INIS)

    Langton, C.A.

    1984-01-01

    Defense waste processing at the Savannah River Plant will include decontamination and disposal of approximately 400 million liters of waste containing NaNO 3 , NaOH, Na 2 SO 4 , and NaNO 2 . After decontamination, the salt solution is classified as low-level waste. A cement-based waste form, saltstone, has been designed for disposal of Savannah River Plant low-level radioactive salt waste. Bulk properties of this material have been tailored with respect to salt leach rate, permeability, and compressive strength. Microstructure and mineralogy of leached and unleached specimens were characterized by SEM and x-ray diffraction analyses. The disposal system for the DWPF salt waste includes reconstitution of the crystallized salt as a solution containing 32 wt % solids. This solution will be decontaminated to remove 137 Cs and 90 Sr and then stabilized in a cement-based waste form. Laboratory and field tests indicate that this stabilization process greatly reduces the mobility of all of the waste constitutents in the surface and near-surface environment. Engineered trenches for subsurface burial of the saltstone have been designed to ensure compatibility between the waste form and the environment. The total disposal sytem, saltstone-trench-surrounding soil, has been designed to contain radionuclides, Cr, and Hg by both physical encapsulation and chemical fixation mechanisms. Physical encapsulation of the salts is the mechanism employed for controlling N and OH releases. In this way, final disposal of the SRP low-level waste can be achieved and the quality of the groundwater at the perimeter of the disposal site meets EPA drinking water standards

  14. Salt Plug Formation Caused by Decreased River Discharge in a Multi-channel Estuary

    OpenAIRE

    Shaha, Dinesh Chandra; Cho, Yang-Ki

    2016-01-01

    Freshwater input to estuaries may be greatly altered by the river barrages required to meet human needs for drinking water and irrigation and prevent salt water intrusion. Prior studies have examined the salt plugs associated with evaporation and salt outwelling from tidal salt flats in single-channel estuaries. In this work, we discovered a new type of salt plug formation in the multi-channel Pasur River Estuary (PRE) caused by decreasing river discharges resulting from an upstream barrage. ...

  15. Large-scale dynamic compaction of natural salt

    International Nuclear Information System (INIS)

    Hansen, F.D.; Ahrens, E.H.

    1996-01-01

    A large-scale dynamic compaction demonstration of natural salt was successfully completed. About 40 m 3 of salt were compacted in three, 2-m lifts by dropping a 9,000-kg weight from a height of 15 m in a systematic pattern to achieve desired compaction energy. To enhance compaction, 1 wt% water was added to the relatively dry mine-run salt. The average compacted mass fractional density was 0.90 of natural intact salt, and in situ nitrogen permeabilities averaged 9X10 -14 m 2 . This established viability of dynamic compacting for placing salt shaft seal components. The demonstration also provided compacted salt parameters needed for shaft seal system design and performance assessments of the Waste Isolation Pilot Plant

  16. Advances in molten salt electrochemistry towards future energy systems

    International Nuclear Information System (INIS)

    Ito, Yasuhiko

    2005-01-01

    This review article describes some selected novel molten salt electrochemical processes which have been created/developed by the author and his coworkers, with emphasis on the applications towards future energy systems. After showing a perspective of the applications of molten salt electrochemistry from the viewpoints of energy and environment, several selected topics are described in detail, which include nitride fuel cycle in a nuclear field, hydrogen energy system coupled with ammonia economy, thermally regenerative fuel cell systems, novel Si production process for solar cell and novel molten salt electrochemical processes for various energy and environment related functional materials including nitrides, rare earth-transition metal alloys, fine particles obtained by plasma-induced electrolysis, and carbon film. And finally, the author stresses again, the importance and potential of molten salt electrochemistry, and encourages young students, scientists and researchers to march in a procession hand in hand towards a bright future of molten salts. (author)

  17. Effect of winds and waves on salt intrusion in the Pearl River estuary

    Science.gov (United States)

    Gong, Wenping; Lin, Zhongyuan; Chen, Yunzhen; Chen, Zhaoyun; Zhang, Heng

    2018-02-01

    Salt intrusion in the Pearl River estuary (PRE) is a dynamic process that is influenced by a range of factors and to date, few studies have examined the effects of winds and waves on salt intrusion in the PRE. We investigate these effects using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system applied to the PRE. After careful validation, the model is used for a series of diagnostic simulations. It is revealed that the local wind considerably strengthens the salt intrusion by lowering the water level in the eastern part of the estuary and increasing the bottom landward flow. The remote wind increases the water mixing on the continental shelf, elevates the water level on the shelf and in the PRE and pumps saltier shelf water into the estuary by Ekman transport. Enhancement of the salt intrusion is comparable between the remote and local winds. Waves decrease the salt intrusion by increasing the water mixing. Sensitivity analysis shows that the axial down-estuary wind, is most efficient in driving increases in salt intrusion via wind straining effect.

  18. Radionuclide concentrations in salt pans in the coastal area of Cox's Bazar, Bangladesh

    International Nuclear Information System (INIS)

    Alam, M.N.; Chowdhury, M.I.; Zafar, M.; Kamal, M.; Ghose, S.; Kamal, A.H.M.

    1998-01-01

    Radionuclide concentrations of 226 Ra, 232 Th, 137 Cs, 134 Cs and 40 K in samples of water, soil and salt from three gradients of salt pans (reservoir, condenser and crystalliser) in the coastal area of Cox's Bazar, Bangladesh and in samples of refined salts were measured using γ-spectrometry. The activities of 226 Ra in the salt pans were found to be in the range 3·18±1·02 Bq l -1 in water to 25·17±5·76 Bq kg -1 in soil; 232 Th activities were 2·01±0·89 Bq l -1 in water to 42·33±2·54 Bq kg -1 in soil, and 40 K activities ranged from 109·60±27·77 Bq l -1 in water to 651·89±65·89 Bq kg -1 in soil. No 137 Cs or 134 Cs was found in soil, salt and water from the salt pans investigated. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  19. Method to synthesize dense crystallized sodalite pellet for immobilizing halide salt radioactive waste

    International Nuclear Information System (INIS)

    Koyama, Tadafumi.

    1994-01-01

    A method is described for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities

  20. Molecular Dynamics Simulation of Salt Diffusion in Polyelectrolyte Assemblies.

    Science.gov (United States)

    Zhang, Ran; Duan, Xiaozheng; Ding, Mingming; Shi, Tongfei

    2018-06-05

    The diffusion of salt ions and charged probe molecules in polyelectrolyte assemblies is often assumed to follow a theoretical hopping model, in which the diffusing ion is hopping between charged sites of chains based on electroneutrality. However, experimental verification of diffusing pathway at such microscales is difficult, and the corresponding molecular mechanisms remain elusive. In this study, we perform all-atom molecular dynamics (MD) simulations of salt diffusion in polyelectrolyte (PE) assembly of poly (sodium 4-styrenesulfonate) (PSS) and poly (diallyldimethylammonium chloride) (PDAC). Besides the ion hopping mode, the diffusing trajectories are found presenting common features of a jump process, i.e., subjecting to PE relaxation, water pockets in the structure open and close, thus the ion can move from one pocket to another. Anomalous subdiffusion of ions and water is observed due to the trapping scenarios in these water pockets. The jump events are much rarer compared with ion hopping but significantly increases salt diffusion with increasing temperature. Our result strongly indicates that salt diffusion in hydrated PDAC/PSS is a combined process of ion hopping and jump motion. This provides new molecular explanation for the coupling of salt motion with chain motion and the nonlinear increase of salt diffusion at glass transition temperature.

  1. Polder Effects on Sediment-to-Soil Conversion: Water Table, Residual Available Water Capacity, and Salt Stress Interdependence

    Directory of Open Access Journals (Sweden)

    Raymond Tojo Radimy

    2013-01-01

    Full Text Available The French Atlantic marshlands, reclaimed since the Middle Age, have been successively used for extensive grazing and more recently for cereal cultivation from 1970. The soils have acquired specific properties which have been induced by the successive reclaiming and drainage works and by the response of the clay dominant primary sediments, that is, structure, moisture, and salinity profiles. Based on the whole survey of the Marais Poitevin and Marais de Rochefort and in order to explain the mechanisms of marsh soil behavior, the work focuses on two typical spots: an undrained grassland since at least 1964 and a drained cereal cultivated field. The structure-hydromechanical profiles relationships have been established thanks to the clay matrix shrinkage curve. They are confronted to the hydraulic functioning including the fresh-to-salt water transfers and to the recording of tensiometer profiles. The CE1/5 profiles supply the water geochemical and geophysical data by their better accuracy. Associated to the available water capacity calculation they allow the representation of the parallel evolution of the residual available water capacity profiles and salinity profiles according to the plant growing and rooting from the mesophile systems of grassland to the hygrophile systems of drained fields.

  2. Electrochemical studies of the corrosion behavior of the fine-grained structural steel DIN W.Nr. 1.0566 between 55 and 90deg C in simulated salt brine repository environments

    International Nuclear Information System (INIS)

    Farvaque-Bera, A.M.; Leistikow, S.

    1991-05-01

    The electrochemical corrosion of the fine-grained structural steel DIN W. Nr. 1.0566 was tested between 55 and 90deg C in three simulated salt brines of similar compositions as analyzed for the Gorleben repository environment. As test parameters the temperature, the salt brine composition, the stirring velocity and the oxygen content as well as the state of the steel surface were varied. As experimental results are presented: (1) the free corrosion potentials of the steel in three brines, (2) Tafel plots of current densities as measured potentiodynamically in the anodic and cathodic vicinity of the corrosion potentials and being representative for the rate of metal dissolution, (3) the surface morphology of the corroded specimens. As mechanisms - in the absence of oxygen - the cathodic reduction of water and the anodic dissolution of iron are considered to prevail the corrosion reaction. It is shown that the applied electrochemical techniques are able to determine within an accelerated procedure the most important corrosion parameters in respect to their influence on rate of metal dissolution and morphology of corrosion attack. (orig.) [de

  3. Drinking water contributes to high salt consumption in young adults in coastal Bangladesh.

    Science.gov (United States)

    Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Phung, Dung; Malek, Abdul; Khan, Sheela; Chu, Cordia

    2016-04-01

    Increasing salinity of freshwater from environmental and anthropogenic influences is threatening the health of 35 million inhabitants in coastal Bangladesh. Yet little is known about the characteristics of their exposure to salt (sodium), a major risk factor for hypertension and related chronic diseases. This research examined sodium consumption levels and associated factors in young adults. We assessed spot urine samples for 282 participants (19-25 years) during May-June 2014 in a rural sub-district in southwestern coastal Bangladesh and measured sodium levels of their potable water sources. The significant factors associated with high sodium consumption were determined from logistic regression analyses. Mean sodium content in tube-well water (885 mg/L) was significantly higher than pond water (738 mg/L) (P = 0.01). Fifty three percent of subjects were consuming sodium at levels above the WHO recommended level (≥2 g/day). The users of tube-well water were more likely to consume sodium above this recommended level than pond water users. Salinity problems are projected to increase with climate change, and with large populations potentially at risk, appropriate public health and behavior-change interventions are an urgent priority for this vulnerable coastal region along with targeted research to better understand sodium exposure pathways and health benefits of alternative water supplies.

  4. Modeling Halophytic Plants in APEX for Sustainable Water and Agriculture

    Science.gov (United States)

    DeRuyter, T.; Saito, L.; Nowak, B.; Rossi, C.; Toderich, K.

    2013-12-01

    A major problem for irrigated agricultural production is soil salinization, which can occur naturally or can be human-induced. Human-induced, or secondary salinization, is particularly a problem in arid and semi-arid regions, especially in irrigated areas. Irrigated land has more than twice the production of rainfed land, and accounts for about one third of the world's food, but nearly 20% of irrigated lands are salt-affected. Many farmers worldwide currently seasonally leach their land to reduce the soil salt content. These practices, however, create further problems such as a raised groundwater table, and salt, fertilizer, and pesticide pollution of nearby lakes and groundwater. In Uzbekistan, a combination of these management practices and a propensity to cultivate 'thirsty' crops such as cotton has also contributed to the Aral Sea shrinking nearly 90% by volume since the 1950s. Most common agricultural crops are glycophytes that have reduced yields when subjected to salt-stress. Some plants, however, are known as halophytic or 'salt-loving' plants and are capable of completing their life-cycle in higher saline soil or water environments. Halophytes may be useful for human consumption, livestock fodder, or biofuel, and may also be able to reduce or maintain salt levels in soil and water. To assess the potential for these halophytes to assist with salinity management, we are developing a model that is capable of tracking salinity under different management practices in agricultural environments. This model is interdisciplinary as it combines fields such as plant ecology, hydrology, and soil science. The US Department of Agriculture (USDA) model, Agricultural Policy/Environmental Extender (APEX), is being augmented with a salinity module that tracks salinity as separate ions across the soil-plant-water interface. The halophytes Atriplex nitens, Climacoptera lanata, and Salicornia europaea are being parameterized and added into the APEX model database. Field sites

  5. A comparison between evaporation ponds and evaporation surfaces as a source of the concentrated salt brine for salt gradient maintenance at Tajoura solar pond

    International Nuclear Information System (INIS)

    Ramadan, Abdulghani M.; Agha, Khairy R.; Abughres, M.

    2012-01-01

    One of the main problems that negatively affect the operation of salt gradient solar ponds and influence its thermal stability is the maintenance of salt gradient profile. Evaporation pond (EP) is designed to generate the salt which lost upward salt diffusion from the lower convective zone (LCZ) of the solar pond. Another attractive method is the evaporation surface facility (ES). Regions with moderate to high precipitation favor Evaporation Surface over Evaporation Ponds. Dry climates will generally favor Evaporation Ponds for the brine re-concentration. In previous studies [1-3], the authors have shown that the (EP) of Tajoura's Experimental Solar Pond (TESP) is under sized and can provide only about 30% of the salt required by a Salt Gradient Solar Pond (SGSP). The anticipated size of (EP) was estimated and presented in those studies under different design conditions, including Summer, Autumn and Spring designs, while the winter design was excluded due to the low rates of net evaporation during the winter season. In addition, the results presented were predicted for the first three years of operation. The daily variations of brine concentration in the (EP) of (TESP) and those based on different designs were predicted and discussed under different scenarios. The quantities of brine provided by the evaporation pond and that required by SGSP were predicted for both cases of surface water flushing (fresh water and sea-water) under the different design conditions as shown in Table 1. This paper investigates the differences between (EP) and (ES) both as a source for salt brine generation by evaporation. The effect of (EP) depth on the area ratio and daily variations of salt concentrations for three years of operation is shown. Results show that evaporation can be a reasonable method for salt brine generation. Reducing the depth of (EP) improves the capability of (EP) for brine re-concentration. It also increases the (EP) surface area for the same quantity of

  6. Water hydraulic applications in hazardous environments

    International Nuclear Information System (INIS)

    Siuko, M.; Koskinen, K.T.; Vilenius, M.J.

    1996-01-01

    Water hydraulic technology provides several advantages for devices operating in critical environment. Though water hydraulics has traditionally been used in very rough applications, gives recent strong development of components possibility to build more sophisticated applications and devices with similar capacity and control properties than those of oil hydraulics without the disadvantages of oil hydraulic systems. In this paper, the basic principles, possibilities and advantages of water hydraulics are highlighted, some of the most important design considerations are presented and recent developments of water hydraulic technology are presented. Also one interesting application area, ITER fusion reactor remote handling devices, are discussed. (Author)

  7. Partition/Ion-Exclusion Chromatographic Ion Stacking for the Analysis of Trace Anions in Water and Salt Samples by Ion Chromatography.

    Science.gov (United States)

    Akter, Fouzia; Saito, Shingo; Tasaki-Handa, Yuiko; Shibukawa, Masami

    2018-01-01

    A new analytical methodology for a simple and efficient on-line preconcentration of trace inorganic anions in water and salt samples prior to ion chromatographic determination is proposed. The preconcentration method is based on partition/ion-exclusion chromatographic ion stacking (PIEC ion stacking) with a hydrophilic polymer gel column containing a small amount of fixed anionic charges. The developed on-line PIEC ion stacking-ion chromatography method was validated by recovery experiments for the determination of nitrate in tap water in terms of both accuracy and precision, and the results showed the reliability of the method. The method proposed was also successfully applied to the determination of trace impurity nitrite and nitrate in reagent-grade salts of sodium sulfate. A low background level can be achieved since pure water is used as the eluant for the PIEC ion stacking. It is possible to reach sensitive detection at sub-μg L -1 levels by on-line PIEC ion stacking-ion chromatography.

  8. Investigation of the source of residual phthalate in sundried salt.

    Science.gov (United States)

    Kim, Jin Hyo; Lee, Jin Hwan; Kim, So-Young

    2014-03-01

    Phthalate contamination in sundried salt has recently garnered interest in Korea. Phthalate concentrations were investigated in Korean sundried salts, source waters, and aqueous extracts from polyvinyl chloride materials used in salt ponds. Preliminary screening results for phthalates in Korean sundried salts revealed that only di(2-ethylhexyl)phthalate (DEHP) was over the limit of detection, with an 8.6% detection rate, and the concentration ranged from below the limit of detection to 0.189 mg/kg. The tolerable daily intake contribution ratio of the salt was calculated to be only 0.001%. Residual phthalates were below 0.026 mg/liter in source water, and the aqueous extracted di-n-butylphthalate, benzylbutylphthalate, and DEHP, which are considered endocrine disruptors, were below 0.029 mg/kg as derived from the polyvinyl chloride materials in salt ponds. The transfer ratios of the six phthalates from seawater to sundried salts were investigated; transfer ratio was correlated with vapor pressure (r(2) = 0.9875). Thus, di-n-butylphthalate, benzylbutylphthalate, DEHP, and di-n-octylphthalate can be considered highly likely residual pollutants in some consumer salts.

  9. Near-field environment research at PNL relevant to brine migration phenomena

    International Nuclear Information System (INIS)

    Pederson, L.R.; Gray, W.J.; Hodges, F.N.

    1987-01-01

    Heat and radiation resulting from emplacement of a high level nuclear waste package in a repository in salt will cause physical and chemical changes in the host rock and any brines present. These changes may alter the performance of waste package materials. Gamma radiolysis decomposes water into hydrogen and oxygen, hydrogen peroxide, and various other free radical and ionic species. Gamma ray irradiation of rock salt decomposes that salt to sodium metal colloids and neutral chlorine (unknown form), changing both its physical and chemical properties. Sodium metal will react, if contacted by water, to form sodium hydroxide plus hydrogen gas, while chlorine will react to form hydrochloric plus hypochlorous acids. If irradiated salts are completely dissolved, little impact on the chemical environment is expected because the acids and bases formed will neutralize each other. Heat from the waste package can alter the chemistry of the host rock. Changes in temperature can also alter the chemistry of brines by precipitation of phases with retrograde solubility, addition of more soluble salt components to the brine, and by reaction with clays and other impurities in the salt. Some of these reactions could be accompanied by significant shifts in the pH. In experiments to date, no important changes in chemistry have been observed when typical Permian Basin intrusion or inclusion brines were heated up to 150 0 C with no excess site-specific salt present. When excess salt was included, acidic shifts were noted, increasing with brine-salt interaction time and temperature

  10. Effect of salt solutions on the radiosensitivity of mammalian cells as a function of the state of adhesion and the water structure

    Energy Technology Data Exchange (ETDEWEB)

    Moggach, P G; Lepock, J R; Kruuv, J [Waterloo Univ., Ontario (Canada). Dept. of Physics

    1979-11-01

    The radiation isodose survival curve of attached Chinese hamster (V79) cells, subjected to a wide concentration range of salt or sucrose solutions, was characterized by two maxima separated by a minimum. Cells were radioprotected at the maxima (high and low hypertonic salt concentrations) while they were radiosensitized at the minimum (intermediate hypertonic salt concentrations). Both cations and anions could alter the cellular radiosensitivity above and beyond the (osmotic) effect observed for cells treated with sucrose solutions. However, the basic curve shape, except in the case of sulphate salts, remained the same. When these experiments were repeated with single cells in suspension, the isodose survival curve was quite different in that high salt concentrations did not protect cells in suspension unlike the case with attached cells. The curve shape was also altered in that the second maximum was absent with many salt solutions. When multicellular spheroids were used for these experiments, the data resembled those for single cell suspensions rather than for attached cells. The radiation survival data for cells in suspension in salt solutions correlated with water proton spin lattice relaxation time (T/sub 1/) and, in hypo- and iso-tonic solutions, with cell volume.

  11. Geothermal studies of seven interior salt domes

    International Nuclear Information System (INIS)

    1983-06-01

    This report defines and compares the geothermal environments of eight selected Gulf Coast salt domes. The thermal regimes in and around Gulf Coast salt domes are not well documented. The data base used for this study is an accumulation of bottom-hole temperature readings from oil and gas exploration wells and temperature logs run for the National Waste Terminal Storage (NWTS) program. The bottom-hole tempreatures were corrected in order to estimate the actual geothermal environments. Prior thermal studies and models indicate temperatures in and around salt domes are elevated above the norm by 1 0 F to 25 0 F. Using existing geothermal data and accepted theory, geothermal gradients for the selected domes and surrounding sediments were estimated. This study concludes that salt domes within a given basin have similar geothermal gradients, but that the basins differ in average geothermal gradients. This relationship is probably controlled by deep basement structural trends. No evidence of residual heat of emplacement was found associated with any of the selected domes

  12. Counterion influence on chemical shifts in strychnine salts

    Energy Technology Data Exchange (ETDEWEB)

    Metaxas, Athena E.; Cort, John R.

