WorldWideScience

Sample records for safety research information

  1. Radiation safety research information database

    International Nuclear Information System (INIS)

    Yukawa, Masae; Miyamoto, Kiriko; Takeda, Hiroshi; Kuroda, Noriko; Yamamoto, Kazuhiko

    2004-01-01

    National Institute of Radiological Sciences in Japan began to construct Radiation Safety Research Information Database' in 2001. The research information database is of great service to evaluate the effects of radiation on people by estimating exposure dose by determining radiation and radioactive matters in the environment. The above database (DB) consists of seven DB such as Nirs Air Borne Dust Survey DB, Nirs Environmental Tritium Survey DB, Nirs Environmental Carbon Survey DB, Environmental Radiation Levels, Abe, Metabolic Database for Assessment of Internal Dose, Graphs of Predicted Monitoring Data, and Nirs nuclear installation environment water tritium survey DB. Outline of DB and each DB are explained. (S.Y.)

  2. Collection and accumulation of seismic safety research findings, and considerations for information dissemination

    International Nuclear Information System (INIS)

    2013-01-01

    Seismic Safety Division of JNES is collecting and analyzing the findings of seismic safety research, and is developing a system to organize and disseminate the information internally and internationally. These tasks have been conducted in response to the lessons learned from Fukushima Daiichi NPP accident. The overview of the tasks is as follows; 1) Collection of the knowledge and findings from seismic safety research. JNES collects information on seismic safety researches including the 2011 off the Pacific coast of Tohoku Earthquake. The information is analyzed whether it is important for regulation to increase seismic safety of NPP. 2) Constructing database of seismic safety research. JNES collects information based on documents published by committee and constructs database of active faults around NPP sites in order to incorporate in the seismic safety review. 3) Dissemination of information related to seismic safety. JNES disseminates outcomes of own researches internally and internationally. (author)

  3. Collection and accumulation of seismic safety research findings, and considerations for information dissemination

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Seismic Safety Division of JNES is collecting and analyzing the findings of seismic safety research, and is developing a system to organize and disseminate the information internally and internationally. These tasks have been conducted in response to the lessons learned from Fukushima Daiichi NPP accident. The overview of the tasks is as follows; 1) Collection of the knowledge and findings from seismic safety research. JNES collects information on seismic safety researches including the 2011 off the Pacific coast of Tohoku Earthquake. The information is analyzed whether it is important for regulation to increase seismic safety of NPP. 2) Constructing database of seismic safety research. JNES collects information based on documents published by committee and constructs database of active faults around NPP sites in order to incorporate in the seismic safety review. 3) Dissemination of information related to seismic safety. JNES disseminates outcomes of own researches internally and internationally. (author)

  4. Thirteenth water reactor safety research information meeting: proceedings Volume 1

    International Nuclear Information System (INIS)

    Weiss, A.J.

    1986-02-01

    This six-volume report contains 151 papers out of the 178 that were presented at the Thirteenth Water Reactor Safety Research Information Meeting held at the National Bureau of Standards, Gaithersburg, Maryland, during the week of October 22-25, 1985. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included thirty-one different papers presented by researchers from Japan, Canada and eight European countries. The title of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume presents information on: risk analysis PRA application; severe accident sequence analysis; risk analysis/dependent failure analysis; and industry safety research

  5. Stakeholder Safety in Information Systems Research

    Directory of Open Access Journals (Sweden)

    R.H. Barbour

    2006-11-01

    Full Text Available Information Communication Technology (ICT researchers adapt and use tools from reference and cognate disciplines. This application of existing tools outside the context of their development has implications beyond the immediate problem context. ICT researchers have access to a wide variety of data sources including newer ones, such as the Internet, that may bring unexpected outcomes. ICT research can impact on researchers, their institutions and the researched in unexpected ways. People so affected are the stakeholders in ICT research activities. Reputations, welfare and property may be put at risk by unplanned events described in this paper. Legal aspects of ICT research are broadly identified and linked to the tort of negligence. The Social Research Association’s Code for researcher safety is described and its application extended to include the Internet as a potential data source. A common set of underlying ethical principles is identified suggesting that the ICT researcher can refine particular research protocols for specific social contexts.

  6. Transport safety research abstracts. No. 2. Information on research recently concluded and in progress

    International Nuclear Information System (INIS)

    1994-09-01

    Transport Safety Research Abstracts (TSRA) was first published by the IAEA in 1991 as a means of disseminating information on research in radioactive material transport. This second edition utilizes International Nuclear Information System (INIS) protocol for data processing and report preparation for a research-in-progress database established by the IAEA's Division of Scientific and Technical Information. INIS subject categories and descriptors are included in the information about each project

  7. Transport safety research abstracts. No. 2. Information on research recently concluded and in progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    Transport Safety Research Abstracts (TSRA) was first published by the IAEA in 1991 as a means of disseminating information on research in radioactive material transport. This second edition utilizes International Nuclear Information System (INIS) protocol for data processing and report preparation for a research-in-progress database established by the IAEA`s Division of Scientific and Technical Information. INIS subject categories and descriptors are included in the information about each project.

  8. INFORMATION CULTURE AND INFORMATION SAFETY OF SCHOOLCHILDREN

    Directory of Open Access Journals (Sweden)

    E. G. Belyakova

    2017-01-01

    Full Text Available Introduction. The article is devoted to the problem of interaction between schoolchildren and possible informational risks transmitted on the Internet. Considering the lack of external filters on the way of harmful information streams, it is actually necessary to develop information culture of schoolchildren, their abilities to sensibly and critically interpret the information on the Internet, and choice of adequate behaviour models surfing the Web. The aim of the present research is to analyze the state of informational safety of schoolchildren while using the Internet; gaining an understanding of the role of external restrictions and opportunities of intrapersonal filtration of the harmful Internet content depending on children age. Methodology and research methods. The methodology of the research is based on modern methods aimed to consider the problem of personal socialization in modern information society. Thus, the Internet Initiatives Development Fund (IIDF questionnaire let the authors define the level of awareness of recipients on the problem under consideration. Results and scientific novelty. The theoretical analysis helped the authors predict the correlation of basic methods in order to guarantee personal safety of schoolchildren taking into account the process of maturity as well as the decrease of external filters that may stop harmful content. Empirical part of the research has enabled to reveal decrease in external control of staying of a child in network in the process of growing up against the background of restrictive attitudes prevalence among teachers and parents. Therefore, the research supposed to improve information culture of schoolchildren from the earliest ages encouraging them to sensibly and correctly interpret the information on the Internet. Practical significance. The practical recommendations to parents and teachers in order to improve informational personal safety of schoolchildren are proposed. The relevancy

  9. Progress of nuclear safety research. 2001

    Energy Technology Data Exchange (ETDEWEB)

    Anoda, Yoshinari; Sasajima, Hideo; Nishiyama, Yutaka (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-10-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy or the Safety Research Annual Plan issued by the Japanese government. The safety research at JAERI concerns the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety. This report summarizes the nuclear safety research activities of JAERI from April 1999 through March 2001. (author)

  10. Fuel safety research 2000

    Energy Technology Data Exchange (ETDEWEB)

    Uetsuka, Hiroshi (ed.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    In April 1999, the Fuel Safety Research Laboratory was newly established as a part of reorganization of the Nuclear Safety Research Center, JAERI. The new laboratory was organized by combining three pre-existing laboratories, Reactivity Accident Laboratory, Fuel Reliability Laboratory, and a part of Severe Accident Research Laboratory. The Fuel Safety Research Laboratory becomes to be in charge of all fuel safety research in JAERI. Various experimental and analytical researches are conducted in the laboratory by using the unique facilities such as the Nuclear Safety Research Reactor (NSRR), the Japan Material Testing Reactor (JMTR), the Japan Research Reactor 3 (JRR-3) and hot cells in JAERI. The laboratory consists of following five research groups corresponding to each research fields; (a) Research group of fuel behavior under the reactivity initiated accident conditions (RIA group). (b) Research group of fuel behavior under the loss-of-coolant accident conditions (LOCA group). (c) Research group of fuel behavior under the normal operation conditions (JMTR/BOCA group). (d) Research group of fuel behavior analysis (FEMAXI group). (e) Research group of FP release/transport behavior from irradiated fuel (VEGA group). The research activities in year 2000 produced many important data and information. They are, for example, failure of high burnup BWR fuel rod under RIA conditions, data on the behavior of hydrided Zircaloy cladding under LOCA conditions and FP release data from VEGA experiments at very high temperature/pressure condition. This report summarizes the outline of research activities and major outcomes of the research executed in 2000 in the Fuel Safety Research Laboratory. (author)

  11. Progress of nuclear safety research-2004

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Ebine, Noriya; Chuto, Toshinori; Sato, Satoshi; Ishikawa, Jun; Yamamoto, Toshihiro; Munakata, Masahiro; Asakura, Toshihide; Yamaguchi, Tetsuji; Kida, Takashi; Matsui, Hiroki; Haneishi, Akihiro; Araya, Fumimasa

    2005-03-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2002 through March 2004 and utilized facilities. (author)

  12. Fuel safety research 2001

    Energy Technology Data Exchange (ETDEWEB)

    Uetsuka, Hiroshi (ed.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-11-01

    The Fuel Safety Research Laboratory is in charge of research activity which covers almost research items related to fuel safety of water reactor in JAERI. Various types of experimental and analytical researches are being conducted by using some unique facilities such as the Nuclear Safety Research Reactor (NSRR), the Japan Material Testing Reactor (JMTR), the Japan Research Reactor 3 (JRR-3) and the Reactor Fuel Examination Facility (RFEF) of JAERI. The research to confirm the safety of high burn-up fuel and MOX fuel under accident conditions is the most important item among them. The laboratory consists of following five research groups corresponding to each research fields; Research group of fuel behavior under the reactivity initiated accident conditions (RIA group). Research group of fuel behavior under the loss-of-coolant accident conditions (LOCA group). Research group of fuel behavior under the normal operation conditions (JMTR/BOCA group). Research group of fuel behavior analysis (FEMAXI group). Research group of radionuclides release and transport behavior from irradiated fuel under severe accident conditions (VEGA group). The research conducted in the year 2001 produced many important data and information. They are, for example, the fuel behavior data under BWR power oscillation conditions in the NSRR, the data on failure-bearing capability of hydrided cladding under LOCA conditions and the FP release data at very high temperature in steam which simulate the reactor core condition during severe accidents. This report summarizes the outline of research activities and major outcomes of the research executed in 2001 in the Fuel Safety Research Laboratory. (author)

  13. Progress of nuclear safety research - 2005

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Amaya, Masaki; Saito, Junichi; Sato, Atsushi; Sono, Hiroki; Tamaki, Hitoshi; Tonoike, Kotaro; Nemoto, Yoshiyuki; Motoki, Yasuo; Moriyama, Kiyofumi; Yamaguchi, Tetsuji; Araya, Fumimasa

    2006-03-01

    The Japan Atomic Energy Research Institute (JAERI), one of the predecessors of the Japan Atomic Energy Agency (JAEA), had conducted nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Five-Years Program for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI were the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI had conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI had taken a responsible role by providing experts in assistance to conducting accident investigations or emergency responses by the government or local government. These nuclear safety research and technical assistance to the government have been taken over as an important role by JAEA. This report summarizes the nuclear safety research activities of JAERI from April 2003 through September 2005 and utilized facilities. (author)

  14. Progress of nuclear safety research. 2002

    Energy Technology Data Exchange (ETDEWEB)

    Anoda, Yoshinari; Kudo, Tamotsu; Tobita, Tohru (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] (and others)

    2002-11-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2000 through April 2002 and utilized facilities. This report also summarizes the examination of the ruptured pipe performed for assistance to the Nuclear and Industrial Safety Agency (NISA) for investigation of the accident at the Hamaoka Nuclear Power Station Unit-1 on November, 2001. (author)

  15. Safety research in nuclear fuel cycle at PNC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This report collects the results of safety research in nuclear fuel cycle at Power Reactor and Nuclear Fuel Development Corporation, in order to answer to the Questionnaire of OECD/NEA. The Questionnaire request to include information concerning to research topic, description, main results (if available), reference documents, research institutes involved, sponsoring organization and other pertinent information about followings: a) Recently completed research projects. b) Ongoing (current) research projects. Achievements on following items are omitted by the request of OECD/NEA, uranium mining and milling, uranium refining and conversion to UF{sub 6}, uranium enrichment, fuel manufacturers, spent fuel storage, radioactive waste management, transport of radioactive materials, decommissioning. We select topics from the fields of a) nuclear installation, b) seismic, and c) PSA, in projects from frame of annual safety research plan for nuclear installations established by Nuclear Safety Commission. We apply for the above a) and b) projects as follows: a) Achievements in Safety Research, fiscal 1991-1995, b) fiscal 1996 Safety Research Achievements: Progress. (author)

  16. Safety research in nuclear fuel cycle at PNC

    International Nuclear Information System (INIS)

    1998-09-01

    This report collects the results of safety research in nuclear fuel cycle at Power Reactor and Nuclear Fuel Development Corporation, in order to answer to the Questionnaire of OECD/NEA. The Questionnaire request to include information concerning to research topic, description, main results (if available), reference documents, research institutes involved, sponsoring organization and other pertinent information about followings: a) Recently completed research projects. b) Ongoing (current) research projects. Achievements on following items are omitted by the request of OECD/NEA, uranium mining and milling, uranium refining and conversion to UF 6 , uranium enrichment, fuel manufacturers, spent fuel storage, radioactive waste management, transport of radioactive materials, decommissioning. We select topics from the fields of a) nuclear installation, b) seismic, and c) PSA, in projects from frame of annual safety research plan for nuclear installations established by Nuclear Safety Commission. We apply for the above a) and b) projects as follows: a) Achievements in Safety Research, fiscal 1991-1995, b) fiscal 1996 Safety Research Achievements: Progress. (author)

  17. Water reactor safety research program. A description of current and planned research

    International Nuclear Information System (INIS)

    1978-07-01

    The U.S. Nuclear Regulatory Commission (NRC) sponsors confirmatory safety research on lightwater reactors in support of the NRC regulatory program. The principal responsibility of the NRC, as implemented through its regulatory program is to ensure that public health, public safety, and the environment are adequately protected. The NRC performs this function by defining conditions for the use of nuclear power and by ensuring through technical review, audit, and follow-up that these conditions are met. The NRC research program provides technical information, independent of the nuclear industry, to aid in discharging these regulatory responsibilities. The objectives of NRC's research program are the following: (1) to maintain a confirmatory research program that supports assurance of public health and safety, and public confidence in the regulatory program, (2) to provide objectively evaluated safety data and analytical methods that meet the needs of regulatory activities, (3) to provide better quantified estimates of the margins of safety for reactor systems, fuel cycle facilities, and transportation systems, (4) to establish a broad and coherent exchange of safety research information with other Federal agencies, industry, and foreign organization. Current and planned research toward these goals is described

  18. Progress of nuclear safety research. 2003

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Amagai, Masaki; Tobita, Tohru

    2004-03-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2001 through March 2003 and utilized facilities. This report also summarizes the examination of the ruptured pipe performed for assistance to the Nuclear and Industrial Safety Agency (NISA) for investigation of the accident at the Hamaoka Nuclear Power Station Unit-1 on November, 2001, and the integrity evaluation of cracked core shroud of BWRs of the Tokyo Electric Power Company performed for assistance to the Nuclear Safety Commission in reviewing the evaluation reports by the licensees. (author)

  19. Transactions of the nineteenth water reactor safety information meeting

    International Nuclear Information System (INIS)

    Weiss, A.J.

    1991-10-01

    This report contains summaries of papers on reactor safety research to be presented at the 19th Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel in Bethesda, Maryland, October 28--30, 1991. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, USNRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the Electric Power Research Institute (EPRI), the nuclear industry, and from the governments and industry in Europe and Japan are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion and information exchange during the course of the meeting, and are given in the order of their presentation in each session. The individual summaries have been cataloged separately

  20. Transactions of the Twentieth Water Reactor Safety Information Meeting

    International Nuclear Information System (INIS)

    Weiss, A.J.

    1992-10-01

    This report contains summaries of papers on reactor safety research to be presented at the 20th Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel in Bethesda, Maryland, October 21--23, 1992. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, USNRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the Electric Power Research Institute (EPRI), the nuclear industry, and from foreign governments and industry are also included

  1. RISK-INFORMED SAFETY MARGIN CHARACTERIZATION

    International Nuclear Information System (INIS)

    Dinh, Nam; Szilard, Ronaldo

    2009-01-01

    The concept of safety margins has served as a fundamental principle in the design and operation of commercial nuclear power plants (NPPs). Defined as the minimum distance between a system's 'loading' and its 'capacity', plant design and operation is predicated on ensuring an adequate safety margin for safety-significant parameters (e.g., fuel cladding temperature, containment pressure, etc.) is provided over the spectrum of anticipated plant operating, transient and accident conditions. To meet the anticipated challenges associated with extending the operational lifetimes of the current fleet of operating NPPs, the United States Department of Energy (USDOE), the Idaho National Laboratory (INL) and the Electric Power Research Institute (EPRI) have developed a collaboration to conduct coordinated research to identify and address the technological challenges and opportunities that likely would affect the safe and economic operation of the existing NPP fleet over the postulated long-term time horizons. In this paper we describe a framework for developing and implementing a Risk-Informed Safety Margin Characterization (RISMC) approach to evaluate and manage changes in plant safety margins over long time horizons

  2. Animal Product Safety Information

    Science.gov (United States)

    ... Home Animal & Veterinary Safety & Health Product Safety Information Product Safety Information Share Tweet Linkedin Pin it More ... to report adverse experiences with veterinary drugs. Additional Product Information Questions and Answers: Evanger’s Dog and Cat ...

  3. Transactions of the Twenty-First Water Reactor Safety Information Meeting

    International Nuclear Information System (INIS)

    Monteleone, S.

    1993-10-01

    This report contains summaries of papers on reactor safety research to be presented at the 21st Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel, Bethesda, Maryland, October 25--27, 1993. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, US NRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the Electric Power Research Institute (EPRI), the nuclear industry, and from foreign governments and industry are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion and information exchange during the course of the meeting and are given in the order of their presentation in each session

  4. Transactions of the Twenty-First Water Reactor Safety Information Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.

    1993-10-01

    This report contains summaries of papers on reactor safety research to be presented at the 21st Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel, Bethesda, Maryland, October 25--27, 1993. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, US NRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the Electric Power Research Institute (EPRI), the nuclear industry, and from foreign governments and industry are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion and information exchange during the course of the meeting and are given in the order of their presentation in each session.

  5. Buff book 1: status summary report, water reactor safety research

    International Nuclear Information System (INIS)

    1980-01-01

    This Management Report, to provide information for monitoring and controlling the progress of LWR Safety Research Projects Associated with the Office of Nuclear Regulatory Research and other agencies and organizations engaged in nuclear safety research. It utilizes data pertaining to project schedules, cost, and status which have been integrated into a network-based management information system, The purpose of this publication is to provide a vehicle for review of the current status and overall progress of the safety Research Program from a managerial point of view

  6. Translating Health Services Research into Practice in the Safety Net.

    Science.gov (United States)

    Moore, Susan L; Fischer, Ilana; Havranek, Edward P

    2016-02-01

    To summarize research relating to health services research translation in the safety net through analysis of the literature and case study of a safety net system. Literature review and key informant interviews at an integrated safety net hospital. This paper describes the results of a comprehensive literature review of translational science literature as applied to health care paired with qualitative analysis of five key informant interviews conducted with senior-level management at Denver Health and Hospital Authority. Results from the literature suggest that implementing innovation may be more difficult in the safety net due to multiple factors, including financial and organizational constraints. Results from key informant interviews confirmed the reality of financial barriers to innovation implementation but also implied that factors, including institutional respect for data, organizational attitudes, and leadership support, could compensate for disadvantages. Translating research into practice is of critical importance to safety net providers, which are under increased pressure to improve patient care and satisfaction. Results suggest that translational research done in the safety net can better illuminate the special challenges of this setting; more such research is needed. © Health Research and Educational Trust.

  7. Transport safety research abstracts. No. 1

    International Nuclear Information System (INIS)

    1991-07-01

    The Transport Safety Research Abstracts is a collection of reports from Member States of the International Atomic Energy Agency, and other international organizations on research in progress or just completed in the area of safe transport of radioactive material. The main aim of TSRA is to draw attention to work that is about to be published, thus enabling interested parties to obtain further information through direct correspondence with the investigators. Information contained in this issue covers work being undertaken in 6 Member States and contracted by 1 international organization; it is hoped with succeeding issues that TSRA will be able to widen this base. TSRA is modelled after other IAEA publications describing work in progress in other programme areas, namely Health Physics Research Abstracts (No. 14 was published in 1989), Waste Management Research Abstracts (No. 20 was published in 1990), and Nuclear Safety Research Abstracts (No. 2 was published in 1990)

  8. Evolution of human factors research and studies of health information technologies: the role of patient safety

    NARCIS (Netherlands)

    Beuscart-Zéphir, M. C.; Borycki, E.; Carayon, P.; Jaspers, M. W. M.; Pelayo, S.

    2013-01-01

    The objective of this survey paper is to present and explain the impact of recent regulations and patient safety initiatives (EU, US and Canada) on Human Factors (HF)/Usability studies and research focusing on Health Information Technology (HIT). The authors have selected the most prominent of these

  9. Nuclear reactor safety research in Idaho

    International Nuclear Information System (INIS)

    Zeile, H.J.

    1983-01-01

    Detailed information about the performance of nuclear reactor systems, and especially about the nuclear fuel, is vital in determining the consequences of a reactor accident. Fission products released from the fuel during accidents are the ultimate safety concern to the general public living in the vicinity of a nuclear reactor plant. Safety research conducted at the Idaho National Engineering Laboratory (INEL) in support of the U.S. Nuclear Regulatory Commission (NRC) has provided the NRC with detailed data relating to most of the postulated nuclear reactor accidents. Engineers and scientists at the INEL are now in the process of gathering data related to the most severe nuclear reactor accident - the core melt accident. This paper describes the focus of the nuclear reactor safety research at the INEL. The key results expected from the severe core damage safety research program are discussed

  10. Transactions of the twenty-fifth water reactor safety information meeting

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.

    1997-09-01

    This report contains summaries of papers on reactor safety research to be presented at the 25th Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel in Bethesda, Maryland, October 20--22, 1997. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, US NRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the nuclear industry, and from foreign governments and industry are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion of information exchanged during the course of the meeting, and are given in order of their presentation in each session.

  11. Transactions of the twenty-fifth water reactor safety information meeting

    International Nuclear Information System (INIS)

    Monteleone, S.

    1997-09-01

    This report contains summaries of papers on reactor safety research to be presented at the 25th Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel in Bethesda, Maryland, October 20--22, 1997. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, US NRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the nuclear industry, and from foreign governments and industry are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion of information exchanged during the course of the meeting, and are given in order of their presentation in each session

  12. Safety of Research Reactors. Safety Requirements

    International Nuclear Information System (INIS)

    2010-01-01

    The main objective of this Safety Requirements publication is to provide a basis for safety and a basis for safety assessment for all stages in the lifetime of a research reactor. Another objective is to establish requirements on aspects relating to regulatory control, the management of safety, site evaluation, design, operation and decommissioning. Technical and administrative requirements for the safety of research reactors are established in accordance with these objectives. This Safety Requirements publication is intended for use by organizations engaged in the site evaluation, design, manufacturing, construction, operation and decommissioning of research reactors as well as by regulatory bodies

  13. International exchange of safety and licensing information

    International Nuclear Information System (INIS)

    Lafleur, J.D. Jr.; Hauber, R.D.; Chenier, D.M.

    1977-01-01

    A network of formal and informal bilateral arrangements for the exchange of nuclear safety information is being established by the U.S. Nuclear Regulatory Commission. For developing countries, such arrangements can provide ready access to the extensive, fully documented safety analyses and safety research results that NRC has accumulated. NRC has been receiving foreign visitors at a rate of about 500 per year, largely for discussions of safety and licensing questions related to light water reactors. Exchanges also are taking place on the safety of advanced reactors. A special interest of the NRC is in providing for reciprocal communicaion, at the earliest possible time, of important problems, decisions and other actions on nuclear safety matters. For example, it is essential that a newly-discovered problem in a nuclear reactor be brought immediately to the attention of other governments which are responsible for the safety of similar reactors. Definite progress has been made in the U.S. Freedom of Information Act. Certain exchanges have taken place on this basis. Experience in the establishment and operation of NRC's bilateral exchange arrangements is summarized. A typical exchange with the regulatory authority of country building its first power reactor is described

  14. The IAEA programme on research reactor safety

    International Nuclear Information System (INIS)

    Abou Yehia, H.

    2007-01-01

    According to the research reactor database of IAEA (RRDB), 250 reactors are operating worldwide, 248 have been shut down and 170 have been decommissioned. Among the 248 reactors that do not run, some will resume their activities, others will be dismantled and the rest do not face a clear future. The analysis of reported incidents shows that the ageing process is a major cause of failures, more than two thirds of operating reactors are over 30 years old. It also appears that the lack of adequate regulations or safety standards for research reactors is an important issue concerning reactor safety particularly when reactors are facing re-starting or upgrading or modifications. The IAEA has launched a 4-axis program: 1) to set basic safety regulations and standards for research reactors, 2) to provide IAEA members with an efficient help for the application of these safety regulations to their reactors, 3) to foster international exchange of information on research reactor safety, and 4) to provide IAEA members with a help concerning safety issues linked to malicious acts or sabotage on research reactors

  15. Proceedings of fuel safety research specialists' meeting

    International Nuclear Information System (INIS)

    Suzuki, Motoe

    2002-08-01

    Fuel Safety Research Specialists' Meeting, which was organized by Japan Atomic Energy Research Institute, was held on March 4-5, 2002 at JAERI in Tokai Establishment. Purposes of the Meeting are to exchange information and views on LWR fuel safety topics among the specialist participants from domestic and foreign organizations, and to discuss the recent and future fuel research activities in JAERI. In the Meeting, presentations were given and discussions were made on general report of fuel safety research activities, fuel behaviors in normal operation and accident conditions, FP release behaviors in severe accident conditions, and JAERI's ''Advanced LWR Fuel Performance and Safety Research Program''. A poster exhibition was also carried out. The Meeting significantly contributed to planning future program and cooperation in fuel research. This proceeding integrates all the pictures and papers presented in the Meeting. The 10 of the presented papers are indexed individually. (J.P.N.)

  16. Improving plant state information for better operational safety

    International Nuclear Information System (INIS)

    Girard, C.; Olivier, E.; Grimaldi, X.

    1994-01-01

    Nuclear Power Plant (NPP) safety is strongly dependent on components' reliability and particularly on plant state information reliability. This information, used by the plant operators in order to produce appropriate actions, have to be of a high degree of confidence, especially in accidental conditions where safety is threatened. In this perspective, FRAMATOME, EDF and CEA have started a joint research program to prospect different solutions aiming at a better reliability for critical information needed to safety operate the plant. This paper gives the main results of this program and describes the developments that have been made in order to assess reliability of different information systems used in a Nuclear Power Plant. (Author)

  17. Enabling social listening for cardiac safety monitoring: Proceedings from a drug information association-cardiac safety research consortium cosponsored think tank.

    Science.gov (United States)

    Seifert, Harry A; Malik, Raleigh E; Bhattacharya, Mondira; Campbell, Kevin R; Okun, Sally; Pierce, Carrie; Terkowitz, Jeffrey; Turner, J Rick; Krucoff, Mitchell W; Powell, Gregory E

    2017-12-01

    This white paper provides a summary of the presentations and discussions from a think tank on "Enabling Social Listening for Cardiac Safety Monitoring" trials that was cosponsored by the Drug Information Association and the Cardiac Safety Research Consortium, and held at the White Oak headquarters of the US Food and Drug Administration on June 3, 2016. The meeting's goals were to explore current methods of collecting and evaluating social listening data and to consider their applicability to cardiac safety surveillance. Social listening is defined as the act of monitoring public postings on the Internet. It has several theoretical advantages for drug and device safety. First, these include the ability to detect adverse events that are "missed" by traditional sources and the ability to detect adverse events sooner than would be allowed by traditional sources, both by affording near-real-time access to data from culturally and geographically diverse sources. Social listening can also potentially introduce a novel patient voice into the conversation about drug safety, which could uniquely augment understanding of real-world medication use obtained from more traditional methodologies. Finally, it can allow for access to information about drug misuse and diversion. To date, the latter 2 of these have been realized. Although regulators from the Food and Drug Administration and the United Kingdom's Medicines and Healthcare Products Regulatory Agency participated in the think tank along with representatives from industry, academia, and patient groups, this article should not be construed to constitute regulatory guidance. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Transactions of the twenty-second water reactor safety information meeting

    International Nuclear Information System (INIS)

    1994-10-01

    This report contains summaries of papers on reactor safety research to be presented at the 22nd Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel, Bethesda, Maryland, October 24--26, 1994. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, US NRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the nuclear industry, and from foreign governments and industry are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion and information exchange during the course of the meeting and are given in the order of their presentation in each session. Individual papers have been cataloged separately

  19. International exchange of safety and licensing information

    International Nuclear Information System (INIS)

    Lafleur, J.D. Jr.; Hauber, R.D.; Chenier, D.M.

    1977-01-01

    A network of formal and informal bilateral arrangements for the exchange of nuclear safety information is being established by the US Nuclear Regulatory Commission. For developing countries such arrangements can provide ready access to the extensive, fully documented safety analyses and safety research results that USNRC has accumulated. USNRC has been receiving foreign visitors at a rate of about 500 per year, largely for discussions of safety and licensing questions related to light water reactors. Exchanges also are taking place on the safety of advanced reactors. A special interest of the USNRC is in providing for reciprocal communication, at the earliest possible time, of important problems, decisions and other actions on nuclear safety matters. For example, it is essential that a newly discovered problem in a nuclear reactor be brought immediately to the attention of other governments that are responsible for the safety of similar reactors. Definite progress has been made in the USA in defining categories of information that USNRC can receive in confidence from foreign countries, and can protect from disclosure under the US Freedom of Information Act. Certain exchanges have taken place on this basis. Experience in the establishment and operation of USNRC's bilateral exchange arrangements is summarized. A typical exchange with the regulatory authority of a country building its first power reactor is described. (author)

  20. Twenty-third water reactor safety information meeting: Volume 1, plenary session, high burnup fuel behavior, thermal hydraulic research. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1996-03-01

    This three-volume report contains papers presented at the Twenty- Third Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 23-25, 1995. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Italy, Japan, Norway, Russia, Sweden, and Switzerland. This document, Volume 1, present topics on High Burnup Fuel Behavior, Thermal Hydraulic Research, and Plenary Session topics. Individual papers have been cataloged separately.

  1. Twenty-third water reactor safety information meeting: Volume 1, plenary session, high burnup fuel behavior, thermal hydraulic research. Proceedings

    International Nuclear Information System (INIS)

    Monteleone, S.

    1996-03-01

    This three-volume report contains papers presented at the Twenty- Third Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 23-25, 1995. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Italy, Japan, Norway, Russia, Sweden, and Switzerland. This document, Volume 1, present topics on High Burnup Fuel Behavior, Thermal Hydraulic Research, and Plenary Session topics. Individual papers have been cataloged separately

  2. Study of system safety evaluation on LTO of national project. NISA safety research project on system safety of nuclear power plants

    International Nuclear Information System (INIS)

    Takizawa, Masayuki; Sekimura, Naoto; Miyano, Hiroshi; Aoyama, Katsunobu

    2012-01-01

    Japanese safety regulatory body, that is, Nuclear and Industrial Safety Agency (NISA) started a 5-year national safety research project as 'the first stage' from 2006 FY to 2010 FY whose objective is 'Improve the technical information basis in order to utilize knowledge as well as information related to ageing management and maintenance of NPPs. Fukushima disaster happened in March 2011, and the priority of research needs for ageing management dramatically changed in Japan. The second-stage national project started in October 2011 with the concept of 'system safety' of NNPs where not only ageing management on degradation phenomena of important components but also safety management on total plant systems are paid attention to. The second-stage project is so called 'Japanese Ageing Management Program for System Safety (JAMPSS)'. (author)

  3. Organizing safety: conditions for successful information assurance programs.

    Science.gov (United States)

    Collmann, Jeff; Coleman, Johnathan; Sostrom, Kristen; Wright, Willie

    2004-01-01

    Organizations must continuously seek safety. When considering computerized health information systems, "safety" includes protecting the integrity, confidentiality, and availability of information assets such as patient information, key components of the technical information system, and critical personnel. "High Reliability Theory" (HRT) argues that organizations with strong leadership support, continuous training, redundant safety mechanisms, and "cultures of high reliability" can deploy and safely manage complex, risky technologies such as nuclear weapons systems or computerized health information systems. In preparation for the Health Insurance Portability and Accountability Act (HIPAA) of 1996, the Office of the Assistant Secretary of Defense (Health Affairs), the Offices of the Surgeons General of the United States Army, Navy and Air Force, and the Telemedicine and Advanced Technology Research Center (TATRC), US Army Medical Research and Materiel Command sponsored organizational, doctrinal, and technical projects that individually and collectively promote conditions for a "culture of information assurance." These efforts include sponsoring the "P3 Working Group" (P3WG), an interdisciplinary, tri-service taskforce that reviewed all relevant Department of Defense (DoD), Miliary Health System (MHS), Army, Navy and Air Force policies for compliance with the HIPAA medical privacy and data security regulations; supporting development, training, and deployment of OCTAVE(sm), a self-directed information security risk assessment process; and sponsoring development of the Risk Information Management Resource (RIMR), a Web-enabled enterprise portal about health information assurance.

  4. Twenty-second water reactor safety information meeting. Volume 2: Severe accident research, thermal hydraulic research for advanced passive LWRs, high-burnup fuel behavior

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.

    1995-04-01

    This three-volume report contains papers presented at the Twenty-Second Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 24-26, 1994. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Finland, France, Italy, Japan, Russia, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting.

  5. Twenty-second water reactor safety information meeting. Volume 2: Severe accident research, thermal hydraulic research for advanced passive LWRs, high-burnup fuel behavior

    International Nuclear Information System (INIS)

    Monteleone, S.

    1995-04-01

    This three-volume report contains papers presented at the Twenty-Second Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 24-26, 1994. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Finland, France, Italy, Japan, Russia, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting

  6. Nirex safety assessment research programme: 1987/88

    International Nuclear Information System (INIS)

    George, D.; Hodgkinson, D.P.

    1987-01-01

    The Nirex Safety Assessment Research programme's objective is to provide information for the radiological safety case for disposing low-level and intermediate-level radioactive wastes in underground repositories. The programme covers a wide range of experimental studies and mathematical modelling for the near and far field. It attempts to develop a quantitative understanding of events and processes which have an impact on the safety of radioactive waste disposal. (U.K.)

  7. Water cooled reactor technology: Safety research abstracts no. 1

    International Nuclear Information System (INIS)

    1990-01-01

    The Commission of the European Communities, the International Atomic Energy Agency and the Nuclear Energy Agency of the OECD publish these Nuclear Safety Research Abstracts within the framework of their efforts to enhance the safety of nuclear power plants and to promote the exchange of research information. The abstracts are of nuclear safety related research projects for: pressurized light water cooled and moderated reactors (PWRs); boiling light water cooled and moderated reactors (BWRs); light water cooled and graphite moderated reactors (LWGRs); pressurized heavy water cooled and moderated reactors (PHWRs); gas cooled graphite moderated reactors (GCRs). Abstracts of nuclear safety research projects for fast breeder reactors are published independently by the Nuclear Energy Agency of the OECD and are not included in this joint publication. The intention of the collaborating international organizations is to publish such a document biannually. Work has been undertaken to develop a common computerized system with on-line access to the stored information

  8. Time series modeling in traffic safety research.

    Science.gov (United States)

    Lavrenz, Steven M; Vlahogianni, Eleni I; Gkritza, Konstantina; Ke, Yue

    2018-08-01

    The use of statistical models for analyzing traffic safety (crash) data has been well-established. However, time series techniques have traditionally been underrepresented in the corresponding literature, due to challenges in data collection, along with a limited knowledge of proper methodology. In recent years, new types of high-resolution traffic safety data, especially in measuring driver behavior, have made time series modeling techniques an increasingly salient topic of study. Yet there remains a dearth of information to guide analysts in their use. This paper provides an overview of the state of the art in using time series models in traffic safety research, and discusses some of the fundamental techniques and considerations in classic time series modeling. It also presents ongoing and future opportunities for expanding the use of time series models, and explores newer modeling techniques, including computational intelligence models, which hold promise in effectively handling ever-larger data sets. The information contained herein is meant to guide safety researchers in understanding this broad area of transportation data analysis, and provide a framework for understanding safety trends that can influence policy-making. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Safety campaigns. TIS Launches New Safety Information Campaign

    CERN Multimedia

    2001-01-01

    Need to start a new installation and worried about safety aspects? Or are you newly responsible for safety matters in a CERN building? Perhaps you're simply interested in how to make the working environment safer for yourself and your colleagues. Whatever the case, a new information campaign launched by TIS this week can help. The most visible aspects of the new campaign will be posters distributed around the Laboratory treating a different subject each month. The Web site - http://safety.cern.ch/ - which provides all safety related information. But these are not the only aspects of the new campaign. Members of the TIS/GS group, whose contact details can be found on the safety web site, are available to give information and advice on a one-to-one basis at any time. The campaign's launch has been timed to coincide with European Safety Week, organized by the European Agency for Safety and Health at Work and the subject treated in the first posters is safety inspection. This particular topic only concerns thos...

  10. The emphasis is on reactor safety research

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    For the second time the Association for Reactor Safety mbH (GRS), Koeln, organised on behalf of the BMFT the conference 'Reactor safety research'. About 400 visitors took part. The public who were interested were given a review of the activities which are being undertaken by the BMFT in the programme 'Research and safety of light-water reactors'. The series of conference papers initiated by the BMFT is to be developed into a permanent information source which will be of interest to those working on nuclear questions such as official quarters, industry and high schools, and experts who have to give judgements. The most important statements by various research groups in industry, high schools and also associations of experts, are summarised. (orig.) [de

  11. Development of the Advanced Nuclear Safety Information Management (ANSIM) System

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Jae Min; Ko, Young Cheol; Song, Tai Gil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Korea has become a technically independent nuclear country and has grown into an exporter of nuclear technologies. Thus, nuclear facilities are increasing in significance at KAERI (Korea Atomic Energy Research Institute), and it is time to address the nuclear safety. The importance of nuclear safety cannot be overemphasized. Therefore, a management system is needed urgently to manage the safety of nuclear facilities and to enhance the efficiency of nuclear information. We have established ISP (Information Strategy Planning) for the Integrated Information System of nuclear facility and safety management. The purpose of this paper is to develop a management system for nuclear safety. Therefore, we developed the Advanced Nuclear Safety Information Management system (hereinafter referred to as the 'ANSIM system'). The ANSIM system has been designed and implemented to computerize nuclear safety information for standardization, integration, and sharing in real-time. Figure 1 shows the main home page of the ANSIM system. In this paper, we describe the design requirements, contents, configurations, and utilizations of the ANSIM system

  12. The Research on Safety Management Information System of Railway Passenger Based on Risk Management Theory

    Science.gov (United States)

    Zhu, Wenmin; Jia, Yuanhua

    2018-01-01

    Based on the risk management theory and the PDCA cycle model, requirements of the railway passenger transport safety production is analyzed, and the establishment of the security risk assessment team is proposed to manage risk by FTA with Delphi from both qualitative and quantitative aspects. The safety production committee is also established to accomplish performance appraisal, which is for further ensuring the correctness of risk management results, optimizing the safety management business processes and improving risk management capabilities. The basic framework and risk information database of risk management information system of railway passenger transport safety are designed by Ajax, Web Services and SQL technologies. The system realizes functions about risk management, performance appraisal and data management, and provides an efficient and convenient information management platform for railway passenger safety manager.

  13. Safety of research reactors (Design and Operation)

    International Nuclear Information System (INIS)

    Dirar, H. M.

    2012-06-01

    The primary objective of this thesis is to conduct a comprehensive up-to-date literature review on the current status of safety of research reactor both in design and operation providing the future trends in safety of research reactors. Data and technical information of variety selected historical research reactors were thoroughly reviewed and evaluated, furthermore illustrations of the material of fuel, control rods, shielding, moderators and coolants used were discussed. Insight study of some historical research reactors was carried with considering sample cases such as Chicago Pile-1, F-1 reactor, Chalk River Laboratories,. The National Research Experimental Reactor and others. The current status of research reactors and their geographical distribution, reactor category and utilization is also covered. Examples of some recent advanced reactors were studied like safety barriers of HANARO of Korea including safety doors of the hall and building entrance and finger print identification which prevent the reactor from sabotage. On the basis of the results of this research, it is apparent that a high quality of safety of nuclear reactors can be attained by achieving enough robust construction, designing components of high levels of efficiency, replacing the compounds of the reactor in order to avoid corrosion and degradation with age, coupled with experienced scientists and technical staffs to operate nuclear research facilities.(Author)

  14. Safety Information System Guide

    International Nuclear Information System (INIS)

    Bullock, M.G.

    1977-03-01

    This Guide provides guidelines for the design and evaluation of a working safety information system. For the relatively few safety professionals who have already adopted computer-based programs, this Guide may aid them in the evaluation of their present system. To those who intend to develop an information system, it will, hopefully, inspire new thinking and encourage steps towards systems safety management. For the line manager who is working where the action is, this Guide may provide insight on the importance of accident facts as a tool for moving ideas up the communication ladder where they will be heard and acted upon; where what he has to say will influence beneficial changes among those who plan and control his operations. In the design of a safety information system, it is suggested that the safety manager make friends with a computer expert or someone on the management team who has some feeling for, and understanding of, the art of information storage and retrieval as a new and better means for communication

  15. Fuel safety research 1999

    Energy Technology Data Exchange (ETDEWEB)

    Uetsuka, Hiroshi (ed.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-07-01

    In April 1999, the Fuel Safety Research Laboratory was newly established as a result of reorganization of the Nuclear Safety Research Center, JAERI. The laboratory was organized by combining three laboratories, the Reactivity Accident Laboratory, the Fuel Reliability Laboratory, and a part of the Sever Accident Research Laboratory. Consequently, the Fuel Safety Research Laboratory is now in charge of all the fuel safety research in JAERI. Various types of experimental and analytical researches are conducted in the laboratory by using the unique facilities such as the Nuclear Safety Research Reactor (NSRR), the Japan Material Testing Reactor (JMTR), the Japan Research Reactor 3 (JRR-3) and hot cells in JAERI. The laboratory consists of five research groups corresponding to each research fields. They are; (a) Research group of fuel behavior under the reactivity initiated accident conditions (RIA group). (b) Research group of fuel behavior under the loss-of-coolant accident conditions (LOCA group). (c) Research group of fuel behavior under the normal operation conditions (JMTR/BOCA group). (d) Research group of fuel behavior analysis (FEMAXI group). (e) Research group of FP release/transport behavior from irradiated fuel (VEGA group). This report summarizes the outline of research activities and major outcomes of the research executed in 1999 in the Fuel Safety Research Laboratory. (author)

  16. Safety management in research and development organisation

    International Nuclear Information System (INIS)

    Nivedha, T.

    2016-01-01

    Health and safety is one of the most important aspects of an organizations smooth and effective functioning. It depends on the safety management, health management, motivation, leadership and training, welfare facilities, accident statistics, policy, organization and administration, hazard control and risk analysis, monitoring, statistics and reporting. Workplace accidents are increasingly common, main causes are untidiness, noise, too hot or cold environments, old or poorly maintained machines, and lack of training or carelessness of employees. One of the biggest issues facing employers today is the safety of their employees. This study aims at analyzing the occupational health and safety of Research organization in Indira Gandhi Centre for Atomic Research by gathering information on health management, safety management, motivation, leadership and training, welfare facilities, accident statistics, organization and administration, hazard control and risk analysis, monitoring, statistics and reporting. Data were collected by using questionnaires which were developed on health and safety management system. (author)

  17. Flu Vaccine Safety Information

    Science.gov (United States)

    ... Influenza Types Seasonal Avian Swine Variant Pandemic Other Flu Vaccine Safety Information Questions & Answers Language: English (US) ... safety of flu vaccines monitored? Egg Allergy Are flu vaccines safe? Flu vaccines have good safety record. ...

  18. 77 FR 69899 - Public Conference on Geographic Information Systems (GIS) in Transportation Safety

    Science.gov (United States)

    2012-11-21

    ... NATIONAL TRANSPORTATION SAFETY BOARD Public Conference on Geographic Information Systems (GIS) in... Geographic Information Systems (GIS) in transportation safety on December 4-5, 2012. GIS is a rapidly... visualization of data. The meeting will bring researchers and practitioners in transportation safety and GIS...

  19. Atomic Information Technology Safety and Economy of Nuclear Power Plants

    CERN Document Server

    Woo, Taeho

    2012-01-01

    Atomic Information Technology revaluates current conceptions of the information technology aspects of the nuclear industry. Economic and safety research in the nuclear energy sector are explored, considering statistical methods which incorporate Monte-Carlo simulations for practical applications. Divided into three sections, Atomic Information Technology covers: • Atomic economics and management, • Atomic safety and reliability, and • Atomic safeguarding and security. Either as a standalone volume or as a companion to conventional nuclear safety and reliability books, Atomic Information Technology acts as a concise and thorough reference on statistical assessment technology in the nuclear industry. Students and industry professionals alike will find this a key tool in expanding and updating their understanding of this industry and the applications of information technology within it.

  20. The Commodity Form of Safety Information

    Directory of Open Access Journals (Sweden)

    Rodrigo Finkelstein

    2015-10-01

    Full Text Available The production of safety information is deemed a vital resource to protect human lives at the work site. The injury rate, lost days, incapacity rate, and fatality rate, are key indicators to prop up labour risk awareness and identify job hazards. However, safety information gets highly distorted because it does not only measure risk but serves as a means of exchange. It determines the amount of money to be swapped between Workers’ Compensation Boards and their client corporations. Moreover, as a depository of exchange value, safety information tends to exert pressure over social reality rather than just being a passive reflection of it. This paper discloses the commodity form of safety information. Based on a political economy of information framework, it identifies, describes, and analyses the safety information commodity in its active role of organizing safety and labour health.

  1. Intermodal safety research needs report of the sixth workshop on national transportation problems

    Energy Technology Data Exchange (ETDEWEB)

    Warshawer, A.J. (ed.)

