WorldWideScience

Sample records for salmonella rapid detection

  1. Using molecular techniques for rapid detection of Salmonella ...

    African Journals Online (AJOL)

    PRECIOUS

    2010-02-01

    Feb 1, 2010 ... A total of 152 samples of chicken and chicken products ... detection of Salmonella species in the collected field samples ... that 16 million new cases of typhoid fever occur each ... vative methods for the rapid identification of Salmonella ... saved for the PCR-Non Selective test (PCR-NS) and 1 ml of the.

  2. Immunomagnetic nanoparticle based quantitative PCR for rapid detection of Salmonella

    International Nuclear Information System (INIS)

    Bakthavathsalam, Padmavathy; Rajendran, Vinoth Kumar; Saran, Uttara; Chatterjee, Suvro; Ali, Baquir Mohammed Jaffar

    2013-01-01

    We have developed a rapid and sensitive method for immunomagnetic separation (IMS) of Salmonella along with their real time detection via PCR. Silica-coated magnetic nanoparticles were functionalized with carboxy groups to which anti-Salmonella antibody raised against heat-inactivated whole cells of Salmonella were covalently attached. The immuno-captured target cells were detected in beverages like milk and lemon juice by multiplex PCR and real time PCR with a detection limit of 10 4 cfu.mL −1 and 10 3 cfu.mL −1 , respectively. We demonstrate that IMS can be used for selective concentration of target bacteria from beverages for subsequent use in PCR detection. PCR also enables differentiation of Salmonella typhi and Salmonella paratyphi A using a set of four specific primers. In addition, IMS—PCR can be used as a screening tool in the food and beverage industry for the detection of Salmonella within 3–4 h which compares favorably to the time of several days that is needed in case of conventional detection based on culture and biochemical methods. (author)

  3. Development of Rapid Detection and Genetic Characterization of Salmonella in Poultry Breeder Feeds

    Science.gov (United States)

    Jarquin, Robin; Hanning, Irene; Ahn, Soohyoun; Ricke, Steven C.

    2009-01-01

    Salmonella is a leading cause of foodborne illness in the United States, with poultry and poultry products being a primary source of infection to humans. Poultry may carry some Salmonella serovars without any signs or symptoms of disease and without causing any adverse effects to the health of the bird. Salmonella may be introduced to a flock by multiple environmental sources, but poultry feed is suspected to be a leading source. Detecting Salmonella in feed can be challenging because low levels of the bacteria may not be recovered using traditional culturing techniques. Numerous detection methodologies have been examined over the years for quantifying Salmonella in feeds and many have proven to be effective for Salmonella isolation and detection in a variety of feeds. However, given the potential need for increased detection sensitivity, molecular detection technologies may the best candidate for developing rapid sensitive methods for identifying small numbers of Salmonella in the background of large volumes of feed. Several studies have been done using polymerase chain reaction (PCR) assays and commercial kits to detect Salmonella spp. in a wide variety of feed sources. In addition, DNA array technology has recently been utilized to track the dissemination of a specific Salmonella serotype in feed mills. This review will discuss the processing of feeds and potential points in the process that may introduce Salmonella contamination to the feed. Detection methods currently used and the need for advances in these methods also will be discussed. Finally, implementation of rapid detection for optimizing control methods to prevent and remove any Salmonella contamination of feeds will be considered. PMID:22346699

  4. Development of Rapid Detection and Genetic Characterization of Salmonella in Poultry Breeder Feeds

    Directory of Open Access Journals (Sweden)

    Steven C. Ricke

    2009-07-01

    Full Text Available Salmonella is a leading cause of foodborne illness in the United States, with poultry and poultry products being a primary source of infection to humans. Poultry may carry some Salmonella serovars without any signs or symptoms of disease and without causing any adverse effects to the health of the bird. Salmonella may be introduced to a flock by multiple environmental sources, but poultry feed is suspected to be a leading source. Detecting Salmonella in feed can be challenging because low levels of the bacteria may not be recovered using traditional culturing techniques. Numerous detection methodologies have been examined over the years for quantifying Salmonella in feeds and many have proven to be effective for Salmonella isolation and detection in a variety of feeds. However, given the potential need for increased detection sensitivity, molecular detection technologies may the best candidate for developing rapid sensitive methods for identifying small numbers of Salmonella in the background of large volumes of feed. Several studies have been done using polymerase chain reaction (PCR assays and commercial kits to detect Salmonella spp. in a wide variety of feed sources. In addition, DNA array technology has recently been utilized to track the dissemination of a specific Salmonella serotype in feed mills. This review will discuss the processing of feeds and potential points in the process that may introduce Salmonella contamination to the feed. Detection methods currently used and the need for advances in these methods also will be discussed. Finally, implementation of rapid detection for optimizing control methods to prevent and remove any Salmonella contamination of feeds will be considered.

  5. Rapid Detection of Salmonella in Food and Beverage Samples by Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Radji, M.

    2010-01-01

    Full Text Available Polymerase chain reaction (PCR assay had been used to detect Salmonella in food and beverage samples using suitable primers which are based on specific invA gene of Salmonella. Twenty nine samples were collected from street food counters and some canteens in Margonda Street, Depok, West Java, Indonesia. It was found that five of twenty nine samples were detected to contain Salmonella and showed the presence of the amplified product of the size 244 bp. The method of PCR demonstrated the specificity of invA primers for detection of Salmonella as confirmed by biochemical and serological assay. The results of this study revealed that PCR was a rapid and useful tool for detection of Salmonella in food and beverage samples.

  6. A rapid Salmonella detection method involving thermophilic helicase-dependent amplification and a lateral flow assay.

    Science.gov (United States)

    Du, Xin-Jun; Zhou, Tian-Jiao; Li, Ping; Wang, Shuo

    2017-08-01

    Salmonella is a major foodborne pathogen that is widespread in the environment and can cause serious human and animal disease. Since conventional culture methods to detect Salmonella are time-consuming and laborious, rapid and accurate techniques to detect this pathogen are critically important for food safety and diagnosing foodborne illness. In this study, we developed a rapid, simple and portable Salmonella detection strategy that combines thermophilic helicase-dependent amplification (tHDA) with a lateral flow assay to provide a detection result based on visual signals within 90 min. Performance analyses indicated that the method had detection limits for DNA and pure cultured bacteria of 73.4-80.7 fg and 35-40 CFU, respectively. Specificity analyses showed no cross reactions with Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, Enterobacter aerogenes, Shigella and Campylobacter jejuni. The results for detection in real food samples showed that 1.3-1.9 CFU/g or 1.3-1.9 CFU/mL of Salmonella in contaminated chicken products and infant nutritional cereal could be detected after 2 h of enrichment. The same amount of Salmonella in contaminated milk could be detected after 4 h of enrichment. This tHDA-strip can be used for the rapid detection of Salmonella in food samples and is particularly suitable for use in areas with limited equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Flow cytometry for rapid detection of Salmonella spp. in seed sprouts

    Directory of Open Access Journals (Sweden)

    Bledar Bisha

    2014-12-01

    Full Text Available Seed sprouts (alfalfa, mung bean, radish, etc. have been implicated in several recent national and international outbreaks of salmonellosis. Conditions used for sprouting are also conducive to the growth of Salmonella. As a result, this pathogen can quickly grow to very high cell densities during sprouting without any detectable organoleptic impact. Seed sprouts typically also support heavy growth (~108 CFU g−1 of a heterogeneous microbiota consisting of various bacterial, yeast, and mold species, often dominated by non-pathogenic members of the family Enterobacteriaceae. This heavy background may present challenges to the detection of Salmonella, especially if this pathogen is present in relatively low numbers. We combined DNA-based fluorescence in situ hybridization (FISH with flow cytometry (FCM for the rapid molecular detection of Salmonella enterica ser. Typhimurium in artificially contaminated alfalfa and other seed sprouts. Components of the assay included a set of cooperatively binding probes, a chemical blocking treatment intended to reduce non-specific background, and sample concentration via tangential flow filtration (TFF. We were able to detect S. Typhimurium in sprout wash at levels as low as 103 CFU ml−1 sprout wash (104 CFU g−1 sprouts against high microbial backgrounds (~108 CFU g−1 sprouts. Hybridization times were typically 30 min, with additional washing, but we ultimately found that S. Typhimurium could be readily detected using hybridization times as short as 2 min, without a wash step. These results clearly demonstrate the potential of combined DNA-FISH and FCM for rapid detection of Salmonella in this challenging food matrix and provide industry with a useful tool for compliance with sprout production standards proposed in the Food Safety Modernization Act (FSMA.

  8. A simple, rapid, cost-effective and sensitive method for detection of Salmonella in environmental and pecan samples.

    Science.gov (United States)

    Dobhal, S; Zhang, G; Rohla, C; Smith, M W; Ma, L M

    2014-10-01

    PCR is widely used in the routine detection of foodborne human pathogens; however, challenges remain in overcoming PCR inhibitors present in some sample matrices. The objective of this study was to develop a simple, sensitive, cost-effective and rapid method for processing large numbers of environmental and pecan samples for Salmonella detection. This study was also aimed at validation of a new protocol for the detection of Salmonella from in-shell pecans. Different DNA template preparation methods, including direct boiling, prespin, multiple washing and commercial DNA extraction kits, were evaluated with pure cultures of Salmonella Typhimurium and with enriched soil, cattle feces and in-shell pecan each spiked individually with Salmonella Typhimurium. PCR detection of Salmonella was conducted using invA and 16S rRNA gene (internal amplification control) specific primers. The effect of amplification facilitators, including bovine serum albumin (BSA), polyvinylpyrrolidone (PVP), polyethylene glycol (PEG) and gelatin on PCR sensitivity, was also evaluated. Conducting a prespin of sample matrices in combination with the addition of 0·4% (w/v) BSA and 1% (w/v) PVP in PCR mix was the simplest, most rapid, cost-effective and sensitive method for PCR detection of Salmonella, with up to 40 CFU Salmonella per reaction detectable in the presence of over 10(9 ) CFU ml(-1) of background micro-organisms from enriched feces soil or pecan samples. The developed method is rapid, cost-effective and sensitive for detection of Salmonella from different matrices. This study provides a method with broad applicability for PCR detection of Salmonella in complex sample matrices. This method has a potential for its application in different research arenas and diagnostic laboratories. © 2014 The Society for Applied Microbiology.

  9. Rapid radiometric method for detection of Salmonella in foods

    International Nuclear Information System (INIS)

    Stewart, B.J.; Eyles, M.J.; Murrell, W.G.

    1980-01-01

    A radiometric method for the detection of Salmonella in foods has been developed which is based on Salmonella poly H agglutinating serum preventing Salmonella from producing 14CO2 from [14C] dulcitol. The method will detect the presence or absence of Salmonella in a product within 30 h compared to 4 to 5 days by routine culture methods. The method has been evaluated against a routine culture method using 58 samples of food. The overall agreement was 91%. Five samples negative for Salmonella by the routine method were positive by the radiometric method. These may have been false positives. However, the routine method may have failed to detect Salmonella due to the presence of large numbers of lactose-fermenting bacteria which hindered isolation of Salmonella colonies on the selective agar plates

  10. Rapid detection of food-borne Salmonella contamination using IMBs-qPCR method based on pagC gene

    Directory of Open Access Journals (Sweden)

    Jiashun Wang

    Full Text Available Abstract Detection of Salmonella is very important to minimize the food safety risk. In this study, the recombinant PagC protein and PagC antibody were prepared and coupled with immunomagnetic beads (IMBs to capture Salmonella cells from pork and milk samples. And then the SYBR Green qualitative PCR was developed to detect the pathogenic Salmonella. The results showed that the PagC polyclonal antiserum is of good specificity and the capture rate of 0.1 mg IMBs for Salmonella tended to be stable at the range of 70-74% corresponding to the concentrations between 101 and 104 CFU/mL. The method developed demonstrated high specificity for the positive Salmonella samples when compared to non-specific DNA samples, such as Escherichia coli, Staphylococcus aureus, Yersinia enterocolitica, and Yersinia pseudotuberculosis. The limit of detection of this assay was 18 CFU/mL. Detection and quantitative enumeration of Salmonella in samples of pork or milk shows good recoveries of 54.34% and 52.07%. In conclusion, the polyclonal antibody of recombinant PagC protein is effective to capture Salmonella from detected samples. The developed pagC antibody IMBs-qPCR method showed efficiency, sensitivity and specificity for 30 Salmonella detection, enabling detection within 10 h, which is a promising rapid method to detect Salmonella in emergency.

  11. [Rapid methods for the genus Salmonella bacteria detection in food and raw materials].

    Science.gov (United States)

    Sokolov, D M; Sokolov, M S

    2013-01-01

    The article considers sanitary and epidemiological aspects and the impact of Salmonella food poisoning in Russia and abroad. The main characteristics of the agent (Salmonella enterica subsp. Enteritidis) are summarized. The main sources of human Salmonella infection are products of poultry and livestock (poultry, eggs, dairy products, meat products, etc.). Standard methods of identifying the causative agent, rapid (alternative) methods of analysis of Salmonella using differential diagnostic medium (MSRV, Salmosyst, XLT4-agar, agar-Rambach et al.), rapid tests Singlepath-Salmonella and PCR (food proof Salmonella) in real time were stated. Rapid tests provide is a substantial (at 24-48 h) reducing the time to identify Salmonella.

  12. A novel electrochemical sensing strategy for rapid and ultrasensitive detection of Salmonella by rolling circle amplification and DNA–AuNPs probe

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Dan; Yan, Yurong; Lei, Pinhua; Shen, Bo [Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); Cheng, Wei [Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); The Center for Clinical Molecular Medical detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Ju, Huangxian [Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093 (China); Ding, Shijia, E-mail: dingshijia@163.com [Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China)

    2014-10-10

    A novel electrochemical sensing strategy was developed for ultrasensitive and rapid detection of Salmonella by combining the rolling circle amplification with DNA–AuNPs probe. - Highlights: • This paper presented a novel sensing strategy for the rapid and ultrasensitive detection for Salmonella. • Combination of rolling circle amplification and DNA–AuNPs probe is the first time for Salmonella electrochemical detection. • The method displayed excellent sensitivity and specificity for detection of Salmonella. • The fabricated biosensor was successfully applied to detect Salmonella in milk samples. - Abstract: A novel electrochemical sensing strategy was developed for ultrasensitive and rapid detection of Salmonella by combining the rolling circle amplification with DNA–AuNPs probe. The target DNA could be specifically captured by probe 1 on the sensing interface. Then the circularization mixture was added to form a typical sandwich structure. In the presence of dNTPs and phi29 DNA polymerase, the RCA was initiated to produce micrometer-long single-strand DNA. Finally, the detection probe (DNA–AuNPs) could recognize RCA product to produce enzymatic electrochemical signal. Under optimal conditions, the calibration curve of synthetic target DNA had good linearity from 10 aM to 10 pM with a detection limit of 6.76 aM (S/N = 3). The developed method had been successfully applied to detect Salmonella as low as 6 CFU mL{sup −1} in real milk sample. This proposed strategy showed great potential for clinical diagnosis, food safety and environmental monitoring.

  13. A novel electrochemical sensing strategy for rapid and ultrasensitive detection of Salmonella by rolling circle amplification and DNA–AuNPs probe

    International Nuclear Information System (INIS)

    Zhu, Dan; Yan, Yurong; Lei, Pinhua; Shen, Bo; Cheng, Wei; Ju, Huangxian; Ding, Shijia

    2014-01-01

    A novel electrochemical sensing strategy was developed for ultrasensitive and rapid detection of Salmonella by combining the rolling circle amplification with DNA–AuNPs probe. - Highlights: • This paper presented a novel sensing strategy for the rapid and ultrasensitive detection for Salmonella. • Combination of rolling circle amplification and DNA–AuNPs probe is the first time for Salmonella electrochemical detection. • The method displayed excellent sensitivity and specificity for detection of Salmonella. • The fabricated biosensor was successfully applied to detect Salmonella in milk samples. - Abstract: A novel electrochemical sensing strategy was developed for ultrasensitive and rapid detection of Salmonella by combining the rolling circle amplification with DNA–AuNPs probe. The target DNA could be specifically captured by probe 1 on the sensing interface. Then the circularization mixture was added to form a typical sandwich structure. In the presence of dNTPs and phi29 DNA polymerase, the RCA was initiated to produce micrometer-long single-strand DNA. Finally, the detection probe (DNA–AuNPs) could recognize RCA product to produce enzymatic electrochemical signal. Under optimal conditions, the calibration curve of synthetic target DNA had good linearity from 10 aM to 10 pM with a detection limit of 6.76 aM (S/N = 3). The developed method had been successfully applied to detect Salmonella as low as 6 CFU mL −1 in real milk sample. This proposed strategy showed great potential for clinical diagnosis, food safety and environmental monitoring

  14. Rapid detection of Salmonella in pet food: design and evaluation of integrated methods based on real-time PCR detection.

    Science.gov (United States)

    Balachandran, Priya; Friberg, Maria; Vanlandingham, V; Kozak, K; Manolis, Amanda; Brevnov, Maxim; Crowley, Erin; Bird, Patrick; Goins, David; Furtado, Manohar R; Petrauskene, Olga V; Tebbs, Robert S; Charbonneau, Duane

    2012-02-01

    Reducing the risk of Salmonella contamination in pet food is critical for both companion animals and humans, and its importance is reflected by the substantial increase in the demand for pathogen testing. Accurate and rapid detection of foodborne pathogens improves food safety, protects the public health, and benefits food producers by assuring product quality while facilitating product release in a timely manner. Traditional culture-based methods for Salmonella screening are laborious and can take 5 to 7 days to obtain definitive results. In this study, we developed two methods for the detection of low levels of Salmonella in pet food using real-time PCR: (i) detection of Salmonella in 25 g of dried pet food in less than 14 h with an automated magnetic bead-based nucleic acid extraction method and (ii) detection of Salmonella in 375 g of composite dry pet food matrix in less than 24 h with a manual centrifugation-based nucleic acid preparation method. Both methods included a preclarification step using a novel protocol that removes food matrix-associated debris and PCR inhibitors and improves the sensitivity of detection. Validation studies revealed no significant differences between the two real-time PCR methods and the standard U.S. Food and Drug Administration Bacteriological Analytical Manual (chapter 5) culture confirmation method.

  15. Immunochromatographic strip assay for the rapid and sensitive detection of Salmonella Typhimurium in artificially contaminated tomato samples.

    Science.gov (United States)

    Shukla, Shruti; Leem, Hyerim; Lee, Jong-Suk; Kim, Myunghee

    2014-06-01

    This study was designed to confirm the applicability of a liposome-based immunochromatographic assay for the rapid detection of Salmonella enterica subsp. enterica serovar Typhimurium (Salmonella Typhimurium) in artificially contaminated tomato samples. To determine the detection limit and pre-enrichment incubation time (10, 12, and 18 h pre-enrichment in 1% buffered peptone water), the tests were performed with different cell numbers of Salmonella Typhimurium (3 × 10(0), 3 × 10(1), 3 × 10(2), and 3 × 10(3) CFU·mL(-1)) inoculated into 25 g of crushed tomato samples. The assay was able to detect as few as 30 Salmonella Typhimurium cells per 25 g of tomato samples (1.2 cells·g(-1)) after 12 h pre-enrichment incubation. Moreover, when the developed assay was compared with traditional morphological and biochemical culture-based methods as well as colloidal gold nanoparticle-based commercial test strips, the developed assay yielded positive results for the detection of Salmonella Typhimurium within a shorter period time. These findings confirm that the developed assay may have practical application for the sensitive detection of Salmonella Typhimurium in various food samples, including raw vegetables, with a relatively low detection limit and shorter analysis time.

  16. Rapid detection of salmonella using SERS with silver nano-substrate

    Science.gov (United States)

    Sundaram, J.; Park, B.; Hinton, A., Jr.; Windham, W. R.; Yoon, S. C.; Lawrence, K. C.

    2011-06-01

    Surface Enhanced Raman Scattering (SERS) can detect the pathogen in rapid and accurate. In SERS weak Raman scattering signals are enhanced by many orders of magnitude. In this study silver metal with biopolymer was used. Silver encapsulated biopolymer polyvinyl alcohol nano-colloid was prepared and deposited on stainless steel plate. This was used as metal substrate for SERS. Salmonella typhimurium a common food pathogen was selected for this study. Salmonella typhimurium bacteria cells were prepared in different concentrations in cfu/mL. Small amount of these cells were loaded on the metal substrate individually, scanned and spectra were recorded using confocal Raman microscope. The cells were exposed to laser diode at 785 nm excitation and object 50x was used to focus the laser light on the sample. Raman shifts were obtained from 400 to 2400 cm-1. Multivariate data analysis was carried to predict the concentration of unknown sample using its spectra. Concentration prediction gave an R2 of 0.93 and standard error of prediction of 0.21. The results showed that it could be possible to find out the Salmonella cells present in a low concentration in food samples using SERS.

  17. Rapid and early detection of salmonella serotypes with hyperspectral microscope and multivariate data analysis

    Science.gov (United States)

    This study was designed to evaluate hyperspectral microscope images for early and rapid detection of Salmonella serotypes: S. Enteritidis, S. Heidelberg, S. Infantis, S. Kentucky, and S. Typhimurium at incubation times of 6, 8, 10, 12, and 24 hours. Images were collected by an acousto-optical tunab...

  18. Salmonella rarely detected in Mississippi coastal waters and sediment.

    Science.gov (United States)

    Carr, M R; Wang, S Y; McLean, T I; Flood, C J; Ellender, R D

    2010-12-01

    Standards for the rapid detection of individual pathogens from environmental samples have not been developed, but in their absence, the use of molecular-based detection methods coupled with traditional microbiology techniques allows for rapid and accurate pathogen detection from environmental waters and sediment. The aim of this research was to combine the use of enrichment with PCR for detection of Salmonella in Mississippi coastal waters and sediment and observe if that presence correlated with levels of enterococci and climatological variables. Salmonella were primarily found in samples that underwent nutrient enrichment and were present more frequently in freshwater than marine waters. Salmonella were detected infrequently in marine and freshwater sediments. There was a significant positive correlation between the presence of detectable Salmonella and the average enterococcal count. An inverse relationship, however, was observed between the frequency of detection and the levels of salinity, turbidity and sunlight exposure. Results from this study indicated the presence of Salmonella in Mississippi coastal waters, and sediments are very low with significant differences between freshwater and marine environments. Using pathogenic and novel nonpathogenic molecular markers, Salmonella do not appear to be a significant pathogenic genus along the Mississippi Coast. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.

  19. Rapid Detection of Salmonella enterica in Food Using a Compact Disc-Shaped Device

    Directory of Open Access Journals (Sweden)

    Shunsuke Furutani

    2016-01-01

    Full Text Available Rapid detection of food-borne pathogens is essential to public health and the food industry. Although the conventional culture method is highly sensitive, it takes at least a few days to detect food-borne pathogens. Even though polymerase chain reaction (PCR can detect food-borne pathogens in a few hours, it is more expensive and unsatisfactorily sensitive relative to the culture method. We have developed a method to rapidly detect Salmonella enterica by using a compact disc (CD-shaped device that can reduce reagent consumption in conventional PCR. The detection method, which combines culture and PCR, is more rapid than the conventional culture method and is more sensitive and cheaper than PCR. In this study, we also examined a sample preparation method that involved collecting bacterial cells from food. The bacteria collected from chicken meat spiked with S. enterica were mixed with PCR reagents, and PCR was performed on the device. At a low concentration of S. enterica, the collected S. enterica was cultured before PCR for sensitive detection. After cultivation for 4 h, S. enterica at 1.7 × 104 colony-forming units (CFUs·g−1 was detected within 8 h, which included the time needed for sample preparation and detection. Furthermore, the detection of 30 CFUs·g−1 of S. enterica was possible within 12 h including 8 h for cultivation.

  20. Aptasensors for rapid detection of Escherichia coli O157:H7 and Salmonella typhimurium

    Science.gov (United States)

    Wu, Wen-he; Li, Min; Wang, Yue; Ouyang, Hou-xian; Wang, Lin; Li, Ci-xiu; Cao, Yu-chen; Meng, Qing-he; Lu, Jian-xin

    2012-11-01

    Herein we reported the development of aptamer-based biosensors (aptasensors) based on label-free aptamers and gold nanoparticles (AuNPs) for detection of Escherichia coli ( E. coli) O157:H7 and Salmonella typhimurium. Target bacteria binding aptamers are adsorbed on the surface of unmodified AuNPs to capture target bacteria, and the detection was accomplished by target bacteria-induced aggregation of the aptasensor which is associated as red-to-purple color change upon high-salt conditions. By employing anti- E. coli O157:H7 aptamer and anti- S. typhimurium aptamer, we developed a convenient and rapid approach that could selectively detect bacteria without specialized instrumentation and pretreatment steps such as cell lysis. The aptasensor could detect as low as 105colony-forming units (CFU)/ml target bacteria within 20 min or less and its specificity was 100%. This novel method has a great potential application in rapid detection of bacteria in the near future.

  1. Direct PCR - A rapid method for multiplexed detection of different serotypes of Salmonella in enriched pork meat samples

    DEFF Research Database (Denmark)

    Chin, Wai Hoe; Sun, Yi; Høgberg, Jonas

    2017-01-01

    , in this study, we developed a multiplex Direct PCR method for rapid detection of different Salmonella serotypes directly from pork meat samples without any DNA purification steps. An inhibitor-resistant Phusion Pfu DNA polymerase was used to overcome PCR inhibition. Four pairs of primers including a pair...

  2. Evaluation of 3M molecular detection assay (MDA) Salmonella for the detection of Salmonella in selected foods: collaborative study.

    Science.gov (United States)

    Bird, Patrick; Fisher, Kiel; Boyle, Megan; Huffman, Travis; Benzinger, M Joseph; Bedinghaus, Paige; Flannery, Jonathan; Crowley, Erin; Agin, James; Goins, David; Benesh, DeAnn; David, John

    2013-01-01

    The 3M Molecular Detection Assay (MDA) Salmonella is used with the 3M Molecular Detection System for the detection of Salmonella spp. in food, food-related, and environmental samples after enrichment. The assay utilizes loop-mediated isothermal amplification to rapidly amplify Salmonella target DNA with high specificity and sensitivity, combined with bioluminescence to detect the amplification. The 3M MDA Salmonella method was compared using an unpaired study design in a multilaboratory collaborative study to the U.S. Department of Agriculture/Food Safety and Inspection Service-Microbiology Laboratory Guidebook (USDA/FSIS-MLG 4.05), Isolation and Identification of Salmonella from Meat, Poultry, Pasteurized Egg and Catfish Products for raw ground beef and the U.S. Food and Drug Administration/Bacteriological Analytical Manual (FDA/BAM) Chapter 5 Salmonella reference method for wet dog food following the current AOAC guidelines. A total of 20 laboratories participated. For the 3M MDA Salmonella method, raw ground beef was analyzed using 25 g test portions, and wet dog food was analyzed using 375 g test portions. For the reference methods, 25 g test portions of each matrix were analyzed. Each matrix was artificially contaminated with Salmonella at three inoculation levels: an uninoculated control level (0 CFU/test portion), a low inoculum level (0.2-2 CFU/test portion), and a high inoculum level (2-5 CFU/test portion). In this study, 1512 unpaired replicate samples were analyzed. Statistical analysis was conducted according to the probability of detection (POD). For the low-level raw ground beef test portions, the following dLPOD (difference between the POD of the reference and candidate method) values with 95% confidence intervals were obtained: -0.01 (-0.14, +0.12). For the low-level wet dog food test portions, the following dLPOD with 95% confidence intervals were obtained: -0.04 (-0.16, +0.09). No significant differences were observed in the number of positive

  3. Detection of Salmonella enteritidis Using a Miniature Optical Surface Plasmon Resonance Biosensor

    International Nuclear Information System (INIS)

    Son, J R; Kim, G; Kothapalli, A; Morgan, M T; Ess, D

    2007-01-01

    The frequent outbreaks of foodborne illness demand rapid detection of foodborne pathogens. Unfortunately, conventional methods for pathogen detection and identification are labor-intensive and take days to complete. Biosensors have shown great potential for the rapid detection of foodborne pathogens. Surface plasmon resonance (SPR) sensors have been widely adapted as an analysis tool for the study of various biological binding reactions. SPR biosensors could detect antibody-antigen bindings on the sensor surface by measuring either a resonance angle or refractive index value. In this study, the feasibility of a miniature SPR sensor (Spreeta, TI, USA) for detection of Salmonella enteritidis has been evaluated. Anti-Salmonella antibodies were immobilized on the gold sensor surface by using neutravidin. Salmonella could be detected by the Spreeta biosensor at concentrations down to 10 5 cfu/ml

  4. Rapid detection and characterization of Salmonella enterica ...

    African Journals Online (AJOL)

    Multiplex polymerase chain reaction (PCR) was used for molecular typing of Salmonella enterica serovars in Egypt. During the summer of 2010, a total of 1075 samples were collected from cattle, sheep and poultry farms to be subjected for isolation of Salmonella (290 rectal swabs from cattle, 335 rectal swabs from sheep ...

  5. Rapid detection of Salmonella typhimurium on fresh spinach leaves using phage-immobilized magnetoelastic biosensors

    Science.gov (United States)

    Horikawa, Shin; Li, Suiqiong; Chai, Yating; Park, Mi-Kyung; Shen, Wen; Barbaree, James M.; Vodyanoy, Vitaly J.; Chin, Bryan A.

    2011-06-01

    This paper presents an investigation into the use of magnetoelastic biosensors for the rapid detection of Salmonella typhimurium on fresh spinach leaves. The biosensors used in this investigation were comprised of a strip-shaped, goldcoated sensor platform (2 mm-long) diced from a ferromagnetic, amorphous alloy and a filamentous fd-tet phage which specifically binds with S. typhimurium. After surface blocking with bovine serum albumin, these biosensors were, without any preceding sample preparation, directly placed on wet spinach leaves inoculated with various concentrations of S. typhimurium. Upon contact with cells, the phage binds S. typhimurium to the sensor thereby increasing the total mass of the sensor. This change in mass causes a corresponding decrease in the sensor's resonant frequency. After 25 min, the sensors were collected from the leaf surface and measurements of the resonant frequency were performed immediately. The total assay time was less than 30 min. The frequency changes for measurement sensors (i.e., phageimmobilized) were found to be statistically different from those for control sensors (sensors without phage), down to 5 × 106 cells/ml. The detection limit may be improved by using smaller, micron-sized sensors that will have a higher probability of contacting Salmonella on the rough surfaces of spinach leaves.

  6. Samsung Salmonella Detection Kit. AOAC Performance Tested Method(SM) 021203.

    Science.gov (United States)

    Li, Jun; Cheung, Win Den; Opdyke, Jason; Harvey, John; Chong, Songchun; Moon, Cheol Gon

    2012-01-01

    Salmonella, one of the most common causes of foodborne illness, is a significant public health concern worldwide. There is a need in the food industry for methods that are simple, rapid, and sensitive for the detection of foodborne pathogens. In this study, the Samsung Salmonella Detection Kit, a real-time PCR assay for the detection of Salmonella, was evaluated according to the current AOAC guidelines. The validation consisted of lot-to-lot consistency, stability, robustness, and inclusivity/exclusivity studies, as well as a method comparison of 10 different food matrixes. In the validation, the Samsung Salmonella Detection Kit was used in conjunction with the Applied Biosystems StepOnePlus PCR system and the Samsung Food Testing Software for the detection of Salmonella species. The performance of the assays was compared to the U.S. Department of Agriculture/Food Safety and Inspection Service-Microbiology Laboratory Guidebook (USDA/FSIS-MLG) 4.05: Isolation and Identification of Salmonella from Meat, Poultry, Pasteurized Egg, and Catfish and the and U.S. Food and Drug Administration/Bacteriological Analytical Manual (FDA/BAM) Chapter 5 Salmonella reference methods. The validation was conducted using an unpaired study design for detection of Salmonella spp. in raw ground beef, raw pork, raw ground pork, raw chicken wings, raw salmon, alfalfa sprouts, pasteurized orange juice, peanut butter, pasteurized whole milk, and shell eggs. The Samsung Salmonella Detection Kit demonstrated lot-to-lot consistency among three independent lots as well as ruggedness with minor modifications to changes in enrichment incubation time, enrichment incubation temperature, and DNA sample volume for PCR reaction. Stability was observed for 13 months at -20 degrees C and 3 months at 5 degrees C. For the inclusivity/exclusivity study, the Samsung Salmonella Detection Kit correctly identified 147 Salmonella species isolates out of 147 isolates tested from each of three different enrichment

  7. Evanescent Wave Fiber Optic Biosensor for Salmonella Detection in Food

    Directory of Open Access Journals (Sweden)

    Arun K. Bhunia

    2009-07-01

    Full Text Available Salmonella enterica is a major food-borne pathogen of world-wide concern. Sensitive and rapid detection methods to assess product safety before retail distribution are highly desirable. Since Salmonella is most commonly associated with poultry products, an evanescent wave fiber-optic assay was developed to detect Salmonella in shell egg and chicken breast and data were compared with a time-resolved fluorescence (TRF assay. Anti-Salmonella polyclonal antibody was immobilized onto the surface of an optical fiber using biotin-avidin interactions to capture Salmonella. Alexa Fluor 647-conjugated antibody (MAb 2F-11 was used as the reporter. Detection occurred when an evanescent wave from a laser (635 nm excited the Alexa Fluor and the fluorescence was measured by a laser-spectrofluorometer at 710 nm. The biosensor was specific for Salmonella and the limit of detection was established to be 103 cfu/mL in pure culture and 104 cfu/mL with egg and chicken breast samples when spiked with 102 cfu/mL after 2–6 h of enrichment. The results indicate that the performance of the fiber-optic sensor is comparable to TRF, and can be completed in less than 8 h, providing an alternative to the current detection methods.

  8. A lab-on-a-chip system with integrated sample preparation and loop-mediated isothermal amplification for rapid and quantitative detection of Salmonella spp. in food samples

    DEFF Research Database (Denmark)

    Sun, Yi; Than Linh, Quyen; Hung, Tran Quang

    2015-01-01

    was capable to detect Salmonella at concentration of 50 cells per test within 40 min. The simple design, together with high level of integration, isothermal amplification, and quantitative analysis of multiple samples in short time will greatly enhance the practical applicability of the LOC system for rapid...... amplification (LAMP) for rapid and quantitative detection of Salmonella spp. in food samples. The whole diagnostic procedures including DNA isolation, isothermal amplification, and real-time detection were accomplished in a single chamber. Up to eight samples could be handled simultaneously and the system...... and usually take a few hours to days to complete. In response to the demand for rapid on line or at site detection of pathogens, in this study, we describe for the first time an eight-chamber lab-on-a-chip (LOC) system with integrated magnetic beads-based sample preparation and loop-mediated isothermal...

  9. Comparative evaluation of two rapid Salmonella-IgM tests and blood culture in the diagnosis of enteric fever.

    Science.gov (United States)

    Prasad, K J; Oberoi, J K; Goel, N; Wattal, C

    2015-01-01

    Enteric fever is a major public health problem in developing countries like India. An early and accurate diagnosis is necessary for a prompt and effective treatment. We have evaluated the diagnostic accuracy of two Rapid Salmonella-IgM tests (Typhidot-IgM and Enteroscreen-IgM) as compared to blood culture in rapid and early diagnosis of enteric fever. A total of 2,699 patients' serum samples were tested by Rapid Salmonella-IgM tests and blood culture. Patients were divided into two groups. Test group - patients with enteric fever and blood culture positives for Salmonella Typhi; and three types of Controls, i.e. patients with non-enteric fever illnesses, normal healthy controls and patients positive for S. Paratyphi- A. In addition to this we have also evaluated the significance of positive Salmonella-IgM tests among blood culture-negative cases. The overall sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the Typhidot-IgM test and Enteroscreen-IgM test considering blood culture as gold standard were 97.29% and 88.13%, 97.40% and 87.83%, 98.18% and 92.03%, 96.15% and 82.27%, respectively. Typhidot-IgM test was found to be significantly more sensitive and specific as compared to Enteroscreen-IgM. Among blood culture-negative patients, Rapid Salmonella-IgM tests detected 72.25% additional cases of enteric fever. Although the Rapid Salmonella-IgM tests are meant to diagnose S. Typhi only, but these tests detect S. Paratyphi- A also. Thirty-eight patients who were blood culture-positive for S. Paratyphi- A were also positive by Rapid Salmonella-IgM tests. Rapid Salmonella-IgM tests offer an advantage of increased sensitivity, rapidity, early diagnosis and simplicity over blood culture.

  10. A Switchable Linker-Based Immunoassay for Ultrasensitive Visible Detection of Salmonella in Tomatoes.

    Science.gov (United States)

    Hahn, Jungwoo; Kim, Eunghee; You, Young Sang; Gunasekaran, Sundaram; Lim, Seokwon; Choi, Young Jin

    2017-10-01

    On-site detection for sensitive identification of foodborne pathogens on fresh produce with minimal use of specialized instrumentation is crucial to the food industry. A switchable linker (SL)-based immunoassay was designed for ultrasensitive on-site detection of Salmonella in tomato samples. The assay is based on large-scale aggregation of gold nanoparticles (GNPs), induced by a quantitative relationship among the biotinylated Salmonella polyclonal antibody (b-Ab) used as the SL, the functionalized GNPs, and Salmonella. Important factors such as the concentration of SLs, time required for large-scale aggregation, and selectivity of b-Ab were optimized to minimize the detection time (within 45 min with gentle agitation) and achieve the lowest limit of detection (LOD; 10 CFU/g in tomato samples) possible. This SL-based immunoassay with its relatively low LOD and short detection time may meet the need for rapid, simple, on-site analysis of pathogens in fresh produce. The novel switchable linker-based immunoassay is a rapid, specific, and sensitive method that has potential applications for routine diagnostics of Salmonella in tomato products. These advantages make it a practical approach for general use in the processing industry to detect Salmonella rapidly and to implement appropriate regulatory procedures. Furthermore, it could be applied to other fresh products including cantaloupe, strawberry, and cucumbers. © 2017 Institute of Food Technologists®.

  11. Interdigitated microelectrode based impedance biosensor for detection of salmonella enteritidis in food samples

    International Nuclear Information System (INIS)

    Kim, G; Morgan, M; Hahm, B K; Bhunia, A; Mun, J H; Om, A S

    2008-01-01

    Salmonella enteritidis outbreaks continue to occur, and S. enteritidis-related outbreaks from various food sources have increased public awareness of this pathogen. Conventional methods for pathogens detection and identification are labor-intensive and take days to complete. Some immunological rapid assays are developed, but these assays still require prolonged enrichment steps. Recently developed biosensors have shown great potential for the rapid detection of foodborne pathogens. To develop the biosensor, an interdigitated microelectrode (IME) was fabricated by using semiconductor fabrication process. Anti-Salmonella antibodies were immobilized based on avidin-biotin binding on the surface of the IME to form an active sensing layer. To increase the sensitivity of the sensor, three types of sensors that have different electrode gap sizes (2 μm, 5 μm, 10 μm) were fabricated and tested. The impedimetric biosensor could detect 10 3 CFU/mL of Salmonella in pork meat extract with an incubation time of 5 minutes. This method may provide a simple, rapid and sensitive method to detect foodborne pathogens

  12. Interdigitated microelectrode based impedance biosensor for detection of salmonella enteritidis in food samples

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G [National Institute of Agricultural Engineering, 249 Seodun-dong, Suwon, Republic of Korea, 441-100 (Korea, Republic of); Morgan, M; Hahm, B K; Bhunia, A [Department of Food Science, Purdue University, West Lafayette, IN 47907 (United States); Mun, J H; Om, A S [Department of Food and Nutrient, Hanyang University, 17 Haengdang-dong, Seoul, Republic of Korea, 133-791 (Korea, Republic of)], E-mail: giyoungkim@rda.go.kr

    2008-03-15

    Salmonella enteritidis outbreaks continue to occur, and S. enteritidis-related outbreaks from various food sources have increased public awareness of this pathogen. Conventional methods for pathogens detection and identification are labor-intensive and take days to complete. Some immunological rapid assays are developed, but these assays still require prolonged enrichment steps. Recently developed biosensors have shown great potential for the rapid detection of foodborne pathogens. To develop the biosensor, an interdigitated microelectrode (IME) was fabricated by using semiconductor fabrication process. Anti-Salmonella antibodies were immobilized based on avidin-biotin binding on the surface of the IME to form an active sensing layer. To increase the sensitivity of the sensor, three types of sensors that have different electrode gap sizes (2 {mu}m, 5 {mu}m, 10 {mu}m) were fabricated and tested. The impedimetric biosensor could detect 10{sup 3} CFU/mL of Salmonella in pork meat extract with an incubation time of 5 minutes. This method may provide a simple, rapid and sensitive method to detect foodborne pathogens.

  13. A Portable Impedance Immunosensing System for Rapid Detection of Salmonella Typhimurium.

    Science.gov (United States)

    Wen, Tao; Wang, Ronghui; Sotero, America; Li, Yanbin

    2017-08-28

    Salmonella Typhimurium is one of the most dangerous foodborne pathogens and poses a significant threat to human health. The objective of this study was to develop a portable impedance immunosensing system for rapid and sensitive detection of S . Typhimurium in poultry. The developed portable impedance immunosensing system consisted of a gold interdigitated array microelectrode (IDAM), a signal acquisitive interface and a laptop computer with LabVIEW software. The IDAM was first functionalized with 16-Mercaptohexadecanoic acid, and streptavidin was immobilized onto the electrode surface through covalent bonding. Then, biotin-labelled S . Typhimurium -antibody was immobilized onto the IDAM surface. Samples were dropped on the surface of the IDAM and the S . Typhimurium cells in the samples were captured by the antibody on the IDAM. This resulted in impedance changes that were measured and displayed with the LabVIEW software. An equivalent circuit of the immunosensor demonstrated that the largest change in impedance was due to the electron-transfer resistance. The equivalent circuit showed an increase of 35% for the electron-transfer resistance value compared to the negative control. The calibration result indicated that the portable impedance immunosensing system could be used to measure the standard impedance elements, and it had a maximum error of measurement of approximately 13%. For pure culture detection, the system had a linear relationship between the impedance change and the logarithmic value of S . Typhimurium cells ranging from 76 to 7.6 × 10⁶ CFU (colony-forming unit) (50 μL) -1 . The immunosensor also had a correlation coefficient of 0.98, and a high specificity for detection of S . Typhimurium cells with a limit of detection (LOD) of 10² CFU (50 μL) -1 . The detection time from the moment a sample was introduced to the display of the results was 1 h. To conclude, the portable impedance immunosensing system for detection of S . Typhimurium achieved

  14. A Portable Impedance Immunosensing System for Rapid Detection of Salmonella Typhimurium

    Directory of Open Access Journals (Sweden)

    Tao Wen

    2017-08-01

    Full Text Available Salmonella Typhimurium is one of the most dangerous foodborne pathogens and poses a significant threat to human health. The objective of this study was to develop a portable impedance immunosensing system for rapid and sensitive detection of S. Typhimurium in poultry. The developed portable impedance immunosensing system consisted of a gold interdigitated array microelectrode (IDAM, a signal acquisitive interface and a laptop computer with LabVIEW software. The IDAM was first functionalized with 16-Mercaptohexadecanoic acid, and streptavidin was immobilized onto the electrode surface through covalent bonding. Then, biotin-labelled S. Typhimurium-antibody was immobilized onto the IDAM surface. Samples were dropped on the surface of the IDAM and the S. Typhimurium cells in the samples were captured by the antibody on the IDAM. This resulted in impedance changes that were measured and displayed with the LabVIEW software. An equivalent circuit of the immunosensor demonstrated that the largest change in impedance was due to the electron-transfer resistance. The equivalent circuit showed an increase of 35% for the electron-transfer resistance value compared to the negative control. The calibration result indicated that the portable impedance immunosensing system could be used to measure the standard impedance elements, and it had a maximum error of measurement of approximately 13%. For pure culture detection, the system had a linear relationship between the impedance change and the logarithmic value of S. Typhimurium cells ranging from 76 to 7.6 × 106 CFU (colony-forming unit (50 μL−1. The immunosensor also had a correlation coefficient of 0.98, and a high specificity for detection of S. Typhimurium cells with a limit of detection (LOD of 102 CFU (50 μL−1. The detection time from the moment a sample was introduced to the display of the results was 1 h. To conclude, the portable impedance immunosensing system for detection of S. Typhimurium

  15. Rapid, enhanced detection of Salmonella Typhimurium on fresh spinach leaves using micron-scale, phage-coated magnetoelastic biosensors

    Science.gov (United States)

    Horikawa, Shin; Vaglenov, Kiril A.; Gerken, Dana M.; Chai, Yating; Park, Mi-Kyung; Li, Suiqiong; Petrenko, Valery A.; Chin, Bryan A.

    2012-05-01

    In order to cost-effectively and rapidly detect bacterial food contamination in the field, the potential usefulness of phage-coated magnetoelastic (ME) biosensors has been recently reported. These biosensors are freestanding, mass-sensitive biosensors that can be easily batch-fabricated, thereby reducing the fabrication cost per sensor to a fraction of a cent. In addition, the biosensors can be directly placed on fresh produce surfaces and used to rapidly monitor possible bacterial food contamination without any preceding sample preparation. Previous investigations showed that the limit of detection (LOD) with millimeter-scale ME biosensors was fairly low for fresh produce with smooth surfaces (e.g., tomatoes and shell eggs). However, the LOD is anticipated to be dependent on the size of the biosensors as well as the topography of produce surfaces of interest. This paper presents an investigation into the use of micron-scale, phage-coated ME biosensors for the enhanced detection of Salmonella Typhimurium on fresh spinach leaves.

  16. Rapid Salmonella detection in experimentally inoculated equine faecal and veterinary hospital environmental samples using commercially available lateral flow immunoassays.

    Science.gov (United States)

    Burgess, B A; Noyes, N R; Bolte, D S; Hyatt, D R; van Metre, D C; Morley, P S

    2015-01-01

    Salmonella enterica is the most commonly reported cause of outbreaks of nosocomial infections in large animal veterinary teaching hospitals and the closure of equine hospitals. Rapid detection may facilitate effective control practices in equine populations. Shipping and laboratory testing typically require ≥48 h to obtain results. Lateral flow immunoassays developed for use in food-safety microbiology provide an alternative that has not been evaluated for use with faeces or environmental samples. We aimed to identify enrichment methods that would allow commercially available rapid Salmonella detection systems (lateral flow immunoassays) to be used in clinical practice with equine faecal and environmental samples, providing test results in 18-24 h. In vitro experiment. Equine faecal and environmental samples were inoculated with known quantities of S. enterica serotype Typhimurium and cultured using 2 different enrichment techniques for faeces and 4 enrichment techniques for environmental samples. Samples were tested blindly using 2 different lateral flow immunoassays and plated on agar media for confirmatory testing. In general, commercial lateral flow immunoassays resulted in fewer false-negative test results with enrichment of 1 g faecal samples in tetrathionate for 18 h, while all environmental sample enrichment techniques resulted in similar detection rates. The limit of detection from spiked samples, ∼4 colony-forming units/g, was similar for all methods evaluated. The lateral flow immunoassays evaluated could reliably detect S. enterica within 18 h, indicating that they may be useful for rapid point-of-care testing in equine practice applications. Additional evaluation is needed using samples from naturally infected cases and the environment to gain an accurate estimate of test sensitivity and specificity and to substantiate further the true value of these tests in clinical practice. © 2014 EVJ Ltd.

  17. Production of recombinant flagellin to develop ELISA-based detection of Salmonella Enteritidis

    Directory of Open Access Journals (Sweden)

    Seyed Ali Mirhosseini

    Full Text Available ABSTRACT Food-borne diseases, caused by the pathogenic bacteria, are highly prevalent in the world. Salmonella is one of the most important bacterial genera responsible for this. Salmonella Enteritidis (SE is one of the non-typhoid Salmonellae that can be transmitted to human from poultry products, water, and contaminated food. In recent years, new and rapid detection methods such as enzyme-linked immunosorbent assay (ELISA and polymerase chain reaction (PCR have been developed. In this study, recombinant FliC (rFliC was produced to be used as an antigen. The immunization was conducted in mice with the purified recombinant FliC (rFliC. The mice were subcutaneously immunized with rFliC and elicited significant rFliC specific serum IgG antibodies. An indirect ELISA system was established for the detection of Salmonella Enteritidis. Our results confirmed that the recombinant flagellin can be one of the excellent indicators for the detection of Salmonella Enteritidis.

  18. Comparison of DNA probe, PCR amplification, ELISA and culture methods for the rapid detection of Salmonella in poultry

    International Nuclear Information System (INIS)

    Qasem, J.A.; Al-Mouqati, S.; Rajkumar, G.

    2005-01-01

    The identification of Salmonella spp. from poultry meat was studied by comparing bacterial detection using the Gene-Trak colorimetric hybridization method, a PCR amplification kit and an Enzyme Linked Immunosorbent Assay (ELISA), and these methods were compared with the conventional methodology proposed by the United States Food and Drug Administration (US FDA) for detection of Salmonella in food samples. Forty positive and negative samples were studied. The three methods yielded similar results with levels of Salmonella greater than 10 CFU per sample, even when the samples were highly contaminated with competing bacteria. In contrast, 20 CFU of seed inoculum per sample was the lowest level of Salmonella detectable with all three methods and the standard culture method. The detection limits of the PCR and ELISA assays were 5 CFU/g after enrichment at 37 deg. C for 6 and 9 hours, respectively. Compared with conventional bacteriology, all three methods here demonstrated high sensitivity and specificity for Salmonella. (author)

  19. Evaluation of the 3M™ Molecular Detection Assay (MDA) 2 - Salmonella for the Detection of Salmonella spp. in Select Foods and Environmental Surfaces: Collaborative Study, First Action 2016.01.

    Science.gov (United States)

    Bird, Patrick; Flannery, Jonathan; Crowley, Erin; Agin, James R; Goins, David; Monteroso, Lisa

    2016-07-01

    The 3M™ Molecular Detection Assay (MDA) 2 - Salmonella uses real-time isothermal technology for the rapid and accurate detection of Salmonella spp. from enriched select food, feed, and food-process environmental samples. The 3M MDA 2 - Salmonella was evaluated in a multilaboratory collaborative study using an unpaired study design. The 3M MDA 2 - Salmonella was compared to the U.S. Food and Drug Administration Bacteriological Analytical Manual Chapter 5 reference method for the detection of Salmonella in creamy peanut butter, and to the U.S. Department of Agriculture, Food Safety and Inspection Service Microbiology Laboratory Guidebook Chapter 4.08 reference method "Isolation and Identification of Salmonella from Meat, Poultry, Pasteurized Egg and Catfish Products and Carcass and Environmental Samples" for the detection of Salmonella in raw ground beef (73% lean). Technicians from 16 laboratories located within the continental United States participated. Each matrix was evaluated at three levels of contamination: an uninoculated control level (0 CFU/test portion), a low inoculum level (0.2-2 CFU/test portion), and a high inoculum level (2-5 CFU/test portion). Statistical analysis was conducted according to the probability of detection (POD) statistical model. Results obtained for the low inoculum level test portions produced difference in collaborator POD values of 0.03 (95% confidence interval, -0.10 to 0.16) for raw ground beef and 0.06 (95% confidence interval, -0.06 to 0.18) for creamy peanut butter, indicating no statistically significant difference between the candidate and reference methods.

  20. Simultaneous detection and serotyping of Salmonellae by immunomagnetic separation and label-free surface enhanced Raman spectroscopy

    Science.gov (United States)

    Salmonella spp. are one of the leading causes of foodborne outbreaks in the United States and globally. Current detection and characterization techniques for Salmonellae are time consuming and costly, and rapid methods could greatly benefit outbreak investigation, new case prevention and disease tre...

  1. Designing of primers for detection of salmonella typhimirium and enteritidis by heminested PCR

    International Nuclear Information System (INIS)

    Ben salem, Issam

    2007-01-01

    Salmonella are the main responsible agent for the frequent food borne gastrointestinal diseases. In Tunisia, this pathogen is considered one of the most important causes of toxiinfections and its detection using classical methods is laborious and requires a large amount of time for revelation. To solve this problem, we developed a rapid molecular technique for the detection of the invA virulence gene sequence which is found in the majority of Salmonella spp. This technique is a hemi nested PCR amplification using specific primers designed and by bioinformatics tools. The detection method consisted of pre-enrichment of the sample in buffered peptone water (BPW), followed by a total DNA extraction step prior to single tube hemi nested PCR amplification. This method was found highly specific and sensitive to detect low levels of salmonella typhimurium and salmonella enteritidis (1cfu/ 25g) in naturally contaminated spicy sausage (merguez) samples. These results can benefit the public health agencies concerning microbiological and quality aspects of the commercial and traditional merguez meat production in Tunisia. (Author)

  2. 9 CFR 113.30 - Detection of Salmonella contamination.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Detection of Salmonella contamination... REQUIREMENTS Standard Procedures § 113.30 Detection of Salmonella contamination. The test for detection of Salmonella contamination provided in this section shall be conducted when such a test is prescribed in an...

  3. Evaluation of Modification of the 3M™ Molecular Detection Assay (MDA) Salmonella Method (2013.09) for the Detection of Salmonella in Selected Foods: Collaborative Study.

    Science.gov (United States)

    Bird, Patrick; Fisher, Kiel; Boyle, Megan; Huffman, Travis; Benzinger, M Joseph; Bedinghaus, Paige; Flannery, Jonathon; Crowley, Erin; Agin, James; Goins, David; Benesh, DeAnn; David, John

    2014-01-01

    The 3M(™) Molecular Detection Assay (MDA) Salmonella utilizes isothermal amplification of nucleic acid sequences with high specificity, efficiency, rapidity and bioluminescence to detect amplification of Salmonella spp. in food, food-related, and environmental samples after enrichment. A method modification and matrix extension study of the previously approved AOAC Official Method(SM) 2013.09 was conducted, and approval of the modification was received on March 20, 2014. Using an unpaired study design in a multilaboratory collaborative study, the 3M MDA Salmonella method was compared to the U.S. Department of Agriculture/Food Safety and Inspection Service (USDA/FSIS) Microbiology Laboratory Guidebook (MLG) 4.05 (2011), Isolation and Identification of Salmonella from Meat, Poultry, Pasteurized Egg, and Catfish Products for raw ground beef and the U.S. Food and Drug Administration (FDA)/Bacteriological Analytical Manual (BAM) Chapter 5, Salmonella reference method for wet dog food following the current AOAC guidelines. A total of 20 laboratories participated. For the 3M MDA Salmonella method, raw ground beef was analyzed using 25 g test portions, and wet dog food was analyzed using 375 g test portions. For the reference methods, 25 g test portions of each matrix were analyzed. Each matrix was artificially contaminated with Salmonella at three inoculation levels: an uninoculated control level (0 CFU/test portion), a low inoculum level (0.2-2 CFU/test portion), and a high inoculum level (2-5 CFU/test portion). In this study, 1512 unpaired replicate samples were analyzed. Statistical analysis was conducted according to the probability of detection (POD). For the low-level raw ground beef test portions, the following dLPOD (difference between the LPODs of the reference and candidate method) values with 95% confidence intervals were obtained: -0.01 (-0.14, +0.12). For the low-level wet dog food test portions, the following dLPOD with 95% confidence intervals were

  4. The development of methods for the detection of Salmonella in chickens by a combination of immunomagnetic separation and PCRs.

    Science.gov (United States)

    Dai, Fengying; Zhang, Miao; Xu, Dixin; Yang, Yin; Wang, Jiaxiao; Li, Mingzhen; Du, Meihong

    2017-11-01

    Micro- and nanoimmunomagnetic beads (MIMBs and NIMBs) used for immunomagnetic separation (IMS) with PCR were studied for the rapid detection of Salmonella. The capture efficiency of the two different IMBs was evaluated by a conventional plate counting method, and the binding pattern was studied using scanning electron microscopy. The specificity of the IMBs was tested with Salmonella, Shigella flexneri, enterohemorrhagic Escherichia coli O157:H7, and Listeria monocytogenes. By comparing the pre-enrichment IMS and the IMS enrichment steps with a 5.5-H enrichment time, this study developed a rapid and sensitive method for the detection of Salmonella in chicken. The method was implemented by IMS enrichment and PCR with MIMBs and NIMBs, with a total analysis time of 8 H. We showed that the method was sensitive based on NIMBs with a detection limit of 10° CFU for Salmonella in 25 g of chicken. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  5. Detection of live Salmonella enterica in fresh-cut vegetables by a TaqMan-based one-step reverse transcription real-time PCR.

    Science.gov (United States)

    Miao, Y J; Xiong, G T; Bai, M Y; Ge, Y; Wu, Z F

    2018-05-01

    Fresh-cut produce is at greater risk of Salmonella contamination. Detection and early warning systems play an important role in reducing the dissemination of contaminated products. One-step Reverse Transcription Polymerase Chain Reaction (RT-qPCR) targeting Salmonella tmRNA with or without a 6-h enrichment was evaluated for the detection of Salmonella in fresh-cut vegetables after 6-h storage. LOD of one-step RT-qPCR was 1·0 CFU per ml (about 100 copies tmRNA per ml) by assessed 10-fold serially diluted RNA from 10 6 CFU per ml bacteria culture. Then, one-step RT-qPCR assay was applied to detect viable Salmonella cells in 14 fresh-cut vegetables after 6-h storage. Without enrichment, this assay could detect 10 CFU per g for fresh-cut lettuce, cilantro, spinach, cabbage, Chinese cabbage and bell pepper, and 10 2 CFU per g for other vegetables. With a 6-h enrichment, this assay could detect 10 CFU per g for all fresh-cut vegetables used in this study. Moreover, this assay was able to discriminate viable cells from dead cells. This rapid detection assay may provide potential processing control and early warning method in fresh-cut vegetable processing to strengthen food safety assurance. Significance and Impact of the Study: Fresh-cut produce is at greater risk of Salmonella contamination. Rapid detection methods play an important role in reducing the dissemination of contaminated products. One-step RT-qPCR assay used in this study could detect 10 CFU per g Salmonella for 14 fresh-cut vegetables with a 6-h short enrichment. Moreover, this assay was able to discriminate viable cells from dead cells. This rapid detection assay may provide potential processing control and early warning method in fresh-cut vegetable processing to strengthen food safety assurance. © 2018 The Society for Applied Microbiology.

  6. Specificity tests of an oligonucleotide probe against food-outbreak salmonella for biosensor detection

    Science.gov (United States)

    Chen, I.-H.; Horikawa, S.; Xi, J.; Wikle, H. C.; Barbaree, J. M.; Chin, B. A.

    2017-05-01

    Phage based magneto-elastic (ME) biosensors have been shown to be able to rapidly detect Salmonella in various food systems to serve food pathogen monitoring purposes. In this ME biosensor platform, the free-standing strip-shaped magneto-elastic sensor is the transducer and the phage probe that recognizes Salmonella in food serves as the bio-recognition element. According to Sorokulova et al. at 2005, a developed oligonucleotide probe E2 was reported to have high specificity to Salmonella enterica Typhimurium. In the report, the specificity tests were focused in most of Enterobacterace groups outside of Salmonella family. Here, to understand the specificity of phage E2 to different Salmonella enterica serotypes within Salmonella Family, we further tested the specificity of the phage probe to thirty-two Salmonella serotypes that were present in the major foodborne outbreaks during the past ten years (according to Centers for Disease Control and Prevention). The tests were conducted through an Enzyme linked Immunosorbent Assay (ELISA) format. This assay can mimic probe immobilized conditions on the magnetoelastic biosensor platform and also enable to study the binding specificity of oligonucleotide probes toward different Salmonella while avoiding phage/ sensor lot variations. Test results confirmed that this oligonucleotide probe E2 was high specific to Salmonella Typhimurium cells but showed cross reactivity to Salmonella Tennessee and four other serotypes among the thirty-two tested Salmonella serotypes.

  7. Detection and Identification of Salmonella spp. in Surface Water by Molecular Technology in Taiwan

    Science.gov (United States)

    Tseng, S. F.; Hsu, B. M.; Huang, K. H.; Hsiao, H. Y.; Kao, P. M.; Shen, S. M.; Tsai, H. F.; Chen, J. S.

    2012-04-01

    Salmonella spp. is classified to gram-negative bacterium and is one of the most important causal agents of waterborne diseases. The genus of Salmonella comprises more than 2,500 serotypes and its taxonomy is also very complicated. In tradition, the detection of Salmonella in environmental water samples by routines culture methods using selective media and characterization of suspicious colonies based on biochemical tests and serological assay are generally time and labor consuming. To overcome this disadvantage, it is desirable to use effective method which provides a higher discrimination and more rapid identification about Salmonella in environmental water. The aim of this study is to investigate the occurrence of Salmonella using novel procedures of detection method and to identify the serovars of Salmonella isolates from 157 surface water samples in Taiwan. The procedures include membrane filtration, non-selective pre-enrichment, selective enrichment of Salmonella, and then isolation of Salmonella strains by selective culture plates. The selective enrichment and culture plates were both detected by PCR. Finally, we used biochemical tests and serological assay to confirm the serovars of Salmonella and also used Pulsed-field gel electrophoresis (PFGE) to identify their sarovar catagories by the genetic pattern. In this study, 44 water samples (28%) were indentified as Salmonella. The 44 positive water samples by culture method were further identified as S. Agona(1/44), S. Albany (10/44), S. Bareilly (13/44),S. Choleraesuis (2/44),S. Derby (4/44),S. Isangi (3/44),S.Kedougou(3/44),S. Mbandaka(1/44),S.Newport (3/44), S. Oranienburg(1/44), S. Potsdam (1/44),S. Typhimurium (1/44), andS. Weltevreden(1/44) by PFGE. The presence of Salmonella in surface water indicates the possibility of waterborne transmission in drinking watershed if water is not adequately treated. Therefore, the authorities need to have operating systems that currently provide adequate source

  8. Detection of Salmonella in Meat

    DEFF Research Database (Denmark)

    Löfström, Charlotta; Hansen, Flemming; Mansdal, Susanne

    2012-01-01

    Cost-effective and rapid monitoring of Salmonella in the meat production chain can contribute to food safety. The objective of this study was to validate an easy-to-use pre-PCR sample preparation method based on a simple boiling protocol for screening of Salmonella in meat and carcass swab samples...... obtained (SP, SE, and AC were 100, 95, and 97%, respectively). This test is under implementation by the Danish meat industry, and can be useful for screening of large number of samples in the meat production, especially for fast release of minced meat with a short shelf life....

  9. Comparison between digital PCR and real-time PCR in detection of Salmonella typhimurium in milk.

    Science.gov (United States)

    Wang, Meng; Yang, Junjie; Gai, Zhongtao; Huo, Shengnan; Zhu, Jianhua; Li, Jun; Wang, Ranran; Xing, Sheng; Shi, Guosheng; Shi, Feng; Zhang, Lei

    2018-02-02

    As a kind of zero-tolerance foodborne pathogens, Salmonella typhimurium poses a great threat to quality of food products and public health. Hence, rapid and efficient approaches to identify Salmonella typhimurium are urgently needed. Combined with PCR and fluorescence technique, real-time PCR (qPCR) and digital PCR (ddPCR) are regarded as suitable tools for detecting foodborne pathogens. To compare the effect between qPCR and ddPCR in detecting Salmonella typhimurium, a series of nucleic acid, pure strain culture and spiking milk samples were applied and the resistance to inhibitors referred in this article as well. Compared with qPCR, ddPCR exhibited more sensitive (10 -4 ng/μl or 10 2 cfu/ml) and less pre-culturing time (saving 2h). Moreover, ddPCR had stronger resistance to inhibitors than qPCR, yet absolute quantification hardly performed when target's concentration over 1ng/μl or 10 6 cfu/ml. This study provides an alternative strategy in detecting foodborne Salmonella typhimurium. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. A Real-Time PCR Detection of Genus Salmonella in Meat and Milk Samples

    Directory of Open Access Journals (Sweden)

    Jaroslav Pochop

    2013-05-01

    Full Text Available The aim of this study was follow the contamination of ready to eat milk and meat products with Salmonella spp. by using the Step One real-time PCR. Classical microbiological methods for detection of food-borne bacteria involve the use of pre-enrichment and/or specific enrichment, followed by the isolation of the bacteria in solid media and a final confirmation by biochemical and/or serological tests. We used the PrepSEQ Rapid Spin Sample Preparation Kit for isolation of DNA and SensiFAST SYBR Hi-ROX Kit for the real-time PCR performance. In the investigated samples without incubation we could detect strain of Salmonella sp. in five out of twenty three samples (swabs. This Step One real-time PCR assay is extremely useful for any laboratory in possession of a real-time PCR. It is a fast, reproducible, simple, specific and sensitive way to detect nucleic acids, which could be used in clinical diagnostic tests in the future. Our results indicated that the Step One real-time PCR assay developed in this study could sensitively detect Salmonella spp. in ready to eat food.

  11. Salmonella detection in a microfluidic channel using orbiting magnetic beads

    Science.gov (United States)

    Ballard, Matt; Mills, Zachary; Owen, Drew; Hanasoge, Srinivas; Hesketh, Peter; Alexeev, Alexander

    2015-03-01

    We use three-dimensional simulations to model the detection of salmonella in a complex fluid sample in a microfluidic channel. Salmonella is captured using magnetic microbeads orbiting around soft ferromagnetic discs at the microchannel bottom subjected to a rotating external magnetic field. Numerical simulations are used to model the dynamics of salmonella and microbeads throughout the detection process. We examine the effect of the channel geometry on the salmonella capture, and the forces applied to the salmonella as it is dragged through the fluid after capture. Our findings guide the design of a lab-on-a-chip device to be used for detection of salmonella in food samples in a way that ensures that salmonella captured by orbiting microbeads are preserved until they can be extracted from the system for testing, and are not washed away by the fluid flow or damaged due to the experience of excessive stresses. Such a device is needed to detect bacteria at the food source and prevention of consumption of contaminated food, and also can be used for the detection of a variety of biomaterials of interest from complex fluid samples. Support from USDA and NSF is gratefully acknowledged.

  12. Functional Durability of a Quartz Crystal Microbalance Sensor for the Rapid Detection of Salmonella in Liquids from Poultry Packaging

    National Research Council Canada - National Science Library

    Olsen, Eric

    2000-01-01

    .... A rapid, sensitive (350 +/- 150 cells ml/cm) quartz crystal microbalance biosensor, layered with heat-treated anti-Salmonella-phospholipid monolayers by the Langmuir-Blodgett technique, has been evaluated by immersion testing in chicken exudate...

  13. Comparative Evaluation of Veriflow® Salmonella Species to USDA and FDA Culture-Based Methods for the Detection of Salmonella spp. in Food and Environmental Samples.

    Science.gov (United States)

    Puri, Amrita; Joelsson, Adam C; Terkhorn, Shawn P; Brown, Ashley S; Gaudioso, Zara E; Siciliano, Nicholas A

    2017-09-01

    Veriflow® Salmonella species (Veriflow SS) is a molecular-based assay for the presumptive detection of Salmonella spp. from environmental surfaces (stainless steel, sealed concrete, plastic, and ceramic tile), dairy (2% milk), raw meat (20% fat ground beef), chicken carcasses, and ready-to-eat (RTE) food (hot dogs). The assay utilizes a PCR detection method coupled with a rapid, visual, flow-based assay that develops in 3 min post-PCR amplification and requires only an 18 h enrichment for maximum sensitivity. The Veriflow SS system eliminates the need for sample purification, gel electrophoresis, or fluorophore-based detection of target amplification and does not require complex data analysis. This Performance Tested MethodSM validation study demonstrated the ability of the Veriflow SS method to detect low levels of artificially inoculated or naturally occurring Salmonella spp. in eight distinct environmental and food matrixes. In each reference comparison study, probability of detection analysis indicated that there was no significant difference between the Veriflow SS method and the U.S. Department of Agriculture Food Safety and Inspection Service Microbiology Laboratory Guidebook Chapter 4.06 and the U.S. Food and Drug Administration Bacteriological Analytical Manual Chapter 5 reference methods. A total of 104 Salmonella strains were detected in the inclusivity study, and 35 nonspecific organisms went undetected in the exclusivity study. The study results show that the Veriflow SS method is a sensitive, selective, and robust assay for the presumptive detection of Salmonella spp. sampled from environmental surfaces (stainless steel, sealed concrete, plastic, and ceramic tile), dairy (2% milk), raw meat (20% fat ground beef), chicken carcasses, and RTE food (hot dogs).

  14. Multiplex TaqMan® detection of pathogenic and multi-drug resistant Salmonella.

    Science.gov (United States)

    Singh, Prashant; Mustapha, Azlin

    2013-09-02

    Overuse of antibiotics in the medical and animal industries is one of the major causes for the development of multi-drug-resistant (MDR) food pathogens that are often difficult to treat. In the past few years, higher incidences of outbreaks caused by MDR Salmonella have been increasingly documented. The objective of this study was to develop a rapid multiplex real-time polymerase chain reaction (PCR) assay for simultaneous detection of pathogenic and MDR Salmonella spp. A multiplex TaqMan®real-time PCR was designed by targeting the invasin virulence gene (invA), and four commonly found antibiotic resistance genes, viz. ampicillin, chloramphenicol, streptomycin and tetracycline. To avoid false negative results and to increase the reliability of the assay, an internal amplification control (IAC) was added which was detected using a locked nucleic acid (LNA) probe. In serially diluted (5 ng-50 fg) DNA samples, the assay was able to detect 100 genomic equivalents of Salmonella, while in a multiplex format, the sensitivity was 1000 genomic equivalents. The assay performed equally well on artificially contaminated samples of beef trim, ground beef of different fat contents (73:27, 80:20, 85:15 and 93:7), chicken rinse, ground chicken, ground turkey, egg, spinach and tomato. While the detection limit for un-enriched inoculated food samples was 10(4) CFU/g, this was improved to 10 CFU/g after a 12-h enrichment in buffered peptone water, with 100% reproducibility. The multiplex real-time assay developed in this study can be used as a valuable tool to detect MDR virulent Salmonella, thus enhancing the safety of food. © 2013.

  15. Microcontact Imprinted Plasmonic Nanosensors: Powerful Tools in the Detection of Salmonella paratyphi

    Directory of Open Access Journals (Sweden)

    Işık Perçin

    2017-06-01

    Full Text Available Identification of pathogenic microorganisms by traditional methods is slow and cumbersome. Therefore, the focus today is on developing new and quicker analytical methods. In this study, a Surface Plasmon Resonance (SPR sensor with a microcontact imprinted sensor chip was developed for detecting Salmonella paratyphi. For this purpose, the stamps of the target microorganism were prepared and then, microcontact S. paratyphi-imprinted SPR chips were prepared with the functional monomer N-methacryloyl-L-histidine methyl ester (MAH. Characterization studies of the SPR chips were carried out with ellipsometry and scanning electron microscopy (SEM. The real-time Salmonella paratyphi detection was performed within the range of 2.5 × 106–15 × 106 CFU/mL. Selectivity of the prepared sensors was examined by using competing bacterial strains such as Escherichia coli, Staphylococcus aureus and Bacillus subtilis. The imprinting efficiency of the prepared sensor system was determined by evaluating the responses of the SPR chips prepared with both molecularly imprinted polymers (MIPs and non-imprinted polymers (NIPs. Real sample experiments were performed with apple juice. The recognition of Salmonella paratyphi was achieved using these SPR sensor with a detection limit of 1.4 × 106 CFU/mL. In conclusion, SPR sensor has the potential to serve as an excellent candidate for monitoring Salmonella paratyphi in food supplies or contaminated water and clearly makes it possible to develop rapid and appropriate control strategies.

  16. Evaluation of the 3M™ Petrifilm™ Salmonella express system for the detection of Salmonella species in selected foods: collaborative study.

    Science.gov (United States)

    Bird, Patrick; Flannery, Jonathan; Crowley, Erin; Agin, James; Goins, David; Jechorek, Robert

    2014-01-01

    The 3M™ Petriflm™ Salmonella Express (SALX) System is a simple, ready-to-use chromogenic culture medium system for the rapid qualitative detection and biochemical confirmation of Salmonella spp. in food and food process environmental samples. The 3M Petrifilm SALX System was compared using an unpaired study design in a multilaboratory collaborative study to the U.S. Department of Agriculture/Food Safety and Inspection Service (USDA/FSIS) Microbiology Laboratory Guidebook (MLG) 4.07 (2013) Isolation and Identification of Salmonella from Meat, Poultry, Pasteurized Egg and Catfish Products and Carcass and Environmental Sponges for raw ground beef and the U.S. Food and Drug Administration Bacteriological Analytical Manual (FDA/BAM) Chapter 5, Salmonella (2011) reference method for dry dog food following the current AOAC validation guidelines. For this study, a total of 17 laboratories located throughout the continental United States evaluated 1872 test portions. For the 3M Petrifilm SALX System, raw ground beef was analyzed using 25 g test portions, and dry dog food was analyzed using 375 g test portions. For the reference methods, 25 g test portions of each inatrix were analyzed. The two matrices were artificially contaminated with Salmonella at three inoculation levels: an uninoculated control level (0 CFU/test portion), a low inoculum level (0.2-2 CFU/test portion), and a high inoculum level (2-5 CFU/test portion). Each inoculation level was statistically analyzed using the probability of detection statistical model. For the raw ground beef and dry dog food test portions, no significant differences at the 95% confidence interval were observed in the number of positive samples detected by the 3M Petrifilm SALX System versus either the USDA/FSIS-MLG or FDA/BAM methods.

  17. Detection of Salmonella enterica in Meat in Less than 5 Hours by a Low-Cost and Noncomplex Sample Preparation Method

    Science.gov (United States)

    Hoorfar, J.; Hansen, F.; Christensen, J.; Mansdal, S.; Josefsen, M. H.

    2016-01-01

    ABSTRACT Salmonella is recognized as one of the most important foodborne bacteria and has wide health and socioeconomic impacts worldwide. Fresh pork meat is one of the main sources of Salmonella, and efficient and fast methods for detection are therefore necessary. Current methods for Salmonella detection in fresh meat usually include >16 h of culture enrichment, in a few cases meat, consisting of a 3-h enrichment in standard buffered peptone water and a real-time PCR-compatible sample preparation method based on filtration, centrifugation, and enzymatic digestion, followed by fast-cycling real-time PCR detection. The method was validated in an unpaired comparative study against the Nordic Committee on Food Analysis (NMKL) reference culture method 187. Pork meat samples (n = 140) were either artificially contaminated with Salmonella at 0, 1 to 10, or 10 to 100 CFU/25 g of meat or naturally contaminated. Cohen's kappa for the degree of agreement between the rapid method and the reference was 0.64, and the relative accuracy, sensitivity, and specificity for the rapid method were 81.4, 95.1, and 97.9%, respectively. The 50% limit of detections (LOD50s) were 8.8 CFU/25 g for the rapid method and 7.7 CFU/25 g for the reference method. Implementation of this method will enable faster release of Salmonella low-risk meat, providing savings for meat producers, and it will help contribute to improved food safety. IMPORTANCE While the cost of analysis and hands-on time of the presented rapid method were comparable to those of reference culture methods, the fast product release by this method can provide the meat industry with a competitive advantage. Not only will the abattoirs save costs for work hours and cold storage, but consumers and retailers will also benefit from fresher meat with a longer shelf life. Furthermore, the presented sample preparation might be adjusted for application in the detection of other pathogenic bacteria in different sample types. PMID:27986726

  18. A fast and highly sensitive blood culture PCR method for clinical detection of Salmonella enterica serovar Typhi

    Directory of Open Access Journals (Sweden)

    Zhou Liqing

    2010-04-01

    Full Text Available Abstract Background Salmonella Typhi causes an estimated 21 million new cases of typhoid fever and 216,000 deaths every year. Blood culture is currently the gold standard for diagnosis of typhoid fever, but it is time-consuming and takes several days for isolation and identification of causative organisms. It is then too late to initiate proper antibiotic therapy. Serological tests have very low sensitivity and specificity, and no practical value in endemic areas. As early diagnosis of the disease and prompt treatment are essential for optimal management, especially in children, a rapid sensitive detection method for typhoid fever is urgently needed. Although PCR is sensitive and rapid, initial research indicated similar sensitivity to blood culture and lower specificity. We developed a fast and highly sensitive blood culture PCR method for detection of Salmonella Typhi, allowing same-day initiation of treatment after accurate diagnosis of typhoid. Methods An ox bile tryptone soy broth was optimized for blood culture, which allows the complete lysis of blood cells to release intracellular bacteria without inhibiting the growth of Salmonella Typhi. Using the optimised broth Salmonella Typhi bacteria in artificial blood samples were enriched in blood culture and then detected by a PCR targeting the fliC-d gene of Salmonella Typhi. Results Tests demonstrated that 2.4% ox bile in blood culture not only lyzes blood cells completely within 1.5 hours so that the intracellular bacteria could be released, but also has no inhibiting effect on the growth of Salmonella Typhi. Three hour enrichment of Salmonella Typhi in tryptone soya broth containing 2.4% ox bile could increase the bacterial number from 0.75 CFU per millilitre of blood which is similar to clinical typhoid samples to the level which regular PCR can detect. The whole blood culture PCR assay takes less than 8 hours to complete rather than several days for conventional blood culture

  19. Detection of Salmonella spp. in veterinary samples by combining selective enrichment and real-time PCR.

    Science.gov (United States)

    Goodman, Laura B; McDonough, Patrick L; Anderson, Renee R; Franklin-Guild, Rebecca J; Ryan, James R; Perkins, Gillian A; Thachil, Anil J; Glaser, Amy L; Thompson, Belinda S

    2017-11-01

    Rapid screening for enteric bacterial pathogens in clinical environments is essential for biosecurity. Salmonella found in veterinary hospitals, particularly Salmonella enterica serovar Dublin, can pose unique challenges for culture and testing because of its poor growth. Multiple Salmonella serovars including Dublin are emerging threats to public health given increasing prevalence and antimicrobial resistance. We adapted an automated food testing method to veterinary samples and evaluated the performance of the method in a variety of matrices including environmental samples ( n = 81), tissues ( n = 52), feces ( n = 148), and feed ( n = 29). A commercial kit was chosen as the basis for this approach in view of extensive performance characterizations published by multiple independent organizations. A workflow was established for efficiently and accurately testing veterinary matrices and environmental samples by use of real-time PCR after selective enrichment in Rappaport-Vassiliadis soya (RVS) medium. Using this method, the detection limit for S. Dublin improved by 100-fold over subculture on selective agars (eosin-methylene blue, brilliant green, and xylose-lysine-deoxycholate). Overall, the procedure was effective in detecting Salmonella spp. and provided next-day results.

  20. Detection of viable Salmonella in ice cream by TaqMan real-time polymerase chain reaction assay combining propidium monoazide

    Directory of Open Access Journals (Sweden)

    Yuexia Wang

    2015-09-01

    Full Text Available Real-time polymerase chain reaction (PCR allows rapid detection of Salmonella in frozen dairy products, but it might cause a false positive detection result because it might amplify DNA from dead target cells as well. In this study, Salmonella-free frozen ice cream was initially inoculated with heat-killed Salmonella Typhimurium cells and stored at −18°C. Bacterial DNA extracted from the sample was amplified using TaqMan probe-based real-time PCR targeting the invA gene. Our results indicated that DNA from the dead cells remained stable in frozen ice cream for at least 20 days, and could produce fluorescence signal for real-time PCR as well. To overcome this limitation, propidium monoazide (PMA was combined with real-time PCR. PMA treatment can effectively prevent PCR amplification from heat-killed Salmonella cells in frozen ice cream. The PMA real-time PCR assay can selectively detect viable Salmonella at as low as 103 CFU/mL. Combining 18 hours of pre-enrichment with the assay allows for the detection of viable Salmonella at 100 CFU/mL and avoiding the false-positive result of dead cells. The PMA real-time PCR assay provides an alternative specifically for detection of viable Salmonella in ice cream. However, when the PMA real-time PCR assay was evaluated in ice cream subjected to frozen storage, it obviously underestimated the contamination situation of viable Salmonella, which might lead to a false negative result. According to this result, the use of enrichment prior to PMA real-time PCR analysis remains as the more appropriate approach.