    2013-05-01

    The highly toxic plant alkaloid strychnine is often isolated in the form of the anion salt of its protonated tertiary amine. Here we characterize the relative influence of different counterions on 1H and 13C chemical shifts in several strychnine salts in D2O, methanol-d4 (CD3OD) and chloroform-d (CDCl3) solvents. In organic solvents, but not in water, substantial variation in chemical shifts of protons near the tertiary amine was observed among different salts. These secondary shifts reveal differences in the way each anion influences electronic structure within the protonated amine. The distributions of secondary shifts allow salts to be easily distinguished from each other as well as from the free base form. The observed effects are much greater in organic solvents than in water. Slight concentration-dependence in chemical shifts of some protons near the amine was observed for two salts in CDCl3, but this effect is small compared to the influence of the counterion. Distinct chemical shifts in different salt forms of the same compound may be useful as chemical forensic signatures for source attribution and sample matching of alkaloids such as strychnine and possibly other organic acid and base salts.

  13. Plant volatiles in extreme terrestrial and marine environments.

    Science.gov (United States)

    Rinnan, Riikka; Steinke, Michael; McGenity, Terry; Loreto, Francesco

    2014-08-01

    This review summarizes the current understanding on plant and algal volatile organic compound (VOC) production and emission in extreme environments, where temperature, water availability, salinity or other environmental factors pose stress on vegetation. Here, the extreme environments include terrestrial systems, such as arctic tundra, deserts, CO₂ springs and wetlands, and marine systems such as sea ice, tidal rock pools and hypersaline environments, with mangroves and salt marshes at the land-sea interface. The emission potentials at fixed temperature and light level or actual emission rates for phototrophs in extreme environments are frequently higher than for organisms from less stressful environments. For example, plants from the arctic tundra appear to have higher emission potentials for isoprenoids than temperate species, and hypersaline marine habitats contribute to global dimethyl sulphide (DMS) emissions in significant amounts. DMS emissions are more widespread than previously considered, for example, in salt marshes and some desert plants. The reason for widespread VOC, especially isoprenoid, emissions from different extreme environments deserves further attention, as these compounds may have important roles in stress resistance and adaptation to extremes. Climate warming is likely to significantly increase VOC emissions from extreme environments both by direct effects on VOC production and volatility, and indirectly by altering the composition of the vegetation. © 2014 John Wiley & Sons Ltd.

  14. "Sweating meteorites"—Water-soluble salts and temperature variation in ordinary chondrites and soil from the hot desert of Oman

    Science.gov (United States)

    Zurfluh, Florian J.; Hofmann, Beda A.; Gnos, Edwin; Eggenberger, Urs

    2013-10-01

    The common appearance of hygroscopic brine ("sweating") on ordinary chondrites (OCs) from Oman during storage under room conditions initiated a study on the role of water-soluble salts on the weathering of OCs. Analyses of leachates from OCs and soils, combined with petrography of alteration features and a 11-month record of in situ meteorite and soil temperatures, are used to evaluate the role of salts in OC weathering. Main soluble ions in soils are Ca2+, SO42-, HCO3-, Na+, and Cl-, while OC leachates are dominated by Mg2+ (from meteoritic olivine), Ca2+ (from soil), Cl- (from soil), SO42- (from meteoritic troilite and soil), and iron (meteoritic). "Sweating meteorites" mainly contain Mg2+ and Cl-. The median Na/Cl mass ratio of leachates changes from 0.65 in soils to 0.07 in meteorites, indicating the precipitation of a Na-rich phase or loss of an efflorescent Na-salt. The total concentrations of water-soluble ions in bulk OCs ranges from 600 to 9000 μg g-1 (median 2500 μg g-1) as compared to 187-14140 μg g-1 in soils (median 1148 μg g-1). Soil salts dissolved by rain water are soaked up by meteorites by capillary forces. Daily heating (up to 66.3 °C) and cooling of the meteorites cause a pumping effect, resulting in a strong concentration of soluble ions in meteorites over time. The concentrations of water-soluble ions in meteorites, which are complex mixtures of ions from the soil and from oxidation and hydrolysis of meteoritic material, depend on the degree of weathering and are highest at W3. Input of soil contaminants generally dominates over the ions mobilized from meteorites. Silicate hydrolysis preferentially affects olivine and is enhanced by sulfide oxidation, producing local acidic conditions as evidenced by jarosite. Plagioclase weathering is negligible. After completion of troilite oxidation, the rate of chemical weathering slows down with continuing Ca-sulfate contamination.

  15. Salt and cocrystals of sildenafil with dicarboxylic acids: solubility and pharmacokinetic advantage of the glutarate salt.

    Science.gov (United States)

    Sanphui, Palash; Tothadi, Srinu; Ganguly, Somnath; Desiraju, Gautam R

    2013-12-02

    Sildenafil is a drug used to treat erectile dysfunction and pulmonary arterial hypertension. Because of poor aqueous solubility of the drug, the citrate salt, with improved solubility and pharmacokinetics, has been marketed. However, the citrate salt requires an hour to reach its peak plasma concentration. Thus, to improve solubility and bioavailability characteristics, cocrystals and salts of the drug have been prepared by treating aliphatic dicarboxylic acids with sildenafil; the N-methylated piperazine of the drug molecule interacts with the carboxyl group of the acid to form a heterosynthon. Salts are formed with oxalic and fumaric acid; salt monoanions are formed with succinic and glutaric acid. Sildenafil forms cocrystals with longer chain dicarboxylic acids such as adipic, pimelic, suberic, and sebacic acids. Auxiliary stabilization via C-H···O interactions is also present in these cocrystals and salts. Solubility experiments of sildenafil cocrystal/salts were carried out in 0.1N HCl aqueous medium and compared with the solubility of the citrate salt. The glutarate salt and pimelic acid cocrystal dissolve faster than the citrate salt in a two hour dissolution experiment. The glutarate salt exhibits improved solubility (3.2-fold) compared to the citrate salt in water. Solubilities of the binary salts follow an inverse correlation with their melting points, while the solubilities of the cocrystals follow solubilities of the coformer. Pharmacokinetic studies on rats showed that the glutarate salt exhibits doubled plasma AUC values in a single dose within an hour compared to the citrate salt. The high solubility of glutaric acid, in part originating from the strained conformation of the molecule and its high permeability, may be the reason for higher plasma levels of the drug.

  16. Water and salt balance modelling to predict the effects of land-use changes in forested catchments. 1. Small catchment water balance model

    Science.gov (United States)

    Sivapalan, Murugesu; Ruprecht, John K.; Viney, Neil R.

    1996-03-01

    A long-term water balance model has been developed to predict the hydrological effects of land-use change (especially forest clearing) in small experimental catchments in the south-west of Western Australia. This small catchment model has been used as the building block for the development of a large catchment-scale model, and has also formed the basis for a coupled water and salt balance model, developed to predict the changes in stream salinity resulting from land-use and climate change. The application of the coupled salt and water balance model to predict stream salinities in two small experimental catchments, and the application of the large catchment-scale model to predict changes in water yield in a medium-sized catchment that is being mined for bauxite, are presented in Parts 2 and 3, respectively, of this series of papers.The small catchment model has been designed as a simple, robust, conceptually based model of the basic daily water balance fluxes in forested catchments. The responses of the catchment to rainfall and pan evaporation are conceptualized in terms of three interdependent subsurface stores A, B and F. Store A depicts a near-stream perched aquifer system; B represents a deeper, permanent groundwater system; and F is an intermediate, unsaturated infiltration store. The responses of these stores are characterized by a set of constitutive relations which involves a number of conceptual parameters. These parameters are estimated by calibration by comparing observed and predicted runoff. The model has performed very well in simulations carried out on Salmon and Wights, two small experimental catchments in the Collie River basin in south-west Western Australia. The results from the application of the model to these small catchments are presented in this paper.

  17. Salicylic acid confers salt tolerance in potato plants by improving water relations, gaseous exchange, antioxidant activities and osmoregulation.

    Science.gov (United States)

    Faried, Hafiz Nazar; Ayyub, Chaudhary Muhammad; Amjad, Muhammad; Ahmed, Rashid; Wattoo, Fahad Masoud; Butt, Madiha; Bashir, Mohsin; Shaheen, Muhammad Rashid; Waqas, Muhammad Ahmed

    2017-04-01

    Potato is an important vegetable; however, salt stress drastically affects its growth and yield. A pot experiment was therefore conducted to assess salicylic acid efficacy in improving performance of potato cultivars, grown under salt stress (50 mmol L -1 ). Salicylic acid at 0.5 mmol L -1 was sprayed on to potato plants after 1 week of salinity application. Salt stress effects were ameliorated by salicylic acid effectively in both the studied cultivars. N-Y LARA proved more responsive to salicylic acid application than 720-110 NARC, which confirmed genetic variation between cultivars. Salicylic acid scavenged reactive oxygen species by improving antioxidant enzyme activities (superoxide dismutase, catalase, peroxidases) and regulating osmotic adjustment (proline, phenolic contents), which led to enhanced water relation and gaseous exchange attributes, and thereby increased potassium availability and reduced sodium content in potato leaves. Moreover, potato tuber yield showed a positive correlation with potassium content, photosynthesis and antioxidant enzyme activities. Salt tolerance efficacy of salicylic acid is authenticated in improving potato crop performance under salt stress. Salicylic acid effect was more pronounced in N-Y LARA, reflecting greater tolerance than 720-110 NARC, which was confirmed as a susceptible cultivar. Hence salicylic acid at 0.5 mmol L -1 and cultivation of N-Y LARA may be recommended in saline soil. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Transient Localization in Shallow Water Environments

    National Research Council Canada - National Science Library

    Brune, Joachim

    1998-01-01

    .... A full-wave PE model is used to produce broadband replicas. Both model-generated synthetic signals, which provide baseline results, and measured pulses in a shallow water environment are analyzed...

  19. [Watershed water environment pollution models and their applications: a review].

    Science.gov (United States)

    Zhu, Yao; Liang, Zhi-Wei; Li, Wei; Yang, Yi; Yang, Mu-Yi; Mao, Wei; Xu, Han-Li; Wu, Wei-Xiang

    2013-10-01

    Watershed water environment pollution model is the important tool for studying watershed environmental problems. Through the quantitative description of the complicated pollution processes of whole watershed system and its parts, the model can identify the main sources and migration pathways of pollutants, estimate the pollutant loadings, and evaluate their impacts on water environment, providing a basis for watershed planning and management. This paper reviewed the watershed water environment models widely applied at home and abroad, with the focuses on the models of pollutants loading (GWLF and PLOAD), water quality of received water bodies (QUAL2E and WASP), and the watershed models integrated pollutant loadings and water quality (HSPF, SWAT, AGNPS, AnnAGNPS, and SWMM), and introduced the structures, principles, and main characteristics as well as the limitations in practical applications of these models. The other models of water quality (CE-QUAL-W2, EFDC, and AQUATOX) and watershed models (GLEAMS and MIKE SHE) were also briefly introduced. Through the case analysis on the applications of single model and integrated models, the development trend and application prospect of the watershed water environment pollution models were discussed.

  20. Reconsolidated Salt as a Geotechnical Barrier

    International Nuclear Information System (INIS)

    Hansen, Francis D.; Gadbury, Casey

    2015-01-01

    Salt as a geologic medium has several attributes favorable to long-term isolation of waste placed in mined openings. Salt formations are largely impermeable and induced fractures heal as stress returns to equilibrium. Permanent isolation also depends upon the ability to construct geotechnical barriers that achieve nearly the same high-performance characteristics attributed to the native salt formation. Salt repository seal concepts often include elements of reconstituted granular salt. As a specific case in point, the Waste Isolation Pilot Plant recently received regulatory approval to change the disposal panel closure design from an engineered barrier constructed of a salt-based concrete to one that employs simple run-of-mine salt and temporary bulkheads for isolation from ventilation. The Waste Isolation Pilot Plant is a radioactive waste disposal repository for defense-related transuranic elements mined from the Permian evaporite salt beds in southeast New Mexico. Its approved shaft seal design incorporates barrier components comprising salt-based concrete, bentonite, and substantial depths of crushed salt compacted to enhance reconsolidation. This paper will focus on crushed salt behavior when applied as drift closures to isolate disposal rooms during operations. Scientific aspects of salt reconsolidation have been studied extensively. The technical basis for geotechnical barrier performance has been strengthened by recent experimental findings and analogue comparisons. The panel closure change was accompanied by recognition that granular salt will return to a physical state similar to the halite surrounding it. Use of run-of-mine salt ensures physical and chemical compatibility with the repository environment and simplifies ongoing disposal operations. Our current knowledge and expected outcome of research can be assimilated with lessons learned to put forward designs and operational concepts for the next generation of salt repositories. Mined salt

  1. Reconsolidated Salt as a Geotechnical Barrier

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Francis D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gadbury, Casey [USDOE Carlsbad Field Office, NM (United States)

    2015-11-01

    Salt as a geologic medium has several attributes favorable to long-term isolation of waste placed in mined openings. Salt formations are largely impermeable and induced fractures heal as stress returns to equilibrium. Permanent isolation also depends upon the ability to construct geotechnical barriers that achieve nearly the same high-performance characteristics attributed to the native salt formation. Salt repository seal concepts often include elements of reconstituted granular salt. As a specific case in point, the Waste Isolation Pilot Plant recently received regulatory approval to change the disposal panel closure design from an engineered barrier constructed of a salt-based concrete to one that employs simple run-of-mine salt and temporary bulkheads for isolation from ventilation. The Waste Isolation Pilot Plant is a radioactive waste disposal repository for defense-related transuranic elements mined from the Permian evaporite salt beds in southeast New Mexico. Its approved shaft seal design incorporates barrier components comprising salt-based concrete, bentonite, and substantial depths of crushed salt compacted to enhance reconsolidation. This paper will focus on crushed salt behavior when applied as drift closures to isolate disposal rooms during operations. Scientific aspects of salt reconsolidation have been studied extensively. The technical basis for geotechnical barrier performance has been strengthened by recent experimental findings and analogue comparisons. The panel closure change was accompanied by recognition that granular salt will return to a physical state similar to the halite surrounding it. Use of run-of-mine salt ensures physical and chemical compatibility with the repository environment and simplifies ongoing disposal operations. Our current knowledge and expected outcome of research can be assimilated with lessons learned to put forward designs and operational concepts for the next generation of salt repositories. Mined salt

  2. Molecular Dynamics Simulations on Evaporation of Droplets with Dissolved Salts

    OpenAIRE

    Jin-Liang Xu; Min Chen; Xiao-Dong Wang; Bing-Bing Wang

    2013-01-01

    Molecular dynamics simulations are used to study the evaporation of water droplets containing either dissolved LiCl, NaCl or KCl salt in a gaseous surrounding (nitrogen) with a constant high temperature of 600 K. The initial droplet has 298 K temperature and contains 1,120 water molecules, 0, 40, 80 or 120 salt molecules. The effects of the salt type and concentration on the evaporation rate are examined. Three stages with different evaporation rates are observed for all cases. In the initial...

  3. Salt and nitric oxide synthase inhibition-induced hypertension: kidney dysfunction and brain anti-oxidant capacity.

    Science.gov (United States)

    Oktar, Süleyman; Ilhan, Selçuk; Meydan, Sedat; Aydin, Mehmet; Yönden, Zafer; Gökçe, Ahmet

    2010-01-01

    The specific aim of this study was to examine the effects of salt-loading on kidney function and brain antioxidant capacity. Wistar rats were divided into four groups: Control rats were given normal drinking water and no drug treatment for 2 weeks. LNNA group: rats were given normal drinking water and the nitric oxide (NO) inhibitor NG-nitro-L-arginine (L-NNA), 3 mg/kg/day. LNNA + Salt group: rats were given drinking water containing salt 2% and 3 mg/kg L-NNA. Salt group: rats were given drinking water containing salt 2% and no drug treatment. Basal blood pressure and the levels of serum BUN, creatinine, uric acid, cortisol, electrolyte, serum antioxidant capacity, and oxidative stress were measured. NO, superoxide dismutase (SOD), and catalase (CAT) levels were measured in the hypothalamus, brainstem, and cerebellum. Salt overload increased the blood pressure of the LNNA + Salt group. Salt-loading enhanced BUN, creatinine, sodium retention. High salt produced an increase in uric acid levels and a decrease in cortisol levels in serum. Additionally, the oxidative stress index in serum increased in the LNNA + Salt group. Salt-loading enhanced brain NO levels, but not SOD and CAT activity. L-NNA increased brain SOD activity, but not CAT and NO levels. In conclusion, salt-loading causes hypertension, kidney dysfunction, and enhances oxidative stress in salt-sensitive rats.

  4. Assessment of the Use of Nitrogen Trifluoride for Purifying Coolant and Heat Transfer Salts in the Fluoride Salt-Cooled High-Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Scheele, Randall D.; Casella, Andrew M.

    2010-09-28

    This report provides an assessment of the use of nitrogen trifluoride for removing oxide and water-caused contaminants in the fluoride salts that will be used as coolants in a molten salt cooled reactor.

  5. Deep Biosphere Secrets of the Mediterranean Salt Giant

    Science.gov (United States)

    Aloisi, Giovanni; Lugli, Stefano; McGenity, Terry; Kuroda, Junichiro; Takai, Ken; Treude, Tina; Camerlenghi, Angelo

    2015-04-01

    One component of the IODP multi-platform drilling proposal called DREAM (Deep-Sea Record of Mediterranean Messisnian Events), plans to investigate the deep biosphere associated to the Messinian Salinity Crisis (MSC) Salt Giant. We propose that the MSC Salt Giant, because of the variety of chemical environments it produces, has the potential to harbour an unprecedented diversity of microbial life with exceptional metabolic activity. Gypsum and anhydrite deposits provide a virtually unlimited source of sulphate at depths where oxidants are a rarity in other sedimentary environments. When reduced organic carbon comes into contact with these minerals there is the potential for a dynamic deep biosphere community of sulphate reducers to develop, with implications for sedimentary biogeochemical cycles and the souring of cruide oil. But the thickness of the Messinian evaporites and the range of chemical environments it harbours poses fundamental questions: will the interaction of several extreme conditions of temperature, salinity, pressure and chemical composition limit the ability of microbes to take advantage of such favourable thermodynamic conditions? And has such a diverse set of physical and chemical environments fostered microbal diversity, rather than phylogenetic specialization, as recent research into deep Mediterranean brine systems seems to indicate ? Over three kilometres in thickness, approaching the known temperature limits of life and with fluids precipitating carbonate, sulphate, halite and potash salts, microbes living within and around the MSC Salt Giant will be subject to the most exotic combinations of extremes, and have likely evolved yet unknown adaptations. Gypsum and Halite crystals contain fluid inclusions that are a micro-habitat in which microbes survive for tens of thousands, to possibly millions, of years, posing the fundamental question of cells devoting nearly all of their energy flow to somatic maintenance needs, rather than growth and

  6. [Effects of the grain size and thickness of dust deposits on soil water and salt movement in the hinterland of the Taklimakan Desert].

    Science.gov (United States)

    Sun, Yan-Wei; Li, Sheng-Yu; Xu, Xin-Wen; Zhang, Jian-Guo; Li, Ying

    2009-08-01

    By using mcirolysimeter, a laboratory simulation experiment was conducted to study the effects of the grain size and thickness of dust deposits on the soil water evaporation and salt movement in the hinterland of the Taklimakan Desert. Under the same initial soil water content and deposition thickness condition, finer-textured (grain size of dust deposits on soil water evaporation had an inflection point at the grain size 0.20 mm, i. e., increased with increasing grain size when the grain size was 0.063-0.20 mm but decreased with increasing grain size when the grain size was > 0.20 mm. With the increasing thickness of dust deposits, its inhibition effect on soil water evaporation increased, and there existed a logarithmic relationship between the dust deposits thickness and water evaporation. Surface soil salt accumulation had a negative correlation with dust deposits thickness. In sum, the dust deposits in study area could affect the stability of arid desert ecosystem.

  7. Salt Damage and Rising Damp Treatment in Building Structures

    Directory of Open Access Journals (Sweden)

    J. M. P. Q. Delgado

    2016-01-01

    Full Text Available Salt damage can affect the service life of numerous building structures, both historical and contemporary, in a significant way. In this review, various damage mechanisms to porous building materials induced by salt action are analyzed. The importance of pretreatment investigations is discussed as well; in combination with the knowledge of salt and moisture transport mechanisms they can give useful indications regarding treatment options. The methods of salt damage treatment are assessed then, including both passive techniques based on environmental control, reduction of water transport, or conversion to less soluble salts and active procedures resulting in the removal of salts from deterioration zones. It is concluded that cellulose can still be considered as the favorite material presently used in desalination poultices but hydrophilic mineral wool can serve as its prospective alternative in future applications. Another important cause of building pathologies is the rising damp and, in this phenomenon, it is particularly severe considering the presence of salts in water. The treatment of rising damp in historic building walls is a very complex procedure and at Laboratory of Building Physics (LFC-FEUP a wall base hygroregulated ventilation system was developed and patented.

  8. Leaf sodium accumulation facilitates salt stress adaptation and preserves photosystem functionality in salt stressed Ocimum basilicum

    NARCIS (Netherlands)

    Mancarella, S.; Orsini, F.; Oosten, van M.J.; Sanoubar, R.; Stanghellini, C.; Kondo, S.; Gianquinto, G.; Maggio, A.