    1976-04-01

    This conference brought together DOT policymakers, university principal investigators and other professionals to consider the intermodal safety research requirements of the Department of Transportation. The objectives of the conference were: (1) to highlight safety problems and needed transportation safety research identified by DOT modal safety managers and to stimulate university or university/industry teams to respond with research proposals which emphasize multi-modal applicability and a system view; and (2) to provide a forum for university research groups to inform DOT safety managers of promising new directions in transportation safety research and new tools with which to address safety related problems. The conference addressed the research requirements for safety as identified by the Statement of National Transportation Policy and by the modal safety managers in three principal contexts, each a workshop panel: I, Inter-Institutional Problems of Transportation Safety. Problems were described as: Federal-State, local; Federal-Industry; Federal-Public, Consumer groups. II, Goal Setting and Planning for Transportation Safety Programs. Issues were: modifying risk behavior, safety as a social value, and involving citizens in development of standards as a way of increasing probability of achieving program objectives. III, DOT Information, Management, and Evaluation Systems Requirements. Needs were: data requirements and analytic tools for management of safety programs.

  2. Safety Research Opportunities Post-Fukushima. Initial Report of the Senior Expert Group

    International Nuclear Information System (INIS)

    Baek, Won-Pil; Yang, Joon-Eon; Ball, Joanne; Glowa, Glenn; Bisconti, Giulia; Peko, Damian; Bolshov, Leonid; Burgazzi, Luciano; De Rosa, Felice; Conde, Jose M.; Cook, Gary; Evrard, Jean-Michel; Jacquemain, Didier; Funaki, Kentaro; Uematsu, Mari Marianne; Miyoshi, Katsumasa; Tatematsu, Atsushi; Hirano, Masashi; Hoshi, Harutaka; Kawaragi, Chie; Kobayashi, Youko; Sakamoto, Kazunobu; Journeau, Christophe; Kim, Han-Chul; Klein-Hessling, Walter; Sonnenkalb, Martin; Koganeya, Toshiyuki; White, Andrew; ); Lind, Terttaliisa; Zimmermann, Martin; Lindholm, Ilona; Castelo Lopez, Carlos; Nagase, Fumihisa; Washiya, Tadahiro; Oima, Hirofumi; Okada, Hiro; Richards, Stuart; West, Steven; Sandberg, Nils; Suzuki, Shunichi; Vitanza, Carlo; Yamanaka, Yasunori

    2017-02-01

    One of the imperatives following the accident at the Fukushima Daiichi nuclear power station is for the nuclear science and industry communities to ensure that knowledge gaps in nuclear safety are identified and that research programs to address these gaps are being instituted. In recognition of broad international interest in additional information that could be gained from post-accident examinations related to Fukushima Daiichi, Japan recommended to the Committee on the Safety of Nuclear Installations (CSNI) in June 2013 that a process be developed to identify and follow up on opportunities to address safety research gaps. Consequently, a Senior Expert Group (SEG) on Safety Research Opportunities post-Fukushima (SAREF) was formed. The members of the group are senior technical experts from technical support organisations, nuclear regulatory authorities and Japanese organisations responsible for planning and execution of Fukushima Daiichi decommissioning. The domain of interest for the group is activities that address safety research knowledge gaps and also the needs of Fukushima Daiichi decommissioning. SEG on SAREF identified areas where these two interests intersect or overlap, and activities that could be undertaken to generate information of common benefit. The group's output is documented in this report; Chapter 2 describes the current status of the damaged units at Fukushima Daiichi NPS; Chapter 3 summarises safety research areas of common interest; Chapter 4 summarises the safety research activities recommended as short-term projects; Chapter 5 summarises those as long-term considerations; Chapter 6 supplies conclusions and recommendations. The appendix contains detailed information compiled by the SEG members on all safety research areas of interest

  3. Mapping a Research Agenda for Home Care Safety: Perspectives from Researchers, Providers, and Decision Makers

    Science.gov (United States)

    Macdonald, Marilyn; Lang, Ariella; MacDonald, Jo-Anne

    2011-01-01

    The purpose of this qualitative interpretive design was to explore the perspectives of researchers, health care providers, policy makers, and decision makers on key risks, concerns, and emerging issues related to home care safety that would inform a line of research inquiry. Defining safety specifically in this home care context has yet to be…

  4. Safety of Research Reactors. Specific Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This Safety Requirements publication establishes requirements for all main areas of safety for research reactors, with particular emphasis on requirements for design and operation. It explains the safety objectives and concepts that form the basis for safety and safety assessment for all stages in the lifetime of a research reactor. Technical and administrative requirements for the safety of new research reactors are established in accordance with these objectives and concepts, and they are to be applied to the extent practicable for existing research reactors. The safety requirements established in this publication for the management of safety and regulatory supervision apply to site evaluation, design, manufacturing, construction, commissioning, operation (including utilization and modification), and planning for decommissioning of research reactors (including critical assemblies and subcritical assemblies). The publication is intended for use by regulatory bodies and other organizations with responsibilities in these areas and in safety analysis, verification and review, and the provision of technical support.

  5. Drug safety in pregnancy: utopia or achievable prospect? Risk information, risk research and advocacy in Teratology Information Services.

    Science.gov (United States)

    Schaefer, Christof

    2011-03-01

    Even though from preclinical testing to drug risk labeling, the situation with drugs in pregnancy has improved substantially since the thalidomide scandal, there is still an increasing need to provide healthcare professionals and patients with updated individualized risk information for clinical decision making. For the majority of drugs, clinical experience is still insufficient with respect to their safety in pregnancy. There is often uncertainty in how to interpret the available scientific data. Based on 20 years of experience with Teratology Information Services (TIS) cooperating in the European Network of Teratology Information Services (ENTIS) methods of risk interpretation, follow-up of exposed pregnancies through the consultation process and their evaluation is discussed. Vitamin K antagonists, isotretinoin and angiotensin (AT) II-receptor-antagonists are presented as examples of misinterpretation of drug risks and subjects of research based on observational clinical data recorded in TIS. As many TIS are poorly funded, advocacy is necessary by establishing contacts with decision makers in health politics and administration, informing them of the high return in terms of health outcomes and cost savings provided by TIS as reference institutions in clinical teratology. © 2011 The Author. Congenital Anomalies © 2011 Japanese Teratology Society.

  6. Twenty-First Water Reaction Safety Information Meeting

    International Nuclear Information System (INIS)

    Monteleone, S.

    1994-04-01

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 2, presents papers on severe accident research

  7. Proceedings of the seminar on nuclear safety research and the workshop on reactor safety research

    International Nuclear Information System (INIS)

    2001-07-01

    The seminar on the nuclear safety research was held on November 20, 2000 according to the start of new five year safety research plan (FY2001-2005: established by Nuclear Safety Commission) with 79 participants. In the seminar, Commissioner Dr. Kanagawa gave the outline of the next five year safety research plan. Following this presentation, progresses and future scopes of safety researches in the fields of reactor facility, fuel cycle facility, radioactive waste and environmental impact on radiation at Japan Atomic Energy Research Institute (JAERI) were reported. After the seminar, the workshop on reactor safety research was held on November 21-22, 2000 with 141 participants. In the workshop, four sessions titled safety of efficient and economic utilization of nuclear fuel, safety related to long-term utilization of power reactors, research on common safety-related issues and toward further improvement of nuclear safety were organized and, outcomes and future perspectives in these wide research R and D in the related area at other organizations including NUPEC, JAPEIC and Kansai Electric Power Co. was presented in each session. This report compiles outlines of the presentations and used materials in the seminar and the workshop to form the proceedings for the both meetings. (author)

  8. Patterns of patient safety culture: a complexity and arts-informed project of knowledge translation.

    Science.gov (United States)

    Mitchell, Gail J; Tregunno, Deborah; Gray, Julia; Ginsberg, Liane

    2011-01-01

    The purpose of this paper is to describe patterns of patient safety culture that emerged from an innovative collaboration among health services researchers and fine arts colleagues. The group engaged in an arts-informed knowledge translation project to produce a dramatic expression of patient safety culture research for inclusion in a symposium. Scholars have called for a deeper understanding of the complex interrelationships among structure, process and outcomes relating to patient safety. Four patterns of patient safety culture--blinding familiarity, unyielding determination, illusion of control and dismissive urgency--are described with respect to how they informed creation of an arts-informed project for knowledge translation.

  9. Sodium Fast Reactor Safety and Licensing Research Plan

    International Nuclear Information System (INIS)

    Denman, Matthew; Lachance, Jeff; Sofu, Tanju; Wigeland, Roald; Flanagan, George; Bari, Robert

    2013-01-01

    Conclusions: The Sodium Fast Reactor Safety and Licensing Research Plan reports conclude a multi-year expert elicitation process. All information included in the studies are publicly available and the reports are UUR. These reports are intended to guide SFR researchers in the safety and licensing arena to important and outstanding issues Two (and a half) projects have been funded based on the recommendations in this report: • Modernization of SAS4A; • Incorporation of Contain/LMR with MELCOR; • (Data recovery at INL and PNNL)

  10. Application of life-cycle information for advancement in safety of nuclear fuel cycle facilities. Application of safety information to advanced safety management support system

    International Nuclear Information System (INIS)

    Suzuki, Kazuhiko; Ishida, Michihiko

    2005-08-01

    Risk management is major concern to nuclear energy reprocessing plants to improve plant and process reliability and ensure their safety. This is because we are required to predict potential risks before any accident or disaster occurs. The advancement of safety design and safety systems technologies showed large amount of useful safety-related knowledge that can be of great importance to plant operation to reduce operation risks and ensure safety. This research proposes safety knowledge modeling framework on the basis of ontology technologies to systematically construct plant knowledge model, which includes plant structure, operation, and the associated behaviors. In such plant knowledge model safety related information is defined and linked to the different elements of plant knowledge model. Ontology editor is employed to define the basic concepts and their inter-relations, which are used to capture and construct plant safety knowledge. In order to provide detailed safety knowledgebase, HAZOP results are analyzed and structured so that safety-related knowledge are identified and structured within the plant knowledgebase. The target safety knowledgebase includes: failures, deviations, causes, consequences, and fault propagation as mapped to plant knowledge. The proposed ontology-based safety framework is applied on case study nuclear plant to structure failures, causes, consequences, and fault propagation, which are used to support plant operation. (author)

  11. Progress of nuclear safety research, (1)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Nakamura, Hiroei; Nozawa, Masao

    1981-01-01

    The Japan Atomic Energy Research Institute was established in 1956 in conformity with the national policy to extensively conduct the research associated with nuclear energy. Since then, the research on nuclear energy safety has been conducted. In 1978, the Division of Reactor Safety was organized to conduct the large research programs with large scale test facilities. Thereafter, the Divisions of Reactor Safety Evaluation, Environmental Safety Research and Reactor Fuel Examination were organized successively in the Reactor Safety Research Center. The subjects of research have ranged from the safety of nuclear reactors to that in the recycling of nuclear fuel. In this pamphlet, the activities in JAERI associated with the safety research are reported, which have been carried out in the past two years. Also, the international cooperation research program in which JAERI participated is included. This pamphlet consists of two parts, and in this Part 1, the reactor safety research is described. The safety of nuclear fuel, the integrity and safety of pressure boundary components, the engineered safety in LOCA, fuel behavior in accident and others are reported. (Kako, I.)

  12. HSE Nuclear Safety Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Bagley, M.J. [Health and Safety Executive, Sheffield (United Kingdom)

    1995-12-31

    HSE funds two programmes of nuclear safety research: a programme of {approx} 2.2M of extramural research to support the Nuclear Safety Division`s regulatory activities and a programme of {approx} 11M of generic safety research managed by the Nuclear Safety Research Management Unit (NSRMU) in Sheffield, UK. This paper is concerned only with the latter programme; it describes how it is planned and procured and outlines some of the work on structural integrity problems. It also describes the changes that are taking place in the way nuclear safety research is procured in the UK. (author).

  13. HSE Nuclear Safety Research Program

    International Nuclear Information System (INIS)

    Bagley, M.J.

    1995-01-01

    HSE funds two programmes of nuclear safety research: a programme of ∼ 2.2M of extramural research to support the Nuclear Safety Division's regulatory activities and a programme of ∼ 11M of generic safety research managed by the Nuclear Safety Research Management Unit (NSRMU) in Sheffield, UK. This paper is concerned only with the latter programme; it describes how it is planned and procured and outlines some of the work on structural integrity problems. It also describes the changes that are taking place in the way nuclear safety research is procured in the UK. (author)

  14. Annual safety research report, JFY 2010

    International Nuclear Information System (INIS)

    2011-09-01

    In the safety infrastructure research working group report, 'the effective conducting of nuclear safety infrastructure research', published by METI in March 2010, the roles of regulatory agencies and JNES and their cooperation, and the research road map for nuclear safety regulation researches were summarized. As for the regulatory issues the governments or JNES considered necessary, JNES had compiled' safety research plan' in respective research areas necessary for solving the regulatory issues (safety research needs) and was conducting safety research to obtain the results, etc. Safety research areas, subjects and research projects were as follows: design review of nuclear power plant (4 subjects and each subject having several research projects totaled 19), control management of nuclear power plant (3 subjects and each subject having several research projects totaled 11), nuclear fuel cycle (2 subjects and each subject having several research projects totaled 5), nuclear fuel cycle backend (2 subjects and each subject having several research projects totaled 6), nuclear emergency preparedness and response (3 subjects and each subject having several research projects totaled 5) and bases of nuclear safety technology (3 subjects and each subject having several research projects totaled 7). In JFY 2010, JNES worked on the 53 research projects of 17 subjects in 6 areas as safety researches. This annual safety research report summarized respective achievements and stage of regulatory tools necessary for solving regulatory issues according to the safety research plan, JFY 2010 Edition as well as the situation of the reflection for the safety regulations. (T. Tanaka)

  15. Nuclear safety research collaborations between the US and Russian Federation international nuclear safety centers

    International Nuclear Information System (INIS)

    Hill, D.J; Braun, J.C; Klickman, A.E.; Bugaenko, S.E; Kabanov, L.P; Kraev, A.G.

    2000-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the U.S. Department of Energy (USDOE) have formed International Nuclear Safety Centers to collaborate on nuclear safety research. USDOE established the U. S. Center at Argonne National Laboratory in October 1995. MINATOM established the Russian Center at the Research and Development Institute of Power Engineering in Moscow in July 1996. In April 1998 the Russian center became an independent, autonomous organization under MINATOM. The goals of the centers are to: cooperate in the development of technologies associated with nuclear safety in nuclear power engineering. be international centers for the collection of information important for safety and technical improvements in nuclear power engineering. maintain a base for fundamental knowledge needed to design nuclear reactors.The strategic approach that is being used to accomplish these goals is for the two centers to work together to use the resources and the talents of the scientists associated with the US Center and the Russian Center to do collaborative research to improve the safety of Russian-designed nuclear reactors

  16. IAEA safety standards for research reactors

    International Nuclear Information System (INIS)

    Abou Yehia, H.

    2007-01-01

    The general structure of the IAEA Safety Standards and the process for their development and revision are briefly presented and discussed together with the progress achieved in the development of Safety Standards for research reactor. These documents provide the safety requirements and the key technical recommendations to achieve enhanced safety. They are intended for use by all organizations involved in safety of research reactors and developed in a way that allows them to be incorporated into national laws and regulations. The author reviews the safety standards for research reactors and details their specificities. There are 4 published safety standards: 1) Safety assessment of research reactors and preparation of the safety analysis report (35-G1), 2) Safety in the utilization and modification of research reactors (35-G2), 3) Commissioning of research reactors (NS-G-4.1), and 4) Maintenance, periodic testing and inspection of research reactors (NS-G-4.2). There 5 draft safety standards: 1) Operational limits and conditions and operating procedures for research reactors (DS261), 2) The operating organization and the recruitment, training and qualification of personnel for research reactors (DS325), 3) Radiation protection and radioactive waste management in the design and operation of research reactors (DS340), 4) Core management and fuel handling at research reactors (DS350), and 5) Grading the application of safety requirements for research reactors (DS351). There are 2 planned safety standards, one concerning the ageing management for research reactor and the second deals with the control and instrumentation of research reactors

  17. Research program on regulatory safety research

    International Nuclear Information System (INIS)

    Mailaender, R.

    2010-02-01

    This paper elaborated for the Swiss Federal Office of Energy (SFOE) presents the synthesis report for 2009 made by the SFOE's program leader on the research program concerning regulatory nuclear safety research, as co-ordinated by the Swiss Nuclear Safety Inspectorate ENSI. Work carried out in various areas is reviewed, including that done on reactor safety, radiation protection and waste disposal as well as human aspects, organisation and safety culture. Work done concerning materials, pressure vessel integrity, transient analysis, the analysis of serious accidents in light-water reactors, fuel and material behaviour, melt cooling and concrete interaction is presented. OECD data bank topics are discussed. Transport and waste disposal research at the Mont Terri rock laboratory is looked at. Requirements placed on the personnel employed in nuclear power stations are examined and national and international co-operation is reviewed

  18. Methods of Certification tests PLC-Networks in Compliance Safety Information

    Directory of Open Access Journals (Sweden)

    A. A. Balaev

    2011-12-01

    Full Text Available The aim of this research was description of the methodology of the audit plc-network to meet the requirements of information security. The technique is based on the provisions of the guidance documents and model FSTEC Russia test object methods of information on safety information.

  19. Safety analysis for research reactors

    International Nuclear Information System (INIS)

    2008-01-01

    The aim of safety analysis for research reactors is to establish and confirm the design basis for items important to safety using appropriate analytical tools. The design, manufacture, construction and commissioning should be integrated with the safety analysis to ensure that the design intent has been incorporated into the as-built reactor. Safety analysis assesses the performance of the reactor against a broad range of operating conditions, postulated initiating events and other circumstances, in order to obtain a complete understanding of how the reactor is expected to perform in these situations. Safety analysis demonstrates that the reactor can be kept within the safety operating regimes established by the designer and approved by the regulatory body. This analysis can also be used as appropriate in the development of operating procedures, periodic testing and inspection programmes, proposals for modifications and experiments and emergency planning. The IAEA Safety Requirements publication on the Safety of Research Reactors states that the scope of safety analysis is required to include analysis of event sequences and evaluation of the consequences of the postulated initiating events and comparison of the results of the analysis with radiological acceptance criteria and design limits. This Safety Report elaborates on the requirements established in IAEA Safety Standards Series No. NS-R-4 on the Safety of Research Reactors, and the guidance given in IAEA Safety Series No. 35-G1, Safety Assessment of Research Reactors and Preparation of the Safety Analysis Report, providing detailed discussion and examples of related topics. Guidance is given in this report for carrying out safety analyses of research reactors, based on current international good practices. The report covers all the various steps required for a safety analysis; that is, selection of initiating events and acceptance criteria, rules and conventions, types of safety analysis, selection of

  20. Progress of nuclear safety research, (2)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Nakamura, Hiroei; Nozawa, Masao

    1981-01-01

    The Japan Atomic Energy Research Institute was established in 1956 in conformity with the national policy to extensively conduct the research associated with nuclear energy. Since then, the research on nuclear energy safety has been conducted. In 1978, the Division of Reactor Safety was organized to conduct the large research programs with large scale test facilities. Thereafter, the Divisions of Reactor Safety Evaluation, Environmental Safety Research and Reactor Fuel Examination were organized successevely in the Reactor Safety Research Center. The subjects of research have ranged from the safety of nuclear reactors to that in the recycling of nuclear fuel. In this pamphlet, the activities in JAERI associated with the safety research are reported, which have been carried out in the past two years. Also the international cooperation research program in which JAERI participated is included. This pamphlet consists of two parts and in this Part 2, the environmental safety research is described. The evaluation and analysis of environmental radioactivity, the study on radioactive waste management and the studies on various subjects related to environmental safety are reported. (Kako, I.)

  1. Conducting Clinically Based Intimate Partner Violence Research: Safety Protocol Recommendations.

    Science.gov (United States)

    Anderson, Jocelyn C; Glass, Nancy E; Campbell, Jacquelyn C

    Maintaining safety is of utmost importance during research involving participants who have experienced intimate partner violence (IPV). Limited guidance on safety protocols to protect participants is available, particularly information related to technology-based approaches to informed consent, data collection, and contacting participants during the course of a study. The purpose of the article is to provide details on the safety protocol developed and utilized with women receiving care at an urban HIV clinic and who were taking part in an observational study of IPV, mental health symptoms, and substance abuse and their relationship to HIV treatment adherence. The protocol presents the technological strategies to promote safety and allow autonomy in participant decision-making throughout the research process, including Voice over Internet Protocol telephone numbers, and tablet-based eligibility screening and data collection. Protocols for management of participants at risk for suicide and/or intimate partner homicide that included automated high-risk messaging to participants and research staff and facilitated disclosure of risk to clinical staff based on participant preferences are discussed. Use of technology and partnership with clinic staff helped to provide an environment where research regarding IPV could be conducted without undue burden or risk to participants. Utilizing tablet-based survey administration provided multiple practical and safety benefits for participants. Most women who screened into high-risk categories for suicide or intimate partner homicide did not choose to have their results shared with their healthcare providers, indicating the importance of allowing participants control over information sharing whenever possible.

  2. Knowledge basis in safety culture for researchers and practitioners

    International Nuclear Information System (INIS)

    Vieira Neto, Antonio S.; Barroso, Antonio C.O.; Goncalves, Adriana

    2009-01-01

    This paper presents the main characteristics of the knowledge basis in safety culture which is being developed at the IPEN-CNEN/SP, one of the Brazilian nuclear institutes of research. The main objective of this basis is to organize the information about safety culture found in the literature and to make it available to researchers and practitioners. The first stage of the development of this basis is already finished being the subject of this work. (author)

  3. Towards harmonised self assessment of research reactor safety status in operating organisations

    International Nuclear Information System (INIS)

    Kirchsteiger, C.; Boeck, H.

    2006-01-01

    The objective of this paper is to describe the development of a methodology and corresponding web-based tool for mapping and cross-comparing the safety approaches in European and other Research Reactor (RR) facilities in order to detect the principal similarities and differences. As an example, the performance of a Probabilistic Safety Assessment (PSA) for RRs is mapped, as follows: is PSA performed at all? (Yes/No); if so, is PSA mandatory or just recommended? (Yes/No); what is the scope of PSA?, its objective? and practical use? (set of more detailed questions), etc. In this way, information on different types of safety verification practices and requirements for RRs from Europe, Argentina, Australia, Canada, South Africa and the USA has been collected in a systematic way and included in the web-based benchmarking tool DARES (DAtabase for REsearch Reactor Safety). DARES has been developed and filled with sample data by the European Commission's Joint Research Centre (JRC) together with members of the European Research Reactors Operator Group (RROG). A systematic mapping by using DARES in parallel to an international Working Group, consisting of both operators and authorities could be the starting point towards harmonisation of RR safety verification on an international level. In addition, the availability of a user-friendly Information System on the Internet such as DARES containing this information is considered a useful mechanism to exchange international experiences and practices in the area among qualified users. This approach is currently considered to be proposed to the International Atomic Energy Agency (IAES) as one possible application of the recently adopted IAEA Code of Conduct on the Safety of Research Reactors. The resulting process would be a self-assessment of the RR safety status in regulatory bodies and operating organisations relative to the guidance in the Code, practically realised and monitored by an Information System similar to DARES. (orig.)

  4. Proceedings of the specialist research meeting on nuclear science information, (5)

    International Nuclear Information System (INIS)

    Kimura, Itsuro; Takeuchi, Takayuki; Mizuma, Mitsuo

    1985-02-01

    The Research Reactor Institute of Kyoto University held two meetings on nuclear science information in the academic year of 1984. The titles of the presented papers are: (1) Information retieval in nuclear safety; (2) Information retrieval in high-pressure gas safety; (3) Construction of nuclear science information data base at the Research Reactor Institute of Kyoto University (II); (4) Nuclear science information data base at the Research Reactor Institute of Kyoto University (KURRIP)*; (5) Nuclear structure and disintegration data base; (6) Evaluated nuclear structure data file and (7) World climate data file. This report contains the full text of these papers. (author)

  5. Nuclear safety research master plan

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jae Joo; Yang, J. U.; Jun, Y. S. and others

    2001-06-01

    The SRMP (Safety Research Master Plan) is established to cope with the changes of nuclear industry environments. The tech. tree is developed according to the accident progress of the nuclear reactor. The 11 research fields are derived to cover the necessary technologies to ensure the safety of nuclear reactors. Based on the developed tech. tree, the following four main research fields are derived as the main safety research areas: 1. Integrated nuclear safety enhancement, 2. Thermal hydraulic experiment and assessment, 3. Severe accident management and experiment, and 4. The integrity of equipment and structure. The research frame and strategies are also recommended to enhance the efficiency of research activity, and to extend the applicability of research output.

  6. Feedback from incident reporting: information and action to improve patient safety.

    Science.gov (United States)

    Benn, J; Koutantji, M; Wallace, L; Spurgeon, P; Rejman, M; Healey, A; Vincent, C

    2009-02-01

    Effective feedback from incident reporting systems in healthcare is essential if organisations are to learn from failures in the delivery of care. Despite the wide-scale development and implementation of incident reporting in healthcare, studies in the UK suggest that information concerning system vulnerabilities could be better applied to improve operational safety within organisations. In this article, the findings and implications of research to identify forms of effective feedback from incident reporting are discussed, to promote best practices in this area. The research comprised a mixed methods review to investigate mechanisms of effective feedback for healthcare, drawing upon experience within established reporting programmes in high-risk industry and transport domains. Systematic searches of published literature were undertaken, and 23 case studies describing incident reporting programmes with feedback were identified for analysis from the international healthcare literature. Semistructured interviews were undertaken with 19 subject matter experts across a range of domains, including: civil aviation, maritime, energy, rail, offshore production and healthcare. In analysis, qualitative information from several sources was synthesised into practical requirements for developing effective feedback in healthcare. Both action and information feedback mechanisms were identified, serving safety awareness, improvement and motivational functions. The provision of actionable feedback that visibly improved systems was highlighted as important in promoting future reporting. Fifteen requirements for the design of effective feedback systems were identified, concerning: the role of leadership, the credibility and content of information, effective dissemination channels, the capacity for rapid action and the need for feedback at all levels of the organisation, among others. Above all, the safety-feedback cycle must be closed by ensuring that reporting, analysis and

  7. Proceedings of the US Nuclear Regulatory Commission twentieth water reactor safety information meeting; Volume 2, Severe accident research, Thermal hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, A.J. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1993-03-01

    This three-volume report contains papers presented at the Twentieth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 21--23, 1992. The papers describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included 10 different papers presented by researchersfrom CEC, China, Finland, France, Germany, Japan, Spain and Taiwan. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  8. Safety research plan, JFY 2013 edition

    International Nuclear Information System (INIS)

    2013-09-01

    As for the regulatory issues the governments or JNES considered necessary, JNES had updated every year 'safety research plan' in respective research areas necessary for solving the regulatory issues (safety research needs) and was conducting safety research to obtain the results, etc. 'Safety research plan, JFY 2013 Edition' was compiled aiming at promotion of appropriate reflection and flexible application of research achievements for tacking the regulatory issues taking account of importance and urgency dependent on trend of nuclear safety regulations as well as collective management of safety research and safety survey. 5 new research projects were established with 4 unified research projects and 6 terminated research projects. Finally modified safety research areas, subjects and research projects, JFY 2013 Edition were as follows: design review of nuclear power plant (7 subjects and each subject having several research projects totaled 19), control management of nuclear power plant (one subject having 4 research projects), nuclear fuel cycle (2 subjects and each subject having several research projects totaled 4), nuclear fuel cycle backend (2 subjects and each subject having several research projects totaled 5), nuclear emergency preparedness and response (3 subjects and each subject having several research projects totaled 7) and bases of nuclear safety technology (3 subjects and each subject having several research projects totaled 6). Safety reviews consisted of 6 projects in 3 areas extracting the regulatory issues. As for urgent research projects on the basis of the disaster at Fukushima Daiichi NPP accident, 7 research projects in 4 urgent subjects were as follows: examination for new safety regulation (4 research projects generalized in the above research projects), development of newly necessary evaluation methods (one research project generalized in the above research project), evaluation of the validity for the work for convergence at Fukushima

  9. Reactor safety research program. A description of current and planned reactor safety research sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research

    International Nuclear Information System (INIS)

    1975-06-01

    The reactor safety research program, sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research, is described in terms of its program objectives, current status, and future plans. Elements of safety research work applicable to water reactors, fast reactors, and gas cooled reactors are presented together with brief descriptions of current and planned test facilities. (U.S.)

  10. Twenty-First Water Reactor Safety Information Meeting

    International Nuclear Information System (INIS)

    Monteleone, S.

    1994-04-01

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25-27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Selected papers were indexed separately for inclusion in the Energy Science and Technology Database

  11. Status of nuclear safety research - 2000

    International Nuclear Information System (INIS)

    Sobajima, Makoto; Sasajima, Hideo; Umemoto, Michitaka; Yamamoto, Toshihiro; Tanaka, Tadao; Togashi, Yoshihiro; Nakata, Masahito

    2000-11-01

    The nuclear safety research at JAERI is performed in accordance with the long term plan on nuclear research, development and use and the safety research yearly plan determined by the government and under close relationship to the related departments in and around the Nuclear Safety Research Center. The criticality accident having occurred in Tokai-mura in 1999 has been the highest level nuclear accident in Japan and ensuring safety in whole nuclear cycle is severely questioned. The causes of such an accident have to be clarified not only technical points but also organizational points, and it is extremely important to make efforts in preventing recurrence, to fulfill emergency plan and to improve the safety of whole nuclear fuel cycle for restoring the reliability by the people to nuclear energy system. The fields of conducting safety research are engineering safety research on reactor facilities and nuclear fuel cycle facilities including research on radioactive waste processing and disposal and research and development on future technology for safety improvement. Also, multinational cooperation and bilateral cooperation are promoted in international research organizations in the center to internationally share the recognition of world-common issues of nuclear safety and to attain efficient promotion of research and effective utilization of research resources. (author)

  12. Twenty-third water reactor safety information meeting: Volume 2, Human factors research; Advanced I and C hardware and software; Severe accident research; Probabilistic risk assessment topics; Individual plant examination: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1996-03-01

    This three-volume report contains papers presented at the Twenty- Third Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 23-25, 1995. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Italy, Japan, Norway, Russia, Sweden, and Switzerland. This document, Volume 2, present topics in human factors research, advanced instrumentation and control hardware and software, severe accident research, probabilistic risk assessment, and individual plant examination. Individual papers have been cataloged separately.

  13. Reactor Safety Research: Semiannual report, January-June 1986: Reactor Safety Research Program

    International Nuclear Information System (INIS)

    1987-05-01

    Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the technology base supporting licensing decisions

  14. Nuclear safety research

    International Nuclear Information System (INIS)

    1996-01-01

    The topics 'Large-sized PWR-NPP Safety Techniques Research',and 'The Key Techniques Research on the Safety Supervision and Control for Operation of Nuclear Installations' have been adopted as an apart of 'the National 9th five Year Programs for Tacking the Key Scientific and Technical Topics' which are organized by the State Planning Commission (SPC) and State Science and Technology Commission (SSTC) respectively, and have obtained a financial support from them. To play a better role with the limited fund, the NNSA laid special stress on selecting key sub-topics on nuclear safety, and carefully choosing units which would undertake sub-topics and signing technical contracts with them

  15. Commissioning of research reactors. Safety guide

    International Nuclear Information System (INIS)

    2006-01-01

    The objective of this Safety Guide is to provide recommendations on meeting the requirements for the commissioning of research reactors on the basis of international best practices. Specifically, it provides recommendations on fulfilling the requirements established in paras 6.44 and 7.42-7.50 of International Atomic Energy Agency, Safety of Research Reactors, IAEA Safety Standards Series No. NS-R-4, IAEA, Vienna (2005) and guidance and specific and consequential recommendations relating to the recommendations presented in paras 615-621 of International Atomic Energy Agency, Safety in the Utilization and Modification of Research Reactors, Safety Series No. 35-G2, IAEA, Vienna (1994) and paras 228-229 of International Atomic Energy Agency, Safety Assessment of Research Reactors and Preparation of the Safety Analysis Report, Safety Series No. 35-G1, IAEA, Vienna (1994). This Safety Guide is intended for use by all organizations involved in commissioning for a research reactor, including the operating organization, the regulatory body and other organizations involved in the research reactor project

  16. NRC safety research in support of regulation

    International Nuclear Information System (INIS)

    1994-06-01

    This report, the ninth in a series of annual reports, was prepared in response to congressional inquiries concerning how nuclear regulatory research is used. It summarizes the accomplishments of the Office of Nuclear Regulatory Research during FY 1993. A special emphasis on accomplishments in nuclear power plant aging research reflects recognition that number of plants are entering the final portion of their original 40-year operating licenses and that, in addition to current aging effects, a focus on safety considerations for license renewal becomes timely. The primary purpose of performing regulatory research is to develop and provide the Commission and its staff with sound technical bases for regulatory decisions on the safe operation of licensed nuclear reactors and facilities, to find unknown or unexpected safety problems, and to develop data and related information for the purpose of revising the Commission's rules, regulatory guides, or other guidance

  17. Safety research program of NUCEF

    International Nuclear Information System (INIS)

    Naito, Y.

    1996-01-01

    To contribute the safety and establishment of advanced technologies in the area of nuclear fuel cycle, Japan Atomic Energy Research Institute (JAERI) has constructed a new research facility NUCEF (Nuclear Fuel Cycle Safety Engineering Research Facility) as the center for the research and development, particularly on the reprocessing technology and transuranium (TRU) waste management. NUCEF consist of three buildings, administration building, experiment building A and B. Building A has two experiment facilities STACY (Static Experiment Critical Facility) and TRACY (Transient Experiment Critical Facility). The experiment building B is referred to as BECKY (Back-end Fuel Cycle Key Elements Research Facility). Researches on the reprocessing and the waste management are carried out with spent fuels, high-level liquid waste, TRU etc. in the α γ cell and glove boxes. NUCEF was constructed with the following aims. Using STACY and TRACY, are aimed, (1) research on advanced technology for criticality safety control, (2) reconfirmation of criticality safety margin of the Rokkasho reprocessing plant. Using BECKY, are aimed, (1) research on advanced technology of reprocessing process, (2) contribution to develop the scenario for TRU waste disposal, (3) development of new technology for TRU partitioning and volume reduction of radioactive waste. To realize the above aims, following 5 research subjects are settled in NUCEF, (1) Criticality safety research, (2) Research on safety and advanced technology of fuel reprocessing, (3) Research on TRU waste management, (4) Fundamental research on TRU chemistry, (5) Key technology development for TRU processing. (author)

  18. Research on advanced system safety assessment procedures (4)

    International Nuclear Information System (INIS)

    Suzuki, Kazuhiko; Shimada, Yukiyasu

    2001-03-01

    The past research reports in the area of safety engineering proposed the Computer-aided HAZOP system to be applied to Nuclear Reprocessing Facilities. Automated HAZOP system has great advantage compared with human analysts in terms of accuracy of the results, and time required to conduct HAZOP studies. This report surveys the literature on risk assessment and safety design based on the concept of independent protection layers (IPLs). Furthermore, to improve HAZOP System, tool is proposed to construct the basic model and the internal state model. Such HAZOP system is applied to analyze two kinds of processes, where the ability of the proposed system is verified. In addition, risk assessment support system is proposed to integrate safety design environment and assessment result to be used by other plants as well as to enable the underline plant to use other plants' information. This technique can be implemented using web-based safety information systems. (author)

  19. Summary of LWR safety research in the USA

    International Nuclear Information System (INIS)

    Murley, T.E.; Tong, L.S.; Bennett, G.L.

    1977-01-01

    The U.S. Nuclear Regulatory Commission's water reactor safety research program is described and the basic results are presented. The USNRC water reactor safety research program consists of five basic research areas: integrity of vessel and piping, thermal-hydraulic test, fuel rod behaviour, code development and verification, and reactor operational safety. Results from the vessel and piping integrity research have demonstrated the high safety margins in scaled vessels and the analytical procedures for calculating vessel behaviour under pressure. Non-destructive examination techniques are being improved. Work is also proceeding to define the material constituents to reduce the susceptibility of irradiation embrittlement and stress corrosion cracking. The thermal-hydraulic tests have covered the various phases of a hypothetical loss of coolant accident (LOCA) and activation of the emergency core cooling system (ECCS). These tests have led to the development of engineering correlations to describe the phenomena to further quantify the safety margins in commercial nuclear power plants. Specifically, this paper presents selected experimental data and analytical predictions from the initial tests in LOFT and SEMISCALE. Comparisons and evaluations are made between the data and analytical predictions. Significant results and conclusions are presented regarding the behaviour of emergency core cooling systems in a LOCA environment: the ability to predict LOCA-type experiments over a scaling range of thirty and the thermal-hydraulic behaviour of components such as pumps in an integral system LOCA environment. The fuel behaviour research has provided valuable information on decay heat, cladding oxidation, fuel rod behaviour and fuel metling. Both the decay heat and the cladding oxidation have been shown to be lower than assumed in the licensing evaluations. The fuel behaviour and thermo-hydraulic research is being integrated into computer codes to be used to provide additional

  20. Annual safety research report, JFY 2012

    International Nuclear Information System (INIS)

    2013-08-01

    As for the regulatory issues the governments or JNES considered necessary, JNES had compiled 'safety research plan' in respective research areas necessary for solving the regulatory issues (safety research needs) and was conducting safety research to obtain the results, etc. Safety research areas, subjects and research projects were as follows: design review of nuclear power plant (5 subjects and each subject having several research projects totaled 20), control management of nuclear power plant (3 subjects and each subject having several research projects totaled 6), nuclear fuel cycle (2 subjects and each subject having several research projects totaled 4), nuclear fuel cycle backend (2 subjects and each subject having several research projects totaled 6), nuclear emergency preparedness and response (3 subjects and each subject having several research projects totaled 7) and bases of nuclear safety technology (3 subjects and each subject having several research projects totaled 6). In addition to these 49 research projects of 18 subjects in 6 areas, JNES worked on 19 research projects of 7 subjects in added areas (specific research projects on of the disaster at Fukushima Daiichi NPP accident and other challenges JNES considered necessary) in JFY 2012. This annual safety research report summarized respective achievements and state of regulatory tools necessary for solving regulatory issues according to the safety research plan, JFY 2012 Edition as well as the situation of the reflection for the safety regulations, and also described 16 research projects of 4 subjects: examination for new safety regulation (8 research projects), development of newly necessary evaluation methods (one research project), evaluation of the validity for the work for convergence at Fukushima Daiichi NPP accident (4 research project) and horizontal development to other nuclear power plants (3 research projects), and 3 research projects of 3 subjects as other challenges. A list of JNES

  1. Reports covering research projects in the field of reactor safety supported by the German Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1976-03-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the safety program 'Reactor Safety' are sponsored by the Bundesminister fuer Forschung und Technologie (BMFT - Secretary of State for Research and Technology). Objective of this program is to continue improving the safety of LWR, in order to minimize the risk for the environment. With grant assistance from the Bundesminister des Innern. (BMI - Secretary of State for Home Affairs) research cont racts in the field of reactor safety are being performed. Results of these projects should contribute to resolve questions arising nuclear licensing procedures. The Forschungsbetreuung (FB - research supervision department) at the Institute for Reactor Safety (IRS), as consultants to BMFT and BMI, provides information about the progress of investigations. Individual reports will be prepared and put into standard forms by the research contractors. Each report gives information on: 1) the work accomplished, 2) the results obtained, 3) the work planned to be continued. Initial reports of research projects describe in addition the purpose of the work. A BMFT-research program on the safety of Fast Breeders (Schneller Brutreaktor - SBR) is presently under discussion. In order to define several problems, investigations included in the present compilation (RS 139, 140, 143, 162) will be previously performed. (orig.) [de

  2. Annual report on reactor safety research projects. Reporting period 2011. Progress report

    International Nuclear Information System (INIS)

    2011-01-01

    Within its competence for energy research the Federal Ministry of Economics and Technology (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS)mbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRSF- Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/Authority Support Division of GRS. The reports as of the year 2000 are available in the Internet-based information system on results and data of reactor safety research (http://www.grs-fbw.de). The compilation of the reports is classified according to the classification system ''Joint Safety Research Index (JSRI)''. The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties. (orig.)

  3. Annual report on reactor safety research projects. Reporting period 2014. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    Within its competence for energy research the Federal Ministry for Economic Affairs and Energy (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/Authority Support Division of GRS. The reports as of the year 2000 are available in the lnternet-based information system on results and data of reactor safety research (http://www.grs-fbw.de). The compilation of the reports is classified according to the classification system ''Joint Safety Research Index (JSRI)''. The reports are arranged in sequence of their project numbers. lt has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties.

  4. Annual report on reactor safety research projects. Reporting period 2013. Progress report

    International Nuclear Information System (INIS)

    2013-01-01

    Within its competence for energy research the Federal Ministry of Economics and Technology (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS)mbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRSF- Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/Authority Support Division of GRS. The reports as of the year 2000 are available in the Internet-based information system on results and data of reactor safety research (http://www.grs-fbw.de). The compilation of the reports is classified according to the classification system ''Joint Safety Research Index (JSRI)''. The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties. (orig.)

  5. Annual report on reactor safety research projects. Reporting period 2015. Progress report

    International Nuclear Information System (INIS)

    2015-01-01

    Within its competence for energy research the Federal Ministry for Economic Affairs and Energy (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft tor Anlagen- und Reaktorsicherheit (GRS) gGmbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are ·' prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/Authority Support Division of GRS. The reports as of the year 2000 are available in the lnternet-based information system on results and data of reactor safety research (http://www.grs-fbw.de). The compilation of the reports is classified according to the classification system ''Joint Safety Research Index (JSRI)''. The reports are arranged in sequence of their project numbers. it has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties.

  6. Trends in fuel reprocessing safety research

    International Nuclear Information System (INIS)

    Tsujino, Takeshi

    1981-01-01

    With the operation of a fuel reprocessing plant in the Power Reactor and Nuclear Fuel Development Corporation (PNC) and the plan for a second fuel reprocessing plant, the research on fuel reprocessing safety, along with the reprocessing technology itself, has become increasingly important. As compared with the case of LWR power plants, the safety research in this field still lags behind. In the safety of fuel reprocessing, there are the aspects of keeping radiation exposure as low as possible in both personnel and local people, the high reliability of the plant operation and the securing of public safety in accidents. Safety research is then required to establish the safety standards and to raise the rate of plant operation associated with safety. The following matters are described: basic ideas for the safety design, safety features in fuel reprocessing, safety guideline and standards, and safety research for fuel reprocessing. (J.P.N.)

  7. Safety of research reactors. Topical issues paper no. 4

    International Nuclear Information System (INIS)

    Alcala-Ruiz, F.; Ferraz-Bastos, J.L.; Kim, S.C.; Voth, M.; Boeck, H.; Dimeglio, F.; Litai, D.

    2001-01-01

    Assessment of Research Reactors (INSARR) missions. The prime objective of these missions has been to conduct a comprehensive operational safety review of the research reactor facility and to verify compliance with the IAEA Safety Standards. The methods used during an INSARR mission have been collected and analysed. Some of the important issues identified are the following: general ageing of the facility; uncertain status of many research reactors (in extended shutdown); indefinite deferral of return to operation or decommissioning; inadequate regulatory supervision; insufficient systematic (periodic) reassessment of safety; lack of quality assurance (QA) programmes; lack of an international safety convention or arrangement; lack of financial support for safety measures (e.g. safety reassessment, safety upgrading, decommissioning) and utilization; lack of clear utilization programmes; inadequate emergency preparedness; inadequate safety documentation (e.g. safety analysis report, operating rules and procedures, emergency plan); inadequate funding of shutdown reactors; weak safety culture; loss of expertise and corporate memory; loss of information concerning radioactive materials contained in retired experimental devices stored in the facility indefinitely; obsolescence of equipment and lack of spare parts; inadequate training and qualifications of regulators and operators; safety implications of new fuel types. These issues have been addressed by the IAEA Secretariat and the chairman of the International Nuclear Safety Advisory Group (INSAG). INSAG has identified three major safety issues that are: the increasing age of research reactors, the number of research reactors that are not operating anymore but have not been decommissioned, and the number of research reactors in countries that do not have appropriate regulatory authorities. This issue paper discusses the concerns generated by an analysis of the results of INSARR missions and those expressed by INSAG. The

  8. Dissemination and Implementation Research for Occupational Safety and Health.

    Science.gov (United States)

    Dugan, Alicia G; Punnett, Laura

    2017-12-01

    The translation of evidence-based health innovations into real-world practice is both incomplete and exceedingly slow. This represents a poor return on research investment dollars for the general public. U.S. funders of health sciences research (e.g., NIH, CDC, NIOSH) are increasingly calling for dissemination plans, and to a lesser extent for dissemination and implementation (D&I) research, which are studies that examine the effectiveness of D&I efforts and strategies and the predictors of D&I success. For example, rather than merely broadcasting information about a preventable hazard, D&I research in occupational safety and health (OSH) might examine how employers or practitioners are most likely to receive and act upon that information. We propose here that D&I research should be seen as a dedicated and necessary area of study within OSH, as a way to generate new knowledge that can bridge the research-to-practice gap. We present D&I concepts, frameworks, and examples that can increase the capacity of OSH professionals to conduct D&I research and accelerate the translation of research findings into meaningful everyday practice to improve worker safety and health.

  9. A research agenda on patient safety in primary care. Recommendations by the LINNEAUS collaboration on patient safety in primary care

    Science.gov (United States)

    Verstappen, Wim; Gaal, Sander; Bowie, Paul; Parker, Diane; Lainer, Miriam; Valderas, Jose M.; Wensing, Michel; Esmail, Aneez

    2015-01-01

    ABSTRACT Background: Healthcare can cause avoidable serious harm to patients. Primary care is not an exception, and the relative lack of research in this area lends urgency to a better understanding of patient safety, the future research agenda and the development of primary care oriented safety programmes. Objective: To outline a research agenda for patient safety improvement in primary care in Europe and beyond. Methods: The LINNEAUS collaboration partners analysed existing research on epidemiology and classification of errors, diagnostic and medication errors, safety culture, and learning for and improving patient safety. We discussed ideas for future research in several meetings, workshops and congresses with LINNEAUS collaboration partners, practising GPs, researchers in this field, and policy makers. Results: This paper summarizes and integrates the outcomes of the LINNEAUS collaboration on patient safety in primary care. It proposes a research agenda on improvement strategies for patient safety in primary care. In addition, it provides background information to help to connect research in this field with practicing GPs and other healthcare workers in primary care. Conclusion: Future research studies should target specific primary care domains, using prospective methods and innovative methods such as patient involvement. PMID:26339841

  10. A research agenda on patient safety in primary care. Recommendations by the LINNEAUS collaboration on patient safety in primary care.