  1. Detection of viable Salmonella in ice cream by TaqMan real-time polymerase chain reaction assay combining propidium monoazide.

    Science.gov (United States)

    Wang, Yuexia; Yang, Ming; Liu, Shuchun; Chen, Wanyi; Suo, Biao

    2015-09-01

    Real-time polymerase chain reaction (PCR) allows rapid detection of Salmonella in frozen dairy products, but it might cause a false positive detection result because it might amplify DNA from dead target cells as well. In this study, Salmonella-free frozen ice cream was initially inoculated with heat-killed Salmonella Typhimurium cells and stored at -18°C. Bacterial DNA extracted from the sample was amplified using TaqMan probe-based real-time PCR targeting the invA gene. Our results indicated that DNA from the dead cells remained stable in frozen ice cream for at least 20 days, and could produce fluorescence signal for real-time PCR as well. To overcome this limitation, propidium monoazide (PMA) was combined with real-time PCR. PMA treatment can effectively prevent PCR amplification from heat-killed Salmonella cells in frozen ice cream. The PMA real-time PCR assay can selectively detect viable Salmonella at as low as 10 3  CFU/mL. Combining 18 hours of pre-enrichment with the assay allows for the detection of viable Salmonella at 10 0  CFU/mL and avoiding the false-positive result of dead cells. The PMA real-time PCR assay provides an alternative specifically for detection of viable Salmonella in ice cream. However, when the PMA real-time PCR assay was evaluated in ice cream subjected to frozen storage, it obviously underestimated the contamination situation of viable Salmonella, which might lead to a false negative result. According to this result, the use of enrichment prior to PMA real-time PCR analysis remains as the more appropriate approach. Copyright © 2015. Published by Elsevier B.V.

  2. Comparing validation of four ELISA-systems for detection of Salmonella derby- and Salmonella infantis-infected pigs.

    Science.gov (United States)

    Roesler, Uwe; Szabo, Istvan; Matthies, Claudia; Albrecht, Kerstin; Leffler, Martin; Scherer, Kathrin; Nöckler, Karsten; Lehmann, Jörg; Methner, Ulrich; Hensel, Andreas; Truyen, Uwe

    2011-01-01

    The objective of this study was the comparative evaluation of four indirect Salmonella ELISA tests at study time approved in Germany to detect Salmonella infection in pigs.Three tests are based on a LPS-antigen mix and directed against specific IgG antibodies. The fourth test is based on a purified S. Typhimurium whole-cell lysate antigen and discriminates between Salmonella-specific IgM-, IgA-, and IgG- antibodies. In a longitudinal study, two groups of six weeks old hybrid piglets were orally infected with a porcine S. Infantis or S. Derby strain. Clinical and bacteriological parameters were monitored weekly during an observation period of 130 days after infection and serum samples were investigated in parallel with the respective ELISAs. Apparently, the LPS-based ELISA systems used in this study failed to recognize S. Infantis-infected pigs although those animals shed the pathogen in high amounts throughout the study until day 81 post infection (p. i.). In contrast, the isotype-specific Salmonella Typhimurium whole-cell-lysate based ELISA was capable of detecting Salmonella-infected pigs from day ten p. i. at all tested serotypes and revealed the highest sensitivity in detection of S. Infantis-infected pigs. Furthermore, it became apparent that the often used surveillance cut-off value of 40 OD% is not appropriate for intra-vitam detection of S. Infantis- and S. Derby-infected pigs. In contrast, the cut-off values of the ELISAs given by the suppliers result in considerable higher detection rates.

  3. Detection of Salmonella typhi agglutinins in sera of patients with ...

    African Journals Online (AJOL)

    Background and Purpose: Widal test is frequently applied for the detection of Salmonella agglutinins to diagnose Salmonella enterica serotype Typhi infection. There are however a number of controversies challenging the diagnostic utility of this test. This study was performed to determine the prevalence of Salmonella ...

  4. Salmonella detection in poultry samples. Comparison of two commercial real-time PCR systems with culture methods for the detection of Salmonella spp. in environmental and fecal samples of poultry.

    Science.gov (United States)

    Sommer, D; Enderlein, D; Antakli, A; Schönenbrücher, H; Slaghuis, J; Redmann, T; Lierz, M

    2012-01-01

    The efficiency of two commercial PCR methods based on real-time technology, the foodproof® Salmonella detection system and the BAX® PCR Assay Salmonella system was compared to standardized culture methods (EN ISO 6579:2002 - Annex D) for the detection of Salmonella spp. in poultry samples. Four sample matrices (feed, dust, boot swabs, feces) obtained directly from poultry flocks, as well as artificially spiked samples of the same matrices, were used. All samples were tested for Salmonella spp. using culture methods first as the gold standard. In addition samples spiked with Salmonella Enteridis were tested to evaluate the sensitivity of both PCR methods. Furthermore all methods were evaluated in an annual ring-trial of the National Salmonella Reference Laboratory of Germany. Salmonella detection in the matrices feed, dust and boot swabs were comparable in both PCR systems whereas the results from feces differed markedly. The quality, especially the freshness, of the fecal samples had an influence on the sensitivity of the real-time PCR and the results of the culture methods. In fresh fecal samples an initial spiking level of 100cfu/25g Salmonella Enteritidis was detected. Two-days-dried fecal samples allowed the detection of 14cfu/25g. Both real- time PCR protocols appear to be suitable for the detection of Salmonella spp. in all four matrices. The foodproof® system detected eight samples more to be positive compared to the BAX® system, but had a potential false positive result in one case. In 7-days-dried samples none of the methods was able to detect Salmonella likely through letal cell damage. In general the advantage of PCR analyses over the culture method is the reduction of working time from 4-5 days to only 2 days. However, especially for the analysis of fecal samples official validation should be conducted according to the requirement of EN ISO6579:2002 - Annex D.

  5. Comparing validation of four ELISAsystems for detection of Salmonella Derby- and Salmonella Infantis-infected pigs

    OpenAIRE

    Rösler, Uwe; Szabo, Istvan; Matthies, Claudia; Albrecht, Kerstin; Leffler, Kerstin; Scherer, Kathrin; Nöckler, Karsten; Lehmann, Jörg; Methner, Ulrich; Hensel, Andreas

    2018-01-01

    The objective of this study was the comparative evaluation of four indirect Salmonella ELISA tests at study time approved in Germany to detect Salmonella infection in pigs. Three tests are based on a LPS-antigen mix and directed against specific IgG antibodies. The fourth test is based on a purified S. Typhimurium whole-cell lysate antigen and discriminates between Salmonella-specific IgM-, IgA-, and IgG- antibodies. In a longitudinal study, two groups of six weeks old hybrid piglets were ...

  6. A rapid and specific detection of pathogenic serovar Salmonella typhimurium by loop-mediated isothermal amplification method (LAMP

    Directory of Open Access Journals (Sweden)

    Hadi Ravan

    2017-09-01

    Discussion and conclusion: As a result of a high sensitivity and specificity of the method as well as its low cost per assay, it could be concluded that the present LAMP assay is a powerful, accurate, and efficient method for detecting pathogenic serovar Salmonella typhimurium in food-processing industries and diagnostic laboratories.

  7. Evaluation of different analysis and identification methods for Salmonella detection in surface drinking water sources

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Bing-Mu, E-mail: bmhsu@ccu.edu.tw [Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan, ROC (China); Huang, Kuan-Hao; Huang, Shih-Wei [Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan, ROC (China); Tseng, Kuo-Chih [Department of Internal Medicine, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan, ROC (China); Su, Ming-Jen [Department of Clinical Pathology, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan, ROC (China); Lin, Wei-Chen; Ji, Dar-Der [Research and Diagnostic Center, Centers for Disease Control, Taipei, Taiwan, ROC (China); Shih, Feng-Cheng; Chen, Jyh-Larng [Department of Environmental Engineering and Health, Yuanpei University of Science and Technology, HsinChu, Taiwan, ROC (China); Kao, Po-Min [Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan, ROC (China)

    2011-09-15

    The standard method for detecting Salmonella generally analyzes food or fecal samples. Salmonella often occur in relatively low concentrations in environmental waters. Therefore, some form of concentration and proliferation may be needed. This study compares three Salmonella analysis methods and develops a new Salmonella detection procedure for use in environmental water samples. The new procedure for Salmonella detection include water concentration, nutrient broth enrichment, selection of Salmonella containing broth by PCR, isolation of Salmonella strains by selective culture plates, detection of possible Salmonella isolate by PCR, and biochemical testing. Serological assay and pulsed-field gel electrophoresis (PFGE) can be used to identify Salmonella serotype and genotype, respectively. This study analyzed 116 raw water samples taken from 18 water plants and belonging to 5 watersheds. Of these 116, 10 water samples (8.6%) taken from 7 water plants and belonging to 4 watersheds were positive for a Salmonella-specific polymerase chain reaction targeting the invA gene. Guided by serological assay results, this study identified 7 cultured Salmonella isolates as Salmonella enterica serovar: Alnaby, Enteritidis, Houten, Montevideo, Newport, Paratyphi B var. Java, and Victoria. These seven Salmonella serovars were identified in clinical cases for the same geographical areas, but only one of them was 100% homologous with clinical cases in the PFGE pattern. - Research highlights: {yields} A new Salmonella detecting procedure for environmental water is developed. {yields} Salmonella isolates are identified by serological assay and PFGE. {yields} A total of seven Salmonella serovars is isolated from environmental water.

  8. Evaluation of different analysis and identification methods for Salmonella detection in surface drinking water sources

    International Nuclear Information System (INIS)

    Hsu, Bing-Mu; Huang, Kuan-Hao; Huang, Shih-Wei; Tseng, Kuo-Chih; Su, Ming-Jen; Lin, Wei-Chen; Ji, Dar-Der; Shih, Feng-Cheng; Chen, Jyh-Larng; Kao, Po-Min

    2011-01-01

    The standard method for detecting Salmonella generally analyzes food or fecal samples. Salmonella often occur in relatively low concentrations in environmental waters. Therefore, some form of concentration and proliferation may be needed. This study compares three Salmonella analysis methods and develops a new Salmonella detection procedure for use in environmental water samples. The new procedure for Salmonella detection include water concentration, nutrient broth enrichment, selection of Salmonella containing broth by PCR, isolation of Salmonella strains by selective culture plates, detection of possible Salmonella isolate by PCR, and biochemical testing. Serological assay and pulsed-field gel electrophoresis (PFGE) can be used to identify Salmonella serotype and genotype, respectively. This study analyzed 116 raw water samples taken from 18 water plants and belonging to 5 watersheds. Of these 116, 10 water samples (8.6%) taken from 7 water plants and belonging to 4 watersheds were positive for a Salmonella-specific polymerase chain reaction targeting the invA gene. Guided by serological assay results, this study identified 7 cultured Salmonella isolates as Salmonella enterica serovar: Alnaby, Enteritidis, Houten, Montevideo, Newport, Paratyphi B var. Java, and Victoria. These seven Salmonella serovars were identified in clinical cases for the same geographical areas, but only one of them was 100% homologous with clinical cases in the PFGE pattern. - Research highlights: → A new Salmonella detecting procedure for environmental water is developed. → Salmonella isolates are identified by serological assay and PFGE. → A total of seven Salmonella serovars is isolated from environmental water.

  9. The Development and Evaluation of a Loop-Mediated Isothermal Amplification Method for the Rapid Detection of Salmonella enterica serovar Typhi.

    Directory of Open Access Journals (Sweden)

    Fenxia Fan

    Full Text Available Typhoid fever remains a public health threat in many countries. A positive result in traditional culture is a gold-standard for typhoid diagnosis, but this method is time consuming and not sensitive enough for detection of samples containing a low copy number of the target organism. The availability of the loop-mediated isothermal amplification (LAMP assay, which offers high speed and simplicity in detection of specific targets, has vastly improved the diagnosis of numerous infectious diseases. However, little research efforts have been made on utilizing this approach for diagnosis of Salmonella enterica serovar Typhi by targeting a single and specific gene. In this study, a LAMP assay for rapid detection of S. Typhi based on a novel marker gene, termed STY2879-LAMP, was established and evaluated with real-time PCR (RT-PCR. The specificity tests showed that STY2879 could be amplified in all S. Typhi strains isolated in different years and regions in China, whereas no amplification was observable in non-typhoidal strains covering 34 Salmonella serotypes and other pathogens causing febrile illness. The detection limit of STY2879-LAMP for S. Typhi was 15 copies/reaction in reference plasmids, 200 CFU/g with simple heat-treatment of DNA extracted from simulated stool samples and 20 CFU/ml with DNA extracted from simulated blood samples, which was 10 fold more sensitive than the parallel RT-PCR control experiment. Furthermore, the sensitivity of STY2879-LAMP and RT-PCR combining the traditional culture enrichment method for simulated stool and blood spiked with lower S. Typhi count during the 10 h enrichment time was also determined. In comparison with LAMP, the positive reaction time for RT-PCR required additional 2-3 h enrichment time for either simulated stool or blood specimens. Therefore, STY2879-LAMP is of practical value in the clinical settings and has a good potential for application in developing regions due to its easy-to-use protocol.

  10. A rapid and direct real time PCR-based method for identification of Salmonella spp

    DEFF Research Database (Denmark)

    Rodriguez-Lazaro, D.; Hernández, Marta; Esteve, T.

    2003-01-01

    The aim of this work was the validation of a rapid, real-time PCR assay based on TaqMan((R)) technology for the unequivocal identification of Salmonella spp. to be used directly on an agar-grown colony. A real-time PCR system targeting at the Salmonella spp. invA gene was optimized and validated ...

  11. EURL-Salmonella 8th interlaboratory comparison study Food 2016 : Detection of Salmonella in minced chicken meat

    NARCIS (Netherlands)

    Kuijpers AFA; Mooijman KA; VDL; Z&O

    2018-01-01

    In 2016, it was shown that all 34 National Reference Laboratories (NRLs), 30 of which are located in the European Union, were able to detect high and low levels of Salmonella in minced chicken meat. Three NRLs reported Salmonella in one 'blank' minced meat sample. This was probably caused by the

  12. Detection of Salmonella in Shellfish Using SYBR Green™ I-Based Real-Time Multiplexed PCR Assay Targeting invA and spvB

    KAUST Repository

    Gangwar, Maulshree

    2012-09-23

    A SYBR Green™ I-based real-time multiplexed PCR assay was developed targeting invA and spvB for the detection of Salmonella strains in shellfish after both hns and invA genes were identified in all Salmonella strains. Simultaneously, the 16S rRNA gene was used as a PCR internal amplification control (IAC). All 89 Salmonella strains tested in this study exhibited amplification of invA, whereas only 21 (23. 6 %) were PCR positive for spvB. The sensitivity of detection of all three targeted genes was 1 ng, which is equivalent to approximately 105 colony-forming unit (CFU) of Salmonella enterica. The analysis showed specific PCR products that were identified by reproducible melt temperature profiles (invA, 84. 27 ± 1. 7 °C; spvB, 88. 76 ± 1. 0 °C; and 16S rRNA gene, 87. 16 ± 0. 8 °C). The sensitivity of detection was 10 pg purified DNA (invA) or 105 CFU in 1 mL pure culture of S. enterica ATCC 14028. The above molecular detection method for Salmonella strains was successfully applied to the oyster homogenates (food matrix). An initial inoculum of 106 and 102 CFU Salmonella in 1 ml seeded oyster tissue homogenate was detected by multiplexed PCR for all three genes after 5 and 24 h of enrichment, respectively. Natural oysters isolated from Gulf of Mexico during the winter months exhibited negative PCR amplification results suggesting the absence of Salmonella. In contrast to conventional PCR, real-time multiplex PCR assay developed in this study is rapid and sensitive and will help Interstate Shellfish Sanitation Conference undertake appropriate measures to monitor Salmonella in oysters, thereby preventing disease outbreaks and consequently protecting consumer health. © 2012 Springer Science+Business Media, LLC.

  13. Detection of Salmonella in Shellfish Using SYBR Green™ I-Based Real-Time Multiplexed PCR Assay Targeting invA and spvB

    KAUST Repository

    Gangwar, Maulshree; Waters, Alicia M.; Bej, Gautam A.; Bej, Asim K.; Mojib, Nazia

    2012-01-01

    A SYBR Green™ I-based real-time multiplexed PCR assay was developed targeting invA and spvB for the detection of Salmonella strains in shellfish after both hns and invA genes were identified in all Salmonella strains. Simultaneously, the 16S rRNA gene was used as a PCR internal amplification control (IAC). All 89 Salmonella strains tested in this study exhibited amplification of invA, whereas only 21 (23. 6 %) were PCR positive for spvB. The sensitivity of detection of all three targeted genes was 1 ng, which is equivalent to approximately 105 colony-forming unit (CFU) of Salmonella enterica. The analysis showed specific PCR products that were identified by reproducible melt temperature profiles (invA, 84. 27 ± 1. 7 °C; spvB, 88. 76 ± 1. 0 °C; and 16S rRNA gene, 87. 16 ± 0. 8 °C). The sensitivity of detection was 10 pg purified DNA (invA) or 105 CFU in 1 mL pure culture of S. enterica ATCC 14028. The above molecular detection method for Salmonella strains was successfully applied to the oyster homogenates (food matrix). An initial inoculum of 106 and 102 CFU Salmonella in 1 ml seeded oyster tissue homogenate was detected by multiplexed PCR for all three genes after 5 and 24 h of enrichment, respectively. Natural oysters isolated from Gulf of Mexico during the winter months exhibited negative PCR amplification results suggesting the absence of Salmonella. In contrast to conventional PCR, real-time multiplex PCR assay developed in this study is rapid and sensitive and will help Interstate Shellfish Sanitation Conference undertake appropriate measures to monitor Salmonella in oysters, thereby preventing disease outbreaks and consequently protecting consumer health. © 2012 Springer Science+Business Media, LLC.

  14. Comparison of four sampling methods for the detection of Salmonella in broiler litter.

    Science.gov (United States)

    Buhr, R J; Richardson, L J; Cason, J A; Cox, N A; Fairchild, B D

    2007-01-01

    Experiments were conducted to compare litter sampling methods for the detection of Salmonella. In experiment 1, chicks were challenged orally with a suspension of naladixic acid-resistant Salmonella and wing banded, and additional nonchallenged chicks were placed into each of 2 challenge pens. Nonchallenged chicks were placed into each nonchallenge pen located adjacent to the challenge pens. At 7, 8, 10, and 11 wk of age the litter was sampled using 4 methods: fecal droppings, litter grab, drag swab, and sock. For the challenge pens, Salmonella-positive samples were detected in 3 of 16 fecal samples, 6 of 16 litter grab samples, 7 of 16 drag swabs samples, and 7 of 16 sock samples. Samples from the nonchallenge pens were Salmonella positive in 2 of 16 litter grab samples, 9 of 16 drag swab samples, and 9 of 16 sock samples. In experiment 2, chicks were challenged with Salmonella, and the litter in the challenge and adjacent nonchallenge pens were sampled at 4, 6, and 8 wk of age with broilers remaining in all pens. For the challenge pens, Salmonella was detected in 10 of 36 fecal samples, 20 of 36 litter grab samples, 14 of 36 drag swab samples, and 26 of 36 sock samples. Samples from the adjacent nonchallenge pens were positive for Salmonella in 6 of 36 fecal droppings samples, 4 of 36 litter grab samples, 7 of 36 drag swab samples, and 19 of 36 sock samples. Sock samples had the highest rates of Salmonella detection. In experiment 3, the litter from a Salmonella-challenged flock was sampled at 7, 8, and 9 wk by socks and drag swabs. In addition, comparisons with drag swabs that were stepped on during sampling were made. Both socks (24 of 36, 67%) and drag swabs that were stepped on (25 of 36, 69%) showed significantly more Salmonella-positive samples than the traditional drag swab method (16 of 36, 44%). Drag swabs that were stepped on had comparable Salmonella detection level to that for socks. Litter sampling methods that incorporate stepping on the sample

  15. Electrochemical biosensors for Salmonella: State of the art and challenges in food safety assessment.

    Science.gov (United States)

    Silva, Nádia F D; Magalhães, Júlia M C S; Freire, Cristina; Delerue-Matos, Cristina

    2018-01-15

    According to the recent statistics, Salmonella is still an important public health issue in the whole world. Legislated reference methods, based on counting plate methods, are sensitive enough but are inadequate as an effective emergency response tool, and are far from a rapid device, simple to use out of lab. An overview of the commercially available rapid methods for Salmonella detection is provided along with a critical discussion of their limitations, benefits and potential use in a real context. The distinguished potentialities of electrochemical biosensors for the development of rapid devices are highlighted. The state-of-art and the newest technologic approaches in electrochemical biosensors for Salmonella detection are presented and a critical analysis of the literature is made in an attempt to identify the current challenges towards a complete solution for Salmonella detection in microbial food control based on electrochemical biosensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Detection of Salmonella enterica in Meat in Less than 5 Hours by a Low-Cost and Noncomplex Sample Preparation Method.

    Science.gov (United States)

    Fachmann, M S R; Löfström, C; Hoorfar, J; Hansen, F; Christensen, J; Mansdal, S; Josefsen, M H

    2017-03-01

    Salmonella is recognized as one of the most important foodborne bacteria and has wide health and socioeconomic impacts worldwide. Fresh pork meat is one of the main sources of Salmonella , and efficient and fast methods for detection are therefore necessary. Current methods for Salmonella detection in fresh meat usually include >16 h of culture enrichment, in a few cases IMPORTANCE While the cost of analysis and hands-on time of the presented rapid method were comparable to those of reference culture methods, the fast product release by this method can provide the meat industry with a competitive advantage. Not only will the abattoirs save costs for work hours and cold storage, but consumers and retailers will also benefit from fresher meat with a longer shelf life. Furthermore, the presented sample preparation might be adjusted for application in the detection of other pathogenic bacteria in different sample types. Copyright © 2017 American Society for Microbiology.

  17. An Au/Si hetero-nanorod-based biosensor for Salmonella detection

    Energy Technology Data Exchange (ETDEWEB)

    Fu Junxue; Zhao Yiping [Physics and Astronomy Department, University of Georgia, Athens, GA 30602 (United States); Park, Bosoon; Siragusa, Greg [USDA, ARS, Russell Research Center, Athens, GA 30605 (United States); Jones, Les; Tripp, Ralph [Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 (United States); Cho, Yong-Jin [Korea Food Research Institute, Songnam (Korea, Republic of)], E-mail: zhaoy@physast.uga.edu

    2008-04-16

    We present a novel and effective food-borne bacteria detection method. A hetero-structured silicon/gold nanorod array fabricated by the glancing angle deposition method is functionalized with anti-Salmonella antibodies and organic dye molecules. Due to the high aspect ratio nature of the Si nanorods, dye molecules attached to the Si nanorods produce an enhanced fluorescence upon capture and detection of Salmonella. This bio-functional hetero-nanorod detection method has great potential in the food safety industry as well as in biomedical diagnostics.

  18. A sandwich-type optical immunosensor based on the alkaline phosphatase enzyme for Salmonella thypimurium detection

    Science.gov (United States)

    Widyastuti, E.; Puspitasari Schonherr, M. F.; Masruroh, A.; Anggraeni, R. A.; Nisak, Y. K.; Mursidah, S.

    2018-03-01

    Salmonella is pathogenic bacteria that caused foodborne diseases which being called Salmonellosis. Prevalence of Salmonellosis that being caused by Salmonella thypimurium in Indonesia is quite high. However, detection of Salmonella bacteria in food still limited, complicated, and required a lot time. Sensitive optical assay for Salmonella thypimurium paper based detection has been developed by integrating sandwich assay between antibody-antigen complex and alkaline phosphatase enzyme that produce visible bluish-purple colour with presence of NBT-BCIP substrate. The results showed that Limit of Quantitation of detection is 105 CFU mL-1 with detection time 15 minutes. Linearity test between Colour intensity that produced from Salmonella concentration presence on samples showed that detection has good linearity. Selectivity test exhibited excellent sensitivity with good discrimination against Escherichia coli.

  19. A multiplex ligation detection assay for the characterization of Salmonella enterica strains

    NARCIS (Netherlands)

    Aarts, H.J.M.; Vos, P.; Larsson, J.T.; Hoek, van A.H.A.M.; Huehn, S.; Weijers, T.; Gronlund, H.A.; Malorny, B.

    2011-01-01

    A proof of principle of a multi-target assay for genotyping Salmonella has been developed targeting 62 genomic marker sequences of Salmonella related to pathogenicity. The assay is based on multiplex ligation detection reaction (LDR) followed by customized ArrayTube (R) microarray detection. The

  20. Detection and isolation of salmonella in broiler chickens around the ...

    African Journals Online (AJOL)

    Detection and isolation of salmonella in broiler chickens around the slaughter time. ES Soliman, E Taha, WS Abdella, MA Sobieh, PG Reddy. Abstract. Crop contents may serve as important sources of Salmonella carcass contamination within processing plants. This study, evaluated the effect of feed withdrawal before the ...

  1. Culture- and molecular-based detection of swine-adapted Salmonella shed by avian scavengers.

    Science.gov (United States)

    Blanco, Guillermo; Díaz de Tuesta, Juan A

    2018-04-13

    Salmonella can play an important role as a disease agent in wildlife, which can then act as carriers and reservoirs of sanitary importance at the livestock-human interface. Transmission from livestock to avian scavengers can occur when these species consume contaminated carcasses and meat remains in supplementary feeding stations and rubbish dumps. We compared the performance of PCR-based detection with conventional culture-based methods to detect Salmonella in the faeces of red kites (Milvus milvus) and griffon vultures (Gyps fulvus) in central Spain. The occurrence of culturable Salmonella was intermediate in red kites (1.9%, n=52) and high in griffon vultures (26.3%, n=99). These proportions were clearly higher with PCR-based detection (13.5% and 40.4%, respectively). Confirmation cultures failed to grow Salmonella in all faecal samples positive by the molecular assay but negative by the initial conventional culture in both scavenger species, indicating the occurrence of false (non-culturable) positives by PCR-based detection. This suggests that the molecular assay is highly sensitive to detecting viable Salmonella in cultures, but also partial genomes and dead or unviable bacteria from past infections or contamination. Thus, the actual occurrence of Salmonella in a particular sampling time period can be underestimated when using only culture detection. The serovars found in the scavenger faeces were among the most frequently isolated in pigs from Spain and other EU countries, especially those generally recognized as swine-adapted monophasic variants of S. Typhimurium. Because the studied species obtain much of their food from pig carcasses, this livestock may be the primary source of Salmonella via direct ingestion of infected carcasses and indirectly via contamination due to the unsanitary conditions found in supplementary feeding stations established for scavenger conservation. Combining culture- and molecular-based detection is encouraged to understand the

  2. Detection of Salmonella enterica in meat in less than 5 hours by a low-cost and non-complex sample preparation method

    DEFF Research Database (Denmark)

    Fachmann, Mette Sofie Rousing; Löfström, Charlotta; Hoorfar, Jeffrey

    2017-01-01

    peptone water, and a real-time PCR compatible sample preparation method, based on filtration, centrifugation, and enzymatic digestion, followed by fast cycling real-time PCR detection. The method was validated in an un-paired, comparative study against the Nordic Committee on Food Analysis (NMKL......, and help contribute to improved food safety. While the cost of analysis and hands-on time of the presented rapid method were comparable to reference culture methods, the fast product release by this method can provide the meat industry with a competitive advantage. Not only will the abattoirs save costs......Salmonella is recognised as one of the most important foodborne bacteria, and has a wide health and socioeconomical impact worldwide. Fresh pork meat is one of the main sources of Salmonella and efficient and fast methods for detection are therefore necessary. Current methods for Salmonella...

  3. A multiplex ligation detection assay for the characterization of Salmonella enterica strains

    DEFF Research Database (Denmark)

    Aarts, Henk J.M.; Vos, Pieter; Larsson, Jonas T.

    2011-01-01

    A proof of principle of a multi-target assay for genotyping Salmonella has been developed targeting 62 genomic marker sequences of Salmonella related to pathogenicity. The assay is based on multiplex ligation detection reaction (LDR) followed by customized ArrayTube® microarray detection. The fea...... assessors that support bio-traceability models....

  4. [Use of new immunoglobulin isotype-specific ELISA-systems to detect Salmonella infections in pigs].

    Science.gov (United States)

    Ehlers, Joachim; Alt, Michael; Trepnau, Daniela; Lehmann, Jörg

    2006-01-01

    In Germany, the program for controlling salmonella infections in pigs is based on tests detecting salmonella-lipopolysaccharide (LPS) induced antibodies in meat-juice or blood. These conventional tests which are based on the technology of enzyme-linked immunosorbent assay (ELISA) detect exclusively or mainly immunoglobulin(lg)G antibodies. Meanwhile, novel ELISA systems (WCE-ELISA, 3-Isotype-Screening-ELISA) have been developed, which additionally detect the antibody classes IgM and IgA.This fact enables the registration of fresh salmonella infections (starting with day 5 p.i.) and thus, the distinction between early and older infections. The results show that animals with early salmonella infections appear significantly more often in herds with a high than with a low prevalence. With the newly developed tests this group of animals can be detected much more efficiently and precisely than with the tests used so far. Due to their clearly improved sensitivity the application of the WCE-ELISA and the 3-Isotype-Screening-ELISA in terms of the QS-Salmonella-Monitoring program can therefore significantly improve the selection of farms with potential salmonella excretors. Additionally, the WCE-ELISA can be applied very suitable for the examination of individual animals.

  5. Detection of Salmonella Typhimurium on Spinach Using Phage-Based Magnetoelastic Biosensors

    Directory of Open Access Journals (Sweden)

    Fengen Wang

    2017-02-01

    Full Text Available Phage-based magnetoelastic (ME biosensors have been studied as an in-situ, real-time, wireless, direct detection method of foodborne pathogens in recent years. This paper investigates an ME biosensor method for the detection of Salmonella Typhimurium on fresh spinach leaves. A procedure to obtain a concentrated suspension of Salmonella from contaminated spinach leaves is described that is based on methods outlined in the U.S. FDA Bacteriological Analytical Manual for the detection of Salmonella on leafy green vegetables. The effects of an alternative pre-enrichment broth (LB broth vs. lactose broth, incubation time on the detection performance and negative control were investigated. In addition, different blocking agents (BSA, Casein, and Superblock were evaluated to minimize the effect of nonspecific binding. None of the blocking agents was found to be superior to the others, or even better than none. Unblocked ME biosensors were placed directly in a concentrated suspension and allowed to bind with Salmonella cells for 30 min before measuring the resonant frequency using a surface-scanning coil detector. It was found that 7 h incubation at 37 °C in LB broth was necessary to detect an initial spike of 100 cfu/25 g S. Typhimurium on spinach leaves with a confidence level of difference greater than 95% (p < 0.05. Thus, the ME biosensor method, on both partly and fully detection, was demonstrated to be a robust and competitive method for foodborne pathogens on fresh products.

  6. Molecular detection of salmonella species from selected vegetables ...

    African Journals Online (AJOL)

    Molecular detection of salmonella species from selected vegetables sold in a north-central ... African Journal of Clinical and Experimental Microbiology ... of the pure isolates testing positive as being pathogenic after biochemical analysis.

  7. Development of a real-time multiplex PCR assay for the detection of multiple Salmonella serotypes in chicken samples

    Directory of Open Access Journals (Sweden)

    Whyte Paul

    2008-09-01

    Full Text Available Abstract Background A real-time multiplex PCR assay was developed for the detection of multiple Salmonella serotypes in chicken samples. Poultry-associated serotypes detected in the assay include Enteritidis, Gallinarum, Typhimurium, Kentucky and Dublin. The traditional cultural method according to EN ISO 6579:2002 for the detection of Salmonella in food was performed in parallel. The real-time PCR based method comprised a pre-enrichment step in Buffered Peptone Water (BPW overnight, followed by a shortened selective enrichment in Rappaport Vasilliadis Soya Broth (RVS for 6 hours and subsequent DNA extraction. Results The real-time multiplex PCR assay and traditional cultural method showed 100% inclusivity and 100% exclusivity on all strains tested. The real-time multiplex PCR assay was as sensitive as the traditional cultural method in detecting Salmonella in artificially contaminated chicken samples and correctly identified the serotype. Artificially contaminated chicken samples resulted in a detection limit of between 1 and 10 CFU per 25 g sample for both methods. A total of sixty-three naturally contaminated chicken samples were investigated by both methods and relative accuracy, relative sensitivity and relative specificity of the real-time PCR method were determined to be 89, 94 and 87%, respectively. Thirty cultures blind tested were correctly identified by the real-time multiplex PCR method. Conclusion Real-time PCR methodology can contribute to meet the need for rapid identification and detection methods in food testing laboratories.

  8. A multiplex single nucleotide polymorphism typing assay for detecting mutations that result in decreased fluoroquinolone susceptibility in Salmonella enterica serovars Typhi and Paratyphi A.

    LENUS (Irish Health Repository)

    Song, Yajun

    2010-08-01

    OBJECTIVES: Decreased susceptibility to fluoroquinolones has become a major problem for the successful therapy of human infections caused by Salmonella enterica, especially the life-threatening typhoid and paratyphoid fevers. METHODS: By using Luminex xTAG beads, we developed a rapid, reliable and cost-effective multiplexed genotyping assay for simultaneously detecting 11 mutations in gyrA, gyrB and parE of S. enterica serovars Typhi and Paratyphi A that result in nalidixic acid resistance (Nal(R)) and\\/or decreased susceptibility to fluoroquinolones. RESULTS: This assay yielded unambiguous single nucleotide polymorphism calls on extracted DNA from 292 isolates of Salmonella Typhi (Nal(R) = 223 and Nal(S) = 69) and 106 isolates of Salmonella Paratyphi A (Nal(R) = 24 and Nal(S) = 82). All of the 247 Nal(R) Salmonella Typhi and Salmonella Paratyphi A isolates were found to harbour at least one of the target mutations, with GyrA Phe-83 as the most common one (143\\/223 for Salmonella Typhi and 18\\/24 for Salmonella Paratyphi A). We also identified three GyrB mutations in eight Nal(S) Salmonella Typhi isolates (six for GyrB Phe-464, one for GyrB Leu-465 and one for GyrB Asp-466), and mutations GyrB Phe-464 and GyrB Asp-466 seem to be related to the decreased ciprofloxacin susceptibility phenotype in Salmonella Typhi. This assay can also be used directly on boiled single colonies. CONCLUSIONS: The assay presented here would be useful for clinical and reference laboratories to rapidly screen quinolone-resistant isolates of Salmonella Typhi and Salmonella Paratyphi A, and decipher the underlying genetic changes for epidemiological purposes.

  9. Rapid and Sensitive Detection of Bacteria Response to Antibiotics Using Nanoporous Membrane and Graphene Quantum Dot (GQDs-Based Electrochemical Biosensors

    Directory of Open Access Journals (Sweden)

    Weiwei Ye

    2017-05-01

    Full Text Available The wide abuse of antibiotics has accelerated bacterial multiresistance, which means there is a need to develop tools for rapid detection and characterization of bacterial response to antibiotics in the management of infections. In the study, an electrochemical biosensor based on nanoporous alumina membrane and graphene quantum dots (GQDs was developed for bacterial response to antibiotics detection. Anti-Salmonella antibody was conjugated with amino-modified GQDs by glutaraldehyde and immobilized on silanized nanoporous alumina membranes for Salmonella bacteria capture. The impedance signals across nanoporous membranes could monitor the capture of bacteria on nanoporous membranes as well as bacterial response to antibiotics. This nanoporous membrane and GQD-based electrochemical biosensor achieved rapid detection of bacterial response to antibiotics within 30 min, and the detection limit could reach the pM level. It was capable of investigating the response of bacteria exposed to antibiotics much more rapidly and conveniently than traditional tools. The capability of studying the dynamic effects of antibiotics on bacteria has potential applications in the field of monitoring disease therapy, detecting comprehensive food safety hazards and even life in hostile environment.

  10. Bioelectronic Nose Using Odorant Binding Protein-Derived Peptide and Carbon Nanotube Field-Effect Transistor for the Assessment of Salmonella Contamination in Food.

    Science.gov (United States)

    Son, Manki; Kim, Daesan; Kang, Jinkyung; Lim, Jong Hyun; Lee, Seung Hwan; Ko, Hwi Jin; Hong, Seunghun; Park, Tai Hyun

    2016-12-06

    Salmonella infection is the one of the major causes of food borne illnesses including fever, abdominal pain, diarrhea, and nausea. Thus, early detection of Salmonella contamination is important for our healthy life. Conventional detection methods for the food contamination have limitations in sensitivity and rapidity; thus, the early detection has been difficult. Herein, we developed a bioelectronic nose using a carbon nanotube (CNT) field-effect transistor (FET) functionalized with Drosophila odorant binding protein (OBP)-derived peptide for easy and rapid detection of Salmonella contamination in ham. 3-Methyl-1-butanol is known as a specific volatile organic compound, generated from the ham contaminated with Salmonella. We designed and synthesized the peptide based on the sequence of the Drosophila OBP, LUSH, which specifically binds to alcohols. The C-terminus of the synthetic peptide was modified with three phenylalanine residues and directly immobilized onto CNT channels using the π-π interaction. The p-type properties of FET were clearly maintained after the functionalization using the peptide. The biosensor detected 1 fM of 3-methyl-1-butanol with high selectivity and successfully assessed Salmonella contamination in ham. These results indicate that the bioelectronic nose can be used for the rapid detection of Salmonella contamination in food.

  11. Bacteriological detection of Salmonella in the presence of competitive micro-organisms (A collaborative study amongst the National Reference Laboratories for Salmonella)

    NARCIS (Netherlands)

    Voogt N; Veld PH in 't; Nagelkerke N; Henken AM; MGB

    1997-01-01

    A second bacteriological collaborative study in which the National Reference Laboratories (NRLs) for Salmonella participated was organized by the Community Reference Laboratory for Salmonella. The main objective of this study was to evaluate differences in results between the NRLs of detection of

  12. Development of a multiplex polymerase chain reaction protocol for the simultaneous detection of Salmonella enterica serovar Typhi and Class 1 integron

    Directory of Open Access Journals (Sweden)

    Juthika Mandal

    2014-09-01

    Full Text Available Objective: To develop a multiplex polymerase chain reaction (PCR protocol for the simultaneous detection of Salmonella enterica serovar Typhi (S. Typhi and Class 1 integron, so as to aid rapid diagnosis of S. Typhi cases and help in the selection of treatment options based on the presence of the Class 1 integron that can carry resistance cassettes to a range of antibiotics. Methods: PCR for amplification of specific regions was done using fliC-d and intl primers and agarose gel electrophoresis was used for resolution of PCR products. Results: The fliC-d primer (S. Typhi specific amplified a 587 bp region and the intl primer (Class 1 integron specific amplified two bands approximately 500 and 550 bps. The developed method was specific for S. Typhi and did not amplify any products with Salmonella enterica serovar Typhimurium ATCC 14028, Salmonella enterica serovar Paratyphi and Escherichia coli O157:H7. Conclusions: The developed multiplex PCR protocol can be used for rapid diagnosis and aid in proper treatment strategies for patients infected with S. Typhi.

  13. High resolution melting (HRM) analysis as a new tool for rapid identification of Salmonella enterica serovar Gallinarum biovars Pullorum and Gallinarum.

    Science.gov (United States)

    Ren, Xingxing; Fu, Ying; Xu, Chenggang; Feng, Zhou; Li, Miao; Zhang, Lina; Zhang, Jianmin; Liao, Ming

    2017-05-01

    Salmonella enterica serovar Gallinarum biovars Pullorum and Gallinarum represent the most common causative agents of chicken salmonellosis, which result in high mortality and morbidity throughout the world. It is difficult and laborious to discriminate these diseases based on biochemical or phenotypic methods. Herein, we report the development of a single nucleotide polymorphism (SNP) PCR-high resolution melt (PCR-HRM) assay for the detection and discrimination of both S. Pullorum and S. Gallinarun. The gene rfbS, which encodes a factor involved in the biosynthesis of ADP paratose in serogroup D of Salmonella, has been identified as a robust genetic marker for the identification of S. Pullorum and S. Gallinarun based on polymorphisms at positions 237 and 598. Therefore, PCR-HRM analyses were used to characterize this gene. A total of 15 reference and 33 clinical isolates of Salmonella and related Gram-negative bacteria were detected using 2 sets of primers. Our PCR-HRM assay could distinguish S. Pullorum from S. Gallinarun and other strains using the primer pair SP-237F/237R. Similarly, S. Gallinarun could be distinguished from S. Pullorum and other strains using primer set SG-598F/598R. These 2 assays showed high specificity (100%) for both S. Pullorum and S. Gallinarun; the sensitivity of these 2 assays was at least 100-fold greater than that of the allele-specific PCR assay. This present study demonstrated that HRM analysis represents a potent, simple, and economic tool for the rapid, specific, and sensitive detection of S. Pullorum and S. Gallinarun. Our approach also may aid efforts for purification of Avian Salmonella disease. © 2016 Poultry Science Association Inc.

  14. Evaluation of commercial kit based on loop-mediated isothermal amplification for rapid detection of low levels of uninjured and injured Salmonella on duck meat, bean sprouts, and fishballs in Singapore.

    Science.gov (United States)

    Lim, Hazel Sin Yue; Zheng, Qianwang; Miks-Krajnik, Marta; Turner, Matthew; Yuk, Hyun-Gyun

    2015-06-01

    The objective of this study was to evaluate performance of the commercial kit based on loop-mediated isothermal amplification (LAMP) in comparison with the International Organization for Standardization method for detecting uninjured and sublethally injured Salmonella cells artificially inoculated at levels of 10(0) and 10(1) CFU/25 g on raw duck wing, raw mung bean sprouts, and processed fishballs. Injured cells were prepared by a heat treatment for duck wings and fishball samples and a chlorine treatment for bean sprout samples. Additionally, a validation study was performed on naturally contaminated food samples sold in Singapore. A total of 110 samples of each commodity were analyzed in this study. Regardless of inoculum levels, the detection by the commercial LAMP kit showed 100% sensitivity and specificity for both inoculated and uninoculated samples compared with the International Organization for Standardization method, with the exception of bean sprout samples. Only 20% of bean sprout samples inoculated with 10(0) CFU/25 g injured Salmonella cells were positive by using the commercial LAMP-based kit. However, all negative samples became positive following a secondary enrichment in Rappaport-Vassiliadis medium with soy broth or after concentration by centrifugation. These results suggest that secondary enrichment or centrifugation should be considered as an additional step to increase the sensitivity of the commercial LAMP-based kit with low numbers of injured target cells in samples with high background microflora (such as mung bean sprouts). The validation study also showed that the commercial LAMP-based kit provided 91% sensitivity and 95% specificity for naturally contaminated samples. Thus, this study demonstrates that the commercial LAMP-based kit might be a cost-effective method, as this system could provide rapid, accurate detection of both uninjured and injured Salmonella cells on raw duck wings, raw mung bean sprouts, and processed fishballs in

  15. Applications of immunomagnetic capture and time-resolved fluorescence to detect outbreak Escherichia coli O157 and Salmonella in alfalfa sprouts

    Science.gov (United States)

    Tu, Shu-I.; Gordon, Marsha; Fett, William F.; Gehring, Andrew G.; Irwin, Peter L.

    2004-03-01

    Commercially available alfalfa seeds were inoculated with low levels (~ 4 CFU/g) of pathogenic bacteria. The inoculated seeds were then allowed to sprout in sterile tap water at 22°C. After 48 hours, the irrigation water and sprouts were separately transferred to bovine heart infusion (BHI) media. The microbes in the BHI samples were allowed to grow for 4 hours at 37°C and 160 rpm. Specific immunomagnetic beads (IMB) were then applied to capture the E.coli O157 and/or Salmonella in the growth media. Separation and concentration of IMB-captured pathogens were achieved using magnetic separators. The captured E. coli O157:H7 and Salmonella spp were further tagged with europium (Eu) labeled anti-E. coli O157 antibodies and samarium (Sm) labeled anti-Salmonella antibodies, respectively. After washing, the lanthanide labels were extracted out from the complexes by specific chelators to form strongly fluorescent chelates. The specific time-resolved fluorescence (TRF) associated with Eu or Sm was measured to estimate the extent of capture of the E. coli O157 and Salmonella, respectively. The results indicated that the approach could detect E. coli O157 and Salmonella enterica from the seeds inoculated with ~ 4 CFU/g of the pathogens. Non-targeted bacteria, e.g., Aeromonas and Citrobacter exhibited essentially no cross reactivity. Since the pathogen detection from the sprouts was achieved within 6 hours, the developed methodology could be use as a rapid, sensitive and specific screening process for E. coli O157 and Salmonella enterica in this popular salad food.

  16. Rapid detection of pathogenic bacteria by volatile organic compound (VOC) analysis

    Science.gov (United States)

    Senecal, Andre G.; Magnone, Joshua; Yeomans, Walter; Powers, Edmund M.

    2002-02-01

    Developments in rapid detection technologies have made countless improvements over the years. However, because of the limited sample that these technologies can process in a single run, the chance of capturing and identifying a small amount of pathogens is difficult. The problem is further magnified by the natural random distribution of pathogens in foods. Methods to simplify pathogenic detection through the identification of bacteria specific VOC were studied. E. coli O157:H7 and Salmonella typhimurium were grown on selected agar medium to model protein, and carbohydrate based foods. Pathogenic and common spoilage bacteria (Pseudomonas and Morexella) were screened for unique VOC production. Bacteria were grown on agar slants in closed vials. Headspace sampling was performed at intervals up to 24 hours using Solid Phase Micro-Extraction (SPME) techniques followed by GC/MS analysis. Development of unique volatiles was followed to establish sensitivity of detection. E. coli produced VOC not found in either Trypticase Soy Yeast (TSY) agar blanks or spoilage organism samples were - indole, 1-decanol, and 2-nonanone. Salmonella specific VOC grown on TSY were 3-methyl-1-butanol, dimethyl sulfide, 2-undecanol, 2-pentadecanol and 1-octanol. Trials on potato dextrose agar (PDA) slants indicated VOC specific for E. coli and Salmonella when compared to PDA blanks and Pseudomonas samples. However, these VOC peaks were similar for both pathogens. Morexella did not grow on PDA slants. Work will continue with model growth mediums at various temperatures, and mixed flora inoculums. As well as, VOC production based on the dynamics of bacterial growth.

  17. Salmonella spp. contamination in commercial layer hen farms using different types of samples and detection methods.

    Science.gov (United States)

    Soria, M C; Soria, M A; Bueno, D J; Godano, E I; Gómez, S C; ViaButron, I A; Padin, V M; Rogé, A D

    2017-08-01

    The performance of detection methods (culture methods and polymerase chain reaction assay) and plating media used in the same type of samples were determined as well as the specificity of PCR primers to detected Salmonella spp. contamination in layer hen farms. Also, the association of farm characteristics with Salmonella presence was evaluated. Environmental samples (feces, feed, drinking water, air, boot-swabs) and eggs were taken from 40 layer hen houses. Salmonella spp. was most detected in boot-swabs taken around the houses (30% and 35% by isolation and PCR, respectively) follow by fecal samples (15.2% and 13.6% by isolation and PCR, respectively). Eggs, drinking water, and air samples were negative for Salmonella detection. Salmonella Schwarzengrund and S. Enteritidis were the most isolated serotypes. For plating media, relative specificity was 1, and the relative sensitivity was greater for EF-18 agar than XLDT agar in feed and fecal samples. However, relative sensitivity was greater in XLDT agar than EF-18 agar for boot-swab samples. Agreement was between fair to good depending on the sample, and it was good between isolation and PCR (feces and boot-swabs), without agreement for feed samples. Salmonella spp. PCR was positive for all strains, while S. Typhimurium PCR was negative. Salmonella Enteritidis PCR used was not specific. Based in the multiple logistic regression analyses, categorization by counties was significant for Salmonella spp. presence (P-value = 0.010). This study shows the importance of considering different types of samples, plating media and detection methods during a Salmonella spp. monitoring study. In addition, it is important to incorporate the sampling of floors around the layer hen houses to learn if biosecurity measures should be strengthened to minimize the entry and spread of Salmonella in the houses. Also, the performance of some PCR methods and S. Enteritidis PCR should be improved, and biosecurity measures in hen farms must be

  18. Utilization of immunomagnetic separation for detection of Salmonella in raw broiler parts

    Directory of Open Access Journals (Sweden)

    Ribeiro Aldemir Reginato

    2002-01-01

    Full Text Available This study was conducted aiming to compare the conventional microbiological method to detect Salmonella in broiler parts with the Immunomagnetic Separation method (IMS followed by plate isolation and also the IMS associated with Rappaport-Vassiliadis broth (RV. The IMS was performed following a pre- enrichment step in buffered peptone water. Sixty-one samples (raw broiler parts were tested and the results showed that the use of the IMS method alone allowed the isolation of Salmonella in 9 of the tested samples, while the association IMS/RV detected the agent in 30 samples. The conventional microbiological method was able to isolate the agent in 25 opportunities. These results allowed to conclude that the IMS/RV association presented an increased sensitivity and permitted a better isolation of Salmonella. The conclusion was that other means of isolation, in particular those which do not interfere with the growth of bead bounded Salmonella, should be searched.

  19. Characteristics of Clusters of Salmonella and Escherichia coli O157 Detected by Pulsed-Field Gel Electrophoresis that Predict Identification of Outbreaks.

    Science.gov (United States)

    Jones, Timothy F; Sashti, Nupur; Ingram, Amanda; Phan, Quyen; Booth, Hillary; Rounds, Joshua; Nicholson, Cyndy S; Cosgrove, Shaun; Crocker, Kia; Gould, L Hannah

    2016-12-01

    Molecular subtyping of pathogens is critical for foodborne disease outbreak detection and investigation. Many clusters initially identified by pulsed-field gel electrophoresis (PFGE) are not confirmed as point-source outbreaks. We evaluated characteristics of clusters that can help prioritize investigations to maximize effective use of limited resources. A multiagency collaboration (FoodNet) collected data on Salmonella and Escherichia coli O157 clusters for 3 years. Cluster size, timing, extent, and nature of epidemiologic investigations were analyzed to determine associations with whether the cluster was identified as a confirmed outbreak. During the 3-year study period, 948 PFGE clusters were identified; 849 (90%) were Salmonella and 99 (10%) were E. coli O157. Of those, 192 (20%) were ultimately identified as outbreaks (154 [18%] of Salmonella and 38 [38%] of E. coli O157 clusters). Successful investigation was significantly associated with larger cluster size, more rapid submission of isolates (e.g., for Salmonella, 6 days for outbreaks vs. 8 days for nonoutbreaks) and PFGE result reporting to investigators (16 days vs. 29 days, respectively), and performance of analytic studies (completed in 33% of Salmonella outbreaks vs. 1% of nonoutbreaks) and environmental investigations (40% and 1%, respectively). Intervals between first and second cases in a cluster did not differ significantly between outbreaks and nonoutbreaks. Molecular subtyping of pathogens is a rapidly advancing technology, and successfully identifying outbreaks will vary by pathogen and methods used. Understanding criteria for successfully investigating outbreaks is critical for efficiently using limited resources.

  20. Molecular identification of common Salmonella serovars using multiplex DNA sensor-based suspension array.

    Science.gov (United States)

    Aydin, Muhsin; Carter-Conger, Jacqueline; Gao, Ning; Gilmore, David F; Ricke, Steven C; Ahn, Soohyoun

    2018-04-01

    Salmonella is one of major foodborne pathogens and the leading cause of foodborne illness-related hospitalizations and deaths. It is critical to develop a sensitive and rapid detection assay that can identify Salmonella to ensure food safety. In this study, a DNA sensor-based suspension array system of high multiplexing ability was developed to identify eight Salmonella serovars commonly associated with foodborne outbreaks to the serotype level. Each DNA sensor was prepared by activating pre-encoded microspheres with oligonucleotide probes that are targeting virulence genes and serovar-specific regions. The mixture of 12 different types of DNA sensors were loaded into a 96-well microplate and used as a 12-plex DNA sensor array platform. DNA isolated from Salmonella was amplified by multiplex polymerase chain reaction (mPCR), and the presence of Salmonella was determined by reading fluorescent signals from hybridization between probes on DNA sensors and fluorescently labeled target DNA using the Bio-Plex® system. The developed multiplex array was able to detect synthetic DNA at the concentration as low as 100 fM and various Salmonella serovars as low as 100 CFU/mL within 1 h post-PCR. Sensitivity of this assay was further improved to 1 CFU/mL with 6-h enrichment. The array system also correctly and specifically identified serotype of tested Salmonella strains without any cross-reactivity with other common foodborne pathogens. Our results indicate the developed DNA sensor suspension array can be a rapid and reliable high-throughput method for simultaneous detection and molecular identification of common Salmonella serotypes.

  1. An Electrochemical DNA Biosensor for the Detection of Salmonella Using Polymeric Films and Electrochemical Labels

    Science.gov (United States)

    Diaz Serrano, Madeline

    Waterborne and foodborne diseases are one of the principal public health problems worldwide. Microorganisms are the major agents of foodborne illness: pathogens such as Salmonella, Campylobacter jejuni and Escherichia coli, and parasites such as cryptosporidium. The most popular methods to detect Salmonella are based on culture and colony counting methods, ELISA, Gel electrophoresis and the polymerase chain reaction. Conventional detection methods are laborious and time-consuming, allowing for portions of the food to be distributed, marketed, sold and eaten before the analysis is done and the problem even detected. By these reasons, the rapid, easy and portable detection of foodborne organisms will facilitate the disease treatment. Our particular interest is to develop a nucleic acid biosensor (NAB) for the detection of pathogenic microorganisms in food and water samples. In this research, we report on the development of a NAB prototype using a polymer modified electrode surface together with sequences of different lengths for the OmpC gene from Salmonella as probes and Ferrocene-labeled target (Fc-ssDNA), Ferrocene-labeled tri(ethylene glycol) (Fc-PEG) and Ruthenium-Ferrocene (Ru-Fe) bimetallic complex as an electrochemical labels. We have optimized several PS films and anchored nucleic acid sequences with different lengths at gold and carbon surfaces. Non contact mode AFM and XPS were used to monitor each step of the NAB preparation, from polymer modification to oligos hybridization (conventional design). The hybridization reaction was followed electrochemically using a Fc-ssDNA and Fc-PEG in solution taking advantage of the morphological changes generated upon hybridization. We observed a small current at the potential for the Fe oxidation without signal amplification at +296 mV vs. Ag/AgCl for the Fc-ssDNA strategy and a small current at +524 mV for the Fc-PEG strategy. The immobilization, hybridization and signal amplification of Biotin- OmpC Salmonella genes

  2. Plasma-treated polyethylene film: A smart material applied for Salmonella Typhimurium detection

    International Nuclear Information System (INIS)

    Peng-Ubol, Triranat; Phinyocheep, Pranee; Daniel, Philippe; Panbangred, Watanalai; Pilard, Jean-François; Thouand, Gerald; Durand-Thouand, Marie-José

    2012-01-01

    Salmonella is a major cause of foodborne illness worldwide and is not allowed to be present in any food in all countries. The purpose of this study is to develop a simple alternative method for the detection of Salmonella based on functionalized polyethylene (PE) surfaces. Salmonella Typhimurium was used as a model bacterium. PE film was treated using dielectric plasma in order to alter the wettability of the PE surface and consequently introduce functionality on the surface. The PE film characterized by ATR-FTIR spectroscopy revealed the presence of C=O stretching of ketones, aldehydes and carboxylic acids. The antibodies against O or H antigens of Salmonella and S. Typhimurium were then respectively immobilized on the PE surface after activation of the carboxylic group using NHS/EDC followed by protein A. The evidences from ATR-FTIR, scanning electron microscopy and optical microscopy showed the presence of S. Typhimurium attached to the plasma treated PE surfaces via the two types of anti-Salmonella antibody. The plasma treated PE film developed is simple and allows efficient association of bacterial cells on the treated surfaces without the necessity of time-consuming centrifugation and washing steps for isolation of the cells. This material is considered to be a smart material applicable for S. Typhimurium detection. Highlights: ► We developed a functionalized polyethylene film for bacterial detection. ► We modified the surface of polyethylene film by plasma treatment. ► ATR-FTIR spectroscopy was used to analyze the functionality on the PE surface. ► We introduced Salmonella Typhimurium on the modified PE film. ► SEM revealed the presence of S. Typhimurium on the plasma treated PE film.

  3. Comparison of reverse transcriptase PCR, reverse transcriptase loop-mediated isothermal amplification, and culture-based assays for Salmonella detection from pork processing environments.

    Science.gov (United States)

    Techathuvanan, Chayapa; Draughon, Frances Ann; D'Souza, Doris Helen

    2011-02-01

    Novel rapid Salmonella detection assays without the need for sophisticated equipment or labor remain in high demand. Real-time reverse transcriptase PCR (RT-PCR) assays, though rapid and sensitive, require expensive thermocyclers, while a novel RT loop-mediated isothermal amplification (RT-LAMP) method requires only a simple water bath. Our objective was to compare the detection sensitivity of Salmonella Typhimurium from the pork processing environment by RT-LAMP, RT-PCR, and culture-based assays. Carcass and surface swabs and carcass rinses were obtained from a local processing plant. Autoclaved carcass rinses (500 ml) were spiked with Salmonella Typhimurium and filtered. Filters were placed in stomacher bags containing tetrathionate broth (TTB) and analyzed with or without 10-h enrichment at 37 °C. Natural swabs were stomached with buffered peptone water, and natural carcass rinses were filtered, preenriched, and further enriched in TTB. Serially-diluted enriched samples were enumerated by spread plating on xylose lysine Tergitol 4 agar. RNA was extracted from 5 ml of enriched TTB with TRIzol. RT-LAMP assay using previously described invA primers was conducted at 62 °C for 90 min in a water bath with visual detection and by gel electrophoresis. SYBR Green I-based-real-time RT-PCR was carried out with invA primers followed by melt temperature analysis. The results of RT-LAMP detection for spiked carcass rinses were comparable to those of RT-PCR and cultural plating, with detection limits of 1 log CFU/ml, although they were obtained significantly faster, within 24 h including preenrichment and enrichment. RT-LAMP showed 4 of 12 rinse samples positive, while RT-PCR showed 1 of 12 rinse samples positive. For swabs, 6 of 27 samples positive by RT-LAMP and 5 of 27 by RT-PCR were obtained. This 1-day RT-LAMP assay shows promise for routine Salmonella screening by the pork industry. Copyright ©, International Association for Food Protection

  4. Evaluation of an x-ray microprobe technique as a possible aid to detect salmonellae

    International Nuclear Information System (INIS)

    Richter, E.R.; Banwart, G.J.

    1982-01-01

    Specific bacterial antigen (Salmonella) increased in phosphorus and sqlfur after reaction with the flukrescain isothiocyanate-tagged anti-Salmonella antibody, while nonspecific antigen (Escherichia coli) did not. X-ray microprobe analysis may be useful in detecting salmonellae or other bacteria by determining increases in the elemental constituents of bacterial cells when reacted with elemental-tagged antibodies

  5. Molecular-Based Identification and Detection of Salmonella in Food Production Systems: Current Perspectives.

    Science.gov (United States)

    Ricke, Steven C; Kim, Sun Ae; Shi, Zhaohao; Park, Si Hong

    2018-04-19

    Salmonella remains a prominent cause of foodborne illnesses and can originate from a wide range of food products. Given the continued presence of pathogenic Salmonella in food production systems, there is a consistent need to improve identification and detection methods that can identify this pathogen at all stages in food systems. Methods for subtyping have evolved over the years, and the introduction of whole genome sequencing and advancements in PCR technologies has greatly improved the resolution for differentiating strains within a particular serovar. This, in turn, has led to the continued improvement in Salmonella detection technologies for utilization in food production systems. In this review, the focus will be on recent advancements in these technologies, as well as potential issues associated with the application of these tools in food production. In addition, the recent and emerging research developments on Salmonella detection and identification methodologies and their potential application in food production systems will be discussed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Detection of Salmonella Carriers in Sheep and Goat Flocks of Bushehr and Lorestan Provinces, Iran

    Directory of Open Access Journals (Sweden)

    Hossein Esmaeili

    2017-01-01

    Full Text Available Background:    Salmonellosis is an infectious and a food-borne disease of humans and animals. The initial source of the infection is the intestinal tracts of birds and other animals. Apparently healthy animals can become subclinical carriers and persistently shed Salmonella in their feces which can act as a reservoir for the pathogen. The aim of this study is to detect the carriers of Salmonella among apparently healthy sheep and goat flocks of Bushehr and Lorestan provinces, Iran.Methods:    A total of 389 fecal samples were aseptically collected from the rectum of apparently healthy sheep and goat flocks of Bushehr and Lorestan provinces. Bacteriological culture was conducted using selenite cystine, Rappaport–Vassiliadis, brilliant green and xylose lysine deoxycholate agar. Suspected colonies were inoculated in to TSI, peptone water, Simmon’s Citrate, Urea medium and MRVP. Sero-groups were detected by antisera.              Results:    Two samples from 189 samples (1.05% were positive for Salmonella in Bushehr province. Salmonella abortusovis and Salmonella typhimurium were detected following serotyping. No Salmonella carriers were detected in Lorestan province.Conclusion:    As the rate of carriers of Salmonella was low, the risk of food-borne salmonellosis due to consumption of small ruminant's meat is low, especially in the condition of well cooked meat. Since S. abortusovis was detected, strategies of prevention and control of abortion due to this agent must be taken to reduce the economic losses. Moreover, the presence of S. typhimurium is a hazard to public health and people who have close contact to sheep and goats.

  7. Method for the detection of Salmonella enterica serovar Enteritidis

    Science.gov (United States)

    Agron, Peter G.; Andersen, Gary L.; Walker, Richard L.

    2008-10-28

    Described herein is the identification of a novel Salmonella enterica serovar Enteritidis locus that serves as a marker for DNA-based identification of this bacterium. In addition, three primer pairs derived from this locus that may be used in a nucleotide detection method to detect the presence of the bacterium are also disclosed herein.

  8. Plasma-treated polyethylene film: A smart material applied for Salmonella Typhimurium detection

    Energy Technology Data Exchange (ETDEWEB)

    Peng-Ubol, Triranat [Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Rd, Phayathai, Bangkok 10400 (Thailand); Phinyocheep, Pranee, E-mail: scppo@mahidol.ac.th [Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Rd, Phayathai, Bangkok 10400 (Thailand); Daniel, Philippe [Laboratoire de Physique de l' Etat Condense (LPEC-UMR CNRS 6087), Universite du Maine, Avenue Olivier Messiaen, 72085, Le Mans Cedex 9 (France); Panbangred, Watanalai [Department of Biotechnology and Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU: CRC), Faculty of Science, Mahidol University, Rama 6 Rd, Phayathai, Bangkok 10400 (Thailand); Pilard, Jean-Francois [Unite de Chimie Organique Moleculaire et Macromoleculaire (UCO2M-UMR CNRS 6011), Universite du Maine, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9 (France); Thouand, Gerald; Durand-Thouand, Marie-Jose [Genie des Procedes Environnement et Agroalimentaire (GEPEA UMR CNRS 6144), Departement Genie Biologique, IUT de la Roche/Yon, Universite de Nantes, 18 Bd G. Defferre, 85035 La Roche sur Yon (France)

    2012-12-01

    Salmonella is a major cause of foodborne illness worldwide and is not allowed to be present in any food in all countries. The purpose of this study is to develop a simple alternative method for the detection of Salmonella based on functionalized polyethylene (PE) surfaces. Salmonella Typhimurium was used as a model bacterium. PE film was treated using dielectric plasma in order to alter the wettability of the PE surface and consequently introduce functionality on the surface. The PE film characterized by ATR-FTIR spectroscopy revealed the presence of C=O stretching of ketones, aldehydes and carboxylic acids. The antibodies against O or H antigens of Salmonella and S. Typhimurium were then respectively immobilized on the PE surface after activation of the carboxylic group using NHS/EDC followed by protein A. The evidences from ATR-FTIR, scanning electron microscopy and optical microscopy showed the presence of S. Typhimurium attached to the plasma treated PE surfaces via the two types of anti-Salmonella antibody. The plasma treated PE film developed is simple and allows efficient association of bacterial cells on the treated surfaces without the necessity of time-consuming centrifugation and washing steps for isolation of the cells. This material is considered to be a smart material applicable for S. Typhimurium detection. Highlights: Black-Right-Pointing-Pointer We developed a functionalized polyethylene film for bacterial detection. Black-Right-Pointing-Pointer We modified the surface of polyethylene film by plasma treatment. Black-Right-Pointing-Pointer ATR-FTIR spectroscopy was used to analyze the functionality on the PE surface. Black-Right-Pointing-Pointer We introduced Salmonella Typhimurium on the modified PE film. Black-Right-Pointing-Pointer SEM revealed the presence of S. Typhimurium on the plasma treated PE film.

  9. Detection of Salmonella typhi utilizing bioconjugated fluorescent polymeric nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Swati, E-mail: swatijain.iitd@gmail.com; Chattopadhyay, Sruti, E-mail: sruticiitd@gmail.com; Jackeray, Richa; Abid, Zainul; Singh, Harpal, E-mail: harpal2000@yahoo.com [Centre for Biomedical Engineering, Indian Institute of Technology-Delhi (India)

    2016-05-15

    Present work demonstrates effective utilization of functionalized polymeric fluorescent nanoparticles as biosensing probe for the detection of Salmonella typhi bacteria on modified polycarbonate (PC) filters in about 3 h. Antibody modified-PC membranes were incubated with contaminated bacterial water for selective capturing which were detected by synthesized novel bioconjugate probe. Core–shell architecture of polymeric nanoparticles endows them with aqueous stabilization and keto-enolic functionalities making them usable for covalently linking S. typhi antibodies without any crosslinker or activator. Bradford analysis revealed that one nanoparticle has an average of 3.51 × 10{sup −19} g or 21 × 10{sup 4} bound S. typhi Ab molecules. Analysis of the regions of interest (ROI) in fluorescent micrographs of modified fluoroimmunoassay showed higher detection sensitivity of 5 × 10{sup 2} cells/mL due to signal amplification unlike conventional naked dye FITC-Ab conjugate. Fluorescence of pyrene dye remained same on immobilization of biomolecules and nanoparticles showed stable fluorescent intensity under prolong exposure to laser owing to protective polymeric layer allowing accurate identification of bacteria. Surface-functionalized PC matrix and fluorescent label NPs permit covalent interactions among biomolecules enhancing signal acquisitions showing higher detection efficiency as compared to conventional microtiter plate-based system. Our novel immunoassay has the potential to be explored as rapid detection method for identifying S. typhi contaminations in water.Graphical Abstract.

  10. Detection of Salmonella typhi utilizing bioconjugated fluorescent polymeric nanoparticles

    International Nuclear Information System (INIS)

    Jain, Swati; Chattopadhyay, Sruti; Jackeray, Richa; Abid, Zainul; Singh, Harpal

    2016-01-01

    Present work demonstrates effective utilization of functionalized polymeric fluorescent nanoparticles as biosensing probe for the detection of Salmonella typhi bacteria on modified polycarbonate (PC) filters in about 3 h. Antibody modified-PC membranes were incubated with contaminated bacterial water for selective capturing which were detected by synthesized novel bioconjugate probe. Core–shell architecture of polymeric nanoparticles endows them with aqueous stabilization and keto-enolic functionalities making them usable for covalently linking S. typhi antibodies without any crosslinker or activator. Bradford analysis revealed that one nanoparticle has an average of 3.51 × 10"−"1"9 g or 21 × 10"4 bound S. typhi Ab molecules. Analysis of the regions of interest (ROI) in fluorescent micrographs of modified fluoroimmunoassay showed higher detection sensitivity of 5 × 10"2 cells/mL due to signal amplification unlike conventional naked dye FITC-Ab conjugate. Fluorescence of pyrene dye remained same on immobilization of biomolecules and nanoparticles showed stable fluorescent intensity under prolong exposure to laser owing to protective polymeric layer allowing accurate identification of bacteria. Surface-functionalized PC matrix and fluorescent label NPs permit covalent interactions among biomolecules enhancing signal acquisitions showing higher detection efficiency as compared to conventional microtiter plate-based system. Our novel immunoassay has the potential to be explored as rapid detection method for identifying S. typhi contaminations in water.Graphical Abstract

  11. Real-Time Salmonella Detection Using Lead Zirconate Titanate-Titanium Microcantilevers

    National Research Council Canada - National Science Library

    McGovern, John-Paul; Shih, Wan Y; Shih, Wei-Heng; Sergi, Mauro; Chaiken, Irwin

    2005-01-01

    .... We have developed and investigated the use of a lead zirconate titanate - titanium (PZT-Ti) microcantilever for in situ detection of the common food- and water-born pathogen, Salmonella typhimurium...

  12. A novel multiplex PCR for the simultaneous detection of Salmonella enterica and Shigella species.

    Science.gov (United States)

    Radhika, M; Saugata, Majumder; Murali, H S; Batra, H V

    2014-01-01

    Salmonella enterica and Shigella species are commonly associated with food and water borne infections leading to gastrointestinal diseases. The present work was undertaken to develop a sensitive and reliable PCR based detection system for simultaneous detection of Salmonella enterica and Shigella at species level. For this the conserved regions of specific genes namely ipaH1, ipaH, wbgZ, wzy and invA were targeted for detection of Shigella genus, S. flexneri, S. sonnei, S. boydii and Salmonella enterica respectively along with an internal amplification control (IAC). The results showed that twenty Salmonella and eleven Shigella spp., were accurately identified by the assay without showing non-specificity against closely related other Enterobacteriaceae organisms and also against other pathogens. Further evaluation of multiplex PCR was undertaken on 50 natural samples of chicken, eggs and poultry litter and results compared with conventional culture isolation and identification procedure. The multiplex PCR identified the presence of Salmonella and Shigella strains with a short pre-enrichment step of 5 h in peptone water and the same samples were processed by conventional procedures for comparison. Therefore, this reported multiplex PCR can serve as an alternative to the tedious time-consuming procedure of culture and identification in food safety laboratories.

  13. The SPR detection of Salmonella enteritidis in food using aptamers as recongnition elements

    Science.gov (United States)

    Di, W. T.; Du, X. W.; Pan, M. F.; Wang, J. P.

    2017-09-01

    In this experiment, a fast, accurate, non-destructive, unmarked and simple-operation detection method for Salmonella enteritidis in food was established by the BI-3000 plasma resonance biosensor (SPR). This article establishes a method of using nucleic acid aptamer as immune recognition element in SPR which can be employed to detect Salmonella enteritidis in food for the first time. The experimental conditions were screened and the experimental scheme was validated and applied. The best flow rate was 5μL/min, the best concentration of the aptamers was 180mM, and the best regenerating solution was the 20mM NaOH. This method had almost no cross-reactivity. Besides, we established a standard curve of Salmonella enteritidis and SPR signal, with the detection limit of 2 cfu/mL. Finally, we tested the samples of chicken, pork, shrimp and fish purchased from supermarkets. The method has the advantages of short time, low detection limit and easy operation, which can be used for a large number of food samples.

  14. Diazonium-based impedimetric aptasensor for the rapid label-free detection of Salmonella typhimurium in food sample.

    Science.gov (United States)

    Bagheryan, Zahra; Raoof, Jahan-Bakhsh; Golabi, Mohsen; Turner, Anthony P F; Beni, Valerio

    2016-06-15

    Fast and accurate detection of microorganisms is of key importance in clinical analysis and in food and water quality monitoring. Salmonella typhimurium is responsible for about a third of all cases of foodborne diseases and consequently, its fast detection is of great importance for ensuring the safety of foodstuffs. We report the development of a label-free impedimetric aptamer-based biosensor for S. typhimurium detection. The aptamer biosensor was fabricated by grafting a diazonium-supporting layer onto screen-printed carbon electrodes (SPEs), via electrochemical or chemical approaches, followed by chemical immobilisation of aminated-aptamer. FTIR-ATR, contact angle and electrochemical measurements were used to monitor the fabrication process. Results showed that electrochemical immobilisation of the diazonium-grafting layer allowed the formation of a denser aptamer layer, which resulted in higher sensitivity. The developed aptamer-biosensor responded linearly, on a logarithm scale, over the concentration range 1 × 10(1) to 1 × 10(8)CFU mL(-1), with a limit of quantification (LOQ) of 1 × 10(1) CFU mL(-1) and a limit of detection (LOD) of 6 CFU mL(-1). Selectivity studies showed that the aptamer biosensor could discriminate S. typhimurium from 6 other model bacteria strains. Finally, recovery studies demonstrated its suitability for the detection of S. typhimurium in spiked (1 × 10(2), 1 × 10(4) and 1 × 10(6) CFU mL(-1)) apple juice samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Studies on Methods for Detection of Salmonella SP. in Meat with Regard to Equivalency and Compatibility

    Energy Technology Data Exchange (ETDEWEB)

    Paulsen, P.; Smulders, F. J.M. [Institute for Meat Hygiene, Meat Technology and Food Science, University for Veterinary Medicine, Vienna (Austria); Girma, Z. [Addis Ababa University, Debre Zeit (Ethiopia); Farghaly, R. [South Valley University, Qena (Egypt)

    2005-01-15

    This contribution summarizes research activities on the evaluation of methods for detection of Salmonella in meat, especially poultry. The following items were under study: (1) studies on motility media for detection of Salmonella spp.: evaluation of MSRV media of different manufacturers; evaluation of novobiocine supplementation to MSRV and DIASALM media; abuse studies of incubation temperature; comparison of DIASALM medium vs. MSRV; (2) Salmonella antigen detection by a commercial EIA (Vidas System). The findings and information from other sources (references, technical papers) are to be combined in a database to give a comprehensive overview on the currently applied methodology. Basic considerations on the structure of this database are demonstrated. (author)

  16. Biocontrol and Rapid Detection of Food-borne Pathogens Using Bacteriophages and Endolysins

    Directory of Open Access Journals (Sweden)

    Jaewoo eBai

    2016-04-01

    Full Text Available Bacteriophages have been suggested as natural food preservatives as well as rapid detection materials for food-borne pathogens in various foods. Since Listeria monocytogenes-targeting phage cocktail (ListShield was approved for applications in foods, numerous phages have been screened and experimentally characterized for phage applications in foods. A single phage and phage cocktail treatments to various foods contaminated with food-borne pathogens including E. coli O157:H7, Salmonella enterica, Campylobacter jejuni, Listeria monocytogenes, Staphylococcus aureus, Cronobacter sakazakii, and Vibrio spp. revealed that they have great potential to control various food-borne pathogens and may be alternative for conventional food preservatives. In addition, phage-derived endolysins with high host specificity and host lysis activities may be preferred to food applications rather than phages. For rapid detection of food-borne pathogens, cell-wall binding domains (CBDs from endolysins have been suggested due to their high host-specific binding. Fluorescence-tagged CBDs have been successfully evaluated and suggested to be alternative materials of expensive antibodies for various detection applications. Most recently, reporter phage systems have been developed and tested to confirm their usability and accuracy for specific detection. These systems revealed some advantages like rapid detection of only viable pathogenic cells without interference by food components in a very short reaction time, suggesting that these systems may be suitable for monitoring of pathogens in foods. Consequently, phage is the next-generation biocontrol agent as well as rapid detection tool to confirm and even identify the food-borne pathogens present in various foods.

  17. The detection of Salmonella typhimurium on shell eggs using a phage-based biosensor

    Science.gov (United States)

    Chai, Yating; Li, Suiqiong; Horikawa, Shin; Shen, Wen; Park, Mi-Kyung; Vodyanoy, Vitaly J.; Chin, Bryan A.

    2011-06-01

    This paper presents the direct detection of Salmonella typhimurium on shell eggs using a phage-based magnetoelastic (ME) biosensor. The ME biosensor consists of a ME resonator as the sensor platform and E2 phage as the biorecognition element that is genetically engineered to specifically bind with Salmonella typhimurium. The ME biosensor, which is a wireless sensor, vibrates with a characteristic resonant frequency under an externally applied magnetic field. Multiple sensors can easily be remotely monitored. Multiple measurement and control sensors were placed on the shell eggs contaminated by Salmonella typhimurium solutions with different known concentrations. The resonant frequency of sensors before and after the exposure to the spiked shell eggs was measured. The frequency shift of the measurement sensors was significantly different than the control sensors indicating Salmonella contamination. Scanning electron microscopy was used to confirm binding of Salmonella to the sensor surface and the resulting frequency shift results.

  18. Immuno-capture and in situ detection of Salmonella typhimurium on a novel microfluidic chip

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Renjie, E-mail: 1058464972@qq.com [College of Chemistry and Chemical Engineering, Chongqing University, No. 174, St. Shazheng, Shapingba District, Chongqing (China); Ni, Yanan, E-mail: 468885029@qq.com [College of Chemistry and Chemical Engineering, Chongqing University, No. 174, St. Shazheng, Shapingba District, Chongqing (China); Xu, Yi, E-mail: xuyibbd@sina.com [College of Chemistry and Chemical Engineering, Chongqing University, No. 174, St. Shazheng, Shapingba District, Chongqing (China); National Center for International Research of Micro/Nano-System and New Material Technology, No. 174, St. Shazhengjie, Shapingba District, Chongqing (China); Key Laboratory of Fundamental Science of Micro/Nano-Device and System Technology for National Defense, Chongqing (China); Jiang, Yan, E-mail: 919865356@qq.com [College of Chemistry and Chemical Engineering, Chongqing University, No. 174, St. Shazheng, Shapingba District, Chongqing (China); Dong, Chunyan, E-mail: 774176325@qq.com [College of Chemistry and Chemical Engineering, Chongqing University, No. 174, St. Shazheng, Shapingba District, Chongqing (China); Chuan, Na, E-mail: 814859441@qq.com [College of Chemistry and Chemical Engineering, Chongqing University, No. 174, St. Shazheng, Shapingba District, Chongqing (China)

    2015-01-01

    Highlights: • A novel microfluidic chip and a LIF microsystem were designed and fabricated. • Salmonella typhimurium was captured and labeled by specific immuno-capture on chip. • CdSe/ZnS quantum dots-labeled bacteria were detected by in situ analysis using LIF microsystem. • The proposed method has potential application in practice. - Abstract: The new method presented in this article achieved the goal of capturing Salmonella typhimurium via immunoreaction and rapid in situ detection of the CdSe/ZnS quantum dots (QDs) labeled S. typhimurium by self-assembly light-emitting diode-induced fluorescence detection (LIF) microsystem on a specially designed multichannel microfluidic chip. CdSe/ZnS QDs were used as fluorescent markers improving detection sensitivity. The microfluidic chip developed in this study was composed of 12 sample channels, 3 mixing zones, and 6 immune reaction zones, which also acted as fluorescence detection zones. QDs–IgG–primary antibody complexes were generated by mixing CdSe/ZnS QDs conjugated secondary antibody (QDs–IgG) and S. typhimurium antibody (primary antibody) in mixing zones. Then, the complexes went into immune reaction zones to label previously captured S. typhimurium in the sandwich mode. The capture rate of S. typhimurium in each detection zone was up to 70%. The enriched QDs-labeled S. typhimurium was detected using a self-assembly LIF microsystem. A good linear relationship was obtained in the range from 3.7 × 10 to 3.7 × 10{sup 5} cfu mL{sup −1} using the equation I = 0.1739 log (C) − 0.1889 with R{sup 2} = 0.9907, and the detection limit was down to 37 cfu mL{sup −1}. The proposed method of online immunolabeling with QDs for in situ fluorescence detection on the designed multichannel microfluidic chip had been successfully used to detect S. typhimurium in pork sample, and it has shown potential advantages in practice.