    2016-01-01

    In this study, plant growth, water relations, ABA levels, ion accumulation patterns and chlorophyll fluorescence were functionally linked to salt stress tolerance of two basil cultivars (Napoletano and Genovese) with different stress sensitivity levels. Plants were treated with salty water at 0,

  9. Effect of winds and waves on salt intrusion in the Pearl River estuary

    Directory of Open Access Journals (Sweden)

    W. Gong

    2018-02-01

    Full Text Available Salt intrusion in the Pearl River estuary (PRE is a dynamic process that is influenced by a range of factors and to date, few studies have examined the effects of winds and waves on salt intrusion in the PRE. We investigate these effects using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST modeling system applied to the PRE. After careful validation, the model is used for a series of diagnostic simulations. It is revealed that the local wind considerably strengthens the salt intrusion by lowering the water level in the eastern part of the estuary and increasing the bottom landward flow. The remote wind increases the water mixing on the continental shelf, elevates the water level on the shelf and in the PRE and pumps saltier shelf water into the estuary by Ekman transport. Enhancement of the salt intrusion is comparable between the remote and local winds. Waves decrease the salt intrusion by increasing the water mixing. Sensitivity analysis shows that the axial down-estuary wind, is most efficient in driving increases in salt intrusion via wind straining effect.

  10. Economic impacts of urban flooding in South Florida: Potential consequences of managing groundwater to prevent salt water intrusion.

    Science.gov (United States)

    Czajkowski, Jeffrey; Engel, Vic; Martinez, Chris; Mirchi, Ali; Watkins, David; Sukop, Michael C; Hughes, Joseph D

    2018-04-15

    High-value urban zones in coastal South Florida are considered particularly vulnerable to salt water intrusion into the groundwater-based, public water supplies caused by sea level rise (SLR) in combination with the low topography, existing high water table, and permeable karst substrate. Managers in the region closely regulate water depths in the extensive South Florida canal network to control closely coupled groundwater levels and thereby reduce the risk of saltwater intrusion into the karst aquifer. Potential SLR adaptation strategies developed by local managers suggest canal and groundwater levels may have to be increased over time to prevent the increased salt water intrusion risk to groundwater resources. However, higher canal and groundwater levels cause the loss of unsaturated zone storage and lead to an increased risk of inland flooding when the recharge from rainfall exceeds the capacity of the unsaturated zone to absorb it and the water table reaches the surface. Consequently, higher canal and groundwater levels are also associated with increased risk of economic losses, especially during the annual wet seasons. To help water managers and urban planners in this region better understand this trade-off, this study models the relationships between flood insurance claims and groundwater levels in Miami-Dade County. Via regression analyses, we relate the incurred number of monthly flood claims in 16 Miami-Dade County watersheds to monthly groundwater levels over the period from 1996 to 2010. We utilize these estimated statistical relationships to further illustrate various monthly flood loss scenarios that could plausibly result, thereby providing an economic quantification of a "too much water" trade-off. Importantly, this understanding is the first of its kind in South Florida and is exceedingly useful for regional-scale hydro-economic optimization models analyzing trade-offs associated with high water levels. Copyright © 2017 Elsevier B.V. All rights

  11. All-Organic Rechargeable Battery with Reversibility Supported by "Water-in-Salt" Electrolyte.

    Science.gov (United States)

    Dong, Xiaoli; Yu, Hongchuan; Ma, Yuanyuan; Bao, Junwei Lucas; Truhlar, Donald G; Wang, Yonggang; Xia, Yongyao

    2017-02-21

    Rechargeable batteries with organic electrodes are preferred to those with transition-metal-containing electrodes for their environmental friendliness, and resource availability, but all such batteries reported to date are based on organic electrolytes, which raise concerns of safety and performance. Here an aqueous-electrolyte all-organic rechargeable battery is reported, with a maximum operating voltage of 2.1 V, in which polytriphenylamine (PTPAn) and 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA)-derived polyimide (PNTCDA) serve as cathode and anode material, respectively. A key feature of the design is use of a "water-in-salt" electrolyte to bind "free" water; this impedes the side reaction of water oxidation, thereby enabling excellent reversibility in aqueous solution. The battery can deliver a maximum energy density of 52.8 Wh kg -1 , which is close to most of the all-organic batteries with organic electrolytes. The battery exhibits a supercapacitor-like high power of 32 000 W kg -1 and a long cycle life (700 cycles with capacity retention of 85 %), due to the kinetics not being limited by ion diffusion at either electrode. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Municipal water reuse for urban agriculture in Namibia: Modeling nutrient and salt flows as impacted by sanitation user behavior.

    Science.gov (United States)

    Woltersdorf, L; Scheidegger, R; Liehr, S; Döll, P

    2016-03-15

    Adequate sanitation, wastewater treatment and irrigation infrastructure often lacks in urban areas of developing countries. While treated, nutrient-rich reuse water is a precious resource for crop production in dry regions, excessive salinity might harm the crops. The aim of this study was to quantify, from a system perspective, the nutrient and salt flows a new infrastructure connecting water supply, sanitation, wastewater treatment and nutrient-rich water reuse for the irrigation of agriculture, from a system perspective. For this, we developed and applied a quantitative assessment method to understand the benefits and to support the management of the new water infrastructure in an urban area in semi-arid Namibia. The nutrient and salt flows, as affected by sanitation user behavior, were quantified by mathematical material flow analysis that accounts for the low availability of suitable and certain data in developing countries, by including data ranges and by assessing the effects of different assumptions in cases. Also the nutrient and leaching requirements of a crop scheme were calculated. We found that, with ideal sanitation use, 100% of nutrients and salts are reclaimed and the slightly saline reuse water is sufficient to fertigate 10 m(2)/cap/yr (90% uncertainty interval 7-12 m(2)/cap/yr). However, only 50% of the P contained in human excreta could be finally used for crop nutrition. During the pilot phase fewer sanitation users than expected used slightly more water per capita, used the toilets less frequently and practiced open defecation more frequently. Therefore, it was only possible to reclaim about 85% of nutrients from human excreta, the reuse water was non-saline and contained less nutrient so that the P was the limiting factor for crop fertigation. To reclaim all nutrients from human excreta and fertigate a larger agricultural area, sanitation user behavior needs to be improved. The results and the methodology of this study can be generalized and

  13. Salt disposal: Paradox Basin, Utah

    International Nuclear Information System (INIS)

    1983-04-01

    This report presents the findings of a study conducted for the National Waste Terminal Storage (NWTS) Program. Permanent disposal options are examined for salt resulting from the excavation of a waste repository in the bedded salt deposits of the Paradox Basin of southeastern Utah. The study is based on a repository salt backfill compaction of 60% of the original density which leaves a total of 8 million tons of 95% pure salt to be disposed of over a 30-year period. The feasibility, impacts, and mitigation methods are examined for five options: commercial disposal, permanent onsite surface disposal, permanent offsite disposal, deepwell injection, and ocean and Great Salt Lake disposal. The study concludes the following: Commercial marketing of all repository salt would require a subsidy for transportation to major salt markets. Permanent onsite surface storage is both economically and technically feasible. Permanent offsite disposal is technically feasible but would incur additional transportation costs. Selection of an offsite location would provide a means of mitigating impacts associated with surface storage at the repository site. Deepwell injection is an attractive disposal method; however, the large water requirement, high cost of development, and poor performance of similar operating brine disposal wells eliminates this option from consideration as the primary means of disposal for the Paradox Basin. Ocean disposal is expensive because of high transportation cost. Also, regulatory approval is unlikely. Ocean disposal should be eliminated from further consideration in the Paradox Basin. Great Salt Lake disposal appears to be technically feasible. Great Salt Lake disposal would require state approval and would incur substantial costs for salt transportation. Permanent onsite disposal is the least expensive method for disposal of all repository salt

  14. The variability of reported salt levels in fast foods across six countries: opportunities for salt reduction.

    Science.gov (United States)

    Dunford, Elizabeth; Webster, Jacqueline; Woodward, Mark; Czernichow, Sebastien; Yuan, Wen Lun; Jenner, Katharine; Ni Mhurchu, Cliona; Jacobson, Michael; Campbell, Norm; Neal, Bruce

    2012-06-12

    Several fast food companies have made commitments to reduce the levels of salt in the foods they serve, but technical issues are often cited as a barrier to achieving substantial reductions. Our objective was to examine the reported salt levels for products offered by leading multinational fast food chains. Data on salt content for products served by six fast food chains operating in Australia, Canada, France, New Zealand, the United Kingdom and the United States were collected by survey in April 2010. Mean salt contents (and their ranges) were calculated and compared within and between countries and companies. We saw substantial variation in the mean salt content for different categories of products. For example, the salads we included in our survey contained 0.5 g of salt per 100 g, whereas the chicken products we included contained 1.6 g. We also saw variability between countries: chicken products from the UK contained 1.1 g of salt per 100 g, whereas chicken products from the US contained 1.8 g. Furthermore, the mean salt content of food categories varied between companies and between the same products in different countries (e.g., McDonald's Chicken McNuggets contain 0.6 g of salt per 100 g in the UK, but 1.6 g of salt per 100 g in the US). The salt content of fast foods varies substantially, not only by type of food, but by company and country in which the food is produced. Although the reasons for this variation are not clear, the marked differences in salt content of very similar products suggest that technical reasons are not a primary explanation. In the right regulatory environment, it is likely that fast food companies could substantially reduce the salt in their products, translating to large gains for population health.

  15. Origin of salt giants in abyssal serpentinite systems

    Science.gov (United States)

    Scribano, Vittorio; Carbone, Serafina; Manuella, Fabio C.; Hovland, Martin; Rueslåtten, Håkon; Johnsen, Hans-K.

    2017-10-01

    Worldwide marine salt deposits ranging over the entire geological record are generally considered climate-related evaporites, derived from the precipitation of salts (mainly chlorides and sulfates) from saturated solutions driven by solar evaporation of seawater. This explanation may be realistic for a salt thickness ≤100 m, being therefore inadequate for thicker (>1 km) deposits. Moreover, sub-seafloor salt deposits in deep marine basins are difficult to reconcile with a surface evaporation model. Marine geology reports on abyssal serpentinite systems provide an alternative explanation for some salt deposits. Seawater-driven serpentinization consumes water and increases the salinity of the associated aqueous brines. Brines can be trapped in fractures and cavities in serpentinites and the surrounding `country' rocks. Successive thermal dehydration of buried serpentinites can mobilize and accumulate the brines, forming highly saline hydrothermal solutions. These can migrate upwards and erupt onto the seafloor as saline geysers, which may form salt-saturated water pools, as are currently observed in numerous deeps in the Red Sea and elsewhere. The drainage of deep-seated saline brines to seafloor may be a long-lasting, effective process, mainly occurring in areas characterized by strong tectonic stresses and/or igneous intrusions. Alternatively, brines could be slowly expelled from fractured serpentinites by buoyancy gradients and, hence, separated salts/brines could intrude vertically into surrounding rocks, forming salt diapirs. Serpentinization is an ubiquitous, exothermic, long-lasting process which can modify large volumes of oceanic lithosphere over geological times. Therefore, buried salt deposits in many areas of the world can be reasonably related to serpentinites.

  16. Evolution characteristic of gypsum-salt rocks of the upper member of Oligocene Lower Ganchaigou Fm in the Shizigou area, western Qaidam Basin

    Directory of Open Access Journals (Sweden)

    Dinghong Yi

    2017-09-01

    Full Text Available Over years of oil and gas exploration in the Qaidam Basin, reservoirs have been discovered in many layers. In the Shizigou area, western Qaidam Basin, the upper member of Oligocene Lower Ganchaigou Fm is an important target for oil and gas exploration, and gypsum-salt rocks are the high-quality caprocks for the preservation of oil and gas reservoirs in this area. For predicting oil and gas exploration direction and target in the western Qaidam Basin and providing guidance for its oil and gas exploration deployment, its depositional characteristics and environment of gypsum-salt rocks in this area were investigated based on the core observation, thin section identification, and analysis of grain size, sensitivity parameter ratios (Sr/Cu, Fe/Mn, (Fe + Al/(Ca + Mg, V/(V + Ni and Pr/Ph, pyrite content and inclusions. The following characteristics are identified. First, gypsum-salt rocks are mainly distributed in the depocenter of the lake basin and their thickness decreases towards the margin of the basin. They are laterally transformed into carbonate rocks or terrigenous clastic rocks. They are areally distributed in the shape of irregular ellipse. Second, gypsum-salt rocks are vertically developed mainly in the middle and upper parts of the upper member of Lower Ganchaigou Fm and they are interbedded with carbonate rocks or terrigenous clastic rocks. Their single layer thickness changes greatly, and there are many layers with good continuity. Third, Sand Group III to Group I in the upper member of Lower Ganchaigou Fm (inter-salt are of reductive water environment of semi-deep to deep lake facies due to their sedimentation in an arid and hot climate. It is concluded that gypsum-salt rocks of the upper member of Lower Ganchaigou Fm are distributed widely with great accumulative thickness in this area; and that they are originated from deep lake water by virtue of evaporation, concentration and crystallization in an arid and hot climate instead

  17. Hydrological indications of aeolian salts in mid-latitude deserts of ...

    Indian Academy of Sciences (India)

    The compositional differences between aeolian salts and local natural waters is evident,indicating the chemistry of aeolian salts and the associated parent brines may be significantly differentthan that predicted for hydrologically closed systems. The formation of aeolian salts in the studieddeserts is strongly controlled by ...

  18. Numerical investigation of road salt impact on an urban wellfield.

    Science.gov (United States)

    Bester, M L; Frind, E O; Molson, J W; Rudolph, D L

    2006-01-01

    The impact of road salt on a wellfield in a complex glacial moraine aquifer system is studied by numerical simulation. The moraine underlies an extensive urban and industrial landscape, which draws its water supply from >20 wellfields, several of which are approaching or have exceeded the drinking water limit for chloride. The study investigates the mechanisms of road salt infiltration, storage, and transport in the subsurface and assesses the effectiveness of mitigation measures designed to reduce the impact. The three-dimensional transport model accounts for increases in salt loading, as well as growth of the urbanized area and road network over the past 50 years. The simulations, which focus on one impacted wellfield, show chloride plumes originating mainly at arterial roads and migrating through aquitard windows into the water supply aquifers. The results suggest that the aquifer system contains a large and heterogeneously distributed mass of chloride and that concentrations in the aquifer can be substantially higher than the concentrations in the well water. Future impact scenarios indicate that although the system responds rapidly to reductions in salt loading, the residual chloride mass may take decades to flush out, even if road salting were discontinued. The implications with respect to urban wellfields in typical snow-belt areas are discussed.

  19. Research on IoT-based water environment benchmark data acquisition management

    Science.gov (United States)

    Yan, Bai; Xue, Bai; Ling, Lin; Jin, Huang; Ren, Liu

    2017-11-01

    Over the past more than 30 years of reform and opening up, China’s economy has developed at a full speed. However, this rapid growth is under restrictions of resource exhaustion and environmental pollution. Green sustainable development has become a common goal of all humans. As part of environmental resources, water resources are faced with such problems as pollution and shortage, thus hindering sustainable development. The top priority in water resources protection and research is to manage the basic data on water resources, and determine what is the footstone and scientific foundation of water environment management. By studying the aquatic organisms in the Yangtze River Basin, the Yellow River Basin, the Liaohe River Basin and the 5 lake areas, this paper puts forward an IoT-based water environment benchmark data management platform which can transform parameters measured to electric signals by way of chemical probe identification, and then send the benchmark test data of the water environment to node servers. The management platform will provide data and theoretical support for environmental chemistry, toxicology, ecology, etc., promote researches on environmental sciences, lay a solid foundation for comprehensive and systematic research on China’s regional environment characteristics, biotoxicity effects and environment criteria, and provide objective data for compiling standards of the water environment benchmark data.

  20. Viral Aggregation: Impact on Virus Behavior in the Environment.

    Science.gov (United States)

    Gerba, Charles P; Betancourt, Walter Q

    2017-07-05

    Aggregates of viruses can have a significant impact on quantification and behavior of viruses in the environment. Viral aggregates may be formed in numerous ways. Viruses may form crystal like structures and aggregates in the host cell during replication or may form due to changes in environmental conditions after virus particles are released from the host cells. Aggregates tend to form near the isoelectric point of the virus, under the influence of certain salts and salt concentrations in solution, cationic polymers, and suspended organic matter. The given conditions under which aggregates form in the environment are highly dependent on the type of virus, type of salts in solution (cation, anion. monovalent, divalent) and pH. However, virus type greatly influences the conditions when aggregation/disaggregation will occur, making predictions difficult under any given set of water quality conditions. Most studies have shown that viral aggregates increase the survival of viruses in the environment and resistance to disinfectants, especially with more reactive disinfectants. The presence of viral aggregates may also result in overestimation of removal by filtration processes. Virus aggregation-disaggregation is a complex process and predicting the behavior of any individual virus is difficult under a given set of environmental circumstances without actual experimental data.

  1. On salting in effect of the second group metal rhodanides on aqueous-amine solutions

    International Nuclear Information System (INIS)

    Krupatkin, I.L.; Ostrovskaya, E.M.; Vorob'eva, L.D.; Kamyshnikova, G.V.

    1978-01-01

    The ''salting in'' effect of rhodanides of Group 2 metals (magnesium, calcium, strontium, barium) on aqueous-amine solutions (water-aniline, and water-o-toluidine systems) is studied. The solubility in these systems has been determined by the isothermal method at 25 deg C. Compositions of the co-existing liquid phases have been determined by refractometry. The phase diagrams of water-aniline-rhodanide of magnesium, calcium and strontium systems have the same qualitative view. These rhodanides ''salt in'' the water-aniline system so strongly that the systems are completely homogenized. According to the decreasing homogenization effect on the water-aniline and water-o-toluidine systems the salts may be arranged into the following series Mg(NCS) 2 >Ca(NCS) 2 >Sr(NCS) 2 >Ba(NCS) 2 . The ''salting in'. effect is weaker in the water-o-toluidine system rather than in the water-aniline one

  2. Baseline risk assessment of ground water contamination at the uranium mill tailings site Salt Lake City, Utah

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This baseline risk assessment of groundwater contamination at the uranium mill tailings site near Salt Lake City, Utah, evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium ore processing site. The tailings and other contaminated material at this site were placed in a disposal cell located at Clive, Utah, in 1987 by the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate residual ground water contamination at the former uranium processing site, known as the Vitro processing site. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine the appropriate remedial action for contaminated ground water at the site.

  3. Baseline risk assessment of ground water contamination at the uranium mill tailings site Salt Lake City, Utah

    International Nuclear Information System (INIS)

    1994-09-01

    This baseline risk assessment of groundwater contamination at the uranium mill tailings site near Salt Lake City, Utah, evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium ore processing site. The tailings and other contaminated material at this site were placed in a disposal cell located at Clive, Utah, in 1987 by the US Department of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate residual ground water contamination at the former uranium processing site, known as the Vitro processing site. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine the appropriate remedial action for contaminated ground water at the site

  4. Evaluation of the salt deposition on the canister surface of concrete cask. Part 2. Measurement test of the salt concentration in air and salt deposition in the field

    International Nuclear Information System (INIS)

    Wataru, Masumi

    2012-01-01

    Concerning the storage facility of spent nuclear fuel using the concrete cask, there is an issue of stress corrosion cracking(SCC). The cooling air goes up along the canister surface in the concrete cask. To evaluate the initiation of SCC or rusting, it is important to verify the estimation method of the sea salt deposition on the metal canister surface transported by cooling air including sea salt particles. To measure the deposition rate, field tests were performed in Choushi test center. In the field test, it was found that the amount of sea salt deposition was very low because the density of the atmospheric sea salt concentration was very low compared with the laboratory test. Using relation between laboratory data and filed data, it is possible to evaluate the salt deposition rate on the canister surface. We also measured atmospheric sea salt concentration in Choushi test center to make the environment condition clear and compared the measurement data with the calculation data to verify the evaluation model. We are developing the automatic measuring device for atmospheric sea salt concentration. To check its performance, we are measuring atmospheric sea salt concentration in Yokosuka Area of CRIEPI and it was confirmed that the device works for one month automatically and fulfills its specifications. (author)

  5. Salt partitioning between water and high-pressure ices. Implication for the dynamics and habitability of icy moons and water-rich planetary bodies

    Science.gov (United States)

    Journaux, Baptiste; Daniel, Isabelle; Petitgirard, Sylvain; Cardon, Hervé; Perrillat, Jean-Philippe; Caracas, Razvan; Mezouar, Mohamed

    2017-04-01

    Water-rich planetary bodies including large icy moons and ocean exoplanets may host a deep liquid water ocean underlying a high-pressure icy mantle. The latter is often considered as a limitation to the habitability of the uppermost ocean because it would limit the availability of nutrients resulting from the hydrothermal alteration of the silicate mantle located beneath the deep ice layer. To assess the effects of salts on the physical properties of high-pressure ices and therefore the possible chemical exchanges and habitability inside H2O-rich planetary bodies, we measured partitioning coefficients and densities in the H2O-RbI system up to 450 K and 4 GPa; RbI standing as an experimentally amenable analog of NaCl in the H2O-salt solutions. We measured the partitioning coefficient of RbI between the aqueous fluid and ices VI and VII, using in-situ Synchrotron X-ray Fluorescence (XRF). With in-situ X-ray diffraction, we measured the unit-cell parameters and the densities of the high-pressure ice phases in equilibrium with the aqueous fluid, at pressures and temperatures relevant to the interior of planetary bodies. We conclude that RbI is strongly incompatible towards ice VI with a partitioning coefficient Kd(VI-L) = 5.0 (± 2.1) ṡ10-3 and moderately incompatible towards ice VII, Kd(VII-L) = 0.12 (± 0.05). RbI significantly increases the unit-cell volume of ice VI and VII by ca. 1%. This implies that RbI-poor ice VI is buoyant compared to H2O ice VI while RbI-enriched ice VII is denser than H2O ice VII. These new experimental results might profoundly impact the internal dynamics of water-rich planetary bodies. For instance, an icy mantle at moderate conditions of pressure and temperature will consist of buoyant ice VI with low concentration of salt, and would likely induce an upwelling current of solutes towards the above liquid ocean. In contrast, a deep and/or thick icy mantle of ice VII will be enriched in salt and hence would form a stable chemical boundary

  6. Pyrophoric potential of plutonium-containing salt residues

    International Nuclear Information System (INIS)

    Haschke, John M.; Fauske, Hans K.; Phillips, Alan G.