    Science.gov (United States)

    Verstappen, Wim; Gaal, Sander; Bowie, Paul; Parker, Diane; Lainer, Miriam; Valderas, Jose M; Wensing, Michel; Esmail, Aneez

    2015-09-01

    Healthcare can cause avoidable serious harm to patients. Primary care is not an exception, and the relative lack of research in this area lends urgency to a better understanding of patient safety, the future research agenda and the development of primary care oriented safety programmes. To outline a research agenda for patient safety improvement in primary care in Europe and beyond. The LINNEAUS collaboration partners analysed existing research on epidemiology and classification of errors, diagnostic and medication errors, safety culture, and learning for and improving patient safety. We discussed ideas for future research in several meetings, workshops and congresses with LINNEAUS collaboration partners, practising GPs, researchers in this field, and policy makers. This paper summarizes and integrates the outcomes of the LINNEAUS collaboration on patient safety in primary care. It proposes a research agenda on improvement strategies for patient safety in primary care. In addition, it provides background information to help to connect research in this field with practicing GPs and other healthcare workers in primary care. Future research studies should target specific primary care domains, using prospective methods and innovative methods such as patient involvement.

  11. Reports on the research projects in the field of reactor safety supported by the Federal Ministry of Research and Technology

    International Nuclear Information System (INIS)

    1975-03-01

    The Bundesminister fuer Forschung und Technologie (BMFT) is promoting financial plans for reactor safety research. Objective research should improve the safety of light water reactors and minimize the risk for the environment. The Forschungsbetreuung at IRS (IRS-FB) as consultants to the BMFT provides information about the research planning. In addition, information is given about the projects RS 100 and At T 85a sponsored by the Bundesminister des Innern (BMI). Individual reports will be furnished and put into standard form by the research contractors. Each report gives informations about: the work accomplished, the results produced, the outlook extension of the work. The initial report of a research project describes in addition the purpose of the work. Reports of the project 'Nuclear Safety' (PNS) have been added to those ones concerning the projects sponsored by the BMFT or the BMI. The PNS is being conducted by the Gesellschaft fuer Kernforschung mbH (GfK), Karlsruhe. IRS-F-23 is informing of the activities during the fourth quarter of 1974 (October 1st - December 31st 1974). Detailed technical information can be requested from IRS-FB. (orig.) [de

  12. Prospects for nuclear safety research

    Energy Technology Data Exchange (ETDEWEB)

    Beckjord, E.S.

    1995-04-01

    This document is the text of a paper presented by Eric S. Beckjord (Director, Nuclear Regulatory Research/NRC) at the 22nd Water Reactor Safety Meeting in Bethesda, MD in October 1994. The following topics are briefly reviewed: (1) Reactor vessel research, (2) Probabilistic risk assessment, (3) Direct containment heating, (4) Advanced LWR research, (5) Nuclear energy prospects in the US, and (6) Future nuclear safety research. Subtopics within the last category include economics, waste disposal, and health and safety.

  13. Code on the safety of nuclear research reactors: Operation

    International Nuclear Information System (INIS)

    1992-01-01

    The purpose of this publication is to provide the essential requirements and recommendations for the safe operation of research reactors, with emphasis on the supervisory and managerial aspects. However, the publication also provides some guidance and information on topics concerning all the organizations involved in operation. These objectives are expressed in terms of requirements and recommendations for the safe operation of research reactors. Emphasis is placed on the safety requirements that shall be met rather than on the ways in which they can be met. The requirements and recommendations may form the foundation necessary for a Member State to develop regulations and safety criteria for its research reactor programme.

  14. Researchers' Roles in Patient Safety Improvement.

    Science.gov (United States)

    Pietikäinen, Elina; Reiman, Teemu; Heikkilä, Jouko; Macchi, Luigi

    2016-03-01

    In this article, we explore how researchers can contribute to patient safety improvement. We aim to expand the instrumental role researchers have often occupied in relation to patient safety improvement. We reflect on our own improvement model and experiences as patient safety researchers in an ongoing Finnish multi-actor innovation project through self-reflective narration. Our own patient safety improvement model can be described as systemic. Based on the purpose of the innovation project, our improvement model, and the improvement models of the other actors in the project, we have carried out a wide range of activities. Our activities can be summarized in 8 overlapping patient safety improvement roles: modeler, influencer, supplier, producer, ideator, reflector, facilitator, and negotiator. When working side by side with "practice," researchers are offered and engage in several different activities. The way researchers contribute to patient safety improvement and balance between different roles depends on the purpose of the study, as well as on the underlying patient safety improvement models. Different patient safety research paradigms seem to emphasize different improvement roles, and thus, they also face different challenges. Open reflection on the underlying improvement models and roles can help researchers with different backgrounds-as well as other actors involved in patient safety improvement-in structuring their work and collaborating productively.

  15. The Criticality Safety Information Resource Center (CSIRC) at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Henderson, B.D.; Meade, R.A.; Pruvost, N.L.

    1999-01-01

    The Criticality Safety Information Resource Center (CSIRC) at Los Alamos National Laboratory (LANL) is a program jointly funded by the U.S. Department of Energy (DOE) and the U.S. Nuclear Regulatory Commission (NRC) in conjunction with the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 97-2. The goal of CSIRC is to preserve primary criticality safety documentation from U.S. critical experimental sites and to make this information available for the benefit of the technical community. Progress in archiving criticality safety primary documents at the LANL archives as well as efforts to make this information available to researchers are discussed. The CSIRC project has a natural linkage to the International Criticality Safety Benchmark Evaluation Project (ICSBEP). This paper raises the possibility that the CSIRC project will evolve in a fashion similar to the ICSBEP. Exploring the implications of linking the CSIRC to the international criticality safety community is the motivation for this paper

  16. Nordic nuclear safety research program 1994-1997. Project coordination incl. SAM-4 general information issues. Report 1996. Plans for 1997

    International Nuclear Information System (INIS)

    1997-04-01

    NKS (Nordic Nuclear Safety Research) is a cooperative body in nuclear safety, radiation protection and emergency preparedness. Its purpose is to carry out cost-effective Nordic projects, thus producing research results, exercises, information, recommendations, manuals etc., to be used by decision makers and other concerned staff members at authorities and within the nuclear industry. This is the annual report for 1996, the third year of the fifth four-year NKS program (1994-1997). The report also contains plans for the rest of the program period, including budget proposals. The following major fields of research have been identified: reactor safety; radioactive waste; radioecology; emergency preparedness; and information issues. A total of nine projects are now under way within that framework. One project (RAK-1) is dedicated to reactor safety strategies: how to avoid serious accidents. A parallel project (RAK-2) deals with minimizing releases in case of an accident. When can an overheated reactor core still be water-cooled? What might be the consequences of the cooling? All Nordic countries have long-lived low and medium level radioactive waste that requires final disposal. One project (AFA-1) addresses that issue. Environmental impact of radioactive releases is studied in two radioecology projects. The project on marine radioecology, including sediment research (EKO-1), encompasses sampling, analysis and modeling. These are also key issues in the project on long ecological half-lives in semi-natural systems (EKO-2). The transfer of radioactive cesium and strontium in the chains soil - vegetation - sheep and mushroom - roe deer is studied, along with freshwater systems. Long-term doses to main is the ultimate output from the obtained models. Another aspect of environmental impact is emergency preparedness. A recently started project, EKO-5, addresses the issue of early planning for cleanup operations following a fallout. 'Early' in this context means within the

  17. Guidelines for the review research reactor safety. Reference document for IAEA Integrated Safety Assessment of Research Reactors (INSARR)

    International Nuclear Information System (INIS)

    1997-01-01

    In 1992, the IAEA published new safety standards for research reactors as part of the set of publications considered by its Research Reactor Safety Programme (RRSP). This set also includes publications giving guidance for all safety aspects related to the lifetime of a research reactor. In addition, the IAEA has also revised the Safety Standards for radiation protection. Consequently, it was considered advisable to revise the Integrated Safety Assessment of Research Reactors (INSARR) procedures to incorporate the new requirements and guidance as well as to extend the scope of the safety reviews to currently operating research reactors. The present report is the result of this revision. The purpose of this report is to give guidance on the preparation, execution, reporting and follow-up of safety review mission to research reactors as conducted by the IAEA under its INSARR missions safety service. However, it will also be of assistance to operators and regulators in conducting: (a) ad hoc safety assessments of research reactors to address individual issues such as ageing or safety culture; and (b) other types of safety reviews such as internal and peer reviews and regulatory inspections

  18. IAEA programme on research reactor safety

    International Nuclear Information System (INIS)

    Alcala, F.; Di Meglio, A.F.

    1995-01-01

    This paper describes the IAEA programme on research reactor safety and includes the safety related areas of conversions to the use of low enriched uranium (LEU) fuel. The program is based on the IAEA statutory responsibilities as they apply to the requirements of over 320 research reactors operating around the world. The programme covers four major areas: (a) the development of safety documents; (b) safety missions to research reactor facilities; (c) support of research programmes on research reactor safety; (d) support of Technical Cooperation projects on research reactor safety issues. The demand for these activities by the IAEA member states has increased substantially in recent years especially in developing countries with increasing emphasis being placed on LEU conversion matters. In response to this demand, the IAEA has undertaken an extensive programme for each of the four areas above. (author)

  19. NASA Aviation Safety Program Weather Accident Prevention/weather Information Communications (WINCOMM)

    Science.gov (United States)

    Feinberg, Arthur; Tauss, James; Chomos, Gerald (Technical Monitor)

    2002-01-01

    Weather is a contributing factor in approximately 25-30 percent of general aviation accidents. The lack of timely, accurate and usable weather information to the general aviation pilot in the cockpit to enhance pilot situational awareness and improve pilot judgment remains a major impediment to improving aviation safety. NASA Glenn Research Center commissioned this 120 day weather datalink market survey to assess the technologies, infrastructure, products, and services of commercial avionics systems being marketed to the general aviation community to address these longstanding safety concerns. A market survey of companies providing or proposing to provide graphical weather information to the general aviation cockpit was conducted. Fifteen commercial companies were surveyed. These systems are characterized and evaluated in this report by availability, end-user pricing/cost, system constraints/limits and technical specifications. An analysis of market survey results and an evaluation of product offerings were made. In addition, recommendations to NASA for additional research and technology development investment have been made as a result of this survey to accelerate deployment of cockpit weather information systems for enhancing aviation safety.

  20. 40 CFR 68.65 - Process safety information.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.65 Process safety... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Process safety information. 68.65... compilation of written process safety information before conducting any process hazard analysis required by...

  1. Nuclear safety research in HGF 2011

    International Nuclear Information System (INIS)

    Tromm, Walter

    2012-01-01

    After the events at the Japanese nuclear power plant of Fukushima Daiichi, the German federal government decided that Germany will give up electricity generation from nuclear power within a decade. The last reactor will be disconnected from the power grid in 2022. Helping to make this opt-out as safe as possible is one of the duties of the Helmholtz Association with its Nuclear Safety Research Program within the Energy Research Area. Also the demolition of nuclear power plants and the repository problem will keep society, and thus also research, busy for a number of decades to come. Giving up electricity production from nuclear power thus must not mean giving up the required nuclear technology competences. In the fields of reactor safety, demolition, final storage, radiation protection, and crisis management, in critical support of international developments, and for competent evaluation of nuclear facilities around Germany, these competences will be in demand far beyond the German opt-out. This is the reason why the final report by the Ethics Committee on 'Safe Energy Supply' emphasizes the importance of nuclear technology research. Close cooperation on national, European and international levels is indispensable in this effort. Also nuclear safety research in the Helmholtz Association is aligned with the challenges posed by the opt-out of the use of nuclear power. It is important that the high competences in the areas of plant safety and demolition, handling of radioactive waste, and safe final storage as well as radiation protection be preserved. The Nuclear Safety Research Program within the Energy Research Area of the Helmholtz Association therefore will continue studying scientific and technical aspects of the safety of nuclear reactors and the safety of nuclear waste management. These research activities are provident research conducted for society and must be preserved for a long period of time. The work is closely harmonized with the activities of the

  2. Analysis and design on airport safety information management system

    Directory of Open Access Journals (Sweden)

    Yan Lin

    2017-01-01

    Full Text Available Airport safety information management system is the foundation of implementing safety operation, risk control, safety performance monitor, and safety management decision for the airport. The paper puts forward the architecture of airport safety information management system based on B/S model, focuses on safety information processing flow, designs the functional modules and proposes the supporting conditions for system operation. The system construction is helpful to perfecting the long effect mechanism driven by safety information, continually increasing airport safety management level and control proficiency.

  3. Nuclear safety research collaborations between the U.S. and Russian Federation International Nuclear Safety Centers

    International Nuclear Information System (INIS)

    Hill, D. J.; Braun, J. C.; Klickman, A. E.; Bougaenko, S. E.; Kabonov, L. P.; Kraev, A. G.

    2000-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) have formed International Nuclear Safety Centers to collaborate on nuclear safety research. USDOE established the US Center (ISINSC) at Argonne National Laboratory (ANL) in October 1995. MINATOM established the Russian Center (RINSC) at the Research and Development Institute of Power Engineering (RDIPE) in Moscow in July 1996. In April 1998 the Russian center became a semi-independent, autonomous organization under MINATOM. The goals of the center are to: Cooperate in the development of technologies associated with nuclear safety in nuclear power engineering; Be international centers for the collection of information important for safety and technical improvements in nuclear power engineering; and Maintain a base for fundamental knowledge needed to design nuclear reactors. The strategic approach is being used to accomplish these goals is for the two centers to work together to use the resources and the talents of the scientists associated with the US Center and the Russian Center to do collaborative research to improve the safety of Russian-designed nuclear reactors. The two centers started conducting joint research and development projects in January 1997. Since that time the following ten joint projects have been initiated: INSC databases--web server and computing center; Coupled codes--Neutronic and thermal-hydraulic; Severe accident management for Soviet-designed reactors; Transient management and advanced control; Survey of relevant nuclear safety research facilities in the Russian Federation; Computer code validation for transient analysis of VVER and RBMK reactors; Advanced structural analysis; Development of a nuclear safety research and development plan for MINATOM; Properties and applications of heavy liquid metal coolants; and Material properties measurement and assessment. Currently, there is activity in eight of these projects. Details on each of these

  4. Safety research needs for Russian-designed reactors. Requirements situation

    International Nuclear Information System (INIS)

    Brown, R. Allan; Holmstrom, Heikki; Reocreux, Michel; Schulz, Helmut; Liesch, Klaus; Santarossa, Giampiero; Hayamizu, Yoshitaka; Asmolov, Vladimir; Bolshov, Leonid; Strizhov, Valerii; Bougaenko, Sergei; Nikitin, Yuri N.; Proklov, Vladimir; Potapov, Alexandre; Kinnersly, Stephen R.; Voronin, Leonid M.; Honekamp, John R.; Frescura, Gianni M.; Maki, Nobuo; Reig, Javier; ); Bekjord, Eric S.; Rosinger, Herbert E.

    1998-01-01

    integrity must be verified, and material property data bases extended. - VVER severe accident research should focus on validation of codes for accident management procedures, and on extension and qualification of an appropriate data base for materials properties and their interactions. - RBMK thermal-hydraulic research is needed to improve the technical basis for further development of RBMK safety criteria. - Assessment of the integrity of the RBMK primary coolant circuit, and especially the fuel channel, requires urgent research. Methods of assessing RBMK pressure boundary integrity must be verified, and material property data bases extended. - RBMK severe accident research should focus on prevention of accidents and Accident Management for cases of loss of heat sink and Beyond Design-Basis Loss-of-Coolant Accidents. For these purposes, simple physical models and parametric codes need development and should be systematically used in plant specific analysis. Recommendations; - A Safety Research Strategic Plan should be developed. Such a plan sets goals, defines products, and describes when and how work will be done, including determination of research priorities. - Key players, including regulators, operators, plant designers and researchers should be involved in developing and implementing this plan and its execution and applying the results. - International cooperation in safety research should be encouraged for purposes of improving quality, preventing technical isolation and cost sharing. - New approaches, such as technical fora for specific technical topics, should be established to make safety research information in OECD countries available to researchers working on the safety of Russian-designed reactors

  5. IRSN safety research carried out for reviewing safety cases

    International Nuclear Information System (INIS)

    Serres, Ch.

    2010-01-01

    Christophe Serres from IRSN (France) described the independent role of the IRSN regarding research related to nuclear safety in the context of the French Planning Act of 28 June 2006 foreseeing a licence application to be submitted in 2015 for the creation of a deep geological repository. IRSN research programme is organised along research activities devoted to addressing independently-identified k ey safety issues . These 'key issues' should also be of prime concern for the implementer since they relate to the demonstration of the overall safety of the repository, and the level of funding that the implementer should afford to research activities of concern for safety. He explained that the quality and independency of the research programme carried out by IRSN allow building and improving a set of scientific knowledge and technical skills that serves the public mission of delivering technical appraisal and advice, e.g., on behalf of the national safety authority. In particular they contribute to improving the decisional process by making possible scientific dialogue with stakeholders independently from regulator or implementer. The current IRSN R and D programme is developed along the following lines: - Test the adequacy of experimental methods for which feedback is not sufficient. - Develop basic scientific knowledge in the fields where there is a need for better understanding of complex phenomena and interactions. - Develop and use numerical modelling tools to support studies on complex phenomena and interactions. - Perform specific experimental tests aiming at assessing the key parameters that may warrant the performances of the different components of the repository. These studies are carried out by means of experiments performed either at IRSN surface laboratories, or in the Tournemire Experimental Station (TES), an underground facility operated by IRSN in the south-east of France. Targeted actions on research related to operational safety and reversibility

  6. Environment and safety research status report: 1993

    International Nuclear Information System (INIS)

    1993-03-01

    The 1993 status report discusses ongoing and planned research activities in the GRI Environment and Safety Program. The objectives and goals, accomplishments, and strategy along with the basis for each project area are presented for the supply, end use, and gas operations subprograms. Within the context of these subprograms, contract status summaries under their conceptual titles are given for the following project areas: Gas Supply Environmental and Safety Research, Air Quality Research, End Use Equipment Safety Research, Gas Operations Safety Research, Liquefied Natural Gas, Safety Research, and Gas Operations Environmental Research

  7. Reactor safety research and safety technology. Pt. 2

    International Nuclear Information System (INIS)

    Theenhaus, R.; Wolters, J.

    1987-01-01

    The state of HTR safety research work reached permits a comprehensive and reliable answer to be given to questions which have been raised by the reactor accident at Chernobyl, regarding HTR safety. Together with the probability safety analyses, the way to a safety concept suitable for an HTR is cleared; instructions are given for design optimisation with regard to safety technique and economy. The consequences of a graphite fire, the neutron physics design and the consequenes of the lack of a safety containment are briefly described. (DG) [de

  8. Toward introduction of risk informed safety regulation. Nuclear Safety Commission taskforce's interim report

    International Nuclear Information System (INIS)

    2006-01-01

    Nuclear Safety Commission's taskforce on 'Introduction of Safety Regulation Utilizing Risk Information' completed the interim report on its future subjects and directions in December 2005. Although current safety regulatory activities have been based on deterministic approach, this report shows the risk informed approach is expected to be very useful for making nuclear safety regulation and assurance activities reasonable and also for appropriate allocation of regulatory resources. For introduction of risk informed regulation, it also recommends pileups of experiences with gradual introduction and trial of the risk informed approach, improvement of plant maintenance rules and regulatory requirements utilizing risk information, and establishment of framework to assure quality of risk evaluation. (T. Tanaka)

  9. 49 CFR 211.61 - Informal safety inquiries.

    Science.gov (United States)

    2010-10-01

    ... information on selected topics relating to railroad safety. A notice of each such inquiry will be published in... 49 Transportation 4 2010-10-01 2010-10-01 false Informal safety inquiries. 211.61 Section 211.61..., DEPARTMENT OF TRANSPORTATION RULES OF PRACTICE Miscellaneous Safety-Related Proceedings and Inquiries § 211...

  10. Arrangement between the US Nuclear Regulatory Commission (USNRC) and the Belgian Government for Exchange of Technical Information in Regulatory Matters and in Cooperation in Safety Research and in Standards Development

    International Nuclear Information System (INIS)

    1978-01-01

    This Arrangement was concluded on 6 June 1978 between the United States Nuclear Regulatory Commission and the Belgian Government for exchange of technical information in regulatory matters and in co-operation in safety research and in standards development. Both Parties agree to exchange, as available, technical information related to the regulation of safety and the environmental impact of designated nuclear energy facilities and to safety research of designated types of nuclear facilities. As regards co-operation in safety research, the execution of joint programmes and projects under which activities are divided between the two Parties will be agreed on a case by case basis. The Parties further agree to co-operate in the development of regulatory standards applicable to the designated nuclear facilities. The Arrangement is valid for 5 years and may be extended. (NEA) [fr

  11. Outline of criticality safety research project

    International Nuclear Information System (INIS)

    Kobayashi, Iwao; Tachimori, Shoichi; Suzaki, Takenori; Takeshita, Isao; Miyoshi, Yoshinori; Nakajima, Ken; Sakurai, Satoshi; Yanagisawa, Hiroshi

    1987-01-01

    As the power generation capacity of LWRs in Japan increased, the establishment and development of nuclear fuel cycle have become the important subject. Conforming to the safety research project of the nation, the Japan Atomic Energy Research Institute has advanced the project of constructing a new research facility, that is, Nuclear Fuel Cycle Engineering Research Facility (NUCEF). In this facility, it is planned to carry out the research on criticality safety, upgraded reprocessing techniques, and the treatment and disposal of transuranium element wastes. In this paper, the subjects of criticality safety research and the research carried out with a criticality safety experiment facility which is expected to be installed in the NUCEF are briefly reported. The experimental data obtained from the criticality safety handbooks and published literatures in foreign countries are short of the data on the mixture of low enriched uranium and plutonium which is treated in the reprocessing of spent fuel from LWRs. The acquisition of the criticality data for various forms of fuel, the elucidation of the scenario of criticality accidents, and the soundness of the confinement system for gaseous fission products and plutonium are the main subjects. The Static Criticality Safety Facility, Transient Criticality Safety Facility and pulse column system are the main facilities. (Kako, I.)

  12. Collective statement on major nuclear safety research facilities and programmes at risk

    International Nuclear Information System (INIS)

    2001-01-01

    Nuclear safety research remains necessary, since nuclear power programmes are dynamic. In addition to maintaining in-depth competencies, its aim is to provide information to plant designers, operators and regulators in support of the resolution of safety issues, to strengthen confidence in their solution and their implementation, and also to anticipate problems of potential significance. New fields of research open up as a result of plant ageing, plant life extension, plant up-rating, optimisation of plant economics and the associated need to further reduce uncertainties in safety margins quantification. The safety evaluation of future reactor systems being developed or considered in several Member countries also requires new research efforts. Accordingly, Member countries are encouraged to support efforts to maintain key research data, facilities and programmes through national support of international co-operation and funding. This should be under-pinned by development of short-, medium- and long-term strategic visions of the needs of the nuclear safety research community, including a strong component of international collaboration given the international nature of nuclear safety issues. (author)

  13. Operating experience feedback from safety significant events at research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shokr, A.M. [Atomic Energy Authority, Abouzabal (Egypt). Egypt Second Research Reactor; Rao, D. [Bhabha Atomic Research Centre, Mumbai (India)

    2015-05-15

    Operating experience feedback is an effective mechanism to provide lessons learned from the events and the associated corrective actions to prevent recurrence of events, resulting in improving safety in the nuclear installations. This paper analyzes the events of safety significance that have been occurred at research reactors and discusses the root causes and lessons learned from these events. Insights from literature on events at research reactors and feedback from events at nuclear power plants that are relevant to research reactors are also presented along with discussions. The results of the analysis showed the importance of communication of safety information and exchange of operating experience are vital to prevent reoccurrences of events. The analysis showed also the need for continued attention to human factors and training of operating personnel, and the need for establishing systematic ageing management programmes of reactor facilities, and programmes for safety management of handling of nuclear fuel, core components, and experimental devices.

  14. Operating experience feedback from safety significant events at research reactors

    International Nuclear Information System (INIS)

    Shokr, A.M.

    2015-01-01

    Operating experience feedback is an effective mechanism to provide lessons learned from the events and the associated corrective actions to prevent recurrence of events, resulting in improving safety in the nuclear installations. This paper analyzes the events of safety significance that have been occurred at research reactors and discusses the root causes and lessons learned from these events. Insights from literature on events at research reactors and feedback from events at nuclear power plants that are relevant to research reactors are also presented along with discussions. The results of the analysis showed the importance of communication of safety information and exchange of operating experience are vital to prevent reoccurrences of events. The analysis showed also the need for continued attention to human factors and training of operating personnel, and the need for establishing systematic ageing management programmes of reactor facilities, and programmes for safety management of handling of nuclear fuel, core components, and experimental devices.

  15. Providing public information in the Slovenian Nuclear Safety Administration

    International Nuclear Information System (INIS)

    Fon Jager, Mojca

    2000-01-01

    these activities were organized by the IAEA. For several years the SNSA has been endeavoring to maintain continuity in translating some of the basic IAEA publications stated below: Code on the Safety on Nuclear Power Plants: Siting, Code on the Safety of Nuclear Power Plants Quality Assurance, Code on safety of Nuclear Power Plants: Operation, Code on safety of Nuclear Power Plants: Design, Code on safety of Nuclear Power Plants: Governmental Organization, The safety Nuclear Installations, Intervention Criteria in a Nuclear or Radiation Emergency, Establishing a National System for Radioactive Waste Management, The Principles of Radioactive Management, Radiation Protection and the Safety of Radiation Sources, International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of radiation Sources. This publications are distributed free of charge to the institutions concerned. The SNSA also continues sending data to the international network in the field of nuclear and radiation safety NucNet ad distributing the NucNet data to the interested media in Slovenia. Every year the SNSA, the distributor for Slovenia, investigates the interest of media and others in this kind of information and updates the list of receivers. All research work and studies being financed by the SNSA are public and available at the SNSA Library and the international missions' reports are available from the National and University Library, the Central Technical Library, Ljubljana and the University Library, Maribor. (author)

  16. Progress of nuclear safety research, 1990

    International Nuclear Information System (INIS)

    1990-07-01

    Since the Japan Atomic Energy Research Institute (JAERI) was founded as a nonprofit, general research and development organization for the peaceful use of nuclear energy, it has actively pursued the research and development of nuclear energy. Nuclear energy is the primary source of energy in Japan where energy resources are scarce. The safety research is recognized at JAERI as one of the important issues to be clarified, and the safety research on nuclear power generation, nuclear fuel cycle, waste management and environmental safety has been conducted systematically since 1973. As of the end of 1989, 38 reactors were in operation in Japan, and the nuclear electric power generated in 1988 reached 29 % of the total electric power generated. 50 years have passed since nuclear fission was discovered in 1939. The objective of the safety research at JAERI is to earn public support and trust for the use of nuclear energy. The overview of the safety research at JAERI, fuel behavior, reliability of reactor structures and components, reactor thermal-hydraulics during LOCA, safety assessment of nuclear power plants and nuclear fuel cycle facilities, radioactive waste management and environmental radioactivity are reported. (K.I.)

  17. Safety in the Utilization and Modification of Research Reactors. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-15

    This Safety Guide is a revision of Safety Series No. 35-G2 on safety in the utilization and modification of research reactors. It provides recommendations on meeting the requirements for the categorization, safety assessment and approval of research reactor experiments and modification projects. Specific safety considerations in different phases of utilization and modification projects are covered, including the pre-implementation, implementation and post-implementation phases. Guidance is also provided on the operational safety of experiments, including in the handling, dismantling, post-irradiation examination and disposal of experimental devices. Examples of the application of the safety categorization process for experiments and modification projects and of the content of the safety analysis report for an experiment are also provided. Contents: 1. Introduction; 2. Management system for the utilization and modification of a research reactor; 3. Categorization, safety assessment and approval of an experiment or modification; 4. Safety considerations for the design of an experiment or modification; 5. Pre-implementation phase of a modification or utilization project; 6. Implementation phase of a modification or utilization project; 7. Post-implementation phase of a utilization or modification project; 8. Operational safety of experiments at a research reactor; 9. Safety considerations in the handling, dismantling, post-irradiation examination and disposal of experimental devices; 10. Safety aspects of out-of-reactor-core installations; Annex I: Example of a checklist for the categorization of an experiment or modification at a research reactor; Annex II: Example of the content of the safety analysis report for an experiment at a research reactor; Annex III: Examples of reasons for a modification at a research reactor.

  18. Safety in the Utilization and Modification of Research Reactors. Specific Safety Guide

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide is a revision of Safety Series No. 35-G2 on safety in the utilization and modification of research reactors. It provides recommendations on meeting the requirements for the categorization, safety assessment and approval of research reactor experiments and modification projects. Specific safety considerations in different phases of utilization and modification projects are covered, including the pre-implementation, implementation and post-implementation phases. Guidance is also provided on the operational safety of experiments, including in the handling, dismantling, post-irradiation examination and disposal of experimental devices. Examples of the application of the safety categorization process for experiments and modification projects and of the content of the safety analysis report for an experiment are also provided. Contents: 1. Introduction; 2. Management system for the utilization and modification of a research reactor; 3. Categorization, safety assessment and approval of an experiment or modification; 4. Safety considerations for the design of an experiment or modification; 5. Pre-implementation phase of a modification or utilization project; 6. Implementation phase of a modification or utilization project; 7. Post-implementation phase of a utilization or modification project; 8. Operational safety of experiments at a research reactor; 9. Safety considerations in the handling, dismantling, post-irradiation examination and disposal of experimental devices; 10. Safety aspects of out-of-reactor-core installations; Annex I: Example of a checklist for the categorization of an experiment or modification at a research reactor; Annex II: Example of the content of the safety analysis report for an experiment at a research reactor; Annex III: Examples of reasons for a modification at a research reactor.

  19. Safety Case Development as an Information Modelling Problem

    Science.gov (United States)

    Lewis, Robert

    This paper considers the benefits from applying information modelling as the basis for creating an electronically-based safety case. It highlights the current difficulties of developing and managing large document-based safety cases for complex systems such as those found in Air Traffic Control systems. After a review of current tools and related literature on this subject, the paper proceeds to examine the many relationships between entities that can exist within a large safety case. The paper considers the benefits to both safety case writers and readers from the future development of an ideal safety case tool that is able to exploit these information models. The paper also introduces the idea that the safety case has formal relationships between entities that directly support the safety case argument using a methodology such as GSN, and informal relationships that provide links to direct and backing evidence and to supporting information.

  20. Research for enhancing reactor safety

    International Nuclear Information System (INIS)

    1989-05-01

    Recent research for enhanced reactor safety covers extensive and numerous experiments and computed modelling activities designed to verify and to improve existing design requirements. The lectures presented at the meeting report GRS research results and the current status of reactor safety research in France. The GRS experts present results concerning expert systems and their perspectives in safety engineering, large-scale experiments and their significance in the development and verification of computer codes for thermohydraulic modelling of safety-related incidents, the advanced system code ATHLET for analysis of thermohydraulic processes of incidents, the analysis simulator which is a tool for fast evaluation of accident management measures, and investigations into event sequences and the required preventive emergency measures within the German Risk Study. (DG) [de

  1. Proceedings of Twenty-Seventh Annual Institute on Mining Health, Safety and Research

    Energy Technology Data Exchange (ETDEWEB)

    Bockosh, G.R. [ed.] [Pittsburgh Research Center, US Dept. of Energy (United States); Langton, J. [ed.] [Mine Safety and Health Administration, US Dept. of Labor (United States); Karmis, M. [ed.] [Virginia Polytechnic Institute and State University. Dept. of Mining and Minerals Engineering, Blacksburg (United States)

    1996-12-31

    This Proceedings contains the presentations made during the program of the Twenty-Seventh Annual Institute on Mining Health, Safety and Research held at Virginia Polytechnic Institute and State University, Blacksburg, Virginia, on August 26-28, 1996. The Twenty-Seventh Annual Institute on Mining, Health, Safety and Research was the latest in a series of conferences held at Virginia Polytechnic Institute and State University, cosponsored by the Mine Safety and Health Administration, United States Department of Labor, and the Pittsburgh Research Center, United States Department of Energy (formerly part of the Bureau of Mines, U. S. Department of Interior). The Institute provides an information forum for mine operators, managers, superintendents, safety directors, engineers, inspectors, researchers, teachers, state agency officials, and others with a responsible interest in the important field of mining health, safety and research. In particular, the Institute is designed to help mine operating personnel gain a broader knowledge and understanding of the various aspects of mining health and safety, and to present them with methods of control and solutions developed through research. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.

  2. Discussion about risk-informed regulations on the nuclear safety

    International Nuclear Information System (INIS)

    Gu Yeyi

    2008-01-01

    The article introduces the background and status quo of regulations on the nuclear safety in China, and points out the inadequacies existing with the current regulations. The author explains the risk-informed safety management concerning its development, status quo, and achievements made, in an attempt to make out the trend of improving regulations on the nuclear safety through risk-informed methods. Combining the U.S. development program of establishing risk-informed regulations on the nuclear safety, the author narrates principles and features of the new regulations system, and provides suggestions for the promotion of risk-informed safety management and establishment of risk-informed regulations on the nuclear safety. (author)

  3. Researches in nuclear safety

    International Nuclear Information System (INIS)

    Souchet, Y.

    2009-01-01

    This article comprises three parts: 1 - some general considerations aiming at explaining the main motivations of safety researches, and at briefly presenting the important role of some organisations in the international conciliation, and the most common approach used in safety researches (analytical experiments, calculation codes, global experiments); 2 - an overview of some of the main safety problems that are the object of worldwide research programs (natural disasters, industrial disasters, criticality, human and organisational factors, fuel behaviour in accidental situation, serious accidents: core meltdown, corium spreading, failure of the confinement building, radioactive releases). Considering the huge number of research topics, this part cannot be exhaustive and many topics are not approached; 3 - the presentation of two research programs addressing very different problems: the evaluation of accidental releases in the case of a serious accident (behaviour of iodine and B 4 C, air infiltration, fission products release) and the propagation of a fire in a facility (PRISME program). These two programs belong to an international framework involving several partners from countries involved in nuclear energy usage. (J.S.)

  4. Management of nanomaterials safety in research environment

    Directory of Open Access Journals (Sweden)

    Riediker Michael

    2010-12-01

    Full Text Available Abstract Despite numerous discussions, workshops, reviews and reports about responsible development of nanotechnology, information describing health and environmental risk of engineered nanoparticles or nanomaterials is severely lacking and thus insufficient for completing rigorous risk assessment on their use. However, since preliminary scientific evaluations indicate that there are reasonable suspicions that activities involving nanomaterials might have damaging effects on human health; the precautionary principle must be applied. Public and private institutions as well as industries have the duty to adopt preventive and protective measures proportionate to the risk intensity and the desired level of protection. In this work, we present a practical, 'user-friendly' procedure for a university-wide safety and health management of nanomaterials, developed as a multi-stakeholder effort (government, accident insurance, researchers and experts for occupational safety and health. The process starts using a schematic decision tree that allows classifying the nano laboratory into three hazard classes similar to a control banding approach (from Nano 3 - highest hazard to Nano1 - lowest hazard. Classifying laboratories into risk classes would require considering actual or potential exposure to the nanomaterial as well as statistical data on health effects of exposure. Due to the fact that these data (as well as exposure limits for each individual material are not available, risk classes could not be determined. For each hazard level we then provide a list of required risk mitigation measures (technical, organizational and personal. The target 'users' of this safety and health methodology are researchers and safety officers. They can rapidly access the precautionary hazard class of their activities and the corresponding adequate safety and health measures. We succeed in convincing scientist dealing with nano-activities that adequate safety measures and

  5. Management of nanomaterials safety in research environment.

    Science.gov (United States)

    Groso, Amela; Petri-Fink, Alke; Magrez, Arnaud; Riediker, Michael; Meyer, Thierry

    2010-12-10

    Despite numerous discussions, workshops, reviews and reports about responsible development of nanotechnology, information describing health and environmental risk of engineered nanoparticles or nanomaterials is severely lacking and thus insufficient for completing rigorous risk assessment on their use. However, since preliminary scientific evaluations indicate that there are reasonable suspicions that activities involving nanomaterials might have damaging effects on human health; the precautionary principle must be applied. Public and private institutions as well as industries have the duty to adopt preventive and protective measures proportionate to the risk intensity and the desired level of protection. In this work, we present a practical, 'user-friendly' procedure for a university-wide safety and health management of nanomaterials, developed as a multi-stakeholder effort (government, accident insurance, researchers and experts for occupational safety and health). The process starts using a schematic decision tree that allows classifying the nano laboratory into three hazard classes similar to a control banding approach (from Nano 3--highest hazard to Nano1--lowest hazard). Classifying laboratories into risk classes would require considering actual or potential exposure to the nanomaterial as well as statistical data on health effects of exposure. Due to the fact that these data (as well as exposure limits for each individual material) are not available, risk classes could not be determined. For each hazard level we then provide a list of required risk mitigation measures (technical, organizational and personal). The target 'users' of this safety and health methodology are researchers and safety officers. They can rapidly access the precautionary hazard class of their activities and the corresponding adequate safety and health measures. We succeed in convincing scientist dealing with nano-activities that adequate safety measures and management are promoting

  6. Proceedings of the international symposium on research reactor safety operations and modifications

    International Nuclear Information System (INIS)

    1990-03-01

    The International Symposium on Research Reactor Safety, Operations and Modifications was organized by the International Atomic Energy Agency in cooperation with Atomic Energy of Canada Limited-Research Company. The main objectives of this Symposium were: (1) to exchange information and to discuss current perspectives and concerns relating to all aspects to research reactor safety, operations, and modifications; and, (2) to present views and to discuss future initiatives and directions for research reactor design, operations, utilization, and safety. The symposium topics included: research reactor programmes and experience; research reactor design safety and analysis; research reactor modifications and decommissioning; research reactor licensing; and new research reactors. These topics were covered during eight oral sessions and three poster sessions. These Proceedings include the full text of the 93 papers presented. The subject of Symposium was quite wide-ranging in that it covered essentially all aspects of research reactor safety, operations, and modifications. This was considered to be appropriate and timely given the 326 research reactors currently in operation in some 56 countries; given the degree of their utilization which ranges from pure and applied research to radioisotopes production to basic training and manpower development; and given that many of these reactors are undergoing extensive modifications, core conversions, power upratings, and are becoming the subject of safety reassessment and regulatory reviews. Although the Symposium covered many topics, the majority of papers and discussions tended to focus mainly on research reactor safety. This was seen as a clear sign of the continuing recognition of the fundamental importance of identifying and addressing, particularly through international cooperation, issues and concerns associated with research reactor safety

  7. State Traffic Safety Information

    Data.gov (United States)

    Department of Transportation — The State Traffic Safety Information (STSI) portal is part of the larger Fatality Analysis Reporting System (FARS) Encyclopedia. STSI provides state-by-state traffic...

  8. Analyzing research trends on drug safety using topic modeling.

    Science.gov (United States)

    Zou, Chen

    2018-04-06

    Published drug safety data has evolved in the past decade due to scientific and technological advances in the relevant research fields. Considering that a vast amount of scientific literature has been published in this area, it is not easy to identify the key information. Topic modeling has emerged as a powerful tool to extract meaningful information from a large volume of unstructured texts. Areas covered: We analyzed the titles and abstracts of 4347 articles in four journals dedicated to drug safety from 2007 to 2016. We applied Latent Dirichlet allocation (LDA) model to extract 50 main topics, and conducted trend analysis to explore the temporal popularity of these topics over years. Expert Opinion/Commentary: We found that 'benefit-risk assessment and communication', 'diabetes' and 'biologic therapy for autoimmune diseases' are the top 3 most published topics. The topics relevant to the use of electronic health records/observational data for safety surveillance are becoming increasingly popular over time. Meanwhile, there is a slight decrease in research on signal detection based on spontaneous reporting, although spontaneous reporting still plays an important role in benefit-risk assessment. The topics related to medical conditions and treatment showed highly dynamic patterns over time.

  9. Reports of reactor safety research projects sponsored by the Federal Ministry for Research and Technology (BMFT)

    International Nuclear Information System (INIS)

    1984-04-01

    Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. the individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by he FB (Research Coordination Department), Forschungsbetreuung at the GRS, within the framework of general information of progress in reactor safety research. The individual reports are classified according to the research program on the safety of LWRS 1977-1980 of the BMFT. Another table of contents uses the same classification system as applied in the nuclear safety index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in the sequence of their project numbers. (orig.) [de

  10. Guidelines for the Review of Research Reactor Safety: Revised Edition. Reference Document for IAEA Integrated Safety Assessment of Research Reactors (INSARR)

    International Nuclear Information System (INIS)

    2013-01-01

    The Integrated Safety Assessment of Research Reactors (INSARR) is an IAEA safety review service available to Member States with the objective of supporting them in ensuring and enhancing the safety of their research reactors. This service consists of performing a comprehensive peer review and an assessment of the safety of the respective research reactor. The reviews are based on IAEA safety standards and on the provisions of the Code of Conduct on the Safety of Research Reactors. The INSARR can benefit both the operating organizations and the regulatory bodies of the requesting Member States, and can include new research reactors under design or operating research reactors, including those which are under a Project and Supply Agreement with the IAEA. The first IAEA safety evaluation of a research reactor operated by a Member State was completed in October 1959 and involved the Swiss 20 MW DIORIT research reactor. Since then, and in accordance with its programme on research reactor safety, the IAEA has conducted safety review missions in its Member States to enhance the safety of their research reactor facilities through the application of the Code of Conduct on the Safety of Research Reactors and the relevant IAEA safety standards. About 320 missions in 51 Member States were undertaken between 1972 and 2012. The INSARR missions and other limited scope safety review missions are conducted following the guidelines presented in this publication, which is a revision of Guidelines for the Review of Research Reactor Safety (IAEA Services Series No. 1), published in December 1997. This publication details those IAEA safety standards and guidance publications relevant to the safety of research reactors that have been revised or published since 1997. The purpose of this publication is to give guidance on the preparation, implementation, reporting and follow-up of safety review missions. It is also intended to be of assistance to operators and regulators in conducting

  11. Nuclear safety research

    International Nuclear Information System (INIS)

    1999-01-01

    The NNSA checked and coordinated in 1999 the research project of the Surveillance Technology on Nuclear Installations under the National 9th-Five-Year Program to promote the organizations that undertake the research work on schedule and lay a foundation of obtaining achievements and effectiveness for the 9th-five-year plan on nuclear safety research

  12. Program nuclear safety research: report 2000

    International Nuclear Information System (INIS)

    Muehl, B.

    2001-09-01

    The reactor safety R and D work of forschungszentrum karlsruhe (FZK) had been part of the nuclear safety research project (PSF) since 1990. In 2000, a new organisational structure was introduced and the Nuclear Safety Research Project was transferred into the nuclear safety research programme (NUKLEAR). In addition to the three traditional main topics - Light Water Reactor safety, Innovative systems, Studies related to the transmutation of actinides -, the new Programme NUKLEAR also covers Safety research related to final waste storage and Immobilisation of HAW. These new topics, however, will only be dealt with in the next annual report. Some tasks related to the traditional topics have been concluded and do no longer appear in the annual report; other tasks are new and are described for the first time. Numerous institutes of the research centre contribute to the work programme, as well as several external partners. The tasks are coordinated in agreement with internal and external working groups. The contributions to this report, which are either written in German or in English, correspond to the status of early/mid 2001. (orig.)

  13. Active and passive vehicle safety at Volkswagen accident research

    Energy Technology Data Exchange (ETDEWEB)

    Jungmichel, M.; Stanzel, M.; Zobel, R. [Volkswagen AG, Wolfsburg (Germany)

    2001-07-01

    Accident Analysis is an efficient means of improving vehicle passive safety and is used frequently and intensively. However, reliable data on accident causation is much more difficult to obtain. In most cases, one or more of the persons involved in an accident will face litigation and therefore are reluctant to provide the information that is essential to researchers. In addition, antilock brakes in almost every current vehicle have caused certain characteristic evidence, i.e. skid marks, to appear much less frequently than before. However, this evidence provides valuable information for assessing the reaction of the driver and his attempt to avoid the accident. In order to implement strategies of accident avoidance, accident causation must first be fully understood. Therefore, one of the assignments of the Volkswagen Accident Research Unit is to interpret global statistics, as well as to study single cases in order to come up with strategies for collision avoidance or mitigation. Currently, our primary concern is focused on active vehicle safety by researching vehicle behavior in the pre-crash phase. (orig.)

  14. Twenty-second water reactor safety information meeting: Proceedings. Volume 3: Primary systems integrity; Structural and seismic engineering; Aging research, products and applications

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1995-04-01

    This three-volume report contains papers presented at the Twenty-Second Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 24--26, 1994. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Finland, France, Italy, Japan, Russia, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  15. Twenty-second water reactor safety information meeting: Proceedings. Volume 3: Primary systems integrity; Structural and seismic engineering; Aging research, products and applications

    International Nuclear Information System (INIS)

    Monteleone, S.

    1995-04-01

    This three-volume report contains papers presented at the Twenty-Second Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 24--26, 1994. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Finland, France, Italy, Japan, Russia, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  16. Advances in operational safety and severe accident research

    Energy Technology Data Exchange (ETDEWEB)

    Simola, K. [VTT Automation (Finland)

    2002-02-01

    A project on reactor safety was carried out as a part of the NKS programme during 1999-2001. The objective of the project was to obtain a shared Nordic view of certain key safety issues related to the operating nuclear power plants in Finland and Sweden. The focus of the project was on selected central aspects of nuclear reactor safety that are of common interest for the Nordic nuclear authorities, utilities and research bodies. The project consisted of three sub-projects. One of them concentrated on the problems related to risk-informed deci- sion making, especially on the uncertainties and incompleteness of probabilistic safety assessments and their impact on the possibilities to use the PSA results in decision making. Another sub-project dealt with questions related to maintenance, such as human and organisational factors in maintenance and maintenance management. The focus of the third sub-project was on severe accidents. This sub-project concentrated on phenomenological studies of hydrogen combustion, formation of organic iodine, and core re-criticality due to molten core coolant interaction in the lower head of reactor vessel. Moreover, the current status of severe accident research and management was reviewed. (au)

  17. Risk as a target of safety research

    International Nuclear Information System (INIS)

    Krueger, W.