  19. In vitro selection of RNA aptamer specific to Salmonella typhimurium.

    Science.gov (United States)

    Han, Seung Ryul; Lee, Seong-Wook

    2013-06-28

    Salmonella is a major foodborne pathogen that causes a variety of human diseases. Development of ligands directly and specifically binding to the Salmonella will be crucial for the rapid detection of, and thus for efficient protection from, the virulent bacteria. In this study, we identified a RNA aptamer-based ligand that can specifically recognize Salmonella Typhimurium through SELEX technology. To this end, we isolated and characterized an RNase-resistant RNA aptamer that bound to the OmpC protein of Salmonella Typhimurium with high specificity and affinity (Kd ~ 20 nM). Of note, the selected aptamer was found to specifically bind to Salmonella Typhimurium, but neither to Gram-positive bacteria (Staphylococcus aureus) nor to other Gram-negative bacteria (Escherichia coli O157:H7). This was evinced by aptamer-immobilized ELISA and aptamer-linked precipitation experiments. This Salmonella species-specific aptamer could be useful as a diagnostic ligand against pathogen-caused foodborne sickness.

  20. Comprehensive analysis of Salmonella sequence polymorphisms and development of a LDR-UA assay for the detection and characterization of selected serotypes.

    Science.gov (United States)

    Lauri, Andrea; Castiglioni, Bianca; Mariani, Paola

    2011-07-01

    Salmonella is a major cause of food-borne disease, and Salmonella enterica subspecies I includes the most clinically relevant serotypes. Salmonella serotype determination is important for the disease etiology assessment and contamination source tracking. This task will be facilitated by the disclosure of Salmonella serotype sequence polymorphisms, here annotated in seven genes (sefA, safA, safC, bigA, invA, fimA, and phsB) from 139 S. enterica strains, of which 109 belonging to 44 serotypes of subsp. I. One hundred nineteen polymorphic sites were scored and associated to single serotypes or to serotype groups belonging to S. enterica subsp. I. A diagnostic tool was constructed based on the Ligation Detection Reaction-Universal Array (LDR-UA) for the detection of polymorphic sites uniquely associated to serotypes of primary interest (Salmonella Hadar, Salmonella Infantis, Salmonella Enteritidis, Salmonella Typhimurium, Salmonella Gallinarum, Salmonella Virchow, and Salmonella Paratyphi B). The implementation of promiscuous probes allowed the diagnosis of ten further serotypes that could be associated to a unique hybridization pattern. Finally, the sensitivity and applicability of the tool was tested on target DNA dilutions and with controlled meat contamination, allowing the detection of one Salmonella CFU in 25 g of meat.

  1. Analysis of Hexanitrostilbene (HNS) and Dipicryethane (DPE) for Mutagenicity by the Ames/Salmonella Assay

    Energy Technology Data Exchange (ETDEWEB)

    Wu, R; Felton, J

    2007-10-12

    The Ames/Salmonella assay, developed by Professor Bruce Ames at the University of California, Berkeley, is a rapid and sensitive assay for detecting mutagenicity of various chemical compounds (Maron and Ames, 1983). It is a widely accepted short-term assay for detecting chemicals that induce mutations in the histidine (his) gene of Salmonella typhimurium. This is a reverse mutation assay that detects the mutational reversion of his-dependent Salmonella to the his-independent counterpart. Thereby, mutagenic compounds will increase the frequency of occurrence of his-independent bacterial colonies. The assay utilizes the specific genetically constructed strains of bacteria either with or without mammalian metabolic activation enzymes (S9), Aroclor induced rat liver homogenate to assess the mutagenicity of different compounds. In this study, we will use the Ames/Salmonella assay to investigate the mutagenicity of Hexanitrostilbene (HNS) from both Bofors and Pantex, and Dipicryethane (DPE).

  2. Evaluation of PCR and high-resolution melt curve analysis for differentiation of Salmonella isolates.

    Science.gov (United States)

    Saeidabadi, Mohammad Sadegh; Nili, Hassan; Dadras, Habibollah; Sharifiyazdi, Hassan; Connolly, Joanne; Valcanis, Mary; Raidal, Shane; Ghorashi, Seyed Ali

    2017-06-01

    Consumption of poultry products contaminated with Salmonella is one of the major causes of foodborne diseases worldwide and therefore detection and differentiation of Salmonella spp. in poultry is important. In this study, oligonucleotide primers were designed from hemD gene and a PCR followed by high-resolution melt (HRM) curve analysis was developed for rapid differentiation of Salmonella isolates. Amplicons of 228 bp were generated from 16 different Salmonella reference strains and from 65 clinical field isolates mainly from poultry farms. HRM curve analysis of the amplicons differentiated Salmonella isolates and analysis of the nucleotide sequence of the amplicons from selected isolates revealed that each melting curve profile was related to a unique DNA sequence. The relationship between reference strains and tested specimens was also evaluated using a mathematical model without visual interpretation of HRM curves. In addition, the potential of the PCR-HRM curve analysis was evaluated for genotyping of additional Salmonella isolates from different avian species. The findings indicate that PCR followed by HRM curve analysis provides a rapid and robust technique for genotyping of Salmonella isolates to determine the serovar/serotype.

  3. High-Resolution Microbiome Profiling for Detection and Tracking of Salmonella enterica

    Directory of Open Access Journals (Sweden)

    Christopher J. Grim

    2017-08-01

    Full Text Available 16S rRNA community profiling continues to be a useful tool to study microbiome composition and dynamics, in part due to advances in next generation sequencing technology that translate into reductions in cost. Reliable taxonomic identification to the species-level, however, remains difficult, especially for short-read sequencing platforms, due to incomplete coverage of the 16S rRNA gene. This is especially true for Salmonella enterica, which is often found as a low abundant member of the microbial community, and is often found in combination with several other closely related enteric species. Here, we report on the evaluation and application of Resphera Insight, an ultra-high resolution taxonomic assignment algorithm for 16S rRNA sequences to the species level. The analytical pipeline achieved 99.7% sensitivity to correctly identify S. enterica from WGS datasets extracted from the FDA GenomeTrakr Bioproject, while demonstrating 99.9% specificity over other Enterobacteriaceae members. From low-diversity and low-complexity samples, namely ice cream, the algorithm achieved 100% specificity and sensitivity for Salmonella detection. As demonstrated using cilantro and chili powder, for highly complex and diverse samples, especially those that contain closely related species, the detection threshold will likely have to be adjusted higher to account for misidentifications. We also demonstrate the utility of this approach to detect Salmonella in the clinical setting, in this case, bloodborne infections.

  4. Isolation and identification of Salmonella spp. in environmental water by molecular technology in Taiwan

    Science.gov (United States)

    Kuo, Chun Wei; Hao Huang, Kuan; Hsu, Bing Mu; Tsai, Hsien Lung; Tseng, Shao Feng; Shen, Tsung Yu; Kao, Po Min; Shen, Shu Min; Chen, Jung Sheng

    2013-04-01

    Salmonella spp. is one of the most important causal agents of waterborne diseases. The taxonomy of Salmonella is very complicated and its genus comprises more than 2,500 serotypes. The detection of Salmonella in environmental water samples by routines culture methods using selective media and characterization of suspicious colonies based on biochemical tests and serological assay are generally time consuming. To overcome this drawback, it is desirable to use effective method which provides a higher discrimination and more rapid identification about Salmonella in environmental water. The aim of this study is to investigate the occurrence of Salmonella using molecular technology and to identify the serovars of Salmonella isolates from 70 environmental water samples in Taiwan. The analytical procedures include membrane filtration, non-selective pre-enrichment, selective enrichment of Salmonella. After that, we isolated Salmonella strains by selective culture plates. Both selective enrichment and culture plates were detected by Polymerase Chain Reaction (PCR). Finally, the serovars of Salmonella were confirmed by using biochemical tests and serological assay. In this study, 15 water samples (21.4%) were identified as Salmonella by PCR. The positive water samples will further identify their serotypes by culture method. The presence of Salmonella in environmental water indicates the possibility of waterborne transmission in drinking watershed. Consequently, the authorities need to provide sufficient source protection and to maintain the system for disease prevention. Keywords: Salmonella spp., serological assay, PCR

  5. The new ISO 6579-1: A real horizontal standard for detection of Salmonella, at last!

    Science.gov (United States)

    Mooijman, Kirsten A

    2018-05-01

    Up to 2016, three international standard methods existed for the detection of Salmonella spp. in food, animal feed and samples from the primary production stage: ISO 6785:2001 for milk and milk products, ISO 6579:2002 for (other) food and animal feed and Annex D of ISO 6579:2007 for samples from the primary production stage. In 2009, an ISO/CEN working group started with the revision of ISO 6579:2002 with two main aims: combining the three aforementioned standards in one document and improving the information in ISO 6579:2002. Additionally it was decided to split ISO 6579 into three parts, where part 1 describes the detection, part 2 the enumeration by mini-MPN (published in 2012) and part 3 the serotyping of Salmonella (published in 2014). This paper describes the experiments and choices made for improving the part on detection of Salmonella (ISO 6579-1). The final voting stage on (draft) ISO 6579-1 was finished by the end of December 2016, with a positive outcome. Finally, a real horizontal standard became available for detection of Salmonella in food, animal feed, environmental samples in the area of food production and food handling and in samples from the primary production stage in 2017. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Virulence Characterization of Salmonella enterica by a New Microarray: Detection and Evaluation of the Cytolethal Distending Toxin Gene Activity in the Unusual Host S. Typhimurium.

    Directory of Open Access Journals (Sweden)

    Rui Figueiredo

    Full Text Available Salmonella enterica is a zoonotic foodborne pathogen that causes acute gastroenteritis in humans. We assessed the virulence potential of one-hundred and six Salmonella strains isolated from food animals and products. A high through-put virulence genes microarray demonstrated Salmonella Pathogenicity Islands (SPI and adherence genes were highly conserved, while prophages and virulence plasmid genes were variably present. Isolates were grouped by serotype, and virulence plasmids separated S. Typhimurium in two clusters. Atypical microarray results lead to whole genome sequencing (WGS of S. Infantis Sal147, which identified deletion of thirty-eight SPI-1 genes. Sal147 was unable to invade HeLa cells and showed reduced mortality in Galleria mellonella infection model, in comparison to a SPI-1 harbouring S. Infantis. Microarray and WGS of S. Typhimurium Sal199, established for the first time in S. Typhimurium presence of cdtB and other Typhi-related genes. Characterization of Sal199 showed cdtB genes were upstream of transposase IS911, and co-expressed with other Typhi-related genes. Cell cycle arrest, cytoplasmic distension, and nuclear enlargement were detected in HeLa cells infected by Sal199, but not with S. Typhimurium LT2. Increased mortality of Galleria was detected on infection with Sal199 compared to LT2. Thus, Salmonella isolates were rapidly characterized using a high through-put microarray; helping to identify unusual virulence features which were corroborated by further characterisation. This work demonstrates that the use of suitable screening methods for Salmonella virulence can help assess the potential risk associated with certain Salmonella to humans. Incorporation of such methodology into surveillance could help reduce the risk of emergence of epidemic Salmonella strains.

  7. AOAC Official MethodSM Matrix Extension Validation Study of Assurance GDSTM for the Detection of Salmonella in Selected Spices.

    Science.gov (United States)

    Feldsine, Philip; Kaur, Mandeep; Shah, Khyati; Immerman, Amy; Jucker, Markus; Lienau, Andrew

    2015-01-01

    Assurance GDSTM for Salmonella Tq has been validated according to the AOAC INTERNATIONAL Methods Committee Guidelines for Validation of Microbiological Methods for Food and Environmental Surfaces for the detection of selected foods and environmental surfaces (Official Method of AnalysisSM 2009.03, Performance Tested MethodSM No. 050602). The method also completed AFNOR validation (following the ISO 16140 standard) compared to the reference method EN ISO 6579. For AFNOR, GDS was given a scope covering all human food, animal feed stuff, and environmental surfaces (Certificate No. TRA02/12-01/09). Results showed that Assurance GDS for Salmonella (GDS) has high sensitivity and is equivalent to the reference culture methods for the detection of motile and non-motile Salmonella. As part of the aforementioned validations, inclusivity and exclusivity studies, stability, and ruggedness studies were also conducted. Assurance GDS has 100% inclusivity and exclusivity among the 100 Salmonella serovars and 35 non-Salmonella organisms analyzed. To add to the scope of the Assurance GDS for Salmonella method, a matrix extension study was conducted, following the AOAC guidelines, to validate the application of the method for selected spices, specifically curry powder, cumin powder, and chili powder, for the detection of Salmonella.

  8. Effect of ionizing radiation on the quantitative detection of Salmonella using real-time PCR

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sangyong; Jung, Jinwoo [Radiation Research Center for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Kim, Minjeong; Ryu, Sangryeol [Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921 (Korea, Republic of); Kim, Dongho [Radiation Research Center for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of)], E-mail: fungikim@kaeri.re.kr

    2008-09-15

    Food irradiation is an economically viable technology for inactivating foodborne pathogens, but irradiation can mask pathogens in unhygienically prepared food. The aim of this study was to investigate the effect of irradiation treatment on the detection of Salmonella using real-time PCR. Three commercially available kits were tested, of which the InstaGene Matrix procedure was most effective in preparing template DNA from Salmonella exposed to radiation in broth culture. The minimum level of detection by real-time PCR combined with InstaGene Matrix was 3 log units of Salmonella per milliliter. However, when pure cultures of Salmonella were irradiated at 3 and 5 kGy, the cycle threshold (C{sub T}) increased 1-1.5-fold compared to irradiation at 0 and 1 kGy. This indicated that irradiation treatment may result in an underestimation of bacterial counts due to radiation-induced DNA lesions. We also compared C{sub T} values in inoculated chicken homogenates before and after irradiation, which in this model caused a 1.3-3.3-fold underestimation of bacterial counts with respect to irradiation dose.

  9. [Detection of Salmonella and Mycobacterium species in seagulls captured in Talcahuano, Chile].

    Science.gov (United States)

    López-Martín, Juana; Junod, Tania; Riquelme, Fredy; Contreras, Cecilia; González-Acuña, Daniel

    2011-11-01

    Salmonella can be isolated from the feces of seagulls. Therefore these birds can be a vector for dissemination of this pathogen. To evaluate the possible role of gulls as vectors of two important human and animal pathogens (My-cobacteria and Salmonella). One hundred twenty three Kelp gull (Larus dominicanus) and 60 Franklin gulls (Leucophaeus pipixcan) captured off the coast of the seaport of Talcahuano, were analyzed. Using traditional microbiological methods, the presence of Mycobacteria in cloacal swabs and feet lavages, was analyzed in both types of gulls. To detect the presence of Salmonella, feces, fecal and tracheal swabs, and feet lavage were analyzed from Franklin gulls. Feces, feet lavage, intestine, spleen, liver, kidney and lung, were examined in Kelp gulls. All Mycobacteria cultures were negative. Salmonella enterica cultures were positive in 25 % of Kelp gulls and 6.7 % of Franklin gulls. Four serovars were identified by serotyping. Enteritidis and Senfteberg serovars were found in both types of gulls. Anatum and Infantis serovars were found only in Kelp gulls. Feces of gulls captured during the winter had the highest yield of positive cultures (36.1%). Seagulls are an important Salmonella vector in Chile.

  10. The effect of pre-enrichment media on the recovery and detection of Salmonella in feed

    Science.gov (United States)

    Current methodology for detecting Salmonella in feeds and feed ingredients are adapted from food safety methods. These methods do not take into account the stressed state of Salmonella in feed, presence of competing microorganisms nor the sample matrix. The objective was to evaluate four pre-enrichm...

  11. Identification of Salmonella Typhimurium-specific DNA aptamers developed using whole-cell SELEX and FACS analysis.

    Science.gov (United States)

    Moon, Jihea; Kim, Giyoung; Lee, Sangdae; Park, Saetbyeol

    2013-11-01

    Conventional methods for detection of infective organisms, such as Salmonella, are complicated and require multiple steps, and the need for rapid detection has increased. Biosensors show great potential for rapid detection of pathogens. In turn, aptamers have great potential for biosensor assay development, given their small size, ease of synthesis and labeling, lack of immunogenicity, a lower cost of production than antibodies, and high target specificity. In this study, ssDNA aptamers specific to Salmonella Typhimurium were obtained by a whole bacterium-based systematic evolution of ligands by exponential enrichment (SELEX) procedure and applied to probing S. Typhimurium. After 10 rounds of selection with S. Typhimurium as the target and Salmonella Enteritidis, Escherichia coli and Staphylococcus aureus as counter targets, the highly enriched oligonucleic acid pool was sorted using flow cytometry. In total, 12 aptamer candidates from different families were sequenced and grouped. Fluorescent analysis demonstrated that aptamer C4 had particularly high binding affinity and selectivity; this aptamer was then further characterized. © 2013 Elsevier B.V. All rights reserved.

  12. Affinity-Selected Filamentous Bacteriophage as a Probe for Acoustic Wave Biodetectors of Salmonella typhimurium

    National Research Council Canada - National Science Library

    Olsen, Eric V; Sorokulova, Iryna B; Petrenko, Valery A; Chen, I-Hsuan; Barbaree, James M; Vodyanoy, Vitaly J

    2005-01-01

    Proof-in-concept biosensors were prepared for the rapid detection of Salmonella typhimurium in solution, based on affinity-selected filamentous phage prepared as probes physically adsorbed to piezoelectric transducers...

  13. Detection of Salmonella spp. from chevon, mutton and its environment in retail meat shops in Anand city (Gujarat, India

    Directory of Open Access Journals (Sweden)

    P. P. Makwana

    2015-03-01

    Full Text Available Aim: The aim of this study was (i To attempt isolation and identification of Salmonella species from samples. (ii Serotyping of Salmonella isolates. (iii Detection of virulence factor associated genes by polymerase chain reaction (PCR. Materials and Methods: A total of 284 samples comprised of chevon and mutton (112 samples each as well as 60 samples (20 each of retail meat shops environment samples viz. Butchers’ hands, knives and log swabs were collected from the retail meat shops in and around Anand City under aseptic precautions. Rappaport-vassiliadis soy bean meal broth and tetrathionate broth was used for the enrichment of all the samples and inoculation was done on brilliant green agar and xylose lysine deoxycholate agar. This was followed by the confirmation of isolates using biochemical tests. For the serotyping, isolates were sent to the National Salmonella and Escherichia Centre, Central Research Institute, Kasauli, Himachal Pradesh. Detection of virulence genes was performed by PCR technique using previously reported primer. Result: Of 284 meats and retail meat shops environment samples, 13 (4.58% samples were found positive for Salmonella. It was interesting to know that incidence of Salmonella was more in mutton (6.25% than chevon (3.57%. In case of meat shop environmental samples 1 (5.00% sample observed positive for Salmonella separately among the butchers’ hands and knives swabs (Each of 20 samples examined. Out of 13, eleven isolates detected as Salmonella Typhimurium, whereas only two isolates were detected as Salmonella Enteritidis. All Salmonella isolates possess invA and stn genes, whereas nine isolates had a presence of spvR gene while only five of the isolates revealed the presence of spvC gene as shown by in vitro detection of virulence genes by PCR. Conclusion: Therefore, might be suggested that the good hygiene practices and effective control measures should be taken to encourage clean meat production with

  14. Rapid detection, characterization, and enumeration of foodborne pathogens.

    Science.gov (United States)

    Hoorfar, J

    2011-11-01

    enough to test for many pathogens but also many pathogens can be detected with one test. The review is mainly based on the author's scientific work that has contributed with the following new developments to this field: (i) serologic tests for large-scale screening, surveillance, or eradication programs, (ii) same-day detection of Salmonella that otherwise was considered as difficult to achieve, (iii) pathogen enumeration following a short log-phase enrichment, (iv) detection of foodborne pathogens in air samples, and finally (v) biotracing of pathogens based on mathematical modeling, even in the absence of isolate. Rapid methods are discussed in a broad global health perspective, international food supply, and for improvement of quantitative microbial risk assessments. The need for quantitative sample preparation techniques, culture-independent, metagenomic-based detection, online monitoring, a global validation infrastructure has been emphasized. The cost and ease of use of rapid assays remain challenging obstacles to surmount. © 2011 The Author. APMIS © 2011 APMIS.

  15. Optimisation of the PCR-invA primers for the detection of Salmonella ...

    African Journals Online (AJOL)

    A polymerase chain reaction (PCR)-based method for the detection of Salmonella species in water samples was optimised and evaluated for speed, specificity and sensitivity. Optimisation of Mg2+ and primer concentrations and cycling parameters increased the sensitivity and limit of detection of PCR to 2.6 x 104 cfu/m.

  16. Rapid and robust detection methods for poison and microbial contamination.

    Science.gov (United States)

    Hoehl, Melanie M; Lu, Peter J; Sims, Peter A; Slocum, Alexander H

    2012-06-27

    Real-time on-site monitoring of analytes is currently in high demand for food contamination, water, medicines, and ingestible household products that were never tested appropriately. Here we introduce chemical methods for the rapid quantification of a wide range of chemical and microbial contaminations using a simple instrument. Within the testing procedure, we used a multichannel, multisample, UV-vis spectrophotometer/fluorometer that employs two frequencies of light simultaneously to interrogate the sample. We present new enzyme- and dye-based methods to detect (di)ethylene glycol in consumables above 0.1 wt % without interference and alcohols above 1 ppb. Using DNA intercalating dyes, we can detect a range of pathogens ( E. coli , Salmonella , V. Cholera, and a model for Malaria) in water, foods, and blood without background signal. We achieved universal scaling independent of pathogen size above 10(4) CFU/mL by taking advantage of the simultaneous measurement at multiple wavelengths. We can detect contaminants directly, without separation, purification, concentration, or incubation. Our chemistry is stable to ± 1% for >3 weeks without refrigeration, and measurements require <5 min.

  17. Genomics of Salmonella Species

    Science.gov (United States)

    Canals, Rocio; McClelland, Michael; Santiviago, Carlos A.; Andrews-Polymenis, Helene

    Progress in the study of Salmonella survival, colonization, and virulence has increased rapidly with the advent of complete genome sequencing and higher capacity assays for transcriptomic and proteomic analysis. Although many of these techniques have yet to be used to directly assay Salmonella growth on foods, these assays are currently in use to determine Salmonella factors necessary for growth in animal models including livestock animals and in in vitro conditions that mimic many different environments. As sequencing of the Salmonella genome and microarray analysis have revolutionized genomics and transcriptomics of salmonellae over the last decade, so are new high-throughput sequencing technologies currently accelerating the pace of our studies and allowing us to approach complex problems that were not previously experimentally tractable.

  18. Bacteriological detection of Salmonella in the presence of competitive micro-organisms. Bacteriological collaborative study IV amongst the National Reference Laboratories for Salmonella, the use of MSRV as selective enrichment

    NARCIS (Netherlands)

    Raes M; Nagelkerke N; Henken AM; MGB; IMA

    2000-01-01

    A fourth bacteriological collaborative study was organised by the Community Reference Laboratory for Salmonella. All National Reference Laboratories for Salmonella (NRLs) participated. This study had two objectives: 1) Evaluation of the results of the detection of different contamination levels of

  19. LOOP-MEDIATED ISOTHERMAL AMPLIFICATION (LAMP) FOR THE DETECTION OF SALMONELLA SPP. ISOLATED FROM DIFFERENT FOOD TYPES

    OpenAIRE

    Kostas Papanotas; Petros A. Kokkinos; Panos G. Ziros; Apostolos Vantarakis

    2012-01-01

    The objective of this study was the application and evaluation of a loop-mediated isothermal amplification (LAMP) method for the detection of Salmonella spp. strains isolated from food samples. Salmonella specific invA gene sequences (50 strains, 15 serotypes) were amplified at 65oC in 60 min. All of the strains of Salmonella subsp. Enterica were shown to be positive using the LAMP reaction assay, whereas, all other bacteria, virus and yeasts tested in this study were negative. LAMP products ...

  20. Growth inhibitory factors in bovine faeces impairs detection of Salmonella Dublin by conventional culture procedure

    DEFF Research Database (Denmark)

    Baggesen, Dorte Lau; Nielsen, L.R.; Sørensen, Gitte

    2007-01-01

    Aims: To analyse the relative importance of different biological and technical factors on the analytical sensitivity of conventional culture methods for detection of Salmonella Dublin in cattle faeces. Methods and Results: Faeces samples collected from six adult bovines from different salmonella...... novobiocin, followed by combinations of culture media (three types) and selective media (two types). The sensitivity of each combination and sources of variation in detection were determined by a generalized linear mixed model using a split-plot design. Conclusions: Biological factors, such as faecal origin...... and S. Dublin strain influenced the sensitivity more than technical factors. Overall, the modified semisolid Rappaport Vassiliadis (MSRV)-culture medium had the most reliable detection capability, whereas detection with selenite cystine broth and Mueller Kauffman tetrathionate broth combinations varied...

  1. Modeling and Analysis of a Microresonating Biosensor for Detection of Salmonella Bacteria in Human Blood

    Directory of Open Access Journals (Sweden)

    Mahdi Bahadoran

    2014-07-01

    Full Text Available A new photonics biosensor configuration comprising a Double-side Ring Add-drop Filter microring resonator (DR-ADF made from SiO2-TiO2 material is proposed for the detection of Salmonella bacteria (SB in blood. The scattering matrix method using inductive calculation is used to determine the output signal’s intensities in the blood with and without presence of Salmonella. The change in refractive index due to the reaction of Salmonella bacteria with its applied antibody on the flagellin layer loaded on the sensing and detecting microresonator causes the increase in through and dropper port’s intensities of the output signal which leads to the detection of SB in blood. A shift in the output signal wavelength is observed with resolution of 0.01 nm. The change in intensity and shift in wavelength is analyzed with respect to the change in the refractive index which contributes toward achieving an ultra-high sensitivity of 95,500 nm/RIU which is almost two orders higher than that of reported from single ring sensors and the limit of detection is in the order of 1 × 10−8 RIU. In applications, such a system can be employed for a high sensitive and fast detection of bacteria.

  2. Completeness and timeliness of Salmonella notifications in Ireland in 2008: a cross sectional study

    Directory of Open Access Journals (Sweden)

    Cormican Martin

    2010-09-01

    Full Text Available Abstract Background In Ireland, salmonellosis is the second most common cause of bacterial gastroenteritis. A new electronic system for reporting (Computerised Infectious Disease Reporting - CIDR of Salmonella cases was established in 2004. It collates clinical (and/or laboratory data on confirmed and probable Salmonella cases. The authors studied the completeness and the timeliness of Salmonella notifications in 2008. Methods This analysis was based upon laboratory confirmed cases of salmonella gastroenteritis. Using data contained in CIDR, we examined completeness for certain non-mandatory fields (country of infection, date of onset of illness, organism, outcome, patient type, and ethnicity. We matched the CIDR data with the dataset provided by the national Salmonella reference laboratory (NSRL to which all Salmonella spp. isolates are referred for definitive typing. We calculated the main median time intervals in the flow of events of the notification process. Results In total, 416 laboratory confirmed Salmonella cases were captured by the national surveillance system and the NSRL and were included in the analysis. Completeness of non mandatory fields varied considerably. Organism was the most complete field (98.8%, ethnicity the least (11%. The median time interval between sample collection (first contact of the patient with the healthcare professional to the first notification to the regional Department of Public Health (either a clinical or a laboratory notification was 6 days (Interquartile 4-7 days. The median total identification time interval, time between sample collections to availability of serotyping and phage-typing results on the system was 25 days (Interquartile 19-32 days. Timeliness varied with respect to Salmonella species. Clinical notifications occurred more rapidly than laboratory notifications. Conclusions Further feedback and education should be given to health care professionals to improve completeness of reporting of

  3. Completeness and timeliness of Salmonella notifications in Ireland in 2008: a cross sectional study

    LENUS (Irish Health Repository)

    Nicolay, Nathalie

    2010-09-22

    Abstract Background In Ireland, salmonellosis is the second most common cause of bacterial gastroenteritis. A new electronic system for reporting (Computerised Infectious Disease Reporting - CIDR) of Salmonella cases was established in 2004. It collates clinical (and\\/or laboratory) data on confirmed and probable Salmonella cases. The authors studied the completeness and the timeliness of Salmonella notifications in 2008. Methods This analysis was based upon laboratory confirmed cases of salmonella gastroenteritis. Using data contained in CIDR, we examined completeness for certain non-mandatory fields (country of infection, date of onset of illness, organism, outcome, patient type, and ethnicity). We matched the CIDR data with the dataset provided by the national Salmonella reference laboratory (NSRL) to which all Salmonella spp. isolates are referred for definitive typing. We calculated the main median time intervals in the flow of events of the notification process. Results In total, 416 laboratory confirmed Salmonella cases were captured by the national surveillance system and the NSRL and were included in the analysis. Completeness of non mandatory fields varied considerably. Organism was the most complete field (98.8%), ethnicity the least (11%). The median time interval between sample collection (first contact of the patient with the healthcare professional) to the first notification to the regional Department of Public Health (either a clinical or a laboratory notification) was 6 days (Interquartile 4-7 days). The median total identification time interval, time between sample collections to availability of serotyping and phage-typing results on the system was 25 days (Interquartile 19-32 days). Timeliness varied with respect to Salmonella species. Clinical notifications occurred more rapidly than laboratory notifications. Conclusions Further feedback and education should be given to health care professionals to improve completeness of reporting of non

  4. Rapid and simple colorimetric method for the quantification of AI-2 produced from Salmonella Typhimurium.

    Science.gov (United States)

    Wattanavanitchakorn, Siriluck; Prakitchaiwattana, Cheunjit; Thamyongkit, Patchanita

    2014-04-01

    The aim of this study was to evaluate the feasibility of Fe(III) ion reduction for the simple and rapid quantification of autoinducer-2 (AI-2) produced from bacteria using Salmonella Typhimurium as a model. Since the molecular structure of AI-2 is somewhat similar to ascorbic acid it was expected that AI-2 would also act as a reducing agent and reduce Fe(III) ions in the presence of 1,10-phenanthroline to form the colored [(o-phen)3 Fe(II)]SO4 ferroin complex that could be quantified colorimetrically. In support of this, colony rinses and cell free supernatants from cultures of all tested AI-2 producing strains, but not the AI-2 negative Sinorhizobium meliloti, formed a colored complex with a λmax of 510nm. The OD510 values of these culture supernatants or colony rinses were in broad agreement with the % activity observed in the same samples using the standard Vibrio harveyi bioluminescence assay for AI-2 detection, and with previously reported results. This methodology could potentially be developed as an alternative method for the simple and rapid quantification of AI-2 levels produced in bacterial cultures. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Detection of cell surface hydrophobicity, biofilm and fimbirae genes in salmonella isolated from tunisian clinical and poultry meat.

    Science.gov (United States)

    Ben Abdallah, Fethi; Lagha, Rihab; Said, Khaled; Kallel, Héla; Gharbi, Jawhar

    2014-04-01

    The aim of this study was to evaluate the ability of 15 serotypes of Salmonella to form biofilm on polystyrene, polyvinyl chloride (PVC) and glass surfaces. . Initially slime production was assessed on CRA agar and hydrophobicity of 20 Salmonella strains isolated from poultry and human and two Salmonella enterica serovar Typhimurium references strains was achieved by microbial adhesion to n-hexadecane. In addition, biofilm formation on polystyrene, PVC and glass surfaces was also investigated by using MTT and XTT colorimetric assay. Further, distribution of Salmonella enterotoxin (stn), Salmonella Enteritidis fimbrial (sef) and plasmid encoded fimbrial (pef) genes among tested strains was achieved by PCR. Salmonella strains developed red and white colonies on CRA and they are considered as hydrophilic with affinity values to n-hexadecane ranged between 0.29% and 29.55%. Quantitative biofilm assays showed that bacteria are able to form biofilm on polystyrene with different degrees and 54.54% of strains produce a strong biofilm on glass. In addition, all the strains form only a moderate (54.54%) and weak (40.91%) biofilm on PVC. PCR detection showed that only S. Enteritidis harbour Sef gene, whereas Pef and stn genes were detected in S. Kentucky, S. Amsterdam, S. Hadar, S. Enteritidis and S. Typhimurium. Salmonella serotypes are able to form biofilm on hydrophobic and hydrophilic industrial surfaces. Biofilm formation of Salmonella on these surfaces has an increased potential to compromise food safety and potentiate public health risk.

  6. APTES Functionalized Iron Oxide-Silver Magnetic Hetero-Nanocomposites for Selective Capture and Rapid Removal of Salmonella enteritidis from Aqueous Solution

    Science.gov (United States)

    Trang, Vu Thi; Dinh, Ngo Xuan; Lan, Hoang; Tam, Le Thi; Huy, Tran Quang; Tuan, Pham Anh; Phan, Vu Ngoc; Le, Anh-Tuan

    2018-02-01

    Magnetic nanomaterials, as a promising platform for the fast and sensitive detection of bacterial pathogens, have attracted increasing interest from researchers in recent years. In this work, by utilizing a two-step synthetic technique consisting of co-precipitation and subsequent hydrothermal reaction, followed by functionalization steps with (3-aminopropyl)triethoxysilane (APTES) and the antibody against Salmonella enteritidis, antibody-conjugated Fe3O4-Ag@APTES hetero-nanocomposites were successfully prepared. Due to the specific antibody, the developed Fe3O4-Ag@APTES@SE-Ab conjugates are capable of selectively capturing S. enteritidis at a low concentration of about 101 CFU/mL. Moreover, the prepared magnetic conjugates also revealed that the S. enteritidis could be rapidly removed from water solution in 20 min by using an external magnetic field with a removal efficiency obtained of ˜ 91.36%. These results indicated that the Fe3O4-Ag@APTES@SE-Ab conjugates are promising for the rapid selective capture and removal of bacterial pathogens from aqueous environments, and can be used for improving the detection quality of pathogens in water samples using immunosensor-based diagnostic tests.

  7. Comparison of PCR-ELISA and LightCycler real-time PCR assays for detecting Salmonella spp. in milk and meat samples

    DEFF Research Database (Denmark)

    Perelle, Sylvie; Dilasser, Françoise; Malorny, Burkhard

    2004-01-01

    , minced beef and raw milk, and 92 naturally-contaminated milk and meat samples. When using either PCR-ELISA or LC-PCR assays, only Salmonella strains were detected. PCR-ELISA and LC-PCR assays gave with pure Salmonella cultures the same detection limit level of 10(3) CFU/ml, which corresponds respectively...

  8. Rapid electrochemical quantification of Salmonella Pullorum and Salmonella Gallinarum based on glucose oxidase and antibody-modified silica nanoparticles.

    Science.gov (United States)

    Luo, Yiheng; Dou, Wenchao; Zhao, Guangying

    2017-07-01

    In this article, a facile and sensitive electrochemical method for quantification of Salmonella Pullorum and Salmonella Gallinarum (S. Pullorum and S. Gallinarum) was established by monitoring glucose consumption with a personal glucose meter (PGM). Antibody-functionalized magnetic nanoparticles (IgG-MNPs) were used to capture and enrich S. Pullorum and S. Gallinarum, and IgG-MNPs-S. Pullorum and IgG-MNPs-S. Gallinarum complexes were magnetically separated from a sample using a permanent magnet. The trace tag was prepared by loading polyclonal antibodies and high-content glucose oxidase on amino-functionalized silica nanoparticles (IgG-SiNPs-GOx). With a sandwich-type immunoassay format, IgG-SiNPs-GOx were added into the above mixture solution and conjugated to the complexes, forming sandwich composites IgG-MNPs/S. Pullorum and S. Gallinarum/IgG-SiNPs-GOx. The above sandwich composites were dispersed in glucose solution. Before and after the hydrolysis of glucose, the concentration of glucose was measured using PGM. Under optimal conditions, a linear relationship between the decrease of glucose concentration and the logarithm of S. Pullorum and S. Gallinarum concentration was obtained in the concentration range from 1.27 × 10 2 to 1.27 × 10 5  CFU mL -1 , with a detection limit of 7.2 × 10 1  CFU mL -1 (S/N = 3). This study provides a portable, low-cost, and quantitative analytical method for bacteria detection; thus, it has a great potential in the prevention of disease caused by S. Pullorum and S. Gallinarum in poultry. Graphical abstract A schematic illustration of the fabrication process of IgG-SiNPs-GOD nanomaterials (A) and IgG-MNPs (B) and experimental procedure of detection of S. Pullorum and S. Gallinarum using GOD-functionalized silica nanospheres as trace tags based on PGM (C).

  9. Detection of Salmonella sp., Vibrio sp. and total plate count bacteria on blood cockle (Anadara granosa)

    Science.gov (United States)

    Ekawati, ER; Yusmiati, S. N. H.

    2018-01-01

    Blood cockle (Anadara granosa) has high level of zinc and protein, which is beneficial for therapeutic function for malnourished particularly stunting case in children. Zinc in animal foods is more absorbable than that from vegetable food. Blood cockle (Anadara granosa) is rich in nutrient and an excellent environment for the growth of microorganisms. This research aimed to identify the contamination of Salmonella sp., Vibrio sp. and total plate count bacteria on blood cockle (Anadara granosa). This was observation research with laboratory analysis. Salmonella sp. and Vibrio sp. were detected from blood cockle. Total plate count was determine of the total amount of the bacteria. Results detected from 20 samples of blood cockle showed that all samples were negative of Salmonella sp. and 1 sample positive Vibrio sp. The result of total plate count bacteria was < 5 x 105 colony/g sample.

  10. A sandwich electrochemical immunosensor for Salmonella pullorum and Salmonella gallinarum based on a screen-printed carbon electrode modified with an ionic liquid and electrodeposited gold nanoparticles

    International Nuclear Information System (INIS)

    Fei, Jianfeng; Dou, Wenchao; Zhao, Guangying

    2015-01-01

    This article describes an electrochemical immunosensor for rapid determination of Salmonella pullorum and Salmonella gallinarum. The first step in the preparation of the immunosensor involves the electrodeposition of gold nanoparticles used for capturing antibody and enhancing signals. In order to generate a benign microenvironment for the antibody, the ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate was used to modify the surface of a screen-printed carbon electrode (SPCE). The single steps of modification were monitored via cyclic voltammetry and electrochemical impedance spectroscopy. Based on these findings, a sandwich immunoassay was worked out for the two Salmonella species by immobilizing the respective unlabeled antibodies on the SPCE. Following exposure to the analytes, secondary antibody (labeled with HRP) is added to form the sandwich. After adding hydrogen peroxide and thionine, the latter is oxidized and its signal measured via CV. A linear response to the Salmonella species is obtained in the 10 4 to 10 9 cfu · mL −1 concentration range, and the detection limits are 3.0 × 10 3 cfu · mL −1 for both species (at an SNR of 3). This assay is sensitive, highly specific, acceptably accurate and reproducible. Given its low detection limit, it represents a promising tool for the detection of S. pullorum, S. gallinarum, and - conceivably - of other food-borne pathogens by exchanging the antibody. (author)

  11. Visual and efficient immunosensor technique for advancing biomedical applications of quantum dots on Salmonella detection and isolation

    Science.gov (United States)

    Tang, Feng; Pang, Dai-Wen; Chen, Zhi; Shao, Jian-Bo; Xiong, Ling-Hong; Xiang, Yan-Ping; Xiong, Yan; Wu, Kai; Ai, Hong-Wu; Zhang, Hui; Zheng, Xiao-Li; Lv, Jing-Rui; Liu, Wei-Yong; Hu, Hong-Bing; Mei, Hong; Zhang, Zhen; Sun, Hong; Xiang, Yun; Sun, Zi-Yong

    2016-02-01

    It is a great challenge in nanotechnology for fluorescent nanobioprobes to be applied to visually detect and directly isolate pathogens in situ. A novel and visual immunosensor technique for efficient detection and isolation of Salmonella was established here by applying fluorescent nanobioprobes on a specially-designed cellulose-based swab (a solid-phase enrichment system). The selective and chromogenic medium used on this swab can achieve the ultrasensitive amplification of target bacteria and form chromogenic colonies in situ based on a simple biochemical reaction. More importantly, because this swab can serve as an attachment site for the targeted pathogens to immobilize and immunologically capture nanobioprobes, our mAb-conjugated QD bioprobes were successfully applied on the solid-phase enrichment system to capture the fluorescence of targeted colonies under a designed excitation light instrument based on blue light-emitting diodes combined with stereomicroscopy or laser scanning confocal microscopy. Compared with the traditional methods using 4-7 days to isolate Salmonella from the bacterial mixture, this method took only 2 days to do this, and the process of initial screening and preliminary diagnosis can be completed in only one and a half days. Furthermore, the limit of detection can reach as low as 101 cells per mL Salmonella on the background of 105 cells per mL non-Salmonella (Escherichia coli, Proteus mirabilis or Citrobacter freundii, respectively) in experimental samples, and even in human anal ones. The visual and efficient immunosensor technique may be proved to be a favorable alternative for screening and isolating Salmonella in a large number of samples related to public health surveillance.It is a great challenge in nanotechnology for fluorescent nanobioprobes to be applied to visually detect and directly isolate pathogens in situ. A novel and visual immunosensor technique for efficient detection and isolation of Salmonella was established here

  12. Same-day PCR testing of Salmonella in meat: from research to routine application at slaughterhouses

    DEFF Research Database (Denmark)

    Hoorfar, Jeffrey; Löfström, Charlotta; Josefsen, Mathilde Hartmann

    2011-01-01

    Development of a rapid PCR technique is described, which enables slaughterhouses to apply same-day testing for Salmonella in carcasses and fresh meat. The technique is based on a shortened pre-enrichment time and 1-h DNA purification using paramagnetic beads (or an easy-to-use boiling method) fol......) followed by Salmonella detection by real-time PCR. Final protocols have been approved for meat testing (fresh meat and carcass swabs) by the Nordval validation organization for Nordic countries....

  13. Validation of a Salmonella loop-mediated isothermal amplification assay in animal food.

    Science.gov (United States)

    Domesle, Kelly J; Yang, Qianru; Hammack, Thomas S; Ge, Beilei

    2018-01-02

    Loop-mediated isothermal amplification (LAMP) has emerged as a promising alternative to PCR for pathogen detection in food testing and clinical diagnostics. This study aimed to validate a Salmonella LAMP method run on both turbidimetry (LAMP I) and fluorescence (LAMP II) platforms in representative animal food commodities. The U.S. Food and Drug Administration (FDA)'s culture-based Bacteriological Analytical Manual (BAM) method was used as the reference method and a real-time quantitative PCR (qPCR) assay was also performed. The method comparison study followed the FDA's microbiological methods validation guidelines, which align well with those from the AOAC International and ISO. Both LAMP assays were 100% specific among 300 strains (247 Salmonella of 185 serovars and 53 non-Salmonella) tested. The detection limits ranged from 1.3 to 28 cells for six Salmonella strains of various serovars. Six commodities consisting of four animal feed items (cattle feed, chicken feed, horse feed, and swine feed) and two pet food items (dry cat food and dry dog food) all yielded satisfactory results. Compared to the BAM method, the relative levels of detection (RLODs) for LAMP I ranged from 0.317 to 1 with a combined value of 0.610, while those for LAMP II ranged from 0.394 to 1.152 with a combined value of 0.783, which all fell within the acceptability limit (2.5) for an unpaired study. This also suggests that LAMP was more sensitive than the BAM method at detecting low-level Salmonella contamination in animal food and results were available 3days sooner. The performance of LAMP on both platforms was comparable to that of qPCR but notably faster, particularly LAMP II. Given the importance of Salmonella in animal food safety, the LAMP assays validated in this study holds great promise as a rapid, reliable, and robust method for routine screening of Salmonella in these commodities. Published by Elsevier B.V.

  14. A PCR-based strategy for simple and rapid identification of rough presumptive Salmonella isolates

    DEFF Research Database (Denmark)

    Hoorfar, Jeffrey; Baggesen, Dorte Lau; Porting, P.H.

    1999-01-01

    The purpose of the present study was to investigate the application of ready-to-go Salmonella PCR tests, based on dry chemistry, for final identification of rough presumptive Salmonella isolates. The results were compared with two different biotyping methods performed at two different laboratories......, which did not result in any DNA band. A total of 32 out of the 36 rough presumptive isolates were positive in the PCR. All but one isolate were also identified as Salmonella by the two biochemical methods. All 80 Salmonella strains were also tested in the two multiplex serogroup tests based on PCR beads....... The sensitivity of the BAX Salmonella PCR test was assessed by testing a total of 80 Salmonella isolates, covering most serogroups, which correctly identified all the Salmonella strains by resulting in one 800-bp band in the sample tubes. The specificity of the PCR was assessed using 20 non-Salmonella strains...

  15. Modification of the BAX System PCR assay for detecting Salmonella in beef, produce, and soy protein isolate. Performance Tested Method 100201.

    Science.gov (United States)

    Peng, Linda X; Wallace, Morgan; Andaloro, Bridget; Fallon, Dawn; Fleck, Lois; Delduco, Dan; Tice, George

    2011-01-01

    The BAX System PCR assay for Salmonella detection in foods was previously validated as AOAC Research Institute (RI) Performance Tested Method (PTM) 100201. New studies were conducted on beef and produce using the same media and protocol currently approved for the BAX System PCR assay for E. coli O157:H7 multiplex (MP). Additionally, soy protein isolate was tested for matrix extension using the U.S. Food and Drug Administration-Bacteriological Analytical Manual (FDA-BAM) enrichment protocols. The studies compared the BAX System method to the U.S. Department of Agriculture culture method for detecting Salmonella in beef and the FDA-BAM culture method for detecting Salmonella in produce and soy protein isolate. Method comparison studies on low-level inoculates showed that the BAX System assay for Salmonella performed as well as or better than the reference method for detecting Salmonella in beef and produce in 8-24 h enrichment when the BAX System E. coli O157:H7 MP media was used, and soy protein isolate in 20 h enrichment with lactose broth followed by 3 h regrowth in brain heart infusion broth. An inclusivity panel of 104 Salmonella strains with diverse serotypes was tested by the BAX System using the proprietary BAX System media and returned all positive results. Ruggedness factors involved in the enrichment phase were also evaluated by testing outside the specified parameters, and none of the factors examined affected the performance of the assay.

  16. First detection and characterization of Salmonella spp. in poultry and swine raised in backyard production systems in central Chile.

    Science.gov (United States)

    Alegria-Moran, R; Rivera, D; Toledo, V; Moreno-Switt, A I; Hamilton-West, C

    2017-11-01

    Little is known about Salmonella serovars circulating in backyard poultry and swine populations worldwide. Backyard production systems (BPS) that raise swine and/or poultry are distributed across Chile, but are more heavily concentrated in central Chile, where industrialized systems are in close contact with BPS. This study aims to detect and identify circulating Salmonella serovars in poultry and swine raised in BPS. Bacteriological Salmonella isolation was carried out for 1744 samples collected from 329 BPS in central Chile. Faecal samples were taken from swine, poultry, geese, ducks, turkeys and peacocks, as well as environmental faecal samples. Confirmation of Salmonella spp. was performed using invA-polymerase chain reaction (PCR). Identification of serovars was carried out using a molecular serotyping approach, where serogroups were confirmed by a multiplex PCR of Salmonella serogroup genes for five Salmonella O antigens (i.e., D, B, C1, C2-C3, and E1), along with two PCR amplifications, followed by sequencing of fliC and fljB genes. A total of 25 samples (1·4% of total samples) from 15 BPS (4·6 % of total sampled BPS) were found positive for Salmonella. Positive samples were found in poultry (chickens and ducks), swine and environmental sources. Molecular prediction of serovars on Salmonella isolated showed 52·0% of S. Typhimurium, 16·0% of S. Infantis, 16·0% S. Enteritidis, 8·0% S. Hadar, 4·0% S. Tennessee and 4·0% S. Kentucky. Poor biosecurity measures were found on sampled BPS, where a high percentage of mixed confinement systems (72·8%); and almost half of the sampled BPS with improper management of infected mortalities (e.g. selling the carcasses of infected animals for consumption). Number of birds other than chickens (P = 0·014; OR = 1·04; IC (95%) = 1·01-1·07), mixed productive objective (P = 0·030; OR = 5·35; IC (95%) = 1·24-27·59) and mixed animal replacement origin (P = 0017; OR = 5·19; IC (95%) = 1·35-20·47) were detected as

  17. Development of an Immunomagnetic Separation Method for Viable Salmonella Typhimurium Detected by Flow Cytometry

    DEFF Research Database (Denmark)

    Ahmed, Shakil; Rubahn, Horst-Günter; Erdmann, Helmut

    2016-01-01

    for detection of food-related bacteria. In this study, a flow cytometry based immunomagnetic separation (IMS) method for the isolation and enrichment of Salmonella Typhimurium from liquid samples was developed and optimized. Both polyclonal and monoclonal antibodies have been used to couple with 1 micron sized...... and bacteria, immunocapture time, staining and buffering conditions for the viability assays were optimized. The capture efficiency of IMS was>98% for a range of Salmonella Typhimurium cell concentrations from 103 to 105/mL using 108/mL bead concentration. The method proved to have high (98%) specificity...

  18. A biosensor platform for rapid detection of E. coli in drinking water.

    Science.gov (United States)

    Hesari, Nikou; Alum, Absar; Elzein, Mohamad; Abbaszadegan, Morteza

    2016-02-01

    There remains a need for rapid, specific and sensitive assays for the detection of bacterial indicators for water quality monitoring. In this study, a strategy for rapid detection of Escherichia coli in drinking water has been developed. This strategy is based on the use of the substrate 4-methylumbelliferyl-β-d-glucuronide (MUG), which is hydrolyzed rapidly by the action of E. coli β-d-glucuronidase (GUD) enzyme to yield a fluorogenic 4-methylumbelliferone (4-MU) product that can be quantified and related to the number of E. coli cells present in water samples. In this study, the detection time required for the biosensor response ranged between 20 and 120 min, depending on the number of bacteria in the sample. This approach does not need extensive sample processing with a rapid detection capability. The specificity of the MUG substrate was examined in both, pure cultures of non-target bacterial genera such as Klebsiella, Salmonella, Enterobacter and Bacillus. Non-target substrates that included 4-methylumbelliferyl-β-d-galactopyranoside (MUGal) and l-leucine β-naphthylamide aminopeptidase (LLβ-N) were also investigated to identify nonspecific patterns of enzymatic activities in E. coli. GUD activity was found to be specific for E. coli and no further enzymatic activity was detected by other species. In addition, fluorescence assays were performed for the detection of E. coli to generate standard curves; and the sensitivity of the GUD enzymatic response was measured and repeatedly determined to be less than 10 E. coli cells in a reaction vial. The applicability of the method was tested by performing multiple fluorescence assays under pure and mixed bacterial flora in environmental samples. The results of this study showed that the fluorescence signals generated in samples using specific substrate molecules can be utilized to develop a bio-sensing platform for the detection of E. coli in drinking water. Furthermore, this system can be applied independently or

  19. Evaluation of the ability of four ESBL-screening media to detect ESBL-producing Salmonella and Shigella.

    Science.gov (United States)

    Sturød, Kjersti; Dahle, Ulf R; Berg, Einar Sverre; Steinbakk, Martin; Wester, Astrid L

    2014-09-04

    The aim of this study was to compare the ability of four commercially available media for screening extended-spectrum beta-lactamase (ESBL) to detect and identify ESBL-producing Salmonella and Shigella in fecal samples. A total of 71 Salmonella- and 21 Shigella-isolates producing ESBL(A) and/or AmpC, were received at Norwegian Institute of Public Health between 2005 and 2012. The 92 isolates were mixed with fecal specimens and tested on four ESBL screening media; ChromID ESBL (BioMèrieux), Brilliance ESBL (Oxoid), BLSE agar (AES Chemunex) and CHROMagar ESBL (CHROMagar). The BLSE agar is a biplate consisting of two different agars. Brilliance and CHROMagar are supposed to suppress growth of AmpC-producing bacteria while ChromID and BLSE agar are intended to detect both ESBL(A) and AmpC. The total sensitivity (ESBL(A)+AmpC) with 95% confidence intervals after 24 hours of incubation were as follows: ChromID: 95% (90.4-99.6), Brilliance: 93% (87.6-98.4), BLSE agar (Drigalski): 99% (96.9-100), BLSE agar (MacConkey): 99% (96.9-100) and CHROMagar: 85% (77.5-92.5). The BLSE agar identified Salmonella and Shigella isolates as lactose-negative. The other agars based on chromogenic technology displayed Salmonella and Shigella flexneri isolates with colorless colonies (as expected). Shigella sonnei produced pink colonies, similar to the morphology described for E. coli. All four agar media were reliable in screening fecal samples for ESBL(A)-producing Salmonella and Shigella. However, only ChromID and BLSE agar gave reliable detection of AmpC-producing isolates. Identification of different bacterial species based on colony colour alone was not accurate for any of the four agars.

  20. Rapid detection of food pathogens using RNA aptamers-immobilized slide.

    Science.gov (United States)

    Maeng, Jin-Soo; Kim, Namsoo; Kim, Chong-Tai; Han, Seung Ryul; Lee, Young Ju; Lee, Seong-Wook; Lee, Myung-Hyun; Cho, Yong-Jin

    2012-07-01

    The purpose of this study was to develop a simple and rapid detection system for foodborne bacteria, which consisted of an optical microscope and its slide chip with artificial antibodies, or RNA aptamers. From an RNA pool, three each RNA aptamers were built by the method of SELEX (systematic evolution of ligands by exponential enrichment) for components of cell wall, LPS (lipopolysaccharide) from E. coli O157:H7, teichoic acid from Staphylococcus aureus and a cell membrane protein of OmpC from Salmonella typhimurium, respectively. These aptamers were hybridized with thiol-conjugated 16 dT-linker molecules in order to be immobilized on silver surface which was, in advance, fabricated on glass slide, using a spin-coating method. To confirm that each aptamers retained its specific binding activities to their antigenic live bacteria, microscopic view of bound cells immobilized on silver film were observed. Furthermore, we observed the fluorescence-emitting bacteria-aptamer complex immobilized on silver film after adding RNA aptamers hybridized with fluorophore, FAM-conjugated 16 dT-linker molecules. As a result, the RNA aptamers-immobilized slide system developed in this study was a useful new tool to rapidly monitor individual food pathogens.

  1. Salmonella serovar spectrum associated with reptiles in Poland

    Directory of Open Access Journals (Sweden)

    Tomasz Piasecki

    2014-01-01

    Full Text Available This study aimed to evaluate the incidence of Salmonella isolates from a wide variety of reptiles in Poland. A total of 374 faecal samples from chelonians, lizards and snakes were collected between 2009 and 2012. The nested, two-step PCR and multiplex PCR were performed to access the incidence and to characterize Salmonella isolates. Salmonella strains were found in 122 of 374 samples (32.6%. Among the different reptilian species, Salmonella strains were found in 58 samples from lizards (38.9%, 31 samples from snakes (28.7% and 33 samples from chelonians (28.2%. Of the total of 122 strains, 72 belonged to the species Salmonella enterica subsp. enterica, 20 to the species S. enterica subs. salamae or S. enterica subs. houtanae. The incidence of S. enterica subs. diarizonae and S. enterica subs. indica was low, constituting less than 3.5% of the examined population. The findings show that reptiles can be considered as a reservoir for Salmonella and hence could pose a zoonotic hazard. In addition, multiplex PCR assay is a rapid, specific and easy-to-perform method and might be applied for rapid screening of large numbers of Salmonella samples.

  2. Fluorometric graphene oxide-based detection of Salmonella enteritis using a truncated DNA aptamer.

    Science.gov (United States)

    Chinnappan, Raja; AlAmer, Saleh; Eissa, Shimaa; Rahamn, Anas Abdel; Abu Salah, Khalid M; Zourob, Mohammed

    2017-12-18

    The work describes a fluorescence-based study for mapping the highest affinity truncated aptamer from the full length sequence and its integration in a graphene oxide platform for the detection of Salmonella enteriditis. To identify the best truncated sequence, molecular beacons and a displacement assay design are applied. In the fluorescence displacement assay, the truncated aptamer was hybridized with fluorescein and quencher-labeled complementary sequences to form a fluorescence/quencher pair. In the presence of S. enteritidis, the aptamer dissociates from the complementary labeled oligonucleotides and thus, the fluorescein/quencher pair becomes physically separated. This leads to an increase in fluorescence intensity. One of the truncated aptamers identified has a 2-fold lower dissociation constant (3.2 nM) compared to its full length aptamer (6.3 nM). The truncated aptamer selected in this process was used to develop a fluorometric graphene oxide (GO) based assay. If fluorescein-labeled aptamer is adsorbed on GO via π stacking interaction, fluorescence is quenched. However, in the presence of target (S. enteriditis), the labeled aptamers is released from surface to form a stable complex with the bacteria and fluorescence is restored, depending on the quantity of bacteria being present. The resulting assay has an unsurpassed detection limit of 25 cfu·mL -1 in the best case. The cross reactivity to Salmonella typhimurium, Staphylococcus aureus and Escherichia coli is negligible. The assay was applied to analyze doped milk samples for and gave good recovery. Thus, we believe that the truncated aptamer/graphene oxide platform is a potential tool for the detection of S. Enteritidis. Graphical abstract Fluorescently labelled aptamer against Salmonella enteritidis was adsorbed on the surface of graphene oxide by π-stacking interaction. This results in quenching of the fluorescence of the label. Addition of Salmonella enteritidis restores fluorescence, and this

  3. Detection of Salmonella Spp., Shigella (Flexneri and Sonnei) and Vibrio Cholerae O1 by Polymerase Chain Reaction (PCR) in Exported Shrimp from the Mexican Northeast Coast

    Energy Technology Data Exchange (ETDEWEB)

    Perez, L.; Nuñez, F.; Rubio, M.; Nicoli, M. [Universidad Nacional Autónoma de México, Facultad de Medicina Veterinaria y Zootecnia (Mexico)

    2005-01-15

    The objective of the present work was to use the PCR technique for the simultaneous detection of Salmonella spp and Vibrio cholerae O1 in frozen shrimp for export. The DNA segments located in the gene A [284 pairs of bases (pb)] from Salmonella spp. locus ial (217 and 320 pb) from Shigella flexneri and Shigella sonnei and the gene ctxA and ctxB (777 pb) from Vibrio cholerae O1 were amplified. The different primers that amplify these segments were assayed in a PCR reaction for the simultaneous detection of DNA from the microorganisms. It was not possible to amplify the gene of Shigella sonnei and Shigella flexneri under the assay’s conditions, whilst those of Salmonella spp. and Vibrio cholerae O1 were successfully amplified. The amplification conditions for the PCR were: 94° C, 58° C and 72° C during 30 cycles, allowing a reduction from 15 days test time with the official microbiological methods to 28 hours (24 for the pre-enrichment and four for the PCR). Samples of raw-frozen-headless shrimps were taken from production plants located in the State of Sinaloa, Mexico. A random sampling procedure was used, according to the guidelines described by the International Commission of Microbiological Specifications for Foods (ICMSF, 1999). Five packages per lot per production plant were obtained. From each individual package (5 pounds 80 OZ ≈ 2.27 kg) three samples were taken for the bacteriological assays to search for Salmonella spp. and Vibrio cholerae O1, respectively. The samples were also analyzed by PCR. Results showed that none of the samples were positive by PCR to any of the studied bacteria. Salmonella spp. and Vibrio cholerae O1 were not detected in these samples by the official methods. However, the latter were able to identify other Vibrio species and enterobacteria like Proteus and Acromobacter. These results confirmed PCR’s rapidity, sensitivity and specificity. (author)

  4. Rapid deployment intrusion detection system

    International Nuclear Information System (INIS)

    Graham, R.H.

    1997-01-01

    A rapidly deployable security system is one that provides intrusion detection, assessment, communications, and annunciation capabilities; is easy to install and configure; can be rapidly deployed, and is reusable. A rapidly deployable intrusion detection system (RADIDS) has many potential applications within the DOE Complex: back-up protection for failed zones in a perimeter intrusion detection and assessment system, intrusion detection and assessment capabilities in temporary locations, protection of assets during Complex reconfiguration, and protection in hazardous locations, protection of assets during Complex reconfiguration, and protection in hazardous locations. Many DOE user-need documents have indicated an interest in a rapidly deployable intrusion detection system. The purpose of the RADIDS project is to design, develop, and implement such a system. 2 figs

  5. Survival and Filamentation of Salmonella enterica Serovar Enteritidis PT4 and Salmonella enterica Serovar Typhimurium DT104 at Low Water Activity

    Science.gov (United States)

    Mattick, K. L.; Jørgensen, F.; Legan, J. D.; Cole, M. B.; Porter, J.; Lappin-Scott, H. M.; Humphrey, T. J.

    2000-01-01

    In this study we investigated the long-term survival of and morphological changes in Salmonella strains at low water activity (aw). Salmonella enterica serovar Enteritidis PT4 and Salmonella enterica serovar Typhimurium DT104 survived at low aw for long periods, but minimum humectant concentrations of 8% NaCl (aw, 0.95), 96% sucrose (aw, 0.94), and 32% glycerol (aw, 0.92) were bactericidal under most conditions. Salmonella rpoS mutants were usually more sensitive to bactericidal levels of NaCl, sucrose, and glycerol. At a lethal aw, incubation at 37°C resulted in more rapid loss of viability than incubation at 21°C. At aw values of 0.93 to 0.98, strains of S. enterica serovar Enteritidis and S. enterica serovar Typhimurium formed filaments, some of which were at least 200 μm long. Filamentation was independent of rpoS expression. When the preparations were returned to high-aw conditions, the filaments formed septa, and division was complete within approximately 2 to 3 h. The variable survival of Salmonella strains at low aw highlights the importance of strain choice when researchers produce modelling data to simulate worst-case scenarios or conduct risk assessments based on laboratory data. The continued increase in Salmonella biomass at low aw (without a concomitant increase in microbial count) would not have been detected by traditional microbiological enumeration tests if the tests had been performed immediately after low-aw storage. If Salmonella strains form filaments in food products that have low aw values (0.92 to 0.98), there are significant implications for public health and for designing methods for microbiological monitoring. PMID:10742199

  6. Evaluation of Eight Different Cephalosporins for Detection of Cephalosporin Resistance in Salmonella enterica and Escherichia coli

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Hasman, Henrik; Veldman, K

    2010-01-01

    This study evaluates the efficacy of eight different cephalosporins for detection of cephalosporin resistance mediated by extended spectrum beta-lactamases (ESBL) and plasmidic AmpC beta-lactamases in Salmonella and Escherichia coli. A total of 138 E. coli and 86 Salmonella isolates with known beta......-resistant but cephalosporin-susceptible, 56 ESBL isolates and 19 isolates with plasmidic AmpC, as well as 10 ampC hyper-producing E. coli. The minimum inhibitory concentration distributions and zone inhibitions varied with the tested compound. Ampicillin-resistant isolates showed reduced susceptibility to the cephalosporins...... compared to ampicillin-susceptible isolates. Cefoperazone, cefquinome, and cefuroxime were not useful in detecting isolates with ESBL or plasmidic AmpC. The best substances for detection were cefotaxime, cefpodoxime, and ceftriaxone, whereas ceftazidime and ceftiofur were not as efficient. Ceftriaxone may...

  7. Real-time PCR Detection of Food-borne Pathogenic Salmonella spp

    DEFF Research Database (Denmark)

    Malorny, B.; Mäde, D.; Löfström, Charlotta

    2013-01-01

    Infections by Salmonella enterica are a significant public health concern worldwide. Salmonellae form a complex group of bacteria consisting of two species, six subspecies and more than 2500 serovars (serotypes). Mainly through ingestion of contaminated food or feed, they cause self-limiting gast......Infections by Salmonella enterica are a significant public health concern worldwide. Salmonellae form a complex group of bacteria consisting of two species, six subspecies and more than 2500 serovars (serotypes). Mainly through ingestion of contaminated food or feed, they cause self...

  8. Salmonella capture using orbiting magnetic microbeads

    Science.gov (United States)

    Owen, Drew; Ballard, Matthew; Mills, Zachary; Hanasoge, Srinivas; Hesketh, Peter; Alexeev, Alexander

    2014-11-01

    Using three-dimensional simulations and experiments, we examine capture of salmonella from a complex fluid sample flowing through a microfluidic channel. Capture is performed using orbiting magnetic microbeads, which can easily be extracted from the system for analysis after salmonella capture. Numerical simulations are used to model the dynamics of the system, which consists of a microchannel filled with a viscous fluid, model salmonella, magnetic microbeads and a series of angled parallel ridges lining the top of the microchannel. Simulations provide a statistical measure of the ability of the system to capture target salmonella. Our modeling findings guide the design of a lab-on-a-chip experimental device to be used for the detection of salmonella from complex food samples, allowing for the detection of the bacteria at the food source and preventing the consumption of contaminated food. Such a device can be used as a generic platform for the detection of a variety of biomaterials from complex fluids. This work is supported by a grant from the United States Department of Agriculture.

  9. Production and caracterization of monoclonal antibodies for the detection of Salmonella enterica in chicken meat Produção e caracterização de anticorpos monoclonais para a detecção de Salmonella enterica em carne de frango

    Directory of Open Access Journals (Sweden)

    Andréa dos Santos Schneid

    2005-06-01

    Full Text Available A panel of 13 monoclonal antibodies (MAbs that react against outer membrane proteins of Salmonella Enteritidis was obtained. Two MAbs were classified as IgM, six were IgG2a, three were IgG3 and one was of the IgG2b isotype. The reactivity of the MAbs against different serovars of Salmonella enterica and other bacteria was investigated using an indirect ELISA. Five MAbs reacted only against Salmonella Enteritidis. Two MAbs presented crossed reactions with thermo-extracted antigens of Klebsiella pneumoniae, Citrobacter freundii and Enterobacter aerogenes. MAb 424H presented wide spectrum of reactivity, detecting antigens of Salmonella belonging to serogroups B, C, D, E and G. The detection limit of different serovars of Salmonella in a indirect ELISA with MAb 424H varied from 1.0 x 10(4 CFU/mL for Salmonella London to 1.4 x 10(6 CFU/mL for Salmonella Gallinarum and Salmonella Typhimurium. Evaluation of the performance of the ELISA with MAb 424H in the detection of Salmonella in samples of chicken meat artificially contaminated revealed that the ELISA was able to detect all serovars after sample enrichment using two levels of contamination. Samples of chicken meat not artificially contaminated analysed in parallel were negative for Salmonella in both the conventional and the ELISA methods.Foi obtido um painel de 13 anticorpos monoclonais que reagem com proteínas de membrana externa de Salmonella Enteritidis. Dois MAbs foram classificados como IgM, 6 foram do isotipo IgG2a, três foram do isotipo IgG3 e um do isotipo IgG2b. A reatividade dos anticorpos monoclonais (MAbs com diferentes sorovares de Salmonella e outras bactérias foi investigada através de um ELISA indireto. Cinco MAbs reagiram apenas com Salmonella Enteritidis. Dois MAbs apresentaram reação cruzada com antígenos termoextraídos de Klebsiella pneumoniae, Citrobacter freundii e Enterobacter aerogenes. O MAb 424H apresentou amplo espectro de reatividade, detectando antígenos de

  10. Gold Nanoparticle Labeling Based ICP-MS Detection/Measurement of Bacteria, and Their Quantitative Photothermal Destruction

    Science.gov (United States)

    Lin, Yunfeng

    2015-01-01

    Bacteria such as Salmonella and E. coli present a great challenge in public health care in today’s society. Protection of public safety against bacterial contamination and rapid diagnosis of infection require simple and fast assays for the detection and elimination of bacterial pathogens. After utilizing Salmonella DT104 as an example bacterial strain for our investigation, we report a rapid and sensitive assay for the qualitative and quantitative detection of bacteria by using antibody affinity binding, popcorn shaped gold nanoparticle (GNPOPs) labeling, surfance enchanced Raman spectroscopy (SERS), and inductively coupled plasma mass spectrometry (ICP-MS) detection. For qualitative analysis, our assay can detect Salmonella within 10 min by Raman spectroscopy; for quantitative analysis, our assay has the ability to measure as few as 100 Salmonella DT104 in a 1 mL sample (100 CFU/mL) within 40 min. Based on the quantitative detection, we investigated the quantitative destruction of Salmonella DT104, and the assay’s photothermal efficiency in order to reduce the amount of GNPOPs in the assay to ultimately to eliminate any potential side effects/toxicity to the surrounding cells in vivo. Results suggest that our assay may serve as a promising candidate for qualitative and quantitative detection and elimination of a variety of bacterial pathogens. PMID:26417447

  11. Rapid colorimetric sensing platform for the detection of Listeria monocytogenes foodborne pathogen.

    Science.gov (United States)

    Alhogail, Sahar; Suaifan, Ghadeer A R Y; Zourob, Mohammed

    2016-12-15

    Listeria monocytogenes is a serious cause of human foodborne infections worldwide, which needs spending billions of dollars for inspection of bacterial contamination in food every year. Therefore, there is an urgent need for rapid, in-field and cost effective detection techniques. In this study, rapid, low-cost and simple colorimetric assay was developed using magnetic nanoparticles for the detection of listeria bacteria. The protease from the listeria bacteria was detected using D-amino acid substrate. D-amino acid substrate was linked to the carboxylic acid on the magnetic nanoparticles using EDC/NHS chemistry. The cysteine residue at the C-terminal of the substrate was used for the self-assembled monolayer formation on the gold sensor surface, which in turn the black magnetic nanobeads will mask the golden color. The color will change from black to golden color upon the cleavage of the specific peptide sequence by the Listeria protease. The sensor was tested with serial dilutions of Listeria bacteria. It was found that the appearance of the gold surface area is proportional to the bacterial concentrations in CFU/ml. The lowest detection limit of the developed sensor for Listeria was found to be 2.17×10(2) colony forming unit/ml (CFU/ml). The specificity of the biosensor was tested against four different foodborne associated bacteria (Escherichia coli, Salmonella, Shigella flexnerii and Staphylococcus aureus). Finally, the sensor was tested with artificially spiked whole milk and ground meat spiked with listeria. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Development of a real-time PCR melt curve assay for simultaneous detection of virulent and antibiotic resistant Salmonella.

    Science.gov (United States)

    Singh, Prashant; Mustapha, Azlin

    2014-12-01

    Multiple drug resistance in Salmonella is an emerging problem in the area of food safety. Depending on the virulence and antibiotic resistance characteristics of the Salmonella strain, infections of varying severity could result. In this study, a multiplex melt curve real-time PCR assay for the detection of virulent and antibiotic resistance strains of Salmonella was developed with two primer sets. The first set targets the virulence gene, invasin (invA), and tetracycline (tetG), streptomycin (aadA2) and sulphonamide (sulI) antibiotic resistance genes, and the second set amplifies ampicillin (blaPSE,blaTEM) and chloramphenicol (floR) resistance genes. The multiplex assay was evaluated using 41 Salmonella strains and was further tested on eight different artificially inoculated food samples. The fluorescent DNA intercalating dye, SYTO9, generated high resolution melt curve peaks and, hence, was used for the development of the assay. This multiplex assay worked efficiently over a DNA concentration range of 20 ng-200 fg and showed a sensitivity of 290 CFU/mL with serially diluted broth cultures. The detection limit for un-enriched artificially inoculated food samples was 10(4) CFU/g, but an enrichment period of 6 h allowed for detection of 10 CFU/g of cells in the samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Whole-bacterium SELEX of DNA aptamers for rapid detection of E.coli O157:H7 using a QCM sensor.

    Science.gov (United States)

    Yu, Xiaofan; Chen, Fang; Wang, Ronghui; Li, Yanbin

    2018-01-20

    The rapid detection of foodborne pathogens is critical to ensure food safety. The objective of this study is to select aptamers specifically bound to Escherichia coli O157:H7 using the whole-bacterium SELEX (Systematic Evolution of Ligands by Exponential Enrichment) and apply the selected aptamer to a QCM (quartz crystal microbalance) sensor for rapid and sensitive detection of target bacteria. A total of 19 rounds of selection against live E. coli O157:H7 and 6 rounds of counter selection against a mixture of Staphylococcus aureus, Listeria monocytogenes, and Salmonella Typhimurium, were performed. The aptamer pool from the last round was cloned and sequenced. One sequence S1 that appeared 16 times was characterized and a dissociation constant (K d ) of 10.30nM was obtained. Subsequently, a QCM aptasensor was developed for the rapid detection of E. coli O157:H7. The limit of detection (LOD) and the detection time of the aptasensor was determined to be 1.46×10 3 CFU/ml and 50min, respectively. This study demonstrated that the ssDNA aptamer selected by the whole-bacterium SELEX possessed higher sensitivity than previous work and the potential use of the constructed QCM aptasensor in rapid screening of foodborne pathogens. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Recombinant plasmid-based quantitative Real-Time PCR analysis of Salmonella enterica serotypes and its application to milk samples.

    Science.gov (United States)

    Gokduman, Kurtulus; Avsaroglu, M Dilek; Cakiris, Aris; Ustek, Duran; Gurakan, G Candan

    2016-03-01

    The aim of the current study was to develop, a new, rapid, sensitive and quantitative Salmonella detection method using a Real-Time PCR technique based on an inexpensive, easy to produce, convenient and standardized recombinant plasmid positive control. To achieve this, two recombinant plasmids were constructed as reference molecules by cloning the two most commonly used Salmonella-specific target gene regions, invA and ttrRSBC. The more rapid detection enabled by the developed method (21 h) compared to the traditional culture method (90 h) allows the quantitative evaluation of Salmonella (quantification limits of 10(1)CFU/ml and 10(0)CFU/ml for the invA target and the ttrRSBC target, respectively), as illustrated using milk samples. Three advantages illustrated by the current study demonstrate the potential of the newly developed method to be used in routine analyses in the medical, veterinary, food and water/environmental sectors: I--The method provides fast analyses including the simultaneous detection and determination of correct pathogen counts; II--The method is applicable to challenging samples, such as milk; III--The method's positive controls (recombinant plasmids) are reproducible in large quantities without the need to construct new calibration curves. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A Rapid and Simple Real-Time PCR Assay for Detecting Foodborne Pathogenic Bacteria in Human Feces.

    Science.gov (United States)

    Hanabara, Yutaro; Ueda, Yutaka

    2016-11-22

    A rapid, simple method for detecting foodborne pathogenic bacteria in human feces is greatly needed. Here, we examined the efficacy of a method that employs a combination of a commercial PCR master mix, which is insensitive to PCR inhibitors, and a DNA extraction method which used sodium dodecyl benzene sulfonate (SDBS), and Tween 20 to counteract the inhibitory effects of SDBS on the PCR assay. This method could detect the target genes (stx1 and stx2 of enterohemorrhagic Escherichia coli, invA of Salmonella Enteritidis, tdh of Vibrio parahaemolyticus, gyrA of Campylobacter jejuni, ceuE of Campylobacter coli, SEA of Staphylococcus aureus, ces of Bacillus cereus, and cpe of Clostridium perfringens) in a fecal suspension containing 1.0 × 10 1 to 1.0 × 10 3 CFU/ml. Furthermore, the assay was neither inhibited nor influenced by individual differences among the fecal samples of 10 subjects or fecal concentration (40-160 mg/ml in the fecal suspension). When we attempted to detect the genes of pathogenic bacteria in 4 actual clinical cases, we found that this method was more sensitive than standard culture method. These results showed that this assay is a rapid, simple detection method for foodborne pathogenic bacteria in human feces.

  16. Amoxicillin / Clavulanic Acid and Cefotaxime Resistance in Salmonella Minnesota and Salmonella Heidelberg from Broiler Chickens

    Directory of Open Access Journals (Sweden)

    Rodrigues IBBE

    2017-10-01

    Full Text Available This study investigated the resistance of various Salmonella strains to beta-lactam antibiotics. Salmonella Minnesota (36 strains and Salmonella Heidelberg (24 strains were isolated from broiler chickens and carcasses by the Disk Diffusion Test and resistance genes blaCTX-M-8, blaACC-1 and blaCMY-2 were detected by PCR. Of the 60 strains tested, 80% were resistant to at least one antibiotic. Specifically, 66.7% were resistant to amoxicillin/clavulanic acid and 75% were resistant to cefotaxime. Among the amoxicillin/clavulanic acid resistant strains, the blaCMY-2 gene was detected in 40%, blaACC-1 in 37.5% and blaCTX-M-8 in 7.5%. Among the cefotaxime resistant strains, we detected the genes blaCTX-M-8 in 13.3%, blaACC-1 in 33.3%, and blaCMY-2 in 31.1%. The presence of cefotaxime- and amoxicillin/clavulanic acid-resistant Salmonella in poultry, and the prevalence of extended spectrum betalactamases and AmpC-betalactamases in these strains are of huge concern to public health and economy.

  17. Salmonella epidemiology: A whirlwind of change.

    Science.gov (United States)

    Besser, John M

    2018-05-01

    The field of infectious disease epidemiology for Salmonella and other enteric pathogens is undergoing some of the most profound changes since the time of Kauffman and White. Rapid advances in "big data" technologies such as genomics and metagenomics are making it possible to monitor and control salmonellosis in new and exciting ways. Epidemiological methods are becoming increasingly robust through the routine use of standardized hypothesis-generating questionnaires, iterative open-ended interviewing, informational trace-backs and new modeling techniques for describing the attribution of disease to food sources. In addition, Salmonella epidemiology is facing important challenges and new opportunities due to the rapid adoption of culture independent diagnostic test panels by clinical laboratories. Where is this unprecedented wave of change taking us? This chapter will examine emerging trends in Salmonella epidemiology, and take a peek into the not-so-distant future. Published by Elsevier Ltd.

  18. Detection of Salmonella spp., Candida albicans, Aspergillus spp., and Antimicrobial Residues in Raw and Processed Cow Milk from Selected Smallholder Farms of Zimbabwe

    Directory of Open Access Journals (Sweden)

    Tryness Anastazia Mhone

    2012-01-01

    Full Text Available A cross-sectional study was conducted to detect the presence of Salmonella spp., Candida albicans, Aspergillus spp., and antimicrobial residues in raw milk (n=120 and processed cow milk (n=20 from smallholder dairy farms from three sites in Zimbabwe. Culture and isolation of Salmonella spp., C. albicans, and Aspergillus spp. were performed using selective media, while antimicrobial residues were detected by a dye reduction test. No Salmonella, but C. albicans (17.5%; 21/120, Aspergillus spp. (0.8%; 1/120, and antimicrobial residues (2.5%; 3/120 were detected from raw milk. C. albicans was isolated from all three sites, while Aspergillus spp. and antimicrobial residues were detected from sites 1 and 3, respectively. From processed milk, only C. albicans (5% was isolated while Aspergillus spp. and antimicrobial residues were not detected. These results suggested low prevalence of Salmonella spp. and Aspergillus spp. and a relatively high prevalence of C. albicans in raw milk from the smallholder farms. The potential public health risks of C. albicans and the detected antimicrobial residues need to be considered. Thus, educating farmers on improving milking hygiene and storage of milk and establishing programmes for monitoring antimicrobial residues may help to improve the safety of milk from smallholder farms.