    2000-01-01

    Ignition temperatures of plutonium and the pyrophoric potential of plutonium-containing pyrochemical salt residues are determined from differential thermal analysis (DTA) data and by modeling of thermal behavior. Exotherms observed at 90-200 deg. C for about 30% of the residues are attributed to reaction of plutonium with water from decomposition of hydrated salts. Exotherms observed near 300 deg. C are consistent with ignition of metal particles embedded in the salt. Onset of self-sustained reaction at temperatures as low as 90 deg. C is not precluded by these results and heat-balance models are developed and applied in predicting the static ignition point of massive metal and in evaluating salt pyrophoricity. Results show that ambient temperatures in excess of 200 deg. C are required for ignition of salt residues and that the most reactive salts cannot ignite at low temperatures because diffusion of oxidant to embedded metal is limited by low salt porosity

  7. Effects of road salts on groundwater and surface water dynamics of socium and chloride in an urban restored stream

    Science.gov (United States)

    Road salts are a growing environmental concern in urban watersheds. We examined groundwater (GW) and surface water (SW) dynamics of Na+ and Cl− in Minebank Run (MBR), an urban stream in Maryland, USA. We observed an increasing salinity trend in this restored stream. Current basef...

  8. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting under...

  9. "Water-in-salt" electrolytes enable the use of cost-effective aluminum current collectors for aqueous high-voltage batteries.

    Science.gov (United States)

    Kühnel, R-S; Reber, D; Remhof, A; Figi, R; Bleiner, D; Battaglia, C

    2016-08-16

    The extended electrochemical stability window offered by highly concentrated electrolytes allows the operation of aqueous batteries at voltages significantly above the thermodynamic stability limit of water, at which the stability of the current collector potentially limits the cell voltage. Here we report the observation of suppressed anodic dissolution of aluminum in "water-in-salt" electrolytes enabling roll-to-roll electrode fabrication for high-voltage aqueous lithium-ion batteries on cost-effective light-weight aluminum current collectors using established lithium-ion battery technology.

  10. Ultrasonic characterization of pork meat salting

    International Nuclear Information System (INIS)

    García-Pérez, J V; De Prados, M; Pérez-Muelas, N; Cárcel, J A; Benedito, J

    2012-01-01

    Salting process plays a key role in the preservation and quality of dry-cured meat products. Therefore, an adequate monitoring of salt content during salting is necessary to reach high quality products. Thus, the main objective of this work was to test the ability of low intensity ultrasound to monitor the salting process of pork meat. Cylindrical samples (diameter 36 mm, height 60±10 mm) of Biceps femoris were salted (brine 20% NaCl, w/w) at 2 °C for 1, 2, 4 and 7 days. During salting and at each experimental time, three cylinders were taken in order to measure the ultrasonic velocity at 2 °C. Afterwards, the cylinders were split in three sections (height 20 mm), measuring again the ultrasonic velocity and determining the salt and the moisture content by AOAC standards. In the whole cylinders, moisture content was reduced from 763 (g/kg sample) in fresh samples to 723 (g/kg sample) in samples salted for 7 days, while the maximum salt gain was 37.3 (g/kg sample). Although, moisture and salt contents up to 673 and 118 (g/kg sample) were reached in the sections of meat cylinders, respectively. During salting, the ultrasonic velocity increased due to salt gain and water loss. Thus, significant (p 2 = 0.975) and moisture (R 2 = 0.863) contents. In addition, the change of the ultrasonic velocity with the increase of the salt content showed a good agreement with the Kinsler equation. Therefore, low intensity ultrasound emerges as a potential technique to monitor, in a non destructive way, the meat salting processes carried out in the food industry.

  11. South Bay Salt Pond Mercury Studies Project

    Science.gov (United States)

    Information about the SFBWQP South Bay Salt Pond Mercury Studies Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  12. Salt dynamics in well-mixed estuaries: importance of advection by tides

    OpenAIRE

    Wei, X.; Schramkowski, G.P.; Schuttelaars, H.M.

    2016-01-01

    Understanding salt dynamics is important to adequately model salt intrusion, baroclinic forcing, and sediment transport. In this paper, the importance of the residual salt transport due to tidal advection in well-mixed tidal estuaries is studied. The water motion is resolved in a consistent way with a width-averaged analytical model, coupled to an advection–diffusion equation describing the salt dynamics. The residual salt balance obtained from the coupled model shows that the seaward salt tr...

  13. Hydrodynamic simulation of a lithium chloride salt system

    International Nuclear Information System (INIS)

    Eberle, C. S.; Herrmann, S. D.; Knighton, G. C.

    1999-01-01

    A fused lithium chloride salt system's constitutive properties were evaluated and compared to a number of fluid properties, and water was shown to be an excellent simulant of lithium chloride salt. With a simple flow model, the principal scaling term was shown to be a function of the kinematic viscosity. A water mock-up of the molten salt was also shown to be within a ±3% error in the scaling analysis. This made it possible to consider developing water scaled tests of the molten salt system. Accurate flow velocity and pressure measurements were acquired by developing a directional velocity probe. The device was constructed and calibrated with a repeatable accuracy of ±15%. This was verified by a detailed evaluation of the probe. Extensive flow measurements of the engineering scale mockup were conducted, and the results were carefully compared to radial flow patterns of a straight blade stirrer. The flow measurements demonstrated an anti-symmetric nature of the stirring, and many additional effects were also identified. The basket design was shown to prevent fluid penetration into the fuel baskets when external stirring was the flow mechanism

  14. An empirical model for salt removal percentage in water under the effect of different current intensities of current carrying coil at different flow rates

    Directory of Open Access Journals (Sweden)

    Rameen S. AbdelHady

    2011-10-01

    Full Text Available The magnetic treatment of hard water is an alternative, simple approach by which the hard water that needs to be treated flows through a magnetic field. This field is created by inducing current in a coil wrapped around a pipe. Consequently some of its properties, such as total dissolved salts (TDS, conductivity (Ec and PH change. The primary purpose of hard water treatment is to decrease TDS in the incoming liquid stream. Using performance data from the application of different magnetic field densities on the different flow levels of water, empirical mathematical models were developed relating the salt removal percentage (SRP to operating flow rate and current of the coil. The obtained experimental results showed that the SRP increased with increasing the current at low flow rates (up to 0.75 ml/s.

  15. Cleaning up a salt spill : predictive modelling and monitoring natural attenuation to save remedial costs

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, B.; Shaikh, A.A. [EBA Engineering Consultants Ltd., Calgary, AB (Canada)

    2006-07-01

    Predictive modelling and monitoring natural attenuation to save remedial costs in cleaning up a salt spill were discussed with reference to a site located in central Alberta, as well as a pipeline break in 2002 from a corroded pipe which resulted in a large spill of produced water and oil. Remedial alternatives and an assessment of the site were presented. This included an electromagnetic survey in 2004, groundwater flow regime, soil and groundwater quality data, vegetation survey, and predictive modelling versus observed water quality. Photos and illustrations of the site from the air were provided. A conceptual salt leaching and transport model was proposed as a solution. Model calculation results were also presented. Last, the presentation discussed some important considerations for predictive modeling and next steps for the site. These included continued monitoring, implementation of a restoration plan and engagement of stakeholders such as Alberta Environment and the site landowner. tabs., figs.

  16. Optimum combination of water drainage, water supply and eco-environment protection in coal-accumulated basin of North China

    Institute of Scientific and Technical Information of China (English)

    武强; 董东林; 石占华; 武雄; 孙卫东; 叶责钧; 李树文; 刘金韬

    2000-01-01

    The conflict among water drainage, water supply and eco-environment protection is getting more and more serious due to the irrational drainage and exploitation of ground water resources in coal-accumulated basins of North China. Efficient solutions to the conflict are to maintain long-term dynamic balance between input and output of the ground water basins, and to try to improve resourcification of the mine water. All solutions must guarantee the eco-environment quality. This paper presents a new idea of optimum combination of water drainage, water supply and eco-environment protection so as to solve the problem of unstable mine water supply, which is caused by the changeable water drainage for the whole combination system. Both the management of hydraulic techniques and constraints in economy, society, ecology, environment, industrial structural adjustments and sustainable developments have been taken into account. Since the traditional and separate management of different departments of water drainage,

  17. Sorption and permeation of solutions of chloride salts, water and methanol in a Nafion membrane

    International Nuclear Information System (INIS)

    Villaluenga, J.P.G.; Barragan, V.M.; Seoane, B.; Ruiz-Bauza, C.

    2006-01-01

    The sorption of water-methanol mixtures containing a dissolved chloride salt in a Nafion 117 membrane, and their transport through the membrane under the driving force of a pressure gradient, have been studied. Both type of experiments was performed by using five different salts: lithium chloride, sodium chloride, cesium chloride, magnesium chloride and calcium chloride. It was observed that both the permeation flow through the membrane and the membrane swelling increase significantly with the methanol content of the solutions. These facts are attributed to the increase in wet membrane porosity, which brings about the increase of the mobility of solvents in the membrane, besides the increase of the mobility of the polymer pendant chains. In contrast, the influence of the type of electrolyte on the membrane porosity and permeability is not very important, with the exception of the CsCl solutions, which is probably due to the small hydration ability of the Cs + ion

  18. Solvation of actinide salts in water using a polarizable continuum model.

    Science.gov (United States)

    Kumar, Narendra; Seminario, Jorge M

    2015-01-29

    In order to determine how actinide atoms are dressed when solvated in water, density functional theory calculations have been carried out to study the equilibrium structure of uranium plutonium and thorium salts (UO2(2+), PuO2(2+), Pu(4+), and Th(4+)) both in vacuum as well as in solution represented by a conductor-like polarizable continuum model. This information is of paramount importance for the development of sensitive nanosensors. Both UO2(2+) and PuO2(2+) ions show coordination number of 4-5 with counterions replacing one or two water molecules from the first coordination shell. On the other hand, Pu(4+), has a coordination number of 8 both when completely solvated and also in the presence of chloride and nitrate ions with counterions replacing water molecules in the first shell. Nitrates were found to bind more strongly to Pu(IV) than chloride anions. In the case of the Th(IV) ion, the coordination number was found to be 9 or 10 in the presence of chlorides. Moreover, the Pu(IV) ion shows greater affinity for chlorides than the Th(IV) ion. Adding dispersion and ZPE corrections to the binding energy does not alter the trends in relative stability of several conformers because of error cancelations. All structures and energetics of these complexes are reported.

  19. An Investigation into the Effects of Temperature Gradient on the Soil Water–Salt Transfer with Evaporation

    Directory of Open Access Journals (Sweden)

    Rong Ren

    2017-06-01

    Full Text Available Temperature gradients exist in the field under brackish water irrigation conditions, especially in northern semi–arid areas of China. Although there are many investigators dedicated to studying the mechanism of brackish water irrigation and the effect of brackish water irrigation on crops, there are fewer investigations of the effects of temperature gradient on the water–salt transport. Based on the combination of a physical experiment and a mathematical model, this study was conducted to: (a build a physical model and observe the redistribution of soil water–heat–salt transfer; (b develop a mathematical model focused on the influence of a temperature gradient on soil water and salt redistribution based on the physical model and validate the proposed model using the measured data; and (c analyze the effects of the temperature gradient on the soil water–salt transport by comparing the proposed model with the traditional water–salt model in which the effects of temperature gradient on the soil water–salt transfer are neglected. Results show that the soil temperature gradient has a definite influence on the soil water–salt migration. Moreover, the effect of temperature gradient on salt migration was greater than that of water movement.

  20. Study of water nature in some crystallohydrates of pentasubstituted alkali metal salts of borotungstic acid using thermochemical method

    International Nuclear Information System (INIS)

    Kosmodem'yanskaya, G.V.; Sadykova, M.M.; Spitsyn, V.I.

    1977-01-01

    Kinetics of the dehydration process has been studied and heat of dehydration has been determined for salts 2.5Li 2 O x 0.5B 2 O 3 x 12.0WO 3 x 28.5H 2 O; 2.5Na 2 Ox0.5B 2 O 3 x 12.0WO 3 x 17.5H 2 O; 2.5K 2 O x 0.5B 2 O 3 x12.0WO 3 x 16.5H 2 O; 2.5Cs 2 O x 0.5B 2 O 3 x 12.0WO 3 x6.7H 2 O. Dehydration has been conducted in vacuum at 25-50 deg C. The study of the dehydration process has been performed thermochemically in a differential calorimeter. It has been shown that heat of dehydration depends on the nature of the cation. Lithium salt with a cation of a small radius has the highest heat of dehydration (6.4+-0.2 kcal/mol H 2 O). Cesium salt is dehydrated almost completely. A considerable part of water in crystallohydrates has a salting character. Kinetics of the dehydration process is described by the equation of the monomolecular reaction

  1. Formation and development of salt crusts on soil surfaces

    KAUST Repository

    Dai, Sheng; Shin, Hosung; Santamarina, Carlos

    2015-01-01

    The salt concentration gradually increases at the soil free surface when the evaporation rate exceeds the diffusive counter transport. Eventually, salt precipitates and crystals form a porous sodium chloride crust with a porosity of 0.43 ± 0.14. After detaching from soils, the salt crust still experiences water condensation and salt deliquescence at the bottom, brine transport across the crust driven by the humidity gradient, and continued air-side precipitation. This transport mechanism allows salt crust migration away from the soil surface at a rate of 5 μm/h forming salt domes above soil surfaces. The surface characteristics of mineral substrates and the evaporation rate affect the morphology and the crystal size of precipitated salt. In particular, substrate hydrophobicity and low evaporation rate suppress salt spreading.

  2. Formation and development of salt crusts on soil surfaces

    KAUST Repository

    Dai, Sheng

    2015-12-14

    The salt concentration gradually increases at the soil free surface when the evaporation rate exceeds the diffusive counter transport. Eventually, salt precipitates and crystals form a porous sodium chloride crust with a porosity of 0.43 ± 0.14. After detaching from soils, the salt crust still experiences water condensation and salt deliquescence at the bottom, brine transport across the crust driven by the humidity gradient, and continued air-side precipitation. This transport mechanism allows salt crust migration away from the soil surface at a rate of 5 μm/h forming salt domes above soil surfaces. The surface characteristics of mineral substrates and the evaporation rate affect the morphology and the crystal size of precipitated salt. In particular, substrate hydrophobicity and low evaporation rate suppress salt spreading.

  3. Water absorption of superabsorbent polymers in a cementitious environment

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    2011-01-01

    This paper focuses on the water absorption of superabsorbent polymers in a cementitious environment. The paper discusses different techniques to measure the water absorption capacity, and in particular it describes a technique which enables a simple and quick estimation of the water absorption...... capacity in a cementitious environment. The challenges met in defining the concept of water absorption capacity are treated, and the appropriateness of different types of superabsorbent polymers is also briefly dealt with. The concept “water absorption capacity” and its measurement seem straightforwardly...... simple, but a closer examination of the topic discloses many, significant difficulties. However, given proper cautiousness it is possible both to quickly estimate the water absorption capacity through a simple measurement as well as to examine how it will be influenced by different factors....

  4. Do Halophytes Really Require Salts for Their Growth and Development? An Experimental Approach

    Directory of Open Access Journals (Sweden)

    Marius Nicusor GRIGORE

    2012-05-01

    Full Text Available Halophytes are salt-tolerant plants found exclusively in habitats with high levels of soil salinity. It is generally assumed that salt stress is the most important limiting factor for plant growth in natural saline environments, and that halophytes have developed specific adaptations to elevated salinity which make them unfitted to grow in the absence of salt, thus explaining their distribution in nature. To address experimentally this question, two halophytic species (Inula crithmoides L. and Plantago crassifolia Forssk. and a maritime dune species (Medicago marina L. were grown in the greenhouse for several weeks in different substrates: peat, vegetable garden soil, saline soil and sand from maritime dunes. Measurements of growth parameters number of leaves, plant length, fresh and dry weights showed that all three species grew much better on the salt-free and nutrient-rich substrates, peat and garden soil, than on saline soil and dune sand. These results indicate that salts are not compulsorily required for development of halophytic species, and suggest that limitation of water and nutrients, rather than soil salinity per se, are the most important restrictive factors for plant growth in saline habitats. The distribution of halophytes in nature is probably dependent on their limited ability to compete with glycophytes in non-saline areas, while remaining highly competitive under environmental conditions stressful for non-tolerant species.

  5. Do Halophytes Really Require Salts for Their Growth and Development? An Experimental Approach

    Directory of Open Access Journals (Sweden)

    Marius Nicusor GRIGORE

    2012-05-01

    Full Text Available Halophytes are salt-tolerant plants found exclusively in habitats with high levels of soil salinity. It is generally assumed that salt stress is the most important limiting factor for plant growth in natural saline environments, and that halophytes have developed specific adaptations to elevated salinity which make them unfitted to grow in the absence of salt, thus explaining their distribution in nature. To address experimentally this question, two halophytic species (Inula crithmoides L. and Plantago crassifolia Forssk. and a maritime dune species (Medicago marina L. were grown in the greenhouse for several weeks in different substrates: peat, vegetable garden soil, saline soil and sand from maritime dunes. Measurements of growth parameters � number of leaves, plant length, fresh and dry weights � showed that all three species grew much better on the salt-free and nutrient-rich substrates, peat and garden soil, than on saline soil and dune sand. These results indicate that salts are not compulsorily required for development of halophytic species, and suggest that limitation of water and nutrients, rather than soil salinity per se, are the most important restrictive factors for plant growth in saline habitats. The distribution of halophytes in nature is probably dependent on their limited ability to compete with glycophytes in non-saline areas, while remaining highly competitive under environmental conditions stressful for non-tolerant species.

  6. Optimum combination of water drainage,water supply and eco-environment protection in coal-accumulated basin of North China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The conflict among water drainage,water supply and eco-environment protection is getting more and more serious due to the irrational drainage and exploitation of ground water resources in coal-accumulated basins of North China.Efficient solutions to the conflict are to maintain long-term dynamic balance between input and output of the ground water basins,and to try to improve resourcification of the mine water.All solutions must guarantee the eco-environment quality.This paper presents a new idea of optimum combination of water drainage,water supply and eco-environment protection so as to solve the problem of unstable mine water supply,which is caused by the changeable water drainage for the whole combination system.Both the management of hydraulic techniques and constraints in economy,society,ecology,environment,industrial structural adjustments and sustainable developments have been taken into account.Since the traditional and separate management of different departments of water drainage,water supply and eco-environment protection is broken up,these departments work together to avoid repeated geological survey and specific evaluation calculations so that large amount of national investment can be saved and precise calculation for the whole system can be obtained.In the light of the conflict of water drainage,water supply and eco-environment protection in a typical sector in Jiaozuo coal mine,a case study puts forward an optimum combination scheme,in which a maximum economic benefit objective is constrained by multiple factors.The scheme provides a very important scientific base for finding a sustainable development strategy.

  7. Salt effects in surfactant-free microemulsions

    Science.gov (United States)

    Schöttl, Sebastian; Horinek, Dominik

    2018-06-01

    The weakly associated micellar aggregates found in the so-called "pre-ouzo region" of the surfactant-free microemulsion water/ethanol/1-octanol are sensitive to changes in the system composition and also to the presence of additives like salt. In this work, we study the influence of two salts, sodium iodide and lithium chloride, on aggregates in water/ethanol/1-octanol by molecular dynamics simulations. In both cases, ethanol concentration in the nonpolar phase and at the interface is increased due to a salting out effect on ethanol in the aqueous pseudo-phase. In addition, minor charging of the interface as a consequence of differential adsorption of anions and cations occurs. However, this charge separation is overall weakened by the erratic surface of octanol aggregates, where polar hydroxyl groups and hydrophobic patches are both present. Furthermore, ethanol at the interface shields hydrophobic patches and reduces the preferential adsorption of iodide and lithium.

  8. W1045 environment surf drip shield and waste package outer barrier

    International Nuclear Information System (INIS)

    Gdowski, G.