    1986-01-01

    Job creation is not the idea behind the demand for risk studies to be intensified in safety research. Risks are not only a target safety research should investigate, they are a subject that actually can be most adequately investigated by safety research. Assuming a neutral position between irrational fears and interest-minded problem minimization, that is the central approach and the ethics of a safety scientist. The Babylonian confusion of terminology experienced after the Chernobyl accident is a good example proving the necessity of fostering the neutral professionalism in safety research. (orig./DG) [de

  18. Reports on research projects in the field of reactor safety sponsored by the Federal Minister for Research and Technology

    International Nuclear Information System (INIS)

    1981-03-01

    The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of such investigations by means of quarterly and annually publication of progress reports within the series GRS-F-Fortschrittsbericht (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the FB (Research Coordination Department), Forschungsbetreuung at the GRS, within the framework of general information of progress in reactor safety research. The individual reports are arranged according to the Research Program on the Safety of LWRs 1977-1980 of the BMFT. Another table of contents uses the same classification system as applied in the Nuclear Safety Index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are marked by current numbers in sequence of their arrangement in this compilation. (orig./HP) [de

  19. Reports on research projects in the field of reactor safety sponsored by the Federal Minister for Research and Technology

    International Nuclear Information System (INIS)

    1981-06-01

    The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of such investigations by means of quarterly and annually publication of progress reports within the series GRS-F-Fortschrittsbericht (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the FB (Research Coordination Department), Forschungsbetreuung at the GRS, within the framework of general information of progress in reactor safety research. The individual reports are arranged according to the Research Program on the Safety of LWRs 1977-1980 of the BMFT. Another table of contents uses the same classification system as applied in the Nuclear Safety Index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are marked by current numbers in sequence of their arrangement in this compilation. (orig./HP) [de

  20. Safety Research and Experimental Coal Mines

    Data.gov (United States)

    Federal Laboratory Consortium — Safety Research and Experimental Coal MinesLocation: Pittsburgh SiteThe Safety Research Coal Mine and Experimental Mine complex is a multi-purpose underground mine...

  1. Accomplishments and needs in safety research

    International Nuclear Information System (INIS)

    Beckjord, E.S.

    1988-01-01

    My purpose today is to review recent accomplishments in water reactor safety research and to point out important tasks that remain to be done. I will also comment on the changes of focus that I see ahead in reactor safety research. I speak from a U.S. perspective on the subject, but note that the program of the U.S. Nuclear Regulatory Commission and also that of the U.S. industry's Electric Power Research Institute include many international collaborative research efforts. Without any doubt, nuclear safety research today is international in scope, and the collaborative movement is gaining in strength

  2. Meeting on reactor safety research

    International Nuclear Information System (INIS)

    1982-09-01

    The meeting 'Reactor Safety Research' organized for the second time by the GRS by order of the BMFT gave a review of research activities on the safety of light water reactors in the Federal Repulbic of Germany, international co-operation in this field and latest results of this research institution. The central fields of interest were subjects of man/machine-interaction, operational reliability accident sequences, and risk. (orig.) [de

  3. Current status of nuclear safety research

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Efforts at nuclear safety research have expanded year by year in Japan, in term of money and technical achievement. The Atomic Energy Commission set last year the five year nuclear safety research program, a guideline by which various research institutes will be able to develop their own efforts in a concerted manner. From the results of the nuclear safety research which cover very wide areas ranging from reactor engineering safety, safety of nuclear fuel cycle facilities, prevention of radiation hazards to the adequate treatment and disposal of radioactive wastes, AIJ hereafter focuses of LWR engineering safety and prevents two articles, one introducing the current results of the NSSR program developed by JAERI and the other reporting the LWR reliability demonstration testing projects being promoted by MITI. The outline of these demonstration tests was reported in this report. The tests consist of earthquake resistance reliability test of nuclear power plants, steam generator reliability tests, valve integrity tests, fuel assembly reliability tests, reliability tests of heat affected zones and reliability tests of pumps. (Kobatake, H.)

  4. Safety management at nuclear installations with research reactors. A comparison of five European installations

    International Nuclear Information System (INIS)

    Troen, H.; Lauridsen, B.

    1997-11-01

    Five European institutions with nuclear research reactors were visited to compare safety management among institutions similar to Risoe. Risoe is a National Laboratory and the main activities are research and development. In 1996 it was decided to look into safety management at Risoe again; the last revision was in 1972. The purpose was to make it more efficient and to emphasise, that the responsibility lies in the operating organisation. Information such as nuclear facilities at the institutions, the safety management organisation, emergency preparedness, and lists of radiation doses to the employees from the years 1995 and 1996 is given in the report. Also international requirements and recommendations are given in short. Furthermore the report contains some reflections on the development in safety management organisations in resent years and the conclusions drawn from the information gathered

  5. NRC safety research in support of regulation, FY 1992

    International Nuclear Information System (INIS)

    1993-05-01

    This report, the eighth in a series of annual reports, was prepared in response to congressional inquiries concerning how nuclear regulatory research is used. It summarizes the accomplishments of the Office of Nuclear Regulatory Research during FY 1992. A special emphasis on accomplishments in nuclear power plant aging research reflects recognition that a number of plants are entering the final portion of their original 40-year operating licenses and that, in addition to current aging effects, a focus on safety considerations for license renewal becomes timely. The primary purpose of performing regulatory research is to develop and provide the Commission and its staff with the technical bases for regulatory decisions on the safe operation of licensed nuclear reactors and facilities, to find unknown or unexpected safety problems, and to develop data and related information for the purpose of revising the Commission's rules, regulatory guides, or other guidance

  6. Code of Conduct on the Safety of Research Reactors

    International Nuclear Information System (INIS)

    2006-09-01

    The Board of Governors of the International Atomic Energy Agency (IAEA) adopted the Code of Conduct on the Safety of Research Reactors on 8 March 2004. The Board's action was the culmination of several years of work to develop the Code and obtain a consensus on its provisions. The process leading to the Code began in 1998, when the International Nuclear Safety Advisory Group (INSAG) informed the Director General of concerns about the safety of research reactors. In 2000, INSAG recommended that the Secretariat begin developing an international protocol or a similar legal instrument to address those concerns. In September 2000, in resolution GC(44)/RES/14, the General Conference requested the Secretariat ''within its available resources, to continue work on exploring options to strengthen the international nuclear safety arrangements for civil research reactors, taking due account of input from INSAG and the views of other relevant bodies''. A working group convened by the Secretariat pursuant to that request recommended that ''the Agency consider establishing an international action plan for research reactors'' and that the action plan include preparation of a Code of Conduct ''that would clearly establish the desirable attributes for management of research reactor safety''. In September 2001, the Board requested that the Secretariat develop and implement, in conjunction with Member States, an international research reactor safety enhancement plan which included preparation of a Code of Conduct on the Safety of Research Reactors. Subsequently, in resolution GC(45)/RES/10.A, the General Conference endorsed the Board's request. Pursuant to that request, a Code of Conduct on the Safety of Research Reactors was drafted at two meetings of an Open-ended Working Group of Legal and Technical Experts. This draft Code of Conduct was circulated to all Member States for comment. On the basis of the responses received, a revised draft of the Code was prepared by the Secretariat

  7. Nuclear safety research in HGF 2012

    International Nuclear Information System (INIS)

    Anon.

    2013-01-01

    After the events at the Japanese nuclear power plant of Fukushima Daiichi, the German Federal government decided that Germany will give up electricity generation from nuclear power within a decade. The last reactor will be disconnected from the power grid in 2022. Helping to make this opt-out safe is one of the duties of the Helmholtz Association with its Nuclear Safety Research Program within the Energy Research Area. Also the demolition of nuclear power plants and the repository problem will keep society, and thus also research, busy for a number of decades to come. Giving up electricity production from nuclear power thus must not mean giving up the required nuclear technology competences. In the fields of reactor safety, demolition, final storage, radiation protection, and crisis management, in critical support of international developments, and for competent evaluation of nuclear facilities around Germany, these competences will be in demand far beyond the German opt-out. This is the reason why the final report by the Ethics Committee on 'Safe Energy Supply' emphasizes the importance of nuclear technology research. Close cooperation on national, European and international levels is indispensable in this effort. Also nuclear safety research in the Helmholtz Association is aligned with the challenges posed by the opt-out of the use of nuclear power. It is important that the high competences in the areas of plant safety and demolition, handling of radioactive waste, and safe final storage as well as radiation protection be preserved. The Nuclear Safety Research Program within the Energy Research Area of the Helmholtz Association therefore will continue studying scientific and technical aspects of the safety of nuclear reactors and the safety of nuclear waste management. These research activities are provident research conducted for society and must be preserved for a long period of time. The work is closely harmonized with the activities of the partners in the

  8. Patient-Reported Safety Information: A Renaissance of Pharmacovigilance?

    Science.gov (United States)

    Härmark, Linda; Raine, June; Leufkens, Hubert; Edwards, I Ralph; Moretti, Ugo; Sarinic, Viola Macolic; Kant, Agnes

    2016-10-01

    The role of patients as key contributors in pharmacovigilance was acknowledged in the new EU pharmacovigilance legislation. This contains several efforts to increase the involvement of the general public, including making patient adverse drug reaction (ADR) reporting systems mandatory. Three years have passed since the legislation was introduced and the key question is: does pharmacovigilance yet make optimal use of patient-reported safety information? Independent research has shown beyond doubt that patients make an important contribution to pharmacovigilance signal detection. Patient reports provide first-hand information about the suspected ADR and the circumstances under which it occurred, including medication errors, quality failures, and 'near misses'. Patient-reported safety information leads to a better understanding of the patient's experiences of the ADR. Patients are better at explaining the nature, personal significance and consequences of ADRs than healthcare professionals' reports on similar associations and they give more detailed information regarding quality of life including psychological effects and effects on everyday tasks. Current methods used in pharmacovigilance need to optimise use of the information reported from patients. To make the most of information from patients, the systems we use for collecting, coding and recording patient-reported information and the methodologies applied for signal detection and assessment need to be further developed, such as a patient-specific form, development of a severity grading and evolution of the database structure and the signal detection methods applied. It is time for a renaissance of pharmacovigilance.

  9. Fiscal 2000 pioneering research report on the research on advanced safety helicopter; 2000 nendo advanced safety helicopter no chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    A survey was conducted concerning helicopter operating environments and the trends of related technologies in Japan and abroad, and the needs and seeds were grasped. Research was made to study technical problems and measures to solve them for the development of a safe, low-noise, and low-cost next-generation advanced safety helicopter (ASH). A market research was conducted on traffic systems in the future, state of aviation-related infrastructures and their future, current state of people's daily life which centers about locomotion, and the effect that ASH would impose on society. A technical research was carried out relative to flight safety, which involved EVS (enhanced vision system), information display system for helicopters, collision avoidance advisory for pilots, air collision prevention system/surveillance system for helicopters, obstacle detection/warning system for helicopters, blade deicing system for helicopters, and so forth. Detailed investigations were also conducted for technologies for reduction in the manufacturing, maintenance, and development costs, and for reduction in noise. (NEDO)

  10. Progress report - reports on reactor safety research programs sponsored by the Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1982-09-01

    Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the GRS, within the framework of general information of progress in reactor safety research. The individual reports are classified according to the research program on the safety of LWRs 1977-1980 of the BMFT. Another table of contents uses the same classification system as applied in the nuclear safety index of the CEC and the OECD. The reports are arranged in the sequence of their project numbers. (orig./HP) [de

  11. Role of nuclear safety research and future plan

    International Nuclear Information System (INIS)

    Kim, W. S.; Lee, J. I.; Kang, S. C.; Park, Y. W.; Lee, J. H.; Kim, M. W.; Lee, C. J.; Park, Y. I.

    2000-01-01

    For promoting and improving nuclear safety research activities, this report gives an insight on the scope of safety research and its role in the safety management of nuclear installations, and suggests measures to adequately utilize the research results through taking an optimized role share among research organizations. Several measures such as cooperative planning of common research areas and proper role assignment, improvement of the interfaces among researchers, and reflection of end-users' opinion in the course of planning and conducting research to promote application of research results are identified. It is expected that the identified measures will contribute to enhancing the efficiency and effectiveness of nuclear safety research, if they are implemented after deliberating with the government and safety research organizations

  12. The impact of health information technology on patient safety

    Directory of Open Access Journals (Sweden)

    Yasser K. Alotaibi

    2017-12-01

    Full Text Available Since the original Institute of Medicine (IOM report was published there has been an accelerated development and adoption of health information technology with varying degrees of evidence about the impact of health information technology on patient safety. This article is intended to review the current available scientific evidence on the impact of different health information technologies on improving patient safety outcomes. We conclude that health information technology improves patient’s safety by reducing medication errors, reducing adverse drug reactions, and improving compliance to practice guidelines. There should be no doubt that health information technology is an important tool for improving healthcare quality and safety. Healthcare organizations need to be selective in which technology to invest in, as literature shows that some technologies have limited evidence in improving patient safety outcomes.

  13. The impact of health information technology on patient safety.

    Science.gov (United States)

    Alotaibi, Yasser K; Federico, Frank

    2017-12-01

    Since the original Institute of Medicine (IOM) report was published there has been an accelerated development and adoption of health information technology with varying degrees of evidence about the impact of health information technology on patient safety.  This article is intended to review the current available scientific evidence on the impact of different health information technologies on improving patient safety outcomes. We conclude that health information technology improves patient's safety by reducing medication errors, reducing adverse drug reactions, and improving compliance to practice guidelines. There should be no doubt that health information technology is an important tool for improving healthcare quality and safety. Healthcare organizations need to be selective in which technology to invest in, as literature shows that some technologies have limited evidence in improving patient safety outcomes.

  14. Ageing Management for Research Reactors. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    This Safety Guide was developed under the IAEA programme for safety standards for research reactors, which covers all the important areas of research reactor safety. It supplements and elaborates upon the safety requirements for ageing management of research reactors that are established in paras 6.68-6.70 and 7.109 of the IAEA Safety Requirements publication, Safety of Research Reactors. The safety of a research reactor requires that provisions be made in its design to facilitate ageing management. Throughout the lifetime of a research reactor, including its decommissioning, ageing management of its structures, systems and components (SSCs) important to safety is required, to ensure continued adequacy of the safety level, reliable operation of the reactor, and compliance with the operational limits and conditions. Managing the safety aspects of research reactor ageing requires implementation of an effective programme for the monitoring, prediction, and timely detection and mitigation of degradation of SSCs important to safety, and for maintaining their integrity and functional capability throughout their service lives. Ageing management is defined as engineering, operation, and maintenance strategy and actions to control within acceptable limits the ageing degradation of SSCs. Ageing management includes activities such as repair, refurbishment and replacement of SSCs, which are similar to other activities carried out at a research reactor in maintenance and testing or when a modification project takes place. However, it is important to recognize that effective management of ageing requires the use of a methodology that will detect and evaluate ageing degradation as a consequence of the service conditions, and involves the application of countermeasures for prevention and mitigation of ageing degradation. The objective of this Safety Guide is to provide recommendations on managing ageing of SSCs important to safety at research reactors on the basis of international

  15. Ageing Management for Research Reactors. Specific Safety Guide

    International Nuclear Information System (INIS)

    2010-01-01

    This Safety Guide was developed under the IAEA programme for safety standards for research reactors, which covers all the important areas of research reactor safety. It supplements and elaborates upon the safety requirements for ageing management of research reactors that are established in paras 6.68-6.70 and 7.109 of the IAEA Safety Requirements publication, Safety of Research Reactors. The safety of a research reactor requires that provisions be made in its design to facilitate ageing management. Throughout the lifetime of a research reactor, including its decommissioning, ageing management of its structures, systems and components (SSCs) important to safety is required, to ensure continued adequacy of the safety level, reliable operation of the reactor, and compliance with the operational limits and conditions. Managing the safety aspects of research reactor ageing requires implementation of an effective programme for the monitoring, prediction, and timely detection and mitigation of degradation of SSCs important to safety, and for maintaining their integrity and functional capability throughout their service lives. Ageing management is defined as engineering, operation, and maintenance strategy and actions to control within acceptable limits the ageing degradation of SSCs. Ageing management includes activities such as repair, refurbishment and replacement of SSCs, which are similar to other activities carried out at a research reactor in maintenance and testing or when a modification project takes place. However, it is important to recognize that effective management of ageing requires the use of a methodology that will detect and evaluate ageing degradation as a consequence of the service conditions, and involves the application of countermeasures for prevention and mitigation of ageing degradation. The objective of this Safety Guide is to provide recommendations on managing ageing of SSCs important to safety at research reactors on the basis of international

  16. Research program on regulatory safety research - Synthesis report 2008

    International Nuclear Information System (INIS)

    Mailaender, R

    2009-06-01

    This report for the Swiss Federal Office of Energy (SFOE) summarises the program's main points of interest, work done in the year 2008 and the results obtained. The main points of the research program, which is co-ordinated by the Swiss Federal Nuclear Safety Inspectorate ENSI, are discussed. Topics covered concern reactor safety as well as human, organisational and safety aspects. Work done in several areas concerning reactor safety and materials as well as interactions in severe accidents in light-water reactors is described. Radiation protection, the transport and disposal of radioactive wastes and safety culture are also looked at. Finally, national and international co-operation is briefly looked at and work to be done in 2009 is reviewed. The report is completed with a list of research and development projects co-ordinated by ENSI

  17. Assessment of Contributions to Patient Safety Knowledge by the Agency for Healthcare Research and Quality-Funded Patient Safety Projects

    Science.gov (United States)

    Sorbero, Melony E S; Ricci, Karen A; Lovejoy, Susan; Haviland, Amelia M; Smith, Linda; Bradley, Lily A; Hiatt, Liisa; Farley, Donna O

    2009-01-01

    Objective To characterize the activities of projects funded in Agency for Healthcare Research and Quality (AHRQ)' patient safety portfolio and assess their aggregate potential to contribute to knowledge development. Data Sources Information abstracted from proposals for projects funded in AHRQ' patient safety portfolio, information on safety practices from the AHRQ Evidence Report on Patient Safety Practices, and products produced by the projects. Study Design This represented one part of the process evaluation conducted as part of a longitudinal evaluation based on the Context–Input–Process–Product model. Principal Findings The 234 projects funded through AHRQ' patient safety portfolio examined a wide variety of patient safety issues and extended their work beyond the hospital setting to less studied parts of the health care system. Many of the projects implemented and tested practices for which the patient safety evidence report identified a need for additional evidence. The funded projects also generated a substantial body of new patient safety knowledge through a growing number of journal articles and other products. Conclusions The projects funded in AHRQ' patient safety portfolio have the potential to make substantial contributions to the knowledge base on patient safety. The full value of this new knowledge remains to be confirmed through the synthesis of results. PMID:21456108

  18. Engineered nanomaterials: toward effective safety management in research laboratories.

    Science.gov (United States)

    Groso, Amela; Petri-Fink, Alke; Rothen-Rutishauser, Barbara; Hofmann, Heinrich; Meyer, Thierry

    2016-03-15

    It is still unknown which types of nanomaterials and associated doses represent an actual danger to humans and environment. Meanwhile, there is consensus on applying the precautionary principle to these novel materials until more information is available. To deal with the rapid evolution of research, including the fast turnover of collaborators, a user-friendly and easy-to-apply risk assessment tool offering adequate preventive and protective measures has to be provided. Based on new information concerning the hazards of engineered nanomaterials, we improved a previously developed risk assessment tool by following a simple scheme to gain in efficiency. In the first step, using a logical decision tree, one of the three hazard levels, from H1 to H3, is assigned to the nanomaterial. Using a combination of decision trees and matrices, the second step links the hazard with the emission and exposure potential to assign one of the three nanorisk levels (Nano 3 highest risk; Nano 1 lowest risk) to the activity. These operations are repeated at each process step, leading to the laboratory classification. The third step provides detailed preventive and protective measures for the determined level of nanorisk. We developed an adapted simple and intuitive method for nanomaterial risk management in research laboratories. It allows classifying the nanoactivities into three levels, additionally proposing concrete preventive and protective measures and associated actions. This method is a valuable tool for all the participants in nanomaterial safety. The users experience an essential learning opportunity and increase their safety awareness. Laboratory managers have a reliable tool to obtain an overview of the operations involving nanomaterials in their laboratories; this is essential, as they are responsible for the employee safety, but are sometimes unaware of the works performed. Bringing this risk to a three-band scale (like other types of risks such as biological, radiation

  19. 40 CFR 68.48 - Safety information.

    Science.gov (United States)

    2010-07-01

    ...) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 2 Prevention Program § 68.48 Safety information. (a) The... regulated substances, processes, and equipment: (1) Material Safety Data Sheets that meet the requirements...) Equipment specifications; and (5) Codes and standards used to design, build, and operate the process. (b...

  20. The Nirex safety assessment research programme: annual report for 1986/87

    International Nuclear Information System (INIS)

    Cooper, M.J.; Hodgkinson, D.P.

    1987-05-01

    This report describes research relating to the underground disposal of low-level and intermediate-level radioactive wastes, to provide information for post-emplacement radiological safety assessment. Topics reported are solubility and sorption, organic degradation, microbial activity, leaching, the corrosion of containers, and radionuclide migration studies. Properties of clays, slates, colloids and uranium disequilibrium are studied. Mathematical modelling to support the safety assessment of radioactive waste disposal is also studied. (U.K.)

  1. IRSN safety research carried out for reviewing geological disposal safety case

    International Nuclear Information System (INIS)

    Serres, Christophe; Besnus, Francois; Gay, Didier

    2010-01-01

    The Radiation Protection and Nuclear Safety Institute develops a research programme on scientific issues related to geological disposal safety in order to supporting the technical assessment carried out in the framework of the regulatory review process. This research programme is organised along key safety questions that deal with various scientific disciplines as geology, hydrogeology, mechanics, geochemistry or physics and is implemented in national and international partnerships. It aims at providing IRSN with sufficient independent knowledge and scientific skills in order to be able to assess whether the scientific results gained by the waste management organisation and their integration for demonstrating the safety of the geological disposal are acceptable with regard to the safety issues to be dealt with in the Safety Case. (author)

  2. Mass-media information campaigns about road safety. [previously known as: Public information about road safety.

    NARCIS (Netherlands)

    2009-01-01

    In the Netherlands, public information is often used as an instrument to improve road safety. The purpose of each public information campaign is a voluntary and lasting change in traffic behaviour. This requires road users to have sufficient knowledge about a problem and to adapt their behaviour.

  3. IAEA activities on research reactor safety

    International Nuclear Information System (INIS)

    Alcala-Ruiz, F.

    1995-01-01

    Since its inception in 1957, the International Atomic Energy Agency (IAEA) has included activities in its programme to address aspects of research reactors such as safety, utilization and fuel cycle considerations. These activities were based on statutory functions and responsibilities, and on the current situation of research reactors in operation around the world; they responded to IAEA Member States' general or specific demands. At present, the IAEA activities on research reactors cover the above aspects and respond to specific and current issues, amongst which safety-related are of major concern to Member States. The present IAEA Research Reactor Safety Programme (RRSP) is a response to the current situation of about 300 research reactors in operation in 59 countries around the world. (orig.)

  4. Patient safety goals for the proposed Federal Health Information Technology Safety Center.

    Science.gov (United States)

    Sittig, Dean F; Classen, David C; Singh, Hardeep

    2015-03-01

    The Office of the National Coordinator for Health Information Technology is expected to oversee creation of a Health Information Technology (HIT) Safety Center. While its functions are still being defined, the center is envisioned as a public-private entity focusing on promotion of HIT related patient safety. We propose that the HIT Safety Center leverages its unique position to work with key administrative and policy stakeholders, healthcare organizations (HCOs), and HIT vendors to achieve four goals: (1) facilitate creation of a nationwide 'post-marketing' surveillance system to monitor HIT related safety events; (2) develop methods and governance structures to support investigation of major HIT related safety events; (3) create the infrastructure and methods needed to carry out random assessments of HIT related safety in complex HCOs; and (4) advocate for HIT safety with government and private entities. The convening ability of a federally supported HIT Safety Center could be critically important to our transformation to a safe and effective HIT enabled healthcare system. © The Author 2014. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Safety status of Russian research reactors

    International Nuclear Information System (INIS)

    Morozov, S.I.

    2001-01-01

    Gosatomnadzor of Russia is conducting the safety regulation and inspection activity related to nuclear and radiation safety at nuclear research facilities, including research reactors, critical assemblies and sub-critical assemblies. It implies implementing three major activities: 1) establishing the laws and safety standards in the field of research reactors nuclear and radiation safety; 2) research reactors licensing; and 3) inspections (or license conditions tracking and inspection). The database on nuclear research facilities has recently been updated based on the actual status of all facilities. It turned out that many facilities have been shutdown, whether temporary or permanently, waiting for the final decision on their decommissioning. Compared to previous years the situation has been inevitably changing. Now we have 99 nuclear research facilities in total under Gosatomnadzor of Russia supervision (compared to 113 in previous years). Their distribution by types and operating organizations is presented. The licensing and conduct of inspection processes are briefly outlined with emphasis being made on specific issues related to major incidents that happened in 2000, spent fuel management, occupational exposure, effluents and emissions, emergency preparedness and physical protection. Finally, a summary of problems at current Russian research facilities is outlined. (author)

  6. The Nordic nuclear safety research 1990-93. Evalution and executive summary

    International Nuclear Information System (INIS)

    Marcus, F.

    1994-11-01

    A four-year Nordic research programme in the field of nuclear safety was carried through from 1990 through 1993, performed under the auspices of the Nordic Committee for Nuclear Safety Research, NKS. The aim has been to increase knowledge required to judge the safety of nuclear installations in and around the Nordic areas, and to improve and harmonize emergency preparedness. There were 19 individual projects within the four main section of the programme: Emergency preparedness, Waste and decommissioning, Radioecology, and Reactor safety. The programme was evaluated in 1994 by five evaluators, and the main emphasis was on general questions. The evaluators recommend that project plans are revised at mid-term, for updating. During the project period, NKS should use specified criteria to judge progress and success. Time tables must be adhered to. Recommendations deal with reporting and presentation of results, project leaders must disseminate information at the professional level and organize seminars. The NKS annual reports should be conceived so that they can also be used for external information. NKS should establish a policy aimed at enhanced information on its projects. Final reports should contain conclusions and recommendations which can subsequently be followed up. Directors of the competent authorities in the Nordic countries should be requested to give their views on the recommendations, and also industry, on the usefulness of results. It is proposed that NKS consider presentation of the outcome to responsible ministers and their staff. These recommendations were taken into account during 1994. (AB)

  7. Memorandum on the use of information technology to improve medication safety.

    Science.gov (United States)

    Ammenwerth, E; Aly, A-F; Bürkle, T; Christ, P; Dormann, H; Friesdorf, W; Haas, C; Haefeli, W E; Jeske, M; Kaltschmidt, J; Menges, K; Möller, H; Neubert, A; Rascher, W; Reichert, H; Schuler, J; Schreier, G; Schulz, S; Seidling, H M; Stühlinger, W; Criegee-Rieck, M

    2014-01-01

    Information technology in health care has a clear potential to improve the quality and efficiency of health care, especially in the area of medication processes. On the other hand, existing studies show possible adverse effects on patient safety when IT for medication-related processes is developed, introduced or used inappropriately. To summarize definitions and observations on IT usage in pharmacotherapy and to derive recommendations and future research priorities for decision makers and domain experts. This memorandum was developed in a consensus-based iterative process that included workshops and e-mail discussions among 21 experts coordinated by the Drug Information Systems Working Group of the German Society for Medical Informatics, Biometry and Epidemiology (GMDS). The recommendations address, among other things, a stepwise and comprehensive strategy for IT usage in medication processes, the integration of contextual information for alert generation, the involvement of patients, the semantic integration of information resources, usability and adaptability of IT solutions, and the need for their continuous evaluation. Information technology can help to improve medication safety. However, challenges remain regarding access to information, quality of information, and measurable benefits.

  8. Aviation Safety Hotline Information System -

    Data.gov (United States)

    Department of Transportation — The Aviation Safety Hotline Information System (ASHIS) collects, stores, and retrieves reports submitted by pilots, mechanics, cabin crew, passengers, or the public...

  9. AEC sets five year nuclear safety research program

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The research by the government for the establishment of means of judging the adequacy of safety measures incorporated in nuclear facilities, including setting safety standards and collecting documents of general criteria, and the research by the industry on safety measures and the promotion of safety-related technique are stated in the five year program for 1976-80 reported by subcommittees, Atomic Energy Commission (AEC). Four considerations on the research items incorporated in the program are 1) technical programs relating to the safety of nuclear facilities and the necessary criteria, 2) priority of the relevant items decided according to their impact on circumstances, urgency, the defence-indepth concept and so on, 3) consideration of all relevant data and documents collected, and research subjects necessary to quantify safety measurement, and 4) consideration of technological actualization, the capability of each research body, the budget and the time schedule. In addition, seven major themes decided on the basis of these points are 1) reactivity-initiated accident, 2) LOCA, 3) fuel behavior, 4) structural safety, 5) radioactive release, 6) statistical method of safety evaluation, and 7) seismic characteristics. The committee has deliberated the appropriate division of researches between the government and the industry. A set of tables showing the nuclear safety research plan for 1976-80 are attached. (Iwakiri, K.)

  10. IRSN research programs concerning reactor safety

    International Nuclear Information System (INIS)

    Bardelay, J.

    2005-01-01

    This paper is made up of 3 parts. The first part briefly presents the missions of IRSN (French research institute on nuclear safety), the second part reviews the research works currently led by IRSN in the following fields : -) the assessment of safety computer codes, -) thermohydraulics, -) reactor ageing, -) reactivity accidents, -) loss of coolant, -) reactor pool dewatering, -) core meltdown, -) vapor explosion, and -) fission product release. In the third part, IRSN is shown to give a major importance to experimental programs led on research or test reactors for collecting valid data because of the complexity of the physical processes that are involved. IRSN plans to develop a research program concerning the safety of high or very high temperature reactors. (A.C.)

  11. Twenty-third water reactor safety information meeting. Volume 3, structural and seismic engineering, primary systems integrity, equipment operability and aging, ECCS strainer blockage research and regulatory issues

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1996-03-01

    This three-volume report contains papers presented at the Twenty- Third Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 23-25, 1995. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Italy, Japan, Norway, Russia, Sweden, and Switzerland. This document, Volume 3, presents topics in Structural & Seismic Engineering, Primary Systems Integrity, Equipment Operability and Aging, and ECCS Strainer Blockage Research & Regulatory Issues. Individual papers have been cataloged separately.

  12. Twenty-third water reactor safety information meeting. Volume 3, structural and seismic engineering, primary systems integrity, equipment operability and aging, ECCS strainer blockage research and regulatory issues

    International Nuclear Information System (INIS)

    Monteleone, S.

    1996-03-01

    This three-volume report contains papers presented at the Twenty- Third Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 23-25, 1995. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Italy, Japan, Norway, Russia, Sweden, and Switzerland. This document, Volume 3, presents topics in Structural ampersand Seismic Engineering, Primary Systems Integrity, Equipment Operability and Aging, and ECCS Strainer Blockage Research ampersand Regulatory Issues. Individual papers have been cataloged separately

  13. USNRC HTGR safety research program overview

    International Nuclear Information System (INIS)

    Foulds, R.B.

    1982-01-01

    An overview is given of current activities and planned research efforts of the US Nuclear Regulatory Commission (NRC) HTGR Safety Program. On-going research at Brookhaven National Laboratory, Oak Ridge National Laboratory, Los Alamos National Laboratory, and Pacific Northwest Laboratory are outlined. Tables include: HTGR Safety Issues, Program Tasks, HTGR Computer Code Library, and Milestones for Long Range Research Plan

  14. Safety of research reactors - A regulator's perspective

    International Nuclear Information System (INIS)

    Rahman, M.S.

    2001-01-01

    Due to historical reasons research reactors have received less regulatory attention in the world than nuclear power plants. This has given rise to several safety issues which, if not addressed immediately, may result in an undesirable situation. However, in Pakistan, research reactors and power reactors have received due attention from the regulatory authority. The Pakistan Research Reactor-1 has been under regulatory surveillance since 1965, the year of its commissioning. The second reactor has also undergone all the safety reviews and checks mandated by the licensing procedures. A brief description of the regulatory framework, the several safety reviews carried out have been briefly described in this paper. Significant activities of the regulatory authority have also been described in verifying the safety of research reactors in Pakistan along with the future activities. The views of the Pakistani regulatory authority on the specific issues identified by the IAEA have been presented along with specific recommendations to the IAEA. We are of the opinion that there are more Member States operating nuclear research reactors than nuclear power plants. Therefore, there should be more emphasis on the research reactor safety, which somehow has not been the case. In several recommendations made to the IAEA on the specific safety issues the emphasis has been, in general, to have a similar documentation and approach for maintaining and verifying operational safety at research reactors as is currently available for nuclear power reactors and may be planned for nuclear fuel cycle facilities. (author)

  15. A Network Diffusion Model of Food Safety Scare Behavior considering Information Transparency

    Directory of Open Access Journals (Sweden)

    Tingqiang Chen

    2017-01-01

    Full Text Available This study constructs the network diffusion model of food safety scare behavior under the effect of information transparency and examines the network topology and evolution characteristics of food safety scare behavior in a numerical simulation. The main conclusions of this study are as follows. (1 Under the effect of information transparency, the network degree distribution of food safety scare behavior diffusion demonstrates the decreasing characteristics of diminishing margins. (2 Food safety scare behavior diffusion increases with the information dissemination rate and consumer concern about food safety incidents and shows the characteristics of monotone increasing. And with the increasing of the government food safety supervision information transparency and media food safety supervision information transparency, the whole is declining characteristic of diminishing marginal. In addition, the extinction of food safety scare behavior cannot be achieved gradually given a single regulation of government food safety supervision information transparency and media food safety supervision information transparency. (3 The interaction effects between improving government food safety supervision information transparency or media food safety supervision information transparency and declining consumer concerns about food safety incidents or information transmission rate can engender the suppression of food safety scare behavior diffusion.

  16. The Nirex safety assessment research programme for 1987/88

    International Nuclear Information System (INIS)

    Cooper, M.J.; Tasker, P.W.

    1987-10-01

    This report outlines the work of the Nirex Safety Assessment Research Programme during the period 1st April 1987 to 31st March 1988. The research programme has the specific objective of providing the information requirements of the post-emplacement radiological safety case for the disposal of low-level and intermediate-level radioactive waste in underground repositories. For convenience the programme has been divided into seven areas: physical containment, near-field radionuclide chemistry, evolution of the near-field aqueous environment, mass transfer in the geosphere, the biosphere, gas evolution and migration, and integrated studies. The near-field includes the waste, its immobilising medium, its container, the engineered structure in which the container is emplaced and the immediately adjacent geological formation disturbed by the construction of the repository. (author)

  17. Safety assessment of research reactors and preparation of the safety analysis report

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Guide presents guidelines, approved by international consensus, for the preparation, review and assessment of safety documentation for research reactors such as the Safety Analysis Report. While the Guide is most applicable to research reactors in the design and construction stage, it is also recommended for use during relicensing or reassessment of existing reactors

  18. Safety-related LWR research. Annual report 1993

    International Nuclear Information System (INIS)

    Hueper, R.

    1994-06-01

    The reactor safety R and D work of the Karlsruhe Nuclear Research Centre (KfK) has been part of the Nuclear Safety Research Project (PSF) since 1990. The present annual report 1993 summarizes the results on LWR safety. The research tasks are coordinated in agreement with internal and external working groups. The contributions to this report correspond to the status at the end of 1993. (orig./HP) [de

  19. Reactor safety research - results and perspectives

    International Nuclear Information System (INIS)

    Banaschik, M.

    1989-01-01

    The work performed so far is an essential contribution to the determination of the safety margins of nuclear facilities and their systems and to the further development of safety engineering. The further development of safety engineering involves a shift of emphasis in reactor safety research towards event sequences beyond the design basis. The aim of this shift in emphasis is the further development of the preventive level. This is based on the fact that the conservative design of the operating and safety systems involves and essential safety potential. The R and D work is intended to help develop accident management measures and to take the plant back into the safe state even after severe accidents. In this context, it is necessary to make full use of the safety margins of the plant and to include the operating systems for coping with accidents. As a result of the aims, the research work approaches operating and plant-specific processes. (orig./DG) [de

  20. Annual report on reactor safety research projects sponsored by the Minister for Research and Technology of the Federal Republic of Germany 1989

    International Nuclear Information System (INIS)

    1990-08-01

    Investigations on the safety of light water reactors (LWR) being performed in the framework of his research program on reactor safety are sponsored by the Bundesminister fuer Forschung und Technologie (BMFT) (Federal Minister for Research and Technology). Objective of this program is to investigate in greater detail the safety margins of nuclear power plants and their systems and the further development of safety technology. Besides the investigations of LWR tasks also projects on the safety of advanced reactors are sponsored by the BMFT. The Gesellschaft fuer Reaktorsicherheit (GRS), (Society for Reactor Safety), by order of the BMFT, informs continuously of the status of such investigations by means of semi-annual and annual publication of progress reports within the series GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the Forschungsbetreuung at the GRS, (FB) (Research Coordination Department), within the framework of general informations of progress in reactor safety research. The individual reports are classified according to the same classification system as applied in the nuclear index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in sequence of their project numbers. (orig./HP)

  1. Role of in-house safety analysis and research activities in regulatory decision making

    International Nuclear Information System (INIS)

    Pradhan, Santosh K.; Nagrale, Dhanesh B.; Gaikwad, Avinash J.

    2015-01-01

    Achievement of an acceptable level of nuclear safety is an essential requirement for the peaceful utilization of nuclear energy. The success of Global Nuclear Safety Regime is built upon a foundation of research. Such research has been sponsored by Governments and industry and has led to improved designs, safer and more reliable plant operation, and improvements in operating plant efficiency. A key element of this research has been the nuclear safety research performed or sponsored by regulatory organizations. In part, it has been the safety research performed or sponsored by regulatory organizations that has contributed to improved safety and has laid the foundation for activities such as risk-informed regulation, plant life extension, improved plant performance (e.g. power uprates) and new plant designs. The regulatory research program is meant to improve the regulatory authority’s knowledge where uncertainty exists, where safety margins are not well-characterized, and where regulatory decisions need to be confirmed in existing or new designs and technologies. The regulatory body get research initiated either in-house or by the licensee or through technical support organizations (TSOs). Research and analysis carried out within the regulatory body is of immense value in this context. This could be in the form of analysis of safety significant events, analysis of severe accidents, review of operating experience, independent checks of critical designs and even review of operator responses under different situations towards arriving at modifications to training programmes and licensing procedures for operating personnel. A latent benefit of regulatory research carried out by the regulators themselves is that it improves their technical competence considerably which in turn leads to high quality safety reviews and improved regulation in general. The aim of the present paper is to provide an overview of role of regulatory research and the in-house regulatory safety

  2. Occupational health and safety surveillance and research using workers' compensation data.

    Science.gov (United States)

    Utterback, David F; Schnorr, Teresa M; Silverstein, Barbara A; Spieler, Emily A; Leamon, Tom B; Amick, Benjamin C

    2012-02-01

    Examine uses of US workers' compensation (WC) data for occupational safety and health purposes. This article is a summary of the proceedings from an invitational workshop held in September 2009 to discuss the use of WC data for occupational safety and health prevention purposes. Workers' compensation data systems, although limited in many ways, contain information such as medical treatments, their costs and outcomes, and disability causes that are unavailable from national occupational surveillance sources. Despite their limitations, WC records are collected in a manner consistent with many occupational health and safety surveillance needs. Reports are available on the use of WC data for surveillance and research purposes such as estimating the frequency, magnitude, severity, and cost of compensated injuries. Inconsistencies in WC data can limit generalization of research results.

  3. Reports on research projects sponsored by the Federal Minister for Research and Technology in the field of reactor safety

    International Nuclear Information System (INIS)

    1979-03-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS - Projects) are sponsored by the BMFT (Federal Minister for Research and Technology), Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear power plants and their systems and the further development of safety technology. Besides the investigations of LWR tasks first projects on the safety of FBR type reactors are sponsored by the BMFT. The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of such investigations by means of quarterly and annually publication of progress reports within the series GRS - F - Fortschrittsberichte (GRS - F - Progress Reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work. The individual reports are arranged according to the amended LWR Safety Research Program of the BMFT. Another table contents uses the same classification system as applied in the Nuclear Safety Index of the CEC European Communities and the OECD. (orig./HP) [de

  4. Nuclear Safety Research Department annual report 2000

    DEFF Research Database (Denmark)

    Majborn, B.; Nielsen, Sven Poul; Damkjær, A.

    2001-01-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2000. The department's research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and "Radioecology andTracer Studies". In addtion the department...

  5. Nuclear Safety Research Department annual report 2001

    DEFF Research Database (Denmark)

    Majborn, B.; Damkjær, A.; Nielsen, Sven Poul

    2002-01-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2001. The department's research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and "Radioecology andTracer Studies". In addition the department...

  6. Trade associations and labor organizations as intermediaries for disseminating workplace safety and health information.

    Science.gov (United States)

    Okun, Andrea H; Watkins, Janice P; Schulte, Paul A

    2017-09-01

    There has not been a systematic study of the nature and extent to which business and professional trade associations and labor organizations obtain and communicate workplace safety and health information to their members. These organizations can serve as important intermediaries and play a central role in transferring this information to their members. A sample of 2294 business and professional trade associations and labor organizations in eight industrial sectors identified by the National Occupational Research Agenda was surveyed via telephone. A small percent of these organizations (40.9% of labor organizations, 15.6% of business associations, and 9.6% of professional associations) were shown to distribute workplace safety and health information to their members. Large differences were also observed between industrial sectors with construction having the highest total percent of organizations disseminating workplace safety and health information. There appears to be significant potential to utilize trade and labor organizations as intermediaries for transferring workplace safety and health information to their members. Government agencies have a unique opportunity to partner with these organizations and to utilize their existing communication channels to address high risk workplace safety and health concerns. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  7. Nordic nuclear safety research 1994-1997. Project on disposal of radioactive waste

    International Nuclear Information System (INIS)

    Broden, Karin

    1999-01-01

    This presentation describes the Nordic Nuclear Safety Research (NKS) programme, which is a scientific co-operation programme in nuclear safety, radiation protection and emergence preparedness. The purpose of the programme is to carry out cost-effective Nordic projects, thus producing research results, exercises, information, manuals, recommendations, and other types of background material. This material is to serve decision-makers and other concerned staff members at authorities, research establishments and enterprises in the nuclear field. Three waste disposal projects under NKS are briefly described: (1) Waste characterisation, (2) Performance analysis of the engineered barrier system of the repositories for low- and intermediate-level waste, (3) Environmental impact assessment

  8. Research for the safety of existing nuclear facilities

    International Nuclear Information System (INIS)

    Teschendorff, Victor; Bruna, Giovanni B.; Gelder, Pieter de

    2007-01-01

    The essential role of research for maintaining the high safety standard for the existing nuclear installations is outlined in the context of internationally agreed needs. The three co-authoring Technical Safety Organisations are committed to continued safety research, recognising operational experience and new technologies as the main driving forces. The safety margin concept is introduced and new trends in traditional and new areas of safety research are identified. The importance of a sufficient experimental infrastructure and international co-operation in sustainable networks is highlighted. (orig.)

  9. Identifying research priorities for patient safety in mental health: an international expert Delphi study

    Science.gov (United States)

    Murray, Kevin; Thibaut, Bethan; Ramtale, Sonny Christian; Adam, Sheila; Darzi, Ara; Archer, Stephanie

    2018-01-01

    Objective Physical healthcare has dominated the patient safety field; research in mental healthcare is not as extensive but findings from physical healthcare cannot be applied to mental healthcare because it delivers specialised care that faces unique challenges. Therefore, a clearer focus and recognition of patient safety in mental health as a distinct research area is still needed. The study aim is to identify future research priorities in the field of patient safety in mental health. Design Semistructured interviews were conducted with the experts to ascertain their views on research priorities in patient safety in mental health. A three-round online Delphi study was used to ascertain consensus on 117 research priority statements. Setting and participants Academic and service user experts from the USA, UK, Switzerland, Netherlands, Ireland, Denmark, Finland, Germany, Sweden, Australia, New Zealand and Singapore were included. Main outcome measures Agreement in research priorities on a five-point scale. Results Seventy-nine statements achieved consensus (>70%). Three out of the top six research priorities were patient driven; experts agreed that understanding the patient perspective on safety planning, on self-harm and on medication was important. Conclusions This is the first international Delphi study to identify research priorities in safety in the mental field as determined by expert academic and service user perspectives. A reasonable consensus was obtained from international perspectives on future research priorities in patient safety in mental health; however, the patient perspective on their mental healthcare is a priority. The research agenda for patient safety in mental health identified here should be informed by patient safety science more broadly and used to further establish this area as a priority in its own right. The safety of mental health patients must have parity with that of physical health patients to achieve this. PMID:29502096

  10. Chinese Road Safety and Driver Behavior Research

    OpenAIRE

    Wang, Junhua

    2015-01-01

    The seminar will begin with a brief overview of the Chinese road safety situation, including current safety problems, and then move on to discuss safety research including driver behavior, freeway operational safety, and infrastructure development.