  19. Nano-particle enhanced impedimetric biosensor for detection of foodborne pathogens

    International Nuclear Information System (INIS)

    Kim, G; Om, A S; Mun, J H

    2007-01-01

    Recent outbreaks of foodborne illness have been increased the need for rapid and sensitive methods for detection of these pathogens. Conventional methods for pathogens detection and identification involve prolonged multiple enrichment steps. Even though some immunological rapid assays are available, these assays still need enrichment steps result in delayed detection. Biosensors have shown great potential for rapid detection of foodborne pathogens. They are capable of direct monitoring the antigen-antibody reactions in real time. Among the biosensors, impedimetric biosensors have been widely adapted as an analysis tool for the study of various biological binding reactions because of their high sensitivity and reagentless operation. In this study a nanoparticle-enhanced impedimetric biosensor for Salmonella enteritidis detection was developed which detected impedance changes caused by the attachment of the cells to the anti-Salmonella antibodies immobilized on interdigitated gold electrodes. Successive immobilization of neutravidin followed by anti-Salmonella antibodies was performed to the sensing area to create a biological detection surface. To enhance the impedance responses generated by antigen-antibody reactions, anti-Salmonella antibody conjugated nanoparticles were introduced on the sensing area. Using a portable impedance analyzer, the impedance across the interdigital electrodes was measured after the series of antigen-antibody bindings. Bacteria cells present in solution attached to capture antibodies and became tethered to the sensor surface. Attached bacteria cells changed the dielectric constant of the media between the electrodes thereby causing a change in measured impedance. Optimum input frequency was determined by analyzing frequency characteristics of the biosensor over ranges of applied frequencies from 10 Hz to 400 Hz. At 100 Hz of input frequency, the biosensor was most sensitive to the changes of the bacteria concentration and this frequency

  20. Assessment of Salmonella survival in dry-cured Italian salami.

    Science.gov (United States)

    Bonardi, S; Bruini, I; Bolzoni, L; Cozzolino, P; Pierantoni, M; Brindani, F; Bellotti, P; Renzi, M; Pongolini, S

    2017-12-04

    The inactivation of Salmonella during curing of Italian traditional pork salami was investigated. A total of 150 batches of ground raw meat (GRM) used for salami manufacturing by four producers were tested for Salmonella by real-time PCR followed by ISO 6579 cultural confirmation and MPN enumeration. Salami produced with Salmonella positive GRMs were re-tested at the end of their curing period. Aw, pH and NaCl content were also measured. Detection of Salmonella was performed testing both 25 and 50g of the samples. By Real-Time PCR 37% of the GRMs resulted positive, but cultural detection of Salmonella was obtained in 14% of the samples only. Salmonella enumeration ranged from 31 MPN/g to Salmonella in 100% of all positive samples, vs. 62% of ISO-25g. Salami made of the contaminated GRMs were 29% Salmonella-positive, as most batches of salami produced with Salmonella-positive GRMs resulted negative after regular curing (20-48days). Overall, 13% of salami produced with Salmonella-contaminated GRMs were positive. They belonged to six batches, which turned out negative after prolonged curing ranging between 49 and 86days. Salmonella enumeration in salami ranged from 8.7 MPN/g to Salmonella in cured salami (p value: >0.05). The most common Salmonella serovars in GRMs were Derby (52%), Typhimurium monophasic variant 4, (Barbuti et al., 1993), 12:i:- (19%) and Stanley (10%). Salmonella Derby (56%), London, Branderup, Panama (13%, respectively) and Goldcoast (6%) were most frequent in cured salami. The study showed negative correlation between real-time CT values and cultural confirmation of Salmonella, as well as the importance of sample size for Salmonella detection. Among considered factors with possible effect on the occurrence of Salmonella in salami, statistical analysis revealed a role for aw in salami and for Salmonella load in GRMs, while pH and NaCl content did not significantly affect the probability of finding Salmonella in dry-cured salami in the context of

  1. Estimation of the sensitivity of various environmental sampling methods for detection of Salmonella in duck flocks.

    Science.gov (United States)

    Arnold, Mark E; Mueller-Doblies, Doris; Gosling, Rebecca J; Martelli, Francesca; Davies, Robert H

    2015-01-01

    Reports of Salmonella in ducks in the UK currently rely upon voluntary submissions from the industry, and as there is no harmonized statutory monitoring and control programme, it is difficult to compare data from different years in order to evaluate any trends in Salmonella prevalence in relation to sampling methodology. Therefore, the aim of this project was to assess the sensitivity of a selection of environmental sampling methods, including the sampling of faeces, dust and water troughs or bowls for the detection of Salmonella in duck flocks, and a range of sampling methods were applied to 67 duck flocks. Bayesian methods in the absence of a gold standard were used to provide estimates of the sensitivity of each of the sampling methods relative to the within-flock prevalence. There was a large influence of the within-flock prevalence on the sensitivity of all sample types, with sensitivity reducing as the within-flock prevalence reduced. Boot swabs (individual and pool of four), swabs of faecally contaminated areas and whole house hand-held fabric swabs showed the overall highest sensitivity for low-prevalence flocks and are recommended for use to detect Salmonella in duck flocks. The sample type with the highest proportion positive was a pool of four hair nets used as boot swabs, but this was not the most sensitive sample for low-prevalence flocks. All the environmental sampling types (faeces swabs, litter pinches, drag swabs, water trough samples and dust) had higher sensitivity than individual faeces sampling. None of the methods consistently identified all the positive flocks, and at least 10 samples would be required for even the most sensitive method (pool of four boot swabs) to detect a 5% prevalence. The sampling of dust had a low sensitivity and is not recommended for ducks.

  2. Development of classification models to detect Salmonella Enteritidis and Salmonella Typhimurium found in poultry carcass rinses by visible-near infrared hyperspectral imaging

    Science.gov (United States)

    Seo, Young Wook; Yoon, Seung Chul; Park, Bosoon; Hinton, Arthur; Windham, William R.; Lawrence, Kurt C.

    2013-05-01

    Salmonella is a major cause of foodborne disease outbreaks resulting from the consumption of contaminated food products in the United States. This paper reports the development of a hyperspectral imaging technique for detecting and differentiating two of the most common Salmonella serotypes, Salmonella Enteritidis (SE) and Salmonella Typhimurium (ST), from background microflora that are often found in poultry carcass rinse. Presumptive positive screening of colonies with a traditional direct plating method is a labor intensive and time consuming task. Thus, this paper is concerned with the detection of differences in spectral characteristics among the pure SE, ST, and background microflora grown on brilliant green sulfa (BGS) and xylose lysine tergitol 4 (XLT4) agar media with a spread plating technique. Visible near-infrared hyperspectral imaging, providing the spectral and spatial information unique to each microorganism, was utilized to differentiate SE and ST from the background microflora. A total of 10 classification models, including five machine learning algorithms, each without and with principal component analysis (PCA), were validated and compared to find the best model in classification accuracy. The five machine learning (classification) algorithms used in this study were Mahalanobis distance (MD), k-nearest neighbor (kNN), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and support vector machine (SVM). The average classification accuracy of all 10 models on a calibration (or training) set of the pure cultures on BGS agar plates was 98% (Kappa coefficient = 0.95) in determining the presence of SE and/or ST although it was difficult to differentiate between SE and ST. The average classification accuracy of all 10 models on a training set for ST detection on XLT4 agar was over 99% (Kappa coefficient = 0.99) although SE colonies on XLT4 agar were difficult to differentiate from background microflora. The average classification

  3. Evaluation of sampling methods for the detection of Salmonella in broiler flocks

    DEFF Research Database (Denmark)

    Skov, Marianne N.; Carstensen, B.; Tornoe, N.

    1999-01-01

    The present study compares four different sampling methods potentially applicable to detection of Salmonella in broiler flocks, based on collection of faecal samples (i) by hand, 300 fresh faecal samples (ii) absorbed on five sheets of paper (iii) absorbed on five pairs of socks (elastic cotton...... horizontal or vertical) were found in the investigation. The results showed that the sock method (five pairs of socks) had a sensitivity comparable with the hand collection method (60 pools of five faecal samples); the paper collection method was inferior, as was the use of only one pair of socks, Estimation...... tubes pulled over the boots and termed 'socks') and (iv) by using only one pair of socks. Twenty-three broiler flocks were included in the investigation and 18 of these were found to be positive by at least one method. Seven serotypes of Salmonella with different patterns of transmission (mainly...

  4. Detection of Salmonella enterica Serovar Typhimurium from Avians Using Multiplex-PCR

    Directory of Open Access Journals (Sweden)

    Alireza Talebi

    2011-09-01

    Full Text Available Abstract Salmonella enterica serovar Typhimurium and S.enterica serovar Enteritidis are the most frequently isolated serovars from food-borne diseases throughout the world. According to their antigenic profiles, salmonella shows different disease syndromes and host specificities. It is necessary and important to discriminate salmonella serovars from each other in order to ensure that each pathogen and its epidemiology are correctly recognized. Many PCR-based methods have been developed to identify salmonella serovars. The objective of present study was to identify S. Typhimurium in avians from different regions including: North, Northwest and capital city (Tehran of Iran. Also in this research, the quality of CHROMagar™ Salmonella medium (CAS medium in veterinary medicine was evaluated. The results of present study showed that out of 1870 intestine samples, fifty two S. Typhimurium including broiler (n=13, layer (n=12, duck (n=5, goose (n=5, sparrow (n=8, canary (n=3, pigeon (n=5 and African grey parrot (n=1 were identified using serotyping as well as multiplex-PCR. In conclusion, important measures must be taken on prevention and propagation of S. Typhimurium among avians. CHROMagar™ Salmonella medium has high levels of sensitivity and specificity and reduced the time to final identification of salmonella spp. in comparison with biochemical tests.

  5. Bacteriological detection of Salmonella in the presence of competitive micro-organisms (A collaborative study amongst the National Reference Laboratories for Salmonella)

    NARCIS (Netherlands)

    Voogt N; Veld PH in ' t; Nagelkerke N; Henken AM; MGB

    1997-01-01

    Het Communautair Referentie Laboratorium voor Salmonella heeft een tweede bacteriologisch ringonderzoek georganiseerd met deelname van de Nationale Referentie Laboratoria voor Salmonella. Het belangrijkste doel van dit onderzoek was verschillen tussen de NRLs in de resultaten van Salmonella

  6. Transmission of Salmonella between wildlife and meat-production animals in Denmark

    DEFF Research Database (Denmark)

    Skov, M. N.; Madsen, J. J.; Rahbek, C.

    2008-01-01

    Aims: To investigate the transmission of Salmonella spp. between production animals (pigs and cattle) and wildlife on production animal farms in Denmark. Methods and Results: In the winter and summer of 2001 and 2002, 3622 samples were collected from Salmonella-infected and noninfected herds...... of pigs and cattle and surrounding wildlife. Salmonella was detected in wildlife on farms carrying Salmonella-positive production animals and only during the periods when Salmonella was detected in the production animals. The presence of Salmonella Typhimurium in wild birds significantly correlated...... to their migration pattern and food preference. Conclusions: Salmonella was transmitted from infected herds of production animals (cattle and pigs) to wildlife that lived amongst or in close proximity to them. Significance and Impact of the Study: Salmonella in animal food products is associated with the occurrence...

  7. Detection of Salmonella typhi by nested polymerase chain reaction in blood, urine, and stool samples

    NARCIS (Netherlands)

    Hatta, Mochammad; Smits, Henk L.

    2007-01-01

    A nested polymerase chain reaction (PCR) specific for Salmonella enterica serovar Typhi was used for the detection of the pathogen in blood, urine, and stool samples from 131 patients with clinical suspicion of typhoid fever. The sensitivity of blood culture, the PCRs with blood, urine, and feces,

  8. Use of real-time PCR on faecal samples for detection of sub-clinical Salmonella infection in cattle did not improve the detection sensitivity compared to conventional bacteriology

    DEFF Research Database (Denmark)

    Jensen, Annette Nygaard; Nielsen, L.R.; Baggesen, Dorte Lau

    2013-01-01

    bacteriological culture-reference method (BCRM) on cattle faecal samples for detection of sub-clinical Salmonella infections in cattle. Thirty faecal samples were artificially contaminated with either 10 or 50CFU of one of five strains of S. Dublin (SD) and S. Typhimurium (ST). The overall detection sensitivity...... of both rt-PCR and BCRM was 100% for ST and 78% for SD. Furthermore, 163 faecal samples from cattle herds with suspected Salmonella infection were tested to compare the relative performance of rt-PCR to BCRM on samples from naturally infected herds. The relative sensitivity of rt-PCR was 20% (3/15 BCRM...... positive samples) while the relative specificity and accuracy was 99% and 92%, respectively. Both methods had limitations for detecting low levels of SD (...

  9. Immediate differentiation of salmonella-resembling colonies on brilliant green agar

    DEFF Research Database (Denmark)

    Jensen, Annette Nygaard; Hoorfar, Jeffrey

    2000-01-01

    A rapid biochemical system (OBIS) based on immediate enzymatic differentiation of Citrobacter, Proteus, Providencia, Hafnia and Morganella spp. from Salmonella on brilliant green agar was evaluated A total of 96 field isolates from various Salmonella serotypes, 18 Citrobacter freundii and 25...

  10. Non-crosslinking gold nanoprobe-LAMP for simple, colorimetric, and specific detection of Salmonella typhi

    Energy Technology Data Exchange (ETDEWEB)

    Bozorgmehr, Ali; Yazdanparast, Razieh, E-mail: ryazdan@ut.ac.ir [University of Tehran, Institute of Biochemistry and Biophysics (Iran, Islamic Republic of); Mollasalehi, Hamidreza [Shahid Beheshti University, Protein Research Center (Iran, Islamic Republic of)

    2016-12-15

    In this study, we developed a non-crosslinking gold nanoprobe loop-mediated isothermal amplification (LAMP) method for nanodiagnosis of bacterial typhoid fever source, Salmonella typhi. Therefore, a unique region in the S. typhi genomic DNA was targeted for LAMP amplification using a specific set of four precisely designed primers. Also, for specific colorimetric visualization of the amplicons, a thiolated oligonucleotide probe, complementary to the single-stranded loop region of the amplicons between F2 and F1C segments, was designed. The probe was bound to the surface of gold nanoparticles via covalent bonds. Increasing the salt concentration in the detection reaction medium led to aggregation of nanoprobes in the blank and the negative vessels in a time-dependent form. That was followed by a change in the surface plasmon resonance (SPR) leading to blue/black color that was observable by the naked eyes after about 5 min. Meanwhile, the original pink/red color was retained in the positive sample due to the large interparticle spaces and the stability against the ionic strength elevation which persisted for about 30 min. The whole process of DNA extraction, amplification, and detection took less than 2 h with a sensitivity of 20 CFU/ml. The developed gold nanoprobe-LAMP could serve as a simple, rapid, and cost-effective method for nanodiagnosis of S. typhi in point-of-need applications.

  11. Non-crosslinking gold nanoprobe-LAMP for simple, colorimetric, and specific detection of Salmonella typhi

    International Nuclear Information System (INIS)

    Bozorgmehr, Ali; Yazdanparast, Razieh; Mollasalehi, Hamidreza

    2016-01-01

    In this study, we developed a non-crosslinking gold nanoprobe loop-mediated isothermal amplification (LAMP) method for nanodiagnosis of bacterial typhoid fever source, Salmonella typhi. Therefore, a unique region in the S. typhi genomic DNA was targeted for LAMP amplification using a specific set of four precisely designed primers. Also, for specific colorimetric visualization of the amplicons, a thiolated oligonucleotide probe, complementary to the single-stranded loop region of the amplicons between F2 and F1C segments, was designed. The probe was bound to the surface of gold nanoparticles via covalent bonds. Increasing the salt concentration in the detection reaction medium led to aggregation of nanoprobes in the blank and the negative vessels in a time-dependent form. That was followed by a change in the surface plasmon resonance (SPR) leading to blue/black color that was observable by the naked eyes after about 5 min. Meanwhile, the original pink/red color was retained in the positive sample due to the large interparticle spaces and the stability against the ionic strength elevation which persisted for about 30 min. The whole process of DNA extraction, amplification, and detection took less than 2 h with a sensitivity of 20 CFU/ml. The developed gold nanoprobe-LAMP could serve as a simple, rapid, and cost-effective method for nanodiagnosis of S. typhi in point-of-need applications.

  12. A carbon nanotube immunosensor for Salmonella

    Science.gov (United States)

    Lerner, Mitchell B.; Goldsmith, Brett R.; McMillon, Ronald; Dailey, Jennifer; Pillai, Shreekumar; Singh, Shree R.; Johnson, A. T. Charlie

    2011-12-01

    Antibody-functionalized carbon nanotube devices have been suggested for use as bacterial detectors for monitoring of food purity in transit from the farm to the kitchen. Here we report progress towards that goal by demonstrating specific detection of Salmonella in complex nutrient broth solutions using nanotube transistors functionalized with covalently-bound anti-Salmonella antibodies. The small size of the active device region makes them compatible with integration in large-scale arrays. We find that the on-state current of the transistor is sensitive specifically to the Salmonella concentration and saturates at low concentration (Salmonella and other bacteria types, with no sign of saturation even at much larger concentrations (108 cfu/ml).

  13. Improvement of sampling plans for Salmonella detection in pooled table eggs by use of real-time PCR

    DEFF Research Database (Denmark)

    Pasquali, Frédérique; De Cesare, Alessandra; Valero, Antonio

    2014-01-01

    Eggs and egg products have been described as the most critical food vehicles of salmonellosis. The prevalence and level of contamination of Salmonella on table eggs are low, which severely affects the sensitivity of sampling plans applied voluntarily in some European countries, where one to five...... pools of 10 eggs are tested by the culture based reference method ISO 6579:2004. In the current study we have compared the testing-sensitivity of the reference culture method ISO 6579:2004 and an alternative real-time PCR method on Salmonella contaminated egg-pool of different sizes (4-9 uninfected eggs...... mixed with one contaminated egg) and contamination levels (10°-10(1), 10(1)-10(2), 10(2)-10(3)CFU/eggshell). Two hundred and seventy samples corresponding to 15 replicates per pool size and inoculum level were tested. At the lowest contamination level real-time PCR detected Salmonella in 40...

  14. Immunomagnetic separation and conventional culture procedure for detection of naturally occurring Salmonella in raw pork sausages and chicken meat.

    Science.gov (United States)

    Ripabelli, G; Sammarco, M L; Ruberto, A; Iannitto, G; Grasso, G M

    1997-06-01

    The aim of the study was to compare immunomagnetic separation (IMS) and conventional selective enrichment procedures using selenite cystine broth (SC) and Rappaport-Vassiliadis broth (RV) in 137 naturally contaminated food samples (69 raw pork sausages and 68 chicken meat). The utilization of SC or IMS appeared to be the most appropriate enrichment procedure: 15 out of 18 Salmonella-positive samples (83.3%) were detected by SC and 12 (66.7%) by IMS; RV yielded only seven positive isolations (38.9%). However, RV yielded the highest count of Salmonella colonies per plate and the lowest interference by competing organisms. IMS could become a reliable alternative to standard enrichment procedures and a combined IMS and selective enrichment broth could increase the chance of Salmonella recovery.

  15. Rapid methods for detection of bacteria

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Andersen, B.Ø.; Miller, M.

    2006-01-01

    Traditional methods for detection of bacteria in drinking water e.g. Heterotrophic Plate Counts (HPC) or Most Probable Number (MNP) take 48-72 hours to give the result. New rapid methods for detection of bacteria are needed to protect the consumers against contaminations. Two rapid methods...

  16. Salmonella enterica Induces And Subverts The Plant Immune System

    Directory of Open Access Journals (Sweden)

    Ana Victoria Garcia

    2014-04-01

    Full Text Available Infections with Salmonella enterica belong to the most prominent causes of food poisoning and infected fruits and vegetables represent important vectors for salmonellosis. Whereas it was shown that plants raise defense responses against Salmonella, these bacteria persist and proliferate in various plant tissues. Recent reports shed light into the molecular interaction between plants and Salmonella, highlighting the defense pathways induced and the means used by the bacteria to escape the plant immune system and accomplish colonization. It was recently shown that plants detect Salmonella pathogen-associated molecular patterns (PAMPs, such as the flagellin peptide flg22, and activate hallmarks of the defense program known as PAMP-triggered immunity (PTI. Interestingly, certain Salmonella strains carry mutations in the flg22 domain triggering PTI, suggesting that a strategy of Salmonella is to escape plant detection by mutating PAMP motifs. Another strategy may rely on the type III secretion system (T3SS as T3SS mutants were found to induce stronger plant defense responses than wild type bacteria. Although Salmonella effector delivery into plant cells has not been shown, expression of Salmonella effectors in plant tissues shows that these bacteria also possess powerful means to manipulate the plant immune system. Altogether, the data gathered suggest that Salmonella triggers PTI in plants and evolved strategies to avoid or subvert plant immunity.

  17. Salmonella enterica induces and subverts the plant immune system

    KAUST Repository

    García, Ana V.

    2014-04-04

    Infections with Salmonella enterica belong to the most prominent causes of food poisoning and infected fruits and vegetables represent important vectors for salmonellosis. Although it was shown that plants raise defense responses against Salmonella, these bacteria persist and proliferate in various plant tissues. Recent reports shed light into the molecular interaction between plants and Salmonella, highlighting the defense pathways induced and the means used by the bacteria to escape the plant immune system and accomplish colonization. It was recently shown that plants detect Salmonella pathogen-associated molecular patterns (PAMPs), such as the flagellin peptide flg22, and activate hallmarks of the defense program known as PAMP-triggered immunity (PTI). Interestingly, certain Salmonella strains carry mutations in the flg22 domain triggering PTI, suggesting that a strategy of Salmonella is to escape plant detection by mutating PAMP motifs. Another strategy may rely on the type III secretion system (T3SS) as T3SS mutants were found to induce stronger plant defense responses than wild type bacteria. Although Salmonella effector delivery into plant cells has not been shown, expression of Salmonella effectors in plant tissues shows that these bacteria also possess powerful means to manipulate the plant immune system. Altogether, these data suggest that Salmonella triggers PTI in plants and evolved strategies to avoid or subvert plant immunity. 2014 Garca and Hirt.

  18. Survival of Salmonella during baking of peanut butter cookies.

    Science.gov (United States)

    Lathrop, Amanda A; Taylor, Tiffany; Schnepf, James

    2014-04-01

    Peanuts and peanut-based products have been the source of recent Salmonella outbreaks worldwide. Because peanut butter is commonly used as an ingredient in baked goods, such as cookies, the potential risk of Salmonella remaining in these products after baking needs to be assessed. This research examines the potential hazard of Salmonella in peanut butter cookies when it is introduced via the peanut-derived ingredient. The survival of Salmonella during the baking of peanut butter cookies was determined. Commercial, creamy-style peanut butter was artificially inoculated with a five-strain Salmonella cocktail at a target concentration of 10(8) CFU/g. The inoculated peanut butter was then used to prepare peanut butter cookie dough following a standard recipe. Cookies were baked at 350 °F (177 °C) and were sampled after 10, 11, 12, 13, 14, and 15 min. Temperature profiles of the oven and cookies were monitored during baking. The water activity and pH of the inoculated and uninoculated peanut butter, raw dough, and baked cookies were measured. Immediately after baking, cookies were cooled, and the survival of Salmonella was determined by direct plating or enrichment. After baking cookies for 10 min, the minimum reduction of Salmonella observed was 4.8 log. In cookies baked for 13 and 14 min, Salmonella was only detectable by enrichment reflecting a Salmonella reduction in the range of 5.2 to 6.2 log. Cookies baked for 15 min had no detectable Salmonella. Results of this study showed that proper baking will reduce Salmonella in peanut butter cookies by 5 log or more.

  19. Salmonella

    Science.gov (United States)

    ... Compartir Find out about Salmonella infections linked to Kellogg’s Honey Smacks Cereal Find out about Salmonella infections ... Outbreaks Multistate Outbreak of Salmonella Infections Linked to Kellogg’s Honey Smacks Cereal Multistate Outbreak of Salmonella Adelaide ...

  20. A comparative study of cultural methods for the detection of Salmonella in feed and feed ingredients

    Directory of Open Access Journals (Sweden)

    Haggblom Per

    2009-02-01

    Full Text Available Abstract Background Animal feed as a source of infection to food producing animals is much debated. In order to increase our present knowledge about possible feed transmission it is important to know that the present isolation methods for Salmonella are reliable also for feed materials. In a comparative study the ability of the standard method used for isolation of Salmonella in feed in the Nordic countries, the NMKL71 method (Nordic Committee on Food Analysis was compared to the Modified Semisolid Rappaport Vassiliadis method (MSRV and the international standard method (EN ISO 6579:2002. Five different feed materials were investigated, namely wheat grain, soybean meal, rape seed meal, palm kernel meal, pellets of pig feed and also scrapings from a feed mill elevator. Four different levels of the Salmonella serotypes S. Typhimurium, S. Cubana and S. Yoruba were added to each feed material, respectively. For all methods pre-enrichment in Buffered Peptone Water (BPW were carried out followed by enrichments in the different selective media and finally plating on selective agar media. Results The results obtained with all three methods showed no differences in detection levels, with an accuracy and sensitivity of 65% and 56%, respectively. However, Müller-Kauffmann tetrathionate-novobiocin broth (MKTTn, performed less well due to many false-negative results on Brilliant Green agar (BGA plates. Compared to other feed materials palm kernel meal showed a higher detection level with all serotypes and methods tested. Conclusion The results of this study showed that the accuracy, sensitivity and specificity of the investigated cultural methods were equivalent. However, the detection levels for different feed and feed ingredients varied considerably.

  1. Molecular detection of Salmonella spp. isolated from apparently healthy pigeon in Mymensingh, Bangladesh and their antibiotic resistance pattern

    Directory of Open Access Journals (Sweden)

    Md. Khaled Saifullah

    2016-03-01

    Full Text Available Objectives: Here we determined the prevalence of Salmonella in cloacal swabs and pharyngeal swabs of apparently healthy pigeons sold in the live bird markets and villages in and around Bangladesh Agricultural University Campus, Mymensingh, Bangladesh. Materials and methods: A total of 50 samples, comprised of cloacal swabs (n=24 and pharyngeal swabs (n=26 were collected. The samples were processed, and Salmonella was isolated through a series of conventional bacteriological techniques and biochemical tests followed by polymerase chain reaction (PCR. Results: The prevalence rate of Salmonella was found to be 37.5% (n=9/24 in cloacal swabs and 30.77% (n=8/26 in pharyngeal swabs with an overall prevalence rate of 34% (n=17/50. The prevalence rate of Salmonella pigeon varied slightly among locations; 34.62% (n=9/26 in live bird markets, and 33.33% (n=8/24 in villages. Molecular detection of 17 Salmonella isolates obtained from biochemical test was performed by genus specific PCR, where all of them amplified a region of 496-bp segment of the histidine transport operon gene. Antibiogram study revealed multi-drug resistant traits in most of the isolates tested. The highest resistance was found against Ampicillin (88.23% followed by Cephalexin (82.35%. The rate of sensitivity of the isolates to Ciprofloxacin was 100% followed by Azithromycin (82.35%, Gentamicin (76.47% and Nalidixic acid (76.47%. Conclusion: Our findings suggest that pigeons carry multi-drug resistant Salmonella that may transfer to the humans and animals. [J Adv Vet Anim Res 2016; 3(1.000: 51-55

  2. PREVALENCE OF SALMONELLA IN CAPTIVE REPTILES FROM CROATIA.

    Science.gov (United States)

    Lukac, Maja; Pedersen, Karl; Prukner-Radovcic, Estella

    2015-06-01

    Salmonellosis transmitted by pet reptiles is an increasing public health issue worldwide. The aim of this study was to investigate the prevalence of Salmonella strains from captive reptiles in Croatia. From November 2009 to November 2011 a total of 292 skin, pharyngeal, cloacal, and fecal samples from 200 apparently healthy reptiles were tested for Salmonella excretions by bacteriologic culture and serotyping. These 200 individual reptiles included 31 lizards, 79 chelonians, and 90 snakes belonging to private owners or housed at the Zagreb Zoo, Croatia. Salmonella was detected in a total of 13% of the animals, among them 48.4% lizards, 8.9% snakes, and 3.8% turtles. Representatives of five of the six Salmonella enterica subspecies were identified with the following proportions in the total number of isolates: Salmonella enterica enterica 34.6%, Salmonella enterica houtenae 23.1%, Salmonella enterica arizonae 23.1%, Salmonella enterica diarizonae 15.4%, and Salmonella enterica salamae 3.8%. The 14 different serovars isolated included several rarely occurring serovars such as Salmonella Apapa, Salmonella Halle, Salmonella Kisarawe, and Salmonella Potengi. These findings confirm that the prevalence of Salmonella is considerable in captive reptiles in Croatia, indicating that these animals may harbor serovars not commonly seen in veterinary or human microbiologic practice. This should be addressed in the prevention and diagnostics of human reptile-transmitted infections.

  3. The epidemiology of Salmonella infection of calves: the role of dealers.

    Science.gov (United States)

    Wray, C.; Todd, N.; McLaren, I.; Beedell, Y.; Rowe, B.

    1990-01-01

    Salmonellas were detected in the environment of 10 of the 12 calf dealers' premises studied. The cleaning and disinfection routines were often ineffective and salmonellas were isolated from 7.6% and 5.3% of the wall and floor samples before disinfection and 6.8% and 7.6% afterwards. Eight different salmonella serotypes were detected, of which the commonest were Salmonella typhimurium, predominantly phage type DT204C, and S. dublin. Plasmid profiles were used to fingerprint S. typhimurium DT204C and the results indicated that with the exception of one of the premises, prolonged salmonella-persistence in the environment was not occurring. Three separate epidemics of salmonellosis in calves were studied by use of plasmid profile analysis. The results illustrated the role of delers, and their subcontractors, in the dissemination of salmonellas. The study concludes with suggestions for methods to reduce the spread of salmonellas in the calf marketing chain. PMID:2209734

  4. Detection and classification of salmonella serotypes using spectral signatures collected by fourier transform infrared (FT-IR) spectroscopy

    Science.gov (United States)

    Spectral signatures of Salmonella serotypes namely Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Infantis, Salmonella Heidelberg and Salmonella Kentucky were collected using Fourier transform infrared spectroscopy (FT-IR). About 5-10 µL of Salmonella suspensions with concentrations of 1...

  5. A novel method of selective removal of human DNA improves PCR sensitivity for detection of Salmonella Typhi in blood samples.

    Science.gov (United States)

    Zhou, Liqing; Pollard, Andrew J

    2012-07-27

    Enteric fever is a major public health problem, causing an estimated 21million new cases and 216,000 or more deaths every year. Current diagnosis of the disease is inadequate. Blood culture only identifies 45 to 70% of the cases and is time-consuming. Serological tests have very low sensitivity and specificity. Clinical samples obtained for diagnosis of enteric fever in the field generally have blood, so that even PCR-based methods, widely used for detection of other infectious diseases, are not a straightforward option in typhoid diagnosis. We developed a novel method to enrich target bacterial DNA by selective removal of human DNA from blood samples, enhancing the sensitivity of PCR tests. This method offers the possibility of improving PCR assays directly using clinical specimens for diagnosis of this globally important infectious disease. Blood samples were mixed with ox bile for selective lysis of human blood cells and the released human DNA was then digested with addition of bile resistant micrococcal nuclease. The intact Salmonella Typhi bacteria were collected from the specimen by centrifugation and the DNA extracted with QIAamp DNA mini kit. The presence of Salmonella Typhi bacteria in blood samples was detected by PCR with the fliC-d gene of Salmonella Typhi as the target. Micrococcal nuclease retained activity against human blood DNA in the presence of up to 9% ox bile. Background human DNA was dramatically removed from blood samples through the use of ox bile lysis and micrococcal nuclease for removal of mammalian DNA. Consequently target Salmonella Typhi DNA was enriched in DNA preparations and the PCR sensitivity for detection of Salmonella Typhi in spiked blood samples was enhanced by 1,000 fold. Use of a combination of selective ox-bile blood cell lysis and removal of human DNA with micrococcal nuclease significantly improves PCR sensitivity and offers a better option for improved typhoid PCR assays directly using clinical specimens in diagnosis of

  6. Factors Associated with Salmonella Prevalence in U.S. Swine Grower-Finisher Operations, 2012.

    Science.gov (United States)

    Bjork, Kathe E; Fields, Victoria; Garber, Lindsey P; Kopral, Christine A

    2018-05-15

    Nontyphoidal Salmonella is an important foodborne pathogen with diverse serotypes occurring in animal and human populations. The prevalence of the organism on swine farms has been associated with numerous risk factors, and although there are strong veterinary public health controls for preventing Salmonella from entering food, there remains interest in eradicating or controlling the organism in the preharvest environment. In this study, using data collected via the U.S. Department of Agriculture (USDA) National Animal Health Monitoring System Swine 2012 study, we describe nontyphoidal Salmonella and specific serotype prevalence on U.S. grower-finisher swine operations and investigate associations between Salmonella detection and numerous factors via multiple correspondence analysis (MCA) and regression analysis. MCA plots, complementary to univariate analyses, display relationships between covariates and Salmonella detection at the farm level. In the univariate analysis, Salmonella detection varied with feed characteristics and farm management practices, reports of diseases on farms and vaccinations administered, and administration of certain antimicrobials. Results from the univariate analysis reinforce the importance of biosecurity in managing diseases and pathogens such as Salmonella on farms. All multivariable regression models for the likelihood of Salmonella detection were strongly affected by multicollinearity among variables, and only one variable, pelleted feed preparation, remained in the final model. The study was limited by its cross-sectional nature, timelines of data collection, and reliance on operator-reported data via a convenience sample.

  7. Salmonella in beef and produce from honduras.

    Science.gov (United States)

    Maradiaga, Martha; Miller, Mark F; Thompson, Leslie; Pond, Ansen; Gragg, Sara E; Echeverry, Alejandro; Garcia, Lyda G; Loneragan, Guy H; Brashears, Mindy M

    2015-03-01

    Salmonella continues to cause a considerable number of foodborne illnesses worldwide. The sources of outbreaks include contaminated meat and produce. The purpose of this study was to establish an initial investigation of the burden of Salmonella in produce and beef from Honduras by sampling retail markets and abattoirs. Retail produce samples (cantaloupes, cilantro, cucumbers, leafy greens, peppers, and tomatoes; n = 573) were purchased in three major cities of Honduras, and retail whole-muscle beef (n = 555) samples were also purchased in four major cities. Additionally, both hide and beef carcass (n = 141) samples were collected from two Honduran abattoirs. Whole-muscle beef samples were obtained using a sponge hydrated with buffered peptone water, and 10 ml of the buffered peptone water rinsate of each produce sample was collected with a dry sponge and placed in a bag to be transported back to the United States. Salmonella was detected using a commercially available, closeplatform PCR system, and positive samples were subjected to culture on selective media to obtain isolates. Overall, the prevalence of Salmonella-positive samples, based on PCR detection in Honduras (n = 555) retail beef was 10.1% (95% confidence interval = 7.8, 12.9), whereas 7.8% (n = 141) of beef carcass and hides samples were positive in both beef plants. The overall Salmonella prevalence for all produce samples (n = 573) collected was 2.1% (95% confidence interval = 1.2, 3.6). The most common serotypes identified in Honduras were Salmonella Typhimurium followed by Derby. These results provide an indication of Salmonella contamination of beef and produce in Honduras. Developing a Salmonella baseline for Latin America through an initial investigation like the one presented here contributes to a broader global understanding of the potential exposure through food, thus providing insight into the needs for control strategies.

  8. Simultaneous Detection of Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes at a Very Low Level Using Simultaneous Enrichment Broth and Multichannel SPR Biosensor.

    Science.gov (United States)

    Zhang, Xiaoguang; Tsuji, Sachiko; Kitaoka, Hayato; Kobayashi, Hiroshi; Tamai, Mitsuru; Honjoh, Ken-Ichi; Miyamoto, Takahisa

    2017-10-01

    Detection of foodborne pathogens at very low levels is still a challenge. A custom-built multichannel surface plasmon resonance (SPR) biosensor and simultaneous enrichment broth (SEB) were used to develop a simultaneous detection method for 3 important foodborne pathogens, Escherichia coli O157:H7 (O157:H7), Salmonella enteritidis, and Listeria monocytogenes, at a very low level. These 3 foodborne pathogens at a very low level (14, 6, and 28 CFU/25 g (mL) for O157:H7, S. enteritidis, and L. monocytogenes, respectively) were inoculated in SEB and incubated at 37 ˚C for 24 h. Sample prepared from the simultaneous enrichment culture was analyzed using the multichannel SPR biosensor and sensor chip immobilized with polyclonal antibodies specific to each of the target pathogens. O157:H7, S. enteritidis, and L. monocytogenes in chicken were detected simultaneously at an inoculum dose of 14, 6, and 28 CFU/25 g, respectively. Our method using a custom-built multichannel SPR biosensor and enrichment in SEB is expected as a rapid and simultaneous detection method for low levels of O157:H7, S. enteritidis, and L. monocytogenes in food. Our method is expected as a rapid and simultaneous detection method for pathogens at very low levels. It has great potential for safety control of food and microbiological detection applications. © 2017 Institute of Food Technologists®.

  9. Prevalence of salmonella in captive reptiles from Croatia

    DEFF Research Database (Denmark)

    Lukac, Maja; Pedersen, Karl; Prukner-Radovcic, Estella

    2015-01-01

    from 200 apparently healthy reptiles were tested for Salmonella excretions by bacteriologic culture and serotyping. These 200 individual reptiles included 31 lizards, 79 chelonians, and 90 snakes belonging to private owners or housed at the Zagreb Zoo, Croatia. Salmonella was detected in a total of 13...

  10. Validation of a same-day real-time PCR method for screening of meat and carcass swabs for Salmonella

    Science.gov (United States)

    2009-01-01

    Background One of the major sources of human Salmonella infections is meat. Therefore, efficient and rapid monitoring of Salmonella in the meat production chain is necessary. Validation of alternative methods is needed to prove that the performance is equal to established methods. Very few of the published PCR methods for Salmonella have been validated in collaborative studies. This study describes a validation including comparative and collaborative trials, based on the recommendations from the Nordic organization for validation of alternative microbiological methods (NordVal) of a same-day, non-commercial real-time PCR method for detection of Salmonella in meat and carcass swabs. Results The comparative trial was performed against a reference method (NMKL-71:5, 1999) using artificially and naturally contaminated samples (60 minced veal and pork meat samples, 60 poultry neck-skins, and 120 pig carcass swabs). The relative accuracy was 99%, relative detection level 100%, relative sensitivity 103% and relative specificity 100%. The collaborative trial included six laboratories testing minced meat, poultry neck-skins, and carcass swabs as un-inoculated samples and samples artificially contaminated with 1–10 CFU/25 g, and 10–100 CFU/25 g. Valid results were obtained from five of the laboratories and used for the statistical analysis. Apart from one of the non-inoculated samples being false positive with PCR for one of the laboratories, no false positive or false negative results were reported. Partly based on results obtained in this study, the method has obtained NordVal approval for analysis of Salmonella in meat and carcass swabs. The PCR method was transferred to a production laboratory and the performance was compared with the BAX Salmonella test on 39 pork samples artificially contaminated with Salmonella. There was no significant difference in the results obtained by the two methods. Conclusion The real-time PCR method for detection of Salmonella in meat

  11. Detection and characterization of foodborne pathogenic bacteria with hyperspectral microscope imaging

    Science.gov (United States)

    Rapid detection and identification of pathogenic microorganisms naturally occurring during food processing are important in developing intervention and verification strategies. In the poultry industry, contamination of poultry meat with foodborne pathogens (especially, Salmonella and Campylobacter) ...

  12. Identification of Salmonella serovars isolated from live molluscan shellfish and their significance in the marine environment.

    Science.gov (United States)

    Martinez-Urtaza, Jaime; Saco, Montserrat; Hernandez-Cordova, Gustavo; Lozano, Antonio; Garcia-Martin, Oscar; Espinosa, Joaquin

    2003-02-01

    A study on the presence of Salmonella spp. in live molluscs was performed, which included a description of the different serovars isolated and their relationship to the marine environment. A total of 2,980 samples of shellfish from Galicia (N.W. Spain) were tested for the presence of Salmonella spp. between September 1998 and August 2001. The overall incidence of Salmonella was 1.8% and showed a slight rise during the 3 years of the study. Mussels and oysters presented a higher incidence than clams and cockles, possibly because of their distinct growing habitat. A seasonal pattern was noted for the isolation of Salmonella spp.: 54% of the isolations were detected from September to November. That nearly 67% of the total Salmonella was isolated from shellfish with fecal coliform levels fecal coliforms do not necessarily indicate the absence of Salmonella. A total of nine serovars were found in the 54 Salmonella isolated. Salmonella Senftenberg was the most frequent (50%), followed by Salmonella Typhimurium (18%) and Salmonella Agona (17%). Salmonella Senftenberg was detected frequently during the year, whereas the remaining serovars were detected only on occasional contamination events.

  13. A Multiplex RT-PCR Assay for S. aureus, L. monocytogenes, and Salmonella spp. Detection in Raw Milk with Pre-enrichment

    Directory of Open Access Journals (Sweden)

    Tian Ding

    2017-05-01

    Full Text Available This study firstly developed a multiplex real-time PCR (RT-PCR technique combined with a pre-enrichment step to simultaneously detect Staphylococcus aureus (S. aureus, Listeria monocytogenes (L. monocytogenes and Salmonella spp. in raw milk and the dairy farm environment (feces, soil, feed, water in one reaction. Brain heart infusion (BHI broth was selected for the enrichment step to increase the density of the target bacteria by using an incubation of 4 h before multiplex RT-PCR. The results showed that the detection limit of the multiplex real-time assay was approximately 102 CFU/mL for pure cultures and artificially contaminated milk without enrichment, while 12, 14, and 10 CFU/25 mL, respectively, for S. aureus, L. monocytogenes, and Salmonella spp. after pre-enrichment. The newly developed multiplex RT-PCR assay was applied to 46 dairy farm environmental samples and raw milk samples covering a wide variety of sample types. The results demonstrated that the multiplex RT-PCR assay coupled with the BHI enrichment broth was suitable for the simultaneous screening of S. aureus, L. monocytogenes, and Salmonella spp. in the pasture environment and in raw milk. The multiplex RT-PCR assay clearly and successfully shortened the total detection time and reduced labor compared to conventional culture-based methods for testing natural samples.

  14. Comparision of the BAX® System with an in-house MSRV method for the detection of Salmonella in chicken carcasses and pork meat

    OpenAIRE

    Franchin,Paulo R.; Ogliari,Paulo J.; Andrade,Dalton F.; Chiapinoto,Maura; Lemos,Giovana; Rebelatto,Marina; Silva,Ivair G. da; Batista,Cleide R.V.

    2006-01-01

    A study was performed to compare the analytical procedure of the BAX® System for Salmonella PCR assay with the Modified Semi-Solid Rappaport-Vassiliadis (MSRV) method, for the detection of Salmonella in naturally contaminated chicken carcass samples (n = 762) and raw pork meat (n = 566). The chicken carcasses samples were collected during slaughtering after defeathering or immediately after evisceration and the raw pork meat collected from the deboned head of recently slaughtered pigs and oth...

  15. Rupture of popliteal arterial aneurysm due to salmonella infection

    International Nuclear Information System (INIS)

    Kim, Dong Hun; Oh, Hyung Woo; Kim, Dong Hyun; Byun, Joo Nam

    2006-01-01

    We report here on a case of popliteal aneurysm and rupture that occurred over a 10-day period and this was all secondary to salmonella infection. Computed tomography (CT) angiography of the extremity that was performed before and after aneurysmal rupture showed the aneurysm's rapid evolution to rupture over a short period of time. We also review the pathogenesis, clinical presentation, diagnostic approach and management of salmonella aneurysms

  16. Molecular and biochemical diagnosis of Salmonella in wastewater ...

    African Journals Online (AJOL)

    This study aimed to employ biochemical and molecular assays to detect and diagnose Salmonella in wastewater. For this reason, two water samples were collected from Alexandria wastewater treatment plant (S1) and septic tank of a hospital at Alexandria governorate (S2). Selective culture media specific for Salmonella ...

  17. Electronic network for monitoring travellers' diarrhoea and detection of an outbreak caused by Salmonella enteritidis among overseas travellers.

    Science.gov (United States)

    Osaka, K; Inouye, S; Okabe, N; Taniguchi, K; Izumiya, H; Watanabe, H; Matsumoto, Y; Yokota, T; Hashimoto, S; Sagara, H

    1999-12-01

    The Traveller's Diarrhoea Network, by which the Infectious Disease Surveillance Center is electronically connected with two major airport quarantine stations and three infectious disease hospitals, was launched in February 1988 in Japan. The data on travellers' diarrhoea detected is reported weekly by e-mail. Two clusters of infection among travellers returning from Italy were reported by two airport quarantine stations at the end of September 1998. A total of 12 salmonella isolates from 2 clusters were examined. All were identified as Salmonella enteritidis, phage type 4 and showed identical banding patterns on pulsed-field gel electrophoresis. A case-control study showed that the scrambled eggs served at the hotel restaurant in Rome were the likely source of this outbreak. This outbreak could not have been detected promptly and investigated easily without the e-mail network. International exchange of data on travellers' diarrhoea is important for preventing and controlling food-borne illnesses infected abroad.

  18. Electrochemical genosensing of Salmonella, Listeria and Escherichia coli on silica magnetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Liébana, Susana; Brandão, Delfina [Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès (Bellaterra) (Spain); Cortés, Pilar; Campoy, Susana [Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès (Bellaterra) (Spain); Alegret, Salvador [Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès (Bellaterra) (Spain); Pividori, María Isabel, E-mail: Isabel.Pividori@uab.cat [Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès (Bellaterra) (Spain)

    2016-01-21

    A magneto-genosensing approach for the detection of the three most common pathogenic bacteria in food safety, such as Salmonella, Listeria and Escherichia coli is presented. The methodology is based on the detection of the tagged amplified DNA obtained by single-tagging PCR with a set of specific primers for each pathogen, followed by electrochemical magneto-genosensing on silica magnetic particles. A set of primers were selected for the amplification of the invA (278 bp), prfA (217 bp) and eaeA (151 bp) being one of the primers for each set tagged with fluorescein, biotin and digoxigenin coding for Salmonella enterica, Listeria monocytogenes and E. coli, respectively. The single-tagged amplicons were then immobilized on silica MPs based on the nucleic acid-binding properties of silica particles in the presence of the chaotropic agent as guanidinium thiocyanate. The assessment of the silica MPs as a platform for electrochemical magneto-genosensing is described, including the main parameters to selectively attach longer dsDNA fragments instead of shorter ssDNA primers based on their negative charge density of the sugar-phosphate backbone. This approach resulted to be a promising detection tool with sensing features of rapidity and sensitivity very suitable to be implemented on DNA biosensors and microfluidic platforms. - Highlights: • Silica magnetic particles were used for the first time as carrier in electrochemical magneto-genosensing of single-tagged amplicons. • They demonstrated to be a robust platform for the electrochemical detection of PCR products. • Differential adsorption properties for longer dsDNA amplicon incorporating the tagging primers over shorter ssDNA tagged primers were observed due to the negative charge density. • Electrochemical magneto-genosensing of Salmonella enterica, Listeria monocytogenes and Escherichia coli was successfully performed.

  19. Electrochemical genosensing of Salmonella, Listeria and Escherichia coli on silica magnetic particles

    International Nuclear Information System (INIS)

    Liébana, Susana; Brandão, Delfina; Cortés, Pilar; Campoy, Susana; Alegret, Salvador; Pividori, María Isabel

    2016-01-01

    A magneto-genosensing approach for the detection of the three most common pathogenic bacteria in food safety, such as Salmonella, Listeria and Escherichia coli is presented. The methodology is based on the detection of the tagged amplified DNA obtained by single-tagging PCR with a set of specific primers for each pathogen, followed by electrochemical magneto-genosensing on silica magnetic particles. A set of primers were selected for the amplification of the invA (278 bp), prfA (217 bp) and eaeA (151 bp) being one of the primers for each set tagged with fluorescein, biotin and digoxigenin coding for Salmonella enterica, Listeria monocytogenes and E. coli, respectively. The single-tagged amplicons were then immobilized on silica MPs based on the nucleic acid-binding properties of silica particles in the presence of the chaotropic agent as guanidinium thiocyanate. The assessment of the silica MPs as a platform for electrochemical magneto-genosensing is described, including the main parameters to selectively attach longer dsDNA fragments instead of shorter ssDNA primers based on their negative charge density of the sugar-phosphate backbone. This approach resulted to be a promising detection tool with sensing features of rapidity and sensitivity very suitable to be implemented on DNA biosensors and microfluidic platforms. - Highlights: • Silica magnetic particles were used for the first time as carrier in electrochemical magneto-genosensing of single-tagged amplicons. • They demonstrated to be a robust platform for the electrochemical detection of PCR products. • Differential adsorption properties for longer dsDNA amplicon incorporating the tagging primers over shorter ssDNA tagged primers were observed due to the negative charge density. • Electrochemical magneto-genosensing of Salmonella enterica, Listeria monocytogenes and Escherichia coli was successfully performed.

  20. Evaluation of a simple and rapid dipstick assay for the diagnosis of typhoid fever in Indonesia

    NARCIS (Netherlands)

    Gasem, M. Hussein; Smits, Henk L.; Goris, Marga G. A.; Dolmans, Wil M. V.

    2002-01-01

    To support the clinical diagnosis of typhoid fever in Indonesia, where most hospitals and health centres have no facilities for culture, a rapid dipstick assay for the detection of Salmonella typhi-specific IgM antibodies was evaluated on serum samples from 127 patients clinically suspected of

  1. Feasibility of a molecular screening method for detection of Salmonella enterica and Campylobacter jejuni in a routine community-based clinical microbiology laboratory

    NARCIS (Netherlands)

    Schuurman, T.; de Boer, R. F.; van Zanten, E.; van Slochteren, K. R.; Scheper, H. R.; Dijk-Alberts, B. G.; Moller, A. V. M.; Kooistra-Smid, A. M. D.

    Conventional diagnostic methods for the detection of Salmonella enterica and Campylobacter jejuni are laborious and time-consuming procedures, resulting in final results, for the majority of specimens, only after 3 to 4 days. Molecular detection can improve the time to reporting of the final results

  2. Rapid identification of salmonella serotypes with stereo and hyperspectral microscope imaging Methods

    Science.gov (United States)

    The hyperspectral microscope imaging (HMI) method can reduce detection time within 8 hours including incubation process. The early and rapid detection with this method in conjunction with the high throughput capabilities makes HMI method a prime candidate for implementation for the food industry. Th...

  3. Salmonella enterica induces and subverts the plant immune system

    KAUST Repository

    Garcí a, Ana V.; Hirt, Heribert

    2014-01-01

    ). Interestingly, certain Salmonella strains carry mutations in the flg22 domain triggering PTI, suggesting that a strategy of Salmonella is to escape plant detection by mutating PAMP motifs. Another strategy may rely on the type III secretion system (T3SS) as T3SS

  4. Applications of microscopy in Salmonella research.

    Science.gov (United States)

    Malt, Layla M; Perrett, Charlotte A; Humphrey, Suzanne; Jepson, Mark A

    2015-01-01

    Salmonella enterica is a Gram-negative enteropathogen that can cause localized infections, typically resulting in gastroenteritis, or systemic infection, e.g., typhoid fever, in humans and many other animals. Understanding the mechanisms by which Salmonella induces disease has been the focus of intensive research. This has revealed that Salmonella invasion requires dynamic cross-talk between the microbe and host cells, in which bacterial adherence rapidly leads to a complex sequence of cellular responses initiated by proteins translocated into the host cell by a type 3 secretion system. Once these Salmonella-induced responses have resulted in bacterial invasion, proteins translocated by a second type 3 secretion system initiate further modulation of cellular activities to enable survival and replication of the invading pathogen. Elucidation of the complex and highly dynamic pathogen-host interactions ultimately requires analysis at the level of single cells and single infection events. To achieve this goal, researchers have applied a diverse range of microscopy techniques to analyze Salmonella infection in models ranging from whole animal to isolated cells and simple eukaryotic organisms. For example, electron microscopy and high-resolution light microscopy techniques such as confocal microscopy can reveal the precise location of Salmonella and its relationship to cellular components. Widefield light microscopy is a simpler approach with which to study the interaction of bacteria with host cells and often has advantages for live cell imaging, enabling detailed analysis of the dynamics of infection and cellular responses. Here we review the use of imaging techniques in Salmonella research and compare the capabilities of different classes of microscope to address specific types of research question. We also provide protocols and notes on some microscopy techniques used routinely in our own research.

  5. Detection of Salmonella enterica Serovar Montevideo and Newport in Free-ranging Sea Turtles and Beach Sand in the Caribbean and Persistence in Sand and Seawater Microcosms.

    Science.gov (United States)

    Ives, A-K; Antaki, E; Stewart, K; Francis, S; Jay-Russell, M T; Sithole, F; Kearney, M T; Griffin, M J; Soto, E

    2017-09-01

    Salmonellae are Gram-negative zoonotic bacteria that are frequently part of the normal reptilian gastrointestinal flora. The main objective of this project was to estimate the prevalence of non-typhoidal Salmonella enterica in the nesting and foraging populations of sea turtles on St. Kitts and in sand from known nesting beaches. Results suggest a higher prevalence of Salmonella in nesting leatherback sea turtles compared with foraging green and hawksbill sea turtles. Salmonella was cultured from 2/9 and identified by molecular diagnostic methods in 3/9 leatherback sea turtle samples. Salmonella DNA was detected in one hawksbill turtle, but viable isolates were not recovered from any hawksbill sea turtles. No Salmonella was detected in green sea turtles. In samples collected from nesting beaches, Salmonella was only recovered from a single dry sand sample. All recovered isolates were positive for the wzx gene, consistent with the O:7 serogroup. Further serotyping characterized serovars Montevideo and Newport present in cloacal and sand samples. Repetitive-element palindromic PCR (rep-PCR) fingerprint analysis and pulsed-field gel electrophoresis of the 2014 isolates from turtles and sand as well as archived Salmonella isolates recovered from leatherback sea turtles in 2012 and 2013, identified two distinct genotypes and four different pulsotypes, respectively. The genotyping and serotyping were directly correlated. To determine the persistence of representative strains of each serotype/genotype in these environments, laboratory-controlled microcosm studies were performed in water and sand (dry and wet) incubated at 25 or 35°C. Isolates persisted for at least 32 days in most microcosms, although there were significant decreases in culturable bacteria in several microcosms, with the greatest reduction in dry sand incubated at 35°C. This information provides a better understanding of the epizootiology of Salmonella in free-ranging marine reptiles and the potential

  6. Validation of an open-formula, diagnostic real-time PCR method for 20-hr detection of Salmonella in animal feeds

    DEFF Research Database (Denmark)

    Löfström, Charlotta; Hoorfar, Jeffrey

    2012-01-01

    A comparative study of a 20-hr, non-commercial, open-formula PCR method and the standard culture-based method NMKL 187, for detection of Salmonella, was performed according to the validation protocol from the Nordic organization for validation of alternative microbiological methods (NordVal) on 81...

  7. Plasmid fingerprinting and virulence gene detection among indigenous strains of salmonella enterica serovar enteritidis

    International Nuclear Information System (INIS)

    Sajid, S.U.; Schwarz, S.

    2009-01-01

    Salmonella enterica serovar Enteritidis is an important frequently reported zoonotic pathogen and a common cause of human gastroenteritis worldwide. The highly conserved Serospecific plasmids (SSPs) and Salmonella plasmid virulence (Spv) genes have been shown to mediate extra-intestinal colonization and systemic infection. The objective of current study was to document the presence of SSPs and SpvB/SpvC genes prevailing in the indigenous population of serovar Enteritidis. A total of 48 epidemiologically unrelated strains of Salmonella enteritidis were included in the study. Preparation of plasmids DNA suitable for endonuclease digestion and separation of respective fragments by agarose gel electrophoresis followed previously described protocols. The plasmids of Escherichia coli V517, 1-kbp ladder, and lambda DNA HindIII fragments served as DNA size standards. Transfer of DNA fragments from agarose gels to nitrocellulose membranes was achieved by capillary blot procedure. An ECL labeled 3.6 kbp HindIII fragment of plasmid PRQ 51 was used as probe for SpvB/SpvC gene detection. Plasmid DNA fingerprinting revealed the presence of two different profiles of approximately 55 kbp and 90 kbp and were identified as virulence plasmids by DNA hybridization. The SpvB/SpvC genes were located on HindIII fragments of 3.6 kbp in each of the two types of virulence plasmids. The study confirms the presence of SSPs and SpvB/SpvC genes in indigenous strains of S. enteritidis isolated from Northern Punjab area of Pakistan and substantiate the previous data on such findings from other parts of the world. (author)

  8. Detection of Escherichia coli O157:H7 and Salmonella in ground beef by a bead-free quantum dot-facilitated isolation method.

    Science.gov (United States)

    Wang, Luxin; Wu, Chung-Shieh; Fan, Xudong; Mustapha, Azlin

    2012-05-01

    The aims of this study were to introduce a new immunological bead-free cell detection method using quantum dots (QDs) as reporter markers for foodborne pathogen detection. QDs are nanosized particles with long-term photostability, high quantum yield, broad absorption spectra, and narrow, symmetric emission and high signal-to-noise ratio. The chemical compound [(1-ethyl-3-3-dimethylaminopropyl) carbodiimide hydrochloride] (EDC) and protein A were used as crosslinkers for manufacturing QD-antibody conjugates. To minimize the inhibition of QD fluorescence by the magnetic beads, the beads were removed after the primary pathogen isolation and before fluorescence measurement. Detection signals were increased four-fold after employing the bead-free isolation method. With a 24-h enrichment, the bead-free QD-facilitated detection method was able to detect 10 CFU/g Escherichia coli O157:H7 and Salmonella from artificially contaminated ground beef. To our knowledge, this detection method is the first research that combined a new EDC-protein A QD-labeling technique and bead-free fluorescence measurement to detect E. coli O157:H7 and Salmonella in ground beef. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Effect of vaccinating breeder chickens with a killed Salmonella vaccine on Salmonella prevalences and loads in breeder and broiler chicken flocks.

    Science.gov (United States)

    Berghaus, R D; Thayer, S G; Maurer, J J; Hofacre, C L

    2011-05-01

    The objective of this study was to evaluate the effect of vaccination of breeder chickens on Salmonella prevalences and loads in breeder and broiler chicken flocks. Chickens housed on six commercial breeder farms were vaccinated with a killed Salmonella vaccine containing Salmonella Typhimurium, Salmonella Enteritidis, and Salmonella Kentucky. Unvaccinated breeders placed on six additional farms served as controls. Eggs from vaccinated and unvaccinated breeder flocks were kept separately in the hatchery, and the resulting chicks were used to populate 58 commercial broiler flock houses by using a pair-matched design. Vaccinated breeder flocks had significantly higher Salmonella-specific antibody titers than did the unvaccinated breeder flocks, although they did not differ significantly with respect to environmental Salmonella prevalences or loads. Broiler flocks that were the progeny of vaccinated breeders had significantly lower Salmonella prevalences and loads than broiler flocks that were the progeny of unvaccinated breeders. After adjusting for sample type and clustering at the farm level, the odds of detecting Salmonella in samples collected from broiler flocks originating from vaccinated breeders were 62% lower (odds ratio [95% confidence interval] = 0.38 [0.21, 0.68]) than in flocks from unvaccinated breeders. In addition, the mean load of culture-positive samples was lower in broilers from vaccinated breeders by 0.30 log most probable number per sample (95% confidence interval of -0.51, -0.09; P = 0.004), corresponding to a 50% decrease in Salmonella loads. In summary, vaccination of broiler breeder pullets increased humoral immunity in the breeders and reduced Salmonella prevalences and loads in their broiler progeny, but did not significantly decrease Salmonella in the breeder farm environment.

  10. EU Interlaboratory comparison study Food-I Bacteriological detection of Salmonella in minced beef

    NARCIS (Netherlands)

    Kuijpers AFA; Veenman C; van de Kassteele J; Mooijman KA; LZO

    2007-01-01

    De Europese Nationale Referentie Laboratoria (NRLs) voor Salmonella hebben in een ringonderzoek hoge en lage concentraties Salmonella aangetoond in rundergehakt. Hiermee hebben ze laten zien dat ze voldoen aan de gestelde eisen. De Modified Semi-solid Rappaport Vassiliadis (MSRV), een

  11. Salmonella spp. in raw broiler parts: occurrence, antimicrobial resistance profile and phage typing of the Salmonella Enteritidis isolates Salmonella spp. em cortes de frango: ocorrência, resistência antimicrobiana e fagotipificação dos isolados de Salmonella Enteritidis

    Directory of Open Access Journals (Sweden)

    Aldemir Reginato Ribeiro

    2007-06-01

    Full Text Available The present study was carried out to evaluate the occurrence of Salmonellae in raw broiler parts and to determine the antimicrobial resistance profile of the isolated strains. Twenty-four (39.3% broiler parts samples were positive for Salmonella and twenty-five Salmonella strains were isolated, since two different serovars were detected in one single positive sample. Salmonella Enteritidis was the most prevalent serovar. Among Salmonella Enteritidis isolates, 95.2% belonged to Phage Type 4 (PT4 (20/21 and 4.8% to PT7 (1/21. Twenty-two (88% strains of Salmonella were resistant to at least one antimicrobial agent, generating eight different resistance patterns. The S. Typhimurium (n: 1 and S. Hadar (n: 3 isolates presented multiple resistance. Three S. Enteritidis isolates were susceptible to all antimicrobials tested, two were resistant only to tetracycline. The high prevalence of Salmonella in the broiler parts strenghtens the importance of the use of good manufacturing practices (GMP, and HACCP. The results also emphasize the need for the responsible use of antimicrobials in animal production.Este trabalho foi conduzido para avaliar a ocorrência de Salmonella em cortes de frango e para determinar o perfil de resistência antimicrobiana das cepas isoladas. Vinte e quatro (39,3% cortes de frango foram positivas para Salmonella, tendo sido isoladas vinte e cinco cepas de Salmonella, uma vez que em uma amostra isolaram-se dois sorovares. Salmonella Enteritidis foi o sorovar prevalente. Entre as Salmonella Enteritidis isoladas, 95,2% pertencem ao Fagotipo 4 (PT4 (20/21 e 4,8% ao PT7 (1/21. Vinte e duas (88% cepas de Salmonella foram resistentes a pelo menos um agente antimicrobiano e oito diferentes padrões de resistência foram observados. S. Typhimurium (n:1 e S. Hadar (n: 3, apresentaram múltipla resistência. Três cepas de S. Enteritidis foram sensíveis a todos os antimicrobianos e duas resistentes somente a tetraciclina. A elevada ocorr

  12. Assessment of Meat and Poultry Product Recalls Due to Salmonella Contamination: Product Recovery and Illness Prevention.

    Science.gov (United States)

    Seys, Scott A; Sampedro, Fernando; Hedberg, Craig W

    2017-08-01

    Data from the recalls of meat and poultry products from 2000 through 2012 due to Salmonella contamination were used to assess the factors associated with the recovery of the recalled product and to develop quantitative models to estimate the number of illnesses prevented by recalls. The percentage of product recovered following a recall action was not dependent on establishment size, recall expansions, complexity of the distribution chain, type of distribution, amount of time between the production and recall dates, or number of pounds of product recalled. However, illness-related recalls were associated with larger amounts of recalled product, smaller percentages of recalled product recovered, a greater number of days between the production date and recall date, and nationwide distribution than were recalls that were not illness related. In addition, the detection of recall-associated illnesses appeared to be enhanced in states with strong foodborne illness investigation systems. The number of Salmonella illnesses prevented by recalls was based on the number of illnesses occurring relative to the number of pounds consumed, which was then extrapolated to the number of pounds of recalled product recovered. A simulation using a program evaluation and review technique probability distribution with illness-related recalls from 2003 through 2012 estimated that there were 19,000 prevented Salmonella illnesses, after adjusting for underdiagnosis. Recalls not associated with illnesses from 2000 through 2012 prevented an estimated additional 8,300 Salmonella illnesses, after adjusting for underdiagnosis. Although further improvements to ensure accurate and complete reporting should be undertaken, our study demonstrates that recalls are an important tool for preventing additional Salmonella illnesses. Moreover, additional training resources dedicated to public health agencies for enhancing foodborne illness detection, investigations, and rapid response and reporting would

  13. Development of a novel loop-mediated isothermal amplification (LAMP) assay for the detection of Salmonella ser. Enteritidis from egg products

    Science.gov (United States)

    Salmonella ser. Enteritidis is a major public health concern worldwide. Loop-mediated isothermal amplification (LAMP) is a novel simple, easy-to-operate detection technology that amplifies DNA with high speed, efficiency, and specificity under isothermal conditions. The objective of this study was t...

  14. EU Interlaboratory comparison study veterinary XI : Bacteriological detection of Salmonella in chicken faeces

    NARCIS (Netherlands)

    Kuijpers AFA; Veenman C; Mooijman KA; LZO

    2009-01-01

    Alle 32 Nationale Referentie Laboratoria (NRL's) waren in 2008 in staat hoge en lage concentraties Salmonella in kippenmest aan te tonen. Hiervan behaalden 28 laboratoria direct het gewenste niveau. Twee laboratoria hadden een herkansing nodig. Bij een NRL was het CRL-Salmonella aanwezig tijdens

  15. Electrochemical genosensing of Salmonella, Listeria and Escherichia coli on silica magnetic particles.

    Science.gov (United States)

    Liébana, Susana; Brandão, Delfina; Cortés, Pilar; Campoy, Susana; Alegret, Salvador; Pividori, María Isabel

    2016-01-21

    A magneto-genosensing approach for the detection of the three most common pathogenic bacteria in food safety, such as Salmonella, Listeria and Escherichia coli is presented. The methodology is based on the detection of the tagged amplified DNA obtained by single-tagging PCR with a set of specific primers for each pathogen, followed by electrochemical magneto-genosensing on silica magnetic particles. A set of primers were selected for the amplification of the invA (278 bp), prfA (217 bp) and eaeA (151 bp) being one of the primers for each set tagged with fluorescein, biotin and digoxigenin coding for Salmonella enterica, Listeria monocytogenes and E. coli, respectively. The single-tagged amplicons were then immobilized on silica MPs based on the nucleic acid-binding properties of silica particles in the presence of the chaotropic agent as guanidinium thiocyanate. The assessment of the silica MPs as a platform for electrochemical magneto-genosensing is described, including the main parameters to selectively attach longer dsDNA fragments instead of shorter ssDNA primers based on their negative charge density of the sugar-phosphate backbone. This approach resulted to be a promising detection tool with sensing features of rapidity and sensitivity very suitable to be implemented on DNA biosensors and microfluidic platforms. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Salmonella osteomyelitis

    OpenAIRE

    Somsri Wiwanitkit; Viroj Wiwanitkit

    2016-01-01

    Salmonella infection can cause four predominant clinical syndromes: enteric fever, acute gastroenteritis, bacteraemia with or without metastatic infection, and the asymptomatic carrier state. Salmonella as an aetiological agent in osteomyelitis is essentially rare and salmonella osteomyelitis in itself is predominantly seen in patients with haemoglobinopathies such as sickle cell disease or thalassemia. There are very few cases reported in the literature in which salmonella osteomyelitis is s...

  17. Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus.

    Science.gov (United States)

    Zhang, Hui; Ma, Xiaoyuan; Liu, Ying; Duan, Nuo; Wu, Shijia; Wang, Zhouping; Xu, Baocai

    2015-12-15

    Salmonella typhimurium and Staphylococcus aureus are most common causes of food-associated disease. A Raman based biosensor was developed for S. typhimurium and S. aureus detection simultaneously. The biosensor was based on nanoparticles enhanced Raman intensity and the specific recognition of aptamer. The Raman signal probe and the capture probe are built. Gold nanoparticles (GNPs) modified with Raman molecules (Mercaptobenzoic acid and 5,5'-Dithiobis(2-nitrobenzoic acid)) and aptamer are used as the signal probe for S. typhimurium and S. aureus, respectively. Fe3O4 magnetic gold nanoparticles (MGNPs) immobilized with both aptamer of S. typhimurium and S. aureus are used as the capture probe. When S. typhimurium and S. aureus are added in the reaction system, the capture probe will capture the target bacteria through the specific binding effect of aptamer. And then the signal probe will be connected to the bacteria also by the effect of aptamer to form the sandwich like detection structure. The Raman intensified spectrum was measured to quantify S. typhimurium and S. aureus. Under optimal conditions, the SERS intensity of MBA at 1582 cm(-1) are used to measure S. typhimurium (y=186.4762+704.8571x, R(2)=0.9921) and the SERS intensity of DNTB at 1333 cm(-1) are used to measure S. aureus (y=135.2381+211.4286x, R(2)=0.9946) in the range of 10(2)-10(7) cfu mL(-1). The LOD is 35 cfu mL(-1) for S. aureus and 15 cfu mL(-1) for S. typhimurium. This method is simple and rapid, results in high sensitivity and specificity, and can be used to detect actual samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Nanomaterial-enabled Rapid Detection of Water Contaminants.

    Science.gov (United States)

    Mao, Shun; Chang, Jingbo; Zhou, Guihua; Chen, Junhong

    2015-10-28

    Water contaminants, e.g., inorganic chemicals and microorganisms, are critical metrics for water quality monitoring and have significant impacts on human health and plants/organisms living in water. The scope and focus of this review is nanomaterial-based optical, electronic, and electrochemical sensors for rapid detection of water contaminants, e.g., heavy metals, anions, and bacteria. These contaminants are commonly found in different water systems. The importance of water quality monitoring and control demands significant advancement in the detection of contaminants in water because current sensing technologies for water contaminants have limitations. The advantages of nanomaterial-based sensing technologies are highlighted and recent progress on nanomaterial-based sensors for rapid water contaminant detection is discussed. An outlook for future research into this rapidly growing field is also provided. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Prevalence and counts of Salmonella spp. in minimally processed vegetables in São Paulo, Brazil.

    Science.gov (United States)

    Sant'Ana, Anderson S; Landgraf, Mariza; Destro, Maria Teresa; Franco, Bernadette D G M

    2011-09-01

    Minimally processed vegetables (MPV) may be important vehicles of Salmonella spp. and cause disease. This study aimed at detecting and enumerating Salmonella spp. in MPV marketed in the city of São Paulo, Brazil. A total of 512 samples of MPV packages collected in retail stores were tested for Salmonella spp. and total coliforms and Escherichia coli as indication of the hygienic status. Salmonella spp. was detected in four samples, two using the detection method and two using the counting method, where the results were 8.8 × 10(2) CFU/g and 2.4 × 10(2) CFU/g. The serovars were Salmonella Typhimurium (three samples) and Salmonella enterica subsp. enterica O:47:z4,z23:- (one sample). Fourteen samples (2.7%) presented counts of E. coli above the maximum limit established by the Brazilian regulation for MPV (10(2) CFU/g). Therefore, tightened surveillance and effective intervention strategies are necessary in order to address consumers and governments concerns on safety of MPV. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Reduced salmonella fecal shedding in swine administered porcine granulocyte-colony stimulating factor (G-CSF)

    Science.gov (United States)

    Salmonella colonization of food animals is a concern for animal health, food safety and public health. Key objectives of pre-harvest food safety programs are to detect asymptomatic Salmonella carriage in food animals, reduce colonization, and prevent transmission of Salmonella to other animals and ...

  1. Control of salmonella in meat and meat products by irradiation

    International Nuclear Information System (INIS)

    Dempster, J.F.

    1985-01-01

    This paper highlights the importance of food irradiation in the protection of the public against food poisoning from eating meat or meat products contaminated with salmonella. Salmonella infections are increasing at an alarming rate (2000 in 1952 to 12000 reported cases in 1982 in England and Wales alone). Dr. Dempster reports that 50% of the chicken carcasses examined by workers in America were found to be salmonella contaminated. Use of irradiation in conjunction with mild refrigeration can extend the shelf-life of vacuum packed chicken by a factor of three. Important legislation now under discussion in the U.S.A. is likely to extend the applicability of food irradiation rapidly in the near future

  2. A new wireless detection device for the in-situ identification of Salmonella Typhimurium

    Science.gov (United States)

    Chai, Yating; Wikle, Howard C.; Park, Mi-kyung; Horikawa, Shin; Hong, Xie; Chin, Bryan A.

    2013-05-01

    This paper presents a new device and method for the in-situ detection of Salmonella Typhimurium on tomato surfaces. This real-time in-situ detection was accomplished with phage-based magnetoelastic (ME) biosensors on fresh food surfaces. The E2 phage from a landscape phage library serves as the bio-recognition element that has the capability of binding specifically with S. Typhimurium. This mass-sensitive ME biosensor is wirelessly actuated into mechanical resonance by an externally applied time-varying magnetic field. When the biosensor binds with S. Typhimurium, the mass of the sensor increases, resulting in a decrease in the sensor's resonant frequency. Until now, ME sensors had to be collected from the tomato surface where they are exposed to S. Typhimurium and inserted into a measurement coil for the detection of the bacterium. In contrast, the newly designed test device allows the whole detection process to take place directly on the tomato. Changes in resonant frequency over time due to the accumulation of S. Typhimurium on the sensor were measured and are presented. Real-time in-situ detection of 20 minutes was achieved. In addition, this new methodology effectively decreases the measurement error and enables the simultaneous detection of multiple pathogens.

  3. Rapid Emergence and Clonal Dissemination of CTX-M-15-Producing Salmonella enterica Serotype Virchow, South Korea.

    Science.gov (United States)

    Kim, Jin Seok; Yun, Young-Sun; Kim, Soo Jin; Jeon, Se-Eun; Lee, Deog-Yong; Chung, Gyung Tae; Yoo, Cheon-Kwon; Kim, Junyoung

    2016-01-01

    The prevalence of cefotaxime-resistant Salmonella enterica serotype Virchow has dramatically increased in South Korea since the first isolation in 2011. Of 68 isolates collected over 10 years, 28 cefotaxime-resistant isolates harbored the bla(CTX-M-15) extended-spectrum β-lactamase gene and were closely related genetically, demonstrating the clonal dissemination of CTX-M-15-producing Salmonella Virchow in South Korea.

  4. Serotype determination of Salmonella by xTAG assay.

    Science.gov (United States)

    Zheng, Zhibei; Zheng, Wei; Wang, Haoqiu; Pan, Jincao; Pu, Xiaoying

    2017-10-01

    Currently, no protocols or commercial kits are available to determine the serotypes of Salmonella by using Luminex MAGPIX®. In this study, an xTAG assay for serotype determination of Salmonella suitable for Luminex MAGPIX® is described and 228 Salmonella isolates were serotype determined by this xTAG assay. The xTAG assay consists of two steps: 1) Multiplex PCR to amplify simultaneously O, H and Vi antigen genes of Salmonella, and 2) Magplex-TAG™ microsphere hybridization to identify accurately the specific PCR products of different antigens. Compared with the serotyping results of traditional serum agglutination test, the sensitivity and specificity of the xTAG assay were 95.1% and 100%, respectively. The agreement rate of these two assays was 95.2%. Compared with Luminex xMAP® Salmonella Serotyping Assay (SSA) kit, the advantages of this xTAG assay are: First, the magnetic beads make it applicable to both the Luminex®100/200™ and MAGPIX® systems. Second, only primers rather than both primers and probes are needed in the xTAG assay, and the process of coupling antigen-specific oligonucleotide probes to beads is circumvented, which make the xTAG assay convenient to be utilized by other laboratories. The xTAG assay may serve as a rapid alternative or complementary method for traditional Salmonella serotyping tests, especially for laboratories that utilize the MAGPIX® systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Study of Salmonella Typhimurium infection in laying hens

    Directory of Open Access Journals (Sweden)

    Kapil eChousalkar

    2016-02-01

    Full Text Available Members of Salmonella enterica are frequently involved in egg and egg product related human food poisoning outbreaks worldwide. In Australia, Salmonella Typhimurium is frequently involved in egg and egg product related foodborne illness and Salmonella Mbandaka has also been found to be a contaminant of the layer farm environment. The ability possessed by Salmonella Enteritidis to colonise reproductive organs and contaminate developing eggs has been well described. However, there are few studies investigating this ability for Salmonella Typhimurium. The hypothesis of this study was that the Salmonella Typhimurium can colonise the gut for a prolonged period of time and that horizontal infection through feces is the main route of egg contamination. At 14 weeks of age hens were orally infected with either S. Typhimurium PT 9 or S. Typhimurium PT 9 and Salmonella Mbandaka. Salmonella shedding in feces and eggs was monitored for 15 weeks post infection. Egg shell surface and internal contents of eggs laid by infected hens were cultured independently for detection of Salmonella spp. The mean Salmonella load in feces ranged from 1.54 to 63.35 and 0.31 to 98.38 most probable number/g (MPN/g in the S. Typhimurium and S. Typhimurium + S. Mbandaka group respectively. No correlation was found between mean fecal Salmonella load and frequency of egg shell contamination. Egg shell contamination was higher in S. Typhimurium + S. Mbandaka infected group (7.2% Typhimurium, 14.1% Mbandaka compared to birds infected with S. Typhimurium (5.66% however, co-infection had no significant impact on egg contamination by S. Typhimurium. Throughout the study Salmonella was not recovered from internal contents of eggs laid by hens. Salmonella was isolated from different segments of oviduct of hens from both the groups, however pathology was not observed on microscopic examination. This study investigated Salmonella shedding for up to 15 weeks p.i which is a longer period of

  6. Simultaneous detection of Staphylococcus aureus and Salmonella typhimurium using multicolor time-resolved fluorescence nanoparticles as labels.

    Science.gov (United States)

    Wang, Xiaole; Huang, Yukun; Wu, Shijia; Duan, Nuo; Xu, Baocai; Wang, Zhouping

    2016-11-21

    Foodborne illnesses caused by Staphylococcus aureus and Salmonella typhimurium are common public health issues worldwide, affecting both developing and developed countries. In this study, aptamers labeled with multicolor lanthanide-doped time-resolved fluorescence (TRFL) nanoparticles were used as signal probes, and immobilized by Fe 3 O 4 magnetic nanoparticles were used as the capture probes. The signal probes were bonded onto the captured bacteria by the recognition of aptamer to form the sandwich-type complex. Under the optimal conditions, TRFL intensity at 544nm was used to quantify S. typhimurium (y=10,213×-12,208.92, R 2 =0.9922) and TRFL intensity at 615nm for S. aureus (y=4803.20×-1933.87, R 2 =0.9982) in the range of 10 2 -10 5 CFU/ml. Due to the magnetic separation and concentration of Fe 3 O 4 nanoparticles, detection limits of the developed method were found to be 15, 20CFU/ml for S. typhimurium and S. aureus, respectively. The application of this bioassay in milk was also investigated, and results were consistent with those of plate-counting method. Therefore, this simple and rapid method owns a great potential in the application for the multiplex analysis in food safety. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Salmonella: Salmonellosis

    DEFF Research Database (Denmark)

    Löfström, Charlotta; Hansen, Trine; Maurischat, Sven

    2015-01-01

    Salmonella remains one of the most important zoonotic pathogenic bacteria and is the causative agents of salmonellosis. The aim of this article is to give an overview of Salmonella and salmonellosis, starting by describing the characteristics of the microorganism Salmonella, including biochemical...

  8. Detection of salmonella in shellfish grown in polluted seawater

    CSIR Research Space (South Africa)

    Kfir, R

    1993-01-01

    Full Text Available Three bays along the South African coast were studied for the presence of Salmonella spp in seawater, effluent and storm water discharges into the bays and in shellfish harvested at the same sites. The microbial quality of water and shellfish...

  9. A systematic review of the clinical, public health and cost-effectiveness of rapid diagnostic tests for the detection and identification of bacterial intestinal pathogens in faeces and food.

    Science.gov (United States)

    Abubakar, I; Irvine, L; Aldus, C F; Wyatt, G M; Fordham, R; Schelenz, S; Shepstone, L; Howe, A; Peck, M; Hunter, P R

    2007-09-01

    analysis, on many occasions the rapid test outperforms culture, detecting additional 'truly' positive cases of food-borne illness. The significance of these additional positives requires further investigation. Economic modelling suggests that adoption of rapid tests in combination with routine culture is unlikely to be cost-effective, however, as the cost of rapid technologies decreases; total replacement with rapid technologies may be feasible. Despite the relatively poor quality of reporting of studies evaluating rapid detection methods, the reviewed evidence shows that PCR for Campylobacter, Salmonella and E. coli O157 is potentially very successful in identifying pathogens, possibly detecting more than the number currently reported using culture. Less is known about the benefits of testing for B. cereus, C. perfringens and S. aureus. Further investigation is needed on how clinical outcomes may be altered if test results are available more quickly and at a greater precision than in the current practice of bacterial culture.