    1999-01-01

    The environments on the drip shield and waste package outer barrier are controlled by the compositions of the waters that contact these components. the temperature (T) of these components, and the effective relative humidity (RH) at these components. Because the composition of the waters that are expected to enter the emplacement drifts (either by seepage flow or by episodic flow) have not been specified: well J13 water was chosen as the reference water (Harrar 1990). Section 6.2 discusses the accessible RH for the temperatures of interest at the repository horizon. Section 6.3 discusses the adsorption of water on metal alloys in the absence of hygroscopic salts. Because the temperatures of the DSs and the WPOBs are higher than those of the surrounding near-field environment, the relative humidity at the DSs and the WPOBs will be lower than that of the surrounding near-field environment. This difference is a result of the water partial pressure in the drift being constant and no higher than the equilibrium water vapor pressure at the temperature of the drift wall

  9. Who Delivers without Water? A Multi Country Analysis of Water and Sanitation in the Childbirth Environment.

    Directory of Open Access Journals (Sweden)

    Giorgia Gon

    Full Text Available Hygiene during childbirth is essential to the health of mothers and newborns, irrespective of where birth takes place. This paper investigates the status of water and sanitation in both the home and facility childbirth environments, and for whom and where this is a more significant problem.We used three datasets: a global dataset, with information on the home environment from 58 countries, and two datasets for each of four countries in Eastern Africa: a healthcare facility dataset, and a dataset that incorporated information on facilities and the home environment to create a comprehensive description of birth environments in those countries. We constructed indices of improved water, and improved water and sanitation combined (WATSAN, for the home and healthcare facilities. The Joint Monitoring Program was used to construct indices for household; we tailored them to the facility context-household and facility indices include different components. We described what proportion of women delivered in an environment with improved WATSAN. For those women who delivered at home, we calculated what proportion had improved WATSAN by socio-economic status, education and rural-urban status.Among women delivering at home (58 countries, coverage of improved WATSAN by region varied from 9% to 53%. Fewer than 15% of women who delivered at home in Sub-Saharan Africa, had access to water and sanitation infrastructure (range 0.1% to 37%. This was worse among the poorest, the less educated and those living in rural areas. In Eastern Africa, where we looked at both the home and facility childbirth environment, a third of women delivered in an environment with improved water in Uganda and Rwanda; whereas, 18% of women in Kenya and 7% in Tanzania delivered with improved water and sanitation. Across the four countries, less than half of the facility deliveries had improved water, or improved water and sanitation in the childbirth environment.Access to water and

  10. An Implementation of the Salt-Farm Monitoring System Using Wireless Sensor Network

    Science.gov (United States)

    Ju, Jonggil; Park, Ingon; Lee, Yongwoong; Cho, Jongsik; Cho, Hyunwook; Yoe, Hyun; Shin, Changsun

    In producing solar salt, natural environmental factors such as temperature, humidity, solar radiation, wind direction, wind speed and rain are essential elements which influence on the productivity and quality of salt. If we can manage the above mentioned environmental elements efficiently, we could achieve improved results in production of salt with good quality. To monitor and manage the natural environments, this paper suggests the Salt-Farm Monitoring System (SFMS) which is operated with renewable energy power. The system collects environmental factors directly from the environmental measure sensors and the sensor nodes. To implement a stand-alone system, we applied solar cell and wind generator to operate this system. Finally, we showed that the SFMS could monitor the salt-farm environments by using wireless sensor nodes and operate correctly without external power supply.

  11. Effects of pH and Salts on Physical and Mechanical Properties of Pea Starch Films.

    Science.gov (United States)

    Choi, W S; Patel, D; Han, J H

    2016-07-01

    To identify the significant contribution of intermolecular hydrogen bonds of starch molecules to the film structure formation, pH of film-forming solutions was adjusted and also various salts (NaCl, CaCl2 , CaSO4 , and K2 SO4 ) were mixed into the glycerol-plasticized pea starch film. The film made from pH 7 possessed the highest tensile strength-at-break (2 times) and elastic modulus (4 to 15 times) and the lowest elongation-at-break compared with those of the films made from acid and alkali environments. The pH 7 film also has the highest film density and the lowest total soluble matter. At the level of 0.01 to 0.1 M of CaSO4 and 0.1 M of K2 SO4 in a kilogram of starch, the water solubility of the film increased, while chloride salts slightly lowered the solubility. NaCl and CaSO4 reduced water vapor permeability (WVP), while CaCl2 slightly increased WVP at 0.01 and 0.06 M concentrations, and K2 SO4 significantly increased WVP at 0.03 and 0.15 M. Presence of salts increased tensile strength (5 to 14 times than the control films) and elastic modulus (35 to 180 times) of starch film at 0.01 to 0.03 M of CaSO4 and K2 SO4 . Elongation-at-break increased significantly as salt concentration increases to an optimal level. However, when the concentration exceeded above the optimal level, the E of starch films decreased and showed no significant difference from the control film. Overall, the addition of salts modified physical and mechanical properties of pea starch films more than pH adjustment without any salt addition. © 2016 Institute of Food Technologists®

  12. Recovery of soluble chloride salts from the wastewater generated during the washing process of municipal solid wastes incineration fly ash.

    Science.gov (United States)

    Tang, Hailong; Erzat, Aris; Liu, Yangsheng

    2014-01-01

    Water washing is widely used as the pretreatment method to treat municipal solid waste incineration fly ash, which facilitates the further solidification/stabilization treatment or resource recovery of the fly ash. The wastewater generated during the washing process is a kind of hydrosaline solution, usually containing high concentrations of alkali chlorides and sulphates, which cause serious pollution to environment. However, these salts can be recycled as resources instead of discharge. This paper explored an effective and practical recovery method to separate sodium chloride, potassium chloride, and calcium chloride salts individually from the hydrosaline water. In laboratory experiments, a simulating hydrosaline solution was prepared according to composition of the waste washing water. First, in the three-step evaporation-crystallization process, pure sodium chloride and solid mixture of sodium and potassium chlorides were obtained separately, and the remaining solution contained potassium and calcium chlorides (solution A). And then, the solid mixture was fully dissolved into water (solution B obtained). Finally, ethanol was added into solutions A and B to change the solubility of sodium, potassium, and calcium chlorides within the mixed solvent of water and ethanol. During the ethanol-adding precipitation process, each salt was separated individually, and the purity of the raw production in laboratory experiments reached about 90%. The ethanol can be recycled by distillation and reused as the solvent. Therefore, this technology may bring both environmental and economic benefits.

  13. Using coal mine saline water to produce chlorine

    Energy Technology Data Exchange (ETDEWEB)

    Gnot, W; Turek, M; Walburg, Z

    1979-01-01

    Utilizing hard coal mine waters with salt concentration reaching 140 kg/mat3 in the chemical industry would significantly reduce the cost of protecting the natural environment from salt. The Institute of Chemistry and Inorganic Technology of the Silesian Technical University in Gliwice developed an efficient technology of producing chorine from underground black coal mine waters. A scheme of the technology is explained: double stage brine purification with magnesium hydroxide as by-product. During the first stage magnesium is precipitated using sodium hydroxide; after increasing salt content in the brine calcium and a low percentage of magnesium are removed by lye-sodium method. During the second stage sedimentation rate increases to 1.4 mm/s, and volume of sludge is only 1%. Magnesium hydroxide is removed using a method patented in Poland (after adding a flocculant magnesium hydroxide is left untouched). Only at a later stage does sedimentation occur. The proposed technology of utilizing mine water will be tested in an experimental plant which will be built at the Ziemowit black coal mine. (7 refs.) (In Polish)

  14. Water Evaporation from Acoustically Levitated Aqueous Solution Droplets.

    Science.gov (United States)

    Combe, Nicole A; Donaldson, D James

    2017-09-28

    We present a systematic study of the effect of solutes on the evaporation rate of acoustically levitated aqueous solution droplets by suspending individual droplets in a zero-relative humidity environment and measuring their size as a function of time. The ratios of the early time evaporation rates of six simple salts (NaCl, NaBr, NaNO 3 , KCl, MgCl 2 , CaCl 2 ) and malonic acid to that of water are in excellent agreement with predictions made by modifying the Maxwell equation to include the time-dependent water activity of the evaporating aqueous salt solution droplets. However, the early time evaporation rates of three ammonium salt solutions (NH 4 Cl, NH 4 NO 3 , (NH 4 ) 2 SO 4 ) are not significantly different from the evaporation rate of pure water. This finding is in accord with a previous report that ammonium sulfate does not depress the evaporation rate of its solutions, despite reducing its water vapor pressure, perhaps due to specific surface effects. At longer evaporation times, as the droplets approach crystallization, all but one (MgCl 2 ) of the solution evaporation rates are well described by the modified Maxwell equation.

  15. Improvement of seawater salt quality by hydro-extraction and re-crystallization methods

    Science.gov (United States)

    Sumada, K.; Dewati, R.; Suprihatin

    2018-01-01

    Indonesia is one of the salt producing countries that use sea water as a source of raw materials, the quality of salt produced is influenced by the quality of sea water. The resulting average salt quality contains 85-90% NaCl. The Indonesian National Standard (SNI) for human salt’s consumption sodium chloride content is 94.7 % (dry base) and for industrial salt 98,5 %. In this study developed the re-crystallization without chemical and hydro-extraction method. The objective of this research to choose the best methods based on efficiency. The results showed that re-crystallization method can produce salt with NaCl content 99,21%, while hydro-extraction method content 99,34 % NaCl. The salt produced through both methods can be used as a consumption and industrial salt, Hydro-extraction method is more efficient than re-crystallization method because re-crystallization method requires heat energy.

  16. Transition at the deliquesce point in single salts

    DEFF Research Database (Denmark)

    Rörig-Dalgaard, Inge

    2014-01-01

    Background: Deliquesce points for single salts are in general considered to occur at a specific relative humidity and are also shown as such in phase diagrams. For this reason, salts are used for calibration purpose. According to Gibbs phase rule, the crystalline solid and the saturated solution...... the increasing numbers of thin film water till 20 mbar at 25˚C whereas the deliquescence point is at 24 mbar. These results suggest a stepwise change in the state of the salt. During preparation to salt calibration tests (in a Dynamic Vapour Sorption equipment (DVS)) the author noticed that some single salts...... have a very sudden and accurate change in salt state whereas another salt changed inaccurate as was noticed with NaCl (seen in more than 10 salt preparations). In the present work, the inaccurate transition between the solid NaCl to NaCl in solution was investigated with a cooling stage (CS) in an ESEM...

  17. The use of chemical and isotopic data as indicators of the origin of waters and dissolved salts in the Bambui calcareous aquifer (Bahia-Brazil)

    International Nuclear Information System (INIS)

    Siqueira, A.F.

    1978-10-01

    Samples of 25 wells located in the Bambui limestone aquifer in the region of Irece - Bahia, have been analised for the isotopic ratio 18 O/ 16 O and the major chemical species Ca, Mg, Na, K, Cl, SO 4 and bicarbonate. The oxygen-18 data have been found to range between -2,62/00(in a thousand) to -6,66/00(in a thousand) relative to the universal Standard Mean Ocean Water (SMOW) and are compared with the values of the precipitation in the localities of Jacobina and Lencois (meteorological stations nearby) and with the values of the groundwater in sedimentary basins in northeastern Brazil. The comparison suggests that aquifer system is recharged by precipitation originated in northeastern Brazil, instead of originating on coast of Bahia, east of the area. Furthermore, the waters in aquifer are not found homogenized, having widely varying 18 O and chemical composition and being of different ages. The strong correlation between the observations Ca, Mg, Na, Cl and TDS (total dissolved solids) suggests an aerosol origin of salts, not excluding the hypothesis of dissolution of rock, which concentrations. The comparison of characteristic ratios Mg/Ca, SO 4 /Cl and (Cl-Na)/Cl, a Piper diagrama and a dendrogram established by cluster analysis, indicates that the wells may be separated in to two groups according to the isotopic or geochemical environment to which they belong. These groups may represent the differents sources of salt proposed, one being from the limestone, the other having come from aerosols. (Author) [pt

  18. The Influence of Salt Water on Chloride Penetration in Geopolymer Concrete

    Directory of Open Access Journals (Sweden)

    Halim Like Novia

    2017-01-01

    Full Text Available This paper presents the influence of chloride ion penetration in geopolymer concrete. Fly ash as based material for geopolymer concrete was used in this mixture. Fly ash was mixed with sodium hydroxide (NaOH 8 M and sodium silicate (Na2SiO3 as the alkali solution. The sizes of cylindrical specimens were prepared with a diameter of 100 mm and 200 mm high. Some specimens were immersed in salt water at a concentration of 3.5%, and other control specimens were cured in tap water for 30, 60, 90, and 120 days. The mechanical properties were determined with compressive test which was conducted at 28, 30, 60, 90 and 120 days. Some durability tests were performed for porosity, chloride penetration, and pH measurement. It was found that geopolymer concrete has higher compressive strength than concrete made with Ordinary Portland cement (OPC. However, chloride penetration in geopolymer concrete is higher than OPC. The pH measurement showed that geopolymer concrete has less pH than OPC concrete. The porosity of concrete has been found to influence chloride penetration and pH of concrete.

  19. Determination of iodate in iodized salt and water samples by shell-isolated nanoparticle-enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Zhang, Kaige; Liang, Lizhen; Huang, Meiying; Hu, Yuling; Li, Gongke

    2014-01-01

    We have developed a simple, rapid, and sensitive method for the determination of iodate in iodized salt and water samples. The method is making use of shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) and is based on the oxidation of hydroxylammonium chloride by iodate to produce nitrite which then is used to diazotize with p-nitroaniline. The resulting diazonium ion is then coupled to N-(1-naphthyl) ethylenediamine dihydrochloride to form an azo dye whose concentration is determined by SHINERS. The active substrate used in SHINERS is composed of gold nanoparticles coated with an ultrathin silica shell possessing pinholes on their surface. Various factors that influence the chemical reaction and the intensity of SHINERS were investigated. Under the optimal conditions, the Raman intensity is linearly related to the concentration of iodate in the 7.5–130.0 μg L−1 range, with a correlation coefficient of 0.9920. The limit of detection is 2.0 μg L−1, and the relative standard deviation is 7.5 % (for n = 5) at 1,138 cm−1 without additional sample pre-concentration. The method was successfully applied to the determination of iodate in iodized salt and water samples. The accuracy was assessed through recovery tests and independent analysis by a conventional titrimetric method. (author)

  20. Salt Tolerance and Polyphyly in the Cyanobacterium Chroococcidiopsis (Pleurocapsales)1

    Science.gov (United States)

    Cumbers, John Robert; Rothschild, Lynn J.

    2014-01-01

    Chroococcidiopsis Geitler (Geitler 1933) is a genus of cyanobacteria containing desiccation and radiation resistant species. Members of the genus live in habitats ranging from hot and cold deserts to fresh and saltwater environments. Morphology and cell division pattern have historically been used to define the genus. To better understand the genetic and phenotypic diversity of the genus, 15 species were selected that had been previously isolated from different locations, including salt and freshwater environments. Four markers were sequenced from these 15 species, the 16S rRNA, rbcL, desC1 and gltX genes. Phylogenetic trees were generated which identified two distinct clades, a salt-tolerant clade and a freshwater clade. This study demonstrates that the genus is polyphyletic based on saltwater and freshwater phenotypes. To understand the resistance to salt in more details, species were grown on a range of sea salt concentrations which demonstrated that the freshwater species were salt-intolerant whilst the saltwater species required salt for growth. This study shows an increased resolution of the phylogeny of Chroococcidiopsis and provides further evidence that the genus is polyphyletic and should be reclassified to improve clarity in the literature.

  1. [Determination of Chloride Salt Solution by NIR Spectroscopy].

    Science.gov (United States)

    Zhang, Bin; Chen, Jian-hong; Jiao, Ming-xing

    2015-07-01

    Determination of chloride salt solution by near infrared spectrum plays a very important role in Biomedicine. The near infrared spectrum analysis of Sodium chloride, potassium chloride, calcium chloride aqueous solution shows that the concentration change of chloride salt can affect hydrogen bond, resulting in the variation of near infrared spectrum of water. The temperature influence on NIR spectrum has been decreased by choosing reasonable wavelength range and the wavelength where the temperature effects are zero (isosbestic point). Chlorine salt prediction model was established based on partial least squares method and used for predicting the concentration of the chlorine ion. The impact on near infrared spectrum of the cation ionic radius, the number of ionic charge, the complex effect of ionic in water has also discussed in this article and the reason of every factor are analysed. Experimental results show that the temperature and concentration will affect the near-infrared spectrum of the solution, It is found that the effect of temperature plays the dominant role at low concentrations of chlorine salt; rather, the ionic dominates at high concentration. Chloride complexes are formed in aqueous solution, It has an effect on hydrogen bond of water combining with the cations in chlorine salt solution, Comparing different chloride solutions at the same concentration, the destruction effects of chloride complexes and catnions on the hydrogen bond of water increases in the sequences: CaCl2 >NaCl>KC. The modeling result shows that the determination coefficients (R2) = 99.97%, the root mean square error of cross validation (RM- SECV) = 4.51, and the residual prediction deviation (RPD) = 62.7, it meets the daily requirements of biochemical detection accuracy.

  2. Energy-water-environment nexus underpinning future desalination sustainability

    KAUST Repository

    Shahzad, Muhammad Wakil; Burhan, Muhammad; Ang, Li; Ng, Kim Choon

    2017-01-01

    Energy-water-environment nexus is very important to attain COP21 goal, maintaining environment temperature increase below 2°C, but unfortunately two third share of CO2 emission has already been used and the remaining will be exhausted by 2050. A

  3. Sustained Water Quality Impacts in Marine Environments Due to Mechanical Milling of Volcanic Deposits

    Science.gov (United States)

    Genareau, K. D.; Cronin, S. J.; Stewart, C.; Back, E.

    2015-12-01

    Explosive volcanic eruptions are known to be a significant geohazard, but post- or inter-eruptive processes (such as lahars, landslides, and debris avalanches) can be equally damaging to local and regional areas by remobilizing deposits. Numerous studies have found that soluble salts bound to ash grain surfaces may be quickly released into exposed waters, often lowering pH and adding trace metals with both beneficial and deleterious effects on marine flora and fauna (e.g., Fe influx initiating blooms of marine phytoplankton). Most of the cation content of pyroclastic deposits is released slowly into the environment through weathering and alteration processes. However, other pathways exist through the physical comminution of pyroclasts in fluvial and marine settings. In this case, mechanical fracturing of pyroclasts during progressive stages of disaggregation will lead to exposure of reactive particle surfaces. This study evaluates the potential, ongoing effects on water quality by experimental, mechanical milling of pyroclasts and the evaluation of released metals into exposed waters using the pyroclastic density current deposits of both the 2010 eruption of Merapi and the 2014 eruption of Kelud (Java, Indonesia), which have a bulk basaltic andesite/andesite composition (60-65 wt% SiO2). The electrical conductivity (EC) of water samples positively correlates with Ca and Sr concentrations in the case of bulk ash, whole, and crushed lapilli, but correlates with Na for the milled samples. Compared to other stages of pyroclast disaggregation, milled lapilli have the greatest effect on the concentration of alkali elements and produce a significant increase in Ca, Na, K, and Si. Mechanical milling of pyroclasts grinds down minerals and glass, resulting in an increased EC, pH, and Na concentration of exposed waters. Similar experiments are currently being conducted using basalt (50 wt% SiO2) and rhyolite (70 wt% SiO2) deposits, and these results will be presented

  4. Water quality of hydrologic bench marks; an indicator of water quality in the natural environment

    Science.gov (United States)

    Biesecker, James E.; Leifeste, Donald K.

    1974-01-01

    Water-quality data, collected at 57 hydrologic bench-mark stations in 37 States, allow the definition of water quality in the 'natural' environment and the comparison of 'natural' water quality with water quality of major streams draining similar water-resources regions. Results indicate that water quality in the 'natural' environment is generally very good. Streams draining hydrologic bench-mark basins generally contain low concentrations of dissolved constituents. Water collected at the hydrologic bench-mark stations was analyzed for the following minor metals: arsenic, barium, cadmium, hexavalent chromium, cobalt, copper, lead, mercury, selenium, silver, and zinc. Of 642 analyses, about 65 percent of the observed concentrations were zero. Only three samples contained metals in excess of U.S. Public Health Service recommended drinking-water standards--two selenium concentrations and one cadmium concentration. A total of 213 samples were analyzed for 11 pesticidal compounds. Widespread but very low-level occurrence of pesticide residues in the 'natural' environment was found--about 30 percent of all samples contained low-level concentrations of pesticidal compounds. The DDT family of pesticides occurred most commonly, accounting for 75 percent of the detected occurrences. The highest observed concentration of DDT was 0.06 microgram per litre, well below the recommended maximum permissible in drinking water. Nitrate concentrations in the 'natural' environment generally varied from 0.2 to 0.5 milligram per litre. The average concentration of nitrate in many major streams is as much as 10 times greater. The relationship between dissolved-solids concentration and discharge per unit area in the 'natural' environment for the various physical divisions in the United States has been shown to be an applicable tool for approximating 'natural' water quality. The relationship between dissolved-solids concentration and discharge per unit area is applicable in all the physical

  5. Significance, evolution and recent advances in adsorption technology, materials and processes for desalination, water softening and salt removal.