  11. Annual report on reactor safety research projects sponsored by the Ministry for Research and Technology of the Federal Republic of Germany 1987

    International Nuclear Information System (INIS)

    1988-06-01

    The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of such investigations by means of semi-annual and annual publication of progress reports within the series GRS-F-Fortschrittsberichte (GRS-F-Progress-Reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the FB (Research Coordination Department), Forschungsbetreuung at the GRS, within the framework of general information of progress in reactor safety research. The individual reports are classified according to the Research Program on the Safety of LWRs of the BMFT. Another table of contents uses the same classification system as applied in the Nuclear Safety Index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The report are arranged in the sequence of their project numbers. (orig./HP) [de

  12. Reports on research programs in the field of reactor safety sponsored by the Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1985-10-01

    Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the FB (research coordination department), Forschungsbetreuung at the GRS, within the framework of general information of progress in reactor safety research. The individual reports are classified according to the research program on the safety of LWR 1977-1980 of the BMFT. Another table of contents uses the same classification system as applied in the nuclear safety index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in the sequence of their project numbers. (orig./PW) [de

  13. Reports on research programs in the field of reactor safety sponsored by the Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1989-06-01

    Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the FB Forschungsbetreuung (Research Coordination Department) at the GRS, within the framework of general information of progress in reactor safety research. The individual reports are classified according to the research program on the safety of LWR 1977-1980 of the BMFT. Another table of contents uses the same classification system as applied in the nuclear safety index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in the sequence of their project numbers. (orig.) [de

  14. Reports on research programs in the field of reactor safety sponsored by the Federal Ministry of Research and Technology

    International Nuclear Information System (INIS)

    1991-12-01

    Each progress report presents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the Forschungsbetreuung at the GRS, (FB) (Research Coordination Department), within the framework of general informations of progreess in reactor safety research. The individual reports are classified according to the research program of the safety of LWR 1977-1980 of the BMFT. Another table of contents uses the same classification system as applied in the nuclear safety index of the CEC (Commission of the European Communitites) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in the sequence of their project numbers. (orig./HP) [de

  15. Reports on research programs in the field of reactor safety sponsored by the Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1984-09-01

    Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the FB (Research Coordination Department), Forschungsbetreuung at the GRS, within the framework of general information of progress in reactor safety research. The individual reports are classified according to the research program on the safety of LWRS 1977-1980 of the BMFT. Another table of contents uses the same classification system as applied in the nuclear safety index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in the sequence of their project numbers. (orig./HP) [de

  16. Reports on research programs in the field of reactor safety sponsored by the Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1988-10-01

    Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the FB Forschungsbetreuung (research coordination department) at the GRS, within the framework of general information of progress in reactor safety research. The individual reports are classified according to the research program on the safety of LWR 1977-1980 of the BMFT. Another table of contents uses the same classification system as applied in the nuclear safety index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in the sequence of their project numbers. (orig.) [de

  17. Reports on research programs in the field of reactor safety sponsored by the Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1989-11-01

    Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the FB Forschungsbetreuung (Research Coordination Department) at the GRS, within the framework of general information of progress in reactor safety research. The individual reports are classified according to the research program on the safety of LWR 1977-1980 of the BMFT. Another table of contents uses the same classification system as applied in the nuclear safety index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in the sequence of their project numbers. (orig.) [de

  18. Reports on research programs in the field of reactor safety sponsored by the Federal Ministry of Research and Technology

    International Nuclear Information System (INIS)

    1993-09-01

    Each progress report presents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the Forschungsbetreuung at the GRS, (FB) (Research Coordination Department), within the framework of general informations of progress in reactor safety research. The individual reports are classified according to the research program of the safety of LWR 1977-1980 of the BMFT. Another table of contents uses the same classification system as applied in the nuclear safety index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in the sequence of their project numbers. (orig.) [de

  19. Reports on research programs in the field of reactor safety sponsored by the Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1988-06-01

    Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the FB Forschungsbetreuung (research coordination department) at the GRS, within the framework of general information of progress in reactor safety research. The individual reports are classified according to the research program on the safety of LWR 1977-1980 of the BMFT. Another table of contents uses the same classification system as applied in the nuclear safety index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in the sequence of their project numbers. (orig.) [de

  20. Reports on research programs in the field of reactor safety sponsored by the Federal Ministry of Research and Technology

    International Nuclear Information System (INIS)

    1992-09-01

    Each progress report presents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the Forschungsbetreuung at the GRS, (FB) (Research Coordination Department), within the framework of general informations of progress in reactor safety research. The individual reports are classified according to the research program of the safety of LWR 1977-1980 of the BMFT. Another table of contents uses the same classification system as applied in the nuclear safety index of the CEC (Commission of the European Communitites) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in the sequence of their project numbers. (orig.) [de

  1. Reports on research programs in the field of reactor safety sponsored by the Federal Ministry of Research and Technology

    International Nuclear Information System (INIS)

    1993-03-01

    Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the Forschungsbetreuung at the GRS, (FB) (Research Coordination Department), within the framework of general informations of progress in reactor safety research. The individual reports are classified according to the research program of the safety of LWR 1977-1980 of the BMFT. Another table uses the same classification system as applied in the nuclear safety index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in sequence of their project numbers. (orig./HP) [de

  2. Reactor safety research. The CEC contribution

    International Nuclear Information System (INIS)

    Krischer, W.

    1990-01-01

    The involvement of the EC Commission in the reactor safety research dates back almost to the implementation of the EURATOM Treaty and has thus lasted for thirty years. The need for close collaboration and for general consensus on some crucial problems of concern to the public, has made the role of international organizations and, as far as Europe is concerned, the role of the European Community particularly important. The areas in which the CEC has been active during the last five years are widespread. This is partly due to the fact that, after TMI and Chernobyl, the effort and the interest of the different countries in reactor safety was considerable. Reactor Safety Research represents the proceedings of a seminar held by the Commission at the end of its research programme 1984-88 on reactor safety. As such it gives a comprehensive overview of the recent activities and main results achieved in the CEC Joint Research Centre and in national laboratories throughout Europe on the basis of shared cost actions. In a concluding chapter the book reports on the opinions, expressed during a panel by a group of major exponents, on the needs for future research. The main topics addressed are, with particular reference to Light Water Reactors (LWRS): reliability and risk evaluation, inspection of steel components, primary circuit components end-of-life prediction, and abnormal behaviour of reactor cooling systems. As far as LMFBRs are concerned, the topics covered are: severe accident modelling, material properties and structural behaviour studies. There are 67 pages, all of which are indexed separately. Reactor Safety Research will be of particular interest to reliability and safety engineers, nuclear engineers and technicians, and mechanical and structural engineers. (author)

  3. Probabilistic safety assessment for research reactors

    International Nuclear Information System (INIS)

    1986-12-01

    Increasing interest in using Probabilistic Safety Assessment (PSA) methods for research reactor safety is being observed in many countries throughout the world. This is mainly because of the great ability of this approach in achieving safe and reliable operation of research reactors. There is also a need to assist developing countries to apply Probabilistic Safety Assessment to existing nuclear facilities which are simpler and therefore less complicated to analyse than a large Nuclear Power Plant. It may be important, therefore, to develop PSA for research reactors. This might also help to better understand the safety characteristics of the reactor and to base any backfitting on a cost-benefit analysis which would ensure that only necessary changes are made. This document touches on all the key aspects of PSA but placed greater emphasis on so-called systems analysis aspects rather than the in-plant or ex-plant consequences

  4. Light water reactor safety research project

    International Nuclear Information System (INIS)

    Markoczy, G.; Aksan, S.N.; Behringer, K.; Prodan, M.; Stierli, F.; Ullrich, G.

    1980-07-01

    The research and development activities for the safety of Light Water Power Reactors carried out 1979 at the Swiss Federal Institute for Reactor Research are described. Considerations concerning the necessity, objectives and size of the Safety Research Project are presented, followed by a detailed discussion of the activities in the five tasks of the program, covering fracture mechanics and nondestructive testing, thermal-hydraulics, reactor noise analysis and pressure vessel steel surveillance. (Auth.)

  5. Reactor safety research in times of change

    International Nuclear Information System (INIS)

    Zipper, Reinhard

    2013-01-01

    Since the early 1970ies reactor safety research sponsored by the German Ministry of Economics an Technology and its predecessors and pursued independently from interests of industry or industrial associations as well as from current licensing issues significantly contributed to the extension of knowledge regarding risks and possible threats associated with the operation of nuclear power plants. The results of these research activities triggered several measures taken by industry and utilities to further enhance the internationally recognized high safety standards of nuclear power plants in Germany. Furthermore, by including especially universities in the distinguished research activities a large number of young scientists were given the opportunity to qualify in the field of nuclear reactor technology and safety thus contributing to the preservation of competence during the demographic change. The nuclear phase out in Germany affects also issues of reactor safety research in Germany. While Germany will progressively decrease and terminate the use of nuclear energy for public power supply other countries in Europe and in other parts of the world are continuing, expanding and even starting the use of nuclear power. As generally recognized, nuclear safety is an international issue and in the wake of the Fukushima disaster there are several initiatives to launch a system of internationally binding safety rules and guide lines. The German Competence Alliance therefore has elaborated a framework of areas were future reactor safety research will still be needed to support German efforts based on own and independent expertise to continuously develop and establish highest safety standards for the use of nuclear power supply domestic and abroad.

  6. 77 FR 15453 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2012-03-15

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... information collection titled, ``Gas Pipeline Safety Program Certification and Hazardous Liquid Pipeline... collection request that PHMSA will be submitting to OMB for renewal titled, ``Gas Pipeline Safety Program...

  7. Research on PWR safety in France

    International Nuclear Information System (INIS)

    Zammite, R.

    1988-07-01

    The French nuclear safety arrangements form a centralized system characterized by cooperation between the government authorities, their technical advisers and the operators of the installations, especially between the Commissariat a l'Energie Atomique (CEA) and Electricite de France (EDF). This cooperation in no way contradicts the respective responsibilities of the different parties, in particular those of EDF regarding the safety of its installations and those of CEA as the government's technical adviser and safety analyst. However, it considerably affects the research on reactor safety, which is mainly performed by the CEA Institute for Nuclear Safety and Protection (IPSN), in collaboration with EDF. For PWRs, the safety preoccupations concerning their development, commissioning and operation can be divided into the following three categories: A. Safety in design and construction, B. Safety in operation and the control of potential accidents, C. Maintaining safety - aging problems. The effort consecrated to each category has varied in the past and will continue to do so in the future. At the present stage, emphasis is being given to categories B and C. The appendix includes tables which indicate, for categories A, B and C, the relationship between the existing research programmes and the questions remaining open that they are intended to solve

  8. Development of several data bases related to reactor safety research including probabilistic safety assessment and incident analysis at JAERI

    International Nuclear Information System (INIS)

    Kobayashi, Kensuke; Oikawa, Tetsukuni; Watanabe, Norio; Izumi, Fumio; Higuchi, Suminori

    1986-01-01

    Presented are several databases developed at JAERI for reactor safety research including probabilistic safety assessment and incident analysis. First described are the recent developments of the databases such as 1) the component failure rate database, 2) the OECD/NEA/IRS information retrieval system, 3) the nuclear power plant database and so on. Then several issues are discussed referring mostly to the operation of the database (data input and transcoding) and to the retrieval and utilization of the information. Finally, emphasis is given to the increasing role which artifitial intelligence techniques such as natural language treatment and expert systems may play in improving the future capabilities of the databases. (author)

  9. Presentation of the Nirex disposal safety research programme

    International Nuclear Information System (INIS)

    1988-01-01

    Implementation of Nirex plans for the disposal of solid low and intermediate level radioactive waste deep underground requires assurances of safety at every stage. This includes assessment of long-term safety, which must be based on an understanding of how the repository and its contents will behave far into the future. This understanding is being provided by the company's substantial disposal research and development programme, currently running at a level of more than Pound 5 million annually. The principal contractor for the work is the UKAEA's Harwell Laboratory, with contributions from experts in universities and industry. Information from other national and international programmes also contributes. This document supports a presentation held at the CEGB Conference Centre, Didcot Power Station, Oxfordshire on 1st November 1988 to outline the scope of the work and its objectives in the context of the Company's plans and the requirements of safety assessments. It summarises the results and understanding being obtained from the current programme. (author)

  10. Think over nuclear safety. ''Information asymmetry'' and ''comminicative action''

    International Nuclear Information System (INIS)

    Suzuki, Atsuyuki

    2006-01-01

    Nuclear safety should be fully understood not only technically but also socially. In order to think over nuclear safety socially, four different concepts were recommended to refer, which were ''procedural rationality'', information asymmetry'', ''certainty effect'' and ''communicative action'' proposed by three economists and a philosopher respectively. Risk-based communication approach for nuclear safety could be effective within the higher frequency area than safety goal, but not good for the lower frequency area than safety goal. The latter could be highly subjective and more qualitative. For this area, ''safety communication'' would be highly maintained with taking account of existence of ''information asymmetry'' and need of ''communicative action''. (T.Tanaka)

  11. Keeping nurse researchers safe: workplace health and safety issues.

    Science.gov (United States)

    Barr, Jennieffer; Welch, Anthony

    2012-07-01

    This article is a report of a qualitative study of workplace health and safety issues in nursing research. Researcher health and safety have become increasing concerns as there is an increased amount of research undertaken in the community and yet there is a lack of appropriate guidelines on how to keep researchers safe when undertaking fieldwork. This study employed a descriptive qualitative approach, using different sources of data to find any references to researcher health and safety issues. A simple descriptive approach to inquiry was used for this study. Three approaches to data collection were used: interviews with 15 researchers, audits of 18 ethics applications, and exploration of the literature between 1992 and 2010 for examples of researcher safety issues. Data analysis from the three approaches identified participant comments, narrative descriptions or statements focused on researcher health and safety. Nurse researchers' health and safety may be at risk when conducting research in the community. Particular concern involves conducting sensitive research where researchers are physically at risk of being harmed, or being exposed to the development of somatic symptoms. Nurse researchers may perceive the level of risk of harm as lower than the actual or potential harm present in research. Nurse researchers do not consistently implement risk assessment before and during research. Researcher health and safety should be carefully considered at all stages of the research process. Research focusing on sensitive data and vulnerable populations need to consider risk minimization through strategies such as appropriate researcher preparation, safety during data collection, and debriefing if required. © 2012 Blackwell Publishing Ltd.

  12. Proceedings of the US Nuclear Regulatory Commission twentieth water reactor safety information meeting

    International Nuclear Information System (INIS)

    Weiss, A.J.

    1993-03-01

    This three-volume report contains papers presented at the Twentieth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 21--23, 1992. The papers describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included 10 different papers presented by researchersfrom CEC, China, Finland, France, Germany, Japan, Spain and Taiwan

  13. Research on the improvement of nuclear safety

    International Nuclear Information System (INIS)

    Yoo, Keon Joong; Kim, Dong Soo; Kim, Hui Dong; Park, Chang Kyu

    1993-06-01

    To improve the nuclear safety, this project is divided into three areas which are the development of safety analysis technology, the development of severe accident analysis technology and the development of integrated safety assessment technology. 1. The development of safety analysis technology. The present research aims at the development of necessary technologies for nuclear safety analysis in Korea. Establishment of the safety analysis technologies enables to reduce the expenditure both by eliminating excessive conservatisms incorporated in nuclear reactor design and by increasing safety margins in operation. It also contributes to improving plant safety through realistic analyses of the Emergency Operating Procedures (EOP). 2. The development of severe accident analysis technology. By the computer codes (MELCOR and CONTAIN), the in-vessel and the ex-vessel severe accident phenomena are simulated. 3. The development of integrated safety assessment technology. In the development of integrated safety assessment techniques, the included research areas are the improvement of PSA computer codes, the basic study on the methodology for human reliability analysis (HRA) and common cause failure (CCF). For the development of the level 2 PSA computer code, the basic research for the interface between level 1 and 2 PSA, the methodology for the treatment of containment event tree are performed. Also the new technologies such as artificial intelligence, object-oriented programming techniques are used for the improvement of computer code and the assessment techniques

  14. Risk-informed, performance-based safety-security interface

    International Nuclear Information System (INIS)

    Mrowca, B.; Eltawila, F.

    2012-01-01

    Safety-security interface is a term that is used as part of the commercial nuclear power security framework to promote coordination of the many potentially adverse interactions between plant security and plant safety. Its object is to prevent the compromise of either. It is also used to describe the concept of building security into a plant's design similar to the long standing practices used for safety therefore reducing the complexity of the operational security while maintaining or enhancing overall security. With this in mind, the concept of safety-security interface, when fully implemented, can influence a plant's design, operation and maintenance. It brings the approach use for plant security to one that is similar to that used for safety. Also, as with safety, the application of risk-informed techniques to fully implement and integrate safety and security is important. Just as designers and operators have applied these techniques to enhance and focus safety, these same techniques can be applied to security to not only enhance and focus the security but also to aid in the implementation of effective techniques to address the safety-security interfaces. Implementing this safety-security concept early within the design process can prevent or reduce security vulnerabilities through low cost solutions that often become difficult and expensive to retrofit later in the design and/or post construction period. These security considerations address many of the same issues as safety in ensuring that the response of equipment and plant personnel are adequate. That is, both safety and security are focused on reaching safe shutdown and preventing radiological release. However, the initiation of challenges and the progression of actions in response these challenges and even the definitions of safe shutdown can be considerably different. This paper explores the techniques and limitations that are employed to fully implement a risk-informed, safety-security interface

  15. Research reactor safety - an overview of crucial aspects

    International Nuclear Information System (INIS)

    Laverie, M.

    1998-01-01

    Chronology of the commissioning orders of the French research reactors illustrates the importance of the time factor. When looking at older reactors, one must, on one hand, demonstrate, not only the absence of risks tied to the reactor's ageing, but, on the other hand, adapt the reactor's original technical designs to today's safety practices and standards. The evolution of reactor safety requirements over the last twenty years sometimes makes this adaptation difficult. The design of the next research reactors, after a one to two decades pause in construction, will require to set up new safety assessment bases that will have to take into account the nuclear power plant safety evolution. As a general statement, research reactor safety approaches will require the incorporation of specific design rules for research reactors: experience feedback for one of a kind design, frequent modifications required by research programmes, special operational requirements with operators/researchers interfaces. (author)

  16. Information systems in food safety management.

    Science.gov (United States)

    McMeekin, T A; Baranyi, J; Bowman, J; Dalgaard, P; Kirk, M; Ross, T; Schmid, S; Zwietering, M H

    2006-12-01

    Information systems are concerned with data capture, storage, analysis and retrieval. In the context of food safety management they are vital to assist decision making in a short time frame, potentially allowing decisions to be made and practices to be actioned in real time. Databases with information on microorganisms pertinent to the identification of foodborne pathogens, response of microbial populations to the environment and characteristics of foods and processing conditions are the cornerstone of food safety management systems. Such databases find application in: Identifying pathogens in food at the genus or species level using applied systematics in automated ways. Identifying pathogens below the species level by molecular subtyping, an approach successfully applied in epidemiological investigations of foodborne disease and the basis for national surveillance programs. Predictive modelling software, such as the Pathogen Modeling Program and Growth Predictor (that took over the main functions of Food Micromodel) the raw data of which were combined as the genesis of an international web based searchable database (ComBase). Expert systems combining databases on microbial characteristics, food composition and processing information with the resulting "pattern match" indicating problems that may arise from changes in product formulation or processing conditions. Computer software packages to aid the practical application of HACCP and risk assessment and decision trees to bring logical sequences to establishing and modifying food safety management practices. In addition there are many other uses of information systems that benefit food safety more globally, including: Rapid dissemination of information on foodborne disease outbreaks via websites or list servers carrying commentary from many sources, including the press and interest groups, on the reasons for and consequences of foodborne disease incidents. Active surveillance networks allowing rapid dissemination

  17. Functional safety of health information technology.

    LENUS (Irish Health Repository)

    Chadwick, Liam

    2012-03-01

    In an effort to improve patient safety and reduce adverse events, there has been a rapid growth in the utilisation of health information technology (HIT). However, little work has examined the safety of the HIT systems themselves, the methods used in their development or the potential errors they may introduce into existing systems. This article introduces the conventional safety-related systems development standard IEC 61508 to the medical domain. It is proposed that the techniques used in conventional safety-related systems development should be utilised by regulation bodies, healthcare organisations and HIT developers to provide an assurance of safety for HIT systems. In adopting the IEC 61508 methodology for HIT development and integration, inherent problems in the new systems can be identified and corrected during their development. Also, IEC 61508 should be used to develop a healthcare-specific standard to allow stakeholders to provide an assurance of a system\\'s safety.

  18. Twenty-second water reactor safety information meeting: Proceedings. Volume 1: Plenary session; Advanced instrumentation and control hardware and software; Human factors research; IPE and PRA

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1995-04-01

    This three-volume report contains papers presented at the Twenty-Second Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 24--26, 1994. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Finland, France, Italy, Japan, Russia, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  19. Twenty-second water reactor safety information meeting: Proceedings. Volume 1: Plenary session; Advanced instrumentation and control hardware and software; Human factors research; IPE and PRA

    International Nuclear Information System (INIS)

    Monteleone, S.

    1995-04-01

    This three-volume report contains papers presented at the Twenty-Second Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 24--26, 1994. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Finland, France, Italy, Japan, Russia, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  20. Proceedings of the US Nuclear Regulatory Commission nineteenth water reactor safety information meeting

    International Nuclear Information System (INIS)

    Weiss, A.J.

    1992-04-01

    This three-volume report contains 83 papers out of the 108 that were presented at the Nineteenth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 28--30, 1991. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included 14 different papers presented by researchers from Canada, Germany, France, Japan, Sweden, Taiwan, and USSR. This document, Volume 3, presents papers on: Structural engineering; Advanced reactor research; Advanced passive reactors; Human factors research; Human factors issues related to advanced passive light water researchers; Thermal Hydraulics; and Earth sciences. The individual papers have been cataloged separately

  1. Recent innovations in IFR safety research

    International Nuclear Information System (INIS)

    Wade, D.C.

    1994-01-01

    Recent progress in IFR safety research suggests potential for two extensions of passive features to improve the robustness of safety response. This report provides a discussion of these recent innovations

  2. Safety evaluation of the Dalat research reactor operation

    International Nuclear Information System (INIS)

    Long, V.H.; Lam, P.V.; An, T.K.

    1989-01-01

    After an introduction presenting the essential characteristics of the Dalat Nuclear Research Reactor, the document presents i) The safety assurance condition of the reactor, ii) Its safety behaviour after 5 years of operation, iii) Safety research being realized on the reactor. Following is questionnaire of safety evaluation and a list of attachments, which concern the reactor

  3. Reports on research projects in the field of reactor safety sponsored by the Federal Minister for Research and Technology

    International Nuclear Information System (INIS)

    1978-09-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS - Projects) are sponsored by the BMFT (Federal Minister for Research and Technology), der Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear power plants and their systems and the further development of safety technology. Besides the investigations of LWR tasks first projects on the safety of FBR type reactors are sponsored by the BMFT. The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of such investigations by means of quarterly and annually publication of progress reports within the series GRS - F Fortschrittsberichte (GRS - F - Progress Reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work. The individual reports are arranged according to the amended LWR Safety Research Program of the BMFT. Another table contents uses the same classification system as applied in the Nuclear Safety Index of the CEC Communities and the OECD. (orig./HP) 891 HP [de

  4. Reports on research projects in the field of reactor safety sponsored by the Federal Ministry for research and technology

    International Nuclear Information System (INIS)

    1979-09-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS - Projects) are sponsored by the BMFT (Federal Minister for Research and Technology), Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear power-plants and their systems and the further development of safety technology. Besides the investigations of LWR tasks first projects on the safety of FBR type reactors are sponsored by the BMFT. The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of such investigations by means of quarterly and annually publication of progress reports within the series GRS - F - Fortschrittsberichte (GRS - F - Progress Reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work. The individual reports are arranged according to the amended LWR Safety Research Program of the BMFT in the near future. Another table contents uses the same classification system as applied in the Nuclear Safety Index of the CEC Communities and the OECD. (orig.) [de

  5. Report on the research projects in the field of reactor safety sponsored by the Federal Minister for Research and Technology

    International Nuclear Information System (INIS)

    1978-09-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS - Projects) are sponsored by the BMFT (Federal Minister for Research and Technology), Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear power plants and their systems and the further development of safety technology. Besides the investigations of LWR tasks first projects on the safety of FBR type reactors are sponsored by the BMFT. The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of such investigations by means of quarterly and annually publication of progress reports within the series GRS - F -Fortschrittsberichte (GRS - F - Progress Reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work, The individual reports are arranged according to the amended LWR Safety Research Program of the BMFT. Another table contents uses the same classification system as applied in the Nuclear Safety Index of the CEC Communities and the OECD. (orig./HP) 891 HP [de

  6. Proceedings of the US Nuclear Regulatory Commission nineteenth water reactor safety information meeting

    International Nuclear Information System (INIS)

    Weiss, A.J.

    1992-04-01

    This three-volume report contains 83 papers out of the 108 that were presented at the Nineteenth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 28--30, 1991. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included 14 different papers presented by researchers from Canada, Germany, France, Japan, Sweden, Taiwan, and USSR. This document, Volume 2, presents papers on: Severe accident research; Severe accident and policy implementation; and Accident management. The individual papers have been cataloged separately

  7. Seismic safety research program plan

    International Nuclear Information System (INIS)

    1985-06-01

    This plan describes the safety issues, regulatory needs, and the research necessary to address these needs. The plan also discusses the relationship between current and proposed research within the NRC and research sponsored by other government agencies, universities, industry groups, professional societies, and foreign sources

  8. Research projects into the safety of nuclear power plants. Period covered: 01. July - 31. December 2004. Progress report

    International Nuclear Information System (INIS)

    2004-01-01

    Within its competence for energy research, the Bundesministerium fuer Wirtschaft und Technology (BMWi) (Federal Ministry of Economics and Technology) sponsors investigations into the safety of nuclear power plants. The objective of these investigations is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, by order of the BMWi, continuously issues information on the status of such investigations by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work and are published by the Research Management Division of GRS within the framework of general information on the progress in reactor safety research. The compilation of the reports is classified according to general topics related to reactor safety research. Further, use is made of the classification system 'Joint Safety Research Index' of the CEC (Commission of the European Communities). The reports are arranged in sequence of their project numbers. It has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties. (orig.)

  9. Research reactor safety - an overview of crucial aspects

    Energy Technology Data Exchange (ETDEWEB)

    Laverie, M. [Atomic Energy Commission, Saclay, F-91191 Gif sur Yvette (France)

    1998-07-01

    Chronology of the commissioning orders of the French research reactors illustrates the importance of the time factor. When looking at older reactors, one must, on one hand, demonstrate, not only the absence of risks tied to the reactor's ageing, but, on the other hand, adapt the reactor's original technical designs to today's safety practices and standards. The evolution of reactor safety requirements over the last twenty years sometimes makes this adaptation difficult. The design of the next research reactors, after a one to two decades pause in construction, will require to set up new safety assessment bases that will have to take into account the nuclear power plant safety evolution. As a general statement, research reactor safety approaches will require the incorporation of specific design rules for research reactors: experience feedback for one of a kind design, frequent modifications required by research programmes, special operational requirements with operators/researchers interfaces. (author)

  10. Information dissemination and use: critical components in occupational safety and health.

    Science.gov (United States)

    Schulte, P A; Okun, A; Stephenson, C M; Colligan, M; Ahlers, H; Gjessing, C; Loos, G; Niemeier, R W; Sweeney, M H

    2003-11-01

    Information dissemination is a mandated, but understudied, requirement of occupational and environmental health laws and voluntary initiatives. Research is needed on the factors that enhance and limit the development, transfer, and use of occupational safety and health information (OSH). Contemporary changes in the workforce, workplaces, and the nature of work will require new emphasis on the dissemination of information to foster prevention. Legislative and regulatory requirements and voluntary initiatives for dissemination of OSH information were identified and assessed. Literature on information dissemination was reviewed to identify important issues and useful approaches. More than 20 sections of laws and regulations were identified that mandated dissemination of occupational and environmental safety and health information. A four-stage approach for tracking dissemination and considering the flow of information was delineated. Special areas of dissemination were identified: the information needs of the changing workforce, new and young workers; small businesses; and workers with difficulty in understanding or reading English. We offer a framework for dissemination of OSH information and underscore the need to focus on the extent to which decision-makers and others receive and use such information. More solid data are also needed on current investments in disseminating, diffusing and applying OSH information and on the utility of that information. Am. J. Ind. Med. 44:515-531, 2003. Published 2003 Wiley-Liss, Inc.

  11. IAEA activities in the field of research reactors safety

    International Nuclear Information System (INIS)

    Ciuculescu, C.; Boado Magan, H.J.

    2004-01-01

    IAEA activities in the field of research reactor safety are included in the programme of the Division of Nuclear Installations Safety. Following the objectives of the Division, the results of the IAEA missions and the recommendations from International Advisory Groups, the IAEA has conducted in recent years a certain number of activities aiming to enhance the safety of research reactors. The following activities will be presented: (a) the new Requirements for the Safety of Research Reactors, main features and differences with previous standards (SS-35-S1 and SS-35-S2) and the grading approach for implementation; (b) new documents being developed (safety guides, safety reports and TECDOC's); (c) activities related to the Incident Reporting System for Research Reactor (IRSRR); (d) the new features implemented for the INSARR missions; (e) the Code of Conduct on the Safety of Research Reactors adopted by the Board of Governors on 8 March 2004, following the General Conference Resolution GC(45)/RES/10; and (f) the survey on the safety of research reactors published on the IAEA website on February 2003 and the results obtained. (author)

  12. High committee for nuclear safety transparency and information. October 8, 2009 meeting

    International Nuclear Information System (INIS)

    2009-10-01

    The high committee for the nuclear safety transparency and information (HCTISN) is an information, consultation and debate authority devoted to the assessment of the risks linked with nuclear activities and to the analysis of their impact on public health, on the environment and on nuclear safety. Each year, the HCTISN organizes several ordinary meetings in order to analyze some specific topics of the moment. This meeting was organized around 3 main points: 1 - the progress of the different working groups work: elaboration of a communication scale, comparable to the INES scale, for the evaluation of environmental radioactivity, the realisation of a web site for the HCTISN, the question of transparency and secrecy around the maritime transportation of radioactive materials after the visit by the High Committee of two ships from the British INS company; 2 - the management of radioactive wastes with the concept of storage reversibility: political, technical and decisional aspects, position of the National Evaluation Committee for the researches and studies relative to radioactive materials and wastes management (CNE), position of the ANCLI (French national association of local information commissions), debate; 3 - the shortage of radio-physicists in France and the information of populations and patients (declaration of incidents). Some miscellaneous points are reported as well: the first draft of the first annual report of the HCTISN, development of a societal approach for the research programs of the French institute of radiation protection and nuclear safety (IRSN), validation of a collaboration proposal with the ANCLI. (J.S.)

  13. Safety research needs for Russian-designed reactors

    International Nuclear Information System (INIS)

    1998-01-01

    In June 1995, an OECD Support Group was set up to perform a broad study of the safety research needs of Russian-designed reactors. This Support Group was endorsed by the CSNI. The Support Group, which is composed of senior experts on safety research from several OECD countries and from Russia, prepared this Report. The Group reviewed the safety research performed to support Russian-designed reactors and set down its views on future needs. The review concentrates on the following main topics: Thermal-Hydraulics/Plant Transients for VVERs; Integrity of Equipment and Structures for VVERs; Severe Accidents for VVERs; Operational Safety Issues; Thermal-Hydraulics/Plant Transients for RBMKs; Integrity of Equipment and Structures for RBMKs; Severe Accidents for RBMKs. (K.A.)

  14. The organization of research reactor safety in the UKAEA

    International Nuclear Information System (INIS)

    Redpath, W.

    1983-01-01

    The present state of organization and development of research reactor safety in the UKAEA are outlined by addressing the fundamental safety principles which have been adopted in keeping with national health and safety requirement. The organisation, assessment and monitoring of research reactor safety on complex multi-discipline and multi-activity nuclear research and development site are discussed. Methods of safety assessment, such as probabilistic risk assessment and risk acceptance criteria, which have been developed and applied in practice are explained, and some indication of the directions in which some of the current developments in the safety of UKAEA research reactors is also included. (A.J.)

  15. User-oriented information access by information need recontextualisation and articulation. Application in nuclear criticality safety

    International Nuclear Information System (INIS)

    Medini, Lionel

    2001-01-01

    This research thesis addresses the design methodology of a system of access to information which is based on an access to relevant information with respect to user needs. In a first part, the author addresses the various issues related to access to information and to information understanding. The next part addresses the involved methods and tools and presents the operational approach adopted for this research regarding access to information. Different disciplines are addressed (knowledge management, ergonomics and information science) and different technologies are used (W3 and XML, DVP, ActiveX, pdf format and the Adobe suite). In the core chapter, the author reports the design of a LMCE (a multi-user book of electronic knowledge) which allows both hypermedia navigation in knowledge diagrams and a construction of a document query. This design is based on a knowledge-management modelling to define diagrams, on ergonomics modelling for user profile identification, and on information science for a specific indexing of the information system. The prototype can be visualized with a web browser such as Internet Explorer 5. The author reports a first assessment and discusses the contribution of his approach to the problematic of access to information which is to be applied to nuclear criticality safety [fr

  16. Progress report projects in the field of nuclear safety sponsered by the Federal Minister for Research and Technology

    International Nuclear Information System (INIS)

    1980-03-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS-Projects) are sponsored by the BMFT (Federal Minister for Research and Technology), Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear energy plants and their systems and the further development of safety technology. Besides the investigations of LWR tasks first projects on the safety of FBR type reactors are sponsored by the BMFT. The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of such investigations by means of quarterly and annually publication of progress reports within the series GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work at the GRS, within the framework of general information of the progress in reactor safety research. The individual reports are arranged according to the amended LWR Safety Research Program of the BMFT. Another table contents uses the same classification system as applied in the Nuclear Safety Index of the CEC and the OECD. (orig./HP) [de

  17. Ensuring Adequate Health and Safety Information for Decision Makers during Large-Scale Chemical Releases

    Science.gov (United States)

    Petropoulos, Z.; Clavin, C.; Zuckerman, B.

    2015-12-01

    The 2014 4-Methylcyclohexanemethanol (MCHM) spill in the Elk River of West Virginia highlighted existing gaps in emergency planning for, and response to, large-scale chemical releases in the United States. The Emergency Planning and Community Right-to-Know Act requires that facilities with hazardous substances provide Material Safety Data Sheets (MSDSs), which contain health and safety information on the hazardous substances. The MSDS produced by Eastman Chemical Company, the manufacturer of MCHM, listed "no data available" for various human toxicity subcategories, such as reproductive toxicity and carcinogenicity. As a result of incomplete toxicity data, the public and media received conflicting messages on the safety of the contaminated water from government officials, industry, and the public health community. Two days after the governor lifted the ban on water use, the health department partially retracted the ban by warning pregnant women to continue avoiding the contaminated water, which the Centers for Disease Control and Prevention deemed safe three weeks later. The response in West Virginia represents a failure in risk communication and calls to question if government officials have sufficient information to support evidence-based decisions during future incidents. Research capabilities, like the National Science Foundation RAPID funding, can provide a solution to some of the data gaps, such as information on environmental fate in the case of the MCHM spill. In order to inform policy discussions on this issue, a methodology for assessing the outcomes of RAPID and similar National Institutes of Health grants in the context of emergency response is employed to examine the efficacy of research-based capabilities in enhancing public health decision making capacity. The results of this assessment highlight potential roles rapid scientific research can fill in ensuring adequate health and safety data is readily available for decision makers during large

  18. Criticality safety research on nuclear fuel cycle facility

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Yoshinori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2004-07-01

    This paper present d s current status and future program of the criticality safety research on nuclear fuel cycle made by Japan Atomic Energy Research Institute. Experimental research on solution fuel treated in reprocessing plant has been performed using two critical facilities, STACY and TRACY. Fundamental data of static and transient characteristics are accumulated for validation of criticality safety codes. Subcritical measurements are also made for developing a monitoring system for criticality safety. Criticality safety codes system for solution and power system, and evaluation method related to burnup credit are developed. (author)

  19. Criticality Safety Information Resource Center Web portal: www.csirc.net

    International Nuclear Information System (INIS)

    Harmon, C.D. II; Jones, T.

    2000-01-01

    The Nuclear Criticality Safety Group (ESH-6) at Los Alamos National Laboratory (LANL) is in the process of collecting and archiving historical and technical information related to nuclear criticality safety from LANL and other facilities. In an ongoing effort, this information is being made available via the Criticality Safety Information Resource Center (CSIRC) web site, which is hosted and maintained by ESH-6 staff. Recently, the CSIRC Web site was recreated as a Web portal that provides the criticality safety community with much more than just archived data

  20. NRC safety research in support of regulation. Volume 8, FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This report, the ninth in a series of annual reports, was prepared in response to congressional inquiries concerning how nuclear regulatory research is used. It summarizes the accomplishments of the Office of Nuclear Regulatory Research during FY 1993. A special emphasis on accomplishments in nuclear power plant aging research reflects recognition that number of plants are entering the final portion of their original 40-year operating licenses and that, in addition to current aging effects, a focus on safety considerations for license renewal becomes timely. The primary purpose of performing regulatory research is to develop and provide the Commission and its staff with sound technical bases for regulatory decisions on the safe operation of licensed nuclear reactors and facilities, to find unknown or unexpected safety problems, and to develop data and related information for the purpose of revising the Commission`s rules, regulatory guides, or other guidance.

  1. Summary of fuel safety research meeting 2004

    International Nuclear Information System (INIS)

    Fuketa, Toyoshi; Hidaka, Akihide; Nakamura, Jinichi; Suzuki, Motoe; Nagase, Fumihisa; Sasajima, Hideo; Fujita, Misao; Otomo, Takashi; Kudo, Tamotsu; Amaya, Masaki; Sugiyama, Tomoyuki; Ikehata, Hisashi; Iwasaki, Ryo; Ozawa, Masaaki; Kida, Mitsuko

    2004-10-01

    Fuel Safety Research Meeting 2004, which was organized by the Japan Atomic Energy Research Institute, was held on March 1-2, 2004 at Toranomon Pastoral, Tokyo. The purposes of the meeting are to present and discuss the results of experiments and analyses on reactor fuel safety and to exchange views and experiences among the participants. The technical topics of the meeting covered the status of fuel safety research activities, fuel behavior under RIA and LOCA conditions, high burnup fuel behavior, and radionuclides release under severe accident conditions. This summary contains all the abstracts and OHP sheets presented in the meeting. (author)

  2. 75 FR 12554 - Mine Safety and Health Research Advisory Committee, National Institute for Occupational Safety...

    Science.gov (United States)

    2010-03-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Mine Safety and Health Research Advisory Committee, National Institute for Occupational Safety and Health (MSHRAC, NIOSH... priorities in mine safety and health research, including grants and contracts for such research, 30 U.S.C...

  3. Development of Safety Review Guidance for Research and Training Reactors

    International Nuclear Information System (INIS)

    Oh, Kju-Myeng; Shin, Dae-Soo; Ahn, Sang-Kyu; Lee, Hoon-Joo

    2007-01-01

    The KINS already issued the safety review guidance for pressurized LWRs. But the safety review guidance for research and training reactors were not developed. So, the technical standard including safety review guidance for domestic research and training reactors has been applied mutates mutandis to those of nuclear power plants. It is often difficult for the staff to effectively perform the safety review of applications for the permit by the licensee, based on peculiar safety review guidance. The NRC and NSC provide the safety review guidance for test and research reactors and European countries refer to IAEA safety requirements and guides. The safety review guide (SRG) of research and training reactors was developed considering descriptions of the NUREG- 1537 Part 2, previous experiences of safety review and domestic regulations for related facilities. This study provided the safety review guidance for research and training reactors and surveyed the difference of major acceptance criteria or characteristics between the SRG of pressurized light water reactor and research and training reactors

  4. Spanish Nuclear Safety Research under International Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, L. E.; Reventos, F.; Ahnert, C.; Jimenez, G.; Queral, C.; Verdu, G.; Miro, R.; Gallardo, S.

    2013-10-01

    The Nuclear Safety research requires a wide international collaboration of several involved groups. In this sense this paper pretends to show several examples of the Nuclear Safety research under international frameworks that is being performed in different Universities and Research Institutions like CIEMAT, Universitat Politecnica de Catalunya (UPC), Universidad Politecnica de Madrid (UPM) and Universitat Politenica de Valencia (UPV). (Author)

  5. Reports on research projects in the field of reactor safety sponsored by the Federal Ministry for Education, Science, Research and Technology. Period covered: January 1 - June 30, 1997

    International Nuclear Information System (INIS)

    1997-01-01

    Within the framework of its research programme on reactor safety, the Bundesministerium fuer Bildung, Wissenschaft, Forschung und Technology (BMBF) (Federal Ministry for Education, Science, Research and Technology) sponsors investigations into the safety of nuclear reactors. These investigations that are carried out within the framework of the programme are to provide fundamental knowledge, procedures and methods contributing to realistic safety assessments of nuclear facilities, the further development of safety technology, and the use of the potential of innovative safety-related approaches. Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) bmH, by order of the BMBF, continuously issues information on the status of such investigations by publishing semiannual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work and are published by the Research Management Division of GRS within the framework of general information on the progress in reactor safety research. (orig./SR) [de

  6. Research on the development of advanced system safety assessment procedures (1)

    International Nuclear Information System (INIS)

    Suzuki, Kazuhiko

    2002-02-01

    The past research reports in the area of safety engineering proposed the Computer-aided HAZOP system to be applied to Nuclear Reprocessing Facilities. Automated HAZOP system has great advantage compared with human analysts in terms of accuracy of the results, and time required to conduct HAZOP studies. This report surveys the literature on risk assessment and safety design based on the concept of independent protection layers (IPLs). Furthermore, to improve HAZOP System, counter measures information related to abnormal situation in plants are added to knowledge base in the system. As the result the HAZOP system can give appropriate measures information to protect accidents to uses. Such HAZOP system is applied to analyze the processes, where the ability of the proposed system is verified. (author)

  7. Geo-scientific Information in the Radioactive Waste Management Safety Case Main Messages from the AMIGO Project

    International Nuclear Information System (INIS)

    2010-01-01

    Radioactive waste is associated with all phases of the nuclear fuel cycle as well as the use of radioactive materials in medicine, research and industry. For the most hazardous and long-lived waste, the solution being investigated worldwide is disposal in engineered repositories deep underground. The importance of geo-scientific information in selecting a site for geological disposal has long been recognised, but there has been growing acknowledgement of the broader role of this information in assessing and documenting the safety of disposal. The OECD/NEA Approaches and Methods for Integrating Geological Information in the Safety Case (AMIGO) project has demonstrated that geological data and understanding serve numerous roles in safety cases. The project, which ran from 2002 to 2008, underscored the importance of integrating geo-scientific information in the development of a disposal safety case and increasingly in the overall process of repository development, including, for example, siting decisions and ensuring the practical feasibility of repository layout and engineering. (authors)

  8. 47 CFR 80.1135 - Transmission of maritime safety information.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Transmission of maritime safety information. 80... RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Operating Procedures for Distress and Safety Communications § 80.1135 Transmission of maritime safety...

  9. Twenty-First Water Reactor Safety Information Meeting. Volume 3, Primary system integrity; Aging research, products and applications; Structural and seismic engineering; Seismology and geology: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1994-04-01

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25-27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Selected papers were indexed separately for inclusion in the Energy Science and Technology Database.

  10. Anthropology in Agricultural Health and Safety Research and Intervention.

    Science.gov (United States)

    Arcury, Thomas

    2017-01-01

    Agriculture remains a dangerous industry, even as agricultural science and technology continue to advance. Research that goes beyond technological changes to address safety culture and policy are needed to improve health and safety in agriculture. In this commentary, I consider the potential for anthropology to contribute to agricultural health and safety research by addressing three aims: (1) I briefly consider what the articles in this issue of the Journal of Agromedicine say about anthropologists in agricultural health and safety; (2) I discuss what anthropologists can add to agricultural health and safety research; and (3) I examine ways in which anthropologists can participate in agricultural health and safety research. In using their traditions of rigorous field research to understand how those working in agriculture perceive and interpret factors affecting occupational health and safety (their "emic" perspective), and translating this perspective to improve the understanding of occupational health professionals and policy makers (an "etic" perspective), anthropologists can expose myths that limit improvements in agricultural health and safety. Addressing significant questions, working with the most vulnerable agricultural communities, and being outside establishment agriculture provide anthropologists with the opportunity to improve health and safety policy and regulation in agriculture.

  11. Organizational safety factors research lessons learned

    International Nuclear Information System (INIS)

    Ryan, T.G.

    1995-01-01

    This Paper reports lessons learned and state of knowledge gained from an organizational factors research activity involving commercial nuclear power plants in the United States, through the end of 1991, as seen by the scientists immediately involved in the research. Lessons learned information was gathered from the research teams and individuals using a question and answer format. The following five questions were submitted to each team and individual: (1) What organizational factors appear to influence safety performance in some systematic way, (2) Should organizational factors research focus at the plant level, or should it extend beyond the plant level to the parent company, rate setting commissions, regulatory agencies, (3) How important is having direct access to plants for doing organizational factors research, (4) What lessons have been learned to date as the result of doing organizational factors research in a nuclear regulatory setting, and (5) What organizational research topics and issues should be pursued in the future? Conclusions based on the responses provided for this report are that organizational factors research can be conducted in a regulatory setting and produce useful results. Technologies pioneered in other academic, commercial, and military settings can be adopted for use in a nuclear regulatory setting. The future success of such research depends upon the cooperation of regulators, contractors, and the nuclear industry

  12. An overview-probabilistic safety analysis for research reactors

    International Nuclear Information System (INIS)

    Liu Jinlin; Peng Changhong

    2015-01-01

    For long-term application, Probabilistic Safety Analysis (PSA) has proved to be a valuable tool for improving the safety and reliability of power reactors. In China, 'Nuclear safety and radioactive pollution prevention 'Twelfth Five Year Plan' and the 2020 vision' raises clearly that: to develop probabilistic safety analysis and aging evaluation for research reactors. Comparing with the power reactors, it reveals some specific features in research reactors: lower operating power, lower coolant temperature and pressure, etc. However, the core configurations may be changed very often and human actions play an important safety role in research reactors due to its specific experimental requirement. As a result, there is a necessary to conduct the PSA analysis of research reactors. This paper discusses the special characteristics related to the structure and operation and the methods to develop the PSA of research reactors, including initiating event analysis, event tree analysis, fault tree analysis, dependent failure analysis, human reliability analysis and quantification as well as the experimental and external event evaluation through the investigation of various research reactors and their PSAs home and abroad, to provide the current situation and features of research reactors PSAs. (author)

  13. Reports on the research projects in the field of nuclear safety sponsored by the Federal Minister for Research and Technology

    International Nuclear Information System (INIS)

    1979-12-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS - Projects) are sponsored by the BMFT (Federal Minister for Research and Technology), Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear power plants and their systems and the further development of safety technology. Besides the investigations of LWR tasks first projects on the safety of FBR type reactors are sponsored by the BMFT. The CRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of such investigations by means of quarterly and annually publication of progress reports within the series GRS - F - Fortschrittsberichte (GRS - F - Progress Reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work. The individual reports are arranged according to the amended LWR Safety Research Program of the BMFT in the near future. Another table contents uses the same classification system as applied in the Nuclear Safety Index of the CEC Communities and the OECD.(orig./HP) [de

  14. Reports on the research projects in the field of nuclear safety sponsored by the Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1980-06-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS-Projects) are sponsored by the BMFT (Federal Minister for Research and Technology), Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear power plants and their systems and the further development of safety technology. Besides the investigations of LWR tasks first projects on the safety of FBR type reactors are sponsored by the BMFT. The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of such investigations by means of quarterly and annually publication of progress reports within the series GRS-F-Fortschrittsberichte (GRS-F-progress reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work. The individual reports are arranged according to the amended LWR Safety Research Program of the BMFT, which will appear in the near future. Another table contents uses the same classification system as applied in the Nuclear Safety Index of the CEC and the OECD. (orig./HP) [de

  15. Experts' discussion on reactor safety research

    International Nuclear Information System (INIS)

    1980-01-01

    The experts' discussion on reactor safety research deals with risk analysis, political realization, man and technics, as well as with the international state of affairs. Inspite of a controversy on individual issues and on the proportion of governmental and industrial involvment in reactor safety research, the continuation and intensification of corresponding research work is said to be necessary. Several participants demanded to consider possible 'conventional accidents' as well as a stronger financial commitment by the industry in this sector. The ratio 'man and technics' being an interface decisive for the proper functioning or failure of complex technical systems requires even more research work to be done. (GL) [de

  16. Future regulatory research needs on risk-informed and performance-based regulation

    International Nuclear Information System (INIS)

    Kim, Wong Sik; Kim, Hho Jung

    2004-01-01

    The USNRC has pursued the incorporation of risk-informed and performance-based regulation (RIPBR) into nuclear safety regulatory system, as an alternative to improve existing nuclear safety regulation of nuclear power plants, which is deterministic and prescriptive. It focuses on the use of risk insight from probabilistic safety assessment (PSA). Recently, it becomes necessary to find a way to improve regulatory efficiency and effectiveness in order to cover the increasing regulatory needs in Korea. Also, the utility has optimized design and operation of the plant using PSA insight and equipment performance information. According to the increase of the necessity for regulatory improvement using risk and performance information, KINS (Korea Institute of Nuclear Safety) is developing, as a part of a mid and long-term project of Nuclear R and D program, how to adopt the RIPBR in Korean nuclear regulatory system. As the interim results, three basic directions and several principles that are necessary to implement RIPBR model were already identified from the previous study. This paper suggests a direction to future regulatory research on RIPBR based on the previous studies including the review of international trend of RIPBR and the evaluation of risk-informed regulatory environment

  17. Research projects into the safety of nuclear power plants. Period cover 01. January - 30. June 2017. Progress report

    International Nuclear Information System (INIS)

    2017-01-01

    Within its competence for energy research the Federal Ministry for Economic Affairs and Energy (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fur Anlagen- und Reaktorsicherheit (GRS) gGmbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/ Authority Support Division of GRS. The reports as of the year 2000 are available in the internet-based information system on results and data of reactor safety research (https://www.grs-fbw.de). The compilation of the reports is classified according to the topic areas of reactor safety research. The reports are arranged in sequence of their project numbers. Ilt has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties.