  10. Specific and selective target detection of supra-genome 21 Mers Salmonella via silicon nanowires biosensor

    Science.gov (United States)

    Mustafa, Mohammad Razif Bin; Dhahi, Th S.; Ehfaed, Nuri. A. K. H.; Adam, Tijjani; Hashim, U.; Azizah, N.; Mohammed, Mohammed; Noriman, N. Z.

    2017-09-01

    The nano structure based on silicon can be surface modified to be used as label-free biosensors that allow real-time measurements. The silicon nanowire surface was functionalized using 3-aminopropyltrimethoxysilane (APTES), which functions as a facilitator to immobilize biomolecules on the silicon nanowire surface. The process is simple, economical; this will pave the way for point-of-care applications. However, the surface modification and subsequent detection mechanism still not clear. Thus, study proposed step by step process of silicon nano surface modification and its possible in specific and selective target detection of Supra-genome 21 Mers Salmonella. The device captured the molecule with precisely; the approach took the advantages of strong binding chemistry created between APTES and biomolecule. The results indicated how modifications of the nanowires provide sensing capability with strong surface chemistries that can lead to specific and selective target detection.

  11. Prevalence, seasonal occurrence and antimicrobial resistance of Salmonella in poultry retail products in Greece.

    Science.gov (United States)

    Zdragas, A; Mazaraki, K; Vafeas, G; Giantzi, V; Papadopoulos, T; Ekateriniadou, L

    2012-10-01

    To detect the prevalence, the seasonal occurrence and distribution of Salmonella serotypes in poultry products and to determine the resistance profile of Salmonella isolates. A total of 96 skin-on chicken carcasses and 30 liver samples were analysed between May 2007 and May 2009 from twenty-two different commercial farm brands found in retail market countrywide. Salmonella was isolated from 38 (39·5%) of 96 chicken carcasses and from 10 (33·3%) of 30 liver samples. Higher isolation rate (60·4%) was observed in carcasses detected during summer (May to October), and lower isolation rate (18·7%) was observed in carcasses detected during winter (November to April); in liver samples, the positive rates were 53·4 and 13·2%, respectively. Twelve serotypes were detected with the serotypes Hadar, Enteritidis and Blockley being the most prevalent at 29·2, 22·9 and 12·5%, respectively. Nine of 11 Salm. Enteritidis isolates occurred during summer. Of 48 isolates, 38 (79%) were resistant to one or more of the antimicrobial agents used. The highest resistance rates were found to the following antimicrobials: streptomycin (64·5%), tetracycline (56·2%), nalidixic acid (39·5%), ampicillin and rifampicin (33·3%). The relatively high Salmonella spp. contamination rates of raw chicken meat and liver have been detected. Salm. Enteritidis isolates peaked in summer, increasing the risk to human health. Antibiotic resistance of Salmonella still remains a threat as resistance plasmids may be extensively shared between animal and humans. The study enabled us to improve the data on the seasonal occurrence of Salmonella and to determine the antimicrobial pattern profile and trends in Salmonella strains isolated from poultry retail products in Greece. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  12. Evaluation of the Thermo Scientific™ SureTect™ Salmonella species Assay.

    Science.gov (United States)

    Cloke, Jonathan; Clark, Dorn; Radcliff, Roy; Leon-Velarde, Carlos; Larson, Nathan; Dave, Keron; Evans, Katharine; Crabtree, David; Hughes, Annette; Simpson, Helen; Holopainen, Jani; Wickstrand, Nina; Kauppinen, Mikko

    2014-03-01

    The Thermo Scientific™ SureTect™ Salmonella species Assay is a new real-time PCR assay for the detection of Salmonellae in food and environmental samples. This validation study was conducted using the AOAC Research Institute (RI) Performance Tested MethodsSM program to validate the SureTect Salmonella species Assay in comparison to the reference method detailed in International Organization for Standardization 6579:2002 in a variety of food matrixes, namely, raw ground beef, raw chicken breast, raw ground pork, fresh bagged lettuce, pork frankfurters, nonfat dried milk powder, cooked peeled shrimp, pasteurized liquid whole egg, ready-to-eat meal containing beef, and stainless steel surface samples. With the exception of liquid whole egg and fresh bagged lettuce, which were tested in-house, all matrixes were tested by Marshfield Food Safety, Marshfield, WI, on behalf of Thermo Fisher Scientific. In addition, three matrixes (pork frankfurters, lettuce, and stainless steel surface samples) were analyzed independently as part of the AOAC-RI-controlled laboratory study by the University of Guelph, Canada. No significant difference by probability of detection or McNemars Chi-squared statistical analysis was found between the candidate or reference methods for any of the food matrixes or environmental surface samples tested during the validation study. Inclusivity and exclusivity testing was conducted with 117 and 36 isolates, respectively, which demonstrated that the SureTect Salmonella species Assay was able to detect all the major groups of Salmonella enterica subspecies enterica (e.g., Typhimurium) and the less common subspecies of S. enterica (e.g., arizoniae) and the rarely encountered S. bongori. None of the exclusivity isolates analyzed were detected by the SureTect Salmonella species Assay. Ruggedness testing was conducted to evaluate the performance of the assay with specific method deviations outside of the recommended parameters open to variation

  13. Current antimicrobial sensitivity pattern of typhoidal salmonellae in a referral diagnostic centre

    Directory of Open Access Journals (Sweden)

    Umer Shujat

    2016-03-01

    Full Text Available Background: Infections caused by typhoidal salmonellae are an important public health concern in Pakistan. Inappropriate and injudicious use of fluoroquinolones has reduced their efficacy due to development of high level resistance. Aim: To ascertain the current susceptibility pattern of typhoidal salmonellae thus guiding the physicians for better management of typhoid patients.Materials and Methods: A study was conducted at our institution from January 2012 through December 2013 to investigate current susceptibility pattern of typhoidal salmonellae. Results: Out of 200 isolates, 107 (53.5% were identified as Salmonella Typhi and 93 (46.5% as Salmonella Paratyphi A. Sensitivities of Salmonella Typhi were as follows: ampicillin (48.6%, chloramphenicol (45.8%, co-trimoxazole (40.1%, ciprofloxacin (11.2%. Sensitivities of Salmonella Paratyphi A were: ampicillin (80.6%, chloramphenicol (89.2%, co-trimoxazole (90.3%, and ciprofloxacin (16.1%. No resistance was detected against third generation cephalosporins. Conclusions: Typhoidal salmonellae are still entirely susceptible to third generation cephalosporins in our setting. Marked rise in resistance to fluoroquinolones has reduced their empirical usage. Sensitivity of Salmonella Paratyphi A to conventional antityphoid drugs was encouraging.

  14. Transcriptomic analysis of Salmonella desiccation resistance.

    Science.gov (United States)

    Li, Haiping; Bhaskara, Anuhya; Megalis, Christina; Tortorello, Mary Lou

    2012-12-01

    The survival of Salmonella in low moisture foods and processing environments remains a great challenge for the food industry and public health. To explore the mechanisms of Salmonella desiccation resistance, we studied the transcriptomic responses in Salmonella Tennessee (Tennessee), using Salmonella Typhimurium LT2 (LT2), a strain weakly resistant to desiccation, as a reference strain. In response to 2 h of air-drying at 11% equilibrated relative humidity, approximately one-fourth of the open reading frames (ORFs) in the Tennessee genome and one-fifth in LT2 were differentially expressed (>2-fold). Among all differentially expressed functional groups (>5-fold) in both strains, the expression fold change associated with fatty acid metabolism was the highest, and constituted 51% and 35% of the total expression fold change in Tennessee and LT2, respectively. Tennessee showed greater changes in expression of genes associated with stress response and envelope modification than LT2, while showing lesser changes in protein biosynthesis expression. Expression of flagella genes was significantly more inhibited in stationary phase cells of Tennessee than LT2 both before and after desiccation. The accumulation of the osmolyte trehalose was significantly induced by desiccation in Tennessee, but no increase was detectable in LT2, which is consistent with the expression patterns of the entire trehalose biosynthesis and degradation pathways in both strains. Results from this study present a global view of the dynamic desiccation responses in Salmonella, which will guide future research efforts to control Salmonella in low moisture environments.

  15. Effect of chlorate, molybdate, and shikimic acid on Salmonella enterica serovar Typhimurium in aerobic and anaerobic cultures.

    Science.gov (United States)

    Oliver, Christy E; Beier, Ross C; Hume, Michael E; Horrocks, Shane M; Casey, Thomas A; Caton, Joel S; Nisbet, David J; Smith, David J; Krueger, Nathan A; Anderson, Robin C

    2010-04-01

    Experiments were conducted to determine factors that affect sensitivity of Salmonella enterica serovar Typhimurium to sodium chlorate (5mM). In our first experiment, cultures grown without chlorate grew more rapidly than those with chlorate. An extended lag before logarithmic growth was observed in anaerobic but not aerobic cultures containing chlorate. Chlorate inhibition of growth during aerobic culture began later than that observed in anaerobic cultures but persisted once inhibition was apparent. Conversely, anaerobic cultures appeared to adapt to chlorate after approximately 10h of incubation, exhibiting rapid compensatory growth. In anaerobic chlorate-containing cultures, 20% of total viable counts were resistant to chlorate by 6h and had propagated to 100% resistance (>10(9)CFU mL(-1)) by 24h. In the aerobic chlorate-containing cultures, 12.9% of colonies had detectable resistance to chlorate by 6h, but only 1% retained detectable resistance at 24h, likely because these cultures had opportunity to respire on oxygen and were thus not enriched via the selective pressure of chlorate. In another study, treatment with shikimic acid (0.34 mM), molybdate (1mM) or their combination had little effect on aerobic or anaerobic growth of Salmonella in the absence of added chlorate. As observed in our earlier study, chlorate resistance was not detected in any cultures without added chlorate. Chlorate resistant Salmonella were recovered at equivalent numbers regardless of treatment after 8h of aerobic or anaerobic culture with added chlorate; however, by 24h incubation chlorate sensitivity was completely restored to aerobic but not anaerobic cultures treated with shikimic acid or molybdate but not their combination. Results indicate that anaerobic adaptation of S. Typhimurium to sodium chlorate during pure culture is likely due to the selective propagation of low numbers of cells exhibiting spontaneous resistance to chlorate and this resistance is not reversible by

  16. Phage-based magnetoelastic sensor for the detection of Salmonella typhimurium

    Science.gov (United States)

    Lakshmanan, Ramji S.

    In recent years, food-borne illness have garnered the attention of mainstream America with calls now coming from the media for more inspections to ensure the safety of our food supply. Food borne illness from the ingestion of S. typhimurium has been of great concern due to its common occurrence in food products of daily consumption. Annually approximately 80 million cases of food poisoning are reported in the United States alone. The ever growing need for rapid detection of pathogenic microorganisms present in food, environmental and clinical samples has invoked an increased interest in research efforts towards the development of novel diagnostic methodologies. Currently, the detection of bacteria in contaminated food relies on conventional microbiological methods that are time consuming and manpower intensive. This study presents the results of the characterization of a phage-based magnetoelastic biosensor for the detection of Salmonella typhimurium . This affinity-based biosensensor is comprised of a magnetoelastic material as the transducer and filamentous phage as the bio-recognition element. Magnetoelastic materials are ferromagnetic amorphous alloys that change dimensions in the presence of a magnetic field. This effect in combination with the reverse effect (inverse magnetostriction) is utilized in a typical sensor application. A time varying magnetic field causes these sensors to oscillate at a characteristic resonance frequency. The characteristic resonance frequency is dependent on the initial dimensions and physical properties of the material. These materials are of particular interest owing to their unique capability to perform remote (without direct wire contacts to the sensor) sensing, making in-vivo detection and detection in closed containers possible. The phage-immobilized magnetoelastic biosensor was characterized for specificity; dose response in water, spiked apple juice and in spiked milk; selectivity; and longevity. The sensor's sensitivity is

  17. Salmonella enterica isolates from pasture-raised poultry exhibit antimicrobial resistance and class I integrons.

    Science.gov (United States)

    Melendez, S N; Hanning, I; Han, J; Nayak, R; Clement, A R; Wooming, A; Hererra, P; Jones, F T; Foley, S L; Ricke, S C

    2010-12-01

    While considerable foodborne pathogen research has been conducted on conventionally produced broilers and turkeys, few studies have focused on free-range (organic) or pastured poultry. The current surveillance study was designed to isolate, identify and genetically characterize Salmonella from pastured poultry farm environment and from retail samples. In this study, 59 isolates were collected from two pastured poultry farms (n = 164; pens, feed, water and insect traps) and retail carcasses (n = 36) from a local natural foods store and a local processing plant. All isolates were serotyped and analysed phenotypically (antimicrobial resistance profiles) and genotypically (DNA fingerprints, plasmid profiles and integron analysis). Salmonella enterica was detected using standard microbiological methods. Salmonella Kentucky was the most prevalent serotype detected from the sampled sources (53%), followed by Salmonella Enteritidis (24%), Bareilly (10%), Mbandaka (7%), Montevideo (5%) or Newport (2%). All isolates were resistant to sulfisoxazole and novobiocin, and the majority (40/59) possessed class I integrons shown by PCR detection. Each Salmonella serotype elicited a distinct pulsed-field gel electrophoresis fingerprint profile, and unique differences were observed among the serotypes.  The findings of this study show that Salmonella serotypes isolated from pasture-raised poultry exhibit antimicrobial resistance and class I integrons.  This study demonstrates that despite the cessation of antibiotic usage in poultry production, antibiotic resistant Salmonella may still be recovered from the environment and poultry products. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.

  18. Rapid detection of Listeria monocytogenes in milk using confocal micro-Raman spectroscopy and chemometric analysis.

    Science.gov (United States)

    Wang, Junping; Xie, Xinfang; Feng, Jinsong; Chen, Jessica C; Du, Xin-jun; Luo, Jiangzhao; Lu, Xiaonan; Wang, Shuo

    2015-07-02

    Listeria monocytogenes is a facultatively anaerobic, Gram-positive, rod-shape foodborne bacterium causing invasive infection, listeriosis, in susceptible populations. Rapid and high-throughput detection of this pathogen in dairy products is critical as milk and other dairy products have been implicated as food vehicles in several outbreaks. Here we evaluated confocal micro-Raman spectroscopy (785 nm laser) coupled with chemometric analysis to distinguish six closely related Listeria species, including L. monocytogenes, in both liquid media and milk. Raman spectra of different Listeria species and other bacteria (i.e., Staphylococcus aureus, Salmonella enterica and Escherichia coli) were collected to create two independent databases for detection in media and milk, respectively. Unsupervised chemometric models including principal component analysis and hierarchical cluster analysis were applied to differentiate L. monocytogenes from Listeria and other bacteria. To further evaluate the performance and reliability of unsupervised chemometric analyses, supervised chemometrics were performed, including two discriminant analyses (DA) and soft independent modeling of class analogies (SIMCA). By analyzing Raman spectra via two DA-based chemometric models, average identification accuracies of 97.78% and 98.33% for L. monocytogenes in media, and 95.28% and 96.11% in milk were obtained, respectively. SIMCA analysis also resulted in satisfied average classification accuracies (over 93% in both media and milk). This Raman spectroscopic-based detection of L. monocytogenes in media and milk can be finished within a few hours and requires no extensive sample preparation. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Inhibitory Effects of Several Essential Oils towards Salmonella typhimurium, Salmonella paratyphi A and Salmonella paratyphi B

    Directory of Open Access Journals (Sweden)

    S.F. Mazhar

    2014-09-01

    Full Text Available Plant essential oils are natural products extracted from plants and because of their antimicrobial properties can be used as natural additives in foods. They are also useful for decontamination of food-borne pathogens and can be a safe additive in foods. The antimicrobial activities of essential oils belonging to Saturiea hortensis, Thymus vulgaris, Mentha polegium, Cuminum cyminum, Lavandula officinalis and Mentha viridis L. (spearmint were investigated at different concentrations (0.1, 0.3, 0.5, 1, 2, 5 and 10%v/v against Salmonella typhimurium, Salmonella paratyphi A and Salmonella paratyphi B by using the agar well diffusion method. Essential oils showed inhibitory effect on Salmonella spp. in the agar well diffusion assay. In addition, the capability of essential oils for decontamination of minced row beef, ground beef, minced raw chicken and minced raw fish inoculated with Salmonella spp. at 0.1 and 0.5%v/v were assessed. Reduction of the Salmonella spp. population was observed following the inoculation of the cultures with 0.1 and 0.5%v/v essential oils.

  20. The microbiological and clinical characteristics of invasive salmonella in gallbladders from cholecystectomy patients in kathmandu, Nepal.

    Directory of Open Access Journals (Sweden)

    Sabina Dongol

    Full Text Available Gallbladder carriage of invasive Salmonella is considered fundamental in sustaining typhoid fever transmission. Bile and tissue was obtained from 1,377 individuals undergoing cholecystectomy in Kathmandu to investigate the prevalence, characteristics and relevance of invasive Salmonella in the gallbladder in an endemic area. Twenty percent of bile samples contained a Gram-negative organism, with Salmonella Typhi and Salmonella Paratyphi A isolated from 24 and 22 individuals, respectively. Gallbladders that contained Salmonella were more likely to show evidence of acute inflammation with extensive neutrophil infiltrate than those without Salmonella, corresponding with higher neutrophil and lower lymphocyte counts in the blood of Salmonella positive individuals. Antimicrobial resistance in the invasive Salmonella isolates was limited, indicating that gallbladder colonization is unlikely to be driven by antimicrobial resistance. The overall role of invasive Salmonella carriage in the gallbladder is not understood; here we show that 3.5% of individuals undergoing cholecystectomy in this setting have a high concentration of antimicrobial sensitive, invasive Salmonella in their bile. We predict that such individuals will become increasingly important if current transmission mechanisms are disturbed; prospectively identifying these individuals is, therefore, paramount for rapid local and regional elimination.

  1. The effect of enrichment broth and temperature on the recovery of Salmonella

    Science.gov (United States)

    Statement of the Problem: No single enrichment broth or temperature is used consistently throughout the research, regulatory or industry laboratories for the detection of Salmonella. This lack of a single methodology leads to confusion and possible bias both for and against Salmonella serotypes. The...

  2. The serologic response to Salmonella enteritidis and Salmonella typhimurium in experimentally infected chickens, followed by an indirect lipopolysaccharide enzyme-linked immunosorbent assay and bacteriologic examinations through a one-year period

    DEFF Research Database (Denmark)

    Skov, M.N.; Feld, Niels Christian; Carstensen, B.

    2002-01-01

    Three groups of 100 individually marked salmonella-free chickens were followed for a period of 53 wk. The chickens were infected as day olds by crop instillation of 101 colony-forming units: one group with Salmonella enteritidis and a second group with Salmonella typhimurium. A third group was kept...... in surveillance programs, in particular to detect flocks in early stages of infection before a measurable serologic response has been raised....

  3. The role of defeathering in the contamination of turkey skin by Salmonella species and Listeria monocytogenes.

    Science.gov (United States)

    Clouser, C S; Doores, S; Mast, M G; Knabel, S J

    1995-04-01

    This study was undertaken to determine whether the incidence of either Salmonella spp. or Listeria monocytogenes on turkeys at three commercial processors could be related to the type of defeathering system: 1) conventional, 58 C common bath scald; 2) kosher, 7 C common bath scald; or 3) steam-spray, 62 C nonimmersion scald. Flocks were sampled before defeathering, after defeathering, and after chill at each facility. The incidence of Salmonella-positive turkeys significantly increased subsequent to conventional defeathering (10 positive out of 14) as compared with before defeathering (3/14). The number of Salmonella-positive carcasses following kosher (0/14) and steam-spray (2/14) defeathering were similar to the number of Salmonella-positive carcasses found prior to defeathering (1/14 and 3/14, respectively). The incidence of Salmonella-positive carcasses following chill was slightly lower, but not significantly different than the number of Salmonella-positive carcasses found immediately following defeathering at all processors (8/14, 0/14, 1/14 for conventional, kosher, and steam-spray processors, respectively). Although L. monocytogenes was detected on turkeys sampled before chilling (2/10, kosher) and after chilling (8/14, kosher; 1/14, conventional), no L. monocytogenes was detected on turkeys at any of the processors prior to the evisceration process. Flocks with high aerobic plate counts prior to processing were more likely to contain Salmonella-positive birds throughout processing. Aerobic plate counts of all flocks were similar after chill whether or not Salmonella spp. and L. monocytogenes were detected.

  4. Salmonella in Brazilian and imported pet reptiles

    OpenAIRE

    Sá,Isabel Valéria Abalem de; Solari,Claude André

    2001-01-01

    The presence of salmonellae in fecal samples or cloacal swabs of 97 pet reptiles (15 snakes, 24 lizards and 58 chelonians) was investigated. Thirty seven animals had national origin and 60 were imported. Salmonella spp was detected in 39.1% of the reptiles, being 62.5% in lizards, 53.3% in snakes and 25.8% in chelonians. Strains belonged to subspecies I (44.7%), II (10.5%), IIIa (5.2%), IIIb (21.0%) and IV (18.5%) of the enterica species, with predominance (55.3%) of subspecies usually found ...

  5. Distribution and Antimicrobial Susceptibility of Foodborne Salmonella Serovars in Eight Provinces in China from 2007 to 2012 (Except 2009).

    Science.gov (United States)

    Wang, Yin; Cao, Chenyang; Alali, Walid Q; Cui, Shenghui; Li, Fengqin; Zhu, Jianghui; Wang, Xin; Meng, Jianghong; Yang, Baowei

    2017-07-01

    One thousand four hundred ninety-one Salmonella isolates recovered from retail foods including chicken, beef, fish, pork, dumplings, and cold dishes in China in 2007, 2008, 2010, 2011, and 2012 were analyzed for distribution of serotype and antimicrobial susceptibility. A total of 129 Salmonella serotypes were detected among 1491 isolates. Salmonella Enteritidis (21.5%), Typhimurium (11.0%), Indiana (10.8%), Thompson (5.4%), Derby (5.1%), Agona (3.8%), and Shubra (3.0%) were the seven most important serotypes in 1491 isolates. For antibiotic susceptibility, except 16 (1.1%) isolates were susceptible to all tested antibiotics, 131 (8.8%) resisted 1-2 and 1344 (90.1%) resisted three or more antibiotics. One thousand forty-six (70.2%) of 1491 Salmonella isolates were identified as multidrug-resistant (MDR) isolates, which could resist three or more categories of antibiotics. Resistance to sulfisoxazole (78.1%) was most common among the tested Salmonella, followed by tetracycline (70.6%), trimethoprim/sulfamethoxazole (68.0%), and nalidixic acid (63.4%). Resistances to amikacin (20.0%), levofloxacin (18.7%), gatifloxacin (17.9%), ceftriaxone (17.7%), and cefoxitin (13.2%) were less frequently detected. Resistance to fluoroquinolones was most common among Salmonella Shubra and Indiana isolates, while resistance to cephalosporins was frequently detected among Salmonella Thompson isolates. The results highlighted the diversity of Salmonella serotypes and the high prevalence of Salmonella MDR isolates in China. Compared with Salmonella Enteritidis and Typhimurium isolates, the higher fluoroquinolones and cephalosporins resistance rates of some individual serotypes (Salmonella Shubra, Indiana, and Thompson) also provided more information for further study related to fluoroquinolones or cephalosporin-resistant Salmonella.

  6. Comparison of conventional culture methods and two commercial enzyme immunoassays for detection of Salmonella in porcine fecal samples and cecal contents

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar; Baggesen, Dorte Lau

    1997-01-01

    Two commercial enzyme immunoassays, designated EIA-1 and EIA-2, for the detection of salmonella in feces and cecal contents were compared to conventional culture methods. Out of 362 cecal content samples, 35 were positive by EIA-1 and 30 were positive by EIA-2 and conventional methods. Out of 189...

  7. Influence of On-farm pig Salmonella status on Salmonella Shedding at Slaughter.

    Science.gov (United States)

    Casanova-Higes, A; Andrés-Barranco, S; Mainar-Jaime, R C

    2017-08-01

    The risk of Salmonella shedding among pigs at slaughter with regard to their previous on-farm Salmonella status was assessed in a group of pigs from a farm from NE of Spain. A total of 202 pigs that had been serologically monitored monthly during the fattening period and from which mesenteric lymph nodes (MLN) and faecal (SFEC) samples were collected at slaughter for Salmonella isolation were included. A repeated-measures anova was used to assess the relationship between mean OD% values during the fattening period and sampling time and bacteriology on MLN and SFEC. Pigs were also grouped into four groups, that is pigs seronegative during the fattening period and Salmonella negative in MLN (group A; n = 69); pigs seronegative during the fattening period but Salmonella positive in MLN (B; n = 36); pigs seropositive at least once and Salmonella positive in MLN (C; n = 50); and pigs seropositive at least once but Salmonella negative in (D; n = 47). Pigs shedding at slaughter seroconverted much earlier and showed much higher mean OD% values than non-shedders pigs. The proportion of Salmonella shedders in groups A and D was high and similar (26.1% and 29.8%, respectively), but significantly lower than that for groups B and C. The odds of shedding Salmonella for groups B and C were 4.8 (95% CI = 1.5-15.5) and 20.9 (3.7-118) times higher, respectively, when compared to A. It was concluded that a large proportion of Salmonella seronegative pigs may shed Salmonella at slaughter, which would be likely associated to previous exposure with contaminated environments (i.e. transport and lairage). For pigs already infected at farm, the likelihood of shedding Salmonella was much higher and may depend on whether the bacterium has colonized the MLN or not. The odds of shedding Salmonella spp. were always much higher for pigs in which Salmonella was isolated from MLN. © 2016 Blackwell Verlag GmbH.

  8. Antimicrobial Resistance Profiles of the Two Porcine Salmonella Typhimurium Isolates

    Directory of Open Access Journals (Sweden)

    Kemal METİNER

    2016-07-01

    Full Text Available The aim of the study is to detect the presence of the Salmonella species in swine with diarrhea, and to investigate their antimicrobial resistance and extended spectrum beta lactamase (ESBL and/or AmpC β-lactamase production. For this purpose, stool samples from three commercial pig farms in Istanbul and Tekirdag were collected and processed for Salmonella isolation by culture and isolates were identified by biochemical activity tests. Salmonella isolates were confirmed by PCR then serotyped. Antimicrobial resistance and ESBL and AmpC production of the isolates were determined according to the Clinical and Laboratory Standards Institute (CLSI standard. In the study, two hundred and thirty eight stool samples were examined. Salmonella spp. were obtained from 2 samples, and the isolation rate was determined as 0.8%. Both of the isolates were defined as Salmonella enterica subsp. enterica serovar Typhimurium (serotype 1, 4, [5], 12: I: 1, 2 by serotyping. Both of them were resistant to cefaclor, cloxacillin and lincomycin (100%. Multidrug resistance (resistance ≥3 antimicrobials observed in all isolates. ESBL and AmpC production were not detected in any of the isolates. To our knowledge, this is the first report of the isolation of S. Typhimurium in pigs with diarrhea in Turkey. This study also represents the first report of multi-drug resistant S. Typhimurium isolates from pig stools in Turkey.

  9. Evaluating the use of dedicated swab for rapid antigen detection ...

    African Journals Online (AJOL)

    Evaluating the use of dedicated swab for rapid antigen detection testing in group a ... African Journal of Clinical and Experimental Microbiology ... Several generations of rapid antigen detection tests (RADTs) have been developed to facilitate ...

  10. Emergence of new Salmonella Enteritidis phage types in Europe? Surveillance of infections in returning travellers

    Directory of Open Access Journals (Sweden)

    Andersson Yvonne

    2004-09-01

    Full Text Available Abstract Background Among human Salmonella Enteritidis infections, phage type 4 has been the dominant phage type in most countries in Western Europe during the last years. This is reflected in Salmonella infections among Swedish travellers returning from abroad. However, there are differences in phage type distribution between the countries, and this has also changed over time. Methods We used data from the Swedish infectious disease register and the national reference laboratory to describe phage type distribution of Salmonella Enteritidis infections in Swedish travellers from 1997 to 2002, and have compared this with national studies conducted in the countries visited. Results Infections among Swedish travellers correlate well with national studies conducted in the countries visited. In 2001 a change in phage type distribution in S. Enteritidis infections among Swedish travellers returning from some countries in southern Europe was observed, and a previously rare phage type (PT 14b became one of the most commonly diagnosed that year, continuing into 2002 and 2003. Conclusions Surveillance of infections among returning travellers can be helpful in detecting emerging infections and outbreaks in tourist destinations. The information needs to be communicated rapidly to all affected countries in order to expedite the implementation of appropriate investigations and preventive measures.

  11. Direct and indirect transmission of four Salmonella enterica serotypes in pigs

    Directory of Open Access Journals (Sweden)

    Österberg Julia

    2010-05-01

    Full Text Available Abstract Background Feed-borne spread of Salmonella spp. to pigs has been documented several times in recent years in Sweden. Experiences from the field suggest that feed-associated serotypes might be less transmittable and subsequently easier to eradicate from pig herds than other serotypes more commonly associated to pigs. Four Salmonella serotypes were selected for experimental studies in pigs in order to study transmissibility and compare possible differences between feed-assoociated (S Cubana and S Yoruba and pig-associated serotypes (S Derby and S Typhimurium. Methods Direct contact transmission was studied in four groups of pigs formed by six 10-week-old salmonella negative pigs commingled with two fatteners excreting one of the four salmonella serotypes. Indirect transmission was studied by putting six 10-week-old salmonella negative pigs in each of four salmonella contaminated rooms. Each room had previously housed a group of pigs, excreting one of the four selected serotypes. All pigs were monitored for two weeks with respect to the faecal excretion of salmonella and the presence of serum antibodies. At the end of the trial, eight samples from inner tissues and organs were collected from each pig at necropsy. Results In the four direct transmission groups, one pig shed Salmonella (Cubana at one occasion. At necropsy, S Typhimurium was isolated from one pig. In the indirect transmission groups, two pigs in the Yoruba room and one pig in each of the other rooms were excreting detectable levels of Salmonella once during the study period of two weeks. At necropsy, S Derby was isolated from one of six pigs in the Derby room and S Typhimurium was isolated from four of the six pigs in the Typhimurium room. No significant serological response could be detected in any of the 48 pigs. Conclusions These results show that all four selected serotypes were able to be transmitted in at least one of these field-like trials, but the transmission rate

  12. Simultaneous occurrence of Salmonella arizonae in a sulfur crested cockatoo (Cacatua galerita galerita) and iguanas.

    Science.gov (United States)

    Orós, J; Rodríguez, J L; Fernández, A; Herráez, P; Espinosa de los Monteros, A; Jacobson, E R

    1998-01-01

    A case of fatal hepatitis in a captive sulfur crested cockatoo (Cacatua galerita galerita) in which Salmonella arizonae was microbiologically and immunohistochemically detected is described. The death of the cockatoo was closely related to the arrival of a group of 10 green iguanas (Iguana iguana) at a pet shop, and no previous clinical signs were observed in the cockatoo. The most important lesion observed at necropsy of the cockatoo was a multifocal necrotic hepatitis. Salmonella arizonae was isolated from the liver of the cockatoo and was detected immunohistochemically mainly around the edges of necrotic foci. Four iguanas died 3 days later showing a severe enteritis, and Salmonella arizonae was isolated from these lesions. The importance of quarantine and, because of pathogens such as Salmonella, the need to house reptiles at a distance from avian species, mainly psittacids, are reinforced. This is the first report of Salmonella arizonae infection in a cockatoo.

  13. Comparision of the BAX® System with an in-house MSRV method for the detection of Salmonella in chicken carcasses and pork meat Comparação do Sitema BAX® com o Método MSRV para detecção de Salmonella em carcaças de frango e carnes suínas

    Directory of Open Access Journals (Sweden)

    Paulo R. Franchin

    2006-12-01

    Full Text Available A study was performed to compare the analytical procedure of the BAX® System for Salmonella PCR assay with the Modified Semi-Solid Rappaport-Vassiliadis (MSRV method, for the detection of Salmonella in naturally contaminated chicken carcass samples (n = 762 and raw pork meat (n = 566. The chicken carcasses samples were collected during slaughtering after defeathering or immediately after evisceration and the raw pork meat collected from the deboned head of recently slaughtered pigs and others deboned raw fresh pork meat. The BAX® System detected 134 Salmonella-positive samples in chicken carcasses and 145 samples in pork meat, while the MSRV method isolated 142 and 144 Salmonella-positive samples, respectively. No significant difference was observed between the two methods for chicken carcasses and pork meat, according to McNemar test at the 5% level.Um estudo foi realizado com o objetivo de comparar o procedimento analítico de detecção de Salmonella com o Sistema BAX® automatizado, baseado na Reação em Cadeia da Polimerase (PCR com o método de Rappaport-Vassiliadis em Agar Semi-Sólido modificado (MSRV para detecção de Salmonella em amostras de carcaças de frango naturalmente contaminadas (n=762 e retalhos de carne suía (n=566. O Sistema BAX® detectou 134 amostras positivas para Salmonella em carcaças de frango e 145 amostras positivas para Salmonella em retalhos de carne suína, enquanto o MSRV detectou 142 e 144 amostras positivas respectivamente. Não houve diferença estatisticamente significativa entre os dois métodos, segundo McNemar ao nível de significância de 5%.

  14. Survey of Salmonella contamination in chicken layer farms in three Caribbean countries.

    Science.gov (United States)

    Adesiyun, Abiodun; Webb, Lloyd; Musai, Lisa; Louison, Bowen; Joseph, George; Stewart-Johnson, Alva; Samlal, Sannandan; Rodrigo, Shelly

    2014-09-01

    This study was conducted to investigate the demography, management, and production practices on layer chicken farms in Trinidad and Tobago, Grenada, and St. Lucia and the frequency of risk factors for Salmonella infection. The frequency of isolation of Salmonella from the layer farm environment, eggs, feeds, hatchery, and imported day-old chicks was determined using standard methods. Of the eight risk factors (farm size, age group of layers, source of day-old chicks, vaccination, sanitation practices, biosecurity measures, presence of pests, and previous disease outbreaks) for Salmonella infection investigated, farm size was the only risk factor significantly associated (P = 0.031) with the prevalence of Salmonella; 77.8% of large farms were positive for this pathogen compared with 33.3 and 26.1% of medium and small farms, respectively. The overall isolation rate of Salmonella from 35 layer farms was 40.0%. Salmonella was isolated at a significantly higher rate (P hatcheries, and airports in this country were negative. Salmonella Anatum, Salmonella group C, and Salmonella Kentucky were the predominant serotypes in Trinidad and Tobago, Grenada, and St. Lucia, respectively. Although Salmonella infections were found in layer birds sampled, table eggs appear to pose minimal risk to consumers. However, the detection of Salmonella -contaminated farm environments and feeds cannot be ignored. Only 2.9% of the isolates belonged to Salmonella Enteritidis, a finding that may reflect the impact of changes in farm management and poultry production in the region.

  15. Eleventh CRL-Salmonella interlaboratory comparison study on typing of Salmonella spp.

    NARCIS (Netherlands)

    Berk PA; Maas HME; de Pinna E; Mooijman KA; MGB

    2006-01-01

    Het elfde ringonderzoek voor de typering van Salmonella werd in maart 2006 georganiseerd door het Communautair Referentie Laboratorium voor Salmonella (CRL-Salmonella, Bilthoven, Nederland) in samenwerking met de Health Protection Agency (HPA, Londen, Verenigd Koninkrijk). 26 Nationale Referentie

  16. Tenth CRL-Salmonella interlaboratory comparison study on typing of Salmonella spp.

    NARCIS (Netherlands)

    Korver H; Maas HME; Ward LR; Mevius DJ; Mooijman KA; MGB

    2006-01-01

    Het tiende ringonderzoek voor de typering van Salmonella werd in maart 2005 georganiseerd door het Communautair Referentie Laboratorium voor Salmonella (CRL-Salmonella, Bilthoven, Nederland) in samenwerking met de Health Protection Agency (HPA, Londen, Verenigd Koninkrijk) en het Centraal Instituut

  17. Sources of Salmonella on broiler carcasses during transportation and processing: modes of contamination and methods of control.

    Science.gov (United States)

    Corry, Janet E L; Allen, V M; Hudson, W R; Breslin, M F; Davies, R H

    2002-01-01

    The prevalence and types of salmonella in broiler chickens during transportation and during slaughter and dressing were studied. This was part of a comprehensive investigation of salmonellas in two UK poultry companies, which aimed to find the origins and mechanisms of salmonella contamination. Salmonellas were isolated using cultural methods. Serovars of Salmonella detected during rearing were usually also found in a small proportion of birds on the day of slaughter and on the carcasses at various points during processing. There was little evidence of salmonellas spreading to large numbers of carcasses during processing. Many serovars found in the feedmills or hatcheries were also detected in the birds during rearing and/or slaughter. Transport crates were contaminated with salmonellas after washing and disinfection. Prevalence of salmonellas fell in the two companies during this survey. A small number of serovars predominated in the processing plants of each company. These serovars originated from the feed mills. Reasons for transport crate contamination were: (1) inadequate cleaning, resulting in residual faecal soiling; (2) disinfectant concentration and temperature of disinfectant too low; (3) contaminated recycled flume water used to soak the crates. Efforts to control salmonella infection in broilers need to concentrate on crate cleaning and disinfection and hygiene in the feed mills.

  18. Prevalence and molecular profiles of Salmonella collected at a commercial turkey processing plant.

    Science.gov (United States)

    Nde, Chantal W; Sherwood, Julie S; Doetkott, Curt; Logue, Catherine M

    2006-08-01

    In this study, whole carcasses were sampled at eight stages on a turkey-processing line and Salmonella prevalence was determined using enrichment techniques. Recovered Salmonella was further characterized using serotyping and the molecular profiles were determined using pulsed-field gel electrophoresis (PFGE). Prevalence data showed that contamination rates varied along the line and were greatest after defeathering and after chilling. Analysis of contamination in relation to serotypes and PFGE profiles found that on some visits the same serotype was present all along the processing line while on other days, additional serotypes were recovered that were not detected earlier on the line, suggesting that the birds harbored more than one serotype of Salmonella or there was cross-contamination occurring during processing. Overall, this study found fluctuations in Salmonella prevalence along a turkey-processing line. Following washing, Salmonella prevalence was significantly reduced, suggesting that washing is critical for Salmonella control in turkey processing and has significant application for controlling Salmonella at the postdefeathering and prechill stages where prevalence increased.

  19. Antibody-integrated and functionalized graphite-encapsulated magnetic beads, produced using ammonia gas plasma technology, for capturing Salmonella.

    Science.gov (United States)

    Sakudo, Akikazu; Chou, Han; Nagatsu, Masaaki

    2015-03-01

    Salmonella spp. is the single and most important causative agent of foodborne infections, especially involving foods such as eggs, milk and meat. To prevent infection, a reliable surveillance system is required that can quickly and sensitively detect Salmonella. Here, we describe the development of antibody-integrated magnetic beads that are functionalized by a novel strategy using ammonia gas plasma. Ammonia plasma, produced by a radio frequency (RF) power supply, was allowed to react with the surface of graphite-encapsulated magnetic beads, resulting in the introduction of amino groups. An anti-Salmonella antibody was then anchored by sulfide groups present on the protein surface to the amino groups of the magnetic beads via N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP). The potential usefulness of these magnetic beads for capturing Salmonella was examined as follows. The beads were incubated with Salmonella in liquid medium and then separated from the supernatant by applying a magnetic field. After thorough washing, adsorption of Salmonella to the beads was confirmed by immunochromatography, polymerase chain reaction and a direct culture assay. Our findings indicate that the capture and concentration of Salmonella using the antibody-integrated magnetic beads was more efficient than commercial Dynabeads® anti-Salmonella, which are conventionally used for concentrating Salmonella from liquid cultures. We believe this novel bead technology will contribute to the enhanced detection of Salmonella. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Comparison of individual, pooled, and composite fecal sampling methods for detection of Salmonella on U.S. dairy operations

    Science.gov (United States)

    The objectives of this study were to estimate the prevalence of Salmonella for individual, pooled, and composite fecal samples and to compare culture results from each sample type for determining herd Salmonella infection status and identifying Salmonella serotype(s). The USDA’s National Animal Hea...

  1. Salmonella biofilm formation on Aspergillus niger involves cellulose - chitin interactions

    Science.gov (United States)

    Salmonella cycles between host and nonhost environments, where it can become an active member of complex microbial communities. The role of fungi in the environmental adaptation of enteric pathogens remains relatively unexplored. We have discovered that S. enterica Typhimurium rapidly attaches to an...

  2. Detection and enumeration of Salmonella enteritidis in homemade ice cream associated with an outbreak: comparison of conventional and real-time PCR methods.

    Science.gov (United States)

    Seo, K H; Valentin-Bon, I E; Brackett, R E

    2006-03-01

    Salmonellosis caused by Salmonella Enteritidis (SE) is a significant cause of foodborne illnesses in the United States. Consumption of undercooked eggs and egg-containing products has been the primary risk factor for the disease. The importance of the bacterial enumeration technique has been enormously stressed because of the quantitative risk analysis of SE in shell eggs. Traditional enumeration methods mainly depend on slow and tedious most-probable-number (MPN) methods. Therefore, specific, sensitive, and rapid methods for SE quantitation are needed to collect sufficient data for risk assessment and food safety policy development. We previously developed a real-time quantitative PCR assay for the direct detection and enumeration of SE and, in this study, applied it to naturally contaminated ice cream samples with and without enrichment. The detection limit of the real-time PCR assay was determined with artificially inoculated ice cream. When applied to the direct detection and quantification of SE in ice cream, the real-time PCR assay was as sensitive as the conventional plate count method in frequency of detection. However, populations of SE derived from real-time quantitative PCR were approximately 1 log higher than provided by MPN and CFU values obtained by conventional culture methods. The detection and enumeration of SE in naturally contaminated ice cream can be completed in 3 h by this real-time PCR method, whereas the cultural enrichment method requires 5 to 7 days. A commercial immunoassay for the specific detection of SE was also included in the study. The real-time PCR assay proved to be a valuable tool that may be useful to the food industry in monitoring its processes to improve product quality and safety.

  3. Evaluation of pre-PCR processing approaches for enumeration of Salmonella enterica in naturally contaminated animal feed

    DEFF Research Database (Denmark)

    Schelin, Jenny; Andersson, Gunnar; Vigre, Håkan

    2014-01-01

    Three pre‐PCR processing strategies for the detection and/or quantification of Salmonella in naturally contaminated soya bean meal were evaluated. Methods included: (i) flotation‐qPCR [enumeration of intact Salmonella cells prior to quantitative PCR (qPCR)], (ii) MPN‐PCR (modified most probable...... be due to the presence of nonculturable Salmonella and/or a heterogeneous distribution of Salmonella in the material. The evaluated methods provide different possibilities to assess the prevalence of Salmonella in feed, together with the numbers of culturable, as well as nonculturable cells, and can...... be applied to generate data to allow more accurate quantitative microbial risk assessment for Salmonella in the feed chain....

  4. Reduction of Salmonella Shedding by Sows during Gestation in Relation to Its Fecal Microbiome

    Directory of Open Access Journals (Sweden)

    Guillaume Larivière-Gauthier

    2017-11-01

    Full Text Available Pork meat is estimated to be responsible for 10–20% of human salmonellosis cases in Europe. Control strategies at the farm could reduce contamination at the slaughterhouse. One of the targeted sectors of production is maternity, where sows could be Salmonella reservoirs. The aim of this study was to assess the dynamics of shedding of Salmonella in terms of variation in both shedding prevalence and strains excreted during gestation in Quebec’s maternity sector. The evolution of the fecal microbiota of these sows during gestation was also assessed to detect bacterial populations associated with these variations. A total of 73 sows both at the beginning and the end of the gestation were randomly selected and their fecal matter was analyzed. Salmonella detection was conducted using a method that includes two selective enrichment media (MSRV and TBG. Nine isolates per positive samples were collected. Among the 73 sows tested, 27 were shedding Salmonella. Sows in the first third of their gestation shed Salmonella significantly more frequently (21/27 than those in the last third (6/46 (χ2P < 0.05. The shedding status of 19 of the sows that were previously sampled in the first third of their gestation was followed, this time in the last third of their gestation, which confirmed reduction of shedding. Using 16S rRNA gene sequencing and qPCR, significant differences between the fecal flora of sows at the beginning and the end of the gestation, shedding Salmonella or not and with different parity number were detected. Using MaAsLin, multiple OTUs were found to be associated with the time of gestation, the status of Salmonella excretion and parity number. Some of the identified taxa could be linked to the reduction of the shedding of Salmonella at the end of gestation. In this study, we showed that the level of Salmonella shedding was variable during gestation with significantly higher shedding at the beginning rather than at the end of gestation. We

  5. Rapid assessment of assignments using plagiarism detection software.

    Science.gov (United States)

    Bischoff, Whitney R; Abrego, Patricia C

    2011-01-01

    Faculty members most often use plagiarism detection software to detect portions of students' written work that have been copied and/or not attributed to their authors. The rise in plagiarism has led to a parallel rise in software products designed to detect plagiarism. Some of these products are configurable for rapid assessment and teaching, as well as for plagiarism detection.

  6. A novel Salmonella serovar isolated from Peregrine Falcon (Falco peregrinus nestlings in Sweden: Salmonella enterica enterica serovar Pajala (Salmonella Pajala

    Directory of Open Access Journals (Sweden)

    Jorge Hernández

    2012-08-01

    Full Text Available A novel Salmonella serovar was isolated from Peregrine falcon (Falco peregrinus nestlings in northern Sweden in 2006. Three isolates of the same clone was retrieved from three falcon siblings and characterized as Salmonella enterica sub-species enterica: O-phase 13, 23:-: e, n, z 15 and the H-phase was not present. We propose the geographical name Salmonella enterica, sub-species enterica serovar Pajala to this novel Salmonella.

  7. Rapid detection of small oscillation faults via deterministic learning.

    Science.gov (United States)

    Wang, Cong; Chen, Tianrui

    2011-08-01

    Detection of small faults is one of the most important and challenging tasks in the area of fault diagnosis. In this paper, we present an approach for the rapid detection of small oscillation faults based on a recently proposed deterministic learning (DL) theory. The approach consists of two phases: the training phase and the test phase. In the training phase, the system dynamics underlying normal and fault oscillations are locally accurately approximated through DL. The obtained knowledge of system dynamics is stored in constant radial basis function (RBF) networks. In the diagnosis phase, rapid detection is implemented. Specially, a bank of estimators are constructed using the constant RBF neural networks to represent the training normal and fault modes. By comparing the set of estimators with the test monitored system, a set of residuals are generated, and the average L(1) norms of the residuals are taken as the measure of the differences between the dynamics of the monitored system and the dynamics of the training normal mode and oscillation faults. The occurrence of a test oscillation fault can be rapidly detected according to the smallest residual principle. A rigorous analysis of the performance of the detection scheme is also given. The novelty of the paper lies in that the modeling uncertainty and nonlinear fault functions are accurately approximated and then the knowledge is utilized to achieve rapid detection of small oscillation faults. Simulation studies are included to demonstrate the effectiveness of the approach.

  8. A retrospective study on salmonella infection in Danish broiler flocks

    DEFF Research Database (Denmark)

    Angen, Øystein; Skov, M. N.; Chriél, Mariann

    1996-01-01

    -year period from 1992 to 1993 in Denmark. The AM database contains information collected by the ante-mortem veterinarians, from the slaughterhouses, and from the salmonella examinations carried out at the National Veterinary Laboratory. The epidemiological unit was the individual broiler flock....... The salmonella status of the flock was determined by examining the caecal tonsils from 16 3-week-old chickens from each flock. This procedure would detect a salmonella-infected flock, with a probability above 95%, if the prevalence is above 20%. Furthermore, the structure and quality of the collected data have...... been evaluated. Fourteen variables were selected for analysis by multivariable logistic regression. An increased risk of salmonella infection in the broiler Becks was associated with the biggest hatcheries and feedmill, with an increasing number of houses on the farm, if the preceding flock...

  9. A rabbit model of non-typhoidal Salmonella bacteremia.

    Science.gov (United States)

    Panda, Aruna; Tatarov, Ivan; Masek, Billie Jo; Hardick, Justin; Crusan, Annabelle; Wakefield, Teresa; Carroll, Karen; Yang, Samuel; Hsieh, Yu-Hsiang; Lipsky, Michael M; McLeod, Charles G; Levine, Myron M; Rothman, Richard E; Gaydos, Charlotte A; DeTolla, Louis J

    2014-09-01

    Bacteremia is an important cause of morbidity and mortality in humans. In this study, we focused on the development of an animal model of bacteremia induced by non-typhoidal Salmonella. New Zealand White rabbits were inoculated with a human isolate of non-typhoidal Salmonella strain CVD J73 via the intra-peritoneal route. Blood samples were collected at specific time points and at euthanasia from infected rabbits. Additionally, tissue samples from the heart, lungs, spleen, gastrointestinal tract, liver and kidneys were obtained at euthanasia. All experimentally infected rabbits displayed clinical signs of disease (fever, dehydration, weight loss and lethargy). Tissues collected at necropsy from the animals exhibited histopathological changes indicative of bacteremia. Non-typhoidal Salmonella bacteria were detected in the blood and tissue samples of infected rabbits by microbiological culture and real-time PCR assays. The development of this animal model of bacteremia could prove to be a useful tool for studying how non-typhoidal Salmonella infections disseminate and spread in humans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Whole Genome Epidemiological Typing of Salmonella

    DEFF Research Database (Denmark)

    Leekitcharoenphon, Pimlapas

    available Salmonella enterica genomes (accessed in April 2011). A consensus tree based on variation of the core genes gives better resolution than 16S rRNA and MLST that rarely provide separation between closely related strains. The performance of the pan-genome tree which is based on the presence....../absence of all genes across genomes, is similar to the consensus tree but with higher branching confidence value. The core genes can be divided into two categories: a few highly variable genes and a larger set of conserved core genes, with low variance. These core genes are useful for investigating molecular...... evolution and remain useful as candidate genes for bacterial genome typing-even if they cannot be expected to differentiate highly clonal isolates e.g. outbreak cases of Salmonella [I]. To achieve successful ‘real-time’ monitoring and identification of outbreaks, rapid and reliable sub-typing is essential...

  11. The incidence and antibiotic resistance of Salmonella species isolated from cloacae of captive veiled chameleons

    Directory of Open Access Journals (Sweden)

    Silvia Barazorda Romero

    2015-01-01

    Full Text Available Salmonella can be present in the intestinal flora of captive reptiles without clinical disease or it can cause life threatening morbidity. The presence of certain species of Salmonella in reptiles is consistent with them being the source of contamination in some cases of human disease. Thus, Salmonella positive animals can be a potential public health concern even more when strains acquire resistance to antibiotics. The nature and extent of Salmonella harboured by different species of reptiles commonly kept in captivity are not known. The aims of this study were to analyse the incidence of Salmonella species in cloacae as an indicator of the intestinal flora in a cohort of healthy captive bred female veiled chameleons. A cloacal sample was taken from each of fifteen healthy captive bred, adult female veiled chameleons that were housed at a teaching and research clinic. Salmonella isolates were confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry and positive cases were serotyped by slide agglutination test. Salmonella organisms were detected in 12 chameleons. Eighty percent of chameleons harboured 1 of 4 subspecies and serovars of Salmonella. All strains belonged to the species enterica, predominantly subspecies enterica (91.7 % and were distributed among 4 different serovars: S. Ago (58.3 %, S. Blijdorp (16.7 %, S. Tennessee (16.7 % and S. IV 45:g,z51:- (8.3 %. Antibiotic resistance to streptomycin was detected in one of 12 Salmonella strains: S. IV 45:g,z51:-. Our study extended the list of Salmonella found in healthy captive animals and included serovars S. Tennessee and S. IV 45:g,z51:- that have been associated with morbidity in humans.

  12. Use of high-throughput mass spectrometry to elucidate host pathogen interactions in Salmonella

    Energy Technology Data Exchange (ETDEWEB)

    Rodland, Karin D.; Adkins, Joshua N.; Ansong, Charles; Chowdhury, Saiful M.; Manes, Nathan P.; Shi, Liang; Yoon, Hyunjin; Smith, Richard D.; Heffron, Fred

    2008-12-01

    Capabilities in mass spectrometry are evolving rapidly, with recent improvements in sensitivity, data analysis, and most important, from the standpoint of this review, much higher throughput allowing analysis of many samples in a single day. This short review describes how these improvements in mass spectrometry can be used to dissect host-pathogen interactions using Salmonella as a model system. This approach enabled direct identification of the majority of annotated Salmonella proteins, quantitation of expression changes under various in vitro growth conditions, and new insights into virulence and expression of Salmonella proteins within host cell cells. One of the most significant findings is that a very high percentage of the all annotated genes (>20%) in Salmonella are regulated post-transcriptionally. In addition, new and unexpected interactions have been identified for several Salmonella virulence regulators that involve protein-protein interactions, suggesting additional functions of these regulators in coordinating virulence expression. Overall high throughput mass spectrometry provides a new view of pathogen-host interactions emphasizing the protein products and defining how protein interactions determine the outcome of infection.

  13. Survey of co-infection by Salmonella and oxyurids in tortoises

    Directory of Open Access Journals (Sweden)

    Dipineto Ludovico

    2012-05-01

    Full Text Available Abstract Background Salmonella spp. and oxyurids are among the most prevalent bacterial and parasitic agents in reptiles. These organisms are routinely isolated in healthy tortoises, although heavy infections may cause significant pathology. Tortoises are considered a common source of reptile-associated salmonellosis, an important zoonosis reported worldwide. A survey of the prevalence of Salmonella spp. and oxyurids in 53 tortoises was conducted in southern Italy and a possible correlation between the two pathogens was therefore investigated. Results Salmonella spp. and oxyurids were detected with a prevalence of 49.1 and 81.1%, respectively. A significant positive correlation between Salmonella spp. and oxyurids was demonstrated. However, confounding factors related to husbandry could have been involved in determining this correlation. Conclusions Our results suggest that caution should be exercised in translocation, husbandry, and human contact with tortoises and other exotic pets. Further studies on the epidemiology, molecular characterization and pathogenesis of Salmonella and oxyurids are needed to assess the actual impact of these organisms, as single or associated infections, on tortoises and on other exotic pets.

  14. Camel as a transboundary vector for emerging exotic Salmonella serovars.

    Science.gov (United States)

    Ghoneim, Nahed H; Abdel-Moein, Khaled A; Zaher, Hala

    2017-05-01

    The current study was conducted to shed light on the role of imported camels as a transboundary vector for emerging exotic Salmonella serovars. Fecal samples were collected from 206 camels directly after slaughtering including 25 local camels and 181 imported ones as well as stool specimens were obtained from 50 slaughterhouse workers at the same abattoir. The obtained samples were cultured while Salmonella serovars were identified through Gram's stain films, biochemical tests and serotyping with antisera kit. Moreover, the obtained Salmonella serovars were examined by PCR for the presence of invA and stn genes. The overall prevalence of Salmonella serovars among the examined camels was 8.3%. Stn gene was detected in the vast majority of exotic strains (11/14) 78.6% including emerging serovars such as Salmonella Saintpaul, S. Chester, S. Typhimurium whereas only one isolate from local camels carried stn gene (1/3) 33.3%. On the other hand, none of the examined humans yielded positive result. Our findings highlight the potential role of imported camels as a transboundary vector for exotic emerging Salomenella serovars.

  15. Fate of Salmonella throughout Production and Refrigerated Storage of Tahini.

    Science.gov (United States)

    Zhang, Yangjunna; Keller, Susanne E; Grasso-Kelley, Elizabeth M

    2017-06-01

    Tahini, a low-moisture food that is made from sesame seeds, has been implicated in outbreaks of salmonellosis. In this study, the fate of Salmonella was determined through an entire process for the manufacture of tahini, including a 24-h seed soaking period before roasting, subsequent grinding, and storage at refrigeration temperature. Salmonella populations increased by more than 3 log CFU/g during a 24-h soaking period, reaching more than 7 log CFU/g. Survival of Salmonella during roasting at three temperatures, 95, 110, and 130°C, was assessed using seeds on which Salmonella was grown. Salmonella survival was impacted both by temperature and the water activity (a w ) at the beginning of the roasting period. When roasted at 130°C with a high initial a w (≥0.90) and starting Salmonella populations of ∼8.5 log CFU/g, populations quickly decreased below detection limits within the first 10 min. However, when the seeds were reduced to an a w of 0.45 before roasting at the same temperature, 3.5 log CFU/g remained on the seeds after 60 min. In subsequent storage studies, seeds were roasted at 130°C for 15 min before processing into tahini. For the storage studies, tahini was inoculated using two methods. The first method used seeds on which Salmonella was first grown before roasting. In the second method, Salmonella was inoculated into the tahini after manufacture. All tahini was stored for 119 days at 4°C. No change in Salmonella populations was recorded for tahini throughout the entire 119 days regardless of the inoculation method used. These combined results indicate the critical importance of a w during a roasting step during tahini manufacture. Salmonella that survive roasting will likely remain viable throughout the normal shelf life of tahini.

  16. Rapid Magnetic Nanobiosensor for the detection of Serratia marcescen

    Science.gov (United States)

    Aljabali, Alaa A. A.; Hussein, Emad; Aljumaili, Omar; Zoubi, Mazhar Al; Altrad, Bahaa; Albatayneh, Khaled; Al-razaq, Mutaz A. Abd

    2018-02-01

    The development of rapid, sensitive, accurate and reliable bacterial detection methods are of keen interest to ensure food safety and hospital security. Therefore, the development of a fast, specific, low-cost and trusted methods is in high demand. Magnetic nanoparticles with their unique material properties have been utilized as a tool for pathogen detection. Here, we present a novel iron oxide nanoparticles labeled with specific targeting antibodies to improve specificity and extend the use of nanoparticles as nanosensors. The results indicated that antibody labeled iron oxide platform that binds specifically to Serriata marcescenst in a straightforward method is very specific and sensitive. The system is capable of rapid and specific detection of various clinically relevant bacterial species, with sensitivity down to single bacteria. The generic platform could be used to identify pathogens for a variety of applications rapidly.

  17. Detecção de fatores de virulência de Escherichia coli e análise de Salmonella spp. em psitacídeos Detection of virulence factors in Escherichia coli and analysis of Salmonella spp. in psittacines

    Directory of Open Access Journals (Sweden)

    Isadora M. de O. Corrêa

    2013-02-01

    Full Text Available A flora entérica dos psitacídeos é composta principalmente por bactérias Gram positivas. Bactérias Gram negativas, como Escherichia coli e Salmonella spp., apresentam elevado potencial patogênico, sendo consideradas indicativo de problemas de manejo, que poderão culminar em manifestação de doenças em decorrência de fatores estressantes, dietas deficientes e superlotação, combinados com alta carga bacteriana no ambiente. O objetivo deste trabalho foi avaliar a presença de Salmonella spp., Escherichia coli e os fatores de virulência dos genes iss e iutA dos isolados de E. coli. Analisou-se um total de 44 amostras provenientes de psitacídeos criados em cativeiro, sendo estas 15 fragmentos de órgãos de aves submetidas a exame de necropsia e também 29 amostras de swabs de cloaca e inglúvio de papagaios-charão (Amazona pretrei criados em cativeiro. Nenhuma amostra foi positiva para Salmonella spp. Nas amostras de E. coli detectou-se ambos os fatores de virulência pesquisados.The enteric flora of psittacines is mainly composed of Gram positive bacteria. Gram negative bacteria, like Escherichia coli and Salmonella spp., have a high pathogenic potential and can be considerate as an indicative of management problems that may culminate in disease manifestation due to stress factors, poor diets and overcrowding, in combination with a high bacterial load on the environment. The objective of this study was evaluated the presence of Salmonella spp., Escherichia coli and the virulence genes iss and iutA from E. coli isolates. Forty-four samples were analyzed from psittacines living in captivity, which fifteen samples were from organs fragments of necropsied birds, and twenty-nine were from cloacal and crop swabs of red-spectacled parrots (Amazona pretrei keeping in captivity. No samples were positive for Salmonella spp. In the samples in which E. coli was detected, both virulence factors (genes iss and iutA were present.

  18. Impact of litter Salmonella status during feed withdrawal on Salmonella recovery from the broiler crop and ceca.

    Science.gov (United States)

    Buhr, R J; Bourassa, D V; Hinton, A; Fairchild, B D; Ritz, C W

    2017-12-01

    Research was conducted to evaluate the impact of litter Salmonella status during feed withdrawal on Salmonella recovery from the crop and ceca following feed withdrawal. In 4 experiments, pens of broilers in separate rooms were challenged with marker strains of either Salmonella Montevideo or Salmonella Heidelberg. Three d post challenge, a 12-hour feed withdrawal was initiated, and one pen of broilers was switched between rooms for each Salmonella serotype. In experiments 3 and 4, non-challenged broilers also were added to the Salmonella challenge pens. The litter of each pen was sampled before and after the feed withdrawal period, the broilers euthanized, and the crop and ceca aseptically removed for Salmonella isolation. Results showed that only the challenge Salmonella serotype was recovered from the litter in challenge pens where broilers were not moved, while both Salmonella serotypes were recovered from the litter of the switched pens. Salmonella was recovered from 56/80 crops and from 66/80 ceca of challenged broilers that remained in the challenge pens. The challenge Salmonella serotype was recovered from 50/80 crops and from 60/80 ceca, and the switched pens' litter Salmonella serotype was recovered from 19/80 crops but not from the ceca in broilers challenged with Salmonella and then switched between pens. For experiments 3 and 4, Salmonella was recovered from 19/40 crops and from only 2/40 ceca from the non-challenged broilers placed into the Salmonella challenge pens. The results from broilers that were switched between Salmonella challenge pens indicate that the recovery of Salmonella from the crop of broilers following feed withdrawal (on Salmonella-contaminated litter) appears to depend mainly on the initial challenge Salmonella (62%) and less on the litter Salmonella (24%) status during the feed withdrawal period. In contrast, only the initial challenge Salmonella was recovered from the ceca (79%) from broilers that remained in challenge pens or

  19. Physical Covering for Control of Escherichia coli O157:H7 and Salmonella spp. in Static and Windrow Composting Processes

    Science.gov (United States)

    Yossa, Irene; Macarisin, Dumitru; Millner, Patricia

    2015-01-01

    This study investigated the effect of a 30-cm covering of finished compost (FC) on survival of Escherichia coli O157:H7 and Salmonella spp. in active static and windrow composting systems. Feedstocks inoculated with E. coli O157:H7 (7.41 log CFU/g) and Salmonella (6.46 log CFU/g) were placed in biosentry tubes (7.5-cm diameter, 30-cm height) at three locations: (i and ii) two opposing sides at the interface between the FC cover layer (where present) and the feedstock material (each positioned approximately 10 cm below the pile's surface) and (iii) an internal location (top) (approximately 30 cm below the surface). On specific sampling days, surviving populations of inoculated E. coli O157:H7 and Salmonella, generic E. coli, and coliforms in compost samples were determined. Salmonella spp. were reduced significantly within 24 h in windrow piles and were below the detection limit after 3 and 7 days at internal locations of windrow and static piles containing FC covering, respectively. Likewise, E. coli O157:H7 was undetectable after 1 day in windrow piles covered with finished compost. Use of FC as a covering layer significantly increased the number of days that temperatures in the windrows remained ≥55°C at all locations and in static piles at internal locations. These time-temperature exposures resulted in rapid reduction of inoculated pathogens, and the rate of bacterial reduction was rapid in windrow piles. The sample location significantly influenced the survival of these pathogens at internal locations compared to that at interface locations of piles. Finished compost covering of compost piles aids in the reduction of pathogens during the composting process. PMID:25576620

  20. Cross contamination of turkey carcasses by Salmonella species during defeathering.

    Science.gov (United States)

    Nde, C W; McEvoy, J M; Sherwood, J S; Logue, C M

    2007-01-01

    Salmonella present on the feathers of live birds could be a source of contamination to carcass skin during defeathering. In this study, the possibility of transfer of Salmonella from the feathers of live turkeys to carcass tissue during the defeathering process at a commercial turkey processing plant was investigated. The contribution of scald water and the fingers of the picker machines to cross contamination were also examined. Over 4 visits, swab samples were collected from 174 randomly selected tagged birds before and after defeathering. Two swab samples from the fingers of the picker machines and a sample of scald water were also collected during each visit. Detection of Salmonella was carried out following standard cultural and identification methods. The DNA fingerprints obtained from pulsed field gel electrophoresis of Salmonella serotypes isolated before and after defeathering, from scald water, and from the fingers of the picker machines were compared to trace cross contamination routes. Salmonella prevalence was similar before and after defeathering during visits 2 and 3 and significantly increased after defeathering during visits 1 and 4. Over the 4 visits, all Salmonella subtypes obtained after defeathering were also isolated before defeathering. The results of this study suggest that Salmonella was transferred from the feathers to carcass skin during each visit. On each visit, the Salmonella subtypes isolated from the fingers of the picker machines were similar to subtypes isolated before and after defeathering, indicating that the fingers facilitate carcass cross contamination during defeathering. Salmonella isolated from scald water during visit 4 was related to isolates obtained before and after defeathering, suggesting that scald water is also a vehicle for cross contamination during defeathering. By using molecular subtyping, this study demonstrated the relationship between Salmonella present on the feathers of live turkeys and carcass skin after

  1. Prevalence, Virulence Genes and Antimicrobial Resistance Profiles of Salmonella Serovars from Retail Beef in Selangor, Malaysia.

    Science.gov (United States)

    Thung, Tze Y; Radu, Son; Mahyudin, Nor A; Rukayadi, Yaya; Zakaria, Zunita; Mazlan, Nurzafirah; Tan, Boon H; Lee, Epeng; Yeoh, Soo L; Chin, Yih Z; Tan, Chia W; Kuan, Chee H; Basri, Dayang F; Wan Mohamed Radzi, Che W J

    2017-01-01

    The aim of the present study was to investigate the prevalence of Salmonella spp., Salmonella Enteritidis and Salmonella Typhimurium in retail beef from different retail markets of Selangor area, as well as, to assess their pathogenic potential and antimicrobial resistance. A total of 240 retail beef meat samples (chuck = 60; rib = 60; round = 60; sirloin = 60) were randomly collected. The multiplex polymerase chain reaction (mPCR) in combination with the most probable number (MPN) method was employed to detect Salmonella spp., S . Enteritidis and S . Typhimurium in the meat samples. The prevalence of Salmonella spp., S . Enteritidis and S . Typhimurium in 240 beef meat samples were 7.50, 1.25, and 0.83%, respectively. The microbial loads of total Salmonella was found in the range of retail beef products tested were widely contaminated with multi-drug resistant (MDR) Salmonella and various virulence genes are present among the isolated Salmonella serovars.

  2. Detection of Salmonella sp. from porcine origin: a comparison between a PCR method and standard microbiological techniques Detecção de Salmonella sp. em amostras de origem suína: comparação entre a técnica da Reação em Cadeia da Polimerase e o isolamento bacteriano convencional

    Directory of Open Access Journals (Sweden)

    Sandra Maria Ferraz Castagna

    2005-12-01

    Full Text Available The aim of this study was to compare a polymerase chain reaction (PCR method combined with selective enrichment in Rappaport-Vassiliadis broth (PCR-RVB with standard microbiological techniques (SMT for the generic detection of Salmonella in samples of porcine origin. Two hundred sixty eight field samples consisting of 42 sets of pooled porcine mandibular lymph nodes and tonsils, 44 samples of intestinal content, 38 pork sausage meat samples and 144 samples of feed collected from swine farms were submitted to the PCR-RVB and SMT protocols. Salmonella was detected in 54 samples using the PCR-RVB assay and in 42 samples by SMT, three of the SMT Salmonella-positive samples (one each of S. Derby, S. Panama and S. Typhimurium being Salmonella-negative by PCR-RVB. For the PCR-RVB method 15 Salmonella-positive samples were negative by SMT, a significant difference according to the Mac Nemar's chi-squared test (p=0.0153. Subsequent serological typing of the SMT isolates showed the following Salmonella serovars, the number of positive samples being given in parentheses: Typhimurium (12; Bredeney (10; Panama (5; Saint-paul (5; Minnesota (3; Mbandaka (2; Derby (1; Enteritidis (1; Orion (1 and Salmonella sp. (2. We concluded that, although the use of both PCR-RVB and SMT increased the number of positive samples, the PCR-RVB, due to its higher sensitivity and greater speed in giving results, can be implemented to detect Salmonella in samples of porcine origin.O objetivo desse estudo foi comparar um método de Reação em Cadeia da Polimerase (PCR combinado com enriquecimento seletivo em caldo Rappaport-Vassiliadis (PCR-RVB com as técnicas de isolamento bacteriano convencional (SMT para a detecção do gênero Salmonella em amostras de origem suína. Duzentas e sessenta e oito amostras de campo, compostas por: 42 "pools" de linfonodos mandibulares e tonsilas, 44 amostras de conteúdo intestinal, 38 amostras de massa de embutidos e 144 amostras de ra

  3. The global establishment of a highly-fluoroquinolone resistant Salmonella enterica serotype Kentucky ST198 strain

    Directory of Open Access Journals (Sweden)

    Simon eLe Hello

    2013-12-01

    Full Text Available While the spread of Salmonella enterica serotype Kentucky resistant to ciprofloxacin across Africa and the Middle-East has been described recently, the presence of this strain in humans, food, various animal species (livestock, pets, and wildlife and in environment is suspected in other countries of different continents. Here, we report results of an in-depth molecular epidemiological study on a global human and non-human collection of S. Kentucky (n=70.We performed XbaI-pulsed field gel electrophoresis and multilocus sequence typing, assessed mutations in the quinolone resistance-determining regions, detected β-lactam resistance mechanisms, and screened the presence of the Salmonella genomic island 1 (SGI1. In this study, we highlight the rapid and extensive worldwide dissemination of the ciprofloxacin-resistant S. Kentucky ST198-X1-SGI1 strain since the mid-2000s in an increasingly large number of contaminated sources, including the environment. This strain has accumulated an increasing number of chromosomal and plasmid resistance determinants and has been identified in the Indian subcontinent, Southeast Asia and Europe since 2010. The second substitution at position 87 in GyrA (replacing the amino acid Asp appeared helpful for epidemiological studies to track the origin of contamination.This global study provides evidence leading to the conclusion that high-level resistance to ciprofloxacin in S. Kentucky is a simple microbiological trait that facilitates the identification of the epidemic clone of interest, ST198-X1-SGI1. Taking this into account is essential in order to detect and monitor it easily and to take rapid measures in livestock to ensure control of this infection.

  4. Characterization of multidrug-resistant Salmonella enterica serovars Indiana and Enteritidis from chickens in Eastern China.

    Directory of Open Access Journals (Sweden)

    Yan Lu

    Full Text Available A total of 310 Salmonella isolates were isolated from 6 broiler farms in Eastern China, serotyped according to the Kauffmann-White classification. All isolates were examined for susceptibility to 17 commonly used antimicrobial agents, representative isolates were examined for resistance genes and class I integrons using PCR technology. Clonality was determined by pulsed-field gel electrophoresis (PFGE. There were two serotypes detected in the 310 Salmonella strains, which included 133 Salmonella enterica serovar Indiana isolates and 177 Salmonella enterica serovar Enteritidis isolates. Antimicrobial sensitivity results showed that the isolates were generally resistant to sulfamethoxazole, ampicillin, tetracycline, doxycycline and trimethoprim, and 95% of the isolates sensitive to amikacin and polymyxin. Among all Salmonella enterica serovar Indiana isolates, 108 (81.2% possessed the blaTEM, floR, tetA, strA and aac (6'-Ib-cr resistance genes. The detected carriage rate of class 1 integrons was 66.5% (206/310, with 6 strains carrying gene integron cassette dfr17-aadA5. The increasing frequency of multidrug resistance rate in Salmonella was associated with increasing prevalence of int1 genes (rs = 0.938, P = 0.00039. The int1, blaTEM, floR, tetA, strA and aac (6'-Ib-cr positive Salmonella enterica serovar Indiana isolates showed five major patterns as determined by PFGE. Most isolates exhibited the common PFGE patterns found from the chicken farms, suggesting that many multidrug-resistant isolates of Salmonella enterica serovar Indiana prevailed in these sources. Some isolates with similar antimicrobial resistance patterns represented a variety of Salmonella enterica serovar Indiana genotypes, and were derived from a different clone.

  5. Lactobacillus bulgaricus, Lactobacillus rhamnosus and Lactobacillus paracasei Attenuate Salmonella Enteritidis, Salmonella Heidelberg and Salmonella Typhimurium Colonization and Virulence Gene Expression In Vitro.

    Science.gov (United States)

    Muyyarikkandy, Muhammed Shafeekh; Amalaradjou, Mary Anne

    2017-11-09

    Salmonella Enteritidis (SE), Salmonella Typhimurium (ST), and Salmonella Heidelberg (SH) have been responsible for numerous outbreaks associated with the consumption of poultry meat and eggs. Salmonella colonization in chicken is characterized by initial attachment to the cecal epithelial cells (CEC) followed by dissemination to the liver, spleen, and oviduct. Since cecal colonization is critical to Salmonella transmission along the food chain continuum, reducing this intestinal association could potentially decrease poultry meat and egg contamination. Hence, this study investigated the efficacy of Lactobacillus delbreuckii sub species bulgaricus (NRRL B548; LD), Lactobacillus paracasei (DUP-13076; LP), and Lactobacillus rhamnosus (NRRL B442; LR) in reducing SE, ST, and SH colonization in CEC and survival in chicken macrophages. Additionally, their effect on expression of Salmonella virulence genes essential for cecal colonization and survival in macrophages was evaluated. All three probiotics significantly reduced Salmonella adhesion and invasion in CEC and survival in chicken macrophages ( p < 0.05). Further, the probiotic treatment led to a significant reduction in Salmonella virulence gene expression ( p < 0.05). Results of the study indicate that LD, LP, and LR could potentially be used to control SE, ST, and SH colonization in chicken. However, these observations warrant further in vivo validation.

  6. Lactobacillus bulgaricus, Lactobacillus rhamnosus and Lactobacillus paracasei Attenuate Salmonella Enteritidis, Salmonella Heidelberg and Salmonella Typhimurium Colonization and Virulence Gene Expression In Vitro

    Directory of Open Access Journals (Sweden)

    Muhammed Shafeekh Muyyarikkandy

    2017-11-01

    Full Text Available Salmonella Enteritidis (SE, Salmonella Typhimurium (ST, and Salmonella Heidelberg (SH have been responsible for numerous outbreaks associated with the consumption of poultry meat and eggs. Salmonella colonization in chicken is characterized by initial attachment to the cecal epithelial cells (CEC followed by dissemination to the liver, spleen, and oviduct. Since cecal colonization is critical to Salmonella transmission along the food chain continuum, reducing this intestinal association could potentially decrease poultry meat and egg contamination. Hence, this study investigated the efficacy of Lactobacillus delbreuckii sub species bulgaricus (NRRL B548; LD, Lactobacillus paracasei (DUP-13076; LP, and Lactobacillus rhamnosus (NRRL B442; LR in reducing SE, ST, and SH colonization in CEC and survival in chicken macrophages. Additionally, their effect on expression of Salmonella virulence genes essential for cecal colonization and survival in macrophages was evaluated. All three probiotics significantly reduced Salmonella adhesion and invasion in CEC and survival in chicken macrophages (p < 0.05. Further, the probiotic treatment led to a significant reduction in Salmonella virulence gene expression (p < 0.05. Results of the study indicate that LD, LP, and LR could potentially be used to control SE, ST, and SH colonization in chicken. However, these observations warrant further in vivo validation.

  7. Individual differences in detecting rapidly presented fearful faces.

    Directory of Open Access Journals (Sweden)

    Dandan Zhang

    Full Text Available Rapid detection of evolutionarily relevant threats (e.g., fearful faces is important for human survival. The ability to rapidly detect fearful faces exhibits high variability across individuals. The present study aimed to investigate the relationship between behavioral detection ability and brain activity, using both event-related potential (ERP and event-related oscillation (ERO measurements. Faces with fearful or neutral facial expressions were presented for 17 ms or 200 ms in a backward masking paradigm. Forty-two participants were required to discriminate facial expressions of the masked faces. The behavioral sensitivity index d' showed that the detection ability to rapidly presented and masked fearful faces varied across participants. The ANOVA analyses showed that the facial expression, hemisphere, and presentation duration affected the grand-mean ERP (N1, P1, and N170 and ERO (below 20 Hz and lasted from 100 ms to 250 ms post-stimulus, mainly in theta band brain activity. More importantly, the overall detection ability of 42 subjects was significantly correlated with the emotion effect (i.e., fearful vs. neutral on ERP (r = 0.403 and ERO (r = 0.552 measurements. A higher d' value was corresponding to a larger size of the emotional effect (i.e., fearful--neutral of N170 amplitude and a larger size of the emotional effect of the specific ERO spectral power at the right hemisphere. The present results suggested a close link between behavioral detection ability and the N170 amplitude as well as the ERO spectral power below 20 Hz in individuals. The emotional effect size between fearful and neutral faces in brain activity may reflect the level of conscious awareness of fearful faces.

  8. Towards the development of a DNA-sequence based approach to serotyping of Salmonella enterica

    Directory of Open Access Journals (Sweden)

    Logan Julie MJ

    2004-08-01

    Full Text Available Abstract Background The fliC and fljB genes in Salmonella code for the phase 1 (H1 and phase 2 (H2 flagellin respectively, the rfb cluster encodes the majority of enzymes for polysaccharide (O antigen biosynthesis, together they determine the antigenic profile by which Salmonella are identified. Sequencing and characterisation of fliC was performed in the development of a molecular serotyping technique. Results FliC sequencing of 106 strains revealed two groups; the g-complex included those exhibiting "g" or "m,t" antigenic factors, and the non-g strains which formed a second more diverse group. Variation in fliC was characterised and sero-specific motifs identified. Furthermore, it was possible to identify differences in certain H antigens that are not detected by traditional serotyping. A rapid short sequencing assay was developed to target serotype-specific sequence motifs in fliC. The assay was evaluated for identification of H1 antigens with a panel of 55 strains. Conclusion FliC sequences were obtained for more than 100 strains comprising 29 different H1 alleles. Unique pyrosequencing profiles corresponding to the H1 component of the serotype were generated reproducibly for the 23 alleles represented in the evaluation panel. Short read sequence assays can now be used to identify fliC alleles in approximately 97% of the 50 medically most important Salmonella in England and Wales. Capability for high throughput testing and automation give these assays considerable advantages over traditional methods.

  9. Salmonella in the pork production chain and its impact on human health in the European Union.

    Science.gov (United States)

    Bonardi, S

    2017-06-01

    Salmonella spp. comprise the second most common food-borne pathogens in the European Union (EU). The role of pigs as carriers of Salmonella has been intensively studied both on farm and at slaughter. Salmonella infection in pigs may cause fever, diarrhoea, prostration and mortality. However, most infected pigs remain healthy carriers, and those infected at the end of the fattening period could pose a threat to human health. Contamination of pig carcasses can occur on the slaughter line, and it is linked to cross-contamination from other carcasses and the presence of Salmonella in the environment. Therefore, Salmonella serovars present on pig carcasses can be different from those detected in the same bathes on the farm. In recent years, S. Typhimurium, S. Derby and S. serotype 4,[5],12:i:- (a monophasic variant of S. Typhimurium) have been the most common serovars to be detected in pigs in EU countries, but S. Rissen, S. Infantis, S. Enteritidis and S. Brandenburg have also been reported. In humans, several cases of salmonellosis have been linked to the consumption of raw or undercooked pork and pork products. Among the main serovars of porcine origin detected in confirmed human cases, S. Typhimurium, the monophasic variant S. 4,[5],12:i:- and S. Derby are certainly the most important.