    Science.gov (United States)

    Alaei Shahmirzadi, Mohammad Amin; Hosseini, Seyed Saeid; Luo, Jianquan; Ortiz, Inmaculada

    2018-06-01

    Desalination and softening of sea, brackish, and ground water are becoming increasingly important solutions to overcome water shortage challenges. Various technologies have been developed for salt removal from water resources including multi-stage flash, multi-effect distillation, ion exchange, reverse osmosis, nanofiltration, electrodialysis, as well as adsorption. Recently, removal of solutes by adsorption onto selective adsorbents has shown promising perspectives. Different types of adsorbents such as zeolites, carbon nanotubes (CNTs), activated carbons, graphenes, magnetic adsorbents, and low-cost adsorbents (natural materials, industrial by-products and wastes, bio-sorbents, and biopolymer) have been synthesized and examined for salt removal from aqueous solutions. It is obvious from literature that the existing adsorbents have good potentials for desalination and water softening. Besides, nano-adsorbents have desirable surface area and adsorption capacity, though are not found at economically viable prices and still have challenges in recovery and reuse. On the other hand, natural and modified adsorbents seem to be efficient alternatives for this application compared to other types of adsorbents due to their availability and low cost. Some novel adsorbents are also emerging. Generally, there are a few issues such as low selectivity and adsorption capacity, process efficiency, complexity in preparation or synthesis, and problems associated to recovery and reuse that require considerable improvements in research and process development. Moreover, large-scale applications of sorbents and their practical utility need to be evaluated for possible commercialization and scale up. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Field experiments in salt formations

    International Nuclear Information System (INIS)

    Kuehn, K.

    1986-01-01

    Field experiments in salt formations started as early as 1965 with Project Salt Vault in the Lyons Mine, Kansas, U.S.A., and with the purchase of the Asse salt mine by the German Federal Government. Underground tests concentrated on the heat dissipation around buried high-level radioactive wastes and the geomechanical consequences of their disposal. Near-field investigations cover the properties of water and gas release, radiolysis and corrosion. Further objectives of field experiments are the development and underground testing of a handling system for high-level wastes. The performance of an underground test disposal for such wastes is not only considered to be necessary for technical and scientific reasons but also for improving public acceptance of the concept of radioactive waste disposal. (author)

  7. Elements of an environmental decision support system for seasonal wetland salt management in a river basin subjected to water quality regulation

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, N.W.T.

    2009-06-01

    Seasonally managed wetlands in the Grasslands Basin on the west-side of California's San Joaquin Valley provide food and shelter for migratory wildfowl during winter months and sport for waterfowl hunters during the annual duck season. Surface water supply to these wetlands contain salt which, when drained to the San Joaquin River during the annual drawdown period, can negatively impact water quality and cause concern to downstream agricultural riparian water diverters. Recent environmental regulation, limiting discharges salinity to the San Joaquin River and primarily targeting agricultural non-point sources, now also targets return flows from seasonally managed wetlands. Real-time water quality management has been advocated as a means of continuously matching salt loads discharged from agricultural, wetland and municipal operations to the assimilative capacity of the San Joaquin River. Past attempts to build environmental monitoring and decision support systems (EDSS's) to implement this concept have enjoyed limited success for reasons that are discussed in this paper. These reasons are discussed in the context of more general challenges facing the successful implementation of a comprehensive environmental monitoring, modelling and decision support system for the San Joaquin River Basin.

  8. Arenediazonium salts transformations in water media: Coming round to origins

    OpenAIRE

    Marina E. Trusova; Ksenia V. Kutonova; Victor V. Kurtukov; Victor D. Filimonov; Pavel S. Postnikov

    2016-01-01

    Aromatic diazonium salts belong to an important class of organic compounds. The chemistry of these compounds has been originally developed in aqueous media, but then chemists focused on new synthetic methods that utilize reactions of diazonium salts in organic solvents. However, according to the principles of green chemistry and resource-efficient technologies, the use of organic solvents should be avoided. This review summarizes new trends of diazonium chemistry in aqueous media that satisfy...

  9. Biochemical solubilization of toxic salts from residual geothermal brines and waste waters

    Science.gov (United States)

    Premuzic, Eugene T.; Lin, Mow S.

    1994-11-22

    A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed, The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts, For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates.

  10. Problems of the water environment and water consumption

    International Nuclear Information System (INIS)

    Raetsep, Aavo

    1999-01-01

    Water extraction and consumption in Ida-Viru County are based mainly on the groundwater and surface water. The major part of the surface water is consumed by power engineering, while households and industry are the main consumers of groundwater. The difference between water extraction and consumption shows that the unused mine water pumped up for draining the oil shale mines and open pits and discharged into rivers forms an essential part (on the average 86%, quantitatively 159-226 millions m 3 /yr.). Serious water supply problems have risen in connection with oil shale mining: numerous village and household wells have been depleted due to a deep drawdown cone, the groundwater of the upper aquifers is polluted with nitrates, phenols and oil products. The poor condition of water-pipes and great leakages (up to 60%) make it difficult to supply townspeople and villagers with high-grade drinking water meeting the Estonian general standard EVS 663:1995. Water pollution is conditioned by poorly treated wastewaters and sewage directed practically into all the major rivers and lakes of the county by industrial and power engineering enterprises and towns and rural settlements. The rivers of the Purtse basin have been continuously under a heavy pollution load: both the mine waters with high minerality and phenolic wastewaters (so-called ash hill waters) of the oil shale thermal processing have been discharged into the rivers. Various water contamination from land areas has led to excessive pollution of Northeast Estonian coastal waters of the Gulf of Finland with toxic organic compounds and nutrients, specially in the regions of Purtse, Saka, Sillamaee and Narva-Joesuu. Up to now, Estonia has not managed completely fulfil the recommendations of the Helsinki Commission (HELCOM) of the Convention on the Protection of the Marine Environment of the Baltic Sea Area. In 1998-2010, water management in Ida-Viru County should be directed towards achieving two Principal objectives

  11. Cementitious Stabilization of Mixed Wastes with High Salt Loadings

    International Nuclear Information System (INIS)

    Spence, R.D.; Burgess, M.W.; Fedorov, V.V.; Downing, D.J.

    1999-01-01

    Salt loadings approaching 50 wt % were tolerated in cementitious waste forms that still met leach and strength criteria, addressing a Technology Deficiency of low salt loadings previously identified by the Mixed Waste Focus Area. A statistical design quantified the effect of different stabilizing ingredients and salt loading on performance at lower loadings, allowing selection of the more effective ingredients for studying the higher salt loadings. In general, the final waste form needed to consist of 25 wt % of the dry stabilizing ingredients to meet the criteria used and 25 wt % water to form a workable paste, leaving 50 wt % for waste solids. The salt loading depends on the salt content of the waste solids but could be as high as 50 wt % if all the waste solids are salt

  12. Water Fountains in Environment Transformation Correcting

    Science.gov (United States)

    Sidorenko, M. Yu; Ponomareva, Zh V.

    2017-11-01

    The article provides information on the means and principles for adjusting the process of the urban environment transformation. The interest in the topic is caused by the fact that the surrounding artificial environment is turning into a dangerous factor in the mechanism of human visual perception which requires immediate, effective intervention in the adjustment of the existing modern buildings. The paper considers The correction with the help of new dominants, small architectural forms, in particular, water fountains. Fountains are an important part of the measures to create a comfortable, environmentally friendly urban human environment. Their planning and functional links with the system of streets, squares, traffic arteries can create the urban plan basis.

  13. Spectroscopic Characterization of Omeprazole and Its Salts

    Directory of Open Access Journals (Sweden)

    Tomislav Vrbanec

    2017-01-01

    Full Text Available During drug development, it is important to have a suitable crystalline form of the active pharmaceutical ingredient (API. Mostly, the basic options originate in the form of free base, acid, or salt. Substances that are stable only within a certain pH range are a challenge for the formulation. For the prazoles, which are known to be sensitive to degradation in an acid environment, the formulation is stabilized with alkaline additives or with the application of API formulated as basic salts. Therefore, preparation and characterization of basic salts are needed to monitor any possible salinization of free molecules. We synthesized salts of omeprazole from the group of alkali metals (Li, Na, and K and alkaline earth metals (Mg, Ca. The purpose of the presented work is to demonstrate the applicability of vibrational spectroscopy to discriminate between the OMP and OMP-salt molecules. For this reason, the physicochemical properties of 5 salts were probed using infrared and Raman spectroscopy, NMR, TG, DSC, and theoretical calculation of vibrational frequencies. We found out that vibrational spectroscopy serves as an applicable spectroscopic tool which enables an accurate, quick, and nondestructive way to determine the characteristic of OMP and its salts.

  14. Water quality in South San Francisco Bay, California: current condition and potential issues for the South Bay Salt Pond Restoration Project.

    Science.gov (United States)

    Grenier, J Letitia; Davis, Jay A

    2010-01-01

    The SBSPRP is an extensive tidal wetland restoration project that is underway at the margin of South San Francisco Bay, California. The Project, which aims to restore former salt ponds to tidal marsh and manage other ponds for water bird support, is taking place in the context of a highly urbanized watershed and an Estuary already impacted by chemical contaminants. There is an intimate relationship between water quality in the watershed, the Bay, and the transitional wetland areas where the Project is located. The Project seeks to restore habitat for endangered and endemic species and to provide recreational opportunities for people. Therefore, water quality and bioaccumulation of contaminants in fish and wildlife is an important concern for the success of the Project. Mercury, PCBs, and PBDEs are the persistent contaminants of greatest concern in the region. All of these contaminants are present at elevated concentrations both in the abiotic environment and in wildlife. Dioxins, pyrethroids, PAHs, and selenium are also problematic. Organochlorine insecticides have historically impacted the Bay, and they remain above thresholds for concern in a small proportion of samples. Emerging contaminants, such as PFCs and non-PBDE flame retardants, are also an important water quality issue. Beyond chemical pollutants, other concerns for water quality in South San Francisco Bay exist, and include biological constituents, especially invasive species, and chemical attributes, such as dissolved oxygen and salinity. Future changes, both from within the Project and from the Bay and watershed, are likely to influence water quality in the region. Project actions to restore wetlands could worsen, improve, or not affect the already impaired water quality in South Bay. Accelerated erosion of buried sediment as a consequence of Project restoration actions is a potentially serious regional threat to South Bay water and sediment quality. Furthermore, the planned restoration of salt ponds

  15. Diclofenac Salts. V. Examples of Polymorphism among Diclofenac Salts with Alkyl-hydroxy Amines Studied by DSC and HSM

    Directory of Open Access Journals (Sweden)

    Adamo Fini

    2010-04-01

    Full Text Available Nine diclofenac salts prepared with alkyl-hydroxy amines were analyzed for their properties to form polymorphs by DSC and HSM techniques. Thermograms of the forms prepared from water or acetone are different in most cases, suggesting frequent examples of polymorphism among these salts. Polymorph transition can be better highlighted when analysis is carried out by thermo-microscopy, which in most cases made it possible to observe the processes of melting of the metastable form and re-crystallization of the stable one. Solubility values were qualitatively related to the crystal structure of the salts and the molecular structure of the cation.

  16. Calculation of amorphous silica solubilities at 25° to 300°C and apparent cation hydration numbers in aqueous salt solutions using the concept of effective density of water

    Science.gov (United States)

    Fournier, Robert O.; Williams, Marshall L.

    1983-01-01

    The solubility of amorphous silica in aqueous salt solutions at 25° to 300°C can be calculated using information on its solubility in pure water and a model in which the activity of water in the salt solution is defined to equal the effective density. pe, of “free” water in that solution. At temperatures of 100°C and above, pe closely equals the product of the density of the solution times the weight fraction of water in the solution. At 25°C, a correction parameter must be applied to pe that incorporates a term called the apparent cation hydration number, h. Because of the many assumptions and other uncertainties involved in determining values of h, by the model used here, the reported numbers are not necessarily real hydration numbers even though they do agree with some published values determined by activity and diffusion methods. Whether or not h is a real hydration number, it would appear to be useful in its inclusion within a more extensive activity coefficient term that describes the departure of silica solubilities in concentrated salt solutions from expected behavior according to the model presented here. Values of h can be calculated from measured amorphous silica solubilities in salt solutions at 25°C provided there is no complexing of dissolved silica with the dissolved salt, or if the degree of complexing is known. The previously postulated aqueous silica-sulfate complexing in aqueous Na2SO4 solutions is supported by results of the present effective density of water model

  17. Automated corrosion fatigue crack growth testing in pressurized water environments

    International Nuclear Information System (INIS)

    Ceschini, L.J.; Liaw, P.K.; Rudd, G.E.; Logsdon, W.A.

    1984-01-01

    This paper describes in detail a novel approach to construct a test facility for developing corrosion fatigue crack growth rate (FCGR) properties in aggressive environments. The environment studied is that of a pressurized water reactor (PWR) at 288 0 C (550 0 F) and 13.8 MPa (200 psig). To expedite data generation, each chamber was designed to accommodate two test specimens. A common water recirculation and pressurization system was employed to service two test chambers. Thus, four fatigue crack propagation rate tests could be conducted simultaneously in the pressurized water environment. The data analysis was automated to minimize the typically high labor costs associated with corrosion fatigue crack propagation testing. Verification FCGR tests conducted on an ASTM A469 rotor steel in a room temperature air environment as well as actual PWR environment FCGR tests performed on an ASTM A533 Grade B Class 2 pressure vessel steel demonstrated that the dual specimen test facility is an excellent system for developing the FCGR properties of materials in adverse environments

  18. Root-to-shoot signal transduction in rice under salt stress

    International Nuclear Information System (INIS)

    Bano, A.

    2010-01-01

    This paper describes the impact of salt stress on changes in the level of Abscisic acid (ABA) and cytokinins as signal molecules communicated through root-to-shoot in rice. The study focus to investigate the time related changes in the salt induced ABA and cytokinins accumulation concomitant with the changes in water potential and stomatal conductance of salt stressed plants. Seeds of 3 rice varieties were grown in plastic pots in phytotron. The changes in the level of abscisic acid (ABA), transzeatin riboside (t-zr) and 2-isopentyl adenine (2-ipa) were monitored in xylem sap and leaves of three rice varieties viz. BAS-385 (salt-sensitive), BG-402 (moderately tolerant) and NIAB-6 (tolerant). The salt solution (NaCl,1.2 dS m-1) was added to the rooting medium after transplanting when plants were 50 d old. There was delay in response of stomata to salt treatment in BAS-385 as opposed to earlier increase in leaf resistance in BG-402 and NIAB-6. The stem water potential increased sharply in all the varieties following salt treatment but the decrease in stomatal conductance of leaves preceded the decrease in stem water potential. The concentration of xylem ABA increased significantly greatly reaching a peak in BAS-385 much earlier (24 h of salt treatment) than that of other varieties. The ABA accumulation was delayed and the magnitude of ABA accumulation was greater in BG-402 and NIAB-6.The xylem flux of ABA followed a similar pattern. The concentration of xylem t-zr showed a short- term increase in all the varieties but the magnitude of increase was greater in BAS-385 at all the measurements till 96h of salt treatment .The concentration of xylem 2-ipa was higher in BAS-385 till 48 h of salt treatment . The flux of both the t-zr and 2ipa was greater in the tolerant variety 96h after salt treatment. The basal level of ABA and cytokinin appears to play important role in determining the response of a variety to salt stress. The xylem flux of ABA and cytokinin (2-ipa and t

  19. Effect of salt and urban water samples on bacterivory by the ciliate, Tetrahymena thermophila

    Energy Technology Data Exchange (ETDEWEB)

    St Denis, C.H.; Pinheiro, M.D.O.; Power, M.E. [Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1 (Canada); Bols, Niels C., E-mail: ncbols@uwaterloo.c [Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1 (Canada)

    2010-02-15

    The effect of road salt on the eating of bacteria or bacterivory by the ciliate, Tetrahymena thermophila, was followed in non-nutrient Osterhout's solution with Escherichia coli expressing green fluorescent protein. Bacterivory was impaired at between 0.025 and 0.050% w/v but the ciliates appeared to have normal morphologies and motilities, whereas at above 0.1%, bacterivory was blocked and many ciliates died. By contrast, E. coli remained viable, suggesting salt could alter predator-prey relationships in microbial communities. In nutrient medium, salt was not toxic and the ciliates grew. After growth in salt, ciliates consumed bacteria in 0.2% salt, indicating the salt acclimation of bacterivory. Bacteria and ciliates were added to urban creek samples to compare their capacity to support exogenous bacterivory. Even though samples were collected weekly for a year and be expected to have fluctuating salt levels as a result of deicing, all creek samples supported a similar level of bacterivory. - Road salt at some concentrations inhibits bacterivory by ciliates, and thus potentially could alter the microbial food web.

  20. Effect of salt and urban water samples on bacterivory by the ciliate, Tetrahymena thermophila

    International Nuclear Information System (INIS)

    St Denis, C.H.; Pinheiro, M.D.O.; Power, M.E.; Bols, Niels C.

    2010-01-01

    The effect of road salt on the eating of bacteria or bacterivory by the ciliate, Tetrahymena thermophila, was followed in non-nutrient Osterhout's solution with Escherichia coli expressing green fluorescent protein. Bacterivory was impaired at between 0.025 and 0.050% w/v but the ciliates appeared to have normal morphologies and motilities, whereas at above 0.1%, bacterivory was blocked and many ciliates died. By contrast, E. coli remained viable, suggesting salt could alter predator-prey relationships in microbial communities. In nutrient medium, salt was not toxic and the ciliates grew. After growth in salt, ciliates consumed bacteria in 0.2% salt, indicating the salt acclimation of bacterivory. Bacteria and ciliates were added to urban creek samples to compare their capacity to support exogenous bacterivory. Even though samples were collected weekly for a year and be expected to have fluctuating salt levels as a result of deicing, all creek samples supported a similar level of bacterivory. - Road salt at some concentrations inhibits bacterivory by ciliates, and thus potentially could alter the microbial food web.

  1. Salt tectonics and sequence-stratigraphic history of minibasins near the Sigsbee Escarpment, Gulf of Mexico

    Science.gov (United States)

    Montoya, Patricia

    The focus of this research is to understand the stratigraphic and structural evolution of lower-slope minibasins in the Gulf of Mexico by examining the influence of salt tectonics on sediment transport systems and deep-water facies architecture. Results showed that gravitational subsidence and shortening can cause variations in the relief of salt massifs on opposing sides of a minibasin. These bathymetric variations, combined with changes in sedimentation rates through time, affected not only the distribution of deep-water facies inside the minibasins, but also influenced the evolution of sediment transport systems between minibasins. In order to understand the evolution of salt massifs, this dissertation presents a new approach to evaluate qualitatively the rate of relative massif uplift based on depoaxis shifts and channel geometries identified in minibasins surrounded by mobile salt. From these results it was established that compression was long-lived, and that extension only dominated during late intervals. Stratigraphic analyses showed that there is a strong cyclicity in deep-water facies stacking patterns within lower-slope minibasins, related primarily to cyclical changes in sedimentation rates. A typical sequence starts with a period of slow sedimentation associated with drape facies above each sequence boundary. Then, towards the middle and final stages of the sequence, sedimentation rates increase and turbidity flows fill the minibasin. Previous studies describe processes of fill-and-spill for two adjacent minibasins in the upper and middle slope. However, these models fail to adequately explain fill-and-spill processes in lower slope minibasins surrounded by mobile salt. In particular, they do not consider the effect of variations in bathymetric relief of the intervening massif, nor do they examine multidirectional connections between proximal and distal minibasins. A new dynamic-salt fill-and-spill model is proposed in this dissertation in order to

  2. Seed priming and transgenerational drought memory improves tolerance against salt stress in bread wheat.

    Science.gov (United States)

    Tabassum, Tahira; Farooq, Muhammad; Ahmad, Riaz; Zohaib, Ali; Wahid, Abdul

    2017-09-01

    This study was conducted to evaluate the potential of seed priming following terminal drought on tolerance against salt stress in bread wheat. Drought was imposed in field sown wheat at reproductive stage (BBCH growth stage 49) and was maintained till physiological maturity (BBCH growth stage 83). Seeds of bread wheat, collected from crop raised under terminal drought and/or well-watered conditions, were subjected to hydropriming and osmopriming (with 1.5% CaCl 2 ) and were sown in soil-filled pots. After stand establishment, salt stress treatments viz. 10 mM NaCl (control) and 100 mM NaCl were imposed. Seed from terminal drought stressed source had less fat (5%), and more fibers (11%), proteins (22%) and total soluble phenolics (514%) than well-watered seed source. Salt stress reduced the plant growth, perturbed water relations and decreased yield. However, an increase in osmolytes accumulation (4-18%), malondialdehyde (MDA) (27-35%) and tissue Na + contents (149-332%) was observed under salt stress. The seeds collected from drought stressed crop had better tolerance against salt stress as indicated by better yield (28%), improved water relations (3-18%), osmolytes accumulation (21-33%), and less MDA (8%) and Na contents (35%) than progeny of well-watered crop. Seed priming, osmopriming in particular, further improved the tolerance against salt stress through improvement in leaf area, water relations, leaf proline, glycine betaine and grain yield while lowering MDA and Na + contents. In conclusion, changed seed composition during terminal drought and seed priming improved the salt tolerance in wheat by modulating the water relations, osmolytes accumulation and lipid peroxidation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Effects of modifying water environments on water supply and human health

    Science.gov (United States)

    Takizawa, S.; Nguyen, H. T.; Takeda, T.; Tran, N. T.