  18. Operational safety reliability research

    International Nuclear Information System (INIS)

    Hall, R.E.; Boccio, J.L.

    1986-01-01

    Operating reactor events such as the TMI accident and the Salem automatic-trip failures raised the concern that during a plant's operating lifetime the reliability of systems could degrade from the design level that was considered in the licensing process. To address this concern, NRC is sponsoring the Operational Safety Reliability Research project. The objectives of this project are to identify the essential tasks of a reliability program and to evaluate the effectiveness and attributes of such a reliability program applicable to maintaining an acceptable level of safety during the operating lifetime at the plant

  19. Cultural safety, diversity and the servicer user and carer movement in mental health research.

    Science.gov (United States)

    Cox, Leonie G; Simpson, Alan

    2015-12-01

    This study will be of interest to anyone concerned with a critical appraisal of mental health service users' and carers' participation in research collaboration and with the potential of the postcolonial paradigm of cultural safety to contribute to the service user research (SUR) movement. The history and nature of the mental health field and its relationship to colonial processes provokes a consideration of whether cultural safety could focus attention on diversity, power imbalance, cultural dominance and structural inequality, identified as barriers and tensions in SUR. We consider these issues in the context of state-driven approaches towards SUR in planning and evaluation and the concurrent rise of the SUR movement in the UK and Australia, societies with an intimate involvement in processes of colonisation. We consider the principles and motivations underlying cultural safety and SUR in the context of the policy agenda informing SUR. We conclude that while both cultural safety and SUR are underpinned by social constructionism constituting similarities in principles and intent, cultural safety has additional dimensions. Hence, we call on researchers to use the explicitly political and self-reflective process of cultural safety to think about and address issues of diversity, power and social justice in research collaboration. © 2015 John Wiley & Sons Ltd.

  20. Nuclear power reactor safety research activities in CIAE

    International Nuclear Information System (INIS)

    Pu Shendi; Huang Yucai; Xu Hanming; Zhang Zhongyue

    1994-01-01

    The power reactor safety research activities in CIAE are briefly reviewed. The research work performed in 1980's and 1990's is mainly emphasised, which is closely related to the design, construction and licensing review of Qinshan Nuclear Power Plant and the safety review of Guangdong Nuclear Power Station. Major achievements in the area of thermohydraulics, nuclear fuel, probabilistic safety assessment and severe accident researches are summarized. The foreseeable research plan for the near future, relating to the design and construction of 600 MWe PWR NPP at Qinshan Site (phase II development) is outlined

  1. NASA's aviation safety research and technology program

    Science.gov (United States)

    Fichtl, G. H.

    1977-01-01

    Aviation safety is challenged by the practical necessity of compromising inherent factors of design, environment, and operation. If accidents are to be avoided these factors must be controlled to a degree not often required by other transport modes. The operational problems which challenge safety seem to occur most often in the interfaces within and between the design, the environment, and operations where mismatches occur due to ignorance or lack of sufficient understanding of these interactions. Under this report the following topics are summarized: (1) The nature of operating problems, (2) NASA aviation safety research, (3) clear air turbulence characterization and prediction, (4) CAT detection, (5) Measurement of Atmospheric Turbulence (MAT) Program, (6) Lightning, (7) Thunderstorm gust fronts, (8) Aircraft ground operating problems, (9) Aircraft fire technology, (10) Crashworthiness research, (11) Aircraft wake vortex hazard research, and (12) Aviation safety reporting system.

  2. Reports on the research projects in the field of reactor safety sponsored by the Federal Ministry of Science and Technology

    International Nuclear Information System (INIS)

    1975-12-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the safety program 'Reactor Safety' are sponsored by the Bundesminister fuer Forschung und Technologie (BMFT - Secretary of State for Research and Technology). Objective of this program is to continue improving the safety of LWR, in order to minimize the risk for the environment. With grant assistance from the Bundesminister des Innern (BMI - Secretary of State for Home Affairs) research contracts in the field of reactor safety are being performed. Results of these projects should contribute to resolve questions arising nuclear licensing procedures. The Forschungsbetreuung (FB - research supervision department) at the Institute for Reactor Safety (IRS), as consultants to BMFT and BMI, provides information about the progress of investigations. Individual reports will be prepared and put into standard forms by the research contractors. Each report gives information on: 1) the work accomplished, 2) the results obtained, 3) the work planned to be continued. Initial reports of research projects describe in addition the purpose of the work. A BMFT-research program on the safety of Fast Breeders (Schneller Brutreaktor - SBR) is presently under discussion. In order to define several problems, investigations included in the present compilation (RS 139, 140, 143, 162) will be previously performed. (orig.) [de

  3. Reports on the research projects in the field of reactor safety sponsored by the Federal Ministry of Science and Technology

    International Nuclear Information System (INIS)

    1976-12-01

    Investigations on the safety of light water reactors (LWR) being performed in the framework of the safety program 'Reactor Safety' are sponsored by the Bundesminister fuer Forschung und Technologie (BMFT - Secretary of State for Research and Technology). Objective of this program is to continue improving the safety of LWR, in order to minimize the risk for the environment. With grant assistance from the Bundesminister des Innern (BMI - Secretary of State for Home Affairs) research contrcts in the field of reactor safety are being performed. Results of these projects should contribute to resolve questions arising nuclear licensing procedures. The Forschungsbetreuung (FB - research supervision department) at the Institute for Reactor Safety (IRS), as consultants to BMFT and BMI, provides information about the progress of investigations. Individual reports will be prepared and put into standard forms by the research contractors. Each report gives information on: 1) the work accomplished, 2) the results obtained, 3) the work planned to be continued. Initial reports of research projects describe in addition the purpose of the work. A BMFT-research program on the safety of Fast Breeders (Schneller Brutreaktor - SRB) is presently under discussion. In order to define several problems, investigations included in the present compilation (RS 139, 140, 143, 162) will be previously performed. (orig.) [de

  4. NRC safety research in support of regulation, 1988

    International Nuclear Information System (INIS)

    1989-05-01

    This report, the fourth in a series of annual reports, was prepared in response to Congressional inquiries concerning how nuclear regulatory research is used. It summarizes the accomplishments of the Office of Nuclear Regulatory Research during 1988. The goal of this office is to ensure that safety-related research provides the technical bases for rulemaking and for related decisions in support of NRC licensing and inspection activities. This research is necessary to make certain that the regulations that are imposed on licensees provide an adequate margin of safety so as to protect the health and safety of the public. This report describes both the direct contributions to scientific and technical knowledge with regard to nuclear safety and their regulatory applications

  5. Nuclear safety research in France

    International Nuclear Information System (INIS)

    Tanguy, P.

    1976-01-01

    As a consequence of the decision of choosing light water reactors (PWR) for the French nuclear plants of the next ten years, a large safety program has been launched referring to three physical barriers against fission product release: the fuel element cladding, main primary system boundary and the containment. The parallel development of French-designed fast breeder reactors involved safety studies on: sodium boiling, accidental fuel behavior, molten fuel-sodium interaction, core accident and protection, and external containment. The rapid development of nuclear energy resulted in a corresponding development of safety studies relating to nuclear fuel facilities. French regulations also required a special program to be developed for the realistic evaluation of the consequences of external agressions, the French cooperation to multinational safety research being also intensive

  6. Report on the projects in the field of reactor safety sponsored by the Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1978-12-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS - Projects) are sponsored by the BMFT (Federal Minister for Research and Technology), Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear power-plants and their systems and the further development of safety technology. Besides the investigations of LWR tasks first projects on the safety of advanced reactors are sponsored by the BMFT. The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of such investigations by means of quarterly and annually publication of progress reports within the series GRS - F - Fortschrittsberichte (GRS - F - Progress Reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the FB (Research Coordination Department), Forschungsbetreuung at the GRS, within the framework of general information of the progress in reactor safety research. The individual reports are arranged according to the amended LWR Safety Research Program of the BMFT which will appear in the near future. Another table contents uses the same classification system as applied in the Nuclear Safety Index of the CEC and the OECD. (orig./HP) [de

  7. HTGR safety research program

    International Nuclear Information System (INIS)

    Barsell, A.W.; Olsen, B.E.; Silady, F.A.

    1981-01-01

    An HTGR safety research program is being performed supporting and guided in priorities by the AIPA Probabilistic Risk Study. Analytical and experimental studies have been conducted in four general areas where modeling or data assumptions contribute to large uncertainties in the consequence assessments and thus, in the risk assessment for key core heat-up accident scenarios. Experimental data have been obtained on time-dependent release of fission products from the fuel particles, and plateout characteristics of condensible fission products in the primary circuit. Potential failure modes of primarily top head PCRV components as well as concrete degradation processes have been analyzed using a series of newly developed models and interlinked computer programs. Containment phenomena, including fission product deposition and potential flammability of liberated combustible gases have been studied analytically. Lastly, the behaviour of boron control material in the core and reactor subcriticality during core heatup have been examined analytically. Research in these areas has formed the basis for consequence updates in GA-A15000. Systematic derivation of future safety research priorities is also discussed. (author)

  8. The importance of online communication in the information upon safety and security at work

    Directory of Open Access Journals (Sweden)

    Chiţu Ioana Bianca

    2017-07-01

    Full Text Available This study aims at presenting the employees’ opinions on the use of online environment as a medium for communicating the information related to labour safety and security. The study is based on a quantitative marketing research achieved by interviewing 95 participants, within a conference on labour safety and security. The idea of conducting this research was based on the increasing number of internet users in our country, as well as on the fact that the young generations are ever more dependent on the communication in the online environment, to the detriment of the communication by classical promotional media.

  9. Managing nuclear safety research facilities and capabilities in a changing nuclear industry: the contribution of the OECD/NEA

    International Nuclear Information System (INIS)

    Royen, J.

    2000-01-01

    Although the safety level of nuclear power plants in OECD countries is very satisfactory and the technologies basic to the resolution of safety issues have advanced considerably, continued nuclear safety research work is necessary to address many of the residual concerns, and it remains an important element in ensuring the safe operation of nuclear power plants. However, the funding levels of national Government safety research programmes have been reduced over recent years. There is concern about the ability of OECD Member countries to sustain an adequate level of nuclear safety research capability. The OECD/NEA has a key role to play in organizing reflection and exchange of information on the most efficient use of available technical resources, and in the international management of nuclear safety research facilities and capabilities in a changing nuclear industry. Possible initiatives are mentioned in the paper. (author)

  10. Research on integrated managing system based on CIMS for nuclear power plant safety

    International Nuclear Information System (INIS)

    Zhou Gang

    2006-01-01

    In order to improve safety, economy and reliability of operation for nuclear power plant (NPP), a novel integrated managing method was proposed based on the ideas of computer and contemporary integrated manufacturing system (CIMS). The application of CIMS to nuclear power plant safety management was researched. In order to design an integrated managing system to meet the needs of NPP safety management, all work related to nuclear safety is divided into different category according to its characters. On basis of this work, general integrated managing system was designed at first. Then subsystems were designed and every subsystem implements a category of nuclear safety management work. All subsystems are independent relatively on the one hand and are interrelated on other hand by global information system. (authors)

  11. Summary of NRC LWR safety research programs on fuel behavior, metallurgy/materials and operational safety

    International Nuclear Information System (INIS)

    Bennett, G.L.

    1979-09-01

    The NRC light-water reactor safety-research program is part of the NRC regulatory program for ensuring the safety of nuclear power plants. This paper summarizes the results of NRC-sponsored research into fuel behavior, metallurgy and materials, and operational safety. The fuel behavior research program provides a detailed understanding of the response of nuclear fuel assemblies to postulated off-normal or accident conditions. Fuel behavior research includes studies of basic fuel rod properties, in-reactor tests, computer code development, fission product release and fuel meltdown. The metallurgy and materials research program provides independent confirmation of the safe design of reactor vessels and piping. This program includes studies on fracture mechanics, irradiation embrittlement, stress corrosion, crack growth, and nondestructive examination. The operational safety research provides direct assistance to NRC officials concerned with the operational and operational-safety aspects of nuclear power plants. The topics currently being addressed include qualification testing evaluation, fire protection, human factors, and noise diagnostics

  12. Nuclear safety research project (PSF). 1999 annual report

    International Nuclear Information System (INIS)

    Muehl, B.

    2000-08-01

    The reactor safety R and D work of the Karlsruhe Research Centre (FZK) has been part of the Nuclear Safety Research Project (PSF) since 1990. The present annual report summarizes the R and D results of PSF during 1999. The research tasks cover three main topics: Light Water Reactor safety, innovative systems, and studies related to the transmutation of actinides. The importance of the Light Water Reactor safety, however, has decreased during the last year in favour of the transmutation of actinides. Numerous institutes of the research centre contribute to the PSF programme, as well as several external partners. The tasks are coordinated in agreement with internal and external working groups. The contributions to this report, which are either written in German or in English, correspond to the status of early/mid 2000. (orig.) [de

  13. Nuclear Safety Research Department annual report 2000

    International Nuclear Information System (INIS)

    Majborn, B.; Damkjaer, A.; Nielsen, S.P.; Nonboel, E.

    2001-08-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2000. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. In addition the department was responsible for the tasks 'Applied Health Physics and Emergency Preparedness', 'Dosimetry', 'Environmental Monitoring', and Irradiation and Isotope Services'. Lists of publications, committee memberships and staff members are included. (au)

  14. 75 FR 53733 - Pipeline Safety: Information Collection Activities

    Science.gov (United States)

    2010-09-01

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2010-0246] Pipeline Safety: Information Collection Activities AGENCY: Pipeline and Hazardous... liquefied natural gas, hazardous liquid, and gas transmission pipeline systems operated by a company. The...

  15. Swedish Nuclear Power Inspectorate, Office of Reactor Safety. Research plans for the period 1997-1999

    International Nuclear Information System (INIS)

    1997-02-01

    Office of Reactor Safety research is carried out within the following areas: Safety evaluation, Safety analysis, MTO, Materials and chemistry, Non-Destructive Testing, Strength of materials, Thermohydraulics, Nuclear fuel, Serious accidents and Process control. Research is carried out to fulfill SKIs overall goals in accordance with the directives from the Swedish government and parliament, in particular to be a driving force in safety related work when justified by operating experience, research results and technical progress, towards licensees as well as in international cooperation in safety; to promote the maintenance and development of competence in the safety related work at the SKI as well as the licensees and generally in the country, and as a specific role for the Office of Reactor Safety as designated in the internal routines to take initiative to encourage and carry out research into areas of importance for the Office as well as ensuring that research results are disseminated and used both within SKI and in the general work concerning nuclear safety. Research efforts within the Office of Reactor safety are carried out in the form of separate projects which form part of the priority work plans. Project managers, the necessary personnel resources and the budget for each year are included in the Annual Plan and the work is followed up in the same manner as other efforts. Research is performed in different ways, that can vary from laboratory studies to more consultative efforts, and be organised in many different ways such as examination projects, post-graduate studies, work sponsored at research institutes and companies in Sweden and abroad, collaboration in larger international projects, and participation in conferences which provide an important contribution to keeping SKI personnel informed within their specialist areas

  16. Food safety: correct information for pregnant women

    Directory of Open Access Journals (Sweden)

    Bartolomeo Griglio

    2013-04-01

    Full Text Available This study was aimed at investigating the knowledge of pregnant women on food safety with particular attention to the effectiveness of the informative material (pamphlet and poster prepared in a previous study. To this scope, a questionnaire composed by 8 questions (Likert scaled was used except for one which was a Y/N question. Themes of the questionnaire were: level of concerns on food safety, and knowledge on foodborne diseases (salomonellosis, toxoplasmosis and listeriosis, risk factors and preventive measures. Results indicate that knowledge increased in respect to that of the previous study, but in relation to informative material previously distributed.

  17. Karlsruhe Research Center, Nuclear Safety Research Project (PSF). Annual report 1994

    International Nuclear Information System (INIS)

    Hueper, R.

    1995-08-01

    The reactor safety R and D work of the Karlsruhe Research Centre (FZKA) has been part of the Nuclear Safety Research Projet (PSF) since 1990. The present annual report 1994 summarizes the R and D results. The research tasks are coordinated in agreement with internal and external working groups. The contributions to this report correspond to the status of early 1995. An abstract in English precedes each of them, whenever the respective article is written in German. (orig.) [de

  18. Twenty-fifth water reactor safety information meeting: Proceedings. Volume 1: Plenary sessions; Pressure vessel research; BWR strainer blockage and other generic safety issues; Environmentally assisted degradation of LWR components; Update on severe accident code improvements and applications

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1998-03-01

    This three-volume report contains papers presented at the conference. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Japan, Norway, and Russia. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume contains the following information: (1) plenary sessions; (2) pressure vessel research; (3) BWR strainer blockage and other generic safety issues; (4) environmentally assisted degradation of LWR components; and (5) update on severe accident code improvements and applications. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  19. Twenty-fifth water reactor safety information meeting: Proceedings. Volume 1: Plenary sessions; Pressure vessel research; BWR strainer blockage and other generic safety issues; Environmentally assisted degradation of LWR components; Update on severe accident code improvements and applications

    International Nuclear Information System (INIS)

    Monteleone, S.

    1998-03-01

    This three-volume report contains papers presented at the conference. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Japan, Norway, and Russia. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume contains the following information: (1) plenary sessions; (2) pressure vessel research; (3) BWR strainer blockage and other generic safety issues; (4) environmentally assisted degradation of LWR components; and (5) update on severe accident code improvements and applications. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  20. Research on the development of advanced system safety assessment procedures. 2

    International Nuclear Information System (INIS)

    Suzuki, Kazuhiko

    2004-02-01

    The past research reports in the area of safety engineering proposed the Computer-aided HAZOP system to be applied to Nuclear Reprocessing Facilities. Automated HAZOP system has great advantage compared with human analysts in terms of accuracy of the results, and time required to conduct HAZOP studies. However, it also became clear that the disadvantages are difficulty in analyzing the detailed information about a substance and a reaction peculiar to each plant or a process. And the outputted results may contain excess and deficiency compared with the HAZOP results performed by specialists. To improve HAZOP System, function of interventions by human is added to the system. Database-Bridge, which applies information management technology such as SQL operation, Query, is developed to perform intervention function. As the result the HAZOP system can give appropriate measures information to protect accidents to uses. Such HAZOP data is applied to safety management of Nuclear Reprocessing Facilities. (author)

  1. 78 FR 40743 - Mine Safety and Health Research Advisory Committee, National Institute for Occupational Safety...

    Science.gov (United States)

    2013-07-08

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Mine Safety and Health Research Advisory Committee, National Institute for Occupational Safety and Health (MSHRAC, NIOSH... Director, NIOSH, on priorities in mine safety and health research, including grants and contracts for such...

  2. Insights from an international stakeholder consultation to identify informational needs related to seafood safety

    Energy Technology Data Exchange (ETDEWEB)

    Tediosi, Alice, E-mail: alice.tediosi@aeiforia.eu [Aeiforia Srl, 29027 Gariga di Podenzano (PC) (Italy); Fait, Gabriella [Aeiforia Srl, 29027 Gariga di Podenzano (PC) (Italy); Jacobs, Silke [Department of Public Health, Ghent University, 9000 Ghent (Belgium); Department of Agricultural Economics, Ghent University, 9000 Ghent (Belgium); Verbeke, Wim [Department of Agricultural Economics, Ghent University, 9000 Ghent (Belgium); Álvarez-Muñoz, Diana [Catalan Institute for Water Research (ICRA), Parc Científic i Tecnològic de la Universitat de Girona, 17003 Girona (Spain); Diogene, Jorge [IRTA, 43540 Sant Carles de la Ràpita (Spain); Reuver, Marieke [AquaTT, Dublin 2 (Ireland); Marques, António [Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA), 1449-006 Lisbon (Portugal); Capri, Ettore [Università Cattolica del Sacro Cuore, 29122 Piacenza (Italy)

    2015-11-15

    Food safety assessment and communication have a strong importance in reducing human health risks related to food consumption. The research carried out within the ECsafeSEAFOOD project aims to assess seafood safety issues, mainly related to non-regulated priority environmental contaminants, and to evaluate their impact on public health. In order to make the research results accessible and exploitable, and to respond to actual stakeholders' demands, a consultation with international stakeholders was performed by means of a survey. The focus was on policy and decision makers, food producers and processors, and agencies (i.e. EU and National or Regional agencies related to Food Safety or Public Health) and consumer organisations. The survey considered questions related to: seafood safety assessment and mitigation strategies, availability of data, such as the level of information on different contaminants, and communication among different stakeholder groups. Furthermore, stakeholders were asked to give their opinion on how they believe consumers perceive risks associated with environmental contaminants. The survey was distributed to 531 key stakeholders and 91 responses were received from stakeholders from 30 EU and non-EU countries. The main results show that communication between different groups of stakeholders needs to be improved and that there is a deficit of information and data in the field of seafood safety. This pertains mainly to the transfer of contaminants between the environment and seafood, and to the diversity of environmental contaminants such as plastic additives, algal toxins and hormones. On-line tools were perceived to be the most useful communication channel. - Highlights: • We consulted stakeholders to identify their needs about seafood safety. • An on-line survey was prepared and sent to gather stakeholders' opinions. • Communication among stakeholders needs to be improved. • There is a deficit of information and data in the

  3. Insights from an international stakeholder consultation to identify informational needs related to seafood safety

    International Nuclear Information System (INIS)

    Tediosi, Alice; Fait, Gabriella; Jacobs, Silke; Verbeke, Wim; Álvarez-Muñoz, Diana; Diogene, Jorge; Reuver, Marieke; Marques, António; Capri, Ettore

    2015-01-01

    Food safety assessment and communication have a strong importance in reducing human health risks related to food consumption. The research carried out within the ECsafeSEAFOOD project aims to assess seafood safety issues, mainly related to non-regulated priority environmental contaminants, and to evaluate their impact on public health. In order to make the research results accessible and exploitable, and to respond to actual stakeholders' demands, a consultation with international stakeholders was performed by means of a survey. The focus was on policy and decision makers, food producers and processors, and agencies (i.e. EU and National or Regional agencies related to Food Safety or Public Health) and consumer organisations. The survey considered questions related to: seafood safety assessment and mitigation strategies, availability of data, such as the level of information on different contaminants, and communication among different stakeholder groups. Furthermore, stakeholders were asked to give their opinion on how they believe consumers perceive risks associated with environmental contaminants. The survey was distributed to 531 key stakeholders and 91 responses were received from stakeholders from 30 EU and non-EU countries. The main results show that communication between different groups of stakeholders needs to be improved and that there is a deficit of information and data in the field of seafood safety. This pertains mainly to the transfer of contaminants between the environment and seafood, and to the diversity of environmental contaminants such as plastic additives, algal toxins and hormones. On-line tools were perceived to be the most useful communication channel. - Highlights: • We consulted stakeholders to identify their needs about seafood safety. • An on-line survey was prepared and sent to gather stakeholders' opinions. • Communication among stakeholders needs to be improved. • There is a deficit of information and data in the field of

  4. Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs

    International Nuclear Information System (INIS)

    Monteleone, S.

    1994-04-01

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors

  5. Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [Brookhaven National Lab., Upton, NY (United States)] [comp.

    1994-04-01

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.

  6. Reports on the projects in the field of reactor safety sponsored by the Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1977-06-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS-projects) are sponsored by the BMFT (Federal Minister for Research and Technology), Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear energy plants and their systems and the further development of safety technology. The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of these investigations within the series 'GRS-F-Forschrittsberichte' (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the different projects of the search program. The individual reports are prepared by the contractors themselves as a documentation of their progress in work and published by the GRS-FB (Research Coordination Department), Forschungsbetreuung at the GRS, within the framework of general information of the progress in reactor safety research. Each report describes the work performed, the results and the next steps of the work. The individual reports are attached to the classification system established by the CEC (Commission of the European Communities). The GRS-F-Progress Reports also include a list of the current investigations arranged according to the projects of the BMFT-Research Program Reactor Safety. This compilation, in addition to the LWR-investigations, also contains first contributions on the safety of advanced reactors. (orig.) [de

  7. Reports on the projects in the field of reactor safety sponsored by the Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1977-11-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS-projects) are sponsored by the BMFT (Federal Minister for Research and Technology), Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear energy plants and their systems and the further development of safety technology. The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of BMFT, informs continuously of the status of these investigations within the series 'GRS-F-Fortschrittsberichte' (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the different projects of the search program. The individual reports are prepared by the contractors themselves as a documentation of their progress in work and published by the GRS-FB (Research Coordination Department), Forschungsbetreuung at the GRS, within the framework of general information of the progress in reactor safety research. Each report describes the work performed, the results and the next steps of the work. The individual reports are attached to the classification system established by the CEC (Commission of the European Communities). The GRS-F-Progress Reports also include a list of the current investigations arranged according to the projects of the BMFT-Research Program Reactor Safety. This compilation, in addition to the LWR-investigations, also contains first contributions on the safety of advanced reactors. (orig.) [de

  8. Reports on the projects in the field of reactor safety sponsored by the Federal Ministry for Research and Technology

    International Nuclear Information System (INIS)

    1977-12-01

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the Research Program Reactor Safety (RS-projects) are sponsored by the BMFT (Federal Minister for Research and Technology), Bundesminister fuer Forschung und Technologie. Objective of this program is to investigate in greater detail the safety margins of nuclear energy plants and their systems and the further development of safety technology. The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of these investigations within the series 'GRS-F-Fortschrittsberichte' (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the different projects of the search program. The individual reports are prepared by the contractors themselves as a documentation of their progress in work and published by the GRS-FB (Research Coordination Department), Forschungsbetreuung at the GRS, within the framework of general information of the progress in reactor safety research. Each report describes the work performed, the results and the next steps of the work. The individual reports are attached to the classification system established by the CEC (Commission of the European Communities). The GRS-F-Progress Reports also include a list of the current investigations arranged according to the projects of the BMFT-Research Program Reactor Safety. This compilation, in addition to the LWR-investigations, also contains first contributions on the safety of advanced reactors. (orig.) [de

  9. An outcome of nuclear safety research in JAERI. Predominance of research

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Kawashima, Kei; Ito, Keishiro; Katsuki, Chisato

    2010-02-01

    Bibliometric study by means of research papers revealed the followings; (1) Nuclear Safety Research (NSR) performed in Japan is the 2nd highest in the world followed by USA. The share of JAERI for safety paper publication is about 25% in Japan (2) During past 25 years, JAERI is predominant at 39 safety fields out of 97, that is, 40% to the total. This is the fact revealed from comparison of published number of research papers with those of other organizations. (3) JAERI is recently changing its stress point from reactor-oriented accidents to the down stream of nuclear fuel cycling. There existed impact of TMI-2 accident on NSR-JAERI, especially in the field of thermal hydraulics, LOCA, severe accident and risk analysis. (author)

  10. Seismic safety margins research program overview

    International Nuclear Information System (INIS)

    Tokarz, F.J.; Smith, P.D.

    1978-01-01

    A multiyear seismic research program has been initiated at the Lawrence Livermore Laboratory. This program, the Seismic Safety Margins Research Program (SSMRP) is funded by the U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. The program is designed to develop a probabilistic systems methodology for determining the seismic safety margins of nuclear power plants. Phase I, extending some 22 months, began in July 1978 at a funding level of approximately $4.3 million. Here we present an overview of the SSMRP. Included are discussions on the program objective, the approach to meet the program goal and objectives, end products, the probabilistic systems methodology, and planned activities for Phase I

  11. Nuclear safety research project. Annual report 1995

    International Nuclear Information System (INIS)

    Hueper, R.

    1996-08-01

    The reactor safety R and D work of the Karlsruhe Research Centre (FZK) has been part of the Nuclear Safety Research Project (PSF) since 1990. The present annual report 1995 summarizes the R and D results. The research tasks are coordinated in agreement with internal and external working groups. The contributions to this report correspond to the status of early 1996. An abstract in English precedes each of them, whenever the respective article is written in German. (orig.) [de

  12. Toward risk assessment 2.0: Safety supervisory control and model-based hazard monitoring for risk-informed safety interventions

    International Nuclear Information System (INIS)

    Favarò, Francesca M.; Saleh, Joseph H.

    2016-01-01

    Probabilistic Risk Assessment (PRA) is a staple in the engineering risk community, and it has become to some extent synonymous with the entire quantitative risk assessment undertaking. Limitations of PRA continue to occupy researchers, and workarounds are often proposed. After a brief review of this literature, we propose to address some of PRA's limitations by developing a novel framework and analytical tools for model-based system safety, or safety supervisory control, to guide safety interventions and support a dynamic approach to risk assessment and accident prevention. Our work shifts the emphasis from the pervading probabilistic mindset in risk assessment toward the notions of danger indices and hazard temporal contingency. The framework and tools here developed are grounded in Control Theory and make use of the state-space formalism in modeling dynamical systems. We show that the use of state variables enables the definition of metrics for accident escalation, termed hazard levels or danger indices, which measure the “proximity” of the system state to adverse events, and we illustrate the development of such indices. Monitoring of the hazard levels provides diagnostic information to support both on-line and off-line safety interventions. For example, we show how the application of the proposed tools to a rejected takeoff scenario provides new insight to support pilots’ go/no-go decisions. Furthermore, we augment the traditional state-space equations with a hazard equation and use the latter to estimate the times at which critical thresholds for the hazard level are (b)reached. This estimation process provides important prognostic information and produces a proxy for a time-to-accident metric or advance notice for an impending adverse event. The ability to estimate these two hazard coordinates, danger index and time-to-accident, offers many possibilities for informing system control strategies and improving accident prevention and risk mitigation

  13. Guidelines for Self-assessment of Research Reactor Safety

    International Nuclear Information System (INIS)

    2018-01-01

    Self-assessment is an organization’s internal process to review its current status, processes and performance against predefined criteria and thereby to provide key elements for the organization’s continual development and improvement. Self-assessment helps the organization to think through what it is expected to do, how it is performing in relation to these expectations, and what it needs to do to improve performance, fulfil the expectations and achieve better compliance with the predefined criteria. This publication provides guidelines for a research reactor operating organization to perform a self-assessment of the safety management and the safety of the facility and to identify gaps between the current situation and the IAEA safety requirements for research reactors. These guidelines also provide a methodology for Member States, regulatory bodies and operating organizations to perform a self-assessment of their application of the provisions of the Code of Conduct on the Safety of Research Reactors. This publication also addresses planning, implementation and follow-up of actions to enhance safety and strengthen application of the Code. The guidelines are applicable to all types of research reactor and critical and subcritical assemblies, at all stages in their lifetimes, and to States, regulatory bodies and operating organizations throughout all phases of research reactor programmes. Research reactor operating organizations can use these guidelines at any time to support self-assessments conducted in accordance with the organization’s integrated management system. These guidelines also serve as a tool for an organization to prepare to receive an IAEA Integrated Safety Assessment of Research Reactors (INSARR) mission. An important result of this is the opportunity for an operating organization to identify focus areas and make safety improvements in advance of an INSARR mission, thereby increasing the effectiveness of the mission and efficiency of the

  14. Transactions of the twenty-third water reactor safety information meeting to be held at Bethesda Marriott Hotel, Bethesda, Maryland, October 23--25, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.

    1995-09-01

    This report contains summaries of papers on reactor safety research to be presented at the 23rd Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel, Bethesda, Maryland, October 23--25, 1995. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory, Research, US NRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the nuclear industry, and from foreign governments and industry are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion and information exchange during the course of the meeting and are given in the order of their presentation in each session.

  15. Transactions of the twenty-third water reactor safety information meeting to be held at Bethesda Marriott Hotel, Bethesda, Maryland, October 23--25, 1995

    International Nuclear Information System (INIS)

    Monteleone, S.

    1995-09-01

    This report contains summaries of papers on reactor safety research to be presented at the 23rd Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel, Bethesda, Maryland, October 23--25, 1995. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory, Research, US NRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the nuclear industry, and from foreign governments and industry are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion and information exchange during the course of the meeting and are given in the order of their presentation in each session

  16. Fifty years of driving safety research.

    Science.gov (United States)

    Lee, John D

    2008-06-01

    This brief review covers the 50 years of driving-related research published in Human Factors, its contribution to driving safety, and emerging challenges. Many factors affect driving safety, making it difficult to assess the impact of specific factors such as driver age, cell phone distractions, or collision warnings. The author considers the research themes associated with the approximately 270 articles on driving published in Human Factors in the past 50 years. To a large extent, current and past research has explored similar themes and concepts. Many articles published in the first 25 years focused on issues such as driver impairment, individual differences, and perceptual limits. Articles published in the past 25 years address similar issues but also point toward vehicle technology that can exacerbate or mitigate the negative effect of these issues. Conceptual and computational models have played an important role in this research. Improved crash-worthiness has contributed to substantial improvements in driving safety over the past 50 years, but future improvements will depend on enhancing driver performance and perhaps, more important, improving driver behavior. Developing models to guide this research will become more challenging as new technology enters the vehicle and shifts the focus from driver performance to driver behavior. Over the past 50 years, Human Factors has accumulated a large base of driving-related research that remains relevant for many of today's design and policy concerns.

  17. Perceptions about safety and risks in gender-based violence research: implications for the ethics review process.

    Science.gov (United States)

    Sikweyiya, Yandisa; Jewkes, Rachel

    2011-10-01

    Does research on gender-based violence (GBV) pose greater than minimal risk to researchers and participants? This question needs to be understood particularly in light of hesitancy by Institutional Review Boards to approve research on GBV. The safety and risks of doing GBV studies and the implications for the ethical review process have not been a focus of much research. This qualitative study collected data through in-depth interviews with 12 experienced GBV researchers from various countries and a desk review. This paper explores researchers' interpretation of and meanings of the safety recommendations as provided in the WHO guidelines and whether there is empirical evidence on the presence of risks and safety concerns unique to GBV research. Informants raised a number of safety concerns about GBV research, yet in the interviews there were very few examples of problems having occurred, possibly because of the precautions applied. This paper argues that the notion that GBV studies carry greater than minimal risk when ethics precautions are followed is based on speculation, not evidence. It highlights the need for empirical evidence to support assertions of risk in research.

  18. Safety research colloquium 2013-2014. Vol. 10

    International Nuclear Information System (INIS)

    Pieper, Ralf

    2015-01-01

    Volume 10 of the safety research colloquium 2013-2014 covers the following issues: Design, ergonomics and safety in product development; Germany is searching a final repository site: concepts and status of the final disposal of nuclear waste; collaborating robots - status of research, standardization and validation; psychological workloads - empirical indications; psychological workloads - actual challenges; expert security by occupational health management - challenges to operational practice; expert security by occupational health management - example of a demographic program in the practical realization; challenges in employment legislation - reduction of the key staff; consideration of human factors in hazard assessment a a challenge for every safety engineer, innovative technologies for work equipment and working systems in the context of ambient intelligence and industry 4.0; challenges of functional safety in the automotive sector; nanotechnology - an example for successful technology assessment.

  19. Nuclear Safety Research Department annual report 2000

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Damkjaer, A.; Nielsen, S.P.; Nonboel, E

    2001-08-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2000. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. In addition the department was responsible for the tasks 'Applied Health Physics and Emergency Preparedness', 'Dosimetry', 'Environmental Monitoring', and Irradiation and Isotope Services'. Lists of publications, committee memberships and staff members are included. (au)

  20. Twenty-fifth water reactor safety information meeting: Proceedings. Volume 2: Human reliability analysis and human performance evaluation; Technical issues related to rulemakings; Risk-informed, performance-based initiatives; High burn-up fuel research

    International Nuclear Information System (INIS)

    Monteleone, S.

    1998-03-01

    This three-volume report contains papers presented at the conference. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Japan, Norway, and Russia. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume contains the following: (1) human reliability analysis and human performance evaluation; (2) technical issues related to rulemakings; (3) risk-informed, performance-based initiatives; and (4) high burn-up fuel research

  1. Safety research activities on radioactive waste management in JNES

    International Nuclear Information System (INIS)

    Otsuka, Ichiro; Aoki, Hiroomi; Suko, Takeshi; Onishi, Yuko; Masuda, Yusuke; Kato, Masami

    2010-01-01

    Research activities in safety regulation of radioactive waste management are presented. Major activities are as follows. As for the geological disposal, major research areas are, developing 'safety indicators' to judge the adequacy of site investigation results presented by an implementer (NUMO), compiling basic requirements of safety design and safety assessment needed to make a safety review of the license application and developing an independent safety assessment methodology. In proceeding research, JNES, Japan Atomic Energy Agency (JAEA) and the National Institute of Advanced Industrial Science and Technology (AIST) signed an agreement of cooperative study on geological disposal in 2007. One of the ongoing joint studies under this agreement has been aimed at investigating regional-scale hydrogeological modeling using JAEA's Horonobe Underground Research Center. In the intermediate depth disposal, JNES conducted example analysis of reference facility and submitted the result to Nuclear Safety Commission of Japan (NSC). JNES is also listing issues to be addressed in the safety review of the license application and tries to make criteria of the review. Furthermore, JNES is developing analysis tool to evaluate long term safety of the facility and conducting an experiment to investigate long term behavior of engineered barrier system. In the near surface disposal of waste package, it must be confirmed by a regulatory inspector whether each package meets safety requirements. JNES continuously updates the confirmation methodology depending on new processing technologies. The clearance system was established in 2005. Two stages of regulatory involvement were adapted, 1) approval for measurement and judgment methods developed by the nuclear operator and 2) confirmation of measurement and judgment results based on approved methods. JNES is developing verification methodology for each stage. As for decommissioning, based on the regulatory needs and a research program

  2. Reactor safety research - visible demonstrations and credible computations

    Energy Technology Data Exchange (ETDEWEB)

    Loewenstein, W B; Divakaruni, S M

    1985-11-01

    EPRI has been conducting nuclear safety research for a number of years with the primary goal of assuring the safety and reliability of the nuclear plants. The visibility is emphasized by sponsoring or participating in large scale test demonstrations to credibly support the complex computations that are the basis for quantification of safety margins. Recognizing the success of the airline industry in receiving favorable public perception, the authors compare the design and operation practices of the airline industry with those of the nuclear industry practices to identify the elements contributing to public concerns and unfavorable perceptions. In this paper, authors emphasize the importance of proper communications of research results to the public in a manner that non-specialists understand. Further, EPRI supported research and results in the areas of source term, seismic and structural engineering research, analysis using probabilistic risk assessment (PRA), quantification of safety margins, digital technology development and implementation, and plant transient and performance evaluations are discussed in the paper. (orig./HP).

  3. Reactor safety research - visible demonstrations and credible computations

    International Nuclear Information System (INIS)

    Loewenstein, W.B.; Divakaruni, S.M.

    1985-01-01

    EPRI has been conducting nuclear safety research for a number of years with the primary goal of assuring the safety and reliability of the nuclear plants. The visibility is emphasized by sponsoring or participating in large scale test demonstrations to credibly support the complex computations that are the basis for quantification of safety margins. Recognizing the success of the airline industry in receiving favorable public perception, the authors compare the design and operation practices of the airline industry with those of the nuclear industry practices to identify the elements contributing to public concerns and unfavorable perceptions. In this paper, authors emphasize the importance of proper communications of research results to the public in a manner that non-specialists understand. Further, EPRI supported research and results in the areas of source term, seismic and structural engineering research, analysis using probabilistic risk assessment (PRA), quantification of safety margins, digital technology development and implementation, and plant transient and performance evaluations are discussed in the paper. (orig./HP)

  4. Nuclear safety research at the European Commission's Joint Research Centre

    International Nuclear Information System (INIS)

    Toerroenen, K.

    2003-01-01

    Nuclear power plants currently generate some 35 % of electricity used in the European Union and applicant countries. Nuclear safety will therefore remain a priority for the EU, particularly in view of enlargement, the need to monitor ageing nuclear installations and the licencing of advanced new reactor systems. The European Commission's Joint Research Centre (JRC), with its long involvement and recognised competence in nuclear safety related activities, provides direct support to the European Commission services responsible for nuclear safety and civil protection. (author)

  5. The Health and Safety Executive's strategy for nuclear safety research 1996

    International Nuclear Information System (INIS)

    1996-01-01

    This brochure illustrates HSE's nuclear safety research strategy for 1996. It is divided into two parts. The first part presents HSE's overall strategy. The second contains short strategy statements for the individual areas detailed above, providing a rationale and objectives for the particular safety issues in the NRI, where greater detail can be found. (author)

  6. Progress report concerning safety research for nuclear reactor facilities

    International Nuclear Information System (INIS)

    1978-01-01

    Examination and evaluation of safety research results for nuclear reactor facilities have been performed, as more than a year has elapsed since the plan had been initiated in April, 1976, by the special sub-committee for the safety of nuclear reactor facilities. The research is carried out by being divided roughly into 7 items, and seems to be steadily proceeding, though it does not yet reach the target. The above 7 items include researches for (1) criticality accident, (2) loss of coolant accident, (3) safety for light water reactor fuel, (4) construction safety for reactor facilities, (5) reduction of release of radioactive material, (6) safety evaluation based on the probability theory for reactor facilities, and (7) aseismatic measures for reactor facilities. With discussions on the progress and the results of the research this time, research on the behaviour on fuel in abnormal transients including in-core and out-core experiments has been added to the third item, deleting the power-cooling mismatch experiment in Nuclear Safety Research Reactor of JAERI. Also it has been decided to add two research to the seventh item, namely measured data collection, classification and analysis, and probability assessment of failures due to an earthquake. For these 7 items, the report describes the concrete contents of research to be performed in fiscal years of 1977 and 1978, by discussing on most rational and suitable contents conceivable at present. (Wakatsuki, Y.)

  7. Research on patient safety: falls and medications.

    Science.gov (United States)

    Boddice, Sandra Dawn; Kogan, Polina

    2009-10-01

    Below you will find summaries of published research describing investigations into patient safety issues related to falls and medications. The first summary provides details on the incidence of falls associated with the use of walkers and canes. This is followed by a summary of a fall-prevention intervention study that evaluated the effectiveness of widespread dissemination of evidence-based strategies in a community in Connecticut. The third write up provides information on three classes of medications that are associated with a significant number of emergency room visits. The last summary describes a pharmacist-managed medication reconciliation intervention pilot program. For additional details about the study findings and interventions, we encourage readers to review the original articles.

  8. Joint nuclear safety research projects between the US and Russian Federation International Nuclear Safety Centers

    International Nuclear Information System (INIS)

    Bougaenko, S.E.; Kraev, A.E.; Hill, D.L.; Braun, J.C.; Klickman, A.E.

    1998-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) formed international Nuclear Safety Centers in October 1995 and July 1996, respectively, to collaborate on nuclear safety research. Since January 1997, the two centers have initiated the following nine joint research projects: (1) INSC web servers and databases; (2) Material properties measurement and assessment; (3) Coupled codes: Neutronic, thermal-hydraulic, mechanical and other; (4) Severe accident management for Soviet-designed reactors; (5) Transient management and advanced control; (6) Survey of relevant nuclear safety research facilities in the Russian Federation; (8) Advanced structural analysis; and (9) Development of a nuclear safety research and development plan for MINATOM. The joint projects were selected on the basis of recommendations from two groups of experts convened by NEA and from evaluations of safety impact, cost, and deployment potential. The paper summarizes the projects, including the long-term goals, the implementing strategy and some recent accomplishments for each project

  9. NRC safety research in support of regulation--FY 1989

    International Nuclear Information System (INIS)

    1990-04-01

    This report, the fifth in a series of annual reports, was prepared in response to congressional inquiries concerning how nuclear regulatory research is used. It summarizes the accomplishments of the Office of Nuclear Regulatory Research during FY 1989. The goal of this office is to ensure that safety-related research provides the technical bases for rulemaking and for related decisions in support of NRC licensing and inspection activities. This research is necessary to make certain that the regulations that are imposed on licensees provide an adequate margin of safety so as to protect the health and safety of the public. This report describes both the direct contributions to scientific and technical knowledge with regard to nuclear safety and their regulatory applications

  10. NRC safety research in support of regulation, FY 1991

    International Nuclear Information System (INIS)

    1992-04-01

    This report, the seventh in a series of annual reports, was prepared in response to congressional inquiries concerning how nuclear regulatory research is used. It summarizes the accomplishments of the Office of Nuclear Regulatory Research during FY 1991. The goal of this office is to ensure that safety-related research provides the technical bases for rulemaking and for related decisions in support of NRC licensing and inspection activities. This research is necessary to make certain that the regulations that are imposed on licensees provide an adequate margin of safety so as to protect the health and safety of the public. This report describes both the direct contributions to scientific and technical knowledge with regard to nuclear safety and their regulatory applications

  11. NRC safety research in support of regulation, FY 1990

    International Nuclear Information System (INIS)

    1991-04-01

    This report, the sixth in a series of annual reports, was prepared in response to congressional inquiries concerning how nuclear regulatory research is used. It summarizes the accomplishments of the Office of Nuclear Regulatory Research during FY 1990. The goal of this office is to ensure that safety-related research provides the technical bases for rulemaking and for related decisions in support of NRC licensing and inspection activities. This research is necessary to make certain that the regulations that are imposed on licensees provide an adequate margin of safety so as to protect the health and safety of the public. This report describes both the direct contributions to scientific and technical knowledge with regard to nuclear safety and their regulatory applications

  12. Reactor Safety Research: Semiannual report, July-December 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-11-01

    Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of the accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance and behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the tehcnology base supporting licensing decisions.