  10. Comparing human-Salmonella with plant-Salmonella protein-protein interaction predictions

    Directory of Open Access Journals (Sweden)

    Sylvia eSchleker

    2015-01-01

    Full Text Available Salmonellosis is the most frequent food-borne disease world-wide and can be transmitted to humans by a variety of routes, especially via animal and plant products. Salmonella bacteria are believed to use not only animal and human but also plant hosts despite their evolutionary distance. This raises the question if Salmonella employs similar mechanisms in infection of these diverse hosts. Given that most of our understanding comes from its interaction with human hosts, we investigate here to what degree knowledge of Salmonella-human interactions can be transferred to the Salmonella-plant system. Reviewed are recent publications on analysis and prediction of Salmonella-host interactomes. Putative protein-protein interactions (PPIs between Salmonella and its human and Arabidopsis hosts were retrieved utilizing purely interolog-based approaches in which predictions were inferred based on available sequence and domain information of known PPIs, and machine learning approaches that integrate a larger set of useful information from different sources. Transfer learning is an especially suitable machine learning technique to predict plant host targets from the knowledge of human host targets. A comparison of the prediction results with transcriptomic data shows a clear overlap between the host proteins predicted to be targeted by PPIs and their gene ontology enrichment in both host species and regulation of gene expression. In particular, the cellular processes Salmonella interferes with in plants and humans are catabolic processes. The details of how these processes are targeted, however, are quite different between the two organisms, as expected based on their evolutionary and habitat differences. Possible implications of this observation on evolution of host-pathogen communication are discussed.

  11. Characterization and Antimicrobial Resistance of Salmonella Typhimurium Isolates from Clinically Diseased Pigs in Korea.

    Science.gov (United States)

    Oh, Sang-Ik; Kim, Jong Wan; Chae, Myeongju; Jung, Ji-A; So, Byungjae; Kim, Bumseok; Kim, Ha-Young

    2016-11-01

    This study investigated the prevalence of Salmonella enterica serovar and antimicrobial resistance in Salmonella Typhimurium isolates from clinically diseased pigs collected from 2008 to 2014 in Korea. Isolates were also characterized according to the presence of antimicrobial resistance genes and pulsed-field gel electrophoresis patterns. Among 94 Salmonella isolates, 81 (86.2%) were identified as being of the Salmonella Typhimurium serotype, followed by Salmonella Derby (6 of 94, 6.4%), Salmonella 4,[5],12:i:- (4 of 94, 4.3%), Salmonella Enteritidis (2 of 94, 2.1%), and Salmonella Brandenburg (1 of 94, 1.1%). The majority of Salmonella Typhimurium isolates were resistant to tetracycline (92.6%), followed by streptomycin (88.9%) and ampicillin (80.2%). Overall, 96.3% of Salmonella Typhimurium isolates showed multidrug-resistant phenotypes and commonly harbored the resistance genes bla TEM (64.9%), flo (32.8%), aadA (55.3%), strA (58.5%), strB (58.5%), sulII (53.2%), and tetA (61.7%). The pulsed-field gel electrophoresis analysis of 45 Salmonella Typhimurium isolates from individual farms revealed 27 distinct patterns that formed one major and two minor clusters in the dendrogram analysis, suggesting that most of the isolates (91.1%) from diseased pigs were genetically related. These findings can assist veterinarians in the selection of appropriate antimicrobial agents to combat Salmonella Typhimurium infections in pigs. Furthermore, they highlight the importance of continuous surveillance of antimicrobial resistance and genetic status in Salmonella Typhimurium for the detection of emerging resistance trends.

  12. Lighting during grow-out and Salmonella in broiler flocks

    Directory of Open Access Journals (Sweden)

    Bailey Richard H

    2010-06-01

    Full Text Available Abstract Background Lighting is used during conventional broiler grow-out to modify bird behaviour to reach the goals of production and improve bird welfare. The protocols for lighting intensity vary. In a field study, we evaluated if the lighting practices impact the burden of Salmonella in broiler flocks. Methods Conventional grow-out flocks reared in the states of Alabama, Mississippi and Texas, USA in 2003 to 2006 were sampled 1 week before harvest (n = 58 and upon arrival for processing (n = 56 by collecting feathered carcass rinsate, crop and one cecum from each of 30 birds, and during processing by collecting rinsate of 30 carcasses at pre-chilling (n = 56 and post-chilling points (n = 54. Litter samples and drag swabs of litter were collected from the grow-out houses after bird harvest (n = 56. Lighting practices for these flocks were obtained with a questionnaire completed by the growers. Associations between the lighting practices and the burden of Salmonella in the flocks were tested while accounting for variation between the grow-out farms, their production complexes and companies. Results Longer relative duration of reduced lights during the grow-out period was associated with reduced detection of Salmonella on the exterior of birds 1 week before harvest and on the broiler carcasses at the post-chilling point of processing. In addition, starting reduced lights for ≥18 hours per day later in the grow-out period was associated with decreased detection of Salmonella on the exterior of broilers arriving for processing and in the post-harvest drag swabs of litter from the grow-out house. Conclusions The results of this field study show that lighting practices implemented during broiler rearing can impact the burden of Salmonella in the flock. The underlying mechanisms are likely to be interactive.

  13. Biofilm formation by Salmonella Enteritidis and Salmonella Typhimurium isolated from avian sources is partially related with their in vivo pathogenicity.

    Science.gov (United States)

    Borges, Karen Apellanis; Furian, Thales Quedi; de Souza, Sara Neves; Menezes, Rafaela; de Lima, Diane Alves; Fortes, Flávia Bornancini Borges; Salle, Carlos Tadeu Pippi; Moraes, Hamilton Luiz Souza; Nascimento, Vladimir Pinheiro

    2018-03-22

    Salmonella Enteritidis and Salmonella Typhimurium are among the most prevalent serotypes isolated from salmonellosis outbreaks and poultry. Salmonella spp. have the capacity to form biofilms on several surfaces, which can favour survival in hostile environments, such as slaughterhouses. Salmonella strains present differences in pathogenicity. However, there is little information regarding the pathogenicity of S. Enteritidis and S. Typhimurium isolated from avian sources and their relationship to biofilm production. The aim of this study was to use a novel pathogenicity index and a biofilm production assay to evaluate their relationships within these serotypes. In addition, we detected the presence of the spiA and agfA genes in these strains. Biofilm formation was investigated at two temperatures (37 °C and 28 °C) using microtiter plate assay, and the results were compared with the individual pathogenicity index of each strain. PCR was used to detect spiA and agfA, virulence genes associated with biofilm production. S. Enteritidis and S. Typhimurium strains were capable of producing biofilm at 37 °C and 28 °C. Sixty-two percent and 59.5% of S. Enteritidis and 73.8% and 46.2% of S. Typhimurium produced biofilm at 37 °C and 28 °C, respectively. Biofilm production at 37 °C was significantly higher in both serotypes. Only S. Enteritidis was capable of adhering strongly at both temperatures. Biofilm production was related to pathogenicity index only at 28 °C for S. Enteritidis. spiA and agfA were found in almost all strains and were not statistically associated with biofilm production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Salmonella risk to consumers via pork is related to the Salmonella prevalence in pig feed.

    Science.gov (United States)

    Rönnqvist, M; Välttilä, V; Ranta, J; Tuominen, P

    2018-05-01

    Pigs are an important source of human infections with Salmonella, one of the most common causes of sporadic gastrointestinal infections and foodborne outbreaks in the European region. Feed has been estimated to be a significant source of Salmonella in piggeries in countries of a low Salmonella prevalence. To estimate Salmonella risk to consumers via the pork production chain, including feed production, a quantitative risk assessment model was constructed. The Salmonella prevalence in feeds and in animals was estimated to be generally low in Finland, but the relative importance of feed as a source of Salmonella in pigs was estimated as potentially high. Discontinuation of the present strict Salmonella control could increase the risk of Salmonella in slaughter pigs and consequent infections in consumers. The increased use of low risk and controlled feed ingredients could result in a consistently lower residual contamination in pigs and help the tracing and control of the sources of infections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. 78 FR 42526 - Salmonella

    Science.gov (United States)

    2013-07-16

    ...] Salmonella Contamination of Dry Dog Food; Withdrawal of Compliance Policy Guide AGENCY: Food and Drug... the withdrawal of the compliance policy guide (CPG) entitled ``Sec. 690.700 Salmonella Contamination... entitled ``Sec. 690.700 Salmonella Contamination of Dry Dog Food (CPG 690.700)'' on October 1, 1980. CPG...

  16. Multilocus Sequence Typing of the Clinical Isolates of Salmonella Enterica Serovar Typhimurium in Tehran Hospitals

    Directory of Open Access Journals (Sweden)

    Reza Ranjbar

    2017-09-01

    Full Text Available Background: Salmonella enterica serovar Typhimurium is one of the most important serovars of Salmonella enterica and is associated with human salmonellosis worldwide. Many epidemiological studies have focused on the characteristics of Salmonella Typhimurium in many countries as well as in Asia. This study was conducted to investigate the genetic characteristics of Salmonella Typhimurium using multilocus sequence typing (MLST. Methods: Clinical samples (urine, blood, and stool were collected from patients, who were admitted to 2 hospitals in Tehran between April and September, 2015. Salmonella Typhimurium strains were identified by conventional standard biochemical and serological testing. The antibiotic susceptibility patterns of the Salmonella Typhimurium isolates against 16 antibiotics was determined using the disk diffusion assay. The clonal relationship between the strains of Salmonella Typhimurium was analyzed using MLST. Results: Among the 68 Salmonella isolates, 31% (n=21 were Salmonella Typhimurium. Of the total 21 Salmonella Typhimurium isolates, 76% (n=16 were multidrug-resistant and showed resistance to 3 or more antibiotic families. The Salmonella Typhimurium isolates were assigned to 2 sequence types: ST19 and ST328. ST19 was more common (86%. Both sequence types were further assigned to 1 eBURST group. Conclusion: This is the first study of its kind in Iran to determine the sequence types of the clinical isolates of Salmonella Typhimurium in Tehran hospitals using MLST. ST19 was detected as the major sequence type of Salmonella Typhimurium.

  17. Prevalence and antimicrobial susceptibility of Salmonella and Shigella spp. among children with gastroenteritis in an Iranian referral hospital.

    Science.gov (United States)

    Mahmoudi, Shima; Pourakbari, Babak; Moradzadeh, Mina; Eshaghi, Hamid; Ramezani, Amitis; Haghi Ashtiani, Mohammad Taghi; Keshavarz Valian, Sepideh; Mamishi, Setareh

    2017-08-01

    Gastroenteritis is one of the leading cause of illnesses through the world, especially in developing countries.Salmonella and Shigella infections are considered as the main public health problems in children. The aim of this study was to detect the prevalence and antimicrobial susceptibility of Salmonella and Shigella spp. among children with gastroenteritis in an Iranian referral hospital. During April 2013 to April 2014, all medical records of children with gastroenteritis admitted to a pediatric medical center were evaluated. Positive stool cultures of children were evaluated and frequency of Salmonella and Shigella spp. and their antimicrobial susceptibility were detected. In this study, 676 patients with the mean age of 24.94 months were enrolled. Eighty-eight (42%) Salmonella spp., 85 (40%) Shigella spp., 33 (16%) E. coli and 5(2%) candida albicans were isolated from 211 positive stool cultures. Among 85 Shigella spp. isolates, S. sonnei, S. flexneri and other Shigella spp. were isolated from 39 (46%) isolates, 36(42%) and 10(12%), respectively. Among 88 isolated Salmonella spp., 36 (41%) isolates were Salmonella Serogroup D, 26 (30%) were Salmonella Serogroup B, 20 (23%) isolates were Salmonella Serogroup C and 6 (7%) were other Salmonella spp. isolates. Thirty-eight percent of Salmonella serogroup B were resistant to nalidixic acid, while higher frequency of nalidixic acid resistant was found in Salmonella serogroup C and Salmonella serogroup D. The higher frequency of ampicillin resistant was found in Shigella spp. than Salmonella spp. High frequency of cefotaxime resistant was seen in S. sonei and S. flexneri (77% and 56%, respectively), whereas more than 90% of Salmonella serogroup B, C and D were susceptible to this antibiotic. In conclusion, Shigella and Salmonella serogroups can be considered as important etiological agents of acute diarrhea in children. Since the prevalence of antibiotic resistance is increasing in recent years in Iran, further

  18. Salmonella biofilms

    NARCIS (Netherlands)

    Castelijn, G.A.A.

    2013-01-01

    Biofilm formation by Salmonellaspp. is a problem in the food industry, since biofilms may act as a persistent source of product contamination. Therefore the aim of this study was to obtain more insight in the processes involved and the factors contributing to Salmonellabiofilm

  19. Use of Attenuated but Metabolically Competent Salmonella as a Probiotic To Prevent or Treat Salmonella Infection

    Science.gov (United States)

    Sabag-Daigle, Anice; Blunk, Henry M.; Gonzalez, Juan F.; Steidley, Brandi L.; Boyaka, Prosper N.

    2016-01-01

    Salmonella enterica is among the most burdensome of foodborne disease agents. There are over 2,600 serovars that cause a range of disease manifestations ranging from enterocolitis to typhoid fever. While there are two vaccines in use in humans to protect against typhoid fever, there are none that prevent enterocolitis. If vaccines preventing enterocolitis were to be developed, they would likely protect against only one or a few serovars. In this report, we tested the hypothesis that probiotic organisms could compete for the preferred nutrient sources of Salmonella and thus prevent or treat infection. To this end, we added the fra locus, which encodes a utilization pathway for the Salmonella-specific nutrient source fructose-asparagine (F-Asn), to the probiotic bacterium Escherichia coli Nissle 1917 (Nissle) to increase its ability to compete with Salmonella in mouse models. We also tested a metabolically competent, but avirulent, Salmonella enterica serovar Typhimurium mutant for its ability to compete with wild-type Salmonella. The modified Nissle strain became more virulent and less able to protect against Salmonella in some instances. On the other hand, the modified Salmonella strain was safe and effective in preventing infection with wild-type Salmonella. While we tested for efficacy only against Salmonella Typhimurium, the modified Salmonella strain may be able to compete metabolically with most, if not all, Salmonella serovars, representing a novel approach to control of this pathogen. PMID:27185789

  20. Amperometric immunosensor for rapid detection of Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Hiraiwa, Morgan; Lee, Hyun-Boo; Inoue, Shinnosuke; Chung, Jae-Hyun; Kim, Jong-Hoon; Becker, Annie L; Weigel, Kris M; Cangelosi, Gerard A; Lee, Kyong-Hoon

    2015-01-01

    Tuberculosis (TB) has been a major public health problem, which can be better controlled by using accurate and rapid diagnosis in low-resource settings. A simple, portable, and sensitive detection method is required for point-of-care (POC) settings. This paper studies an amperometric biosensor using a microtip immunoassay for a rapid and low-cost detection of Mycobacterium tuberculosis (MTB) in sputum. MTB in sputum is specifically captured on the functionalized microtip surface and detected by electric current. According to the numerical study, the current signal on the microtip surface is linearly changed with increasing immersion depth. Using a reference microtip, the immersion depth is compensated for a sensing microtip. On the microtip surface, target bacteria are concentrated and organized by a coffee-ring effect, which amplifies the electric current. To enhance the signal-to-noise ratio, both the sample processing and rinsing steps are presented with the use of deionized water as a medium for the amperometric measurement. When applied to cultured MTB cells spiked into human sputum, the detection limit was 100 CFU mL −1 , comparable to a more labor-intensive fluorescence detection method reported previously. (paper)

  1. Amperometric immunosensor for rapid detection of Mycobacterium tuberculosis

    Science.gov (United States)

    Hiraiwa, Morgan; Kim, Jong-Hoon; Lee, Hyun-Boo; Inoue, Shinnosuke; Becker, Annie L.; Weigel, Kris M.; Cangelosi, Gerard A.; Lee, Kyong-Hoon; Chung, Jae-Hyun

    2015-05-01

    Tuberculosis (TB) has been a major public health problem, which can be better controlled by using accurate and rapid diagnosis in low-resource settings. A simple, portable, and sensitive detection method is required for point-of-care (POC) settings. This paper studies an amperometric biosensor using a microtip immunoassay for a rapid and low-cost detection of Mycobacterium tuberculosis (MTB) in sputum. MTB in sputum is specifically captured on the functionalized microtip surface and detected by electric current. According to the numerical study, the current signal on the microtip surface is linearly changed with increasing immersion depth. Using a reference microtip, the immersion depth is compensated for a sensing microtip. On the microtip surface, target bacteria are concentrated and organized by a coffee-ring effect, which amplifies the electric current. To enhance the signal-to-noise ratio, both the sample processing and rinsing steps are presented with the use of deionized water as a medium for the amperometric measurement. When applied to cultured MTB cells spiked into human sputum, the detection limit was 100 CFU mL-1, comparable to a more labor-intensive fluorescence detection method reported previously.

  2. Rapid detection of EBOLA VP40 in microchip immunofiltration assay

    Science.gov (United States)

    Miethe, Peter; Gary, Dominik; Hlawatsch, Nadine; Gad, Anne-Marie

    2015-05-01

    In the spring of 2014, the Ebola virus (EBOV) strain Zaire caused a dramatic outbreak in several regions of West Africa. The RT-PCR and antigen capture diagnostic proved to be effective for detecting EBOV in blood and serum. In this paper, we present data of a rapid antigen capture test for the detection of VP40. The test was performed in a microfluidic chip for immunofiltration analysis. The chip integrates all necessary assay components. The analytical sensitivity of the rapid test was 8 ng/ml for recombinant VP40. In serum and whole blood samples spiked with virus culture material, the detection limit was 2.2 x 102 PFU/ml. The performance data of the rapid test (15 min) are comparable to that of the VP40 laboratory ELISA.

  3. Genomic fingerprinting and serotyping of Salmonella from Galápagos iguanas demonstrates island differences in strain diversity.

    Science.gov (United States)

    Wheeler, Emily; Cann, Isaac K O; Mackie, Roderick I

    2011-04-01

    Salmonella carriage patterns in wild and captive reptiles suggest that both geographical proximity and host ecological differences may determine bacterial diversity among reptile populations. In this study, we explore the relative importance of these factors on Salmonella diversity in free-living Galápagos iguanas. We isolated Salmonella enterica from marine iguanas (Amblyrhynchus cristatus) and land iguanas (Conolophus subcristatus and C. pallidus) living on two islands (Plaza Sur and Santa Fe). We evaluated Salmonella population patterns using genomic fingerprints, sequence typing and serotyping. Rep-PCR fingerprinting revealed significant grouping of isolates by iguana population. Island residence had the strongest effect on isolate similarity, but a smaller divergence among Salmonella isolates from different iguana ecotypes (land versus marine) was detected within each island. In contrast, sequence typing detected a marginal difference in isolate genotypes between islands. Sequence types corresponded strongly to serotype identity, with both islands hosting a unique serovar pool. Our findings suggest that both geographical location and host ecotype differences (either from within host strain selection or from differences in habitat use) contribute to Salmonella population patterns in the Galápagos Islands. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  4. Prevalence of Extended-Spectrum β-Lactamases CTX-M-8 and CTX-M-2-Producing Salmonella Serotypes from Clinical and Nonhuman Isolates in Brazil.

    Science.gov (United States)

    Fernandes, Sueli Aparecida; Camargo, Carlos Henrique; Francisco, Gabriela Rodrigues; Bueno, Maria Fernanda Campagnari; Garcia, Doroti Oliveira; Doi, Yohei; Casas, Monique Ribeiro Tiba

    2017-07-01

    We characterized extended-spectrum β-lactamases (ESBL) enzymes among Salmonella strains isolated in Brazil from 2009 to 2014. Salmonella recovered from both clinical and nonhuman (food, poultry, and environment) sources were subjected to antimicrobial susceptibility testing. β-lactamases genes were detected by polymerase chain reaction/sequencing; plasmid profiles and transferability were assessed by S1-pulsed field gel electrophoresis (PFGE). Genetic diversity was evaluated by XbaI-PFGE. Out of 630 Salmonella strains screened, 46 displayed ESBL phenotype, distributed across 11 different serotypes. bla CTX-M-8 and bla CTX-M-2 genes were detected at frequencies of 47% and 41%, respectively. bla SHV-5 and bla SHV-2 were also detected but in lower frequencies (4%, 2%). bla TEM-1 gene was detected in 22% of the strains. Most of the ESBL genes were transferable by conjugation, and the respective bla ESBL gene was detected in the recipient strain, indicating the location of ESBL determinants on transferable plasmids. XbaI-PFGE revealed genomic diversity of Salmonella Typhimurium bearing bla CTX-M-2 , bla CTX-M-8 , bla TEM-1 , and bla SHV-2 genes. Salmonella Muenchen (harboring bla CTX-M-2 ) and Salmonella Corvallis (bla CTX-M-8 and bla SHV-5 ) showed clonal relatedness within respective serotypes. Our findings underscore the occurrence of diverse ESBL genes in several Salmonella serotypes, reinforcing the need for continuous surveillance of resistance genes circulating in human and nonhuman sources.

  5. Using current molecular techniques for rapid differentiation of ...

    African Journals Online (AJOL)

    Typhoid fever is responsible for the deaths of many people annually. However, conventional and timeconsuming detection methods for Salmonella Typhi still dominate. By using a molecular based approach, it was possible to identify Salmonella Typhi by amplifying two specific genes (viaB and tyv) and by using RFLP ...

  6. Colicinogeny in Salmonella serovars isolated in Brazil

    Directory of Open Access Journals (Sweden)

    Leila Carvalho Campos

    1988-06-01

    Full Text Available A study of colicinogeny was made in 748 strains of Salmonella (97 serovars isolated from different sources; human (291, animal (119, environmental (141, food (102 and animal feed (95. Colicin production was detected in 64 strains (8.6%, particularly isolated from foods (30.4%. Col. E1 (53 and Ia (44 were the most frequently observed, especially in S. agona for environment and food sources. Col V production was identified in 5 strains of S. typhimurium within 8 producer cultures isolated from humans. Its relationship with the sources and serovars of Salmonella are discussed.Investigou-se a produção de colicina em 748 amostras de Salmonella (97 sorovares advindas de díferentes fontes: humana (291, animal (119, ambiental (141, de alimentos (102 e rações (95. Detectaram-se 64 amostras (8,6% colicinogênicas, particularmente isoladas de alimentos (30,4%. ColE1 (53 e Ia (44 foram as mais freqüentes, especialmente no sorovar S, agona, de origem ambiental e de alimentos. Identificou-se também a produção de col V em 5 amostras de S. typhimurium dentre 8 culturas produtoras de origem humana. Discute-se a relação entre a capacidade colicinogênica e as fontes e sorovares de Salmonella.

  7. Immunomagnetic separation and detection of Salmonella cells using newly designed carrriers

    Czech Academy of Sciences Publication Activity Database

    Španová, A.; Rittich, B.; Horák, Daniel; Lenfeld, Jiří; Prodělalová, J.; Sučiková, J.; Štrumcová, S.

    2003-01-01

    Roč. 1009, 1-2 (2003), s. 215-221 ISSN 0021-9673 R&D Projects: GA ČR GA203/00/1339 Institutional research plan: CEZ:AV0Z4050913 Keywords : Salmonella spp. * magnetic sorbents * immobilized proteins Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.922, year: 2003

  8. Assessment and comparative analysis of a rapid diagnostic test (Tubex® for the diagnosis of typhoid fever among hospitalized children in rural Tanzania

    Directory of Open Access Journals (Sweden)

    Shoo Aikande

    2011-05-01

    Full Text Available Abstract Background Typhoid fever remains a significant health problem in many developing countries. A rapid test with a performance comparable to that of blood culture would be highly useful. A rapid diagnostic test for typhoid fever, Tubex®, is commercially available that uses particle separation to detect immunoglobulin M directed towards Salmonella Typhi O9 lipopolysaccharide in sera. Methods We assessed the sensitivity and specificity of the Tubex test among Tanzanian children hospitalized with febrile illness using blood culture as gold standard. Evaluation was done considering blood culture confirmed S. Typhi with non-typhi salmonella (NTS and non - salmonella isolates as controls as well as with non-salmonella isolates only. Results Of 139 samples tested with Tubex, 33 were positive for S. Typhi in blood culture, 49 were culture-confirmed NTS infections, and 57 were other non-salmonella infections. Thirteen hemolyzed samples were excluded. Using all non - S. Typhi isolates as controls, we showed a sensitivity of 79% and a specificity of 89%. When the analysis was repeated excluding NTS from the pool of controls we showed a sensitivity of 79% and a specificity of 97%. There was no significant difference in the test performance using the two different control groups (p > 0.05. Conclusion This first evaluation of the Tubex test in an African setting showed a similar performance to those seen in some Asian settings. Comparison with the earlier results of a Widal test using the same samples showed no significant difference (p > 0.05 for any of the performance indicators, irrespective of the applied control group.

  9. Improvement of sampling plans for Salmonella detection in pooled table eggs by use of real-time PCR.

    Science.gov (United States)

    Pasquali, Frédérique; De Cesare, Alessandra; Valero, Antonio; Olsen, John Emerdhal; Manfreda, Gerardo

    2014-08-01

    Eggs and egg products have been described as the most critical food vehicles of salmonellosis. The prevalence and level of contamination of Salmonella on table eggs are low, which severely affects the sensitivity of sampling plans applied voluntarily in some European countries, where one to five pools of 10 eggs are tested by the culture based reference method ISO 6579:2004. In the current study we have compared the testing-sensitivity of the reference culture method ISO 6579:2004 and an alternative real-time PCR method on Salmonella contaminated egg-pool of different sizes (4-9 uninfected eggs mixed with one contaminated egg) and contamination levels (10°-10(1), 10(1)-10(2), 10(2)-10(3)CFU/eggshell). Two hundred and seventy samples corresponding to 15 replicates per pool size and inoculum level were tested. At the lowest contamination level real-time PCR detected Salmonella in 40% of contaminated pools vs 12% using ISO 6579. The results were used to estimate the lowest number of sample units needed to be tested in order to have a 95% certainty not falsely to accept a contaminated lot by Monte Carlo simulation. According to this simulation, at least 16 pools of 10 eggs each are needed to be tested by ISO 6579 in order to obtain this confidence level, while the minimum number of pools to be tested was reduced to 8 pools of 9 eggs each, when real-time PCR was applied as analytical method. This result underlines the importance of including analytical methods with higher sensitivity in order to improve the efficiency of sampling and reduce the number of samples to be tested. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Prevalence of Salmonella in Australian reptiles.

    Science.gov (United States)

    Scheelings, T Franciscus; Lightfoot, Dianne; Holz, Peter

    2011-01-01

    From January 2007 until June 2008, 504 reptiles of four families and 57 species were examined for Salmonella by using cloacal or intestinal swabs. Salmonella was identified in 139 (28%) of the 504 animals tested. Of the 504 reptiles examined, 210 were captive and 294 were wild. Ninety-eight (47%) of the captive reptiles were shedding Salmonella at the time of sampling. In contrast, only 41 (14%) of the wild reptiles were shedding Salmonella. The higher prevalence of Salmonella in captive reptiles was statistically significant (Preptiles in Australia are not natural carriers of Salmonella and that diet and captivity may influence Salmonella excretion in other species.

  11. Performing Comparative Peptidomics Analyses of Salmonella from Different Growth Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Adkins, Joshua N.; Mottaz, Heather; Metz, Thomas O.; Ansong, Charles K.; Manes, Nathan P.; Smith, Richard D.; Heffron, Fred

    2010-01-08

    Host–pathogen interactions are complex competitions during which both the host and the pathogen adapt rapidly to each other in order for one or the other to survive. Salmonella enterica serovar Typhimurium is a pathogen with a broad host range that causes a typhoid fever-like disease in mice and severe food poisoning in humans. The murine typhoid fever is a systemic infection in which S.typhimurium evades part of the immune system by replicating inside macrophages and other cells. The transition from a foodborne contaminant to an intracellular pathogen must occur rapidly in multiple,ordered steps in order for S. typhimurium to thrive within its host environment. Using S. typhimurium isolated from rich culture conditions and from conditions that mimic the hostile intracellular environment of the host cell, a native low molecular weight protein fraction, or peptidome, was enriched from cell lysates by precipitation with organic solvents. The enriched peptidome was analyzed by both LC–MS/MS and LC–MS-based methods, although several other methods are possible. Pre-fractionation of peptides allowed identification of small proteins and protein degradation products that would normally be overlooked. Comparison of peptides present in lysates prepared from Salmonella grown under different conditions provided a unique insight into cellular degradation processes as well as identification of novel peptides encoded in the genome but not annotated. The overall approach is detailed here as applied to Salmonella and is adaptable to a broad range of biological systems.

  12. lac repressor is an antivirulence factor of Salmonella enterica: its role in the evolution of virulence in Salmonella.

    Directory of Open Access Journals (Sweden)

    Sandeepa M Eswarappa

    Full Text Available The genus Salmonella includes many pathogens of great medical and veterinary importance. Bacteria belonging to this genus are very closely related to those belonging to the genus Escherichia. lacZYA operon and lacI are present in Escherichia coli, but not in Salmonella enterica. It has been proposed that Salmonella has lost lacZYA operon and lacI during evolution. In this study, we have investigated the physiological and evolutionary significance of the absence of lacI in Salmonella enterica. Using murine model of typhoid fever, we show that the expression of LacI causes a remarkable reduction in the virulence of Salmonella enterica. LacI also suppresses the ability of Salmonella enterica to proliferate inside murine macrophages. Microarray analysis revealed that LacI interferes with the expression of virulence genes of Salmonella pathogenicity island 2. This effect was confirmed by RT-PCR and Western blot analysis. Interestingly, we found that SBG0326 of Salmonella bongori is homologous to lacI of Escherichia coli. Salmonella bongori is the only other species of the genus Salmonella and it lacks the virulence genes of Salmonella pathogenicity island 2. Overall, our results demonstrate that LacI is an antivirulence factor of Salmonella enterica and suggest that absence of lacI has facilitated the acquisition of virulence genes of Salmonella pathogenicity island 2 in Salmonella enterica making it a successful systemic pathogen.

  13. Inactivation of Salmonella spp. on tomatoes by plant molecules.

    Science.gov (United States)

    Mattson, Tyler E; Johny, Anup Kollanoor; Amalaradjou, Mary Anne Roshni; More, Karen; Schreiber, David T; Patel, Jitu; Venkitanarayanan, Kumar

    2011-01-05

    The efficacy of carvacrol (CAR), trans-cinnamaldehyde (TC), eugenol (EUG) and β-resorcylic acid (BR) as a wash treatment for reducing Salmonella spp. on tomatoes was investigated. Plum tomatoes inoculated with a six-serotype mixture of Salmonella (10⁸CFU) were subjected to washing in sterile deionized water (control) or deionized water containing chlorine (100 ppm), CAR (0.25 and 0.75%), TC (0.5 and 0.75%), EUG (0.25 and 0.75%), or BR (0.75 and 1.0%) for 15 sec, 1 min, and 3 min. The plant molecules were more effective (Pwashing in water and chlorine. Both concentrations of CAR and TC, and 0.75% EUG decreased Salmonella counts on tomatoes by~6.0 log CFU/ml at 1 min. Both concentrations of BR decreased the pathogen on tomatoes to undetectable levels at 3 min of exposure. Washing of tomatoes in deionized water and chlorine for 3 min reduced Salmonella by ca. 2.0 and 4.0 log CFU/ml, respectively. No Salmonella was detected in the wash water containing the plant molecules or chlorine, whereas a substantial population of the pathogen survived in the control wash water. Moreover, none of the dipping treatments had any effect on the red color of tomatoes (P>0.05). Results indicate that CAR, TC, EUG and BR could effectively be used to kill Salmonella on tomatoes, but additional studies on sensory and quality characteristics of tomatoes treated with plant molecules are warranted. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Identification of a Plasmid-Mediated Quinolone Resistance Gene in Salmonella Isolates from Texas Dairy Farm Environmental Samples.

    Science.gov (United States)

    Cummings, K J; Rodriguez-Rivera, L D; Norman, K N; Ohta, N; Scott, H M

    2017-06-01

    A recent increase in plasmid-mediated quinolone resistance (PMQR) has been detected among Salmonella isolated from humans in the United States, and it is necessary to determine the sources of human infection. We had previously isolated Salmonella from dairy farm environmental samples collected in Texas, and isolates were tested for anti-microbial susceptibility. Two isolates, serotyped as Salmonella Muenster, showed the discordant pattern of nalidixic acid susceptibility and intermediate susceptibility to ciprofloxacin. For this project, whole-genome sequencing of both isolates was performed to detect genes associated with quinolone resistance. The plasmid-mediated qnrB19 gene and IncR plasmid type were identified in both isolates. To our knowledge, this is the first report of PMQR in Salmonella isolated from food animals or agricultural environments in the United States. © 2016 Blackwell Verlag GmbH.

  15. Oral immunisation of laying hens with the live vaccine strains of TAD Salmonella vac E and TAD Salmonella vac T reduces internal egg contamination with Salmonella Enteritidis.

    Science.gov (United States)

    Gantois, Inne; Ducatelle, Richard; Timbermont, Leen; Boyen, Filip; Bohez, Lotte; Haesebrouck, Freddy; Pasmans, Frank; van Immerseel, Filip

    2006-09-11

    Eggs are a major source of human infections with Salmonella. Therefore controlling egg contamination in laying hen flocks is one of the main targets for control programmes. A study was carried out to assess the effect of oral vaccination with TAD Salmonella vac E, TAD Salmonella vac T and with both vaccines TAD Salmonella vac E and TAD Salmonella vac T, on colonization of the reproductive tract and internal egg contamination of laying hens with Salmonella Enteritidis. Three groups of 30 laying hens were vaccinated at 1 day, 6 weeks and 16 weeks of age with either one of the vaccine strains, or a combination of both vaccine strains, while a fourth group was left unvaccinated. At 24 weeks of age, the birds were intravenously challenged with 0.5 ml containing 5 x 10(7)cfu Salmonella Enteritidis PT4 S1400/94. The number of oviducts from which Salmonella was isolated, was significantly lower in the vaccinated than in the non-vaccinated hens at 3 weeks post-challenge. Significantly less egg contents were Salmonella positive in the birds vaccinated with TAD Salmonella vac E or TAD Salmonella vac T (12/105 batches of eggs in both groups) than in the unvaccinated birds (28/105 batches of eggs). Internal egg contamination in the hens vaccinated with both TAD Salmonella vac E and TAD Salmonella vac T was even more reduced, as over the whole experiment, only one batch of eggs was positive. In conclusion, these data indicate that vaccination of laying hens with these live vaccines could be considered as a valuable tool in controlling internal egg contamination.

  16. Diversification of the Salmonella fimbriae: a model of macro- and microevolution.

    Directory of Open Access Journals (Sweden)

    Min Yue

    Full Text Available Bacteria of the genus Salmonella comprise a large and evolutionary related population of zoonotic pathogens that can infect mammals, including humans and domestic animals, birds, reptiles and amphibians. Salmonella carries a plethora of virulence genes, including fimbrial adhesins, some of them known to participate in mammalian or avian host colonization. Each type of fimbria has its structural subunit and biogenesis genes encoded by one fimbrial gene cluster (FGC. The accumulation of new genomic information offered a timely opportunity to better evaluate the number and types of FGCs in the Salmonella pangenome, to test the use of current classifications based on phylogeny, and to infer potential correlations between FGC evolution in various Salmonella serovars and host niches. This study focused on the FGCs of the currently deciphered 90 genomes and 60 plasmids of Salmonella. The analysis highlighted a fimbriome consisting of 35 different FGCs, of which 16 were new, each strain carrying between 5 and 14 FGCs. The Salmonella fimbriome was extremely diverse with FGC representatives in 8 out of 9 previously categorized fimbrial clades and subclades. Phylogenetic analysis of Salmonella suggested macroevolutionary shifts detectable by extensive FGC deletion and acquisition. In addition, microevolutionary drifts were best depicted by the high level of allelic variation in predicted or known adhesins, such as the type 1 fimbrial adhesin FimH for which 67 different natural alleles were identified in S. enterica subsp. I. Together with strain-specific collections of FGCs, allelic variation among adhesins attested to the pathoadaptive evolution of Salmonella towards specific hosts and tissues, potentially modulating host range, strain virulence, disease progression, and transmission efficiency. Further understanding of how each Salmonella strain utilizes its panel of FGCs and specific adhesin alleles for survival and infection will support the

  17. Diversification of the Salmonella Fimbriae: A Model of Macro- and Microevolution

    Science.gov (United States)

    Yue, Min; Rankin, Shelley C.; Blanchet, Ryan T.; Nulton, James D.; Edwards, Robert A.; Schifferli, Dieter M.

    2012-01-01

    Bacteria of the genus Salmonella comprise a large and evolutionary related population of zoonotic pathogens that can infect mammals, including humans and domestic animals, birds, reptiles and amphibians. Salmonella carries a plethora of virulence genes, including fimbrial adhesins, some of them known to participate in mammalian or avian host colonization. Each type of fimbria has its structural subunit and biogenesis genes encoded by one fimbrial gene cluster (FGC). The accumulation of new genomic information offered a timely opportunity to better evaluate the number and types of FGCs in the Salmonella pangenome, to test the use of current classifications based on phylogeny, and to infer potential correlations between FGC evolution in various Salmonella serovars and host niches. This study focused on the FGCs of the currently deciphered 90 genomes and 60 plasmids of Salmonella. The analysis highlighted a fimbriome consisting of 35 different FGCs, of which 16 were new, each strain carrying between 5 and 14 FGCs. The Salmonella fimbriome was extremely diverse with FGC representatives in 8 out of 9 previously categorized fimbrial clades and subclades. Phylogenetic analysis of Salmonella suggested macroevolutionary shifts detectable by extensive FGC deletion and acquisition. In addition, microevolutionary drifts were best depicted by the high level of allelic variation in predicted or known adhesins, such as the type 1 fimbrial adhesin FimH for which 67 different natural alleles were identified in S. enterica subsp. I. Together with strain-specific collections of FGCs, allelic variation among adhesins attested to the pathoadaptive evolution of Salmonella towards specific hosts and tissues, potentially modulating host range, strain virulence, disease progression, and transmission efficiency. Further understanding of how each Salmonella strain utilizes its panel of FGCs and specific adhesin alleles for survival and infection will support the development of new approaches

  18. Salmonella testing of pooled pre-enrichment broth cultures for screening multiple food samples.

    Science.gov (United States)

    Price, W R; Olsen, R A; Hunter, J E

    1972-04-01

    A method has been described for testing multiple food samples for Salmonella without loss in sensitivity. The method pools multiple pre-enrichment broth cultures into single enrichment broths. The subsequent stages of the Salmonella analysis are not altered. The method was found applicable to several dry food materials including nonfat dry milk, dried egg albumin, cocoa, cottonseed flour, wheat flour, and shredded coconut. As many as 25 pre-enrichment broth cultures were pooled without apparent loss in the sensitivity of Salmonella detection as compared to individual sample analysis. The procedure offers a simple, yet effective, way to increase sample capacity in the Salmonella testing of foods, particularly where a large proportion of samples ordinarily is negative. It also permits small portions of pre-enrichment broth cultures to be retained for subsequent individual analysis if positive tests are found. Salmonella testing of pooled pre-enrichment broths provides increased consumer protection for a given amount of analytical effort as compared to individual sample analysis.

  19. Geographical distribution of salmonella infected pig, cattle and sheep herds in Sweden 1993-2010

    Directory of Open Access Journals (Sweden)

    Skog Lars

    2011-10-01

    Full Text Available Abstract Background The Swedish salmonella control programme covers the entire production chain, from feed to food. All salmonella serotypes are notifiable. On average, less than 20 cases of salmonella in food-producing animals are reported every year. In some situations, the cases would be expected to cluster geographically. The aim of this study was to illustrate the geographic distribution of the salmonella cases detected in pigs, cattle and sheep. Methods Data on all herds with pigs, cattle and sheep found to be infected with salmonella during the time period from 1993 to 2010 were obtained from the Swedish Board of Agriculture. Using the ArcGIS software, various maps were produced of infected herds, stratified on animal species as well as salmonella serotype. Based on ocular inspection of all maps, some were collapsed and some used separately. Data were also examined for temporal trends. Results No geographical clustering was observed for ovine or porcine cases. Cattle herds infected with Salmonella Dublin were mainly located in the southeast region and cattle herds infected with Salmonella Typhimurium in the most southern part of the country. Some seasonal variation was seen in cattle, but available data was not sufficient for further analyses. Conclusions Analyses of data on salmonella infected herds revealed some spatial and temporal patterns for salmonella in cattle. However, despite using 18 years' of data, the number of infected herds was too low for any useful statistical analyses.

  20. Computational determination of the effects of virulent Escherichia coli and salmonella bacteriophages on human gut.

    Science.gov (United States)

    Mostafa, Marwa Mostafa; Nassef, Mohammad; Badr, Amr

    2016-10-01

    Salmonella and Escherichia coli are different types of bacteria that cause food poisoning in humans. In the elderly, infants and people with chronic conditions, it is very dangerous if Salmonella or E. coli gets into the bloodstream and then they must be treated by phage therapy. Treating Salmonella and E. coli by phage therapy affects the gut flora. This research paper presents a system for detecting the effects of virulent E. coli and Salmonella bacteriophages on human gut. A method based on Domain-Domain Interactions (DDIs) model is implemented in the proposed system to determine the interactions between the proteins of human gut bacteria and the proteins of bacteriophages that infect virulent E. coli and Salmonella. The system helps gastroenterologists to realize the effect of injecting bacteriophages that infect virulent E. coli and Salmonella on the human gut. By testing the system over Enterobacteria phage 933W, Enterobacteria phage VT2-Sa and Enterobacteria phage P22, it resulted in four interactions between the proteins of the bacteriophages that infect E. coli O157:H7, E. coli O104:H4 and Salmonella typhimurium and the proteins of human gut bacterium strains. Several effects were detected such as: antibacterial activity against a number of bacterial species in human gut, regulation of cellular differentiation and organogenesis during gut, lung, and heart development, ammonia assimilation in bacteria, yeasts, and plants, energizing defense system and its function in the detoxification of lipopolysaccharide, and in the prevention of bacterial translocation in human gut. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Temporal analyses of Salmonellae in a headwater spring ecosystem reveals the effects of precipitation and runoff events.

    Science.gov (United States)

    Gaertner, James P; Garres, Tiffany; Becker, Jesse C; Jimenez, Maria L; Forstner, Michael R J; Hahn, Dittmar

    2009-03-01

    Sediments and water from the spring and slough arm of Spring Lake, the pristine headwaters of the San Marcos River, Texas, were analyzed for Salmonellae by culture and molecular techniques before and after three major precipitation events, each with intermediate dry periods. Polymerase chain reaction (PCR)-assisted analyses of enrichment cultures detected Salmonellae in samples after all three precipitation events, but failed to detect them immediately prior to the rainfall events. Detection among individual locations differed with respect to the precipitation event analyzed, and strains isolated were highly variable with respect to serovars. These results demonstrate that rainwater associated effects, most likely surface runoff, provide an avenue for short-term pollution of aquatic systems with Salmonellae that do not, however, appear to establish for the long-term in water nor sediments.

  2. Assessing the prevalence of Salmonella enterica in poultry hatcheries by using hatched eggshell membranes.

    Science.gov (United States)

    Chao, M-R; Hsien, C-H; Yeh, C-M; Chou, S-J; Chu, C; Su, Y-C; Yu, C-Y

    2007-08-01

    Salmonella enterica causes a number of significant poultry diseases and is also a major pathogen in humans. Most poultry infected by Salmonella become carriers; infection may also be fatal, depending on the particular serovar and the age of the bird at infection. Younger birds are more susceptible to infection by Salmonella, so it is critical that hatcheries monitor birds. We developed a method to use hatched eggshell membranes (HEM) to assess contamination by Salmonella in poultry hatching cabinets and to evaluate the prevalence of Salmonella in a goose hatchery and rearing farm. Comparison of the Salmonella isolation rate in hatching cabinets using 3 sampling methods showed that the highest Salmonella contamination was detected in HEM, and that these results differed significantly from those obtained from fluff samples and cabinet swab samples (P chicken, and duck hatcheries. The lowest Salmonella-positive rate was found for the chicken hatchery, followed by the goose and the duck hatcheries (P hatcheries: A, B, C1, C2, D, and E. The distribution of these serogroups differed among the hatcheries. Salmonella serogroup C1 was the major serogroup found in geese, compared with serogroup B in chickens and ducks. However, Salmonella Typhimurium was dominant in 1 goose hatchery and also in geese from this hatchery that had been transferred to a farm. Antibiotic susceptibility analysis showed that Salmonella Typhimurium strains isolated from the farm geese with diarrhea showed significantly higher resistance to doxycycline, colistin, sulfamethoxazole-trimethoprin, and cephalothin than those isolated from the hatchery (P hatcheries and rearing farms.

  3. Global Genomic Epidemiology of Salmonella enterica Serovar Typhimurium DT104

    DEFF Research Database (Denmark)

    Leekitcharoenphon, Pimlapas; Hendriksen, Rene S.; Le Hello, Simon

    2016-01-01

    It has been 30 years since the initial emergence and subsequent rapid global spread of multidrug-resistant Salmonella enterica serovar Typhimurium DT104 (MDR DT104). Nonetheless, its origin and transmission route have never been revealed. We used whole-genome sequencing (WGS) and temporally struc...

  4. Luciferase-Zinc-Finger System for the Rapid Detection of Pathogenic Bacteria.

    Science.gov (United States)

    Shi, Chu; Xu, Qing; Ge, Yue; Jiang, Ling; Huang, He

    2017-08-09

    Rapid and reliable detection of pathogenic bacteria is crucial for food safety control. Here, we present a novel luciferase-zinc finger system for the detection of pathogens that offers rapid and specific profiling. The system, which uses a zinc-finger protein domain to probe zinc finger recognition sites, was designed to bind the amplified conserved regions of 16S rDNA, and the obtained products were detected using a modified luciferase. The luciferase-zinc finger system not only maintained luciferase activity but also allowed the specific detection of different bacterial species, with a sensitivity as low as 10 copies and a linear range from 10 to 10 4 copies per microliter of the specific PCR product. Moreover, the system is robust and rapid, enabling the simultaneous detection of 6 species of bacteria in artificially contaminated samples with excellent accuracy. Thus, we envision that our luciferase-zinc finger system will have far-reaching applications.

  5. Rapid detection of the positive side reactions in vanadium flow batteries

    International Nuclear Information System (INIS)

    Liu, Le; Li, Zhaohua; Xi, Jingyu; Zhou, Haipeng; Wu, Zenghua; Qiu, Xinping

    2017-01-01

    Highlights: • A method for rapid measurement of the positive side reactions in VFB is presented. • The SOC of positive electrolytes can be detected with resolution of 0.002%. • Side reaction ratios at different charge currents, flow rates are obtained. - Abstract: We present an optical detection method for rapid measurement of the positive side reactions in vanadium flow batteries (VFB). By measuring the transmittance of the positive electrolytes in VFB, the states of charge (SOC) of the positive electrolytes can be detected at very high resolution (better than 0.002% in the SOC range from 98% to 100%), due to the nonlinear transmittance spectra caused by the interactions between V(IV) and V(V) ions. The intensity of the positive side reactions of a VFB can be rapidly measured by a few steps, attributing to the fact that the positive side reactions occur only during the high voltage charging process. The ratios of the positive side reactions at different charge currents and different flow rates are obtained while causing no damage to the battery. This optical detection method can rapidly determine the optimal parameters of the VFB system, providing new means for studying the electrochemical reactions in the VFB system and rapid test in industrial production of VFBs.

  6. Total Count of Salmonella typhimurium Coupled on Water Soluble CdSe Quantum Dots by Fluorescence Detection

    Science.gov (United States)

    Feliciano Crespo, Raquel; Perales Perez, Oscar Juan; Ramirez, C.

    2018-05-01

    Health diseases due to the ingestion of water or food contaminated with pathogenic microorganisms are a main health problem around the world. The traditional methods for detecting foodborne pathogens are time-consuming (on the order of days). The development of methods that can help to detect and identify foodborne pathogens with high sensitivity and specificity have been proposed to overcome the limitations of traditional methods. Accordingly, this research is focused on the development of an experimental protocol for a high-sensitivity detection and quantification of bacterial pathogens with reduced detection times. This will lead to the development of a portable and low-cost technology with the opportunity to make onsite detection of pathogenic species. The proposed approach has modified the route reported in the literature; the method proposed is expected to be sensitive enough to detect a low limit of 102 CFU/mL counts of bacteria. The fluorescence-based method was tested in presence of Salmonella typhimurium (ATCC 14020) and Escherichia coli (ATCC 25922). CdSe water-soluble quantum dots (QDs) were synthesized in aqueous phase in presence of thioglycolic acid (TGA) as a capping agent. As-synthesized QDs were characterized by x-ray diffraction, near infrared and Fourier transform infrared spectroscopy, UV-Vis and photoluminescence techniques. Results of the CdSe/TGA-bacteria coupling and the determination of the corresponding quantification profiles (calibration curves) will be presented and discussed.

  7. Barriers to adoption of measures to control salmonella in pigs in the UK: A stakeholder analysis

    NARCIS (Netherlands)

    Dam, van Y.K.; Frewer, L.J.; Marier, E.; Armstrong, D.; Cook, A.J.C.

    2010-01-01

    Salmonella infection in pigs may enter the pork chain and thus contribute to human salmonellosis. In 2002 the British Pig Executive (BPEX) launched the Zoonosis Action Plan (ZAP). ZAP is a monitoring scheme based on detecting antibodies to salmonella infection in meat juice sampled from pigs after

  8. Factors associated with Salmonella shedding among equine colic patients at a veterinary teaching hospital.

    Science.gov (United States)

    Kim, L M; Morley, P S; Traub-Dargatz, J L; Salman, M D; Gentry-Weeks, C

    2001-03-01

    To evaluate factors potentially associated with fecal Salmonella shedding among equine patients hospitalized for colic at a veterinary teaching hospital and to determine the effects of probiotic treatment on fecal Salmonella shedding and clinical signs. Longitudinal study and controlled trial. 246 equine colic patients. History and medical information were obtained from patient records. Fecal and environmental samples were submitted for aerobic bacterial culture for Salmonella enterica. Fifty-one patients were treated with a commercially available probiotic; 46 were treated with a placebo. Logistic regression was used to evaluate data. Salmonella organisms were detected in feces from 23 (9%) patients at least once during hospitalization. Patients were more likely to shed Salmonella organisms if diarrhea was evident equine patients hospitalized at a veterinary teaching hospital because of colic and that pathogen monitoring in patients and the hospital environment and use of barrier nursing precautions for equine colic patients are beneficial.

  9. Lack of enhancement of chemical mutagenesis by saccharin in the Salmonella assay

    Energy Technology Data Exchange (ETDEWEB)

    Rao, T.K. (Oak Ridge National Lab., TN); Stoltz, D.R.; Epler, J.L.

    1979-01-01

    A purified batch of the artificial sweetener saccharin (S-1022) was assayed for mutagenicity and comutagenicity by the Ames Salmonella assay system. Saccharin was not mutagenic and failed to enhance the mutagenic activity induced by a wide variety of known mutagens. These results do not argue against the tumor-promoter-like activity of saccharin but only indicate that the Ames Salmonella assay is not capable of detecting saccharin as a promoter of mutagenesis.

  10. Broad-range (pan) Salmonella and Salmonella serotype typhi-specific real-time PCR assays: potential tools for the clinical microbiologist.

    Science.gov (United States)

    Farrell, John J; Doyle, Laura J; Addison, Rachel M; Reller, L Barth; Hall, Geraldine S; Procop, Gary W

    2005-03-01

    We describe broad-range salmonellae (ie, Salmonella) and Salmonella serotype Typhi-specific LightCycler (Roche Diagnostics, Indianapolis, IN) real-time polymerase chain reaction assays. We validated these with a battery of 280 bacteria, 108 of which were salmonellae representing 20 serotypes. In addition, 298 isolates from 170 clinical specimens that were suspected to possibly represent Salmonella were tested with the pan- Salmonella assay. Finally, the pan-Salmonella assay also was used to test DNA extracts from 101 archived, frozen stool specimens, 55 of which were culture-positive for salmonellae. Both assays were 100% sensitive and specific when cultured isolates of the battery were tested. The pan- Salmonella assay also characterized correctly all salmonellae on the primary isolation agar and was 96% sensitive (53/55) and 96% specific (49/51) when nucleic acid extracts from direct stool specimens were tested. These assays represent potential tools the clinical microbiologist could use to screen suspect isolates or stool specimens for Salmonella.

  11. Evaluation of the Thermo Scientific SureTect Salmonella species assay. AOAC Performance Tested Method 051303.

    Science.gov (United States)

    Cloke, Jonathan; Clark, Dorn; Radcliff, Roy; Leon-Velarde, Carlos; Larson, Nathan; Dave, Keron; Evans, Katharine; Crabtree, David; Hughes, Annette; Simpson, Helen; Holopainen, Jani; Wickstrand, Nina; Kauppinen, Mikko

    2014-01-01

    The Thermo Scientific SureTect Salmonella species Assay is a new real-time PCR assay for the detection of Salmonellae in food and environmental samples. This validation study was conducted using the AOAC Research Institute (RI) Performance Tested Methods program to validate the SureTect Salmonella species Assay in comparison to the reference method detailed in International Organization for Standardization 6579:2002 in a variety of food matrixes, namely, raw ground beef, raw chicken breast, raw ground pork, fresh bagged lettuce, pork frankfurters, nonfat dried milk powder, cooked peeled shrimp, pasteurized liquid whole egg, ready-to-eat meal containing beef, and stainless steel surface samples. With the exception of liquid whole egg and fresh bagged lettuce, which were tested in-house, all matrixes were tested by Marshfield Food Safety, Marshfield, WI, on behalf of Thermo Fisher Scientific. In addition, three matrixes (pork frankfurters, lettuce, and stainless steel surface samples) were analyzed independently as part of the AOAC-RI-controlled laboratory study by the University of Guelph, Canada. No significant difference by probability of detection or McNemars Chi-squared statistical analysis was found between the candidate or reference methods for any of the food matrixes or environmental surface samples tested during the validation study. Inclusivity and exclusivity testing was conducted with 117 and 36 isolates, respectively, which demonstrated that the SureTect Salmonella species Assay was able to detect all the major groups of Salmonella enterica subspecies enterica (e.g., Typhimurium) and the less common subspecies of S. enterica (e.g., arizoniae) and the rarely encountered S. bongori. None of the exclusivity isolates analyzed were detected by the SureTect Salmonella species Assay. Ruggedness testing was conducted to evaluate the performance of the assay with specific method deviations outside of the recommended parameters open to variation (enrichment time

  12. Dynamics of Salmonella Shedding and Welfare of Hens in Free-Range Egg Production Systems

    Science.gov (United States)

    Gole, Vaibhav C.; Woodhouse, Rebecca; Caraguel, Charles; Moyle, Talia; Rault, Jean-Loup; Sexton, Margaret

    2016-01-01

    ABSTRACT The current study investigated the effect of environmental stressors (i.e., weather changes) on Salmonella shedding in free-range production systems and the correlations with behavioral and physiological measures (i.e., fecal glucocorticoid metabolites). This involved longitudinal and point-in-time surveys of Salmonella shedding and environmental contamination on four commercial free-range layer farms. The shedding of Salmonella was variable across free-range farms and in different seasons. There was no significant effect of season on the Salmonella prevalence during this investigation. In this study, the combined Salmonella most probable number (MPN) counts in environmental (including feces, egg belt, dust, nest box, and ramp) samples were highest in samples collected during the summer season (4th sampling, performed in February). The predominant serovars isolated during this study were Salmonella enterica serovar Mbandaka and Salmonella enterica serovar Typhimurium phage types 135 and 135a. These two phage types were involved in several egg product-related Salmonella outbreaks in humans. Multilocus variable-number tandem-repeat analysis (MLVA) results indicated that MLVA types detected from human food poisoning cases exhibited MLVA patterns similar to the strains isolated during this study. All Salmonella isolates (n = 209) were tested for 15 different genes involved in adhesion, invasion, and survival of Salmonella spp. We also observed variations for sopA, ironA, and misL. There were no positive correlations between fecal corticosterone metabolite (FCM) and Salmonella prevalence and/or shedding in feces. Also, there were no positive correlations between Salmonella prevalence and Salmonella count (log MPN) and any of the other welfare parameters. IMPORTANCE In this study, the welfare of laying hens and Salmonella shedding were compared over a prolonged period of time in field conditions. This study investigated the long-term shedding of Salmonella

  13. Dynamics of Salmonella Shedding and Welfare of Hens in Free-Range Egg Production Systems.

    Science.gov (United States)

    Gole, Vaibhav C; Woodhouse, Rebecca; Caraguel, Charles; Moyle, Talia; Rault, Jean-Loup; Sexton, Margaret; Chousalkar, Kapil

    2017-03-01

    The current study investigated the effect of environmental stressors (i.e., weather changes) on Salmonella shedding in free-range production systems and the correlations with behavioral and physiological measures (i.e., fecal glucocorticoid metabolites). This involved longitudinal and point-in-time surveys of Salmonella shedding and environmental contamination on four commercial free-range layer farms. The shedding of Salmonella was variable across free-range farms and in different seasons. There was no significant effect of season on the Salmonella prevalence during this investigation. In this study, the combined Salmonella most probable number (MPN) counts in environmental (including feces, egg belt, dust, nest box, and ramp) samples were highest in samples collected during the summer season (4th sampling, performed in February). The predominant serovars isolated during this study were Salmonella enterica serovar Mbandaka and Salmonella enterica serovar Typhimurium phage types 135 and 135a. These two phage types were involved in several egg product-related Salmonella outbreaks in humans. Multilocus variable-number tandem-repeat analysis (MLVA) results indicated that MLVA types detected from human food poisoning cases exhibited MLVA patterns similar to the strains isolated during this study. All Salmonella isolates ( n = 209) were tested for 15 different genes involved in adhesion, invasion, and survival of Salmonella spp. We also observed variations for sopA , ironA , and misL There were no positive correlations between fecal corticosterone metabolite (FCM) and Salmonella prevalence and/or shedding in feces. Also, there were no positive correlations between Salmonella prevalence and Salmonella count (log MPN) and any of the other welfare parameters. IMPORTANCE In this study, the welfare of laying hens and Salmonella shedding were compared over a prolonged period of time in field conditions. This study investigated the long-term shedding of Salmonella serovars in

  14. Genotypic and phenotypic characterization of multidrug resistant Salmonella Typhimurium and Salmonella Kentucky strains recovered from chicken carcasses.

    Directory of Open Access Journals (Sweden)

    Rizwana Tasmin

    Full Text Available Salmonella Typhimurium is the leading cause of human non-typhoidal gastroenteritis in the US. S. Kentucky is one the most commonly recovered serovars from commercially processed poultry carcasses. This study compared the genotypic and phenotypic properties of two Salmonella enterica strains Typhimurium (ST221_31B and Kentucky (SK222_32B recovered from commercially processed chicken carcasses using whole genome sequencing, phenotype characterizations and an intracellular killing assay. Illumina MiSeq platform was used for sequencing of two Salmonella genomes. Phylogenetic analysis employing homologous alignment of a 1,185 non-duplicated protein-coding gene in the Salmonella core genome demonstrated fully resolved bifurcating patterns with varying levels of diversity that separated ST221_31B and SK222_32B genomes into distinct monophyletic serovar clades. Single nucleotide polymorphism (SNP analysis identified 2,432 (ST19 SNPs within 13 Typhimurium genomes including ST221_31B representing Sequence Type ST19 and 650 (ST152 SNPs were detected within 13 Kentucky genomes including SK222_32B representing Sequence Type ST152. In addition to serovar-specific conserved coding sequences, the genomes of ST221_31B and SK222_32B harbor several genomic regions with significant genetic differences. These included phage and phage-like elements, carbon utilization or transport operons, fimbriae operons, putative membrane associated protein-encoding genes, antibiotic resistance genes, siderophore operons, and numerous hypothetical protein-encoding genes. Phenotype microarray results demonstrated that ST221_31B is capable of utilizing certain carbon compounds more efficiently as compared to SK222_3B; namely, 1,2-propanediol, M-inositol, L-threonine, α-D-lactose, D-tagatose, adonitol, formic acid, acetoacetic acid, and L-tartaric acid. ST221_31B survived for 48 h in macrophages, while SK222_32B was mostly eliminated. Further, a 3-fold growth of ST221_31B was

  15. Effect of Low Dose of Fumonisins on Pig Health: Immune Status, Intestinal Microbiota and Sensitivity to Salmonella

    Science.gov (United States)

    Burel, Christine; Tanguy, Mael; Guerre, Philippe; Boilletot, Eric; Cariolet, Roland; Queguiner, Marilyne; Postollec, Gilbert; Pinton, Philippe; Salvat, Gilles; Oswald, Isabelle P.; Fravalo, Philippe

    2013-01-01

    The objective of this study was to measure the effects of chronic exposure to fumonisins via the ingestion of feed containing naturally contaminated corn in growing pigs infected or not with Salmonella spp. This exposure to a moderate dietary concentration of fumonisins (11.8 ppm) was sufficient to induce a biological effect in pigs (Sa/So ratio), but no mortality or pathology was observed over 63 days of exposure. No mortality or related clinical signs, even in cases of inoculation with Salmonella (5 × 104 CFU), were observed either. Fumonisins, at these concentrations, did not affect the ability of lymphocytes to proliferate in the presence of mitogens, but after seven days post-inoculation they led to inhibition of the ability of specific Salmonella lymphocytes to proliferate following exposure to a specific Salmonella antigen. However, the ingestion of fumonisins had no impact on Salmonella translocation or seroconversion in inoculated pigs. The inoculation of Salmonella did not affect faecal microbiota profiles, but exposure to moderate concentrations of fumonisins transiently affected the digestive microbiota balance. In cases of co-infection with fumonisins and Salmonella, the microbiota profiles were rapidly and clearly modified as early as 48 h post-Salmonella inoculation. Therefore under these experimental conditions, exposure to an average concentration of fumonisins in naturally contaminated feed had no effect on pig health but did affect the digestive microbiota balance, with Salmonella exposure amplifying this phenomenon. PMID:23612754

  16. Development of a multiplex qPCR in real time for quantification and differential diagnosis of Salmonella Gallinarum and Salmonella Pullorum.

    Science.gov (United States)

    Rubio, Marcela da Silva; Penha Filho, Rafael Antonio Casarin; Almeida, Adriana Maria de; Berchieri, Angelo

    2017-12-01

    Currently there are 2659 Salmonella serovars. The host-specific biovars Salmonella Pullorum and Salmonella Gallinarum cause systemic infections in food-producing and wild birds. Fast diagnosis is crucial to control the dissemination in avian environments. The present work describes the development of a multiplex qPCR in real time using a low-cost DNA dye (SYBr Green) to identify and quantify these biovars. Primers were chosen based on genomic regions of difference (RoD) and optimized to control dimers. Primers pSGP detect both host-specific biovars but not other serovars and pSG and pSP differentiate biovars. Three amplicons showed different melting temperatures (Tm), allowing differentiation. The pSGP amplicon (97 bp) showed Tm of 78°C for both biovars. The pSG amplicon (273 bp) showed a Tm of 86.2°C for S. Gallinarum and pSP amplicon (260 bp) dissociated at 84.8°C for S. Pullorum identification. The multiplex qPCR in real time showed high sensitivity and was capable of quantifying 10 8 -10 1 CFU of these biovars.

  17. Rapid Aminoglycoside NP Test for Rapid Detection of Multiple Aminoglycoside Resistance in Enterobacteriaceae.

    Science.gov (United States)

    Nordmann, Patrice; Jayol, Aurélie; Dobias, Jan; Poirel, Laurent

    2017-04-01

    The rapid aminoglycoside NP (Nordmann/Poirel) test was developed to rapidly identify multiple aminoglycoside (AG) resistance in Enterobacteriaceae It is based on the detection of the glucose metabolism related to enterobacterial growth in the presence of a defined concentration of amikacin plus gentamicin. Formation of acid metabolites was evidenced by a color change (orange to yellow) of the red phenol pH indicator. The rapid aminoglycoside NP test was evaluated by using bacterial colonies of 18 AG-resistant isolates producing 16S rRNA methylases, 20 AG-resistant isolates expressing AG-modifying enzymes (acetyl-, adenyl-, and phosphotransferases), and 10 isolates susceptible to AG. Its sensitivity and specificity were 100% and 97%, respectively, compared to the broth dilution method, which was taken as the gold standard for determining aminoglycoside resistance. The test is inexpensive, rapid (<2 h), and implementable worldwide. Copyright © 2017 American Society for Microbiology.

  18. Spatio-temporal analysis of Salmonella surveillance data in Thailand

    DEFF Research Database (Denmark)

    Coutinho Calado Domingues, Ana Rita; Vieira, Antonio; Hendriksen, Rene S.

    2014-01-01

    This study evaluates the usefulness of spatio-temporal statistical tools to detect outbreaks using routine surveillance data where limited epidemiological information is available. A dataset from 2002 to 2007 containing information regarding date, origin, source and serotype of 29 586 Salmonella ...

  19. Inactivation of Salmonella during cocoa roasting and chocolate conching.

    Science.gov (United States)

    Nascimento, Maristela da Silva do; Brum, Daniela Merlo; Pena, Pamela Oliveira; Berto, Maria Isabel; Efraim, Priscilla

    2012-10-15

    The high heat resistance of Salmonella in foods with low water activity raises particular issues for food safety, especially chocolate, where outbreak investigations indicate that few colony-forming units are necessary to cause salmonellosis. This study evaluated the efficiency of cocoa roasting and milk chocolate conching in the inactivation of Salmonella 5-strain suspension. Thermal resistance of Salmonella was greater in nibs compared to cocoa beans upon exposure at 110 to 130°C. The D-values in nibs were 1.8, 2.2 and 1.5-fold higher than those calculated for cocoa beans at 110, 120 and 130°C. There was no significant difference (p>0.05) between the matrices only at 140°C. Since in the conching of milk chocolate the inactivation curves showed rapid death in the first 180 min followed by a lower inactivation rate, and two D-values were calculated. For the first time interval (0-180 min) the D-values were 216.87, 102.27 and 50.99 min at 50, 60 and 70°C, respectively. The other D-values were determined from the second time interval (180-1440 min), 1076.76 min at 50°C, 481.94 min at 60°C and 702.23 min at 70°C. The results demonstrated that the type of matrix, the process temperature and the initial count influenced the Salmonella resistance. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Simple dipstick assay for the detection of Salmonella typhi-specific IgM antibodies and the evolution of the immune response in patients with typhoid fever

    NARCIS (Netherlands)

    Hatta, Mochammad; Goris, Marga G. A.; Heerkens, Evy; Gooskens, Jairo; Smits, Henk L.

    2002-01-01

    Application of a dipstick assay for the detection of Salmonella typhi-specific IgM antibodies on samples collected from S. typhi or S. paratyphi culture-positive patients at the day of admission to the hospital revealed the presence of specific IgM antibodies in 43.5%, 92.9%, and 100% for samples

  1. Identification by PCR of non-typhoidal Salmonella enterica serovars associated with invasive infections among febrile patients in Mali.

    Directory of Open Access Journals (Sweden)

    Sharon M Tennant

    2010-03-01

    Full Text Available In sub-Saharan Africa, non-typhoidal Salmonella (NTS are emerging as a prominent cause of invasive disease (bacteremia and focal infections such as meningitis in infants and young children. Importantly, including data from Mali, three serovars, Salmonella enterica serovar Typhimurium, Salmonella Enteritidis and Salmonella Dublin, account for the majority of non-typhoidal Salmonella isolated from these patients.We have extended a previously developed series of polymerase chain reactions (PCRs based on O serogrouping and H typing to identify Salmonella Typhimurium and variants (mostly I 4,[5],12:i:-, Salmonella Enteritidis and Salmonella Dublin. We also designed primers to detect Salmonella Stanleyville, a serovar found in West Africa. Another PCR was used to differentiate diphasic Salmonella Typhimurium and monophasic Salmonella Typhimurium from other O serogroup B, H:i serovars. We used these PCRs to blind-test 327 Salmonella serogroup B and D isolates that were obtained from the blood cultures of febrile patients in Bamako, Mali.We have shown that when used in conjunction with our previously described O-serogrouping PCR, our PCRs are 100% sensitive and specific in identifying Salmonella Typhimurium and variants, Salmonella Enteritidis, Salmonella Dublin and Salmonella Stanleyville. When we attempted to differentiate 171 Salmonella Typhimurium (I 4,[ 5],12:i:1,2 strains from 52 monophasic Salmonella Typhimurium (I 4,[5],12:i:- strains, we were able to correctly identify 170 of the Salmonella Typhimurium and 51 of the Salmonella I 4,[5],12:i:- strains.We have described a simple yet effective PCR method to support surveillance of the incidence of invasive disease caused by NTS in developing countries.

  2. Rapid Detection of the Varicella Zoster Virus

    Science.gov (United States)

    Lewis, Michelle P.; Harding, Robert

    2011-01-01

    1.Technology Description-Researchers discovered that when the Varicella Zoster Virus (VZV) reactivates from latency in the body, the virus is consistently present in saliva before the appearance of skin lesions. A small saliva sample is mixed with a specialized reagent in a test kit. If the virus is present in the saliva sample, the mixture turns a red color. The sensitivity and specificity emanates from an antibody-antigen reaction. This technology is a rapid, non-invasive, point of-of-care testing kit for detecting the virus from a saliva sample. The device is easy to use and can be used in clinics and in remote locations to quickly detect VZV and begin treatment with antiviral drugs. 2.Market Opportunity- RST Bioscience will be the first and only company to market a rapid, same day test kit for the detection of VZV in saliva. The RST detection test kit will have several advantages over existing, competitive technology. The test kit is self contained and laboratory equipment is not required for analysis of the sample. Only a single saliva sample is required to be taken instead of blood or cerebral spinal fluid. The test kit is portable, sterile and disposable after use. RST detection test kits require no electrical power or expensive storage equipment and can be used in remote locations. 3.Market Analysis- According to the CDC, it is estimated that 1 million cases of shingles occur each year in the U.S. with more than half over the age of sixty. There is a high demand for rapid diagnostics by the public. The point-of-care testing (POCT) market is growing faster than other segments of in vitro diagnostics. According to a July 2007 InteLab Corporation industry report the overall market for POCT was forecast to increase from $10.3 billion in 2005 to $18.7 billion by 2011. The market value of this test kit has not been determined. 4.Competition- The VZV vaccine prevents 50% of cases and reduces neuralgia by 66%. The most popular test detects VZV-specific IgM antibody

  3. STUDY ON THE ANTIBIOTIC-RESISTANCE IN STRAINS OF SALMONELLA ISOLATES IN FOOD FROM 2003 TO 2010

    Directory of Open Access Journals (Sweden)

    F. Capuano

    2012-08-01

    Full Text Available A survey on the antibiotics resistance on salmonella strains of food origin was carried out. Four hundred thirty five different strains of Salmonella detected during eight years since 2003 were tested with the protocols of the National Committee for Clinical Laboratory Standard (NCCLS. One hundred twenty Salmonella strains were of cow origin, 166 from swine, 92 from poultry and the remaining 57 from shellfish. Starting from 2007 a reduction in the resistance was evident on the total isolates.

  4. Genetic characterisation of multidrug-resistant Salmonella enterica serotypes isolated from poultry in Cairo, Egypt

    Directory of Open Access Journals (Sweden)

    Mohammed Abdel-Maksoud

    2015-05-01

    Full Text Available Background: Food-borne diseases pose serious health problems, affecting public health and economic development worldwide. Methods: Salmonella was isolated from samples of chicken parts, skin samples of whole chicken carcasses, raw egg yolks, eggshells and chicken faeces. Resulting isolates were characterised by serogrouping, serotyping, antimicrobial susceptibility testing and detection of extended-spectrum β-lactamase (ESBL production. Antibiotic resistance genes and integrons were identified by polymerase chain reaction (PCR. Results: The detection rates of Salmonella were 60%, 64% and 62% in chicken parts, skin, and faeces, respectively, whereas the egg yolks and eggshells were uniformly negative. Salmonella Kentucky and S. Enteritidis serotypes comprised 43.6% and 2.6% of the isolates, respectively, whilst S. Typhimurium was absent. Variable resistance rates were observed against 16 antibiotics; 97% were resistant to sulfamethoxazole, 96% to nalidixic acid and tetracycline and 76% to ampicillin. Multidrug resistance was detected in 82% (64/78 of the isolates and ESBL production was detected in 8% (6/78. The β-lactamase blaTEM-1 gene was detected in 57.6% and blaSHV-1 in 6.8% of the isolates, whilst the blaOXA gene was absent. The sul1gene was detected in 97.3% and the sul2 gene in 5.3% of the isolates. Sixty-four of the 78 isolates (82% were positive for the integrase gene (int I from class 1 integrons, whilst int II was absent. Conclusion: This study reveals the presence of an alarming number of multidrug-resistant Salmonella isolates in the local poultry markets in Cairo. The high levels of drug resistance suggest an emerging problem that could impact negatively on efforts to prevent and treat poultry and poultry-transmitted human diseases in Egypt.

  5. Multicenter validation of PCR-based method for detection of Salmonella in chicken and pig samples

    DEFF Research Database (Denmark)

    Malorny, B.; Cook, N.; D'Agostino, M.

    2004-01-01

    As part of a standardization project, an interlaboratory trial including 15 laboratories from 13 European countries was conducted to evaluate the performance of a noproprietary polymerase chain reaction (PCR)-based method for the detection of Salmonella on artificially contaminated chicken rinse...... or positive. Outlier results caused, for example, by gross departures from the experimental protocol, were omitted from the analysis. For both the chicken rinse and the pig swab samples, the diagnostic sensitivity was 100%, with 100% accordance (repeatability) and concordance (reproducibility). The diagnostic...... specificity was 80.1% (with 85.7% accordance and 67.5% concordance) for chicken rinse, and 91.7% (with 100% accordance and 83.3% concordance) for pig swab. Thus, the interlaboratory variation due to personnel, reagents, thermal cyclers, etc., did not affect the performance of the method, which...

  6. An integrated micro-chip for rapid detection of magnetic particles

    KAUST Repository

    Gooneratne, Chinthaka P.; Liang, Cai; Giouroudi, Ioanna; Kosel, Jü rgen

    2012-01-01

    This paper proposes an integrated micro-chip for the manipulation and detection of magnetic particles (MPs). A conducting ring structure is used to manipulate MPs toward giant magnetoresistance(GMR) sensing elements for rapid detection

  7. Quantitative detection of Salmonella enterica and the specific interaction with Lactuca sativa

    NARCIS (Netherlands)

    Klerks, M.M.

    2007-01-01

    Salmonella is among the most commonly known bacterial pathogens to cause human illness. Often Salmonellosis is associated with the consumption of contaminated foods like meat, eggs or egg products. However, during the last decades an increase of outbreaks is recognized to be caused by human

  8. Multidrug resistance among different serotypes of clinical Salmonella isolates in Taiwan

    DEFF Research Database (Denmark)

    Lauderdale, T. L.; Aarestrup, Frank Møller; Chen, P. C.

    2006-01-01

    (41%) and was highly prevalent in Salmonella enterica serotype Typhimurium (72.7%, 176/242) the most common serotype. Additional resistance to trimethoprim was present in 155 (19.4% overall) of the ACSSuT R-type isolates from several serotypes. Reduced susceptibility to fluoroquinolone (FQ...... multiresistant to other antimicrobials. Studies are needed to determine the sources of different multidrug-resistant serotypes. Continued national surveillance is underway to monitor changes in resistance trends and to detect further emergence of resistant Salmonella serotypes in Taiwan. (c) 2006 Elsevier Inc...

  9. A label-free ultrasensitive fluorescence detection of viable Salmonella enteritidis using enzyme-induced cascade two-stage toehold strand-displacement-driven assembly of G-quadruplex DNA.

    Science.gov (United States)

    Zhang, Peng; Liu, Hui; Ma, Suzhen; Men, Shuai; Li, Qingzhou; Yang, Xin; Wang, Hongning; Zhang, Anyun

    2016-06-15

    The harm of Salmonella enteritidis (S. enteritidis ) to public health mainly by contaminating fresh food and water emphasizes the urgent need for rapid detection techniques to help control the spread of the pathogen. In this assay, an newly designed capture probe complex that contained specific S. enteritidis-aptamer and hybridized signal target sequence was used for viable S. enteritidis recognition directly. In the presence of the target S. enteritidis, single-stranded target sequences were liberated and initiated the replication-cleavage reaction, producing numerous G-quadruplex structures with a linker on the 3'-end. And then, the sensing system took innovative advantage of quadratic linker-induced strand-displacement for the first time to release target sequence in succession, leading to the cyclic reuse of the target sequences and cascade signal amplification, thereby achieving the successive production of G-quadruplex structures. The fluorescent dye, N-Methyl mesoporphyrin IX, binded to these G-quadruplex structures and generated significantly enhanced fluorescent signals to achieve highly sensitive detection of S. enteritidis down to 60 CFU/mL with a linear range from 10(2) to 10(7)CFU/mL. By coupling the cascade two-stage target sequences-recyclable toehold strand-displacement with aptamer-based target recognition successfully, it is the first report on a novel non-label, modification-free and DNA extraction-free ultrasensitive fluorescence biosensor for detecting viable S. enteritidis directly, which can discriminate from dead S. enteritidis. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Lab-on-a-chip for rapid electrochemical detection of nerve agent Sarin

    DEFF Research Database (Denmark)

    Tan, Hsih-Yin; Loke, Weng Keong; Nguyen, Nam-Trung

    2014-01-01

    This paper reports a lab-on-a-chip for the detection of Sarin nerve agent based on rapid electrochemical detection. The chemical warfare agent Sarin (C4H10FO2P, O-isopropyl methylphosphonofluoridate) is a highly toxic organophosphate that induces rapid respiratory depression, seizures and death...

  11. Advances in developing rapid, reliable and portable detection systems for alcohol.

    Science.gov (United States)

    Thungon, Phurpa Dema; Kakoti, Ankana; Ngashangva, Lightson; Goswami, Pranab

    2017-11-15

    Development of portable, reliable, sensitive, simple, and inexpensive detection system for alcohol has been an instinctive demand not only in traditional brewing, pharmaceutical, food and clinical industries but also in rapidly growing alcohol based fuel industries. Highly sensitive, selective, and reliable alcohol detections are currently amenable typically through the sophisticated instrument based analyses confined mostly to the state-of-art analytical laboratory facilities. With the growing demand of rapid and reliable alcohol detection systems, an all-round attempt has been made over the past decade encompassing various disciplines from basic and engineering sciences. Of late, the research for developing small-scale portable alcohol detection system has been accelerated with the advent of emerging miniaturization techniques, advanced materials and sensing platforms such as lab-on-chip, lab-on-CD, lab-on-paper etc. With these new inter-disciplinary approaches along with the support from the parallel knowledge growth on rapid detection systems being pursued for various targets, the progress on translating the proof-of-concepts to commercially viable and environment friendly portable alcohol detection systems is gaining pace. Here, we summarize the progress made over the years on the alcohol detection systems, with a focus on recent advancement towards developing portable, simple and efficient alcohol sensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Investigations of Salmonella enterica serovar newport infections of oysters by using immunohistochemistry and knockout mutagenesis.