    2008-12-01

    Due to increasing population and per-capita water demand, demands for water are increasing in many parts of the world. Consequently, overuse of limited water resources leaves only small amounts of water in rivers and is bringing about rapid drawdown of groundwater tables. Water resources are affected by human activities such as excessive inputs of nutrients and other contaminants, agriculture and aquaculture expansions, and many development activities. The combined effects of modifying the water environments, both in terms of quantity and quality, on water supply and human health are presented in the paper with some examples from the Asian countries. In rural and sub-urban areas in Bangladesh and Vietnam, for example, the traditional way of obtaining surface water from ponds had been replaced by taking groundwaters to avert the microbial health risks that had arisen from contamination by human wastes. Such a change of water sources, however, has brought about human health impact caused by arsenic on a massive scale. In Thailand, the industrial development has driven the residents to get groundwater leaden with very high fluoride. Monitoring the urine fluoride levels reveal the risk of drinking fluoride-laden groundwaters. Rivers are also affected by extensive exploitation such as sand mining. As a result, turbidity changes abruptly after a heavy rainfall. In cities, due to shrinking water resources they have to take poor quality waters from contaminated sources. Algal blooms are seen in many reservoirs and lakes due to increasing levels of nutrients. Hence, it is likely that algal toxins may enter the water supply systems. Because most of the water treatment plants are not designed to remove those known and unknown contaminants, it is estimated that quite a large number of people are now under the threat of the public health "gtime bomb,"h which may one day bring about mass-scale health problems. In order to mitigate the negative impacts of modifying the water

  4. Technical bases for establishing a salt test facility

    International Nuclear Information System (INIS)

    1985-05-01

    The need for a testing facility in which radioactive materials may be used in an underground salt environment is explored. No such facility is currently available in salt deposits in the United States. A salt test facility (STF) would demonstrate the feasibility of safely storing radioactive waste in salt and would provide data needed to support the design, construction, licensing, and operation of a radioactive waste repository in salt. Nineteen issues that could affect long-term isolation of waste materials in a salt repository are identified from the most pertinent recent literature. The issues are assigned an overall priority and a priority relative to the activities of the STF. Individual tests recommended for performance in the STF to resolve the 19 issues are described and organized under three groups: waste package performance, repository design and operation, and site characterization and evaluation. The requirements for a salt test facility are given in the form of functional criteria, and the approach that will be used in the design, execution, interpretation, and reporting of tests is discussed

  5. A novel inverse numerical modeling method for the estimation of water and salt mass transfer coefficients during ultrasonic assisted-osmotic dehydration of cucumber cubes.

    Science.gov (United States)

    Kiani, Hosein; Karimi, Farzaneh; Labbafi, Mohsen; Fathi, Morteza

    2018-06-01

    The objective of this paper was to study the moisture and salt diffusivity during ultrasonic assisted-osmotic dehydration of cucumbers. Experimental measurements of moisture and salt concentration versus time were carried out and an inverse numerical method was performed by coupling a CFD package (OpenFOAM) with a parameter estimation software (DAKOTA) to determine mass transfer coefficients. A good agreement between experimental and numerical results was observed. Mass transfer coefficients were from 3.5 × 10 -9 to 7 × 10 -9  m/s for water and from 4.8 × 10 -9  m/s to 7.4 × 10 -9  m/s for salt at different conditions (diffusion coefficients of around 3.5 × 10 -12 -11.5 × 10 -12  m 2 /s for water and 5 × 10 -12  m/s-12 × 10 -12  m 2 /s for salt). Ultrasound irradiation could increase the mass transfer coefficient. The values obtained by this method were closer to the actual data. The inverse simulation method can be an accurate technique to study the mass transfer phenomena during food processing. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Relations among water levels, specific conductance, and depths of bedrock fractures in four road-salt-contaminated wells in Maine, 2007–9

    Science.gov (United States)

    Schalk, Charles W.; Stasulis, Nicholas W.

    2012-01-01

    Data on groundwater-level, specific conductance (a surrogate for chloride), and temperature were collected continuously from 2007 through 2009 at four bedrock wells known to be affected by road salts in an effort to determine the effects of road salting and fractures in bedrock that intersect the well at a depth below the casing on the presence of chloride in groundwater. Dissolved-oxygen data collected periodically also were used to make inferences about the interaction of fractures and groundwater flow. Borehole geophysical tools were used to determine the depths of fractures in each well that were actively contributing flow to the well, under both static and pumped conditions; sample- and measurement-depths were selected to correspond to the depths of these active fractures. Samples of water from the wells, collected at depths corresponding to active bedrock fractures, were analyzed for chloride concentration and specific conductance; from these analyses, a linear relation between chloride concentration and specific conductance was established, and continuous and periodic measurements of specific conductance were assumed to represent chloride concentration of the well water at the depth of measurement. To varying degrees, specific conductance increased in at least two of the wells during winter and spring thaws; the shallowest well, which also was closest to the road receiving salt treatment during the winter, exhibited the largest changes in specific conductance during thaws. Recharge events during summer months, long after application of road salt had ceased for the year, also produced increases in specific conductance in some of the wells, indicating that chloride which had accumulated or sequestered in the overburden was transported to the wells throughout the year. Geophysical data and periodic profiles of water quality along the length of each well’s borehole indicated that the greatest changes in water quality were associated with active fractures; in

  7. [Field study on the change of urinary iodine levels among family members with iodine content of 5 - 150 microg/L in drinking water before and after non-iodized salt intervention].

    Science.gov (United States)

    Li, Su-mei; Zhang, Gen-hong; Sun, Fan; Wang, Pei-hua; Zhang, Zhi-zhong; Li, Xiu-wei; Li, Shu-hua

    2008-08-01

    To compare the changes of urinary iodine levels among the family members with iodine content of 5 - 150 microg/L in drinking water, before and after non-iodized salt intervention through a field trail study. Family members who routinely drank water with iodine content 5 - 150 microg/L were chosen to substitute non-iodized salt for their current iodized salt for 2 months, and urine samples of the family members were collected for determination of iodine change before and after intervention was carried out. Median urinary iodine of school children, women with productive age and male adults exceeding 370 microg/L before intervention and the frequency distribution of urinary iodine were all above 70%. Our results revealed that iodine excess exited in three groups of family members. After intervention, all median urinary iodine level seemed to have decreased significantly, and groups with drinking water iodine 5.0 - 99.9 microg/L reduced to adequate or close to adequate while the group that drinking water iodine was 100 - 150 microg/L reached the cut-off point of excessive iodine level (300 microg/L). Results from your study posed the idea that the iodine adequate areas should be defined as the areas with iodine content of 5.0 - 100 microg/L in drinking water, and edible salt not be iodized in these areas. Areas with iodine content of 100 - 150 microg/L in drinking water should be classified as iodine excessive.

  8. Application of plant biotechnology to address water and salt stress in developing countries (abstract)

    International Nuclear Information System (INIS)

    Masmoudi, K.

    2005-01-01

    Drought and salinity are major constraints on crop production and food security, and have adverse impact especially on socio-economic aspect in the Middle East and North Africa region. Studies of the physiological response of wheat to salt stress indicate that sequestering sodium that enters the leaf away from the cell cytosol, and enhancing osmotic adjustment capability, can ameliorate the negative impact of soil water salinity on plant growth. Sodium at high millimolar levels in the cytoplasm is toxic to plant and yeast cells, Sequestration of Na/sup +/ ions into the vacuole through the action of tonoplast proton pumps (an H/sup +/-ATPase in the case of yeast, and either an H/sup +/-pyrophosphatase (H/sup +/-PPase) or H/sup +/-ATPase in the case of plants) and an Na/sup +//H/sup +/ anti porter is one mechanism that confers salt tolerance to these organisms. The cloning and characterization of genes encoding these tonoplast transport proteins from crop plants may contribute to our understanding of how to enhance crop plant response to saline stress. We cloned wheat ortho logs of the Arabidopsis genes AtNHXI and AVP I using a wheat cDNA library, The full length sequence for the wheat Na/sup +//H/sup +/ anti porter (TNHX3) and the vacuolar H/sup +/-pyrophosphatase (TVP I) were deposited in Genbank database under the accession number AY296910 and AY296911, respectively. The deduced amino acid sequence of TNHXj is l homologous to the sequences of other NHX gene products cloned from wheat as well as barley and Arabidopsis. The vacuolar H/sup +/-PPase pump we cloned, TVP I is the first member of this gene family cloned from wheat. Function of TNHXj as a cation/proton antiporter was demonstrated using the nhxl yeast mutant. TNHXj was capable of suppressing the hygromycin sensitivity of nhxl. Functional characterization of the wheat H/sup +/-PPase TVP I was demonstrated using the yeast enal (plasma membrane Na/sup +/-efflux transporter) mutant. Expression of TVP I in enal

  9. First salt making in Europe: an overview from Neolithic times

    Directory of Open Access Journals (Sweden)

    Olivier Weller

    2015-12-01

    Full Text Available This paper deals with the origin of salt production and discusses different approaches ranging from technology, ethnoarchaeology and paleoenvironmental studies to chemical analyses. Starting from the current research on the Neolithic exploitation of salt in Europe, we examine the types and nature of the salt resources (sea water, salt springs, soil or rock, the diversity of archaeological evidence of forms of salt working. We also scrutinize the types of production for these early forms of salt exploitation, with or without the use of crudely fired clay vessels (briquetage. Finally, we contextualise the socio-economic dimensions and highlight both the diversity of salt products and their characteristics, which go well beyond dietary roles.

  10. Road deicing salt irreversibly disrupts osmoregulation of salamander egg clutches

    International Nuclear Information System (INIS)

    Karraker, Nancy E.; Gibbs, James P.

    2011-01-01

    It has been postulated that road deicing salts are sufficiently diluted by spring rains to ameliorate any physiological impacts to amphibians breeding in wetlands near roads. We tested this conjecture by exposing clutches of the spotted salamander (Ambystoma maculatum) to three chloride concentrations (1 mg/L, 145 mg/L, 945 mg/L) for nine days, then transferred clutches to control water for nine days, and measured change in mass at three-day intervals. We measured mass change because water uptake by clutches reduces risks to embryos associated with freezing, predation, and disease. Clutches in controls sequestered water asymptotically. Those in the moderate concentrations lost 18% mass initially and regained 14% after transfer to control water. Clutches in high concentration lost 33% mass and then lost an additional 8% after transfer. Our results suggest that spring rains do not ameliorate the effects of deicing salts in wetlands with extremely high chloride concentrations. - Road deicing salts irreversibly disrupts osmoregulation of salamander egg clutches.

  11. Road deicing salt irreversibly disrupts osmoregulation of salamander egg clutches

    Energy Technology Data Exchange (ETDEWEB)

    Karraker, Nancy E., E-mail: karraker@hku.hk [Department of Environmental and Forest Biology, State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210 (United States); Gibbs, James P [Department of Environmental and Forest Biology, State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210 (United States)

    2011-03-15

    It has been postulated that road deicing salts are sufficiently diluted by spring rains to ameliorate any physiological impacts to amphibians breeding in wetlands near roads. We tested this conjecture by exposing clutches of the spotted salamander (Ambystoma maculatum) to three chloride concentrations (1 mg/L, 145 mg/L, 945 mg/L) for nine days, then transferred clutches to control water for nine days, and measured change in mass at three-day intervals. We measured mass change because water uptake by clutches reduces risks to embryos associated with freezing, predation, and disease. Clutches in controls sequestered water asymptotically. Those in the moderate concentrations lost 18% mass initially and regained 14% after transfer to control water. Clutches in high concentration lost 33% mass and then lost an additional 8% after transfer. Our results suggest that spring rains do not ameliorate the effects of deicing salts in wetlands with extremely high chloride concentrations. - Road deicing salts irreversibly disrupts osmoregulation of salamander egg clutches.

  12. Molten salt reactor type

    International Nuclear Information System (INIS)

    1977-01-01

    This document is one of the three parts of a first volume devoted to the compilations of American data on the molten salt reactor concept. This part 'CIRCUITS' regroups under a condensed form - in French and using international units - the essential information contained in both basic documents of the American project for a molten-salt breeder power plant. This part is only dealing with things relating to the CEA-EDF workshop 'CIRCUITS'. It is not concerned with information on: the reactor and the moderator replacement, the primary and secondary salts, and the fuel salt reprocessing, that are dealt with in parts 'CORE' and 'CHEMISTRY' respectively. The possible evolutions in the data - and solutions - taken by the American designers for their successive projects (1970 to 1972) are shown. The MSBR power plant comprises three successive heat transfer circuits. The primary circuit (Hastelloy N), radioactive and polluted, containing the fuel salt, includes the reactor, pumps and exchangers. The secondary circuit (pipings made of modified Hastelloy N) contaminated in the exchanger, ensures the separation between the fuel and the fluid operating the turbo-alternator. The water-steam circuit feeds the turbine with steam. This steam is produced in the steam generator flowed by the secondary fluid. Some subsidiary circuits (discharge and storage of the primary and secondary salts, ventilation of the primary circuit ...) complete the three principal circuits which are briefly described. All circuits are enclosed inside the controlled-atmosphere building of the nuclear boiler. This building also ensures the biological protection and the mechanical protection against outer aggressions [fr

  13. High temperature salting of mince of small sized fish

    OpenAIRE

    Sorinmade, S.O.; Talabi, S.O.; Aliu, A.

    1982-01-01

    Freshly caught small sized fish species were transported to the laboratory gutted and washed before mechanical separation into bone and mince. Duplicate batches of the mince were then treated with seven different concentrations (wt/wt) of sodium chloride before cooking. The cooked mince was divided into two groups, pressed and unpressed. Percentage residual salt in the salted cooked mince, free and press water and salted cooked pressed mince were determined. Also, the moisture contents of...

  14. Viability of human periodontal ligament fibroblasts in milk, Hank's balanced salt solution and coconut water as storage media.

    Science.gov (United States)

    Souza, B D M; Lückemeyer, D D; Reyes-Carmona, J F; Felippe, W T; Simões, C M O; Felippe, M C S

    2011-02-01

    To evaluate the effectiveness of various storage media at 5 °C for maintaining the viability of human periodontal ligament fibroblasts (PDLF). Plates with PDLF were soaked in recently prepared Hank's balanced salt solution (HBSS), skimmed milk, whole milk, Save-A-Tooth(®) system's HBSS (Save), natural coconut water, industrialized coconut water or tap water (negative control) at 5 °C for 3, 6, 24, 48, 72, 96 and 120 h. Minimum essential medium (MEM) at 37 °C served as the positive control. PDL cell viability was determined by MTT assay. Data were statistically analysed by Kruskal-Wallis test complemented by the Scheffé test (α=5%). The greatest number of viable cells was observed for MEM. Skimmed and whole milk, followed by natural coconut water and HBSS, were the most effective media in maintaining cell viability (Pmilk had the greatest capacity to maintain PDLF viability when compared with natural coconut water, HBSS, Save, industrialized coconut water and tap water. © 2010 International Endodontic Journal.

  15. Radioactive waste isolation in salt: geochemistry of brine in rock salt in temperature gradients and gamma-radiation fields - a selective annotated bibliography

    International Nuclear Information System (INIS)

    Hull, A.B.; Williams, L.B.

    1985-07-01

    Evaluation of the extensive research concerning brine geochemistry and transport is critically important to successful exploitation of a salt formation for isolating high-level radioactive waste. This annotated bibliography has been compiled from documents considered to provide classic background material on the interactions between brine and rock salt, as well as the most important results from more recent research. Each summary elucidates the information or data most pertinent to situations encountered in siting, constructing, and operating a mined repository in salt for high-level radioactive waste. The research topics covered include the basic geology, depositional environment, mineralogy, and structure of evaporite and domal salts, as well as fluid inclusions, brine chemistry, thermal and gamma-radiation effects, radionuclide migration, and thermodynamic properties of salts and brines. 4 figs., 6 tabs

  16. Radioactive waste isolation in salt: geochemistry of brine in rock salt in temperature gradients and gamma-radiation fields - a selective annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Hull, A.B.; Williams, L.B.

    1985-07-01

    Evaluation of the extensive research concerning brine geochemistry and transport is critically important to successful exploitation of a salt formation for isolating high-level radioactive waste. This annotated bibliography has been compiled from documents considered to provide classic background material on the interactions between brine and rock salt, as well as the most important results from more recent research. Each summary elucidates the information or data most pertinent to situations encountered in siting, constructing, and operating a mined repository in salt for high-level radioactive waste. The research topics covered include the basic geology, depositional environment, mineralogy, and structure of evaporite and domal salts, as well as fluid inclusions, brine chemistry, thermal and gamma-radiation effects, radionuclide migration, and thermodynamic properties of salts and brines. 4 figs., 6 tabs.

  17. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aliphatic polycarboxylic acid metal... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under this...

  18. 40 CFR 721.720 - Alkoxylated fatty acid amide, alkylsulfate salt.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkoxylated fatty acid amide... Specific Chemical Substances § 721.720 Alkoxylated fatty acid amide, alkylsulfate salt. (a) Chemical... as an alkoxylated fatty acid amide, alkylsulfate salt (PMN P-97-136) is subject to reporting under...

  19. Performance comparison between crystalline and co-amorphous salts of indomethacin-lysine

    DEFF Research Database (Denmark)

    Kasten, Georgia; Nouri, Khatera; Grohganz, Holger

    2017-01-01

    The introduction of a highly water soluble amino acid as co-amorphous co-former has previously been shown to significantly improve the dissolution rate of poorly water soluble drugs. In this work, dry ball milling (DBM) and liquid assisted grinding (LAG) were used to prepare different physical...... forms of salts of indomethacin (IND) with the amino acid lysine (LYS), allowing the direct comparison of their solid-state properties to their in vitro performance. X-ray powder diffraction and Fourier-transformed infrared spectroscopy showed that DBM experiments led to the formation of a fully co......-amorphous salt, while LAG resulted in a crystalline salt. Differential scanning calorimetry showed that the samples prepared by DBM had a single glass transition temperature (Tg) of approx. 100°C for the co-amorphous salt, while a new melting point (223°C) was obtained for the crystalline salt prepared by LAG...

  20. PHYSIOLOGICAL RESPONSES OF DWARF COCONUT PLANTS UNDER WATER DEFICIT IN SALT - AFFECTED SOILS

    Directory of Open Access Journals (Sweden)

    ALEXANDRE REUBER ALMEIDA DA SILVA

    2017-01-01

    Full Text Available The objective of this study was to characterize the physiological acclimation responses of young plants of the dwarf coconut cultivar ̳Jiqui Green‘ associated with tolerance to conditions of multiple abiotic stresses (drought and soil salinity, acting either independently or in combination. The study was conducted under controlled conditions and evaluated the following parameters: leaf gas exchange, quantum yield of chlorophyll a fluorescence, and relative contents of total chlorophyll (SPAD index. The experiment was conducted under a randomized block experimental design, in a split plot arrangement. In the plots, plants were exposed to different levels of water stress, by imposing potential crop evapotranspiration replacement levels equivalent to 100%, 80%, 60%, 40%, and 20%, whereas in subplots, plants were exposed to different levels of soil salinity (1.72, 6.25, 25.80, and 40.70 dS m - 1 . Physiological mechanisms were effectively limited when water deficit and salinity acted separately and/or together. Compared with soil salinity, water stress was more effective in reducing the measured physiological parameters. The magnitudes of the responses of plants to water supply and salinity depended on the intensity of stress and evaluation period. The physiological acclimation responses of plants were mainly related to stomatal regulation. The coconut tree has a number of physiological adjustment mechanisms that give the species partial tolerance to drought stress and/or salt, thereby enabling it to revegetate salinated areas, provided that its water requirements are at least partially met.

  1. Computer-aided analysis of LANDSAT data for surveying Texas coastal zone environments. [Pass Cavallo and Port O'Conner

    Science.gov (United States)

    Kristof, S. J. (Principal Investigator); Weismiller, R. A.

    1977-01-01

    The author has identified the following significant results. The study areas were Pass Cavallo and Port O'Connor. The following terrestrial and aquatic environments were discriminated: alternating beach ridges, swales, sand dunes, beach birms, deflation surfaces, land-water interface, urban, spoil areas, fresh and salt water marshes, grass and woodland, recently burned or grazed areas, submerged vegetation, and waterways.

  2. Discussion of the enabling environments for decentralised water systems.

    Science.gov (United States)

    Moglia, M; Alexander, K S; Sharma, A

    2011-01-01

    Decentralised water supply systems are becoming increasingly affordable and commonplace in Australia and have the potential to alleviate urban water shortages and reduce pollution into natural receiving marine and freshwater streams. Learning processes are necessary to support the efficient implementation of decentralised systems. These processes reveal the complex socio-technical and institutional factors to be considered when developing an enabling environment supporting decentralised water and wastewater servicing solutions. Critical to the technological transition towards established decentralised systems is the ability to create strategic and adaptive capacity to promote learning and dialogue. Learning processes require institutional mechanisms to ensure the lessons are incorporated into the formulation of policy and regulation, through constructive involvement of key government institutions. Engagement of stakeholders is essential to the enabling environment. Collaborative learning environments using systems analysis with communities (social learning) and adaptive management techniques are useful in refining and applying scientists' and managers' knowledge (knowledge management).