  13. Reactor Safety Research: Semiannual report, July-December 1986

    International Nuclear Information System (INIS)

    1987-11-01

    Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of the accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance and behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the tehcnology base supporting licensing decisions

  14. Development of Information Support of the Automated System for Monitoring the State of the Gas Transportation System’s Industrial Safety

    Directory of Open Access Journals (Sweden)

    Ruslan Skrynkovskyy

    2017-08-01

    Full Text Available The purpose of the article is to developing the information security of the automated system for monitoring the state of industrial safety of the gas transportation system within the framework of the safety management system, which will enable timely and objective detection of adverse accident hazards (hazardous events and taking the necessary specific measures to eliminate them and operate the gas transport system safely. It is proved that the basis of the information provision of the automated system for monitoring the state of the industrial safety of the gas transmission system is a methodology that includes the following basic procedures: identifying hazards; qualitative and quantitative assessment of emergencies; establishing of unacceptable (unallowable risks and their introduction to the information base (register of unacceptable risks of objects of the gas transportation system; comprehensive assessment and certification of the state of industrial safety of objects of the gas transportation system; identification of effective, productive (efficient risk management measures. The prospect of further research in this area is the development and implementation of an automated system for monitoring the state of industrial safety of the objects of the gas transmission system based on the results of the research (of the submitted information provision.

  15. Safety Psychology Applicating on Coal Mine Safety Management Based on Information System

    Science.gov (United States)

    Hou, Baoyue; Chen, Fei

    In recent years, with the increase of intensity of coal mining, a great number of major accidents happen frequently, the reason mostly due to human factors, but human's unsafely behavior are affected by insecurity mental control. In order to reduce accidents, and to improve safety management, with the help of application security psychology, we analyse the cause of insecurity psychological factors from human perception, from personality development, from motivation incentive, from reward and punishment mechanism, and from security aspects of mental training , and put forward countermeasures to promote coal mine safety production,and to provide information for coal mining to improve the level of safety management.

  16. 77 FR 40622 - Mine Safety and Health Research Advisory Committee, National Institute for Occupational Safety...

    Science.gov (United States)

    2012-07-10

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Mine Safety and Health Research Advisory Committee, National Institute for Occupational Safety and Health (MSHRAC, NIOSH..., oxygen supply partnership, safety culture, occupational health and safety management systems, preventing...

  17. Knowledge management: Role of the the Radiation Safety Information Computational Center (RSICC)

    Science.gov (United States)

    Valentine, Timothy

    2017-09-01

    The Radiation Safety Information Computational Center (RSICC) at Oak Ridge National Laboratory (ORNL) is an information analysis center that collects, archives, evaluates, synthesizes and distributes information, data and codes that are used in various nuclear technology applications. RSICC retains more than 2,000 software packages that have been provided by code developers from various federal and international agencies. RSICC's customers (scientists, engineers, and students from around the world) obtain access to such computing codes (source and/or executable versions) and processed nuclear data files to promote on-going research, to ensure nuclear and radiological safety, and to advance nuclear technology. The role of such information analysis centers is critical for supporting and sustaining nuclear education and training programs both domestically and internationally, as the majority of RSICC's customers are students attending U.S. universities. Additionally, RSICC operates a secure CLOUD computing system to provide access to sensitive export-controlled modeling and simulation (M&S) tools that support both domestic and international activities. This presentation will provide a general review of RSICC's activities, services, and systems that support knowledge management and education and training in the nuclear field.

  18. Safety considerations for research reactors in extended shutdown

    International Nuclear Information System (INIS)

    2004-01-01

    According to the IAEA Research Reactor Database, in the last 20 years, 367 research reactors have been shut down. Of these, 109 have undergone decommissioning and the rest are in extended shutdown with no clear definition about their future. Still other research reactors are infrequently operated with no meaningful utilization programme. These two situations present concerns related to safety such as loss of corporate memory, personnel qualification, maintenance of components and systems and preparation and maintenance of documentation. There are many reasons to shut down a reactor; these may include: - the need to carry out modifications in the reactor systems; - the need for refurbishment to extend the lifetime of the reactor; - the need to repair reactor structures, systems, or components; - the need to remedy technical problems; - regulatory or public concerns; - local conflicts or wars; - political convenience; - the lack of resources. While any one of these reasons may lead to shutdown of a reactor, each will present unique problems to the reactor management. The large variations from one research reactor to the next also will contribute to the uniqueness of the problems. Any option that the reactor management adopts will affect the future of the facility. Options may include dealing with the cause of the shutdown and returning to normal operation, extending the shutdown period waiting a future decision, or decommissioning. Such options are carefully and properly analysed to ensure that the solution selected is the best in terms of reactor type and size, period of shutdown and legal, economic and social considerations. This publication provides information in support of the IAEA safety standards for research reactors

  19. MedWatch, the FDA Safety Information and Adverse Event Reporting Program

    Science.gov (United States)

    ... Reporting Program MedWatch: The FDA Safety Information and Adverse Event Reporting Program Share Tweet Linkedin Pin it ... approved information that can help patients avoid serious adverse events. Potential Signals of Serious Risks/New Safety ...

  20. Refurbishment and safety upgradation of research reactor Cirus

    International Nuclear Information System (INIS)

    Marik, S.K.; Rao, D.V.H.; Bhatnagar, A.; Pant, R.C.; Tikku, A.C.; Sankar, S.

    2006-01-01

    Cirus, a 40 MW t, vertical tank type research reactor, having wide range of research facilities, was commissioned in the year 1960. This research reactor, situated at Mumbai, India has been operated and utilized extensively for isotope production, material testing and neutron beam research for nearly four decades. With a view to assess the residual life of the reactor, detailed ageing studies were carried out during the early 1990s. Based on these studies, refurbishment of Cirus for its life extension was taken up. During refurbishment, additional safety features were incorporated in various systems to qualify them for the current safety standards. This paper gives the details of the operating experiences, utilization of the reactor along with methodologies followed for carrying out detailed ageing studies, refurbishment and safety upgradation for its life extension

  1. Current safety issues related to research reactor operation

    International Nuclear Information System (INIS)

    Alcala-Ruiz, F.

    2000-01-01

    The Agency has included activities on research reactor safety in its Programme and Budget (P and B) since its inception in 1957. Since then, these activities have traditionally been oriented to fulfil the Agency's functions and obligations. At the end of the decade of the eighties, the Agency's Research Reactor Safety Programme (RRSP) consisted of a limited number of tasks related to the preparation of safety related publications and the conduct of safety missions to research reactor facilities. It was at the beginning of the nineties when the RRSP was upgraded and expanded as a subprogramme of the Agency's P and B. This subprogramme continued including activities related to the above subjects and started addressing an increasing number of issues related to the current situation of research reactors (in operation and shut down) around the world such as reactor ageing, modifications and decommissioning. The present paper discusses some of the above issues as recognised by various external review or advisory groups (e.g., Peer Review Groups under the Agency's Performance Programme Appraisal System (PPAS) or the standing International Nuclear Safety Advisory Group (INSAG)) and the impact of their recommendations on the preparation and implementation of the part of the Agency's P and B relating to the above subject. (author)

  2. SAFIR. The Finnish research programme on nuclear power plant safety 2003-2006. Executive summary

    International Nuclear Information System (INIS)

    Puska, E.

    2006-12-01

    Major part of Finnish public research on nuclear power plant safety during the years 2003-2006 has been carried out in the SAFIR programme. The programme has been administrated by the steering group that was nominated by the Ministry of Trade and Industry (KTM). The steering group of SAFIR has consisted of representatives from Radiation and Nuclear Safety Authority (STUK), Ministry of Trade and Industry (KTM), Technical Research Centre of Finland (VTT), Teollisuuden Voima Oy (TVO), Fortum Power and Heat Oy, Fortum Nuclear Services Oy (Fortum), Finnish Funding Agency for Technology and Innovation (Tekes), Helsinki University of Technology (TKK) and Lappeenranta University of Technology (LTY). The key research areas of SAFIR have been (1) reactor fuel and core, (2) reactor circuit and structural safety, (3) containment and process safety functions, that was divided in 2005 into (3a) thermal hydraulics and (3b) severe accidents, (4) automation, control room and IT, (5) organisations and safety management and (6) risk-informed safety management. The research programme has included annually from 20 up to 24 research projects, whose volume has varied from a few person months to several person years. The total volume of the programme during the four year period 2003-2006 has been 19.7 million euros and 148 person years. The research in the programme has been carried out primarily by Technical Research Centre of Finland (VTT). Other research units responsible for the projects include Lappeenranta University of Technology, Fortum Nuclear Services Oy, Helsinki University of Technology and RAMSE Consulting Oy. In addition, there have been a few minor subcontractors in some projects. The programme management structure has consisted of the steering group, a reference group in each of the seven research areas and a number of ad hoc groups in the various research areas. This report gives a short summary of the results of the SAFIR programme for the period January 2003 - November

  3. Emerging research methods and their application to road safety.

    Science.gov (United States)

    Tarko, Andrew; Boyle, Linda Ng; Montella, Alfonso

    2013-12-01

    The study of road safety has seen great strides over the past few decades with advances in analytical methods and research tools that allow researchers to provide insights into the complex interactions of the driver, vehicle, and roadway. Data collection methods range from traditional traffic and roadway sensors to instrumented vehicles and driving simulators, capable of providing detailed data on both the normal driving conditions and the circumstances surrounding a safety critical event. In September 2011, the Third International Conference on Road Safety and Simulation was held in Indianapolis, Indiana, USA, which was hosted by the Purdue University Center for Road Safety and sponsored by the Transportation Research Board and its three committees: ANB20 Safety Data, Analysis and Evaluation, AND30 Simulation and Measurement of Vehicle and Operator Performance, and ABJ95 Visualization in Transportation. The conference brought together two hundred researchers from all over the world demonstrating some of the latest research methods to quantify crash causality and associations, and model road safety. This special issue is a collection of 14 papers that were presented at the conference and then peer-reviewed through this journal. These papers showcase the types of analytical tools needed to examine various crash types, the use of naturalistic and on-road data to validate the use of surrogate measures of safety, and the value of driving simulators to examine high-risk situations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Managing knowledge and information on nuclear safety

    International Nuclear Information System (INIS)

    Hahn, L.

    2005-01-01

    Described is the management of nuclear safety knowledge through education networks, knowledge pool, sharing, archiving and distributing the knowledge information. Demonstrated is the system used at Gesellschaft fuer Anlagen-und Reaktorsicherheit

  5. Russian Minatom nuclear safety research strategic plan. An international review

    International Nuclear Information System (INIS)

    Royen, J.

    1999-01-01

    An NEA study on safety research needs of Russian-designed reactors, carried out in 1996, strongly recommended that a strategic plan for safety research be developed with respect to Russian nuclear power plants. Such a plan was developed at the Russian International Nuclear Safety Centre (RINSC) of the Russian Ministry of Atomic Energy (Minatom). The Strategic Plan is designed to address high-priority safety-research needs, through a combination of domestic research, the application of appropriate foreign knowledge, and collaboration. It represents major progress toward developing a comprehensive and coherent safety-research programme for Russian nuclear power plants (NPPs). The NEA undertook its review of the Strategic Plan with the objective of providing independent verification on the scope, priority, and content of the research described in the Plan based upon the experience of the international group of experts. The principal conclusions of the review and the general comments of the NEA group are presented. (K.A.)

  6. Safety upgrades to the NRU research reactor

    International Nuclear Information System (INIS)

    DeAbreu, B.; Mark, J.M.; Mutterback, E.J.

    1998-01-01

    The NRU (National Research Universal) Reactor is a 135 MW thermal research facility located at Chalk River Laboratories, and is owned and operated by Atomic Energy of Canada Limited. One of the largest and most versatile research reactors in the world, it serves as the R and D workhorse for Canada's CANDU business while at the same time filling the role as one of the world's major producers of medical radioisotopes. AECL plans to extend operation of the NRU reactor to approximately the year 2005 when a new replacement, the Irradiation Research Facility (IRF) will be available. To achieve this, AECL has undertaken a program of safety reassessment and upgrades to enhance the level of safety consistent with modem requirements. An engineering assessment/inspection of critical systems, equipment and components was completed and seven major safety upgrades are being designed and installed. These upgrades will significantly reduce the reactor's vulnerability to common mode failures and external hazards, with particular emphasis on seismic protection. The scheduled completion date for the project is 1999 December at a cost approximately twice the annual operating cost. All work on the NRU upgrade project is planned and integrated into the regular operating cycles of the reactor; no major outages are anticipated. This paper describes the safety upgrades and discusses the technical and managerial challenges involved in extending the operating life of the NRU reactor. (author)

  7. Review of current status of LWR safety research in Japan

    International Nuclear Information System (INIS)

    Yamada, Tasaburo; Mishima, Yoshitsugu; Ando, Yoshio; Miyazono, Shohachiro; Takashima, Yoichi.

    1977-01-01

    The Japan Atomic Energy Commission has exerted efforts on the research of the safety of nuclear plants in Japan, and ''Nuclear plant safety research committees'' was established in August 1974, which is composed of the government and the people. The philosophy of safety research, research and development plan, the forwarding procedure of the plan, international cooperation, for example LOFT program, and the effective feed back of the experimental results concerning nuclear safety are reviewed in this paper at first. As for the safety of nuclear reactors the basic philosophy that radio active fission products are contained in fuel or reactors with multiple barriers, (defence in depth) and almost no fission product is released outside reactor plants even at the time of hypothetical accident, is kept, and the research and development history and the future plan are described in this paper with the related technical problems. The structural safety is also explained, for example, on the philosophy ''leak before break'', pipe rupture, pipe restraint and stress analysis. The release of radioactive gas and liquid is decreased as the philosophy ''ALAP''. And probability safety evaluation method, LOCA, reactivity, accident and aseismatic design in nuclear plants in Japan are described. (Nakai, Y.)

  8. Safety Management and Safety Culture Self Assessment of Kartini Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Syarip, S., E-mail: syarip@batan.go.id [Centre for Accelerator and Material Process Technology, National Nuclear Energy Agency (BATAN), Yogyakarta (Indonesia)

    2014-10-15

    The self-assessment of safety culture and safety management status of Kartini research reactor is a step to foster safety culture and management by identifying good practices and areas for improvement, and also to improve reactor safety in a whole. The method used in this assessment is based on questionnaires provided by the Forum for Nuclear Cooperation in Asia (FNCA), then reviewed by experts. Based on the assessment and evaluation results, it can be concluded that there were several good practices in maintaining the safety status of Kartini reactor such as: reactor operators and radiation protection workers were aware and knowledgeable of the safety standards and policies that apply to their operation, readily accept constructive criticism from their management and from the inspectors of regulatory body that address safety performance. As a proof, for the last four years the number of inspection/audit findings from Regulatory Body (BAPETEN) tended to decrease while the reactor utilization and its operating hour increased. On the other hands there were also some comments and recommendations for improvement of reactor safety culture, such as that there should be more frequent open dialogues between employees and managers, to grow and attain a mutual support to achieve safety goals. (author)

  9. Report to NASA Committee on Aircraft Operating Problems Relative to Aviation Safety Engineering and Research Activities

    Science.gov (United States)

    1963-01-01

    The following report highlights some of the work accomplished by the Aviation Safety Engineering and Research Division of the Flight Safety Foundations since the last report to the NASA Committee on Aircraft Operating Problems on 22 May 1963. The information presented is in summary form. Additional details may be provided upon request of the reports themselves may be obtained from AvSER.

  10. Nordic nuclear safety research. Summary report for 1995. Plans for 1996 and 1997

    International Nuclear Information System (INIS)

    1996-04-01

    NKS (Nordic Nuclear Safety Research) is a cooperative body in nuclear safety and radiation protection. Its purpose is to carry out cost-effective Nordic projects, thus producing research results, exercises, information, recommendations, manuals and other types of background material, to be used by decision makers and other concerned staff members at authorities and within the nuclear industry. This is the annual report for 1995. The report also contains plans for the rest of the program period. The program comprises four major fields of research: reactor safety; radioactive waste; radioecology; and emergency preparedness. Finland and Sweden presently operate a total of 16 power producing reactors. Denmark, Norway and Sweden operate research reactors. There is a plant for nuclear fuel manufacture in Sweden. All five Nordic countries have intermediate waste storage facilities. In addition, there are a number of power, research and naval reactors and other nuclear installations in Nordic surroundings, both in Eastern and Western Europe. Hence, nuclear safety, radiation protection, waste management, environmental impact and emergency preparedness issues are of common interest to all Nordic countries. Environmental impact of radioactive releases is studied in two radioecology projects. The project on marine radioecology, including sediment research (EKO-1), includes sampling, analysis and modeling. These are also key issues in the project on long ecological half-lives in semi-natural systems (EKO-2). The transfer of the seven presently ongoing projects are summarized in this report by the project leaders, both in terms of results in 1995 and plans for 1996/97. (EG)

  11. Current safety practices in nano-research laboratories in China.

    Science.gov (United States)

    Zhang, Can; Zhang, Jing; Wang, Guoyu

    2014-06-01

    China has become a key player in the global nanotechnology field, however, no surveys have specifically examined safety practices in the Chinese nano-laboratories in depth. This study reports results of a survey of 300 professionals who work in research laboratories that handle nanomaterials in China. We recruited participants at three major nano-research laboratories (which carry out research in diverse fields such as chemistry, material science, and biology) and the nano-chemistry session of the national meeting of the Chinese Chemical Society. Results show that almost all nano-research laboratories surveyed had general safety regulations, whereas less than one third of respondents reported having nanospecific safety rules. General safety measures were in place in most surveyed nano-research laboratories, while nanospecific protective measures existed or were implemented less frequently. Several factors reported from the scientific literature including nanotoxicology knowledge gaps, technical limitations on estimating nano-exposure, and the lack of nano-occupational safety legislation may contribute to the current state of affairs. With these factors in mind and embracing the precautionary principle, we suggest strengthening or providing nanosafety training (including raising risk awareness) and establishing nanosafety guidelines in China, to better protect personnel in the nano-workplace.

  12. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices

    International Nuclear Information System (INIS)

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data

  13. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data.

  14. Status of criticality safety research at NUCEF

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Ken [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Two critical facilities, named STACY (Static Experiment Critical Facility) and TRACY (Transient Experiment Critical Facility), at the Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF) started their hot operations in 1995. Since then, basic experimental data for criticality safety research have been accumulated using STACY, and supercritical experiments for the study of criticality accident in a reprocessing plant have been performed using TRACY. In this paper, the outline of those critical facilities and the main results of TRACY experiments are presented. (author)

  15. Summary of fuel safety research meeting 2005

    International Nuclear Information System (INIS)

    Fuketa, Toyoshi; Nakamura, Takehiko; Nagase, Fumihisa; Nakamura, Jinichi; Suzuki, Motoe; Sasajima, Hideo; Sugiyama, Tomoyuki; Amaya, Masaki; Kudo, Tamotsu; Chuto, Toshinori; Tomiyasu, Kunihiko; Udagawa, Yutaka; Ikehata, Hisashi; Kida, Mitsuko; Ikatsu, Nobuhiko; Hosoyamada, Ryuji; Hamanishi, Eizou; Iwasaki, Ryo; Ozawa, Masaaki

    2006-03-01

    Fuel Safety Research Meeting 2005, which was organized by the Japan Atomic Energy Agency (Establishment of the new organization in Oct. 1, 2005 integrated of JAERI and JNC) was held on March 2-3, 2005 at Toshi Center Hotel, Tokyo. The purposes of the meeting are to present and discuss the results of experiments and analyses on reactor fuel safety and to exchange views and experiences among the participants. The technical topics of the meting covered the status of fuel safety research activities, fuel behavior under Reactivity Initiated Accident (RIA) and Loss of coolant accident (LOCA) conditions, high fuel behavior, and radionuclide release under severe accident conditions. This summary contains all the abstracts and sheets of viewgraph presented in the meeting. (author)

  16. Helmholtz-Zentrum Dresden-Rossendorf, Institute of Safety Research. Annual report 2010

    International Nuclear Information System (INIS)

    Gerbeth, Gunter; Schaefer, Frank

    2011-01-01

    The Institute of Safety Research (ISR) was over the past 20 years one of the six Research Institutes of Forschungszentrum Dresden-Rossendorf e.V. (FZD), which in 2010 belonged to the Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz. Together with the Institutes of Radiochemistry and Radiation Physics, ISR implements the research programme ''Nuclear Safety Research'' (NSR), which was during last years one of the three scientific programmes of FZD. NSR involves two main topics, i.e. ''Safety Research for Radioactive Waste Disposal'' and ''Safety Research for Nuclear Reactors''. The research of ISR aims at assessing and enhancing the safety of current and future reactors, the development of advanced simulation tools including their validation against experimental data, and the development of the appropriate measuring techniques for multi-phase flows and liquid metals.

  17. Information about the control of nuclear safety in France

    International Nuclear Information System (INIS)

    Gerster, D.

    1994-01-01

    The permanent objective of the French Nuclear Safety Authority is the public information about technical controls performed in French nuclear installations. Three publications from the DSIN (Direction of Nuclear Installations Safety) are devoted to this effort: the MAGNUC Minitel magazine, the annual activity report and the CONTROLE magazine. Details about the content of these publications are given. A large part of the information about control of nuclear safety concerns the incidents and accidents and their importance level. A seriousness scale was created in France at the beginning of 1988 and replaced in April 1994 by the very similar International Nuclear Event Scale (INES). Explanation of this scale is given and illustrated with examples of real events and accidents. However, international comparison between incidents and accidents remains delicate because the detailed content of safety reports can change significantly from one country to another. (J.S.). 1 fig

  18. National Nuclear Power Plant Safety Research 2003-2006. Proposal for the Content and Organisation of a New Research Programme

    International Nuclear Information System (INIS)

    2002-11-01

    important research needs related to the safety challenges, such as the ageing of the existing plants, technical reforms in the various areas of technology and organisational changes. The research into these needs is the programme's main techno-scientific task. The programme is also to upkeep know-how in those areas where no significant changes occur but in which dynamic research activities are the absolute precondition for safe use of nuclear power. The general plan lays the ground for drafting more detailed annual plans and research proposals needed for these. Rapid specified projects, projects running throughout the entire research programme and development work of a very long duration suit the programme flexibly. All this requires collecting national resources and mastering the whole. The research programme must function as an efficient conveyor of information to all organisations operating in the nuclear energy sector and as an open discussion forum for participation in international projects, allocation of resources and in planning of new projects. (orig.)

  19. An Adaptive Information Quantity-Based Broadcast Protocol for Safety Services in VANET

    Directory of Open Access Journals (Sweden)

    Wenjie Wang

    2016-01-01

    Full Text Available Vehicle-to-vehicle communication plays a significantly important role in implementing safe and efficient road traffic. When disseminating safety messages in the network, the information quantity on safety packets changes over time and space. However, most of existing protocols view each packet the same to disseminate, preventing vehicles from collecting more recent and precise safety information. Hence, an information quantity-based broadcast protocol is proposed in this paper to ensure the efficiency of safety messages dissemination. In particular, we propose the concept of emergency-degree to evaluate packets’ information quantity. Then we present EDCast, an emergency-degree-based broadcast protocol. EDCast differentiates each packet’s priority for accessing the channel based on its emergency-degree so as to provide vehicles with more safety information timely and accurately. In addition, an adaptive scheme is presented to ensure fast dissemination of messages in different network condition. We compare the performance of EDCast with those of three other representative protocols in a typical highway scenario. Simulation results indicate that EDCast achieves higher broadcast efficiency and less redundancy with less delivery delay. What we found demonstrates that it is feasible and necessary for incorporating information quantity of messages in designing an efficient safety message broadcast protocol.

  20. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report

    International Nuclear Information System (INIS)

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form

  1. Reports on research projects in the field of reactor safety sponsored by BMFT (Federal Ministry for Science and Technology)

    International Nuclear Information System (INIS)

    1982-03-01

    The GRS (Reactor Safety Association), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of such investigations by means of semi-annual and annual publication of progress reports within the series GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the FB (Research Coordination Department), Forschungsbetreuung at the GRS, within the framework of general information of progress in reactor safety research. The individual reports are classified according to the Research Program on the Safety of LWRs 1977-1980 of the BMFT. Another table of contents uses the same classification system as applied in the Nuclear Safety Index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in the sequence of their project numbers. (orig.) [de

  2. A research framework of organizational factors on safety in the Republic of Korea

    International Nuclear Information System (INIS)

    Kwang Seok Lee

    1997-01-01

    Korean nuclear society is yet unfamiliar with the topic, 'organizational factors on safety', while having shown lots of accomplishments in the area of physical and human factors on safety. However, recent large-scale accidents in other technological areas illustrate the importance of managing organization factors on safety. Recently Korea Atomic Energy Research Institute (KAERI) started paying attention to this topic and is trying to establish a future research framework of organizational factors on safety. This paper tries to explain overall direction of the framework. Our framework, as managing organizational factors on safety, considers two kinds of areas: design of management systems, which implies a feed-forward system including organizational models; and operation of those systems, which implies a feedback system including management information and implementation systems. Our framework also considers the evolution stage of a management system. Management systems evolve from visibility stage to optimization stage. To optimize a management system, we should be able to control the system. To control the system, we should be able to see how the system is going. In addition, this paper tries to share some experience of KAERI on how organizational structure and culture affects organizational performance in R and D perspective. (author). 2 refs, 1 fig

  3. Safety research for LWR type reactors

    International Nuclear Information System (INIS)

    1989-07-01

    The current R and D activities are to be seen in connection with the LWR risk assessment studies. Two trends are emerging, of which the one concentrates more on BWR-specific problems, and the other on the efficiency or safety-related assessment of accident management activities. This annual report of 1988 reviews the progress of work done by the institutes and departments of the Karlsruhe Nuclear Research Center, (KfK), or on behalf of KfK by external institutions, in the field of safety research. The papers of this report present the state of work at the end of the year 1988. They are written in German, with an abstract in English. (orig./HP) [de

  4. Helmholtz-Zentrum Dresden-Rossendorf, Institute of Safety Research. Annual report 2010

    Energy Technology Data Exchange (ETDEWEB)

    Gerbeth, Gunter; Schaefer, Frank (eds.)

    2011-07-01

    The Institute of Safety Research (ISR) was over the past 20 years one of the six Research Institutes of Forschungszentrum Dresden-Rossendorf e.V. (FZD), which in 2010 belonged to the Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz. Together with the Institutes of Radiochemistry and Radiation Physics, ISR implements the research programme ''Nuclear Safety Research'' (NSR), which was during last years one of the three scientific programmes of FZD. NSR involves two main topics, i.e. ''Safety Research for Radioactive Waste Disposal'' and ''Safety Research for Nuclear Reactors''. The research of ISR aims at assessing and enhancing the safety of current and future reactors, the development of advanced simulation tools including their validation against experimental data, and the development of the appropriate measuring techniques for multi-phase flows and liquid metals.

  5. Yearly plan of safety research on environmental radioactivity for 1996 - 2000

    International Nuclear Information System (INIS)

    1996-01-01

    'Yearly Plan of Safety Research on Environmental Radioactivity' proposed from the special meeting for safety research of environmental radioactivity on December 14, 1995 was investigated by Nuclear Safety Commission. And the safety research of environmental radioactivity in Japan was decided to be pursued according to the plan. The contents of this plan consisted of the purpose and the contents of research as well as the research period and the facilities to be done for each theme. The following themes were included; 1) study on environment·radiation dose and study on radiation exposure reduction. 2) study on biological effects of radiation. 3) study on internal exposure by specified nuclides. 4) study on medical measures for acute radiation exposure. 5) study on assessment of nuclear safety. 6) investigation on radioactivities released from various nuclear facilities in Japan to demonstrate their safety. (M.N.)

  6. Twenty-fifth water reactor safety information meeting: Proceedings. Volume 2: Human reliability analysis and human performance evaluation; Technical issues related to rulemakings; Risk-informed, performance-based initiatives; High burn-up fuel research

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1998-03-01

    This three-volume report contains papers presented at the conference. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Japan, Norway, and Russia. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume contains the following: (1) human reliability analysis and human performance evaluation; (2) technical issues related to rulemakings; (3) risk-informed, performance-based initiatives; and (4) high burn-up fuel research. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  7. Finnish research programmes on nuclear power plant safety

    International Nuclear Information System (INIS)

    Puska, E. K.

    2010-01-01

    The current Finnish national research programme on nuclear power plant safety SAFIR2010 for the years 2007-2010 as well as the coming SAFIR2014 programme for the years 2011-2014 are based on the chapter 7a, 'Ensuring expertise', of the Finnish Nuclear Energy Act. The objective of this chapter is realised in the research work and education of experts in the projects of these research programmes. SAFIR2010 research programme is divided in eight research areas that are Organisation and human, Automation and control room, Fuel and reactor physics, Thermal hydraulics, Severe accidents, Structural safety of reactor circuit, Construction safety, and Probabilistic Safety Analysis (PSA). All the research areas include both projects in their own area and interdisciplinary co-operational projects. Research projects of the programme are chosen on the basis of annual call for proposals. In 2010 research is carried out in 33 projects in SAFIR2010. VTT is the responsible research organisation in 26 of these projects and VTT is also the coordination unit of SAFIR2010 and SAFIR2014. In 2007-2009 SAFIR2010 produced 497 Specified research results (Deliverables), 618 Publications, and 33 Academic degrees. SAFIR2010 programme covers approximately half of the reactor safety research volume in Finland currently. In 2010 the programme volume is EUR 7.1 million and 47 person years. The major funding partners are VYR with EUR 2.96 million, VTT with EUR 2.66 million, Fortum with EUR 0.28 million, TVO with EUR 0.19 million, NKS with EUR 0.15 million, EU with only EUR 0.03 million and other partners with EUR 0.85 million. The new decisions-in-principle on Olkiluoto unit 4 for Teollisuuden Voima and new nuclear power plant for Fennovoima ratified by the Finnish Parliament on 1 July 2010 increase the annual funding collected according to the Finnish Nuclear Energy Act from Fennovoima, Fortum and Teollisuuden Voima for the SAFIR2014 programme to EUR 5.2 million from the current level of EUR 3

  8. Occupational Health and Safety ACT NO. 6331 and Status Assessment in this Perspective, the Role of ÇASGEM at Education and Research

    OpenAIRE

    Karaman, Esra

    2015-01-01

    In this study, basic knowledge of Occupational Health and Safety Act No. 6331 and in this regard legal rights and obligations of employers and employees was given. It was informed with this study health and safety problems originated from work, often experienced occupational accidents and occupational diseases and provided information about their causes. It was referred Labour and Social Security Training and Research Centre ( ÇASGEM ) 's missions and conducted education and research on ...

  9. Construction Process Simulation and Safety Analysis Based on Building Information Model and 4D Technology

    Institute of Scientific and Technical Information of China (English)

    HU Zhenzhong; ZHANG Jianping; DENG Ziyin

    2008-01-01

    Time-dependent structure analysis theory has been proved to be more accurate and reliable com-pared to commonly used methods during construction. However, so far applications are limited to partial pe-riod and part of the structure because of immeasurable artificial intervention. Based on the building informa-tion model (BIM) and four-dimensional (4D) technology, this paper proposes an improves structure analysis method, which can generate structural geometry, resistance model, and loading conditions automatically by a close interlink of the schedule information, architectural model, and material properties. The method was applied to a safety analysis during a continuous and dynamic simulation of the entire construction process.The results show that the organic combination of the BIM, 4D technology, construction simulation, and safety analysis of time-dependent structures is feasible and practical. This research also lays a foundation for further researches on building lifecycle management by combining architectural design, structure analy-sis, and construction management.

  10. Maintenance of radiation safety information system

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ho Sun [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Park, Moon Il; Chung, Chong Kyu; Lim, Bock Soo; Kim, Hyung Uk; Chang, Kwang Il; Nam, Kwan Hyun; Cho, Hye Ryan [AD center incubation LAB, Taejon (Korea, Republic of)

    2001-12-15

    The objectives of radiation safety information system maintenance are to maintain the requirement of users, change of job process and upgrade of the system performance stably and effectively while system maintenance. We conduct the code of conduct recommended by IAEA, management of radioisotope inventory database systematically using analysis for the state of inventory database integrated in this system. This system and database will be support the regulatory guidance, rule making and information to the MOST, KINS, other regulatory related organization and general public optimizationally.

  11. Study on advanced systematic function of the JNC geological disposal technical information integration system. Research document

    International Nuclear Information System (INIS)

    Ishihara, Yoshinao; Fukui, Hiroshi; Sagawa, Hiroshi; Matsunaga, Kenichi; Ito Takaya

    2004-02-01

    In this study, while attaining systematization about the technical know-how mutually utilized between geology environmental field, disposal technology (design) field and safety assessment field, the share function of general information in which the formation of an information share and the use promotion between the technical information management databases built for every field were aimed at as an advancement of the function of JNC Geological Disposal Technical Information Integration System considered, and the system function for realizing considered in integration of technical information. (1) Since the concrete information about geology environment which is gradually updated with progress of stratum disposal research, or increases in reflected suitable for research of design and safety assessment. After arranging the form suitable for systematizing technical information, while arranging the technical information in both the fields of design and safety assessment with the form of two classes based on tasks/works, it systematized planning adjustment about delivery of technical information with geology environmental field. (2) In order to aim at integration of 3-fields technical information of geological disposal, based on the examination result of systematization of technical information, the function of mutual use of the information managed in two or more databases was considered. Moreover, while considering system functions, such as management of the use history of technical information, connection of information use, and a notice of common information, the system operation windows in consideration of the ease of operation was examined. (author)

  12. Code on the safety of nuclear research reactors: Design

    International Nuclear Information System (INIS)

    1992-01-01

    The main objective of this publication is to provide a safety basis for the design of a research reactor and for the assessment of the design. Another objective is to cover certain aspects related to regulatory supervision, siting and quality assurance, as far as these are related to activities for the design of a research reactor. These objectives are expressed in terms of requirements and recommendations for the design of research reactors. Emphasis is placed on the safety requirements that shall be met rather than on ways in which they can be met. The requirements and recommendations may form the foundation necessary for a Member State to develop specific regulations and safety criteria for its research reactor programme.

  13. Health and Safety Research Division progress report for the period April 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, S.V.

    1992-03-01

    This is a brief progress report from the Health and Safety Research Division of Oak Ridge National Laboratory. Information is presented in the following sections: Assessment Technology including Measurement Applications and Development, Pollutant Assessments, Measurement Systems Research, Dosimetry Applications Research, Metabolism and Dosimetry Research and Nuclear Medicine. Biological and Radiation Physics including Atomic, Molecular, and High Voltage Physics, Physics of Solids and Macromolecules, Liquid and Submicron Physics, Analytic Dosimetry and Surface Physics and Health Effects. Chemical Physics including Molecular Physics, Photophysics and Advanced Monitoring Development. Biomedical and Environmental Information Analysis including Human Genome and Toxicology, Chemical Hazard Evaluation and Communication, Environmental Regulations and Remediation and Information Management Technology. Risk Analysis including Hazardous Waste.

  14. Sociotechnical approaches to workplace safety: Research needs and opportunities

    Science.gov (United States)

    Robertson, Michelle M.; Hettinger, Lawrence J.; Waterson, Patrick E.; Ian Noy, Y.; Dainoff, Marvin J.; Leveson, Nancy G.; Carayon, Pascale; Courtney, Theodore K.

    2015-01-01

    The sociotechnical systems perspective offers intriguing and potentially valuable insights into problems associated with workplace safety. While formal sociotechnical systems thinking originated in the 1950s, its application to the analysis and design of sustainable, safe working environments has not been fully developed. To that end, a Hopkinton Conference was organised to review and summarise the state of knowledge in the area and to identify research priorities. A group of 26 international experts produced collaborative articles for this special issue of Ergonomics, and each focused on examining a key conceptual, methodological and/or theoretical issue associated with sociotechnical systems and safety. In this concluding paper, we describe the major conference themes and recommendations. These are organised into six topic areas: (1) Concepts, definitions and frameworks, (2) defining research methodologies, (3) modelling and simulation, (4) communications and decision-making, (5) sociotechnical attributes of safe and unsafe systems and (6) potential future research directions for sociotechnical systems research. Practitioner Summary: Sociotechnical complexity, a characteristic of many contemporary work environments, presents potential safety risks that traditional approaches to workplace safety may not adequately address. In this paper, we summarise the investigations of a group of international researchers into questions associated with the application of sociotechnical systems thinking to improve worker safety. PMID:25728246

  15. Safety in home care: A research protocol for studying medication management

    Directory of Open Access Journals (Sweden)

    Easty Anthony

    2010-06-01

    Full Text Available Abstract Background Patient safety is an ongoing global priority, with medication safety considered a prevalent, high-risk area of concern. Yet, we have little understanding of the supports and barriers to safe medication management in the Canadian home care environment. There is a clear need to engage the providers and recipients of care in studying and improving medication safety with collaborative approaches to exploring the nature and safety of medication management in home care. Methods A socio-ecological perspective on health and health systems drives our iterative qualitative study on medication safety with elderly home care clients, family members and other informal caregivers, and home care providers. As we purposively sample across four Canadian provinces: Alberta (AB, Ontario (ON, Quebec (QC and Nova Scotia (NS, we will collect textual and visual data through home-based interviews, participant-led photo walkabouts of the home, and photo elicitation sessions at clients' kitchen tables. Using successive rounds of interpretive description and human factors engineering analyses, we will generate robust descriptions of managing medication at home within each provincial sample and across the four-province group. We will validate our initial interpretations through photo elicitation focus groups with home care providers in each province to develop a refined description of the phenomenon that can inform future decision-making, quality improvement efforts, and research. Discussion The application of interpretive and human factors lenses to the visual and textual data is expected to yield findings that advance our understanding of the issues, challenges, and risk-mitigating strategies related to medication safety in home care. The images are powerful knowledge translation tools for sharing what we learn with participants, decision makers, other healthcare audiences, and the public. In addition, participants engage in knowledge exchange

  16. Licensing procedures and safety criteria for research reactors in France

    International Nuclear Information System (INIS)

    Berry, J.L.; Lerouge, B.

    1983-01-01

    From the very beginning of the CEA up to now, a great deal of work has been devoted to the development and utilization of research reactors in France for the needs of fundamental and applied research, production of radioisotopes, and training. In recent years, new reactors were commissioned while others were decommissioned. Moreover some of the existing facilities underwent important modifications to comply with more severe safety criteria, increase the experimental capabilities or qualify new low-enrichment fuels for research reactors (Osiris and Isis). This paper summarizes the recent evolution of the French research reactor capacity, describes the licensing process, the main safety criteria which are taken into consideration, and associated safety research. At the end, a few considerations are given to the consequences of the Osiris core conversion. Safety of research reactors has been studied in detail and many improvements have been brought due to: implementation of a specific experimental program, and adaptation of safety principles and rules elaborated for power reactors. Research reactors in operation in France have been built within a 22 year period. Meanwhile, safety rules have been improved. Old reactors do not comply with all the new rules but modifications are continuously made: after analysis of incidents, when replacement of equipment has to be carried out, when an important modification (fuel conversion for example) is decided upon

  17. Licensing procedures and safety criteria for research reactors in France

    Energy Technology Data Exchange (ETDEWEB)

    Berry, J L; Lerouge, B [Centre d' Etudes Nucleaires de Saclay (France)

    1983-08-01

    From the very beginning of the CEA up to now, a great deal of work has been devoted to the development and utilization of research reactors in France for the needs of fundamental and applied research, production of radioisotopes, and training. In recent years, new reactors were commissioned while others were decommissioned. Moreover some of the existing facilities underwent important modifications to comply with more severe safety criteria, increase the experimental capabilities or qualify new low-enrichment fuels for research reactors (Osiris and Isis). This paper summarizes the recent evolution of the French research reactor capacity, describes the licensing process, the main safety criteria which are taken into consideration, and associated safety research. At the end, a few considerations are given to the consequences of the Osiris core conversion. Safety of research reactors has been studied in detail and many improvements have been brought due to: implementation of a specific experimental program, and adaptation of safety principles and rules elaborated for power reactors. Research reactors in operation in France have been built within a 22 year period. Meanwhile, safety rules have been improved. Old reactors do not comply with all the new rules but modifications are continuously made: after analysis of incidents, when replacement of equipment has to be carried out, when an important modification (fuel conversion for example) is decided upon.

  18. Research and exploration on nuclear safety culture construction

    International Nuclear Information System (INIS)

    Zhang Lifang; Zhao Hongtao; Wang Hongwei

    2012-01-01

    This thesis mainly researched the definition, characteristics, development stage and setup procedure concerning nuclear safety culture, based on practice and experiences in Technical Physics Institute of Heilongjian. Academy of Science. The author discussed the importance of nuclear safety culture construction for an enterprise of nuclear technology utilization, and emphasized all the enterprise and individual who engaged in nuclear and radiation safety should acquire good nuclear safety culture quality, and ensure the application and development of the nuclear safety cult.ure construction in the enterprises of nu- clear technological utilization. (authors)

  19. Proceedings of third JAERI-JNC joint conference on nuclear safety research

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Oikawa, Tetsukuni; Araya, Fumimasa; Suzuki, Tsugio

    2006-03-01

    The present report is the proceedings of the third JAERI-JNC joint conference on nuclear safety research held on July 29, 2005 in Tokyo before integration of JAERI and JNC to JAEA. The conference was held for those who are relevant to nuclear industries and regulatory organizations, and general public. The nuclear safety research has been conducted in both institutes according to the Five-Year Program for Nuclear Safety Research established periodically by the Nuclear Safety Commission (NSC) and needs from the regulatory organizations. The objectives of the conference are to present its recent results and to collect views and opinions from the participants for its future program through the discussion after each presentation and panel discussion on how to conduct efficiently the nuclear safety research in the new organization. A total of 234 people participated in the conference mainly from the nuclear industries and regulatory organizations. The conference consisted of presentations on the safety research results, a special lecture and a panel discussion. First, the overview of safety research results was presented from each institute. Then, the results in the field of nuclear installations, environmental radioactivity and radioactive waste were presented from each institute. Then, Dr. Suzuki, deputy chairperson of NSC, made a special lecture on recent trends in nuclear safety regulation and expectation for the new organization. Finally, a panel discussion was conducted with the title of 'how to conduct efficiently the nuclear safety research in the new organization' chaired by Prof. Kimura, the chairperson of Standing Committee on Nuclear Safety Research under the NSC. The panelists from JAERI and JNC presented and discussed the subject together with the participants on the floor. Through vigorous exchange of views in the panel discussion and descriptions on the questionnaires, it was obviously expressed that expectation to the safety research of the new

  20. Licensing procedures and safety criteria for research reactors in France

    International Nuclear Information System (INIS)

    Berry, J.L.; Lerouge, B.

    1980-11-01

    This paper summarizes the recent evolution of the French research reactor capacity, describes the licensing process, the main safety criteria which are taken into consideration, and associated safety research. Some of the existing facilities underwent important modifications to comply with more severe safety criteria, increase the experimental capabilities or qualify new low-enrichment fuels for research reactors. At the end, a few considerations are given to the consequences of the Osiris core conversion

  1. 49 CFR 575.301 - Vehicle Labeling of Safety Rating Information.

    Science.gov (United States)

    2010-10-01

    ... providing them with safety rating information developed by NHTSA in its New Car Assessment Program (NCAP..., as specified at 15 U.S.C. 1231-1233. (2) Safety rating label means the label with NCAP safety rating... has approved an optional NCAP test that will cover that category, the manufacturer may depict vehicles...

  2. Integrated care: an Information Model for Patient Safety and Vigilance Reporting Systems.

    Science.gov (United States)

    Rodrigues, Jean-Marie; Schulz, Stefan; Souvignet, Julien

    2015-01-01

    Quality management information systems for safety as a whole or for specific vigilances share the same information types but are not interoperable. An international initiative tries to develop an integrated information model for patient safety and vigilance reporting to support a global approach of heath care quality.