    Science.gov (United States)

    Morrison, Christopher M; Dial, Sharon M; Day, William A; Joens, Lynn A

    2012-04-01

    The consumption of raw oysters is an important risk factor in the acquisition of food-borne disease, with Salmonella being one of a number of pathogens that have been found in market oysters. Previous work by our lab found that Salmonella was capable of surviving in oysters for over 2 months under laboratory conditions, and this study sought to further investigate Salmonella's tissue affinity and mechanism of persistence within the oysters. Immunohistochemistry was used to show that Salmonella was capable of breaching the epithelial barriers, infecting the deeper connective tissues of the oysters, and evading destruction by the oysters' phagocytic hemocytes. To further investigate the mechanism of these infections, genes vital to the function of Salmonella's two main type III secretion systems were disrupted and the survivability of these knockout mutants within oysters was assayed. When the Salmonella pathogenicity island 1 and 2 mutant strains were exposed to oysters, there were no detectable deficiencies in their abilities to survive, suggesting that Salmonella's long-term infection of oysters does not rely upon these two important pathogenicity islands and must be due to some other, currently unknown, mechanism.

  13. Research advance in rapid detection of foodborne Staphylococcus aureus

    OpenAIRE

    Xihong Zhao; Caijiao Wei; Junliang Zhong; Shiwei Jin

    2016-01-01

    Staphylococcus aureus is a gram-positive, coccus-shaped facultative anaerobe and a member of the Staphylococcaceae family. In recent years, alimentary toxicosis caused by S. aureus is a very serious problem worldwide, which constitutes a great threat to public health. In this review, we tried to summarize the conventional methods and newly developed rapid detection techniques of S. aureus (traditional detection method, biochemical detection, immunology method, molecular biology, and biosensor...

  14. Salmonella Enteritidis experimental infection in chickens: Effects of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    Oct 20, 2008 ... challenge dose of Salmonella Enteritidis on detection of specific immunoglobulin G (IgG) ... Two groups of specific-pathogen-free chickens were infected ... Since chickens may be exposed to variable quantities ... A second group of 8 hens was orally .... where presence of serum antibodies by most birds that.

  15. Prevalence and Characteristics of Salmonella and Campylobacter in Retail Poultry Meat in Japan.

    Science.gov (United States)

    Furukawa, Ichiro; Ishihara, Tomoe; Teranishi, Hiroshi; Saito, Shioko; Yatsuyanagi, Jun; Wada, Eriko; Kumagai, Yuko; Takahashi, Shiho; Konno, Takayuki; Kashio, Hiroko; Kobayashi, Akihiko; Kato, Naoki; Hayashi, Ken-Ichi; Fukushima, Keisuke; Ishikawa, Kazuhiko; Horikawa, Kazumi; Oishi, Akira; Izumiya, Hidemasa; Ohnishi, Takahiro; Konishi, Yoshiko; Kuroki, Toshiro

    2017-05-24

    This study was performed to determine the prevalence, antimicrobial susceptibility, and genetic relatedness of Salmonella enterica subsp. enterica and Campylobacter spp. in poultry meat, and to analyze the association of genetic types of these bacteria with their geographical distribution and antimicrobial resistance profiles. Salmonella and Campylobacter isolates have been detected, respectively, in 54 and 71 samples out of 100 samples tested. Nine Salmonella serotypes were found, including S. enterica subsp. enterica serovar Infantis (33%), Schwarzengrund (12%), Manhattan (9%), and others. Campylobacter jejuni and C. coli were detected in 64 (64%) and 14 (14%) samples, respectively. S. enterica subsp. enterica isolates were very frequently resistant to tetracycline (78.3%) and streptomycin (68.3%). Many C. jejuni and C. coli isolates were resistant to sulfamethoxazole/trimethoprim (90.5%), nalidixic acid (47.3%), ampicillin (45.9%), and ciprofloxacin (40.5%). Cluster analysis was performed for the Salmonella isolates using pulsed-field gel electrophoresis (PFGE) data. For Campylobacter isolates, the cluster analysis was based on both PFGE and comparative genomic fingerprinting. The molecular typing results were compared with the information about antimicrobial resistance and geographical locations in which the poultry meat was produced. This analysis revealed that C. jejuni strains with a particular genotype and antimicrobial resistance profile are spreading in specific areas of Japan.

  16. Prevalence and antibiotic resistance of Salmonella spp. in meat products, meat preparations and minced meat

    Science.gov (United States)

    Rašeta, M.; Mrdović, B.; Janković, V.; Bečkei, Z.; Lakićević, B.; Vidanović, D.; Polaček, V.

    2017-09-01

    This study aimed to determine Salmonella spp. prevalence in meat products, meat preparations and minced meat. Over a period of three years, a total of 300 samples were taken (100 RTE meat products, 100 meat preparations and 100 minced meat) and examined for the presence of Salmonella spp. Sampling was carried out at the warehouses of the food manufacturers. Salmonella spp. were not detected in RTE meat products, while 7% of semi-finished meat products (fresh sausages, grill meat formed and unformed) contained Salmonella, as did 18% of minced meats (minced pork II category, minced beef II category, mixed minced meat). The 25 Salmonella isolates obtained were examined for antibiotic resistance by the disk diffusion test, according to the NCCLS and CLSI guidelines. Isolates showed resistance to ampicillin and nalidixic acid (80%), tetracycline (72%), cefotaxime/clavulanic acid (48%), but not to gentamicin (8%) or trimethoprim/sulfamethoxazole (0%).

  17. Prevalence of salmonella species in fishes and its control using irradiation

    International Nuclear Information System (INIS)

    Mohamed, W. S.

    2010-01-01

    The prevalence of Salmonella species infecting frozen Tilapia fish fillets and whole fishes was determined, during the summer seasons of years 2006 and 2007.Elimination of Salmonella species in Tilapia fishes with different doses of γ-rays was investigated. Doses of 1, 2, 3, 3.5, 5, 4 and 5 kGy were used to find out the least dose that will be sufficient to eliminate the pathogen from the examined samples. Two hundred fish fillet samples and 200 whole fishes were subjected for bacteriological examination for the incidence of Salmonella infection. Out of them 19 fillets and 8 whole fishes were infected with the pathogen in a percentage of 9.5 % and 4 % respectively. The serological determination detected the infection with Salmonella typhimurium in all the affected samples. A dose of 3.5 kGy γ-rays was determined to be the least appropriate dose for elimination of Salmonella typhimurium from Tilapia fishes. The best appearance characteristics were obtained at 3.5 kGy of γ-irradiation. There was a gradual decrease in the count of the micro-organism as the dose of irradiation increased (linear regression). So a dose of 3.5 kGy of γ-irradiation is recommended for healthy, good looking and economic fishes for public health benefits.

  18. Diversity and antimicrobial susceptibility of Salmonella enterica serovars isolated from pig farms in Ibadan, Nigeria

    DEFF Research Database (Denmark)

    Fashae, Kayode; Hendriksen, Rene S.

    2014-01-01

    of plasmid-mediated quinolone resistance (PMQR) genes in pigs in Ibadan, Nigeria. Pooled fresh pen floor fecal samples of pigs collected from 31 pig farms were cultured; the Salmonella isolates were serotyped and their antimicrobial susceptibility was determined. PMQR genes were screened by polymerase chain...... Kingston (n = 13; 5.7 %). The most widely distributed serovars among the farms were Salmonella Give (six farms) and Salmonella Elisaberthville (six farms). Resistance to chloramphenicol, sulfonamides, nalidixic acid, streptomycin, and tetracycline ranged from 11.6 % (n = 26) to 22.8 % (n = 51). Resistance....... Other PMQR genes were not detected. Pigs constitute an important source of diverse Salmonella serovars in Ibadan. The isolates were more resistant to old antimicrobials with some multiple resistant. Control measures and regulation of antimicrobials are warranted....

  19. Salmonella serotypes and their antimicrobial susceptibility in apparently healthy dogs in Addis Ababa, Ethiopia.

    Science.gov (United States)

    Kiflu, Bitsu; Alemayehu, Haile; Abdurahaman, Mukarim; Negash, Yohannes; Eguale, Tadesse

    2017-05-19

    The close bond between pet animals and family members poses risk of infection with zoonotic bacterial pathogens such as Salmonella. No data is available on occurrence of Salmonella in dogs in Ethiopia. The aim of this study was therefore to determine the prevalence, serotype distribution and antimicrobial resistance of Salmonella from feces of apparently healthy dogs in Addis Ababa, Ethiopia. Of the total 360 dogs examined, 42 (11.7%; 95% Confidence limit of 8.5%-15.4%) were positive for Salmonella. Fourteen serotypes were detected and the predominant ones were S. Bronx (n = 7; 16.7%), S. Newport (n = 6; 14.3%), followed by S. Typhimurium, S. Indiana, S. Kentucky, S. Saintpaul and S. Virchow (n = 4; 9.5%) each. Salmonella infection status was significantly associated with history of symptom of diarrhea during the past 60 days (OR = 3.78; CI = 1.76-8.13; p = 0). Highest resistance rates were found for oxytetracycline (59.5%), neomycin (50%), streptomycin (38.1%), cephalothin (33.3%), doxycycline (30.9%), ampicillin (30.9%) and amoxicillin + clavulanic acid (26.2%). Thirty eight (90.5%) of the isolates were resistant or intermediately resistant to at least one of the 16 antimicrobials tested. Resistance to two or more antimicrobials was detected in 30 (71.4%) of the isolates. Resistance to three or more antimicrobials was detected in 19 (45.2%) of the isolates. This study demonstrated high carriage rate of Salmonella serotypes known for causing human salmonellosis and large proportion of them were resistant to antimicrobials used in public and veterinary medicine for management of various bacterial infections, suggesting the possible risk of infection of human population in close contact with these dogs by drug resistant pathogens. Therefore, it is vital to work on raising public awareness on zoonotic canine diseases prevention measures and good hygienic practices.

  20. Recent Trends in Salmonella Outbreaks and Emerging Technology for Biocontrol of Salmonella Using Phages in Foods: A Review.

    Science.gov (United States)

    Oh, Jun-Hyun; Park, Mi-Kyung

    2017-12-28

    Salmonella is one of the principal causes of foodborne outbreaks. As traditional control methods have shown less efficacy against emerging Salmonella serotypes or antimicrobialresistant Salmonella , new approaches have been attempted. The use of lytic phages for the biocontrol of Salmonella in the food industry has become an attractive method owing to the many advantages offered by the use of phages as biocontrol agents. Phages are natural alternatives to traditional antimicrobial agents; they have proven effective in the control of bacterial pathogens in the food industry, which has led to the development of different phage products. The treatment with specific phages in the food industry can prevent the decay of products and the spread of bacterial diseases, and ultimately promotes safe environments for animal and plant food production, processing, and handling. After an extensive investigation of the current literature, this review focuses predominantly on the efficacy of phages for the successful control of Salmonella spp. in foods. This review also addresses the current knowledge on the pathogenic characteristics of Salmonella , the prevalence of emerging Salmonella outbreaks, the isolation and characterization of Salmonella -specific phages, the effectiveness of Salmonella -specific phages as biocontrol agents, and the prospective use of Salmonella -specific phages in the food industry.

  1. Automated 5 ' nuclease PCR assay for identification of Salmonella enterica

    DEFF Research Database (Denmark)

    Hoorfar, Jeffrey; Ahrens, Peter; Rådström, P.

    2000-01-01

    -point fluorescence (FAM) signals for the samples and positive control (TET) signals (relative sensitivity [Delta Rn], >0.6). The diagnostic specificity of the method was assessed using 120 non-Salmonella strains, which all resulted in negative FAM signals (Delta Rn, less than or equal to 0.5). All 100 rough...... Salmonella strains tested resulted in positive FAM and TET signals. In addition, it was found that the complete PCR mixture, predispensed in microwell plates, could be stored for up to 3 months at -20 degrees C, Thus, the diagnostic TaqMan assay developed can be a useful and simple alternative method......A simple and ready-to-go test based on a 5' nuclease (TaqMan) PCR technique was developed for identification of presumptive Salmonella enterica isolates. The results were compared with those of conventional methods. The TaqMan assay was evaluated for its ability to accurately detect 210 S. enterica...

  2. Assessment of the microbiological safety of edible dried seeds from retail premises in the United Kingdom with a focus on Salmonella spp.

    Science.gov (United States)

    Willis, Caroline; Little, Christine L; Sagoo, Satnam; de Pinna, Elizabeth; Threlfall, John

    2009-12-01

    Sesame seed products have recently been associated with a number of Salmonella outbreaks in the UK and elsewhere. Aside from sesame seeds, there is little published information on the prevalence of Salmonella spp. in edible seeds. A study of 3735 samples of retail edible dried seeds in the UK was therefore carried out between October 2007 and March 2008 to assess their microbiological safety in relation to Salmonella contamination and levels of Escherichia coli, an indicator of faecal contamination. Overall, Salmonella was detected in 23 samples (0.6%), of which over half (57%) were sesame seeds. Other seeds contaminated with Salmonella were linseed (1 sample), sunflower (1 sample), alfalfa (1 sample), melon (4 samples) and mixed seeds (3 samples). E. coli was detected in 9% of samples, with 1.5% containing unsatisfactory levels (> or = 10(2)/g). These included melon, pumpkin, sesame, hemp, poppy, linseed, sunflower and mixed seeds. The UK retailers affected by the detection of Salmonella in their products recalled the contaminated batches, and Food Standards Agency food alerts were issued to advise against the consumption of affected seed products. This study highlights the importance of good hygiene practices and effective decontamination procedures during the production of these products.

  3. Production of the Plant Hormone Auxin by Salmonella and Its Role in the Interactions with Plants and Animals.

    Science.gov (United States)

    Cox, Clayton E; Brandl, Maria T; de Moraes, Marcos H; Gunasekera, Sarath; Teplitski, Max

    2017-01-01

    The ability of human enteric pathogens to colonize plants and use them as alternate hosts is now well established. Salmonella , similarly to phytobacteria, appears to be capable of producing the plant hormone auxin via an indole-3-pyruvate decarboxylase (IpdC), a key enzyme of the IPyA pathway. A deletion of the Salmonella ipdC significantly reduced auxin synthesis in laboratory culture. The Salmonella ipdC gene was expressed on root surfaces of Medicago truncatula . M. truncatula auxin-responsive GH3::GUS reporter was activated by the wild type Salmonella , and not but the ipdC mutant, implying that the bacterially produced IAA (Indole Acetic Acid) was detected by the seedlings. Seedling infections with the wild type Salmonella caused an increase in secondary root formation, which was not observed in the ipdC mutant. The wild type Salmonella cells were detected as aggregates at the sites of lateral root emergence, whereas the ipdC mutant cells were evenly distributed in the rhizosphere. However, both strains appeared to colonize seedlings well in growth pouch experiments. The ipdC mutant was also less virulent in a murine model of infection. When mice were infected by oral gavage, the ipdC mutant was as proficient as the wild type strain in colonization of the intestine, but it was defective in the ability to cross the intestinal barrier. Fewer cells of the ipdC mutant, compared with the wild type strain, were detected in Peyer's patches, spleen and in the liver. Orthologs of ipdC are found in all Salmonella genomes and are distributed among many animal pathogens and plant-associated bacteria of the Enterobacteriaceae , suggesting a broad ecological role of the IpdC-catalyzed pathway.

  4. Prevalence of Listeria monocytogenes, Vibrio parahaemolyticus, Staphylococcus aureus, and Salmonella spp. in seafood products using multiplex polymerase chain reaction.

    Science.gov (United States)

    Zarei, Mehdi; Maktabi, Siavash; Ghorbanpour, Masoud

    2012-02-01

    Although several etiological agents can be transmitted through seafood consumption, Listeria monocytogenes, Vibrio parahaemolyticus, Staphylococcus aureus, and Salmonella spp. are considered among the most important pathogens in terms of public health and disease. In this study, multiplex polymerase chain reaction (PCR), as a rapid and cost-effective method, was used to determine the prevalence of these pathogens in 245 samples of raw/fresh, frozen, and ready-to-eat (RTE) seafood products marketed in Iran. The prevalence of L. monocytogenes in raw/fresh fish and shrimp samples was 1.4%, whereas 2.9% of the raw/fresh fish and 7.1% of the shrimp samples were contaminated with V. parahaemolyticus. No contamination with L. monocytogenes and V. parahaemolyticus was found in frozen and RTE seafood products. The prevalence of S. aureus was found to be higher than other investigated pathogens. S. aureus was detected in 5% of the raw/fresh samples of fish and shrimp, 17.5% of the frozen, and 12.3% of the RTE samples. Further, our findings indicate that 2.9% of the fish samples, 4.3% of the shrimp samples, and 1.5% of the RTE samples were contaminated with Salmonella spp. Owing to the potential hazard of these pathogenic bacteria, multiplex PCR can provide a rapid and cost-effective method for the surveillance of these pathogens in seafood products.

  5. Salmonella prevalence among reptiles in a zoo education setting.

    Science.gov (United States)

    Hydeskov, H B; Guardabassi, L; Aalbaek, B; Olsen, K E P; Nielsen, S S; Bertelsen, M F

    2013-06-01

    Clinically healthy reptiles may shed Salmonella and therefore act as a potential zoonotic threat. Most people in Northern European countries are rarely exposed to reptiles, but many zoos have education departments where children have direct contact with this group of animals. The objectives of this study were to determine the prevalence and serotype distribution of Salmonella among reptiles in the Education Department (n = 55) at Copenhagen Zoo and compare it to the Zoo's main reptile collection (n = 145) to evaluate the zoonotic risk. Salmonella was isolated from cloacal swabs by selective enrichment, and a single isolate from each positive sample was further identified by biochemical tests and serotyped. The overall prevalence was 35% (69/200) with significant difference between the Education Department (64%, 35/55) and the main reptile collection (23%, 34/145). A total of 28 serotypes were detected. Ten serotypes were isolated from more than one specimen and four from more than one species. Salmonella enterica subsp. enterica serovar Eastbourne was the predominant serotype (32%, 22/69) and was also the serotype isolated from most reptile species (n = 7). Transmission of serotypes from one department to another was very limited indicated by the serotype distribution. Despite the relative high prevalence observed among the reptiles in the Zoo's Education Department compared to the reptiles in the Zoo's main reptile collection, no Salmonella cases have been linked to the Zoo, and Salmonella ser. Eastbourne is very rarely isolated from humans in Denmark. Simple hygienic procedures such as hand washing which is consistently carried out following handling of reptiles at the Education Department may reduce the risk and therefore contribute to this low prevalence. © 2012 Blackwell Verlag GmbH.

  6. Role of subtyping in detecting Salmonella cross contamination in the laboratory.

    LENUS (Irish Health Repository)

    De Lappe, Niall

    2009-01-01

    BACKGROUND: With the exception of M. tuberculosis, little has been published on the problems of cross-contamination in bacteriology laboratories. We performed a retrospective analysis of subtyping data from the National Salmonella Reference Laboratory (Ireland) from 2000-2007 to identify likely incidents of laboratory cross contamination. METHODS: Serotyping and antimicrobial susceptibility testing was performed on all Salmonella isolates received in the NSRL. Phage typing was performed on all S. Typhimurium and S. Enteritidis isolates while multi-locus variance analysis (MLVA) was performed on selected S. Typhimurium isolates. Pulsed field gel electrophoresis (PFGE) using the PulseNet standard protocol was performed on selected isolates of various serovars. RESULTS: Twenty-three incidents involving fifty-six isolates were identified as likely to represent cross contamination. The probable sources of contamination identified were the laboratory positive control isolate (n = 13), other test isolates (n = 9) or proficiency test samples (n = 1). CONCLUSION: The scale of laboratory cross-contamination in bacteriology is most likely under recognized. Testing laboratories should be aware of the potential for cross-contamination, regularly review protocols to minimize its occurrence and consider it as a possibility when unexpected results are obtained.

  7. Detection of salmonella on globe fruits using pulse excited magnetoelastic biosensors

    Science.gov (United States)

    Wikle, Howard C.; Du, Songtao; Prorok, Barton C.; Chin, Bryan A.

    2015-05-01

    This paper describes the results of a research project to investigate magnetoelastic (ME) biosensors actuated with a pulse excitation to measure the concentration of Salmonella Typhimurium of globe fruits. The ME biosensors are based on an acoustic wave resonator platform that is a freestanding (free-free) thin ribbon of magnetostrictive material with a lengthto- width ratio of 5:1. A biorecognition probe coated on the surface of the resonator platform binds with a targeted pathogen, i.e. E2 phage that binds with S. Typhimurium. The biosensor was actuated to vibrate longitudinally such that the resonant frequency depended primarily on the length of sensor and its overall mass. A pulsed excitation and measurement system was used to actuate micron scale ME biosensors to vibrate. The biosensor responds in a ring-down manner, a damped decay of the resonance amplitude, from which the resonant frequency was measured. An increase in mass due to the binding of the target pathogen resulted in a decrease in the resonant frequency. The pulsed excitation and measurement system that was developed under this effort and the characterization of its performance on the measurement of Salmonella concentrations on globe fruits is described.

  8. Evaluation of the Impact of Varied Carvacrol Concentrations on Salmonella Recovery in Oregano and How Corn Oil Can Minimize the Effect of Carvacrol during Preenrichment.

    Science.gov (United States)

    Beaubrun, Junia Jean-Gilles; Addy, Nicole; Keltner, Zachary; Farris, Samantha; Ewing, Laura; Gopinath, Gopal; Hanes, Darcy E

    2018-06-01

    Phenolic compounds, like carvacrol, in oregano interfere with the detection of foodborne pathogens such as Salmonella enterica. Carvacrol concentration varies based on plant cultivars and growth region. Six oregano cultivars were used to compare the impact of carvacrol concentration on Salmonella and to evaluate the effectiveness of corn oil to help increase Salmonella survival for detection. The results of Agilent 1200 series high-performance liquid chromatography analysis showed that carvacrol concentration in the six oregano cultivars ranged from 64 to 11,200 ppm. Oregano samples were artificially contaminated with S. enterica and were preenriched in Trypticase soy broth with or without 2% (v/v) corn oil. After 18 to 24 h at 37°C, aliquots were transferred to selective enrichment broths. Salmonella was recovered onto xylose lysine Tergitol 4 agar. Six Salmonella serovars were compared, and recovery varied based on carvacrol concentration and serovar. Samples with higher concentrations of carvacrol showed Salmonella recovery only when they were preenriched with corn oil. Based on metagenomic analysis, the microflora associated with the oregano also varied per cultivar. The results show that, as carvacrol levels increased, Salmonella survival decreased. However, the addition of corn oil to the preenrichment broth can minimize the antimicrobial effects of the phenolic compounds, thus allowing for increased detection of Salmonella from oregano cultivars.

  9. Pathogenicity of Salmonella Strains Isolated from Egg Shells and the Layer Farm Environment in Australia

    Science.gov (United States)

    McWhorter, Andrea R.; Davos, Dianne

    2014-01-01

    In Australia, the egg industry is periodically implicated during outbreaks of Salmonella food poisoning. Salmonella enterica serovar Typhimurium and other nontyphoidal Salmonella spp., in particular, are a major concern for Australian public health. Several definitive types of Salmonella Typhimurium strains, but primarily Salmonella Typhimurium definitive type 9 (DT9), have been frequently reported during egg-related food poisoning outbreaks in Australia. The aim of the present study was to generate a pathogenicity profile of nontyphoidal Salmonella isolates obtained from Australian egg farms. To achieve this, we assessed the capacity of Salmonella isolates to cause gastrointestinal disease using both in vitro and in vivo model systems. Data from in vitro experiments demonstrated that the invasion capacity of Salmonella serovars cultured to stationary phase (liquid phase) in LB medium was between 90- and 300-fold higher than bacterial suspensions in normal saline (cultured in solid phase). During the in vivo infection trial, clinical signs of infection and mortality were observed only for mice infected with either 103 or 105 CFU of S. Typhimurium DT9. No mortality was observed for mice infected with Salmonella serovars with medium or low invasive capacity in Caco-2 cells. Pathogenicity gene profiles were also generated for all serovars included in this study. The majority of serovars tested were positive for selected virulence genes. No relationship between the presence or absence of virulence genes by PCR and either in vitro invasive capacity or in vivo pathogenicity was detected. Our data expand the knowledge of strain-to-strain variation in the pathogenicity of Australian egg industry-related Salmonella spp. PMID:25362057

  10. Isolation and Evaluation Virulence Factors of Salmonella typhimurium and Salmonella enteritidis in Milk and Dairy Products

    Directory of Open Access Journals (Sweden)

    Shima Shaigan nia

    2014-06-01

    Conclusions: To our best knowledge the present study is the first prevalence report of Salmonella spp., Salmonella enteritidis and Salmonella typhimurium in raw sheep and goat samples in Iran. Consumption of pasteurized milk and dairy products can reduce the risk of salmonellosis.

  11. Rapid Methods for the Detection of Foodborne Bacterial Pathogens: Principles, Applications, Advantages and Limitations

    Directory of Open Access Journals (Sweden)

    Law eJodi Woan-Fei

    2015-01-01

    Full Text Available The incidence of foodborne diseases has increased over the years and resulted in major public health problem globally. Foodborne pathogens can be found in various foods and it is important to detect foodborne pathogens to provide safe food supply and to prevent foodborne diseases. The conventional methods used to detect foodborne pathogen are time consuming and laborious. Hence, a variety of methods have been developed for rapid detection of foodborne pathogens as it is required in many food analyses. Rapid detection methods can be categorized into nucleic acid-based, biosensor-based and immunological-based methods. This review emphasizes on the principles and application of recent rapid methods for the detection of foodborne bacterial pathogens. Detection methods included are simple polymerase chain reaction (PCR, multiplex PCR, real-time PCR, nucleic acid sequence-based amplification (NASBA, loop-mediated isothermal amplification (LAMP and oligonucleotide DNA microarray which classified as nucleic acid-based methods; optical, electrochemical and mass-based biosensors which classified as biosensor-based methods; enzyme-linked immunosorbent assay (ELISA and lateral flow immunoassay which classified as immunological-based methods. In general, rapid detection methods are generally time-efficient, sensitive, specific and labor-saving. The developments of rapid detection methods are vital in prevention and treatment of foodborne diseases.

  12. Rapid detection, characterization, and enumeration of foodborne pathogens

    DEFF Research Database (Denmark)

    Hoorfar, Jeffrey

    2011-01-01

    . The present review discusses the reasons for the increasing interest in rapid methods; current developments in the field, the research needs, and the future trends. The advent of biotechnology has introduced new technologies that led to the emergence of rapid diagnostic methods and altered food testing...... of rapid methods is for fast screening of large number of samples, where most of them are expected to be test-negative, leading to faster product release for sale. This has been the main strength of rapid methods such as real-time Polymerase Chain Reaction (PCR). Enrichment PCR, where a primary culture...... of pathogen in a contaminated product. Another key issue is automation, where the key drivers are miniaturization and multiple testing, which mean that not only one instrument is flexible enough to test for many pathogens but also many pathogens can be detected with one test. The review is mainly based...

  13. Research advance in rapid detection of foodborne Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Xihong Zhao

    2016-09-01

    Full Text Available Staphylococcus aureus is a gram-positive, coccus-shaped facultative anaerobe and a member of the Staphylococcaceae family. In recent years, alimentary toxicosis caused by S. aureus is a very serious problem worldwide, which constitutes a great threat to public health. In this review, we tried to summarize the conventional methods and newly developed rapid detection techniques of S. aureus (traditional detection method, biochemical detection, immunology method, molecular biology, and biosensor method for their principles, advantages, disadvantages, and applications. Furthermore, the future perspectives of S. aureus detection methods were forecasted at last.

  14. Molecular Characterisation of Salmonella enterica Serovar Typhi Isolated from Typhoidial Humans

    Directory of Open Access Journals (Sweden)

    Arunava Das

    2012-09-01

    Full Text Available Aims: Salmonella enterica serovar Typhi is the major causative agent for typhoidial fever around the globe among human population reported till date. Present research work was carried out for detection and molecular characterisation of Salmonella enterica serovar Typhi isolated from humans with Typhoidial fever by biochemical, phenotypical and virulence gene based polymerase chain reaction (PCR techniques. The isolated strains were also investigated for antibiotic susceptibility patterns as a control measure. Methodology and Results: A total of 16 clinical samples were collected from the same numbers of patients (7 males and 9 females from Coimbatore, Erode and Salem districts of Tamil Nadu and were processed via broth enrichment methods for isolation and identification of the causative agent S. enterica serovar Typhi. Microbiological and biochemical investigations revealed the presence of S. Typhi from 16 samples. The biotyping of the isolates showed that all the isolates belonged to biotype IV. The PCR analysis confirmed the presence of invA (Invasion gene, 244bp, tyv (Tyveloseepimerase gene, 615 bp, fliC-d (Phage-1 flagellin gene for d-antigen, 750 bp and viaB (Vi antigen gene, 439bp in all 16 clinical samples. The antibiotic susceptibility test that was carried out among the isolates against 12 antimicrobial agents, showed 100 % resistance to only ampicillin and 100 % sensitivity to carbenicillin, chloramphenicol, clindamycin, gentamycin, kanamycin and tetracycline.Conclusion, significance and impact of study: This study confirmed the association of virulent strains of S. enterica serovar Typhi from Typhoidial fever among human population and suggested that PCR based diagnostic could be very useful for the rapid detection of S. Typhi isolates. Present study emphasized the use of antibiotic like chloramphenicol or in combination with other antibiotics for the effective control of S. Typhi.

  15. 9 CFR 113.122 - Salmonella Choleraesuis Bacterin.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Salmonella Choleraesuis Bacterin. 113... REQUIREMENTS Inactivated Bacterial Products § 113.122 Salmonella Choleraesuis Bacterin. Salmonella Choleraesuis Bacterin shall be prepared from a culture of Salmonella choleraesuis which has been inactivated and is...

  16. 9 CFR 113.120 - Salmonella Typhimurium Bacterin.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Salmonella Typhimurium Bacterin. 113... REQUIREMENTS Inactivated Bacterial Products § 113.120 Salmonella Typhimurium Bacterin. Salmonella Typhimurium Bacterin shall be prepared from a culture of Salmonella typhimurium which has been inactivated and is...

  17. Culture versus PCR for Salmonella Species Identification in Some Dairy Products and Dairy Handlers with Special Concern to Its Zoonotic Importance.

    Science.gov (United States)

    Gwida, Mayada M; Al-Ashmawy, Maha A M

    2014-01-01

    A total of 200 samples of milk and dairy products as well as 120 samples of dairy handlers were randomly collected from different dairy farms and supermarkets in Dakahlia Governorate, Egypt. The conventional cultural and serotyping methods for detection of Salmonella in dairy products were applied and the results were compared with those obtained by molecular screening assay using (ttr sequence). The obtained results revealed that 21% of milk and dairy products (42/200) were positive for Salmonella species using enrichment culture-based PCR method, while 12% of different dairy samples (24/200) were found to be positive for Salmonella species by using the conventional culture methods. Two stool specimens out of 40 apparently healthy dairy handlers were positive by the PCR method. Serotyping of Salmonella isolates revealed that 58.3% (14/24) from different dairy products were contaminated with Salmonella Typhimurium. We conclude that the enrichment culture-based PCR assay has high sensitivity and specificity for detection of Salmonella species in dairy products and handlers. High incidence of Salmonella Typhimurium in the examined dairy samples highlights the important role played by milk and dairy products as a vehicle in disease prevalence. Great effort should be applied for reducing foodborne risk for consumers.

  18. Assessment of the microbiological safety of edible roasted nut kernels on retail sale in England, with a focus on Salmonella.

    Science.gov (United States)

    Little, C L; Jemmott, W; Surman-Lee, S; Hucklesby, L; de Pinnal, E

    2009-04-01

    There is little published information on the prevalence of Salmonella in edible nut kernels. A study in early 2008 of edible roasted nut kernels on retail sale in England was undertaken to assess the microbiological safety of this product. A total of 727 nut kernel samples of different varieties were examined. Overall, Salmonella and Escherichia coli were detected from 0.2 and 0.4% of edible roasted nut kernels. Of the nut varieties examined, Salmonella Havana was detected from 1 (4.0%) sample of pistachio nuts, indicating a risk to health. The United Kingdom Food Standards Agency was immediately informed, and full investigations were undertaken. Further examination established the contamination to be associated with the pistachio kernels and not the partly opened shells. Salmonella was not detected in other varieties tested (almonds, Brazils, cashews, hazelnuts, macadamia, peanuts, pecans, pine nuts, and walnuts). E. coli was found at low levels (range of 3.6 to 4/g) in walnuts (1.4%), almonds (1.2%), and Brazils (0.5%). The presence of Salmonella is unacceptable in edible nut kernels. Prevention of microbial contamination in these products lies in the application of good agricultural, manufacturing, and storage practices together with a hazard analysis and critical control points system that encompass all stages of production, processing, and distribution.

  19. Salmonella radicidation of poultry carcasses

    International Nuclear Information System (INIS)

    Mulder, R.W.A.W.

    1982-01-01

    This thesis reports investigations using gamma-radiation to decontaminate poultry carcasses. The application to foods of doses of ionizing radiation sufficient to reduce the number of viable specific non-sporeforming pathogenic microorganisms so that none is detectable in the treated food by any standard method is termed radicidation. The doses used in this study were at such a level that no undesirable or unfavourable side-effects occurred. The effects of these doses were studied on salmonellae and other microorganisms present in, or associated with poultry carcasses and in liquid and on solid culture media as well. Decimal reduction (D 10 ) values were estimated. These represent the dose (kGy) required to achieve a reduction in initial colony count from N 0 to 0.1 N 0 . Together with the estimation of the numbers of Salmonella present per carcass the data were used to predict the effect of an ionizing radiation treatment of poultry. Data on the effect of ionizing radiation on the total microflora of poultry carcasses were also collected. (Auth.)

  20. Rapid In-Place Composite Rotor Damage Detection, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations is proposing to further develop the Rapid In-Place Composite Rotor Damage Detection (RIPCoRDD) System for determining and tracking the structural...

  1. Rapid In-Place Composite Rotor Damage Detection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations is proposing to develop the Rapid In-Place Composite Rotor Damage Detection (RIPCoRDD) for determining and tracking the structural health of...

  2. Rapid Detection of Biological and Chemical Threat Agents Using Physical Chemistry, Active Detection, and Computational Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Myung; Dong, Li; Fu, Rong; Liotta, Lance; Narayanan, Aarthi; Petricoin, Emanuel; Ross, Mark; Russo, Paul; Zhou, Weidong; Luchini, Alessandra; Manes, Nathan; Chertow, Jessica; Han, Suhua; Kidd, Jessica; Senina, Svetlana; Groves, Stephanie

    2007-01-01

    Basic technologies have been successfully developed within this project: rapid collection of aerosols and a rapid ultra-sensitive immunoassay technique. Water-soluble, humidity-resistant polyacrylamide nano-filters were shown to (1) capture aerosol particles as small as 20 nm, (2) work in humid air and (3) completely liberate their captured particles in an aqueous solution compatible with the immunoassay technique. The immunoassay technology developed within this project combines electrophoretic capture with magnetic bead detection. It allows detection of as few as 150-600 analyte molecules or viruses in only three minutes, something no other known method can duplicate. The technology can be used in a variety of applications where speed of analysis and/or extremely low detection limits are of great importance: in rapid analysis of donor blood for hepatitis, HIV and other blood-borne infections in emergency blood transfusions, in trace analysis of pollutants, or in search of biomarkers in biological fluids. Combined in a single device, the water-soluble filter and ultra-sensitive immunoassay technique may solve the problem of early warning type detection of aerosolized pathogens. These two technologies are protected with five patent applications and are ready for commercialization.

  3. Antimicrobial resistance and typing of Salmonella isolated from street vended foods and associated environment.

    Science.gov (United States)

    Anukampa; Shagufta, Bi; Sivakumar, M; Kumar, Surender; Agarwal, Rajesh Kumar; Bhilegaonkar, Kiran Narayan; Kumar, Ashok; Dubal, Zunjar Baburao

    2017-07-01

    The present study was carried out to find out the occurrence and types of Salmonella present in street vended foods and associated environment, and their resistance pattern against various antibiotics. About 1075 street vended food and associated environment samples were processed for isolation and confirmation of different Salmonella spp. by targeting gene specific inv A gene and serotype specific Sdf I, Via B and Spy genes by PCR. Selected Salmonella isolates were screened for antibiotic resistance by using Baeur-Kirby disk diffusion test. Out of 1075 samples, only 31 (2.88%) isolates could be amplified the inv A gene of which 19 could be recovered from meat vendors; 8 from egg vendors while remaining 4 from milk vendors. Though, majority of Salmonella recovered from raw foods the ready-to-eat food like chicken gravy and rasmalai also showed its presence which pose a serious public health threat. Overall, 19, 6 and 1 isolates of S. Typhimurium, S. Enteritidis and S. Typhi could be detected by PCR while remaining 5 isolates could not be amplified suggesting other type of Salmonella. Selected Salmonella isolates were completely resistance to Oxacillin (100%) followed by Cefoxitin (30.43%) and Ampicillin (26.10%). Thus, it is observed that the street vended foods of animal origin and associated environment play an important role in transmission of food borne pathogens including Salmonella .

  4. The occurrence of Salmonella spp. in duck eggs on sale at retail or from catering in England.

    Science.gov (United States)

    Owen, M; Jorgensen, F; Willis, C; McLauchlin, J; Elviss, N; Aird, H; Fox, A; Kaye, M; Lane, C; de Pinna, E

    2016-11-01

    Since 2010, human salmonellosis outbreaks in the UK have been detected as associated with the consumption of duck eggs. Little data are available on the rate of occurrence of Salmonella in duck eggs. The aim of this study was to investigate the occurrence of Salmonella spp. in duck eggs on sale and from catering in England during 2011, particularly those from small-scale production. All samples were collected independently of human salmonellosis outbreak investigations. Composite samples of 6-10 eggs (shells and contents were examined separately) were examined for the presence of Salmonella spp. using the ISO 6579:2002 method. Salmonella spp. was recovered from two of 145 samples (1·4%). In one sample, Salmonella Typhimurium DT 8 was isolated from the shells while Salm. Typhimurium DT 8 and Salm. Typhimurium DT30 were isolated from the contents. Salmonella Typhimurium DT8 was isolated from the egg shells only in the second contaminated sample. This study provides baseline data for risk assessors, regulators and the food industry and may be helpful in communicating risks associated with the consumption of this product as well as evaluating risk management options to control food safety including vaccination of ducks. Human salmonellosis outbreaks in England and Northern Ireland due to Salmonella enterica serovar Typhimurium definitive phage type (DT) 8 have been identified as associated with the consumption of duck eggs since 2010. This study has shown that Salmonella spp. was detected in 1·4% of ducks egg samples providing baseline data for risk assessors, regulators and the food industry. This may be helpful in communicating risks associated with the consumption of this product as well as evaluating risk management options to control food safety including vaccination of ducks. © 2016 Crown copyright. Letters in Applied Microbiology © 2016 The Society for Applied Microbiology.

  5. Salmonella Infections - Multiple Languages

    Science.gov (United States)

    ... Are Here: Home → Multiple Languages → All Health Topics → Salmonella Infections URL of this page: https://medlineplus.gov/ ... V W XYZ List of All Topics All Salmonella Infections - Multiple Languages To use the sharing features ...

  6. Biofilm formation by Salmonella spp. in catfish mucus extract under industrial conditions.

    Science.gov (United States)

    Dhowlaghar, Nitin; De Abrew Abeysundara, Piumi; Nannapaneni, Ramakrishna; Schilling, Mark W; Chang, Sam; Cheng, Wen-Hsing; Sharma, Chander S

    2018-04-01

    The objective of this study was to determine the effect of strain and temperature on the growth and biofilm formation of Salmonella spp. in high and low concentrations of catfish mucus extract on different food-contact surfaces at 22 °C and 10 °C. The second objective of this study was to evaluate the efficacy of disinfectants at recommended concentrations and contact times for removing Salmonella biofilms cells on a stainless steel surface containing catfish mucus extract. Growth and biofilm formation of all Salmonella strains increased with higher concentrations of catfish mucus extract at both 10 °C and 22 °C. In 15 μg/ml of catfish mucus extract inoculated with 3 log CFU/ml, the biofilm levels of Salmonella on stainless steel surface reached to 3.5 log CFU/cm 2 at 10 °C or 5.5 log CFU/cm 2 at 22 °C in 7 days. In 375 μg/ml of catfish mucus extract inoculated with 3 log CFU/ml, the biofilm levels of Salmonella on the stainless steel surface reached 4.5 log CFU/cm 2 at 10 °C and 6.5 log CFU/cm 2 at 22 °C in 7 days. No differences were observed between Salmonella strains tested for biofilm formation in catfish mucus extract on the stainless steel surface. The biofilm formation by Salmonella Blockley (7175) in catfish mucus extract was less (P stainless steel, polyethylene and polyurethane surfaces. Salmonella biofilm cells were not detectable on the stainless steel surface after treatment with a mixture of disinfectants but were still present when single compound disinfectants were used. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Salmonella survival during thermal dehydration of fresh garlic and storage of dehydrated garlic products.

    Science.gov (United States)

    Zhang, Hongmei; Qi, Yan; Wang, Lei; Zhang, Shaokang; Deng, Xiangyu

    2017-12-18

    Salmonella survival was characterized and modeled during thermal dehydration of fresh garlic and storage of dehydrated garlic products. In our experiments that simulated commercial dehydration processing at 80±5°C, moderate level of Salmonella contamination (4-5logCFU/g) on fresh garlic was reduced below the enumeration limit (1.7logCFU/g) after 4.5h of dehydration and not detectable by culture enrichment after 7h. With high level of contamination (7-8logCFU/g), the Salmonella population persisted at 3.6logCFU/g after 8h of processing. By increasing the dehydration temperature to 90±5°C, the moderate and high levels of initial Salmonella load on fresh garlic dropped below the enumeration limit after 1.5 and 3.75h of processing and became undetectable by culture enrichment after 2.5 and 6h, respectively. During the storage of dried garlic products, Salmonella was not able to grow under all tested combinations of temperature (25 and 35°C) and water activity (0.56-0.98) levels, suggesting active inhibition. Storage temperature played a primary role in determining Salmonella survival on dehydrated garlic flakes. Under a typical storage condition at 25°C and ambient relative humidity, Salmonella could persist over months with the population gradually declining (4.3 log reduction over 88days). Granular size of dehydrated garlic had an impact on Salmonella survival, with better survival of the pathogen observed in bigger granules. At the early stage of dehydrated garlic storage (until 7days), rising water activity appeared to initially promote but then inhibited Salmonella survival, resulting in a water activity threshold at 0.73 where Salmonella displayed strongest persistence. However, this phenomenon was less apparent during extended storage (after 14days). Copyright © 2017 Elsevier B.V. All rights reserved.

  8. 9 CFR 113.123 - Salmonella Dublin Bacterin.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Salmonella Dublin Bacterin. 113.123... Inactivated Bacterial Products § 113.123 Salmonella Dublin Bacterin. Salmonella Dublin Bacterin shall be prepared from a culture of Salmonella dublin which has been inactivated and is nontoxic. Each serial of...

  9. Comparisons of Sampling Procedures and Time of Sampling for the Detection of Salmonella in Danish Infected Chicken Flocks Raised in Floor Systems

    Directory of Open Access Journals (Sweden)

    Madsen M

    2002-03-01

    Full Text Available Bacteriological follow-up samples were taken from 41 chicken (Gallus gallus flocks in floor systems, where Salmonella enterica (Salmonella had been detected either directly in bacteriological samples or indirectly by serological samples. Three types of follow-up samples were compared to each other within each flock: 1 5 pairs of socks, analysed as 5 samples, 2 2 pairs of socks, analysed as one sample, and 3 60 faecal samples, analysed as one pooled sample. Agreement between sampling methods was evaluated by the following statistical tests: 'Kappa', 'The adjusted rand', McNemar's test for marginal symmetry, Proportion of agreement P0, P+, P-, and Odds Ratio. The highest agreement was found between the 2 types of sock sampling, while the lowest agreement was found by comparing 60 faecal samples with 5 pairs of socks. Two pairs of socks analysed as one pool appeared to be just as effective in detecting S. enterica as the 60 faecal samples. In broiler flocks, 5 pairs of socks were used both in the routine samples taken at about 3 weeks of age for the establishment of infection of the flock, and as one of the follow-up samples taken shortly before slaughter age, which means that the only notable differences between the 2 sampling rounds were the age of the broilers and of their litter. S. enterica was detected more frequently in samples from broilers about 3 weeks old, than in similar samples taken from broilers a few days prior to slaughter at ca. 33–40 days of age.

  10. Radiometric method for the rapid detection of Leptospira organisms

    International Nuclear Information System (INIS)

    Manca, N.; Verardi, R.; Colombrita, D.; Ravizzola, G.; Savoldi, E.; Turano, A.

    1986-01-01

    A rapid and sensitive radiometric method for detection of Leptospira interrogans serovar pomona and Leptospira interrogans serovar copenhageni is described. Stuart's medium and Middlebrook TB (12A) medium supplemented with bovine serum albumin, catalase, and casein hydrolysate and labeled with 14 C-fatty acids were used. The radioactivity was measured in a BACTEC 460. With this system, Leptospira organisms were detected in human blood in 2 to 5 days, a notably shorter time period than that required for the majority of detection techniques

  11. Test results of Salmonella typing by the NRLs-Salmonella in the Member States of the EU and the EnterNet Laboratories - Collaborative study VI on typing of Salmonella

    NARCIS (Netherlands)

    Korver H; Raes M; Maas HME; Ward LR; Wannet WJB; Henken AM; MGB; LIS

    2002-01-01

    Test resultaten van Salmonella sero- en faagtypering en antimicrobiele gevoeligheidsbepalingen door de Nationale Referentie Laboratoria voor Salmonella in de Lidstaten van de Europese Unie en EnterNet Laboratoria: Ringonderzoek VI (2001) voor Salmonella. Een zesde ringonderzoek betreffende de

  12. Survival of Salmonella Newport in oysters.

    Science.gov (United States)

    Morrison, Christopher M; Armstrong, Alexandra E; Evans, Sanford; Mild, Rita M; Langdon, Christopher J; Joens, Lynn A

    2011-08-02

    Salmonella enterica is the leading cause of laboratory-confirmed foodborne illness in the United States and raw shellfish consumption is a commonly implicated source of gastrointestinal pathogens. A 2005 epidemiological study done in our laboratory by Brands et al., showed that oysters in the United States are contaminated with Salmonella, and in particular, a specific strain of the Newport serovar. This work sought to further investigate the host-microbe interactions between Salmonella Newport and oysters. A procedure was developed to reliably and repeatedly expose oysters to enteric bacteria and quantify the subsequent levels of bacterial survival. The results show that 10 days after an exposure to Salmonella Newport, an average concentration of 3.7 × 10(3)CFU/g remains within the oyster meat, and even after 60 days there still can be more than 10(2)CFU/g remaining. However, the strain of Newport that predominated in the market survey done by Brands et al. does not survive within oysters or the estuarine environment better than any other strains of Salmonella we tested. Using this same methodology, we compared Salmonella Newport's ability to survive within oysters to a non-pathogenic strain of E. coli and found that after 10 days the concentration of Salmonella was 200-times greater than that of E. coli. We also compared those same strains of Salmonella and E. coli in a depuration process to determine if a constant 120 L/h flux of clean seawater could significantly reduce the concentration of bacteria within oysters and found that after 3 days the oysters retained over 10(4)CFU/g of Salmonella while the oysters exposed to the non-pathogenic strain of E. coli contained 100-times less bacteria. Overall, the results of this study demonstrate that any of the clinically relevant serovars of Salmonella can survive within oysters for significant periods of time after just one exposure event. Based on the drastic differences in survivability between Salmonella and a non

  13. EU Interlaboratory comparison study Food-II Bacteriological detection of Salmonella in minced beef

    NARCIS (Netherlands)

    Kuijpers AFA; Veenman C; van de Kassteele J; Mooijman KA; LZO

    2008-01-01

    Van de 30 Europese Nationale Referentie Laboratoria (NRLs) waren er 29 in staat hoge en lage concentraties Salmonella in rundergehakt aan te tonen. Vijf laboratoria hadden hiervoor een herkansing nodig. Een laboratorium kon ook tijdens deze herkansing niet voldoende presteren. Momenteel wordt

  14. The Antibiofilm Effect of Ginkgo biloba Extract Against Salmonella and Listeria Isolates from Poultry.

    Science.gov (United States)

    Wu, Yan; Park, Keun Cheol; Choi, Beom Geun; Park, Jin Hwa; Yoon, Ki Sun

    2016-05-01

    Salmonella spp. and Listeria spp. are common foodborne pathogens in poultry and have caused a large number of outbreaks worldwide. Biofilm formation is common in the food industry and is also a mechanism of antimicrobial resistance. The aim of this work was to investigate the antimicrobial effect and mechanism of Ginkgo biloba extract against the biofilm formation of Salmonella and Listeria isolates from poultry at retail markets. Bacteria detection, isolation, and enumeration were carried out on 27 chicken and 29 ducks at retail markets. The effects of temperature and G. biloba extract against biofilm formation of Salmonella and Listeria isolates were measured using the crystal violet assay and swimming and swarming motilities. The monitoring results of Salmonella and Listeria in 56 poultry carcasses at retail markets in Korea showed that the prevalence of Salmonella spp. in poultry was low (5.4%), but the prevalence of Listeria spp (78.6%) was high. L. innocua was the predominant serotype (80%) in the isolated Listeria species. Temperature, strain, and surface affected the biofilm formation of Salmonella spp. and Listeria spp. L. innocua showed the best biofilm formation ability on a 96-well plate, while Salmonella Enteritidis formed the most biofilm on a glass slide. Biofilm formation abilities of Salmonella spp. and Listeria spp. were increased with the increase of temperature. G. biloba extract at 75 μg/mL significantly inhibited biofilm formation of Salmonella spp. and Listeria spp (p Listeria, but not L. monocytogenes. The findings of this study provided the basis for the application of G. biloba extract as a food additive to promote the quality and safety of poultry products.

  15. Theoretical value of pre-trade testing for Salmonella in Swedish cattle herds.

    Science.gov (United States)

    Sternberg Lewerin, Susanna

    2018-05-01

    The Swedish Salmonella control programme includes mandatory action if Salmonella is detected in a herd. The aim of this study was to assess the relative value of different strategies for pre-movement testing of cattle. Three fictitious herds were included: dairy, beef and specialised calf-fattening. The yearly risks of introducing Salmonella with and without individual serological or bulk milk testing were assessed as well as the effects of sourcing animals from low-prevalence areas or reducing the number of source herds. The initial risk was highest for the calf-fattening herd and lowest for the beef herd. For the beef and dairy herds, the yearly risk of Salmonella introduction was reduced by about 75% with individual testing. Sourcing animals from low-prevalence areas reduced the risk by >99%. For the calf-fattening herd, the yearly risk was reduced by almost 50% by individual testing or sourcing animals from a maximum of five herds. The method was useful for illustrating effects of risk mitigation when introducing animals into a herd. Sourcing animals from low-risk areas (or herds) is more effective than single testing of individual animals or bulk milk. A comprehensive approach to reduce the risk of introducing Salmonella from source herds is justified. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Prediction of Salmonella carcass contamination by a comparative quantitative analysis of E. coli and Salmonella during pig slaughter

    DEFF Research Database (Denmark)

    Nauta, Maarten; Barfod, Kristen; Hald, Tine

    2013-01-01

    Salmonella concentrations. It is concluded that the faecal carriage of Salmonella together with the faecal contamination of carcasses, as predicted from E. coli data in the animal faeces and hygiene performance of the slaughterhouse, is not sufficient to explain carcass contamination with Salmonella. Our...... extensive data set showed that other factors than the observed faecal carriage of Salmonella by the individual animals brought to slaughter, play a more important role in the Salmonella carcass contamination of pork.......Faecal contamination of carcasses in the slaughterhouse is generally considered to be the source of Salmonella on pork. In this study the hygiene indicator Escherichia coli is used to quantify faecal contamination of carcasses and it is hypothesized that it can be used to predict the quantitative...

  17. Assessment of Consumer Exposure to Salmonella spp., Campylobacter spp., and Shiga Toxin-Producing Escherichia coli in Meat Products at Retail in the City of Sao Paulo, Brazil.

    Science.gov (United States)

    Ristori, Christiane Asturiano; Rowlands, Ruth Estela Gravato; Martins, Cecília Geraldes; Barbosa, Maria Luisa; Dos Santos, Luis Fernando; Jakabi, Miyoko; de Melo Franco, Bernadette Dora Gombossy

    2017-08-01

    Meat products may be vehicles of bacterial pathogens to humans, and Salmonella spp., Campylobacter spp., and Shiga toxin-producing Escherichia coli (STEC) are the most relevant. The aim of this study was to generate data on prevalence of these three pathogens in 552 samples of meat products (hot dogs, pork sausages, raw ground beef, and raw chicken legs) sold at retail in the city of Sao Paulo, Brazil. Salmonella spp. was detected in 5.8% (32/552) of samples, comprising pork sausages 62.5% (20/32) and chicken legs 37.5% (12/32). The counts of Salmonella spp. were low, ranging from Salmonella Typhimurium (28.1%), Salmonella I 4,[5],12:i:- (15.6%), Salmonella Enteritidis (12.5%), Salmonella Derby, and Salmonella Brandenburg (9.4%). Campylobacter spp. was detected in 33 samples (6.0%), comprising chicken legs (82%) and ground beef (18%). All samples were negative for STEC. These results suggest that meat products when subjected to inadequate cooking and/or cross-contamination with other products ready for consumption can lead to occurrence of outbreaks, highlighting the risks associated with them.

  18. Salmonella fecal shedding and immune responses are dose- and serotype- dependent in pigs.

    Directory of Open Access Journals (Sweden)

    Renata Ivanek

    Full Text Available Despite the public health importance of Salmonella infection in pigs, little is known about the associated dynamics of fecal shedding and immunity. In this study, we investigated the transitions of pigs through the states of Salmonella fecal shedding and immune response post-Salmonella inoculation as affected by the challenge dose and serotype. Continuous-time multistate Markov models were developed using published experimental data. The model for shedding had four transient states, of which two were shedding (continuous and intermittent shedding and two non-shedding (latency and intermittent non-shedding, and one absorbing state representing permanent cessation of shedding. The immune response model had two transient states representing responses below and above the seroconversion level. The effects of two doses [low (0.65×10(6 CFU/pig and high (0.65×10(9 CFU/pig] and four serotypes (Salmonella Yoruba, Salmonella Cubana, Salmonella Typhimurium, and Salmonella Derby on the models' transition intensities were evaluated using a proportional intensities model. Results indicated statistically significant effects of the challenge dose and serotype on the dynamics of shedding and immune response. The time spent in the specific states was also estimated. Continuous shedding was on average 10-26 days longer, while intermittent non-shedding was 2-4 days shorter, in pigs challenged with the high compared to low dose. Interestingly, among pigs challenged with the high dose, the continuous and intermittent shedding states were on average up to 10-17 and 3-4 days longer, respectively, in pigs infected with S. Cubana compared to the other three serotypes. Pigs challenged with the high dose of S. Typhimurium or S. Derby seroconverted on average up to 8-11 days faster compared to the low dose. These findings highlight that Salmonella fecal shedding and immune response following Salmonella challenge are dose- and serotype-dependent and that the detection of

  19. Prevalence, Virulence Genes and Antimicrobial Resistance Profiles of Salmonella Serovars from Retail Beef in Selangor, Malaysia

    Directory of Open Access Journals (Sweden)

    Tze Y. Thung

    2018-01-01

    Full Text Available The aim of the present study was to investigate the prevalence of Salmonella spp., Salmonella Enteritidis and Salmonella Typhimurium in retail beef from different retail markets of Selangor area, as well as, to assess their pathogenic potential and antimicrobial resistance. A total of 240 retail beef meat samples (chuck = 60; rib = 60; round = 60; sirloin = 60 were randomly collected. The multiplex polymerase chain reaction (mPCR in combination with the most probable number (MPN method was employed to detect Salmonella spp., S. Enteritidis and S. Typhimurium in the meat samples. The prevalence of Salmonella spp., S. Enteritidis and S. Typhimurium in 240 beef meat samples were 7.50, 1.25, and 0.83%, respectively. The microbial loads of total Salmonella was found in the range of <3 to 15 MPN/g. Eight different serovars of Salmonella were identified among the 23 isolates, and S. Agona was the predominant serovar (26.09%. Interestingly, all the Salmonella isolates were resistant to penicillin, erythromycin and vancomycin, but the sensitivity was observed for tetracycline, gentamicin and amoxicillin/clavulanic acid. All 23 isolates were resistant to at least three antibiotics. Two S. Typhimurium isolates (8.70% exhibited the highest multiple antibiotic resistance (MAR index value of 0.56 which shown resistance to nine antibiotics. PCR analysis of virulence genes showed that all Salmonella isolates (100% were positive for the invA gene. Meanwhile, pefA was only identified in S. Enteritidis and S. Typhimurium. The findings in this study indicate that retail beef products tested were widely contaminated with multi-drug resistant (MDR Salmonella and various virulence genes are present among the isolated Salmonella serovars.

  20. Microbial quality and prevalence of Salmonella and Listeria in eggs

    Directory of Open Access Journals (Sweden)

    Manijeh Mahdavi

    2012-01-01

    Full Text Available Aims: This study was undertaken to determine the microbial quality and the prevalence of Salmonella and Listeria in table eggs in Isfahan, Iran. Materials and Methods: A total of 525 samples were randomly collected from various shops in Isfahan, Iran. Microbial quality of eggs evaluated by coliform count and total bacterial viable counts. Also, detection of Listeria and Salmonella in egg contents and on eggs shells was performed. Results: The mean of total viable bacteria and coliform counts in the egg contents were 3.95 × 10 4 CFU/g and 4.94 × 10 3 CFU/g, respectively. Salmonella and Listeria were not found on the shell or content of eggs. Enterobacteriaceae families were found in 357 of 525 (68.28% and 276 of 525 (52.44% of egg shell and egg content samples, respectively. Moreover, Pseudomonas aeruginosa was isolated from 175 (33.41% and 144 (25.37% of egg shell and egg content, respectively. The isolated Enterobacteriaceae were included: Enterobacter aerogenes, Escherichia coli, Klebsiella pneumoniae, Buttiauxella agrestis, Cedecea lapagei, Cedecea davisae and Erwinia herbicola. Conclusion: The findings of the present study indicate although Salmonella and Listeria were not found in egg samples; however, there is an urgent need to improve the hygienic level of consumed eggs.

  1. Test results of Salmonella typing by the NRLs-Salmonella in the Member States of the EU and the EnterNet Laboratories - Collaborative study VI on typing of Salmonella

    NARCIS (Netherlands)

    Korver H; Raes M; Maas HME; Ward LR; Wannet WJB; Henken AM; PHLS-Colindale/London; MGB; LIS

    2002-01-01

    Test results of Salmonella sero- and phage typing and antimicrobial susceptibility testing by the National Reference Laboratories for Salmonella in the Member States of the European Union and the EnterNet Laboratories: Collaborative study VI (2001) for Salmonella. The sixth collaborative typing

  2. Vaccines against invasive Salmonella disease

    Science.gov (United States)

    MacLennan, Calman A; Martin, Laura B; Micoli, Francesca

    2014-01-01

    Though primarily enteric pathogens, Salmonellae are responsible for a considerable yet under-appreciated global burden of invasive disease. In South and South-East Asia, this manifests as enteric fever caused by serovars Typhi and Paratyphi A. In sub-Saharan Africa, a similar disease burden results from invasive nontyphoidal Salmonellae, principally serovars Typhimurium and Enteritidis. The existing Ty21a live-attenuated and Vi capsular polysaccharide vaccines target S. Typhi and are not effective in young children where the burden of invasive Salmonella disease is highest. After years of lack of investment in new Salmonella vaccines, recent times have seen increased interest in the area led by emerging-market manufacturers, global health vaccine institutes and academic partners. New glycoconjugate vaccines against S. Typhi are becoming available with similar vaccines against other invasive serovars in development. With other new vaccines under investigation, including live-attenuated, protein-based and GMMA vaccines, now is an exciting time for the Salmonella vaccine field. PMID:24804797

  3. Radiometric method for the rapid detection of Leptospira organisms

    Energy Technology Data Exchange (ETDEWEB)

    Manca, N.; Verardi, R.; Colombrita, D.; Ravizzola, G.; Savoldi, E.; Turano, A.

    1986-02-01

    A rapid and sensitive radiometric method for detection of Leptospira interrogans serovar pomona and Leptospira interrogans serovar copenhageni is described. Stuart's medium and Middlebrook TB (12A) medium supplemented with bovine serum albumin, catalase, and casein hydrolysate and labeled with /sup 14/C-fatty acids were used. The radioactivity was measured in a BACTEC 460. With this system, Leptospira organisms were detected in human blood in 2 to 5 days, a notably shorter time period than that required for the majority of detection techniques.

  4. Multilevel Mycotic Aneurysms Due to Salmonella Infection: Case Report and Review of the Literature.

    Science.gov (United States)

    Pasveer, Erik Hans; van Eps, Randolph G Statius; Wever, Jan Jacob; Veger, Hugo Thomas Christian

    2017-10-01

    Infected or mycotic aneurysms (MAs) of the aorta and adjacent arteries are rare and difficult to treat. We report a unique case of a Salmonella serotype enteritidis-induced rapidly expanding aortic and iliac pseudoaneurysm during preoperative workup. Based on the presented case, we postulate that the agressive nature of Salmonella enteritidis MAs should not be underestimated. If postponed intervention is chosen and the patient is managed conservatively with antibiotic therapy to create a window of definitive diagnosis, one should consider close follow-up imaging to observe progression of the pseudoaneurysm. This may prevent the need of acute intervention. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Impedimetric Salmonella aptasensor using a glassy carbon electrode modified with an electrodeposited composite consisting of reduced graphene oxide and carbon nanotubes

    International Nuclear Information System (INIS)

    Jia, Fei; Dai, Ruitong; Duan, Nuo; Wu, Shijia; Wang, Zhouping; Li, Xingmin

    2016-01-01

    We describe a Salmonella biosensor that was obtained by electrochemical immobilization of a nanocomposite consisting of reduced graphene oxide (rGO) and carboxy-modified multi-walled carbon nanotubes (MWCNTs) directly on the surface of a glassy carbon electrode (GCE). An amino-modified aptamer specific for Salmonella was covalently bound to the rGO-MWCNT composite via amide bonds. The morphology of the rGO-MWCNT nanocomposite was characterized by transmission electron microscopy and scanning electron microscopy. Cyclic voltammetry and electrochemical impedance spectroscopy were used to monitor all steps during assembly. When exposed to samples containing Salmonella, the anti-Salmonella aptamer on the electrode captures its target. Hence, electron transfer is blocked, and this results in a large increase in impedance. Salmonella can be quantified by this aptasensor, typically operated at a working voltage of 0.2 V (vs. Ag/AgCl), in the range from 75 to 7.5 × 10 5 cfu⋅mL −1 and detection limit of 25 cfu⋅mL −1 (at an S/N of 3). The method is perceived to have a wide scope in that other bacteria may be detected by analogy to this approach and with very low limits of detection by applying respective analyte-specific aptamers. (author)

  6. Thermal inactivation of eight Salmonella serotypes on dry corn flour.

    OpenAIRE

    VanCauwenberge, J E; Bothast, R J; Kwolek, W F

    1981-01-01

    Dry heat was used to inactivate Salmonella newington, Salmonella typhimurium, Salmonella anatum, Salmonella kentucky, Salmonella cubana, Salmonella seftenberg, Salmonella thompson, and Salmonella tennessee in corn flour at 10 and 15% moisture. The flour was spray inoculated at 10(5) Salmonella cells per g and then stored at 49 degrees C (120 degrees F); viable Salmonella cells were counted on Trypticase (BBL Microbiology Systems) soy agar plates every 30 min for the first 4 h and then at 4-h ...

  7. [Prevalence and antimicrobial susceptibility of Salmonella isolated from broiler whole production process in four provinces of China].

    Science.gov (United States)

    Li, W W; Bai, L; Zhang, X L; Xu, X J; Tang, Z; Bi, Z W; Guo, Y C

    2018-04-06

    Objective: To determine the prevalence and antimicrobial susceptibility of Salmonella isolated from broiler production process in 4 provinces of China. Methods: Using convenience sampling method, 238 sample sites from broiler whole production process were chosen in Henan, Jiangsu, Heilongjiang and Shandong provinces in 2012. A total of 11 592 samples were collected and detected to analyze prevalence baseline, including 2 090 samples from breeding chicken farms and hatcheries, 1 421 samples from broiler farms, 5 610 samples from slaughterhouses and 2 471 samples from distribution and retail stores. All Salmonella strains were isolated through selective enrichment, and were serotyped according to Kauffmann-White scheme. The antimicrobial susceptibilities of selected Salmonella strains were determined by the broth microdilution method and fourteen antimicrobial agents were examined. Results: During incubation course, the average prevalence of Salmonella was 5.5% in feces of breeding hens, feces of chicks, and hatching eggs, 123 Salmonella strains were isolated. During cultivation course, the prevalence of Salmonella was 8.0% in feces from broiler farms, soil, feed, and workers, 114 Salmonella strains were isolated. During slaughter course, the prevalence of Salmonella was 24.9% in swabs pre-slaughter, dressed broiler carcasses, pre-cooled broiler carcasses, water from precooling pool, cutter and chipping boards, frozen chicken portions, and workers, 1 438 Salmonella strains were isolated. During distribution and sale course, the prevalence of Salmonella was 20.9% in transport carts, frozen chicken portions, retail chicken portions and workers, 551 Salmonella strains were isolated. The dominant Salmonella serotypes were Salmonella Enteritidis ( n= 1 229) and Salmonella Indiana ( n= 621). Among 1 231 examined strains, 97.2% Salmonella isolates were resistant to at least one antimicrobial, 69.9% Salmonella strains were multi-drug resistant isolates. Conclusion: Our

  8. Genetic diversity and antimicrobial resistance of Campylobacter and Salmonella strains isolated from decoys and raptors.

    Science.gov (United States)

    Jurado-Tarifa, E; Torralbo, A; Borge, C; Cerdà-Cuéllar, M; Ayats, T; Carbonero, A; García-Bocanegra, I

    2016-10-01

    Infections caused by thermotolerant Campylobacter spp. and Salmonella spp. are the leading causes of human gastroenteritis worldwide. Wild birds can act as reservoirs of both pathogens. A survey was carried out to determine the prevalence, genetic diversity and antimicrobial resistance of thermotolerant Campylobacter and Salmonella in waterfowl used as decoys and wild raptors in Andalusia (Southern Spain). The overall prevalence detected for Campylobacter was 5.9% (18/306; CI95%: 3.25-8.52) in decoys and 2.3% (9/387; CI95%: 0.82-3.83) in wild raptors. Isolates were identified as C. jejuni, C. coli and C. lari in both bird groups. Salmonella was isolated in 3.3% (10/306; CI95%: 2.3-4.3) and 4.6% (18/394; CI95%: 3.5-5.6) of the decoys and raptors, respectively. Salmonella Enteritidis and Typhimurium were the most frequently identified serovars, although Salmonella serovars Anatum, Bredeney, London and Mikawasima were also isolated. Pulsed-field gel electrophoresis analysis of isolates showed higher genetic diversity within Campylobacter species compared to Salmonella serovars. Campylobacter isolates showed resistance to gentamicin, ciprofloxacin and tetracycline, while resistance to erythromycin and tetracycline was found in Salmonella isolates. The results indicate that both decoys and raptors can act as natural carriers of Campylobacter and Salmonella in Spain, which may have important implications for public and animal health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Inactivation of Salmonella enteritidis on raw poultry using microwave heating

    Directory of Open Access Journals (Sweden)

    Amanda B. Pucciarelli

    2005-11-01

    Full Text Available The effect of microwave heating on Salmonella Enteritidis inoculated on fresh chicken was investigated using a microwave oven (800 w to determine the destruction of Salmonella Enteritidis isolated from chicken carcasses, in relation to the time of heating at two power settings: high (power level 10 and medium (power level 6; The relationship between heating time and temperature was also been studied. The destruction was 6.4 log cycles at time 95 sec for the high power level, and 5 log cycles at time 140 sec for medium power setting. After 110 sec for higher power level, no survival of Salmonella Enteritidis was detected in samples (100g, but at 140 sec for medium power level, these food pathogens were still present.Foi investigado o efeito do aquecimento por microondas sobre Salmonella Enteritidis inoculada em frangos frescos usando um forno de microondas doméstico (800 W para determinar a destruição da Salmonella Enteritidis isolada a partir de carcaças de frangos, em relação com o tempo de aquecimento a dois níveis de potência: alta (nível 10 e média ( nível 6; a relação entre tempo de aquecimento e temperatura também foi estudada. A destruição foi de 6 log em 95 s de tempo para o nível alto e 5 log em 140 s de tempo para o nível médio de potência. Depois de 110 s no nível de potência alta, não foi detectada sobrevivência de Salmonella Enteritidis em amostras de 100g de peso, porém, depois de 140 s a potência média, esse patôgeno nos alimentos ainda permanecia.

  10. Prevalence of antimicrobial resistance of non-typhoidal Salmonella serovars in retail aquaculture products.

    Science.gov (United States)

    Zhang, Jianmin; Yang, Xiaowei; Kuang, Dai; Shi, Xianming; Xiao, Wenjia; Zhang, Jing; Gu, Zhen; Xu, Xuebin; Meng, Jianghong

    2015-10-01

    Aquaculture products can become sources of Salmonella by exposure to contaminated water or through processing practices, thus representing a public health hazard. A study was conducted on Salmonella contamination in aquaculture products sampled from marketplaces and retailers in Shanghai, China. A total of 730 samples (including fish, shellfish, bullfrog, clam, shrimp and others) were obtained from 2006 to 2011. Among them, 217 (29.7%) were positive for Salmonella. Thirty-eight serovars were identified in the 217 Salmonella isolates. The most prevalent were Salmonella Aberdeen (18.4%), S. Wandsworth (12.0%), S. Thompson (9.2%), S. Singapore (5.5%), S. Stanley (4.6%), S. Schwarzengrund (4.6%), S. Hvittingfoss (4.1%) and S. Typhimurium (4.1%). Many resistant isolates were detected, with 69.6% resistant to at least one antimicrobial drug. We observed high resistance to sulfonamides (56.5%), tetracycline (34.1%), streptomycin (28.6%), ampicillin (23.5%) and nalidixic acid (21.2%). Lower levels of resistance were found for gentamicin (3.2%), ciprofloxacin (2.3%), ceftiofur (1.3%), cefotaxime (0.9%), ceftazidime (0.5%) and cefepime (0.5%). A total of 43.3% of the Salmonella isolates were multidrug-resistant and 44 different resistance patterns were found. This study provided data on the prevalence, serovars and antimicrobial resistance of Salmonella from retail aquaculture products in Shanghai, and indicated the need for monitoring programs for microbiologic safety in such projects and for more prudent drug use in aquaculture production in order to reduce the risk of development and spread of antimicrobial resistance. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. EU Interlaboratory comparison study veterinary XII . Bacteriological detection of Salmonella in chicken faeces

    NARCIS (Netherlands)

    Kuijpers AFA; Veenman C; Mooijman KA; LZO

    2009-01-01

    In 2009 heeft een vergelijkende studie onder 34 Nationale Referentie Laboratoria (NRL's) uitgewezen dat alle NRL's in staat waren hoge en lage concentraties Salmonella in kippenmest aan te tonen. Van deze laboratoria lieten er 33 direct zien dat zij het onderzoek met succes en volgens de

  12. ETV Tech Brief: Rapid Fungi and Bacteria Detection Technologies

    Science.gov (United States)

    Technical brief that summarizes the results for Mycometer, Inc. Mycometer®-test and Bactiquant®-test, which are rapid detection technologies for fungi and bacteria. The brief summarizes the results of the verification report and statement.

  13. Validation of the Applied Biosystems RapidFinder Shiga Toxin-Producing E. coli (STEC) Detection Workflow.

    Science.gov (United States)

    Cloke, Jonathan; Matheny, Sharon; Swimley, Michelle; Tebbs, Robert; Burrell, Angelia; Flannery, Jonathan; Bastin, Benjamin; Bird, Patrick; Benzinger, M Joseph; Crowley, Erin; Agin, James; Goins, David; Salfinger, Yvonne; Brodsky, Michael; Fernandez, Maria Cristina

    2016-11-01

    The Applied Biosystems™ RapidFinder™ STEC Detection Workflow (Thermo Fisher Scientific) is a complete protocol for the rapid qualitative detection of Escherichia coli (E. coli) O157:H7 and the "Big 6" non-O157 Shiga-like toxin-producing E. coli (STEC) serotypes (defined as serogroups: O26, O45, O103, O111, O121, and O145). The RapidFinder STEC Detection Workflow makes use of either the automated preparation of PCR-ready DNA using the Applied Biosystems PrepSEQ™ Nucleic Acid Extraction Kit in conjunction with the Applied Biosystems MagMAX™ Express 96-well magnetic particle processor or the Applied Biosystems PrepSEQ Rapid Spin kit for manual preparation of PCR-ready DNA. Two separate assays comprise the RapidFinder STEC Detection Workflow, the Applied Biosystems RapidFinder STEC Screening Assay and the Applied Biosystems RapidFinder STEC Confirmation Assay. The RapidFinder STEC Screening Assay includes primers and probes to detect the presence of stx1 (Shiga toxin 1), stx2 (Shiga toxin 2), eae (intimin), and E. coli O157 gene targets. The RapidFinder STEC Confirmation Assay includes primers and probes for the "Big 6" non-O157 STEC and E. coli O157:H7. The use of these two assays in tandem allows a user to detect accurately the presence of the "Big 6" STECs and E. coli O157:H7. The performance of the RapidFinder STEC Detection Workflow was evaluated in a method comparison study, in inclusivity and exclusivity studies, and in a robustness evaluation. The assays were compared to the U.S. Department of Agriculture (USDA), Food Safety and Inspection Service (FSIS) Microbiology Laboratory Guidebook (MLG) 5.09: Detection, Isolation and Identification of Escherichia coli O157:H7 from Meat Products and Carcass and Environmental Sponges for raw ground beef (73% lean) and USDA/FSIS-MLG 5B.05: Detection, Isolation and Identification of Escherichia coli non-O157:H7 from Meat Products and Carcass and Environmental Sponges for raw beef trim. No statistically significant

  14. Epidemiology of Salmonella spp., Listeria monocytogenes and Campylobacter spp., in the poultry chain production system

    Directory of Open Access Journals (Sweden)

    Realpe-Delgado, María Elena

    2016-10-01

    Full Text Available Salmonella spp., Campylobacter spp., and L. monocytogenes are zoonotic foodborne pathogens, associated with the consumption of contaminated foods of animal origin. In this study we determined the prevalence and risk factors associated with the presence of these microorganisms at all stages of the production system, in two Colombian poultry companies (EI-EI-I and II. In EI-I, Campylobacter spp., and Salmonella spp., were isolated from 10 % and 4.4 % of the specimens, and S. Heidelberg was the predominant serotype. Salmonella spp., was found in 6 % of hands and stool samples of workers. S. Saphra was the most prevalent serotype. In EI-II, the prevalence of Campylobacter spp., and Salmonella spp., from animal specimens was 7 % and 17 %, respectively. L. monocytogenes was not detected. This study established the prevalence of these zoonotic pathogens through the production chain and showed the presence of pathogen carriers among workers/food handlers. “Lack of medical examination of employees in the previous year” was found to be a possible risk factor for carriage of Salmonella spp.

  15. Cost-effective optimization of real-time PCR based detection of Campylobacter and Salmonella with inhibitor tolerant DNA polymerases

    DEFF Research Database (Denmark)

    Fachmann, Mette Sofie Rousing; Josefsen, Mathilde Hasseldam; Hoorfar, Jeffrey

    2015-01-01

    bacterial cells in two validated real-time PCR assays for Campylobacter and Salmonella. The five best performing (based on: limit of detection (LOD), maximum fluorescence, shape of amplification curves, and amplification efficiency) were subsequently applied to meat and fecal samples. The VeriQuest q......PCR master mix performed best for both meat and fecal samples (LODs of 102 and 104 CFU ml-1 in the purest and crudest DNA extractions, respectively) compared with Tth (LOD=102 -103 and 105 -106 CFU ml-1 ). AmpliTaqGold and HotMasterTaq both performed well (LOD=102 -104 CFU ml-1 ) with meat samples and poorly...... (LOD=103 -106 CFU ml-1 /not detected) with fecal samples. CONCLUSIONS: Applying the VeriQuest qPCR master mix in the two tested real-time PCR assays could allow for simpler sample preparation and thus a reduction in cost. SIGNIFICANCE AND IMPACT OF STUDY: This work exemplifies a cost-effective strategy...

  16. Use of Tethered Enzymes as a Platform Technology for Rapid Analyte Detection.

    Directory of Open Access Journals (Sweden)

    Roy Cohen

    Full Text Available Rapid diagnosis for time-sensitive illnesses such as stroke, cardiac arrest, and septic shock is essential for successful treatment. Much attention has therefore focused on new strategies for rapid and objective diagnosis, such as Point-of-Care Tests (PoCT for blood biomarkers. Here we use a biomimicry-based approach to demonstrate a new diagnostic platform, based on enzymes tethered to nanoparticles (NPs. As proof of principle, we use oriented immobilization of pyruvate kinase (PK and luciferase (Luc on silica NPs to achieve rapid and sensitive detection of neuron-specific enolase (NSE, a clinically relevant biomarker for multiple diseases ranging from acute brain injuries to lung cancer. We hypothesize that an approach capitalizing on the speed and catalytic nature of enzymatic reactions would enable fast and sensitive biomarker detection, suitable for PoCT devices.We performed in-vitro, animal model, and human subject studies. First, the efficiency of coupled enzyme activities when tethered to NPs versus when in solution was tested, demonstrating a highly sensitive and rapid detection of physiological and pathological concentrations of NSE. Next, in rat stroke models the enzyme-based assay was able in minutes to show a statistically significant increase in NSE levels in samples taken 1 hour before and 0, 1, 3 and 6 hours after occlusion of the distal middle cerebral artery. Finally, using the tethered enzyme assay for detection of NSE in samples from 20 geriatric human patients, we show that our data match well (r = 0.815 with the current gold standard for biomarker detection, ELISA-with a major difference being that we achieve detection in 10 minutes as opposed to the several hours required for traditional ELISA.Oriented enzyme immobilization conferred more efficient coupled activity, and thus higher assay sensitivity, than non-tethered enzymes. Together, our findings provide proof of concept for using oriented immobilization of active

  17. Validation of a same-day real-time PCR method for screening of meat and carcass swabs for Salmonella

    DEFF Research Database (Denmark)

    Löfström, Charlotta; Krause, Michael; Josefsen, Mathilde Hartmann

    2009-01-01

    of the published PCR methods for Salmonella have been validated in collaborative studies. This study describes a validation including comparative and collaborative trials, based on the recommendations from the Nordic organization for validation of alternative microbiological methods (NordVal) of a same-day, non....... Partly based on results obtained in this study, the method has obtained NordVal approval for analysis of Salmonella in meat and carcass swabs. The PCR method was transferred to a production laboratory and the performance was compared with the BAX Salmonella test on 39 pork samples artificially...... contaminated with Salmonella. There was no significant difference in the results obtained by the two methods. Conclusion: The real-time PCR method for detection of Salmonella in meat and carcass swabs was validated in comparative and collaborative trials according to NordVal recommendations. The PCR method...