  3. Report of ground water monitoring for expansion of the golf course, Salt Lake City, Utah, Vitro Processing Site. Revision 0

    International Nuclear Information System (INIS)

    1996-03-01

    Ground water elevations of the shallow unconfined aquifer have been monitored at the Uranium Mill Tailings Remedial Action (UMTRA) Project, Vitro Processing site, Salt Lake City, Utah, for the purposes of characterizing ground water flow conditions and evaluating the effects of irrigation of the golf driving range. Data collected, to date, show that the water table reached its highest level for the year during March and April 1995. From May through July 1995, the water table elevations decreased in most monitor wells due to less precipitation and higher evapotranspiration. Review and evaluation of collected data suggest that irrigation of the golf driving range will have negligible effects on water levels and ground water flow patterns if rates of irrigation do not significantly exceed future rates of evapotranspiration

  4. Defense waste salt disposal at the Savannah River Plant

    International Nuclear Information System (INIS)

    Langton, C.A.; Dukes, M.D.

    1984-01-01

    A cement-based waste form, saltstone, has been designed for disposal of Savannah River Plant low-level radioactive salt waste. The disposal process includes emplacing the saltstone in engineered trenches above the water table but below grade at SRP. Design of the waste form and disposal system limits the concentration of salts and radionuclides in the groundwater so that EPA drinking water standards will not be exceeded at the perimeter of the disposal site. 10 references, 4 figures, 3 tables

  5. Combining Ferric Salt and Cactus Mucilage for Arsenic Removal from Water.

    Science.gov (United States)

    Fox, Dawn I; Stebbins, Daniela M; Alcantar, Norma A

    2016-03-01

    New methods to remediate arsenic-contaminated water continue to be studied, particularly to fill the need for accessible methods that can significantly impact developing communities. A combination of cactus mucilage and ferric (Fe(III)) salt was investigated as a flocculation-coagulation system to remove arsenic (As) from water. As(V) solutions, ferric nitrate, and mucilage suspensions were mixed and left to stand for various periods of time. Visual and SEM observations confirmed the flocculation action of the mucilage as visible flocs formed and settled to the bottom of the tubes within 3 min. The colloidal suspensions without mucilage were stable for up to 1 week. Sample aliquots were tested for dissolved and total arsenic by ICP-MS and HGAFS. Mucilage treatment improved As removal (over Fe(III)-only treatment); the system removed 75-96% As in 30 min. At neutral pH, removal was dependent on Fe(III) and mucilage concentration and the age of the Fe(III) solution. The process is fast, achieving maximum removal in 30 min, with the majority of As removed in 10-15 min. Standard jar tests with 1000 μg/L As(III) showed that arsenic removal and settling rates were pH-dependent; As removal was between 52% (high pH) and 66% (low pH).

  6. Antiquarian books as source of environment historical water data.

    Science.gov (United States)

    Schram, Jürgen; Schneider, Mario; Horst, Rasmus; Thieme, Hagen

    2009-05-01

    Historical environment considerations are inevitable also for modern environmental analysis. They alone allow evaluation of anthropogenic impact into the environment. To receive information about the historical environment situation in inhabited regions, we approached this task by examining historical well dated and locatable products of the Homo faber. The work introduced here uses books as a source of environment historical data specially for the environmental compartment of water. The paper of historical books, dated by their printing and allocated by their watermark(1) (Wasserzeichensammlung Piccard, Piccard online, Hauptstaatsarchiv Stuttgart, ) is a trap for traces of heavy metals contaminating their production water in historical times. Great amounts of water were brought into contact with the paper pulp in the historical paper mill process. The cellulose of the pulp acts as an ion exchange material for heavy metals, forming a dynamic equilibrium. A well defined pulp production process, starting with used clothes, allows estimation of the concentration of historical heavy metals (Cu(2+), Pb(2+), Zn(2+), Cd(2+)) in the production water (river water). Ancient papers from well dated books are eluted without destruction of their paper and the resulting solution is analysed by ETAAS and inverse stripping voltammetry to determine the historical impact of metals. Afterwards in a flow system the eluted paper spot is equilibrated with different concentrations of heavy metals (Cu(2+), Pb(2+), Zn(2+), Cd(2+)) to plot the adsorption isotherm of that very spot. Both data together allows a calculation of the heavy metal content of the historical river. For different waters of Germany and the Netherlands of the 16th-18th Century the heavy metal load could be estimated. The resulting concentrations were mostly similar to the level of modern surface waters, but in the case of the Dutch waters of the 17th Century, they were e.g. for Pb(2+) significantly higher than modern

  7. Salt-specific effects in lysozyme solutions

    Directory of Open Access Journals (Sweden)

    T. Janc

    2016-03-01

    Full Text Available The effects of additions of low-molecular-mass salts on the properties of aqueous lysozyme solutions are examined by using the cloud-point temperature, T_{cloud}, measurements. Mixtures of protein, buffer, and simple salt in water are studied at pH=6.8 (phosphate buffer and pH=4.6 (acetate buffer. We show that an addition of buffer in the amount above I_{buffer} = 0.6 mol dm^{-3} does not affect the T_{cloud} values. However, by replacing a certain amount of the buffer electrolyte by another salt, keeping the total ionic strength constant, we can significantly change the cloud-point temperature. All the salts de-stabilize the solution and the magnitude of the effect depends on the nature of the salt. Experimental results are analyzed within the framework of the one-component model, which treats the protein-protein interaction as highly directional and of short-range. We use this approach to predict the second virial coefficients, and liquid-liquid phase diagrams under conditions, where T_{cloud} is determined experimentally.

  8. Adenylate cyclase activity in fish gills in relation to salt adaptation

    International Nuclear Information System (INIS)

    Guibbolini, M.E.; Lahlou, B.

    1987-01-01

    The influence of salt adaptation on specific adenylate cyclase activity (measured by conversion of [α- 32 P] - ATP into [α- 32 P] - cAMP) was investigated in gill plasma membranes of rainbow trout (Salmo gairdneri) adapted to various salinities (deionized water, DW; fresh water, FW; 3/4 sea water, 3/4 SW; sea water, SW) and in sea water adapted- mullet (Mugil sp.). Basal activity declined by a factor of 2 in trout with increasing external salinity (pmoles cAMP/mg protein/10 min: 530 in DW, 440 in FW, 340 in 3/4 SW; 250 in SW) and was very low in SW adapted-mullet: 35. The Km for ATP was similar (0.5 mM) in both FW adapted- and SW adapted- trout in either the absence (basal activity) or in the presence of stimulating agents (isoproterenol; NaF) while the Vm varied. Analysis of stimulation ratios with respect to basal levels of the enzyme showed that hormones and pharmacological substances (isoproterenol, NaF) display a greater potency in high salt than in low salt adapted- fish gills. In contrast, salt adaptation did not have any effect on the regulation of adenylate cyclase by PGE 1 . These results are interpreted in relation to the general process of osmoregulation. 27 references, 6 figures

  9. Pharmaceuticals in the Built and Natural Water Environment of the United States

    Directory of Open Access Journals (Sweden)

    Randhir P. Deo

    2013-09-01

    Full Text Available The known occurrence of pharmaceuticals in the built and natural water environment, including in drinking water supplies, continues to raise concerns over inadvertent exposures and associated potential health risks in humans and aquatic organisms. At the same time, the number and concentrations of new and existing pharmaceuticals in the water environment are destined to increase further in the future as a result of increased consumption of pharmaceuticals by a growing and aging population and ongoing measures to decrease per-capita water consumption. This review examines the occurrence and movement of pharmaceuticals in the built and natural water environment, with special emphasis on contamination of the drinking water supply, and opportunities for sustainable pollution control. We surveyed peer-reviewed publications dealing with quantitative measurements of pharmaceuticals in U.S. drinking water, surface water, groundwater, raw and treated wastewater as well as municipal biosolids. Pharmaceuticals have been observed to reenter the built water environment contained in raw drinking water, and they remain detectable in finished drinking water at concentrations in the ng/L to μg/L range. The greatest promises for minimizing pharmaceutical contamination include source control (for example, inputs from intentional flushing of medications for safe disposal, and sewer overflows, and improving efficiency of treatment facilities.

  10. Salt-bridge energetics in halophilic proteins.

    Science.gov (United States)

    Nayek, Arnab; Sen Gupta, Parth Sarthi; Banerjee, Shyamashree; Mondal, Buddhadev; Bandyopadhyay, Amal K

    2014-01-01

    Halophilic proteins have greater abundance of acidic over basic and very low bulky hydrophobic residues. Classical electrostatic stabilization was suggested as the key determinant for halophilic adaptation of protein. However, contribution of specific electrostatic interactions (i.e. salt-bridges) to overall stability of halophilic proteins is yet to be understood. To understand this, we use Adaptive-Poison-Boltzmann-Solver Methods along with our home-built automation to workout net as well as associated component energy terms such as desolvation energy, bridge energy and background energy for 275 salt-bridges from 20 extremely halophilic proteins. We then perform extensive statistical analysis on general and energetic attributes on these salt-bridges. On average, 8 salt-bridges per 150 residues protein were observed which is almost twice than earlier report. Overall contributions of salt-bridges are -3.0 kcal mol-1. Majority (78%) of salt-bridges in our dataset are stable and conserved in nature. Although, average contributions of component energy terms are equal, their individual details vary greatly from one another indicating their sensitivity to local micro-environment. Notably, 35% of salt-bridges in our database are buried and stable. Greater desolvation penalty of these buried salt-bridges are counteracted by stable network salt-bridges apart from favorable equal contributions of bridge and background terms. Recruitment of extensive network salt-bridges (46%) with a net contribution of -5.0 kcal mol-1 per salt-bridge, seems to be a halophilic design wherein favorable average contribution of background term (-10 kcal mol-1) exceeds than that of bridge term (-7 kcal mol-1). Interiors of proteins from halophiles are seen to possess relatively higher abundance of charge and polar side chains than that of mesophiles which seems to be satisfied by cooperative network salt-bridges. Overall, our theoretical analyses provide insight into halophilic signature in its

  11. Water and environment news. No. 16

    International Nuclear Information System (INIS)

    2002-11-01

    This issue of the Water and Environment Newsletter covers the status of the Global Network of Isotopes in Precipitation (GNIP), highlights of the Coordinated Research Project on 'Isotopic composition of precipitation in the Mediterranean Basin in relation to air circulation patterns and climate' and perspectives on river basin hydrology and monitoring

  12. ALTERNATIVE METHODS OF TECHNOLOGICAL PROCESSING TO REDUCE SALT IN MEAT PRODUCTS

    Directory of Open Access Journals (Sweden)

    E. K. Tunieva

    2017-01-01

    Full Text Available The world trends in table salt reduction in meat products contemplate the use of different methods for preservation of taste and consistency in finished products as well as shelf life prolongation. There are several approaches to a sodium chloride reduction in meat products. The paper presents a review of the foreign studies that give evidence of the possibility to maintain quality of traditional meat products produced with the reduced salt content. The studies in the field of salty taste perception established that a decrease in a salt crystal size to 20 µm enabled reducing an amount of added table salt due to an increase in the salty taste intensity in food products. Investigation of the compatibility of different taste directions is also interesting as one of the approaches to a sodium chloride reduction in food products. The use of water-in-oil-in-water (w/o/w double emulsions allows controlling a release of encapsulated ingredients (salt, which enables enhancement of salty taste. The other alternative method of technological processing of meat raw material for reducing salt in meat products is the use of high pressure processing. This method has several advantages and allows not only an increase in the salty taste intensity, but also formation of a stable emulsion, an increase in water binding capacity of minced meat and extension of shelf-life.

  13. Investigation of Climate Change Impact on Salt Lake by Statistical Methods

    Directory of Open Access Journals (Sweden)

    Osman Orhan

    2017-03-01

    Full Text Available The main purpose of this paper is to investigate climate change impact that have been occurred on Salt Lake located in the central Anatolia is one of the area that has been faced to extinction. In order to monitor current status of the Salt Lake, Landsat satellite images has been obtained between the year of 2000 and 2014 (for the months of February, May, August and November. Satellite images has been processed by using ArcGIS and ERDAS softwares and the water surface area has been determined. The time series of water surface areas has been analyzed with auto-correlation method and repeated pattern has been detected. The seasonal part of the time series which period is 1 year and causes about 400 km² fluctuations has been removed with Moving Average filter, successfully. As a result of filtration process, non-seasonal time series of water surface area of Salt Lake were obtained. It is understood from the non-seasonal time series that the water surface area showed variability between 2000 and 2010 and after 2010 it is stable until 2014. In order to explain the variability, meteorological data (precipitation and temperature of the surrounding area has been acquired from the related service. The cross-correlation analyses has been performed with the movement of the water surface area and meteorological time series. As a result of analysis, the relationship between water surface changes in Salt Lake and meteorological data have correlated up to 80%. Consequently, several conclusion have been detected that the topography of the region play a direct role of the correlation coefficients and the water surface changes are effected from the environmental events that is occurred in the south of Salt Lake sub-Basin.

  14. Nickel based alloys for molten salt applications in pyrochemical reprocessing applications

    International Nuclear Information System (INIS)

    Ningshen, S.; Ravi Shankar, A.; Rao, Ch. Jagadeeswara; Mallika, C.; Kamachi Mudali, U.

    2016-01-01

    Pyrochemical reprocessing route is one of the best option for reprocessing of spent metallic nuclear fuel from future fast breeder in many countries, especially in the US (Integral fast reactor, IFR), Russia (Research Institute of Atomic Reactors, RIAR), Japan, Korea and India. This technology with intrinsic nuclear proliferation resistance is regarded as one of the most promising nuclear fuel cycle technologies of the next-generation. However, the selection of materials of construction for pyrochemical reprocessing plants is challenging because of the extreme environments, i.e., high radiation, corrosive molten salt (LiCl-KCl, LiCl-KCl-CsCl, KCl-NaCl-MgCl 2 , etc.), reactive molten metals, and high temperature. Efforts have been made to develop compatible materials for various unit operations like salt preparation, electrorefining, cathode processing and alloy casting in pyrochemical reprocessing. Nickel and its alloy are the candidate materials for salt purification exposed to molten LiCl-KCl under Cl 2 bubbling, in air or ultra high purity argon environment. In the present study, the corrosion behavior of candidate materials like Inconel 600, Inconel 625, Inconel 690 exposed to molten LiCl-KCl eutectic salt environment at 500 to 600 °C have been carried out. The surface morphology of the exposed samples and scales were examined by SEM/EDX and XRD. The weight loss results indicated that Inconel 600 and Inconel 690 offer better corrosion resistance compared to Inconel 625 in air and chlorine environment. Higher corrosion of Inconel 625 is attributed to development of Mo rich salt layers. However, Ni base alloys exhibited a decreasing trend of weight loss with increasing time of exposure and weight gain was observed under UHP Ar environment. The mechanism of corrosion of Ni base alloys appeared to be due to formation of Cr rich and Ni rich layers of Cr 2 O 3 , NiO and spinel oxides at the surface and subsequent spallation. Based on the present studies, Inconel 690

  15. Simulation of Cavern Formation and Karst Development Using Salt

    Science.gov (United States)

    Kent, Douglas C.; Ross, Alex R.

    1975-01-01

    A salt model was developed as a teaching tool to demonstrate the development of caverns and karst topography. Salt slabs are placed in a watertight box to represent fractured limestone. Erosion resulting from water flow can be photographed in time-lapse sequence or demonstrated in the laboratory. (Author/CP)

  16. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Science.gov (United States)

    2010-07-01

    ... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under this... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fluorinated carboxylic acid alkali...

  17. Water and salt balance in young male football players in training during the holy month of Ramadan.

    Science.gov (United States)

    Shirreffs, Susan M; Maughan, Ronald J

    2008-12-01

    The aim of this study was to assess water and salt balance in young football players in training during Ramadan. Measurements were made in 92 young male football players before and during the month of Ramadan. Fifty-five participants were observing Ramadan fasting, while the other 37 participants were eating and drinking without restriction. In week 3 of Ramadan, water and salt balance measures were made during a training session of 60-70 min duration that was performed at an ambient temperature of 25-28 degrees C and relative humidity of 50-53%. Body mass was recorded before and after training. Fluid intake was assessed in non-fasting players by weighing drink bottles before and after training, and the volume of any urine output was recorded. Sweat composition was estimated from absorbent patches applied to four skin sites for the duration of training. Mean sweat loss of players amounted to 1.41 litres (s = 0.36) in fasting players and 1.61 litres (s = 0.51) in non-fasting players (P = 0.038). Mean fluid intake during training in non-fasting players was 1.92 litres (s = 0.66). Sweat sodium concentration was 20 mmol . l(-1) (s = 8) in fasting players and 17 mmol . l(-1) (s = 7) in non-fasting players, and total sweat sodium loss during training was 0.67 g (s = 0.41) and 0.65 g (s = 0.37) [corresponding to a salt loss of 1.7 g (s = 1.1) and 1.7 g (s = 0.9)] respectively, with no difference between fasting and non-fasting players. Sweat sodium loss was not related to estimated dietary sodium intake (r = -0.07). These descriptive data show large individual variations in all measured parameters with relatively little difference in sweat parameters between fasting and non-fasting individuals.

  18. 40 CFR 415.640 - Applicability; description of the cadmium pigments and salts production subcategory.

    Science.gov (United States)

    2010-07-01

    ... cadmium pigments and salts production subcategory. 415.640 Section 415.640 Protection of Environment... POINT SOURCE CATEGORY Cadmium Pigments and Salts Production Subcategory § 415.640 Applicability; description of the cadmium pigments and salts production subcategory. The provisions of this subpart are...

  19. Fractionation of sulfur isotopes during heterogeneous oxidation of SO2 on sea salt aerosol: a new tool to investigate non-sea salt sulfate production in the marine boundary layer

    Science.gov (United States)

    Harris, E.; Sinha, B.; Hoppe, P.; Foley, S.; Borrmann, S.

    2012-05-01

    The oxidation of SO2 to sulfate on sea salt aerosols in the marine environment is highly important because of its effect on the size distribution of sulfate and the potential for new particle nucleation from H2SO4 (g). However, models of the sulfur cycle are not currently able to account for the complex relationship between particle size, alkalinity, oxidation pathway and rate - which is critical as SO2 oxidation by O3 and Cl catalysis are limited by aerosol alkalinity, whereas oxidation by hypohalous acids and transition metal ions can continue at low pH once alkalinity is titrated. We have measured 34S/32S fractionation factors for SO2 oxidation in sea salt, pure water and NaOCl aerosol, as well as the pH dependency of fractionation. Oxidation of SO2 by NaOCl aerosol was extremely efficient, with a reactive uptake coefficient of ≈0.5, and produced sulfate that was enriched in 32S with αOCl = 0.9882±0.0036 at 19 °C. Oxidation on sea salt aerosol was much less efficient than on NaOCl aerosol, suggesting alkalinity was already exhausted on the short timescale of the experiments. Measurements at pH = 2.1 and 7.2 were used to calculate fractionation factors for each step from SO2(g) → multiple steps → SOOCl2-. Oxidation on sea salt aerosol resulted in a lower fractionation factor than expected for oxidation of SO32- by O3 (αseasalt = 1.0124±0.0017 at 19 °C). Comparison of the lower fractionation during oxidation on sea salt aerosol to the fractionation factor for high pH oxidation shows HOCl contributed 29% of S(IV) oxidation on sea salt in the short experimental timescale, highlighting the potential importance of hypohalous acids in the marine environment. The sulfur isotope fractionation factors measured in this study allow differentiation between the alkalinity-limited pathways - oxidation by O3 and by Cl catalysis (α34 = 1.0163±0.0018 at 19 °C in pure water or 1.0199±0.0024 at pH = 7.2) - which favour the heavy isotope, and the alkalinity non

  20. Fractionation of sulfur isotopes during heterogeneous oxidation of SO2 on sea salt aerosol: a new tool to investigate non-sea salt sulfate production in the marine boundary layer

    Directory of Open Access Journals (Sweden)

    S. Borrmann

    2012-05-01

    Full Text Available The oxidation of SO2 to sulfate on sea salt aerosols in the marine environment is highly important because of its effect on the size distribution of sulfate and the potential for new particle nucleation from H2SO4 (g. However, models of the sulfur cycle are not currently able to account for the complex relationship between particle size, alkalinity, oxidation pathway and rate – which is critical as SO2 oxidation by O3 and Cl catalysis are limited by aerosol alkalinity, whereas oxidation by hypohalous acids and transition metal ions can continue at low pH once alkalinity is titrated. We have measured 34S/32S fractionation factors for SO2 oxidation in sea salt, pure water and NaOCl aerosol, as well as the pH dependency of fractionation. Oxidation of SO2 by NaOCl aerosol was extremely efficient, with a reactive uptake coefficient of ≈0.5, and produced sulfate that was enriched in 32S with αOCl = 0.9882±0.0036 at 19 °C. Oxidation on sea salt aerosol was much less efficient than on NaOCl aerosol, suggesting alkalinity was already exhausted on the short timescale of the experiments. Measurements at pH = 2.1 and 7.2 were used to calculate fractionation factors for each step from SO2(g → multiple steps → SOOCl2−. Oxidation on sea salt aerosol resulted in a lower fractionation factor than expected for oxidation of SO32− by O3 (αseasalt = 1.0124±0.0017 at 19 °C. Comparison of the lower fractionation during oxidation on sea salt aerosol to the fractionation factor for high pH oxidation shows HOCl contributed 29% of S(IV oxidation on sea salt in the short experimental timescale, highlighting the potential importance of hypohalous acids in the marine environment. The sulfur isotope fractionation factors measured in this study allow differentiation between the alkalinity-limited pathways – oxidation by O3 and by Cl catalysis (α34 = 1.0163±0.0018 at 19 °C in pure water or 1.0199±0.0024 at pH = 7.2 – which favour the heavy isotope, and