  18. Rapid pasteurization of shell eggs using RF

    Science.gov (United States)

    A novel method for rapidly pasteurizing eggs in the shell could enhance the safety of the United States’ food supply. Current federal regulations do not require eggs sold in stores to be pasteurized, yet these eggs are often consumed raw or undercooked and cause untold cases of salmonella illness ea...

  19. A Portable Automatic Endpoint Detection System for Amplicons of Loop Mediated Isothermal Amplification on Microfluidic Compact Disk Platform

    Directory of Open Access Journals (Sweden)

    Shah Mukim Uddin

    2015-03-01

    Full Text Available In recent years, many improvements have been made in foodborne pathogen detection methods to reduce the impact of food contamination. Several rapid methods have been developed with biosensor devices to improve the way of performing pathogen detection. This paper presents an automated endpoint detection system for amplicons generated by loop mediated isothermal amplification (LAMP on a microfluidic compact disk platform. The developed detection system utilizes a monochromatic ultraviolet (UV emitter for excitation of fluorescent labeled LAMP amplicons and a color sensor to detect the emitted florescence from target. Then it processes the sensor output and displays the detection results on liquid crystal display (LCD. The sensitivity test has been performed with detection limit up to 2.5 × 10−3 ng/µL with different DNA concentrations of Salmonella bacteria. This system allows a rapid and automatic endpoint detection which could lead to the development of a point-of-care diagnosis device for foodborne pathogens detection in a resource-limited environment.

  20. Autophagy Facilitates Salmonella Replication in HeLa Cells

    Science.gov (United States)

    Yu, Hong B.; Croxen, Matthew A.; Marchiando, Amanda M.; Ferreira, Rosana B. R.; Cadwell, Ken; Foster, Leonard J.; Finlay, B. Brett

    2014-01-01

    ABSTRACT Autophagy is a process whereby a double-membrane structure (autophagosome) engulfs unnecessary cytosolic proteins, organelles, and invading pathogens and delivers them to the lysosome for degradation. We examined the fate of cytosolic Salmonella targeted by autophagy and found that autophagy-targeted Salmonella present in the cytosol of HeLa cells correlates with intracellular bacterial replication. Real-time analyses revealed that a subset of cytosolic Salmonella extensively associates with autophagy components p62 and/or LC3 and replicates quickly, whereas intravacuolar Salmonella shows no or very limited association with p62 or LC3 and replicates much more slowly. Replication of cytosolic Salmonella in HeLa cells is significantly decreased when autophagy components are depleted. Eventually, hyperreplication of cytosolic Salmonella potentiates cell detachment, facilitating the dissemination of Salmonella to neighboring cells. We propose that Salmonella benefits from autophagy for its cytosolic replication in HeLa cells. PMID:24618251

  1. Surface display of Salmonella epitopes in Escherichia coli and Staphylococcus carnosus.

    Science.gov (United States)

    Nhan, Nguyen Thanh; Gonzalez de Valdivia, Ernesto; Gustavsson, Martin; Hai, Truong Nam; Larsson, Gen

    2011-04-11

    Salmonella enterica serotype Enteritidis (SE) is considered to be one of the most potent pathogenic Salmonella serotypes causing food-borne disease in humans. Since a live bacterial vaccine based on surface display of antigens has many advantages over traditional vaccines, we have studied the surface display of the SE antigenic proteins, H:gm and SefA in Escherichia coli by the β-autotransporter system, AIDA. This procedure was compared to protein translocation in Staphylococcus carnosus, using a staphylococci hybrid vector earlier developed for surface display of other vaccine epitopes. Both SefA and H:gm were translocated to the outer membrane in Escherichia coli. SefA was expressed to full length but H:gm was shorter than expected, probably due to a proteolytic cleavage of the N-terminal during passage either through the periplasm or over the membrane. FACS analysis confirmed that SefA was facing the extracellular environment, but this could not be conclusively established for H:gm since the N-terminal detection tag (His6) was cleaved off. Polyclonal salmonella antibodies confirmed the sustained antibody-antigen binding towards both proteins. The surface expression data from Staphylococcus carnosus suggested that the H:gm and SefA proteins were transported to the cell wall since the detection marker was displayed by FACS analysis. Apart from the accumulated knowledge and the existence of a wealth of equipment and techniques, the results indicate the selection of E. coli for further studies for surface expression of salmonella antigens. Surface expression of the full length protein facing the cell environment was positively proven by standard analysis, and the FACS signal comparison to expression in Staphylococcus carnosus shows that the distribution of the surface protein on each cell was comparatively very narrow in E. coli, the E. coli outer membrane molecules can serve as an adjuvant for the surface antigenic proteins and multimeric forms of the SefA protein

  2. Effect of egg washing and correlation between cuticle and egg penetration by various Salmonella strains.

    Science.gov (United States)

    Gole, Vaibhav C; Roberts, Juliet R; Sexton, Margaret; May, Damian; Kiermeier, Andreas; Chousalkar, Kapil K

    2014-07-16

    In Australia, Europe and the United States, eggs and egg products are frequently associated with Salmonella food poisoning outbreaks. Many of the egg-associated Salmonella outbreaks have been due to the products such as mayonnaise, ice-cream and cold desserts which are eaten without cooking following the addition of raw egg. The ability of four Salmonella isolates (one each of S. Singapore, S. Adelaide, S. Worthington and S. Livingstone) to penetrate washed and unwashed eggs using whole egg and agar egg penetration methods was investigated in the current study. The results of the agar penetration experiment indicated that all the isolates used in the present study have the capacity to penetrate the eggshell. Eggshell penetration by the S. Worthington isolate was higher but not significant (p=0.06) in washed eggs compared to unwashed eggs. However, for all other isolates (S. Singapore, S. Adelaide and S. Livingstone), there was no significant difference in penetration of washed and unwashed eggs. Statistical analysis indicated that cuticle score was a significant linear predictor of Salmonella eggshell penetration. Whole egg penetration results showed that all of the Salmonella isolates used in the present study were capable of surviving on the eggshell surface after 21days of incubation (at 20°C) following a high dose of inoculation (10(5)CFU/mL). The combined data of all isolates demonstrated that, the survival rate of Salmonella on eggshells (inoculated with 10(5)CFU/mL) was significantly higher (p=0.002) at 20°C as compared to 37°C. S. Singapore, S. Worthington, and S. Livingstone were not detected in egg internal contents whereas S. Adelaide was detected in one egg's internal contents. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  3. Salmonella Gastroenteritis Due to Rhabdomyolysis and Acute Renal Failure with Acute Pancreatitis Case Report

    Directory of Open Access Journals (Sweden)

    Şenay Canikli Adıgüzel

    2017-12-01

    Full Text Available In this study, we are reporting a case of acute pancreatitis, acute renal failure (ARF and rhabdomyolysis which are rare serious complications of the Salmonella gastroenteritis. A patient presented as an emergency with fever, abdominal pain, and ARF complexion was operated urgently by ileus pre-diagnosis. There was not surgical pathology detected during the operation. However, Salmonella paratyphi A in feces of patient with high levels of amylase, lipase, and creatinine were reported during intensive care unit (ICU admission. The patient was diagnosed with acute pancreatitis due to Salmonella infection. During ICU stay, the levels of amylase and lipase were reduced and the kidney functions improved without hemodialysis. On the 7th day, patient was transferred to the general surgical service.

  4. Cloning and expression of a Vi mimotope of Salmonella enterica ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-15

    Sep 15, 2009 ... A recombinant His-Vi protein of Salmonella enterica serovar Typhi was successfully constructed and cloned into ... mainly through consumption of food or water contami- nated with .... and healthy individuals (double arrows) followed by the detection using recombinant His-Vi protein as the primary antibody ...

  5. Visualization of gold and platinum nanoparticles interacting with Salmonella Enteritidis and Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Ewa Sawosz

    2010-08-01

    Full Text Available Ewa Sawosz1, André Chwalibog2, Jacek Szeliga3, Filip Sawosz2, Marta Grodzik1, Marlena Rupiewicz1, Tomasz Niemiec1, Katarzyna Kacprzyk11Division of Biotechnology and Biochemistry of Nutrition, Warsaw University of Life Sciences, Warsaw, Poland; 2Department of Basic Animal and Veterinary Sciences, University of Copenhagen, Copenhagen, Denmark; 3Division of Microbiology of Analytical Centre, Warsaw University of Life Sciences, Warsaw, PolandPurpose: Rapid development of nanotechnology has recently brought significant attention to the extraordinary biological features of nanomaterials. The objective of the present ­investigation was to evaluate morphological characteristics of the assembles of gold and platinum nanoparticles (nano-Au and nano-Pt respectively, with Salmonella Enteritidis (Gram-negative and Listeria monocytogenes (Gram-positive, to reveal possibilities of constructing bacteria-nanoparticle vehicles.Methods: Hydrocolloids of nano-Au or nano-Pt were added to two bacteria suspensions in the following order: nano-Au + Salmonella Enteritidis; nano-Au + Listeria monocytogenes; nano-Pt + Salmonella Enteritidis; nano-Pt + Listeria monocytogenes. Samples were inspected by transmission electron microscope.Results: Visualization of morphological interaction between nano-Au and Salmonella Enteritidis and Listeria monocytogenes, showed that nano-Au were aggregated within flagella or biofilm network and did not penetrate the bacterial cell. The analysis of morphological effects of interaction of nano-Pt with bacteria revealed that nano-Pt entered cells of Listeria monocytogenes and were removed from the cells. In the case of Salmonella Enteritidis, nano-Pt were seen inside bacteria cells, probably bound to DNA and partly left bacterial cells. After washing and centrifugation, some of the nano-Pt-DNA complexes were observed within Salmonella Enteritidis.Conclusion: The results indicate that the bacteria could be used as a vehicle to deliver nano

  6. Brucella lipopolysaccharide reinforced Salmonella delivering Brucella immunogens protects mice against virulent challenge.

    Science.gov (United States)

    Lalsiamthara, Jonathan; Lee, John Hwa

    2017-06-01

    Intracellular pathogen Salmonella exhibits natural infection broadly analogous to Brucella, this phenomenon makes Salmonella a pragmatic choice for an anti-Brucella vaccine delivery platform. In this study we developed and formulated a combination of four attenuated Salmonella Typhimurium live vector strains delivering heterologous Brucella antigens (rBs), namely lumazine synthase, proline racemase subunit A, lipoprotein outer membrane protein-19, and Cu-Zn superoxide dismutase. With an aim to develop a cross-protecting vaccine, Brucella pan-species conserved rBs were selected. The present study compared the efficacy of smooth and rough variants of Salmonella delivery vector and also evaluated the inclusion of purified Brucella lipopolysaccharide (LPS) in the formulation. Immunization of SPF-BALB/c mice with the vaccine combinations significantly (P≤0.05) reduced splenic wild-type Brucella abortus 544 colonization as compared to non-immunized mice as well as Salmonella only immunized mice. Increased induction of Brucella specific-IgG, sIgA production, and antigen-specific splenocyte proliferative responses were observed in the mice immunized with the formulations as compared to naïve or vector only immunized mice. Modulatory effects of rB and LPS on production of interleukin (IL)-4, IL-12, and interferon-γ were detected in splenocytes of mice immunized with the formulation. Rough Salmonella variant in combination with LPS could further enhance the efficacy of the delivery when applied intraperitoneally. Taken together, it is compelling that Brucella LPS-augmented Salmonella vector delivering immunogenic Brucella proteins may be more suitable than the current non-ideal live Brucella abortus vaccine. The vaccine system also provides a basis for the development of cross-protecting vaccine capable of preventing multispecies brucellosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Indigenous people's detection of rapid ecological change.

    Science.gov (United States)

    Aswani, Shankar; Lauer, Matthew

    2014-06-01

    When sudden catastrophic events occur, it becomes critical for coastal communities to detect and respond to environmental transformations because failure to do so may undermine overall ecosystem resilience and threaten people's livelihoods. We therefore asked how capable of detecting rapid ecological change following massive environmental disruptions local, indigenous people are. We assessed the direction and periodicity of experimental learning of people in the Western Solomon Islands after a tsunami in 2007. We compared the results of marine science surveys with local ecological knowledge of the benthos across 3 affected villages and 3 periods before and after the tsunami. We sought to determine how people recognize biophysical changes in the environment before and after catastrophic events such as earthquakes and tsunamis and whether people have the ability to detect ecological changes over short time scales or need longer time scales to recognize changes. Indigenous people were able to detect changes in the benthos over time. Detection levels differed between marine science surveys and local ecological knowledge sources over time, but overall patterns of statistically significant detection of change were evident for various habitats. Our findings have implications for marine conservation, coastal management policies, and disaster-relief efforts because when people are able to detect ecological changes, this, in turn, affects how they exploit and manage their marine resources. © 2014 Society for Conservation Biology.

  8. Rapid detection of Avian Influenza Virus - Towards point of care diagnosis

    DEFF Research Database (Denmark)

    Dhumpa, Raghuram

    barcode and fluorescent beads were also developed for rapid detection and identification of the AIV. In both methods, the detection involved sandwiching of the target AIV between monoclonal antibodies for nucleoproteins and for matrix proteins. In the fluorescent DNA barcode-based immunoassay, fluorophore...

  9. European validation of Real-Time PCR method for detection of Salmonella spp. in pork meat.

    Science.gov (United States)

    Delibato, Elisabetta; Rodriguez-Lazaro, David; Gianfranceschi, Monica; De Cesare, Alessandra; Comin, Damiano; Gattuso, Antonietta; Hernandez, Marta; Sonnessa, Michele; Pasquali, Frédérique; Sreter-Lancz, Zuzsanna; Saiz-Abajo, María-José; Pérez-De-Juan, Javier; Butrón, Javier; Prukner-Radovcic, Estella; Horvatek Tomic, Danijela; Johannessen, Gro S; Jakočiūnė, Džiuginta; Olsen, John E; Chemaly, Marianne; Le Gall, Francoise; González-García, Patricia; Lettini, Antonia Anna; Lukac, Maja; Quesne, Segolénè; Zampieron, Claudia; De Santis, Paola; Lovari, Sarah; Bertasi, Barbara; Pavoni, Enrico; Proroga, Yolande T R; Capuano, Federico; Manfreda, Gerardo; De Medici, Dario

    2014-08-01

    The classical microbiological method for detection of Salmonella spp. requires more than five days for final confirmation, and consequently there is a need for an alternative methodology for detection of this pathogen particularly in those food categories with a short shelf-life. This study presents an international (at European level) ISO 16140-based validation study of a non-proprietary Real-Time PCR-based method that can generate final results the day following sample analysis. It is based on an ISO compatible enrichment coupled to an easy and inexpensive DNA extraction and a consolidated Real-Time PCR assay. Thirteen laboratories from seven European Countries participated to this trial, and pork meat was selected as food model. The limit of detection observed was down to 10 CFU per 25 g of sample, showing excellent concordance and accordance values between samples and laboratories (100%). In addition, excellent values were obtained for relative accuracy, specificity and sensitivity (100%) when the results obtained for the Real-Time PCR-based methods were compared to those of the ISO 6579:2002 standard method. The results of this international trial demonstrate that the evaluated Real-Time PCR-based method represents an excellent alternative to the ISO standard. In fact, it shows an equal and solid performance as well as it reduces dramatically the extent of the analytical process, and can be easily implemented routinely by the Competent Authorities and Food Industry laboratories. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Salmonella Typhimurium induces SPI-1 and SPI-2 regulated and strain dependent downregulation of MHC II expression on porcine alveolar macrophages

    Directory of Open Access Journals (Sweden)

    Van Parys Alexander

    2012-06-01

    Full Text Available Abstract Foodborne salmonellosis is one of the most important bacterial zoonotic diseases worldwide. Salmonella Typhimurium is the serovar most frequently isolated from persistently infected slaughter pigs in Europe. Circumvention of the host’s immune system by Salmonella might contribute to persistent infection of pigs. In the present study, we found that Salmonella Typhimurium strain 112910a specifically downregulated MHC II, but not MHC I, expression on porcine alveolar macrophages in a Salmonella pathogenicity island (SPI-1 and SPI-2 dependent way. Salmonella induced downregulation of MHC II expression and intracellular proliferation of Salmonella in macrophages were significantly impaired after opsonization with Salmonella specific antibodies prior to inoculation. Furthermore, the capacity to downregulate MHC II expression on macrophages differed significantly among Salmonella strains, independently of strain specific differences in invasion capacity, Salmonella induced cytotoxicity and altered macrophage activation status. The fact that strain specific differences in MHC II downregulation did not correlate with the extent of in vitro SPI-1 or SPI-2 gene expression indicates that other factors are involved in MHC II downregulation as well. Since Salmonella strain dependent interference with the pig’s immune response through downregulation of MHC II expression might indicate that certain Salmonella strains are more likely to escape serological detection, our findings are of major interest for Salmonella monitoring programs primarily based on serology.

  11. Salmonella em répteis de estimação nacionais e importados

    OpenAIRE

    Sá, Isabel Valéria Abalem de; Solari, Claude André

    2001-01-01

    The presence of salmonellae in fecal samples or cloacal swabs of 97 pet reptiles (15 snakes, 24 lizards and 58 chelonians) was investigated. Thirty seven animals had national origin and 60 were imported. Salmonella spp was detected in 39.1% of the reptiles, being 62.5% in lizards, 53.3% in snakes and 25.8% in chelonians. Strains belonged to subspecies I (44.7%), II (10.5%), IIIa (5.2%), IIIb (21.0%) and IV (18.5%) of the enterica species, with predominance (55.3%) of subspecies usually found ...

  12. Pulsed-field profile diversities of Salmonella Enteritidis, S. Infantis, and S. Corvallis in Japan

    Directory of Open Access Journals (Sweden)

    Koichi Murakami

    2017-10-01

    Full Text Available The diversity of pulsed-field profiles (PFPs within non-typhoidal Salmonella subtypes influences epidemiological analyses of Salmonella outbreaks. Therefore, determining the PFP diversity of each Salmonella serovar is important when evaluating current circulating strains. This study examined the PFP diversity of three important public health Salmonella enterica subspecies enterica serovars, S. Enteritidis (n=177, S. Infantis (n=205, and S. Corvallis (n=90, using pulsed-field gel electrophoresis. Isolates were collected from several sources, primarily from chicken-derived samples, in the Kyushu-Okinawa region of Japan between 1989 and 2005. S. Enteritidis isolates displayed 51 distinct PFPs (E-PFPs, with 92 (52.0% and 32 (18.1% isolates displaying types EPFP1 and E-PFP10, respectively. The 205 S. Infantis isolates showed 54 distinct PFPs (I-PFPs, with 87 (42.4% and 36 (17.6% isolates being I-PFP4 and I-PFP2, respectively. I-PFP18 was the dominant I-PFP of layer chicken isolates across a 5-year period. Fourteen distinct S. Corvallis PFPs were detected. Simpson’s index results for the genetic diversities of S. Enteritidis, S. Infantis, and S. Corvallis isolates were 0.70, 0.79, and 0.78, respectively. None of the EPFPs or I-PFPs of layer chicken isolates overlapped with those of broiler chicken isolates, and the dominant clonal lines existed for >10 years. In conclusion, limited PFP diversities were detected amongst S. Enteritidis, S. Infantis, and S. Corvallis isolates of primarily chicken-derived origins in the Kyushu-Okinawa region of Japan. Therefore, it is important to take into account these limitations in PFP diversities in epidemiological analyses of Salmonella outbreaks.

  13. Pulsed-field profile diversities of Salmonella Enteritidis, S. Infantis, and S. Corvallis in Japan.

    Science.gov (United States)

    Murakami, Koichi; Noda, Tamie; Onozuka, Daisuke; Kimura, Hirokazu; Fujimoto, Shuji

    2017-08-16

    The diversity of pulsed-field profiles (PFPs) within non-typhoidal Salmonella subtypes influences epidemiological analyses of Salmonella outbreaks. Therefore, determining the PFP diversity of each Salmonella serovar is important when evaluating current circulating strains. This study examined the PFP diversity of three important public health Salmonella enterica subspecies enterica serovars, S . Enteritidis (n=177), S . Infantis (n=205), and S . Corvallis (n=90), using pulsed-field gel electrophoresis. Isolates were collected from several sources, primarily from chicken-derived samples, in the Kyushu-Okinawa region of Japan between 1989 and 2005. S . Enteritidis isolates displayed 51 distinct PFPs (E-PFPs), with 92 (52.0%) and 32 (18.1%) isolates displaying types E-PFP1 and E-PFP10, respectively. The 205 S . Infantis isolates showed 54 distinct PFPs (I-PFPs), with 87 (42.4%) and 36 (17.6%) isolates being I-PFP4 and I-PFP2, respectively. I-PFP18 was the dominant I-PFP of layer chicken isolates across a 5-year period. Fourteen distinct S . Corvallis PFPs were detected. Simpson's index results for the genetic diversities of S . Enteritidis, S . Infantis, and S . Corvallis isolates were 0.70, 0.79, and 0.78, respectively. None of the E-PFPs or I-PFPs of layer chicken isolates overlapped with those of broiler chicken isolates, and the dominant clonal lines existed for >10 years. In conclusion, limited PFP diversities were detected amongst S . Enteritidis, S. Infantis, and S. Corvallis isolates of primarily chicken-derived origins in the Kyushu-Okinawa region of Japan. Therefore, it is important to take into account these limitations in PFP diversities in epidemiological analyses of Salmonella outbreaks.

  14. DETEKSI CEMARAN BAKTERI KOLIFORM DAN Salmonella sp. PADA TEMPE YANG DIKEMAS DAUN PISANG DI DAERAH SALATIGA

    Directory of Open Access Journals (Sweden)

    Khanifa Nurul Khaq

    2017-01-01

    Full Text Available ABSTRACT Banana leaves-wrapped tempeh is a traditional food as a conventional base of vegetable protein source. Fermented soybeans into tempeh assisted by fungi kind Rhizopusoligosporus, Rhizopusoryzae and Rhizopusstolonifer. Hygiene is very important in the process of fermentation as it will affect the end result of products. Packaging materials can serve as a protective product, but related to the materials used can be the sources of microbial contaminants in food packaging.For small-scale Tempeh industry in Salatiga area commonly use banana leaves to wrap tempeh.The absence of leaves-wrapped tempeh quality standard made the manufacturers ignore the tempeh processing standard quality. The purpose of this study is to obtain data on the number of coliforms contamination and the presence or absence of Salmonella sp. contamination on banana leaves-wrapped soybean tempeh from manufacturer of production 5-10 kg per day in District of Sidorejo and Tingkir, Salatiga with standar provision of SNI 3144-2015.For the detection of coliform contamination, method used Most probable Number (MPN series of three tubes with Presumtive Test and Comfirmative Test, as well as the detection of Salmonella sp. with SSA (Salmonella Shigella Agar specific media. The research result that average sample of manufacturers in Sidorejo and Tingkir District have not met the standard limits of coliform contamination. The highest value of coliform contamination was >1100 APM/g and lowest value was 7 APM/g, while the Salmonella sp. detection in average yield positive result but found one sample showed negative result. Found one sample contaminated with Shigella sp. bacteria.High contamination of coliform and Salmonella was identified obtain from the tools and materials used in manufacturing process, lack of sanitation in manufacture environment, and so the individual as the manufacturer.

  15. Resistance to antimicrobial agents among Salmonella isolates recovered from layer farms and eggs in the Caribbean region.

    Science.gov (United States)

    Adesiyun, Abiodun; Webb, Lloyd; Musai, Lisa; Louison, Bowen; Joseph, George; Stewart-Johnson, Alva; Samlal, Sannandan; Rodrigo, Shelly

    2014-12-01

    This investigation determined the frequency of resistance of 84 isolates of Salmonella comprising 14 serotypes recovered from layer farms in three Caribbean countries (Trinidad and Tobago, Grenada, and St. Lucia) to eight antimicrobial agents, using the disc diffusion method. Resistance among isolates of Salmonella was related to the country of recovery, type of sample, size of layer farms, and isolate serotype. Overall, all (100.0%) of the isolates exhibited resistance to one or more of seven antimicrobial agents tested, and all were susceptible to chloramphenicol. The resistance detected ranged from 11.9% to sulphamethoxazole-trimethoprim (SXT) to 100.0% to erythromycin. The difference was, however, not statistically significant (P = 0.23). Across countries, for types of samples that yielded Salmonella, significant differences in frequency of resistance were detected only to SXT (P = 0.002) in Trinidad and Tobago and to gentamycin (P = 0.027) in St. Lucia. For the three countries, the frequency of resistance to antimicrobial agents was significantly different for ampicillin (P = 0.001) and SXT (P = 0.032). A total of 83 (98.8%) of the 84 isolates exhibited 39 multidrug resistance patterns. Farm size significantly (P = 0.032) affected the frequency of resistance to kanamycin across the countries. Overall, among the 14 serotypes of Salmonella tested, significant (P resistance were detected to kanamycin, ampicillin, and SXT. Results suggest that the relatively high frequency of resistance to six of the antimicrobial agents (erythromycin, streptomycin, gentamycin, kanamycin, ampicillin, and tetracycline) tested and the multidrug resistance detected may pose prophylactic and therapeutic concerns for chicken layer farms in the three countries studied.

  16. The consequences of a sudden demographic change on the seroprevalence pattern, virulence genes, identification and characterisation of integron-mediated antibiotic resistance in the Salmonella enterica isolated from clinically diarrhoeic humans in Egypt.

    Science.gov (United States)

    Osman, K M; Hassan, W M M; Mohamed, R A H

    2014-08-01

    The present study was undertaken to identify and characterise integrons and integrated resistance gene cassettes among eight multidrug-resistant (MDR) Salmonella serovars isolated from humans in Egypt. Virulotyping by polymerase chain reaction (PCR) was used for the detection of the presence of virulence genes. Integron PCR was used to detect the presence of class 1 in the MDR strains. The associated individual resistance gene cassettes were identified using specific PCRs. The isolated serovars were Salmonella Grampian (C1; 2/5), Larose (C1; 1/5), Hato (B; 1/5) and Texas (B; 1/5). Among the Salmonella serovars, five Salmonella isolates showed the highest resistance to amoxicillin, ampicillin, chloramphenicol, lincomycin, gentamicin, nalidixic acid, streptomycin and trimethoprim (100%), followed by neomycin, norfloxacin and tetracycline (80%), while the lowest resistance was recorded to colistin sulphate and ciprofloxacin in percentages of 20 and 40%, respectively. The invA, avrA, ssaQ, mgtC, siiD and sopB genes were detected in all isolates (100%), while the spvC and gipA genes were totally (100%) absent from all isolates. The remaining three virulence genes were diversely distributed as follows: the bcfC gene was detected in all isolates except Salmonella Hato (80%); the sodC1 gene was detected only in Salmonella Grampian and Salmonella Texas (60%); and the sopE1 gene was detected only in Salmonella Grampian, Hato and Texas (60%). Class 1 integrons were detected in 90% of the MDR isolates, comprising serovars Muenster, Florian, Noya, Grampian, Larose, Hato and Texas. Of the class 1 integron-positive isolates, 45% harboured Salmonella genomic island 1 (SGI1) either right junction or right and left junction having an A-C-S-T phenotype. Of the class 1 integron-positive isolates, 44% harboured integron gene cassette aadA2, while 11% harboured the floR gene present in multidrug resistance flanked by two integrons of SGI1. The results of the present study indicate that

  17. Cirtical role for Salmonella effector SopB in regulating inflammasome activation.

    Science.gov (United States)

    Hu, Gui-Qiu; Song, Pei-Xuan; Chen, Wei; Qi, Shuai; Yu, Shui-Xing; Du, Chong-Tao; Deng, Xu-Ming; Ouyang, Hong-Sheng; Yang, Yong-Jun

    2017-10-01

    Salmonella is known to evolve many mechanisms to avoid or delay inflammasome activation which remain largely unknown. In this study, we investigated whether the SopB protein critical to bacteria virulence capacity was an effector that involved in the regulation of inflammasome activation. BMDMs from NLRC4-, NLRP3-, caspase-1/-11-, IFI16- and AIM2-deficient mice were pretreated with LPS, and subsequently stimulated with a series of SopB-related strains of Salmonella, inflammasome induced cell death, IL-1β secretion, cleaved caspase-1 production and ASC speckle formation were detected. We found that SopB could inhibit host IL-1β secretion, caspase-1 activation and inflammasome induced cell death using a series of SopB-related strains of Salmonella; however the reduction of IL-1β secretion was not dependent on sensor that contain PYD domain, such as NLRP3, AIM2 or IFI16, but dependent on NLRC4. Notably, SopB specifically prevented ASC oligomerization and the enzymatic activity of SopB was responsible for the inflammasome inhibition. Furthermore, inhibition of Akt signaling induced enhanced inflammasome activation. These results revealed a novel role in inhibition of NLRC4 inflammasome for Salmonella effector SopB. Copyright © 2017. Published by Elsevier Ltd.

  18. Effects of egg shell quality and washing on Salmonella Infantis penetration.

    Science.gov (United States)

    Samiullah; Chousalkar, K K; Roberts, J R; Sexton, M; May, D; Kiermeier, A

    2013-07-15

    The vast majority of eggs in Australia are washed prior to packing to remove dirt and fecal material and to reduce the microbial contamination of the egg shell. The egg contents can be an ideal growth medium for microorganisms which can result in human illness if eggs are stored improperly and eaten raw or undercooked, and it is estimated that egg-related salmonellosis is costing Australia $44 million per year. Egg shell characteristics such as shell thickness, amount of cuticle present, and thickness of individual egg shell layers can affect the ease with which bacteria can penetrate the egg shell and washing could partially or completely remove the cuticle layer. The current study was conducted to investigate the effects of egg washing on cuticle cover and effects of egg shell quality and cuticle cover on Salmonella Infantis penetration of the egg shell. A higher incidence of unfavorable ultrastructural variables of the mammillary layer such as late fusion, type B bodies, type A bodies, poor cap quality, alignment, depression, erosion and cubics were recorded in Salmonella penetrated areas of egg shells. The influence of egg washing on the ability of Salmonella Infantis on the egg shell surface to enter the egg internal contents was also investigated using culture-based agar egg penetration and real-time qPCR based experiments. The results from the current study indicate that washing affected cuticle cover. There were no significant differences in Salmonella Infantis penetration of washed or unwashed eggs. Egg shell translucency may have effects on Salmonella Infantis penetration of the egg shell. The qPCR assay was more sensitive for detection of Salmonella Infantis from egg shell wash and internal contents than traditional microbiological methods. The agar egg and whole egg inoculation experiments indicated that Salmonella Infantis penetrated the egg shells. Egg washing not only can be highly effective at removing Salmonella Infantis from the egg shell surface

  19. Prevalence and antibiotic resistance of Salmonella Enteritidis and Salmonella Typhimurium in raw chicken meat at retail markets in Malaysia.

    Science.gov (United States)

    Thung, T Y; Mahyudin, N A; Basri, D F; Wan Mohamed Radzi, C W J; Nakaguchi, Y; Nishibuchi, M; Radu, S

    2016-08-01

    Salmonellosis is one of the major food-borne diseases in many countries. This study was carried out to determine the occurrence of Salmonella spp., Salmonella Enteritidis, and Salmonella Typhimurium in raw chicken meat from wet markets and hypermarkets in Selangor, as well as to determine the antibiotic susceptibility profile of S. Enteritidis and S. Typhimurium. The most probable number (MPN) in combination with multiplex polymerase chain reaction (mPCR) method was used to quantify the Salmonella spp., S. Enteritidis, and S. Typhimurium in the samples. The occurrence of Salmonella spp., S. Enteritidis, and S. Typhimurium in 120 chicken meat samples were 20.80%, 6.70%, and 2.50%, respectively with estimated quantity varying from retail chicken meat could be a source of multiple antimicrobial-resistance Salmonella and may constitute a public health concern in Malaysia. © 2016 Poultry Science Association Inc.

  20. Rapidly changing treatment options adding burden to the management of typhoid fever

    Directory of Open Access Journals (Sweden)

    Jaspal Kaur

    2015-01-01

    Full Text Available Typhoid fever continues to be a global public health problem. It is caused by the facultative intracellular organisms Salmonella enteric serotype Typhi and Salmonella paratyphi. Antimicrobial therapy is the mainstay for treatment of typhoid fever. Chloramphenicol, ampicillin, and cotrimoxazole had been in use for decades for treating enteric fever. But the emergence and rapid spread of drug resistance has resulted in rapid shift of treatment options from chloramphenicol to fluoroquinolones to third generation cephalosporins to azithromycin with tigecycline and carbapenems in line, thus adding burden to the health-care sector in developing countries. Rational and judicious antibiotic prescribing practices by health professionals are necessary to prevent further development of drug resistance and help in re-emergence of sensitive strains.

  1. Use of rapid-scan EPR to improve detection sensitivity for spin-trapped radicals.

    Science.gov (United States)

    Mitchell, Deborah G; Rosen, Gerald M; Tseitlin, Mark; Symmes, Breanna; Eaton, Sandra S; Eaton, Gareth R

    2013-07-16

    The short lifetime of superoxide and the low rates of formation expected in vivo make detection by standard continuous wave (CW) electron paramagnetic resonance (EPR) challenging. The new rapid-scan EPR method offers improved sensitivity for these types of samples. In rapid-scan EPR, the magnetic field is scanned through resonance in a time that is short relative to electron spin relaxation times, and data are processed to obtain the absorption spectrum. To validate the application of rapid-scan EPR to spin trapping, superoxide was generated by the reaction of xanthine oxidase and hypoxanthine with rates of 0.1-6.0 μM/min and trapped with 5-tert-butoxycarbonyl-5-methyl-1-pyrroline-N-oxide (BMPO). Spin trapping with BMPO to form the BMPO-OOH adduct converts the very short-lived superoxide radical into a more stable spin adduct. There is good agreement between the hyperfine splitting parameters obtained for BMPO-OOH by CW and rapid-scan EPR. For the same signal acquisition time, the signal/noise ratio is >40 times higher for rapid-scan than for CW EPR. Rapid-scan EPR can detect superoxide produced by Enterococcus faecalis at rates that are too low for detection by CW EPR. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Salmonella-secreted Virulence Factors

    Energy Technology Data Exchange (ETDEWEB)

    Heffron, Fred; Niemann, George; Yoon, Hyunjin; Kidwai, Afshan S.; Brown, Roslyn N.; McDermott, Jason E.; Smith, Richard D.; Adkins, Joshua N.

    2011-05-01

    In this short review we discuss secreted virulence factors of Salmonella, which directly affect Salmonella interaction with its host. Salmonella secretes protein to subvert host defenses but also, as discussed, to reduce virulence thereby permitting the bacteria to persist longer and more successfully disperse. The type III secretion system (TTSS) is the best known and well studied of the mechanisms that enable secretion from the bacterial cytoplasm to the host cell cytoplasm. Other secretion systems include outer membrane vesicles, which are present in all Gram-negative bacteria examined to date, two-partner secretion, and type VI secretion will also be addressed. Excellent reviews of Salmonella secreted effectors have focused on themes such as actin rearrangements, vesicular trafficking, ubiquitination, and the activities of the virulence factors themselves. This short review is based on S. Typhimurium infection of mice because it is a model of typhoid like disease in humans. We have organized effectors in terms of events that happen during the infection cycle and how secreted effectors may be involved.

  3. DNA-Based diagnostic tests for Salmonella strains targeting hilA, agfA, spvC and sef Genes

    Energy Technology Data Exchange (ETDEWEB)

    Craciunafl, C.; Keul, A. L.; Flonta, M.; Cristea, M.

    2009-07-01

    Salmoneleae are invasive enteropathogens of humans and animals. During the past decade, a dramatic increase in the occurrence of Salmonella spp infections was principally responsible for the rise of food-borne salmonellosis. The goal of this study was to evaluate the suitability of the, hilA, agfA, spvC, sef, gene amplification by PCR as a specific method for detection of Salmonella strains. (Author)

  4. Non-Typhoidal Salmonella Aortitis in a transplant patient

    International Nuclear Information System (INIS)

    Tarif, N.; Azam, M.N.; Mitwalli, Ahmad H.; Al-Wakeel, Jamal S.; El-Kheder, A. Al-Aboud

    2002-01-01

    Non-typhoidal salmonella bacteremia may result in extra gastrointestinallocalization of infection. Aortitis due to non-typhoidal salmonella wasreported to be the cause of 38-42% of all infected abdominal aortitis.Underlying atherosclerosis is a frequent site for salmonella aortitis. Wedescribe here a case of possible salmonella aortitis in a renal transplantpatient. (author)

  5. Molecular tracking of Salmonella spp. in chicken meat chain: from slaughterhouse reception to end cuts

    OpenAIRE

    Dias, Mariane Rezende; Cavicchioli, Valéria Quintana; Camargo, Anderson Carlos; Lanna, Frederico Germano Piscitelli Alvarenga; Pinto, Paulo Sérgio de Arruda; Bersot, Luciano dos Santos; Nero, Luís Augusto

    2015-01-01

    Due to the importance of Salmonella spp. in poultry products, this study aimed to track its main contamination routes since slaughtering reception to processing of chicken end cuts. Samples from different steps of slaughtering and processing (n = 277) were collected from two chicken slaughterhouses (Sl1 and Sl2) located in Minas Gerais state, Brazil, and subjected to Salmonella spp. detection. The obtained isolates were subjected to serological identification and tested by PCR for specific Sa...

  6. Test results of Salmonella typing by the National Reference Laboratories for Salmonella in the Member States of the European Union and the EnterNet Laboratories - Collaborative study VII on typing of Salmonella

    NARCIS (Netherlands)

    Korver H; Maas HME; Ward LR; Wannet WJB; Henken AM; MGB; LIS

    2003-01-01

    Het Communautair Referentie Laboratorium voor Salmonella (CRL-Salmonella, Bilthoven, Nederland) organiseerde in samenwerking met Public Health Laboratory Services (PHLS), London, Verenigd Koninkrijk een zevende ringonderzoek aangaande de typering van Salmonella. Zeventien Nationale Referentie

  7. Classification and structural analysis of live and dead salmonella cells using fourier transform infrared (FT-IR) spectroscopy and principle component analysis (PCA)

    Science.gov (United States)

    Fourier Transform Infrared Spectroscopy (FT-IR) was used to detect Salmonella typhimurium and Salmonella enteritidis foodborne bacteria and distinguish between live and dead cells of both serotypes. Bacteria were loaded individually on the ZnSe Attenuated Total Reflection (ATR) crystal surface and s...

  8. The Salmonella enterica Pan-genome

    DEFF Research Database (Denmark)

    Jacobsen, Annika; Hendriksen, Rene S.; Aarestrup, Frank Møller

    2011-01-01

    Salmonella enterica is divided into four subspecies containing a large number of different serovars, several of which are important zoonotic pathogens and some show a high degree of host specificity or host preference. We compare 45 sequenced S. enterica genomes that are publicly available (22......, and the core and pan-genome of Salmonella were estimated to be around 2,800 and 10,000 gene families, respectively. The constructed pan-genomic dendrograms suggest that gene content is often, but not uniformly correlated to serotype. Any given Salmonella strain has a large stable core, whilst...... there is an abundance of accessory genes, including the Salmonella pathogenicity islands (SPIs), transposable elements, phages, and plasmid DNA. We visualize conservation in the genomes in relation to chromosomal location and DNA structural features and find that variation in gene content is localized in a selection...

  9. Salmonella Control Programs in Denmark

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar; Hald, Tine; Wong, Danilo Lo Fo

    2003-01-01

    We describe Salmonella control programs of broiler chickens, layer hens, and pigs in Denmark. Major reductions in the incidence of foodborne human salmonellosis have occurred by integrated control of farms and food processing plants. Disease control has been achieved by monitoring the herds...... and flocks, eliminating infected animals, and diversifying animals (animals and products are processed differently depending on Salmonella status) and animal food products according to the determined risk. In 2001, the Danish society saved U.S.$25.5 million by controlling Salmonella. The total annual...... Salmonella control costs in year 2001 were U.S.$14.1 million (U.S.$0.075/kg of pork and U.S.$0.02/kg of broiler or egg). These costs are paid almost exclusively by the industry. The control principles described are applicable to most industrialized countries with modern intensive farming systems....

  10. Use of Tethered Enzymes as a Platform Technology for Rapid Analyte Detection

    Science.gov (United States)

    Cohen, Roy; Lata, James P.; Lee, Yurim; Hernández, Jean C. Cruz; Nishimura, Nozomi; Schaffer, Chris B.; Mukai, Chinatsu; Nelson, Jacquelyn L.; Brangman, Sharon A.; Agrawal, Yash; Travis, Alexander J.

    2015-01-01

    Background Rapid diagnosis for time-sensitive illnesses such as stroke, cardiac arrest, and septic shock is essential for successful treatment. Much attention has therefore focused on new strategies for rapid and objective diagnosis, such as Point-of-Care Tests (PoCT) for blood biomarkers. Here we use a biomimicry-based approach to demonstrate a new diagnostic platform, based on enzymes tethered to nanoparticles (NPs). As proof of principle, we use oriented immobilization of pyruvate kinase (PK) and luciferase (Luc) on silica NPs to achieve rapid and sensitive detection of neuron-specific enolase (NSE), a clinically relevant biomarker for multiple diseases ranging from acute brain injuries to lung cancer. We hypothesize that an approach capitalizing on the speed and catalytic nature of enzymatic reactions would enable fast and sensitive biomarker detection, suitable for PoCT devices. Methods and findings We performed in-vitro, animal model, and human subject studies. First, the efficiency of coupled enzyme activities when tethered to NPs versus when in solution was tested, demonstrating a highly sensitive and rapid detection of physiological and pathological concentrations of NSE. Next, in rat stroke models the enzyme-based assay was able in minutes to show a statistically significant increase in NSE levels in samples taken 1 hour before and 0, 1, 3 and 6 hours after occlusion of the distal middle cerebral artery. Finally, using the tethered enzyme assay for detection of NSE in samples from 20 geriatric human patients, we show that our data match well (r = 0.815) with the current gold standard for biomarker detection, ELISA—with a major difference being that we achieve detection in 10 minutes as opposed to the several hours required for traditional ELISA. Conclusions Oriented enzyme immobilization conferred more efficient coupled activity, and thus higher assay sensitivity, than non-tethered enzymes. Together, our findings provide proof of concept for using

  11. Modified DNA extraction for rapid PCR detection of methicillin-resistant staphylococci

    International Nuclear Information System (INIS)

    Japoni, A.; Alborzi, A.; Rasouli, M.; Pourabbas, B.

    2004-01-01

    Nosocomial infection caused by methicillin-resistant staphylococci poses a serious problem in many countries. The aim of this study was to rapidly and reliably detect methicillin-resistant-staphylococci in order to suggest appropriate therapy. The presence or absence of the methicillin-resistance gene in 115 clinical isolates of staphylococcus aureus and 50 isolates of coagulase negative staphylococci was examined by normal PCR. DNA extraction for PCR performance was then modified by omission of achromopeptadiase and proteinase K digestion, phenol/chloroform extraction and ethanol precipitation. All isolates with Mic>8 μ g/ml showed positive PCR. No differences in PCR detection have been observed when normal and modified DNA extractions have been performed. Our modified DNA extraction can quickly detect methicillin-resistant staphylococci by PCR. The advantage of rapid DNA extraction extends to both reduction of time and cost of PCR performance. This modified DNA extraction is suitable for different PCR detection, when staphylococci are the subject of DNA analysis

  12. Rapid and specific detection of Asian- and African-lineage Zika viruses.

    Science.gov (United States)

    Chotiwan, Nunya; Brewster, Connie D; Magalhaes, Tereza; Weger-Lucarelli, James; Duggal, Nisha K; Rückert, Claudia; Nguyen, Chilinh; Garcia Luna, Selene M; Fauver, Joseph R; Andre, Barb; Gray, Meg; Black, William C; Kading, Rebekah C; Ebel, Gregory D; Kuan, Guillermina; Balmaseda, Angel; Jaenisch, Thomas; Marques, Ernesto T A; Brault, Aaron C; Harris, Eva; Foy, Brian D; Quackenbush, Sandra L; Perera, Rushika; Rovnak, Joel

    2017-05-03

    Understanding the dynamics of Zika virus transmission and formulating rational strategies for its control require precise diagnostic tools that are also appropriate for resource-poor environments. We have developed a rapid and sensitive loop-mediated isothermal amplification (LAMP) assay that distinguishes Zika viruses of Asian and African lineages. The assay does not detect chikungunya virus or flaviviruses such as dengue, yellow fever, or West Nile viruses. The assay conditions allowed direct detection of Zika virus RNA in cultured infected cells; in mosquitoes; in virus-spiked samples of human blood, plasma, saliva, urine, and semen; and in infected patient serum, plasma, and semen samples without the need for RNA isolation or reverse transcription. The assay offers rapid, specific, sensitive, and inexpensive detection of the Asian-lineage Zika virus strain that is currently circulating in the Western hemisphere, and can also detect the African-lineage Zika virus strain using separate, specific primers. Copyright © 2017, American Association for the Advancement of Science.

  13. Rapid and specific detection of Asian- and African-lineage Zika viruses

    Science.gov (United States)

    Chotiwan, Nunya; Brewster, Connie D.; Magalhaes, Tereza; Weger-Lucarelli, James; Duggal, Nisha K.; Rückert, Claudia; Nguyen, Chilinh; Garcia Luna, Selene M.; Fauver, Joseph R.; Andre, Barb; Gray, Meg; Black, William C.; Kading, Rebekah C.; Ebel, Gregory D.; Kuan, Guillermina; Balmaseda, Angel; Jaenisch, Thomas; Marques, Ernesto T. A.; Brault, Aaron C.; Harris, Eva; Foy, Brian D.; Quackenbush, Sandra L.; Perera, Rushika; Rovnak, Joel

    2017-01-01

    Understanding the dynamics of Zika virus transmission and formulating rational strategies for its control require precise diagnostic tools that are also appropriate for resource-poor environments. We have developed a rapid and sensitive loop-mediated isothermal amplification (LAMP) assay that distinguishes Zika viruses of Asian and African lineages. The assay does not detect chikungunya virus or flaviviruses such as dengue, yellow fever, or West Nile viruses. The assay conditions allowed direct detection of Zika virus RNA in cultured infected cells; in mosquitoes; in virus-spiked samples of human blood, plasma, saliva, urine, and semen; and in infected patient serum, plasma, and semen samples without the need for RNA isolation or reverse transcription. The assay offers rapid, specific, sensitive, and inexpensive detection of the Asian-lineage Zika virus strain that is currently circulating in the Western hemisphere, and can also detect the African-lineage Zika virus strain using separate, specific primers. PMID:28469032

  14. Survival of salmonella transformed to express green fluorescent protein on Italian parsley as affected by processing and storage.

    Science.gov (United States)

    Duffy, E A; Cisneros-Zevallos, L; Castillo, A; Pillai, S D; Ricke, S C; Acuff, G R

    2005-04-01

    To study the effect of processing and storage parameters on the survival of Salmonella on fresh Italian parsley, parsley bunches were dipped for 3 or 15 min in suspensions that were preequilibrated to 5, 25, or 35 degrees C and inoculated with Salmonella transformed to express enhanced green fluorescent protein. Loosely attached and/or associated, strongly attached and/or associated, and internalized and/or entrapped Salmonella cells were enumerated over 0, 1, and 7 days of storage at 25 degrees C and over 0, 1, 7, 14, and 30 days of storage at 4 degrees C using surface-plating procedures. Leaf sections obtained from samples after 0, 1, and 7 days of storage were examined using confocal scanning laser microscopy. Temperature of the dip suspension had little effect on the attachment and survival of Salmonella cells on parsley. Regardless of the temperature or duration of dip, Salmonella was internalized. Immersion for longer times resulted in higher numbers of attached and internalized cells. Microscopic observations supported these results and revealed Salmonella cells near the stomata and within cracks in the cuticle. Storage temperature had the greatest impact on the survival of Salmonella cells on parsley. When stored at 25 degrees C, parsley had a shelf life of 7 days, and Salmonella populations significantly increased over the 7 days of storage. For parsley stored at 4 degrees C, numbers of Salmonella cells decreased over days 0, 1, and 7. After 7 days of storage, there were no viable internalized Salmonella cells detected. Storage temperature represents an important control point for the safety of fresh parsley.

  15. Phenotypic and molecular characterization of Salmonella serotypes ...

    African Journals Online (AJOL)

    The presence of Salmonella and human pathogens in unpasteurized milk remains a public health hazard. The study reported the phenotypic and molecular characterization of Salmonella serotypes in cow raw milk, cheese and traditional yoghurt marketed for man's consumption in Nigeria. Isolation of Salmonella was done ...

  16. Draft Genome Sequences of 64 Salmonella enterica subsp. enterica Enteritidis Isolates from Mice in US

    Science.gov (United States)

    A ciprofloxacin resistant (CipR) Salmonella enterica subsp. enterica serovar Kentucky ST198 has rapidly and extensively disseminated globally to become a major food-safety and public health concern. Here, we report a complete genome sequence of a CipR S. Kentucky ST198 strain PU131 isolated from a ...

  17. Molecular characterization of Salmonella strains in individuals with acute diarrhea syndrome in the State of Sucre, Venezuela.

    Science.gov (United States)

    Rodulfo, Hectorina; De Donato, Marcos; Luiggi, Jesús; Michelli, Elvia; Millán, Adriana; Michelli, Miriam

    2012-06-01

    In Venezuela, acute diarrheic syndrome (ADS) is a primary cause of morbi-mortality, often involving the Salmonella genus. Salmonella infections are associated with acute gastroenteritis, one of the most common alimentary intoxications, and caused by the consumption of contaminated water and food, especially meat. Conventional and molecular methods were used to detect Salmonella strains from 330 fecal samples from individuals of different ages and both sexes with ADS. Polymerase chain reaction (PCR) was used for the molecular characterization of Salmonella, using invA, sefA, and fliC genes for the identification of this genus and the serotypes Enteritidis and Typhimurium, respectively. The highest frequency of individuals with ADS was found in children 0-2 years old (39.4%), and the overall frequency of positive coprocultures was 76.9%. A total of 14 (4.2%) strains were biochemically and immunologically identified as Salmonella enterica subsp. enterica, of which 7 were classified as belonging to the Enteritidis serotype, 4 to the Typhimurium serotype, and 3 to other serotypes. The S. enterica strains were distributed more frequently in the age groups 3-4 and 9-10 years old. The molecular characterization method used proved to be highly specific for the typing of S. enterica strains using DNA extracted from both the isolated colonies and selective enrichment broths directly inoculated with fecal samples, thus representing a complementary tool for the detection and identification of ADS-causing bacteria.

  18. Molecular typing, antibiotic resistance, virulence gene and biofilm formation of different Salmonella enterica serotypes.

    Science.gov (United States)

    Turki, Yousra; Mehr, Ines; Ouzari, Hadda; Khessairi, Amel; Hassen, Abdennaceur

    2014-01-01

    Salmonella enterica isolates representing commonly isolated serotypes in Tunisia were analyzed using genotyping and phenotyping methods. ERIC and ITS-PCR applied to 48 Salmonella spp. isolates revealed the presence of 12 and 10 different profiles, respectively. The distribution of profiles among serotypes demonstrated the presence of strains showing an identical fingerprinting pattern. All Salmonella strains used in this study were positive for the sdiA gene. Three Salmonella isolates belonging to serotypes Anatum, Enteritidis and Amsterdam were negative for the invA gene. The spvC gene was detected in thirteen isolates belonging to serotypes Anatum, Typhimurium, Enteritidis, Gallinarum and Montevideo. Antibiotic resistance was frequent among the recovered Salmonella isolates belonging to serotypes Anatum, Typhimurium, Enteritidis, Zanzibar and Derby. The majority of these isolates exhibited resistance to at least two antibiotic families. Four multidrug-resistant isolates were recovered from food animals and poultry products. These isolates exhibited not only resistance to tetracycline, sulphonamides, and ampicillin, but also have shown resistance to fluoroquinolones. Common resistance to nalidixic acid, ciprofloxacin and ofloxacin in two S. Anatum and S. Zanzibar strains isolated from raw meat and poultry was also obtained. Furthermore, wastewater and human isolates exhibited frequent resistance to nalidixic acid and tetracycline. Of all isolates, 33.5% were able to form biofilm.

  19. Salmonella, Escherichia coli and Enterobacteriaceae in the peanut supply chain: From farm to table.

    Science.gov (United States)

    Nascimento, M S; Carminati, J A; Silva, I C R N; Silva, D L; Bernardi, A O; Copetti, M V

    2018-03-01

    Due to recent foodborne outbreaks, peanuts have been considered a potential risk for Salmonella transmission. For this reason, the aim of this study was to determine the prevalence and contamination load of Salmonella, Escherichia coli and Enterobacteriaceae throughout the peanut supply chain in Brazil. Samples of peanuts and peanut-containing processed products from post-harvest (n=129), secondary processing (n=185) and retail market (n=100) were analyzed. The results showed high Enterobacteriaceae counts in the post-harvest samples. At the end of the secondary processing, 16% of the samples remained contaminated by this group of microorganisms. Six peanut samples from primary production and one sample of peanut butter were tested positive for E. coli while Salmonella was detected in nine samples (2.2%): six from post-harvest, two from the initial stage of the secondary processing and one from retail. The Salmonella counts ranged between 0.004 and 0.092MPN/g and five serotypes were identified (Muenster, Miami, Javiana, Oranienburg, Glostrup). The results demonstrated a high prevalence of Enterobacteriaceae and low prevalence of E. coli throughout the peanut supply chain. Furthermore, it was verified that peanuts may become contaminated by Salmonella during different stages of the supply chain, especially at post-harvest. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Salmonella Species' Persistence and Their High Level of Antimicrobial Resistance in Flooded Man-Made Rivers in China.

    Science.gov (United States)

    Song, Qifa; Zhang, Danyang; Gao, Hong; Wu, Junhua

    2018-05-11

    Man-made rivers, owing to proximity to human habitats, facilitate transmission of salmonellosis to humans. To determine the contamination situation by Salmonella in flooded man-made rivers and thereafter the exposure risk to public health, we investigated the prevalence of Salmonella species and their antimicrobial resistance in such rivers, as well as the relationship between the incidence of local infectious diarrhea cases and the number of Salmonella isolates from patients. After a heavy flood, 95 isolates of 13 Salmonella serotypes were isolated from 80 river water samples. The two most prevalent serotypes were Typhimurium and Derby. Eight Salmonella serotypes were newly detected after the flood. Overall, 50 isolates were resistant to ampicillin and/or cefotaxime and carried at least bla TEM . Twelve isolates of serotypes Typhimurium, Derby, Rissen, and Indiana were extended-spectrum β-lactamase (ESBL) producing and carried at least one of bla OXA and bla CTX-M-like genes. Twelve isolates of serotypes Typhimurium, Derby, Agona, Rissen, and Indiana were resistant to ciprofloxacin and had gyrA mutations. Isolates of Typhimurium, Derby, and Indiana were concurrently ciprofloxacin resistant and ESBL producing. Pulsed-field gel electrophoresis illustrates the circulation of two dominant clones of Salmonella Typhimurium isolates among patients, river, and food. High prevalence of various highly pathogenic and antimicrobial-resistant Salmonella serotypes shows that man-made rivers are prone to heavy contamination with Salmonella, and as a result put public health at greater risk.

  1. Tentative Colistin Epidemiological Cut-Off Value for Salmonella spp

    DEFF Research Database (Denmark)

    Agersø, Yvonne; Torpdahl, Mia; Zachariasen, Camilla

    2012-01-01

    . Interestingly, Salmonella Dublin and Salmonella Enteritidis belong to the same O-group (O:1, 9,12), suggesting that surface lipopolysaccharides (LPS) of the cell (O-antigen) play a role in colistin susceptibility. The epidemiological cut-off value of >2 mg/L for colistin suggested by European Committee...... on Antimicrobial Susceptibility Testing (EUCAST) is placed inside the distribution for both Salmonella Dublin and Salmonella Enteritidis. All tested Salmonella Dublin isolates, regardless of MIC colistin value, had identical pmrA and pmrB sequences. Missense mutations were found only in pmrA in one Salmonella...

  2. Prevalence and antimicrobial susceptibility of Salmonella isolated from a variety of raw meat sausages in Gaborone (Botswana) retail stores.

    Science.gov (United States)

    Samaxa, Ronald Gaelekolwe; Matsheka, Maitshwarelo Ignatius; Mpoloka, Sununguko Wata; Gashe, Berhanu Abegaz

    2012-04-01

    The objective of the study was to provide baseline data on the prevalence and antimicrobial susceptibility of Salmonella in different types of raw meat sausages directly accessible to the consumers in Gaborone, Botswana. A total of 300 raw sausages comprising 79 beef, 78 pork, 72 chicken, and 71 mutton samples were concurrently analyzed for the presence of Salmonella using a conventional culture method and a validated PCR method. The PCR assay results were in full concordance with those of the conventional culture method for the detection of Salmonella. Sixty-five (21.7%) of 300 samples were positive for Salmonella by both the conventional culture method and PCR assay. Even though more chicken samples contained Salmonella than did any other sausage type, the difference in the presence of Salmonella among the four sausages types was not significant. Eleven serotypes were identified, and Salmonella enterica subsp. salamae II was most prevalent in all the sausage types. Beef sausages generally had higher mesophilic bacterial counts than did the other three sausage types. However, higher microbial counts were not reflective of the presence of salmonellae. Susceptibility of the Salmonella enterica serotypes to 20 antimicrobial agents was determined, and Salmonella Muenchen was resistant to the widest array of agents and was mostly isolated from chicken sausages. Regardless of the meat of origin, all 65 Salmonella isolates were resistant to at least four antimicrobial agents: amikacin, gentamicin, cefuroxime, and tombramycin. This resistance profile group was the most common in all four sausage types, comprising 90% of all Salmonella isolates from beef, 71% from pork, 63% from mutton, and 35% from chicken. These results suggest that raw sausages pose a risk of transmitting multidrug-resistant Salmonella isolates to consumers.

  3. Rapid antemortem detection of CWD prions in deer saliva.

    Directory of Open Access Journals (Sweden)

    Davin M Henderson

    Full Text Available Chronic wasting disease (CWD is an efficiently transmitted prion disease of cervids, now identified in 22 United States, 2 Canadian provinces and Korea. One hallmark of CWD is the shedding of infectious prions in saliva, as demonstrated by bioassay in deer. It is also clear that the concentration of prions in saliva, blood, urine and feces is much lower than in the nervous system or lymphoid tissues. Rapid in vitro detection of CWD (and other prions in body fluids and excreta has been problematic due to the sensitivity limits of direct assays (western blotting, ELISA and the presence of inhibitors in these complex biological materials that hamper detection. Here we use real-time quaking induced conversion (RT-QuIC to demonstrate CWD prions in both diluted and prion-enriched saliva samples from asymptomatic and symptomatic white-tailed deer. CWD prions were detected in 14 of 24 (58.3% diluted saliva samples from CWD-exposed white-tailed deer, including 9 of 14 asymptomatic animals (64.2%. In addition, a phosphotungstic acid enrichment enhanced the RT-QuIC assay sensitivity, enabling detection in 19 of 24 (79.1% of the above saliva samples. Bioassay in Tg[CerPrP] mice confirmed the presence of infectious prions in 2 of 2 RT-QuIC-positive saliva samples so examined. The modified RT-QuIC analysis described represents a non-invasive, rapid ante-mortem detection of prions in complex biologic fluids, excreta, or environmental samples as well as a tool for exploring prion trafficking, peripheralization, and dissemination.

  4. International collaborative study on the occurrence of plasmid-mediated quinolone resistance in Salmonella enterica and Escherichia coli isolated from animals, humans, food and the environment in 13 European countries

    DEFF Research Database (Denmark)

    Veldman, Kees; Cavaco, Lina; Mevius, Dik

    2011-01-01

    OBJECTIVES: This study was initiated to collect retrospective information on the occurrence of plasmid-mediated quinolone resistance (PMQR) in Salmonella enterica and Escherichia coli isolates in Europe and to identify the responsible genes. METHODS: Databases of national reference laboratories...... containing MIC values for Salmonella and E. coli isolated between 1994 and 2009 in animals, humans, food and the environment from 13 European countries were screened for isolates exhibiting a defined quinolone resistance phenotype, i.e. reduced susceptibility to fluoroquinolones and nalidixic acid. PCR...... isolate. No qnrC or qepA genes were detected in either Salmonella or E. coli. CONCLUSIONS: This study shows the occurrence and dissemination of PMQR genes in Salmonella and E. coli in Europe with a defined quinolone resistance phenotype. We also report the first detection of qnrD in Salmonella collected...

  5. A single-tube screen for Salmonella and Shigella.

    Science.gov (United States)

    Procop, Gary W; Wallace, Jacqueline D; Tuohy, Marion J; Lasalvia, Margret M; Addison, Rachel M; Reller, L Barth

    2008-08-01

    Salmonella and Shigella species are routinely sought in stool specimens submitted for culture. It is a common practice to screen lactose-negative colonies by using triple sugar iron agar, lysine iron agar, and Christensen urea agar to determine if further identification is necessary. We designed and evaluated a novel combination of media, which are layered in a single tube, for screening isolates suspected to possibly represent Salmonella or Shigella. We tested this media combination with 106 Salmonella, 56 Shigella, and 56 other gram-negative bacilli. All Salmonella and Shigella isolates tested were appropriately characterized as possible Salmonella or Shigella by using an algorithm developed for use with this media combination. Similarly, 53 (95%) of 56 other gram-negative bacilli were appropriately screened as non -Salmonella and non -Shigella isolates. This unique media combination provides the most important biochemical reactions needed to screen for Salmonella and Shigella in a single-tube format, which decreases labor by two thirds (ie, 1 tube is inoculated vs 3).

  6. Multifunctional Nanotechnology-Enabled Sensors for Rapid Capture and Detection of Pathogens.

    Science.gov (United States)

    Mustafa, Fatima; Hassan, Rabeay Y A; Andreescu, Silvana

    2017-09-15

    Nanomaterial-based sensing approaches that incorporate different types of nanoparticles (NPs) and nanostructures in conjunction with natural or synthetic receptors as molecular recognition elements provide opportunities for the design of sensitive and selective assays for rapid detection of contaminants. This review summarizes recent advancements over the past ten years in the development of nanotechnology-enabled sensors and systems for capture and detection of pathogens. The most common types of nanostructures and NPs, their modification with receptor molecules and integration to produce viable sensing systems with biorecognition, amplification and signal readout are discussed. Examples of all-in-one systems that combine multifunctional properties for capture, separation, inactivation and detection are also provided. Current trends in the development of low-cost instrumentation for rapid assessment of food contamination are discussed as well as challenges for practical implementation and directions for future research.

  7. Accelerating sample preparation through enzyme-assisted microfiltration of Salmonella in chicken extract

    Science.gov (United States)

    Microfiltration of chicken extracts has the potential to significantly decrease the time required to detect Salmonella, as long as the extract can be efficiently filtered and the pathogenic microorganisms kept in a viable state during this process. We present conditions that enable microfiltration ...

  8. Quantitative detection of Salmonella enterica and the specific interaction with Lactuca sativa

    OpenAIRE

    Klerks, M.M.

    2007-01-01

    Salmonella is among the most commonly known bacterial pathogens to cause human illness. Often Salmonellosis is associated with the consumption of contaminated foods like meat, eggs or egg products. However, during the last decades an increase of outbreaks is recognized to be caused by human pathogenic bacteria in association with fresh produce. The use of manure for production of vegetables, e.g. lettuce, contributes significantly to the risk of contamination of fresh produce. Enteric pathoge...

  9. Time course of radiometric detection of positive blood cultures in childhood

    International Nuclear Information System (INIS)

    Meadow, W.L.; Schwartz, I.K.

    1986-01-01

    We have determined the time course of radiometric detection of microbial growth in 2348 positive blood culture specimens obtained at Wyler Children's Hospital during a 5-year interval. Overall 72 and 88% of isolates were detected within 48 and 72 hours after sampling, respectively. For pathogenic organisms aerobic detection was generally more rapid and more inclusive than anaerobic detection. At 48 hours of incubation the detection of six potential pathogens (Salmonella sp., Haemophilus influenzae, Group D streptococci, Neisseria meningitidis, coagulase-negative staphylococci, Candida sp.) was significantly delayed compared with detection of other pathogenic organisms recovered from blood. At 72 hours of incubation the detection rates remained less than 95% for H. influenzae, Staphylococcus aureus, Klebsiella sp., coagulase-negative staphylococci, Group D streptococci and Candida sp. These data should assist clinical decisions regarding duration of antibiotic therapy for the presumptive diagnosis of bacteremia in children

  10. Time course of radiometric detection of positive blood cultures in childhood

    Energy Technology Data Exchange (ETDEWEB)

    Meadow, W.L.; Schwartz, I.K.

    1986-05-01

    We have determined the time course of radiometric detection of microbial growth in 2348 positive blood culture specimens obtained at Wyler Children's Hospital during a 5-year interval. Overall 72 and 88% of isolates were detected within 48 and 72 hours after sampling, respectively. For pathogenic organisms aerobic detection was generally more rapid and more inclusive than anaerobic detection. At 48 hours of incubation the detection of six potential pathogens (Salmonella sp., Haemophilus influenzae, Group D streptococci, Neisseria meningitidis, coagulase-negative staphylococci, Candida sp.) was significantly delayed compared with detection of other pathogenic organisms recovered from blood. At 72 hours of incubation the detection rates remained less than 95% for H. influenzae, Staphylococcus aureus, Klebsiella sp., coagulase-negative staphylococci, Group D streptococci and Candida sp. These data should assist clinical decisions regarding duration of antibiotic therapy for the presumptive diagnosis of bacteremia in children.

  11. A comparison of transmission characteristics of Salmonella enterica serovar Enteritidis between pair-housed and group-housed laying hens

    Directory of Open Access Journals (Sweden)

    Thomas Ekelijn

    2011-02-01

    Full Text Available Abstract Human cases of bacterial gastro-enteritis are often caused by the consumption of eggs contaminated with Salmonella species, mainly Salmonella enterica serovar Enteriditis (Salmonella Enteritidis. To reduce human exposure, in several countries worldwide surveillance programmes are implemented to detect colonized layer flocks. The sampling schemes are based on the within-flock prevalence, and, as this changes over time, knowledge of the within-flock dynamics of Salmonella Enteritidis is required. Transmission of Salmonella Enteritidis has been quantified in pairs of layers, but the question is whether the dynamics in pairs is comparable to transmission in large groups, which are more representative for commercial layer flocks. The aim of this study was to compare results of transmission experiments between pairs and groups of laying hens. Experimental groups of either 2 or 200 hens were housed at similar densities, and 1 or 4 hens were inoculated with Salmonella Enteritidis, respectively. Excretion was monitored by regularly testing of fecal samples for the presence of Salmonella Enteritidis. Using mathematical modeling, the group experiments were simulated with transmission parameter estimates from the pairwise experiments. Transmission of the bacteria did not differ significantly between pairs or groups. This finding suggests that the transmission parameter estimates from small-scale experiments might be extrapolated to the field situation.

  12. The application of automatic chemiluminescence machine in rapid immune detection

    International Nuclear Information System (INIS)

    Lin Aizhen; Li Xuanwei; Chen Binhong; Li Zhenqian; Chen Zhaoxuan

    2004-01-01

    Objective: To provide high-quality, rapid and dependable result for clinical practice, and give satisfactory service to patients of different economical status by supplementation with other labeling immune examination. With an innovative attitude, we carried out efficient technical reform on ACS180 automatic chemiluminescence machine, making it possible for patients to complete the whole process including examination, check-out, diagnosis and getting drugs. The reported will be issued within an hour, thus a rapid immune detection service was established in out-patients department. Methods: 1. ACS-180 automatic chemiluminescence machine is used based on the principle of chemiluminescence immune methods. 2. The reagents are provided by Ciba-Comig Company of USA, composed of anti acridinium ester antibody of liquid phase and particulate antigen of solid phase wrapped in magnetic powder. 3. Calibration and quality control: high and low concentration are set for each calibration fluid with attached standard curve. Product for quality controlling includes three concentration of low, moderate and high. Results: 1. rapid machine detection for sample: serum is replaced with plasma coagulated by heparin, and comparison among series of methods using serum or plasma suggest no significant difference exists. 2. The problem about fasting detection: chemiluminescence machine measure optical density directly, with the results hardly being influenced by turbidity. But attention should be paid to the treatment of lipid turbid samples. 3. Other innovations: (1) direct placement of sample tube on machine: a cushion is placed on sample plate to transfer sample to machine directly after centrifugation, saving time and reducing the accident in sample transference. (2) for HCG quantification in blood and urine, 'gold criteria' is used firstly in screening to determine approximately the dilution range, with an advantage of saving time and reagent as well as accuracy. (3) we design a

  13. Salmonella serotype distribution in the Dutch broiler supply chain.

    Science.gov (United States)

    van Asselt, E D; Thissen, J T N M; van der Fels-Klerx, H J

    2009-12-01

    Salmonella serotype distribution can give insight in contamination routes and persistence along a production chain. Therefore, it is important to determine not only Salmonella prevalence but also to specify the serotypes involved at the different stages of the supply chain. For this purpose, data from a national monitoring program in the Netherlands were used to estimate the serotype distribution and to determine whether this distribution differs for the available sampling points in the broiler supply chain. Data covered the period from 2002 to 2005, all slaughterhouses (n = 22), and the following 6 sampling points: departure from hatchery, arrival at the farm, departure from the farm, arrival at the slaughterhouse, departure from the slaughterhouse, and end of processing. Furthermore, retail data for 2005 were used for comparison with slaughterhouse data. The following serotypes were followed throughout the chain: Salmonella Enteritidis, Salmonella Typhimurium, Salmonella Paratyphi B var. Java (Salmonella Java), Salmonella Infantis, Salmonella Virchow, and Salmonella Mbandaka. Results showed that serotype distribution varied significantly throughout the supply chain (P supply chain up to the retail phase.

  14. Reduction of Salmonella in ground chicken using a bacteriophage.

    Science.gov (United States)

    Grant, Ar'Quette; Parveen, Salina; Schwarz, Jurgen; Hashem, Fawzy; Vimini, Bob

    2017-08-01

    This study's goal was to ascertain the effectiveness of a commercially available Salmonella bacteriophage during ground chicken production focusing on: water source, different Salmonella serovars, and time. Salmonella-free boneless, skinless chicken meat was inoculated with 4.0 Log CFU/cm2 of either a cocktail of 3 Salmonella isolates derived from ground chicken (GC) or a cocktail of 3 Salmonella strains not isolated from ground chicken (non-GC). Bacteriophages were spread onto the chicken using sterile tap or filtered water for 30 min or 8 h. Salmonella was recovered using standard plating method. Greater Salmonella reduction was observed when the bacteriophage was diluted in sterile tap water than in sterile filtered water: 0.39 Log CFU/cm2 and 0.23 Log CFU/cm2 reduction after 30 min, respectively (P Salmonella's susceptibility to the bacteriophage, and treatment time. © 2017 Poultry Science Association Inc.

  15. Molecular epidemiology of fluoroquinolone resistant Salmonella in Africa: A systematic review and meta-analysis.

    Science.gov (United States)

    Tadesse, Getachew; Tessema, Tesfaye S; Beyene, Getenet; Aseffa, Abraham

    2018-01-01

    Wide-ranging evidence on the occurrence of fluoroquinolone (FQ) resistance genetic determinants in African Salmonella strains is not available. The main objectives of this study were to assess the heterogeneity, estimate pooled proportions and describe the preponderance of FQ-resistance determinants in typhoidal and non-typhoidal Salmonella (NTS) isolates of Africa. Genetic and phenotypic data on 6103 Salmonella isolates were considered. Meta- and frequency analyses were performed depending on the number of studies by category, number of isolates and risks of bias. A random effects model was used to assess heterogeneity and estimate pooled proportions. Relative and cumulative frequencies were calculated to describe the overall preponderance of FQ-resistance determinants in quinolone resistant isolates. The pooled proportion of gyrA mutants (Salmonella enterica serovar Typhi, Salmonella enterica serovar Typhimurium, and Salmonella enterica serovar Enteritidis) was estimated at 5.7% (95% Confidence interval (CI) = 2.6, 9.8; Tau squared (T2) = 0.1105), and was higher in S. Typhi than in S. Typhimurium (odds ratio (OR) = 3.3, 95%CI = 2, 5.7). The proportions of each of gyrB and parC mutants, and strains with Plasmid Mediated Quinolone Resistance genes (qnrA, qnrB and qnrS) were low (≤ 0.3%). Overall, 23 mutant serotypes were identified, and most strains had mutations at codons encoding Ser83 and Asp87 of gyrA (82%, 95%CI = 78, 86). Mutations at gyrA appear to account for ciprofloxacin non-susceptibility in most clinical Salmonella strains in Africa. The estimates could be harnessed to develop a mismatch-amplification mutation-assay for the detection of FQ-resistant strains in Africa.

  16. Risk Factors for Salmonella, Shiga Toxin-Producing Escherichia coli and Campylobacter Occurrence in Primary Production of Leafy Greens and Strawberries

    Directory of Open Access Journals (Sweden)

    Siele Ceuppens

    2015-08-01

    Full Text Available The microbiological sanitary quality and safety of leafy greens and strawberries were assessed in the primary production in Belgium, Brazil, Egypt, Norway and Spain by enumeration of Escherichia coli and detection of Salmonella, Shiga toxin-producing E. coli (STEC and Campylobacter. Water samples were more prone to containing pathogens (54 positives out of 950 analyses than soil (16/1186 and produce on the field (18/977 for leafy greens and 5/402 for strawberries. The prevalence of pathogens also varied markedly according to the sampling region. Flooding of fields increased the risk considerably, with odds ratio (OR 10.9 for Salmonella and 7.0 for STEC. A significant association between elevated numbers of generic E. coli and detection of pathogens (OR of 2.3 for STEC and 2.7 for Salmonella was established. Generic E. coli was found to be a suitable index organism for Salmonella and STEC, but to a lesser extent for Campylobacter. Guidelines on frequency of sampling and threshold values for E. coli in irrigation water may differ from region to region.

  17. Prevalence and risk factors for Salmonella spp. colonization in broiler flocks in Shiraz, southern Iran

    Directory of Open Access Journals (Sweden)

    Maryam Ansari-Lari

    2014-04-01

    Full Text Available Salmonella spp. are important food borne pathogens worldwide that frequently infect poultry flocks. This cross-sectional study was conducted to determine the prevalence of Salmonella spp. colonization in broiler flocks in Shiraz (southern Iran and to find the possible association of infection status with some potential risk factors including vaccination program and use of antibiotics. During October 2009 to April 2010, a total of 40 broiler flocks were selected in slaughterhouse and 20 cloacae contents were collected from each flock. Every five cloacae contents were pooled and investigated for Salmonella spp. using appropriate culture methods. The flock was considered positive if any of the pooled samples turned positive in culture. Statistical analysis was performed using multiple logistic regression. Nine out of 40 flocks (22.50%, 95% CI: 9-36 were positive for Salmonella spp. colonization. Nearly 75.00% of flock owners reported that they used antibiotics during production period, more frequently fluoroquinolones, combination of trimethoprim-sulfonamides (TMP/SU and tetracycline. Nearly 60.00% of the flocks which had used TMP/SU were positive for Salmonella spp. compared with 10.00% of the flocks which did not use this antibiotic (p = 0.006. Increasing flock age was associated with a decreased chance of Salmonella spp. detection (p = 0.003. In flocks which received infectious bronchitis vaccine, 36.00% were positive for Salmonella spp. whereas this was 15.00% for flocks which did not receive this vaccine (p = 0.08. Careful monitoring of antibiotics use and further studies to determine the most appropriate vaccination program in the field is recommended.

  18. A duplex endpoint PCR assay for rapid detection and differentiation of Leptospira strains.

    Science.gov (United States)

    Benacer, Douadi; Zain, Siti Nursheena Mohd; Lewis, John W; Khalid, Mohd Khairul Nizam Mohd; Thong, Kwai Lin

    2017-01-01

    This study aimed to develop a duplex endpoint PCR assay for rapid detection and differentiation of Leptospira strains. Primers were designed to target the rrs (LG1/LG2) and ligB (LP1/LP2) genes to confirm the presence of the Leptospira genus and the pathogenic species, respectively. The assay showed 100% specificity against 17 Leptospira strains with a limit of detection of 23.1pg/µl of leptospiral DNA and sensitivity of 103 leptospires/ml in both spiked urine and water. Our duplex endpoint PCR assay is suitable for rapid early detection of Leptospira with high sensitivity and specificity.

  19. Rapid-scan Fourier-transform coherent anti-Stokes Raman scattering spectroscopy with heterodyne detection.

    Science.gov (United States)

    Hiramatsu, Kotaro; Luo, Yizhi; Ideguchi, Takuro; Goda, Keisuke

    2017-11-01

    High-speed Raman spectroscopy has become increasingly important for analyzing chemical dynamics in real time. To address the need, rapid-scan Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) spectroscopy has been developed to realize broadband CARS measurements at a scan rate of more than 20,000 scans/s. However, the detection sensitivity of FT-CARS spectroscopy is inherently low due to the limited number of photons detected during each scan. In this Letter, we show our experimental demonstration of enhanced sensitivity in rapid-scan FT-CARS spectroscopy by heterodyne detection. Specifically, we implemented heterodyne detection by superposing the CARS electric field with an external local oscillator (LO) for their interference. The CARS signal was amplified by simply increasing the power of the LO without the need for increasing the incident power onto the sample. Consequently, we achieved enhancement in signal intensity and the signal-to-noise ratio by factors of 39 and 5, respectively, compared to FT-CARS spectroscopy with homodyne detection. The sensitivity-improved rapid-scan FT-CARS spectroscopy is expected to enable the sensitive real-time observation of chemical dynamics in a broad range of settings, such as combustion engines and live biological cells.

  20. Control of Salmonella enterica serovar Enteritidis in laying hens by inactivated Salmonella Enteritidis vaccines "Controle de Salmonella enterica sorovar Enteritidis em poedeiras comerciais com a utilização de vacinas inativadas"

    Directory of Open Access Journals (Sweden)

    Oliveiro Caetano de Freitas Neto

    2008-06-01

    Full Text Available Salmonella Enteritidis is one of the agents that is responsible for outbreaks of human foodborne salmonellosis caused by Salmonella Enteritidis and is generally associated with the consumption of poultry products. Inactivated Salmonella Enteritidis cell vaccine is one of the available methods to control Salmonella Enteritidis in breeders and laying hens, however results in terms of efficacy vary. This vaccine has never been tested in Brazil, therefore, the present work was carried out to assess three commercial inactivated Salmonella Enteritidis vaccines allowed in Brazil. Four hundred white light variety commercial laying hens were obtained at one-day-of age. At eight weeks old, the birds were divided into four groups with one hundred animals each. Birds from three groups (V1, V2 and V3 received different intramuscular vaccines, followed by a booster dose at 16 weeks of age. Birds from another group (CG were not vaccinated. When the laying hens were 20, 25 and 31 weeks old, 13 from each group were transferred to another room and were challenged by inoculating 2 mL neat culture of Salmonella Enteritidis. On the second day after each challenge, the caecal contents, spleen, liver and ovary of three birds from each group were analyzed for the presence of Salmonella Enteritidis. Twice a week a cloacal swab of each bird was taken and all eggs laid were examined for the presence of Salmonella Enteritidis. After four consecutive negative cloacal swabs in all the groups, the birds were sacrificed so as to examine the liver, caecal contents and ovaries. Overall, the inactivated vaccine used in group V3 reduced Salmonella Enteritidis in the feces and eggs. A very small amount of Salmonella was found in the spleen, liver, ovary and caeca of the birds in the four groups during the whole experiment. In general, inactivated Salmonella Enteritidis vaccines was able to decrease the presence of Salmonella Enteritidis in the birds and in the eggs as well