  3. Psychometric model for safety culture assessment in nuclear research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, C.S. do, E-mail: claudio.souza@ctmsp.mar.mil.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), Av. Professor Lineu Prestes 2468, 05508-000 São Paulo, SP (Brazil); Andrade, D.A., E-mail: delvonei@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN – SP), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil); Mesquita, R.N. de, E-mail: rnavarro@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN – SP), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil)

    2017-04-01

    Highlights: • A psychometric model to evaluate ‘safety climate’ at nuclear research facilities. • The model presented evidences of good psychometric qualities. • The model was applied to nuclear research facilities in Brazil. • Some ‘safety culture’ weaknesses were detected in the assessed organization. • A potential tool to develop safety management programs in nuclear facilities. - Abstract: A safe and reliable operation of nuclear power plants depends not only on technical performance, but also on the people and on the organization. Organizational factors have been recognized as the main causal mechanisms of accidents by research organizations through USA, Europe and Japan. Deficiencies related with these factors reveal weaknesses in the organization’s safety culture. A significant number of instruments to assess the safety culture based on psychometric models that evaluate safety climate through questionnaires, and which are based on reliability and validity evidences, have been published in health and ‘safety at work’ areas. However, there are few safety culture assessment instruments with these characteristics (reliability and validity) available on nuclear literature. Therefore, this work proposes an instrument to evaluate, with valid and reliable measures, the safety climate of nuclear research facilities. The instrument was developed based on methodological principles applied to research modeling and its psychometric properties were evaluated by a reliability analysis and validation of content, face and construct. The instrument was applied to an important nuclear research organization in Brazil. This organization comprises 4 research reactors and many nuclear laboratories. The survey results made possible a demographic characterization and the identification of some possible safety culture weaknesses and pointing out potential areas to be improved in the assessed organization. Good evidence of reliability with Cronbach's alpha

  4. Psychometric model for safety culture assessment in nuclear research facilities

    International Nuclear Information System (INIS)

    Nascimento, C.S. do; Andrade, D.A.; Mesquita, R.N. de

    2017-01-01

    Highlights: • A psychometric model to evaluate ‘safety climate’ at nuclear research facilities. • The model presented evidences of good psychometric qualities. • The model was applied to nuclear research facilities in Brazil. • Some ‘safety culture’ weaknesses were detected in the assessed organization. • A potential tool to develop safety management programs in nuclear facilities. - Abstract: A safe and reliable operation of nuclear power plants depends not only on technical performance, but also on the people and on the organization. Organizational factors have been recognized as the main causal mechanisms of accidents by research organizations through USA, Europe and Japan. Deficiencies related with these factors reveal weaknesses in the organization’s safety culture. A significant number of instruments to assess the safety culture based on psychometric models that evaluate safety climate through questionnaires, and which are based on reliability and validity evidences, have been published in health and ‘safety at work’ areas. However, there are few safety culture assessment instruments with these characteristics (reliability and validity) available on nuclear literature. Therefore, this work proposes an instrument to evaluate, with valid and reliable measures, the safety climate of nuclear research facilities. The instrument was developed based on methodological principles applied to research modeling and its psychometric properties were evaluated by a reliability analysis and validation of content, face and construct. The instrument was applied to an important nuclear research organization in Brazil. This organization comprises 4 research reactors and many nuclear laboratories. The survey results made possible a demographic characterization and the identification of some possible safety culture weaknesses and pointing out potential areas to be improved in the assessed organization. Good evidence of reliability with Cronbach's alpha

  5. Proceedings of second JAERI-JNC joint conference on nuclear safety research

    International Nuclear Information System (INIS)

    Sugimoto, Jun; Anoda, Yoshinari; Araya, Fumimasa; Yamaguchi, Toshio

    2004-08-01

    The second JAERI-JNC Joint Conference on Nuclear Safety Research was held on February 6, 2004 in Tokyo for those who are relevant to nuclear industries and regulatory organizations, and general public. The nuclear safety research has been conducted in both institutes according to the Five-Year Program for Nuclear Safety Research established periodically by the Nuclear Safety Commission (NSC) and needs from the regulatory organizations. The objectives of the conference are to present its recent results and to collect views and opinions from the participants for its future program through the discussion after each presentation and panel discussion on how to conduct efficiently the nuclear safety in the New Organization. A total of 259 people participated in the conference mainly from the nuclear industries and regulatory organizations and the number was much larger than that in the last conference of 188. The conference consisted of presentations on the safety research results, a special lecture and a panel discussion. First, the overview of safety research results was presented from each institute. Then, the results in the field of nuclear installations, environmental radioactivity and radioactive waste were presented from each institute. Then, Dr. Higashi, the Nuclear Safety Commissioner, made a special lecture on the radiation protection from the high-level radioactive waste disposal. Finally, a panel discussion was conducted with the title of ''how to conduct efficiently the nuclear safety research in the New Organization'' chaired by Prof. Kimura, the chairperson of Standing Committee on Nuclear Safety Research under the NSC. The panelists from the regulatory organizations, nuclear industry, JAERI and JNC discussed the subject together with the participants on the floor. The panelists not from JAERI and JNC expressed their views and opinions on how to conduct efficiently the nuclear safety research in the New Organization that were valuable inputs for developing

  6. Research on consequence analysis method for probabilistic safety assessment of nuclear fuel facilities (4). Investigation of safety evaluation method for fire and explosion incidents

    International Nuclear Information System (INIS)

    Abe, Hitoshi; Tashiro, Shinsuke; Ueda, Yoshinori

    2010-01-01

    A special committee on 'Research on the analysis methods for accident consequence of nuclear fuel facilities (NFFs)' was organized by the Atomic Energy Society of Japan (AESJ) under the entrustment of Japan Atomic Energy Agency (JAEA). The committee aims to research on the state-of-the-art consequence analysis method for Probabilistic Safety Assessment (PSA) of NFFs, such as fuel reprocessing and fuel fabrication facilities. The objective of this research is to obtain the useful information related to the establishment of quantitative performance objectives and to risk-informed regulation through qualifying issues needed to be resolved for applying PSA to NFFs. The research activities of the committee were mainly focused on the analysis method of consequences for postulated accidents with potentially large consequences in NFFs, e.g., events of criticality, spill of molten glass, hydrogen explosion, boiling of radioactive solution, and fire (including rapid decomposition of TBP complexes), resulting in the release of radio active materials into the environment. The results of the research were summarized in a series of six reports, which consist of a review report and five technical ones. In this technical report, the research results about basic experimental data and the method for safety evaluation of fire and explosion incidents were summarized. (author)

  7. The Need for Cyber-Informed Engineering Expertise for Nuclear Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert Stephen [Idaho National Laboratory

    2015-12-01

    Engineering disciplines may not currently understand or fully embrace cyber security aspects as they apply towards analysis, design, operation, and maintenance of nuclear research reactors. Research reactors include a wide range of diverse co-located facilities and designs necessary to meet specific operational research objectives. Because of the nature of research reactors (reduced thermal energy and fission product inventory), hazards and risks may not have received the same scrutiny as normally associated with power reactors. Similarly, security may not have been emphasized either. However, the lack of sound cybersecurity defenses may lead to both safety and security impacts. Risk management methodologies may not contain the foundational assumptions required to address the intelligent adversary’s capabilities in malevolent cyber attacks. Although most research reactors are old and may not have the same digital footprint as newer facilities, any digital instrument and control function must be considered as a potential attack platform that can lead to sabotage or theft of nuclear material, especially for some research reactors that store highly enriched uranium. This paper will provide a discussion about the need for cyber-informed engineering practices that include the entire engineering lifecycle. Cyber-informed engineering as referenced in this paper is the inclusion of cybersecurity aspects into the engineering process. A discussion will consider several attributes of this process evaluating the long-term goal of developing additional cyber safety basis analysis and trust principles. With a culture of free information sharing exchanges, and potentially a lack of security expertise, new risk analysis and design methodologies need to be developed to address this rapidly evolving (cyber) threatscape.

  8. Design Information from the PSA for Digital Safety-Critical Systems

    International Nuclear Information System (INIS)

    Kang, Hyun Gook; Jang, Seung Cheol

    2005-01-01

    Many safety-critical applications such as nuclear field application usually adopt a similar design strategy for digital safety-critical systems. Their differences from the normal design for the non-safety-critical applications could be summarized as: multiple-redundancy, highly reliable components, strengthened monitoring mechanism, verified software, and automated test procedure. These items are focusing on maintaining the capability to perform the given safety function when it is requested. For the past several decades, probabilistic safety assessment (PSA) techniques are used in the nuclear industry to assess the relative effects of contributing events on plant risk and system reliability. They provide a unifying means of assessing physical faults, recovery processes, contributing effects, human actions, and other events that have a high degree of uncertainty. The applications of PSA provide not only the analysis results of already installed system but also the useful information for the system under design. The information could be derived from the PSA experience of the various safety-critical systems. Thanks to the design flexibility, the digital system is one of the most suitable candidates for risk-informed design (RID). In this article, we will describe the feedbacks for system design and try to develop a procedure for RID. Even though the procedure is not sophisticated enough now, it could be the start point of the further investigation for developing more complete and practical methodology

  9. Safety culture and quality management of Kartini research reactor

    International Nuclear Information System (INIS)

    Syarip; Hauptmanns, Ulrich

    1999-01-01

    The evaluation for assessing the safety culture and quality of safety management of Kartini research reactor is presented. The method is based on the concept of management control of safety (audit) as well as by using the developed method i.e. the questionnaires concerning areas of relevance which have to be answered with value statements. There are seven statements or qualifiers in answering the questions. Since such statements are vague, they are represented by fuzzy numbers. The weaknesses can be identified from the different areas contemplated. The evaluation result show that the quality of safety management of Kartini research reactor is globally rated as 'Average'. The operator behavior in the implementation of 'safety culture' concept is found as a weakness, therefore this area should be improved. (author)

  10. LWR safety research in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Seipel, H.G.

    1977-01-01

    The paper gives a review of the German LWR safety research programme. It describes how the programme was initiated and informs on its goals, development andpractical realization, and indicates how it is bound up with international collaboration. The contribution so far made by the programme to an enhancement of the understanding of major safety problems and to the improvement of safety technology is demonstrated by means of a few selected examples. Experiments relating to loss-of--coolant accidents have deepened our understanding of the heat transfer in the reactor core during blowdown as well as during the flooding phase. Investigations of the dynamic effects going on in dry full pressure containments and pressure suppression systems, following a loss-of--coolant accident, have indicated that existing computer models cannot satisfactorily predict all relevant physical phenomena. Yet, the experimental results obtained constitute a sufficient basis for safe containment design. Research work on core meltdown accidents has identified the particular importance of the type of concrete used for the containment structures and its foundation. If basaltic concrete is used, a substantial fission product release to the environment is extremely unlikely even in the case of a core meltdown accident. At least, it would take place much later than was previously assumed. Resrach on the safety of pressurized components has been concentrated on the problem of cracks in the heat-affected zone of welds. New methods were developed for the detection and analysis of the acceptability of microcrack fields. Additional investigations of specimens and components to increase the understanding of the long-term behaviour of components with microcracks are envisaged in the frame of a new major project on ''component safety''. Considerable progress has been made in the development of methods for automatic remote-control volumetric testing of reactor pressure vessels using ultrasonic techniques

  11. Research reactor utilization, safety, decommissioning, fuel and waste management. Posters of an international conference

    International Nuclear Information System (INIS)

    2005-01-01

    For more than 50 years research reactors have played an important role in the development of nuclear science and technology. They have made significant contributions to a large number of disciplines as well as to the educational and research programmes of about 70 countries world wide. About 675 research reactors have been built to date, of which some 278 are now operating in 59 countries (86 of them in 38 developing Member States). Altogether over 13,000 reactor-years of cumulative operational experience has been gained during this remarkable period. The objective of this conference was to foster the exchange of information on current research reactor concerns related to safety, operation, utilization, decommissioning and to provide a forum for reactor operators, designers, managers, users and regulators to share experience, exchange opinions and to discuss options and priorities. The topical areas covered were: a) Utilization, including new trends and directions for utilization of research reactors. Effective management of research reactors and associated facilities. Engineering considerations and experience related to refurbishment and modifications. Strategic planning and marketing. Classical applications (nuclear activation analysis, isotope production, neutron beam applications, industrial irradiations, medical applications). Training for operators. Educational programmes using a reactor. Current developments in design and fabrication of experimental facilities. Irradiation facilities. Projects for regional uses of facilities. Core management and calculation tools. Future trends for reactors. Use of simulators for training and educational programmes. b) Safety, including experience with the preparation and review of safety analysis reports. Human factors in safety analysis. Management of extended shutdown periods. Modifications: safety analysis, regulatory aspects, commissioning programmes. Engineering safety features. Safety culture. Safety peer reviews and

  12. Food safety information and food demand

    DEFF Research Database (Denmark)

    Smed, Sinne; Jensen, Jørgen Dejgård

    2005-01-01

    Purpose – The purpose of this paper is to analyze how news about food-related health risks affects consumers’ demands for safe food products. Design/methodology/approach – By identifying structural breaks in an econometrically estimated demand model, news with permanent impact on demand...... induces a permanent increase in the demand for pasteurized eggs, while more moderate negative news influences demand temporarily and to a lesser extent. There is, however, considerable variation in the response to food safety news across socio-demographic groups of consumers. Research limitations...... is distinguished from news with temporary impact. The Danish demand for pasteurized versus shell eggs is used as an illustrative case. Findings – Negative safety news about one product variety can provide significant stimulation to the demand for safe varieties. Severe negative news about the safety of shell eggs...

  13. Overview of the Nuclear Regulatory Commission's safety research program

    International Nuclear Information System (INIS)

    Beckjord, E.S.

    1989-01-01

    Accomplishments during 1988 of the Office of Nuclear Regulatory Research and the program of safety research are highlighted, and plans, expections, and needs of the next year and beyond are discussed. Topics discussed include: ECCS Appendix K Revision; pressurized thermal shock; NUREG-1150, or the PRA method performance document; resolution of station blackout; severe accident integration plan; nuclear safety research review committee; and program management

  14. [The significance of introducing registry study in the post-marketing safety research for Chinese medicine and pharmacy].

    Science.gov (United States)

    Liao, Xing; Xie, Yan-Ming; Yang, Wei; Chang, Yan-Peng

    2014-03-01

    There is a new research model named 'registry study/patient registry' in Western medicine, which could be referred to by Chinese medicine researchers, such as active safety surveillance. This article will introduce registry study from different aspects as the developing history, features, and application in order to inform Chinese medicine researchers of future studies.

  15. Arrangement between the Health and Safety Executive of the United Kingdom of Great Britain and Northern Ireland and the Minister of the Interior of the Federal Republic of Germany for a continuing exchange of information on significant matters pertaining to the safety of nuclear installations and on collaboration in the development of regulatory safety criteria

    International Nuclear Information System (INIS)

    1979-01-01

    According to this Agreement, information is exchanged by communication of reports, research results and studies as well as by mutual information on measures and resolutions concerning the safety of nuclear installations. Reports and information also include decisions and enquiries by courts of law on matters of safety. Co-operation in the drafting of safety standards comprises mutual information about work undertaken or planned and the exchange of texts of law, rules and regulations. (NEA) [fr

  16. Review of safety related control room function research based on experience from nuclear power plants in Finland

    International Nuclear Information System (INIS)

    Juslin, K.; Wahlstroem, B.; Rinttilae, E.

    1985-01-01

    A comprehensive human engineering research programme was established in the second half of the 1970's at the Technical Research Centre of Finland (VTT). The research is performed in cooperation with the utility companies Imatran Voima Oy (IVO) and Teollisuuden Voima Oy (TVO) and includes topics such as Handling of alarm information, Disturbance analysis systems, Assessment of control rooms and Validation of safety parameter display systems. Reference is also made to the Finnish contribution to the OECD Halden Reactor Project (Halden) and the Nordic Liaison Committee for Atomic Energy (NKA) research projects. In this paper feasible realization alternatives of safety related control room functions are discussed on the basis of experience from the nuclear power plants in Finland, which at present are equipped with extensive process computer systems. A proposal for future power plant information systems is described. It is intended that this proposal will serve as the basis for future computer systems at nuclear power plants in Finland. (author)

  17. Compatibility of Safety Properties and Possibilistic Information Flow Security in MAKS

    OpenAIRE

    Bauereiss , Thomas; Hutter , Dieter

    2014-01-01

    Part 6: Information Flow Control; International audience; Motivated by typical security requirements of workflow management systems, we consider the integrated verification of both safety properties (e.g. separation of duty) and information flow security predicates of the MAKS framework (e.g. modeling confidentiality requirements). Due to the refinement paradox, enforcement of safety properties might violate possibilistic information flow properties of a system. We present an approach where s...

  18. Enhancing the Safety, Security and Resilience of ICT and Scada Systems Using Action Research

    Science.gov (United States)

    Johnsen, Stig; Skramstad, Torbjorn; Hagen, Janne

    This paper discusses the results of a questionnaire-based survey used to assess the safety, security and resilience of information and communications technology (ICT) and supervisory control and data acquisition (SCADA) systems used in the Norwegian oil and gas industry. The survey identifies several challenges, including the involvement of professionals with different backgrounds and expertise, lack of common risk perceptions, inadequate testing and integration of ICT and SCADA systems, poor information sharing related to undesirable incidents and lack of resilience in the design of technical systems. Action research is proposed as a process for addressing these challenges in a systematic manner and helping enhance the safety, security and resilience of ICT and SCADA systems used in oil and gas operations.

  19. Introduction to Safety Analysis Approach for Research Reactors

    International Nuclear Information System (INIS)

    Park, Suki

    2016-01-01

    The research reactors have a wide variety in terms of thermal powers, coolants, moderators, reflectors, fuels, reactor tanks and pools, flow direction in the core, and the operating pressure and temperature of the cooling system. Around 110 research reactors have a thermal power greater than 1 MW. This paper introduces a general approach to safety analysis for research reactors and deals with the experience of safety analysis on a 10 MW research reactor with an open-pool and open-tank reactor and a downward flow in the reactor core during normal operation. The general approach to safety analysis for research reactors is described and the design features of a typical open-pool and open-tank type reactor are discussed. The representative events expected in research reactors are investigated. The reactor responses and the thermal hydraulic behavior to the events are presented and discussed. From the minimum CHFR and the maximum fuel temperature calculated, it is ensured that the fuel is not damaged in the step insertion of reactivity by 1.8 mk and the failure of all primary pumps for the reactor with a 10 MW thermal power and downward core flow

  20. Voluntary research results for five years along the master plan on nuclear safety research. FY 2001 - 2005

    International Nuclear Information System (INIS)

    Sato, Yoshinori

    2006-05-01

    Safety Research has been conducted from FY 2001 to FY 2005 according to the Master Plan on Nuclear Safety Research (FY 2001-2005) in Japan Atomic Energy Agency which took over former Japan Nuclear Cycle Development Institute. This report shows the voluntary research results for five years conducted from FY 2001 to FY 2005 according to the Master Plan on Nuclear Safety Research (FY 2001-2005). (author)

  1. Core competencies for patient safety research: a cornerstone for global capacity strengthening

    Science.gov (United States)

    Andermann, Anne; Ginsburg, Liane; Norton, Peter; Arora, Narendra; Bates, David; Wu, Albert

    2011-01-01

    Background Tens of millions of patients worldwide suffer disabling injuries or death every year due to unsafe medical care. Nonetheless, there is a scarcity of research evidence on how to tackle this global health priority. The shortage of trained researchers is a major limitation, particularly in developing and transitional countries. Objectives As a first step to strengthen capacity in this area, the authors developed a set of internationally agreed core competencies for patient safety research worldwide. Methods A multistage process involved developing an initial framework, reviewing the existing literature relating to competencies in patient safety research, conducting a series of consultations with potential end users and international experts in the field from over 35 countries and finally convening a global consensus conference. Results An initial draft list of competencies was grouped into three themes: patient safety, research methods and knowledge translation. The competencies were considered by the WHO Patient Safety task force, by potential end users in developing and transitional countries and by international experts in the field to be relevant, comprehensive, clear, easily adaptable to local contexts and useful for training patient safety researchers internationally. Conclusions Reducing patient harm worldwide will require long-term sustained efforts to build capacity to enable practical research that addresses local problems and improves patient safety. The first edition of Competencies for Patient Safety Researchers is proposed by WHO Patient Safety as a foundation for strengthening research capacity by guiding the development of training programmes for researchers in the area of patient safety, particularly in developing and transitional countries, where such research is urgently needed. PMID:21228081

  2. International assessment of application of the Code of Conduct on the Safety of Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shokr, A.M. [Atomic Energy Authority, Abouzabal (Egypt). Egypt Second Research Reactor

    2015-11-15

    The self-assessments performed by thirty-eight countries on application of the Code of Conduct on the Safety of Research Reactors were analyzed and discussed. The results of this analysis were used to identify areas of satisfactory application of the Code and area needing improvements, and therefore require more attention worldwide. The results showed improvement in application of the Code provisions; notably in aging management, regulatory supervision, and consideration of human factors. However, there is a continuing need for further improvement in these areas, as well as in operational radiation protection, emergency preparedness and decommissioning planning. Additionally, increased attention needs to be given to periodic safety reviews, evaluation of site-specific hazards, and assessment of extreme external events. The results showed consistency with the feedback from other sources of information on generic safety issues for research reactors.

  3. International assessment of application of the Code of Conduct on the Safety of Research Reactors

    International Nuclear Information System (INIS)

    Shokr, A.M.

    2015-01-01

    The self-assessments performed by thirty-eight countries on application of the Code of Conduct on the Safety of Research Reactors were analyzed and discussed. The results of this analysis were used to identify areas of satisfactory application of the Code and area needing improvements, and therefore require more attention worldwide. The results showed improvement in application of the Code provisions; notably in aging management, regulatory supervision, and consideration of human factors. However, there is a continuing need for further improvement in these areas, as well as in operational radiation protection, emergency preparedness and decommissioning planning. Additionally, increased attention needs to be given to periodic safety reviews, evaluation of site-specific hazards, and assessment of extreme external events. The results showed consistency with the feedback from other sources of information on generic safety issues for research reactors.

  4. The Nordic Nuclear Safety Research (NKS) programme. Nordic cooperation on nuclear safety

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Kasper G. [Technical Univ. of Denmark, Roskilde (Denmark). National Lab. for Sustainable Energy; Ekstroem, Karoliina [Fortum Power and Heat, Fortum (Finland); Gwynn, Justin P. [Norwegian Radiation Protection Authority, Tromsoe (Norway). Fram Centre; Magnusson, Sigurdur M. [Icelandic Radiation Safety Authority, Reykjavik (Iceland); Physant, Finn C. [NKS-Sekretariatet, Roskilde (Denmark)

    2012-07-01

    The roots of the current Nordic Nuclear Safety Research (NKS) programme can be traced back to the recommendation by the Nordic Council in the late 1950s for the establishment of joint Nordic committees on the issues of nuclear research and radiation protection. One of these joint Nordic committees, the 'Kontaktorgan', paved the way over its 33 years of existence for the future of Nordic cooperation in the field of nuclear safety, through the formation of Nordic groups on reactor safety, nuclear waste and environmental effects of nuclear power in the late 1960s and early 1970s. With an increased focus on developing nuclear power in the wake of the energy crisis on the 1970s, the NKS was established by the Nordic Council to further develop the previous strands of Nordic cooperation in nuclear safety. NKS started its first programme in 1977, funding a series of four year programmes over the next 24 years covering the areas of reactor safety, waste management, emergency preparedness and radioecology. Initially funded directly from the Nordic Council, ownership of NKS was transferred from the political level to the national competent authorities at the beginning of the 1990s. This organizational and funding model has continued to the present day with additional financial support from a number of co-sponsors in Finland, Norway and Sweden. (orig.)

  5. Safety culture and quality management of Kartini research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Syarip [Yogyakarta Nuclear Research Centre, Yogyakarta (Indonesia); Hauptmanns, Ulrich [Department of Plant Design and Safety, Otto-Von-Guericke-University, Magdeburg (Germany)

    1999-10-01

    The evaluation for assessing the safety culture and quality of safety management of Kartini research reactor is presented. The method is based on the concept of management control of safety (audit) as well as by using the developed method i.e. the questionnaires concerning areas of relevance which have to be answered with value statements. There are seven statements or qualifiers in answering the questions. Since such statements are vague, they are represented by fuzzy numbers. The weaknesses can be identified from the different areas contemplated. The evaluation result show that the quality of safety management of Kartini research reactor is globally rated as 'Average'. The operator behavior in the implementation of 'safety culture' concept is found as a weakness, therefore this area should be improved. (author)

  6. Thermal analysis and safety information for metal nanopowders by DSC

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, J.M.; Huang, S.T. [Institute of Safety and Disaster Prevention Technology, Central Taiwan University of Science and Technology, 666, Buzih Road, Beitun District, Taichung 40601, Taiwan, ROC (China); Duh, Y.S.; Hsieh, T.Y.; Sun, Y.Y. [Department of Safety Health and Environmental Engineering, National United University, Miaoli, Taiwan, ROC (China); Lin, J.Z. [Institute of Safety and Disaster Prevention Technology, Central Taiwan University of Science and Technology, 666, Buzih Road, Beitun District, Taichung 40601, Taiwan, ROC (China); Wu, H.C. [Institute of Occupational Safety and Health, Council of Labor Affairs, Taipei, Taiwan, ROC (China); Kao, C.S., E-mail: jcsk@nuu.edu.tw [Department of Safety Health and Environmental Engineering, National United University, Miaoli, Taiwan, ROC (China)

    2013-08-20

    Highlights: • Metal nanopowders are common and frequently employed in industry. • Nano iron powder experimental results of T{sub o} were 140–150 °C. • Safety information can benefit relevant metal powders industries. - Abstract: Metal nanopowders are common and frequently employed in industry. Iron is mostly applied in high-performance magnetic materials and pollutants treatment for groundwater. Zinc is widely used in brass, bronze, die casting metal, alloys, rubber, and paints, etc. Nonetheless, some disasters induced by metal powders are due to the lack of related safety information. In this study, we applied differential scanning calorimetry (DSC) and used thermal analysis software to evaluate the related thermal safety information, such as exothermic onset temperature (T{sub o}), peak of temperature (T{sub p}), and heat of reaction (ΔH). The nano iron powder experimental results of T{sub o} were 140–150 °C, 148–158 °C, and 141–149 °C for 15 nm, 35 nm, and 65 nm, respectively. The ΔH was larger than 3900 J/g, 5000 J/g, and 3900 J/g for 15 nm, 35 nm, and 65 nm, respectively. Safety information can benefit the relevant metal powders industries for preventing accidents from occurring.

  7. LWR safety research at EPRI: an update

    International Nuclear Information System (INIS)

    Loewenstein, W.B.; Kalra, S.P.

    1983-01-01

    The philosophy, objectives, approach, and updated status of the Electric Power Research Institute's Light-Water-Reactor Safety Research Program are presented. In light of current industry needs, the major research and development emphases are described. The program focuses on providing enhanced capability via large-scale test projects, for understanding and predicting the behavior of nuclear power plants. This leads to a realistic quantification of the safety margins and to ways of improving reliability, availability, and productivity and thus to significant economic benefits for the nuclear industry. The major accomplishments resulting from various projects in the program categories of risk assessment, code development and validation, and analysis and testing are presented with the goal of technology transfer to the nuclear industry

  8. Development of the JNC geological disposal technical information integration system subjected for repository design and safety assessment

    International Nuclear Information System (INIS)

    Ishihara, Yoshinao; Ito, Takashi; Kobayashi, Shigeki; Neyama, Atsushi

    2004-02-01

    On this work, system manufacture about disposal technology and safety assessment field was performed towards construction of the JNC Geological Disposal Technical Information Integration System which systematized three fields of technical information acquired in investigation (site characteristic investigation) of geology environmental conditions, disposal technology (design of deep repository), and performance/safety assessment. The technical information database managed focusing on the technical information concerning individual research of an examination, analysis, etc. and the parameter set database managed focusing on the set up data set used in case of comprehensive evaluation are examined. In order to support and promote share and use of the technical information registered and managed by the database, utility functions, such as a technical information registration function, technical information search/browse function, analysis support function, and visualization function, are considered, and the system realized in these functions is built. The built system is installed in the server of JNC, and the functional check examination is carried out. (author)

  9. HTGR safety research concerns at NRC

    International Nuclear Information System (INIS)

    Minogue, R.B.

    1982-01-01

    A general discussion of HTGR technical and safety-related problems is given. The broad areas of current research programs specific to the Fort St. Vrain reactor and applicable to HTGR technology are summarized

  10. Evaluation of the Community's nuclear reactor safety research programme

    International Nuclear Information System (INIS)

    Brandstetter, A.; Goedkoop, J.A.; Jaumotte, A.; Malhouitre, G.; Tomkins, B.; Zorzoli, G.B.

    1986-01-01

    This report describes an evaluation of the 1980-85 CEC reactor safety programme prepared, at the invitation of the Commission, by a panel of six independent experts by means of examining the relevant document and by holding hearings with the responsible CEC staff. It contains the recommendations made by the panel on the following topics: the need for the JRC to continue to make its competence in the reactor safety field available to the Community; the importance of continuity in the JRC and shared-cost action programmes; the difficulty of developing reactor safety research programmes which satisfy the needs of users with diverse needs; the monitoring of the utilization of the research results; the maintenance of the JRC computer codes used by the Member States; the spin-off from research results being made available to other industrial sectors; the continued contact between the JRC researchers and the national experts; the coordination of LWR safety research with that of the Member States; and, the JRC work on fast breeders to be planned with regard to the R and D programmes of the Fast Reactor European Consortium

  11. The experiences of research reactor accident to safety improvement

    International Nuclear Information System (INIS)

    Wiranto, S.

    1999-01-01

    The safety of reactor operation is the main factor in order that the nuclear technology development program can be held according the expected target. Several experience with research reactor incidents must be learned and understood by the nuclear program personnel, especially for operators and supervisors of RSG-GA. Siwabessy. From the incident experience of research reactor in the world, which mentioned in the book 'Experience with research reactor incidents' by IAEA, 1995, was concluded that the main cause of research reactor accidents is understandless about the safety culture by the nuclear installation personnel. With learn, understand and compare between this experiences and the condition of RSG GA Siwabessy is expended the operators and supervisors more attention about the safety culture, so that RSG GA Siwabessy can be operated successfull, safely according the expected target

  12. 76 FR 12361 - Request for Information: Update of NIOSH Nanotechnology Strategic Plan for Research and Guidance

    Science.gov (United States)

    2011-03-07

    ... Control and Prevention (CDC) has pioneered research on the toxicological properties and characteristics of nanoparticles. This research has involved characterizing occupationally relevant nanoparticles for predicting... explosion safety, (8) recommendations and guidance, (9) communication and information, and (10) applications...

  13. Management of the Interface between Nuclear Safety and Security for Research Reactors

    International Nuclear Information System (INIS)

    2016-08-01

    The aim of this publication is to provide technical guidelines and practical information to assist Member States, operating organizations and regulatory bodies, on the basis of international good practices, and to manage the interface between nuclear safety and security at research reactor facilities in an integrated and coordinated manner. The publication was developed based on input from IAEA technical and consultants' meetings held between 2013 and 2015

  14. Research on the improvement of nuclear safety -Thermal hydraulic tests for reactor safety system-

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Moon Kee; Park, Choon Kyung; Yang, Sun Kyoo; Chun, Se Yung; Song, Chul Hwa; Jun, Hyung Kil; Jung, Heung Joon; Won, Soon Yun; Cho, Yung Roh; Min, Kyung Hoh; Jung, Jang Hwan; Jang, Suk Kyoo; Kim, Bok Deuk; Kim, Wooi Kyung; Huh, Jin; Kim, Sook Kwan; Moon, Sang Kee; Lee, Sang Il [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-06-01

    The present research aims at the development of the thermal hydraulic verification test technology for the safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. In this research, test facilities simulating the primary coolant system and safety system are being constructed for the design verification tests of the existing and advanced nuclear power plant. 97 figs, 14 tabs, 65 refs. (Author).

  15. Safety infrastructure for countries establishing their first research reactor

    International Nuclear Information System (INIS)

    Abou Yehia, H.; Shokr, A.M.

    2010-01-01

    Establishment of a research reactor is a major project requiring careful planning, preparation, implementation, and investment in time and human resources. The implementation of such a project requires establishment of sustainable infrastructures, including legal and regulatory, safety, technical, and economic. An analysis of the needs for a new research reactor facility should be performed including the development of a utilization plan and evaluation of site availability and suitability. All these elements should be covered by a feasibility study of the project. This paper discusses the elements of such a study with the main focus on the specific activities and steps for developing the necessary safety infrastructure. Progressive involvement of the main organizations in the project, and application of the IAEA Code of Conduct on the Safety of Research Reactors and IAEA Safety Standards in different phases of the project are presented and discussed. (author)

  16. German Light-Water-Reactor Safety-Research Program

    International Nuclear Information System (INIS)

    Seipel, H.G.; Lummerzheim, D.; Rittig, D.

    1977-01-01

    The Light-Water-Reactor Safety-Research Program, which is part of the energy program of the Federal Republic of Germany, is presented in this article. The program, for which the Federal Minister of Research and Technology of the Federal Republic of Germany is responsible, is subdivided into the following four main problem areas, which in turn are subdivided into projects: (1) improvement of the operational safety and reliability of systems and components (projects: quality assurance, component safety); (2) analysis of the consequences of accidents (projects: emergency core cooling, containment, external impacts, pressure-vessel failure, core meltdown); (3) analysis of radiation exposure during operation, accident, and decommissioning (project: fission-product transport and radiation exposure); and (4) analysis of the risk created by the operation of nuclear power plants (project: risk and reliability). Various problems, which are included in the above-mentioned projects, are concurrently studied within the Heiss-Dampf Reaktor experiments

  17. Design of Safety Parameter Monitoring Function in a Research Reactor Facility

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaekwan; Suh, Yongsuk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The primary purpose of the safety parameter monitoring system (SPDS) is to help operating personnel in the control room make quick assessments of the plant safety status. Thus, the basic function of the SPDS is a provision of a continuous indication of plant parameters or derived variables representative of the safety status of the plant. NUREG-0737 Supplement 1 provides details of the functional criteria for the SPDS, as one of the action plan requirements from TMI accident. The system provides various functions as follows: · Alerting based on safety function decision logics, · Success path analysis to achieve the integrity of the safety functions, · 3 layer display architecture - safety function, success path display for each safety function, system summary and equipment details for each safety function, · Integration with computer-based procedure. According to a Notice of the NSSC No. 2012-31, a research reactor facility generating more than 2 MW of power should also be furnished with the SPDS for emergency preparedness. Generally, a research reactor is a small size facility, and its number of instrumentations is fewer than that of NPPs. In particular, it is actually hard to have various and powerful functions from an economic perspective. Therefore, a safety parameter display system optimized for a research reactor facility must be proposed. This paper provides the requirement analysis results and proposes the design of safety parameter monitoring function for a research reactor. The safety parameter monitoring function supporting control room personnel during emergency conditions should be designed in a research reactor facility. The facility size and number of signals are smaller than that of the power plants. Also, it is actually hard to have various and powerful functions of nuclear power plants from an economic perspective. Thus, a safety parameter display system optimized to a research reactor must be proposed. First, we found important design items

  18. Design of Safety Parameter Monitoring Function in a Research Reactor Facility

    International Nuclear Information System (INIS)

    Park, Jaekwan; Suh, Yongsuk

    2014-01-01

    The primary purpose of the safety parameter monitoring system (SPDS) is to help operating personnel in the control room make quick assessments of the plant safety status. Thus, the basic function of the SPDS is a provision of a continuous indication of plant parameters or derived variables representative of the safety status of the plant. NUREG-0737 Supplement 1 provides details of the functional criteria for the SPDS, as one of the action plan requirements from TMI accident. The system provides various functions as follows: · Alerting based on safety function decision logics, · Success path analysis to achieve the integrity of the safety functions, · 3 layer display architecture - safety function, success path display for each safety function, system summary and equipment details for each safety function, · Integration with computer-based procedure. According to a Notice of the NSSC No. 2012-31, a research reactor facility generating more than 2 MW of power should also be furnished with the SPDS for emergency preparedness. Generally, a research reactor is a small size facility, and its number of instrumentations is fewer than that of NPPs. In particular, it is actually hard to have various and powerful functions from an economic perspective. Therefore, a safety parameter display system optimized for a research reactor facility must be proposed. This paper provides the requirement analysis results and proposes the design of safety parameter monitoring function for a research reactor. The safety parameter monitoring function supporting control room personnel during emergency conditions should be designed in a research reactor facility. The facility size and number of signals are smaller than that of the power plants. Also, it is actually hard to have various and powerful functions of nuclear power plants from an economic perspective. Thus, a safety parameter display system optimized to a research reactor must be proposed. First, we found important design items

  19. Health and safety information program for hazardous materials

    International Nuclear Information System (INIS)

    O'Brien, M.P.; Fallon, N.J.; Kuehner, A.V.

    1979-01-01

    The system is used as a management tool in several safety and health programs. It is used to: trace the use of hazardous materials and to determine monitoring needs; inform the occupational physician of the potential health problems associated with materials ordered by a given individual; inform the fire and rescue group of hazardous materials in a given building; provide waste disposal recommendations to the hazardous waste management group; assist the hazardous materials shipping coordinator in identifying materials which are regulated by the Department of Transportation; and guide management decisions in the area of recognizing and rectifying unsafe conditions. The information system has been expanded from a manual effort to provide a brief description of health hazards of chemicals used at the lab to a computerized health and safety information system which serves the needs of all personnel who may encounter the material in the course of their work. The system has been designed to provide information needed to control the potential problems associated with a hazardous material up to the time that it is consumed in a given operation or is sent to the waste disposal facility

  20. Safety Committees for Argentinean Research Reactor - Regulatory Issues

    International Nuclear Information System (INIS)

    Perrin, Carlos D.

    2009-01-01

    In the field of radiological and nuclear safety, the Nuclear Regulatory Authority (ARN) of Argentina controls three research reactors and three critical assemblies, by means of evaluations, audits and inspections, in order to ensure the fulfillment of the requirements established in the Licenses, in the Regulatory Standards and in the Mandatory Documentation in general. From the Nuclear Regulatory Authority's point of view, within the general process of research reactors safety management, the Operational Organization self verification of radiological and nuclear safety plays an outstanding role. In this aspect the ARN has established specific requirements in the Regulatory Standards, in the Operation Licenses and in the Operational Limits and Conditions. These requirements include the figure of different safety committees, which act as reviewers or advisers in diverse situations. This paper describes the main characteristics of the committees, their function, scope and the regulatory documents where the requirements are included. (author)

  1. Opportunities for Using Building Information Modeling to Improve Worker Safety Performance

    Directory of Open Access Journals (Sweden)

    Kasim Alomari

    2017-02-01

    Full Text Available Building information modelling (BIM enables the creation of a digital representation of a designed facility combined with additional information about the project attributes, performance criteria, and construction process. Users of BIM tools point to the ability to visualize the final design along with the construction process as a beneficial feature of using BIM. Knowing the construction process in relationship to a facility’s design benefits both safety professionals when planning worker safety measures for a project and designers when creating a project’s design. Success in using BIM to enhance safety partly depends on the familiarity of project personnel with BIM tools and the extent to which the tools can be used to identify and eliminate safety hazards. In a separate, ongoing study, the authors investigated the connection between BIM and safety to document the opportunities, barriers, and impacts. Utilizing an on-line survey of project engineers who work for construction firms together with a comprehensive literature review, the study found those who use BIM feel that it aids in communication of project information and project delivery, both of which have been found to have positive impacts on construction site safety. Further, utilizing the survey results, the authors apply the binary logistic regression econometric framework to better understand the factors that lead to safety professionals believing that BIM increases safety in the work place. In addition, according to the survey results, a large percentage of the engineers who use BIM feel that ultimately it helps to eliminate safety hazards and improve worker safety. The study findings suggest that improvements in safety performance across the construction industry may be due in part to increased use of BIM in the construction industry.

  2. The challenge of effectively communicating patient safety information.

    Science.gov (United States)

    Hugman, Bruce; Edwards, I Ralph

    2006-07-01

    Rational use of drugs and patient safety are seriously compromised by a lack of good information, education and effective communication at all stages of drug development and use. From animal trials through to dispensing, there are misconceptions and opportunities for error which current methods of drug information communication do not adequately address: they do not provide those responsible for prescribing and dispensing drugs with the data and information they need to pass on complex and often changing messages to patients and the public. The incidence of adverse reactions due to the way drugs are used; the variable impact of regulatory guidelines and warnings on prescribing behaviour; drug scares and crises suggest a great gap between the ideals of the safe use of medicines and the reality in homes, clinics and hospitals around the world. To address these challenges, the authors review the several levels at which safety information is generated and communicated, and examine how, at each stage, the content and its significance, and the method of communication can be improved.

  3. Nuclear Safety Research and Facilities Department. Annual report 1999

    International Nuclear Information System (INIS)

    Majborn, B.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E.

    2000-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  4. Nuclear Safety Research and Facilities Department annual report 1997

    International Nuclear Information System (INIS)

    Majborn, B.; Aarkrog, A.; Brodersen, K.

    1998-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1997. The department's research and development activities were organized in four research programmes: Reactor Safety, Radiation protection, Radioecology, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the educational reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  5. Nuclear Safety Research and Facilities Department annual report 1998

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E.

    1999-04-01

    The report present a summary of the work of the Nuclear Safety Research and Facilities Department in 1998. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment plant, and the educational reactor DR1. Lsits of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  6. Health, safety and environmental research program

    International Nuclear Information System (INIS)

    Dinner, P.J.

    1983-01-01

    This report outlines the Health, Safety and Environmental Research Program being undertaken by the CFFTP. The Program objectives, relationship to other CFFTP programs, implementation plans and expected outputs are stated. Opportunities to build upon the knowledge and experience gained in safely managing tritium in the CANDU program, by addressing generic questions pertinent to tritium safety for fusion facilities, are identified. These opportunities exist across a broad spectrum of issues covering the anticipated behaviour of tritium in fusion facilities, the surrounding environment and in man

  7. Probabilistic safety analysis and risk-based inspection of nuclear research reactors: state-of-the-art and implementation proposal

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Raíssa O.; Vasceoncelos, Vanderley de; Soares, Wellington A.; Silva Júnior, Silvério F.; Raso, Amanda L.; Mesquita, Amir Z., E-mail: raissaomarques@gmail.com, E-mail: vasconv@cdtn.br, E-mail: soaresw@cdtn.br, E-mail: silvasf@cdtn.br, E-mail: amandaraso@hotmail.com, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Industrial facilities systems deteriorate over time during operation, thus increasing the possibility of accidents. Risk-Based Inspection (RBI) classifies such systems by their risk information with the purpose of prioritizing inspection efforts. RBI can reduce inspection activities, resulting in lower risk levels, and maintaining reliability and safety in acceptable levels. Risk-Informed In-Service Inspection (RI-ISI) is a RBI approach used in nuclear industry. RI-ISI uses outcomes from Probabilistic Safety Analysis (PSA) of Nuclear Power Plants (NPP) to plan In-Service Inspections (ISI). Despite nuclear research reactors are simpler and have lower risks than power reactors, the application of PSA to them may be useful for safety improvements once they are more flexible, provide easier access to its core, and allow changes in fuel configurations in case of experimental tests. Ageing management of structures, systems and components important to safety of a nuclear research reactor throughout its lifetime is also required to assure continued adequacy of safety levels, reliable operation, and compliance with operational limits and conditions. This includes periodic review of ISI programs in which monitoring of material deterioration and aging effects are considered, and that can be supported by the RBI approach. A review of state-of-the-art of PSA and RBI applications to nuclear reactors is presented in this work. Advantages to apply these methodologies are also analyzed. PSA and RBI implementation proposal applied to nuclear research reactors is also presented, as well as its application to a TRIGA research nuclear reactor using computer codes developed by ReliaSoft® Corporation. (author)

  8. Probabilistic safety analysis and risk-based inspection of nuclear research reactors: state-of-the-art and implementation proposal

    International Nuclear Information System (INIS)

    Marques, Raíssa O.; Vasceoncelos, Vanderley de; Soares, Wellington A.; Silva Júnior, Silvério F.; Raso, Amanda L.; Mesquita, Amir Z.

    2017-01-01

    Industrial facilities systems deteriorate over time during operation, thus increasing the possibility of accidents. Risk-Based Inspection (RBI) classifies such systems by their risk information with the purpose of prioritizing inspection efforts. RBI can reduce inspection activities, resulting in lower risk levels, and maintaining reliability and safety in acceptable levels. Risk-Informed In-Service Inspection (RI-ISI) is a RBI approach used in nuclear industry. RI-ISI uses outcomes from Probabilistic Safety Analysis (PSA) of Nuclear Power Plants (NPP) to plan In-Service Inspections (ISI). Despite nuclear research reactors are simpler and have lower risks than power reactors, the application of PSA to them may be useful for safety improvements once they are more flexible, provide easier access to its core, and allow changes in fuel configurations in case of experimental tests. Ageing management of structures, systems and components important to safety of a nuclear research reactor throughout its lifetime is also required to assure continued adequacy of safety levels, reliable operation, and compliance with operational limits and conditions. This includes periodic review of ISI programs in which monitoring of material deterioration and aging effects are considered, and that can be supported by the RBI approach. A review of state-of-the-art of PSA and RBI applications to nuclear reactors is presented in this work. Advantages to apply these methodologies are also analyzed. PSA and RBI implementation proposal applied to nuclear research reactors is also presented, as well as its application to a TRIGA research nuclear reactor using computer codes developed by ReliaSoft® Corporation. (author)

  9. Information need about the safety of the final disposal of nuclear waste. Information receiver's views in Eurajoki, Kuhmo and Aeaenekoski municipalities

    International Nuclear Information System (INIS)

    Hautakangas, H.

    1997-03-01

    The study analyses the public's information need about the safety issues related to the final disposal of spent nuclear fuel generated by the Finnish nuclear power stations. Locals in three municipalities that are studied as possible sites for final disposal were interviewed for the study. Earlier studies made in Finland had indicated that the public's knowledge about safety issues related to the final disposal was almost opposite to the findings of the natural sciences. Also, the public had expressed a wish to receive more information from the safety authority, the Finnish Centre for Radiation and Nuclear Safety (STUK). This study therefore had two basic objectives: To find out what kind of safety information the locals need and what the safety authority's role could be in providing information. The main results show interest and need especially for information concerning the disposal phases taking place on the ground level, such as nuclear waste transportation and encapsulation. Also, the interviews show a clear need and desire for an impartial actor such as STUK in the information and communication process. (author) (107 refs.)

  10. Exchange of information between nuclear safety authorities: Policy of the French regulator

    International Nuclear Information System (INIS)

    Asty, Michel

    2000-01-01

    Full text: The decree setting up the Nuclear Safety Authority in 1973 entrusted it with international assignments whose objectives are still valid: - develop exchanges of information with foreign counterparts on regulatory systems and practices, on problems encountered in the nuclear safety field and on provisions made, with a view to enhancing its approach, and - becoming better acquainted with the actual operating practice of these Safety Authorities from which lessons could be learned for its own working procedures; - improving its position in the technical discussions with the French operators, since its arguments would be strengthened by practical knowledge of conditions abroad; - make known and explain the French approach and practices in the nuclear safety field and provide information on measures taken to deal with the problems encountered. This approach has several objectives: - promote the circulation of information on French positions on certain issues, such as very low level waste, for instance; - assist some countries wishing to create or modify their Nuclear Safety Authority, such as countries of the former USSR, the Central and Eastern European countries, and emerging countries on other continents; - help, when requested, foreign Safety Authorities required to issue permits for nuclear equipment of French origin; - provide the countries concerned with all relevant information on French nuclear installations located near their frontiers. Examples are given on the way the French Nuclear Safety Authority implements these objectives. (author)

  11. Impediments for the application of risk-informed decision making in nuclear safety

    International Nuclear Information System (INIS)

    Hahn, L.

    2001-01-01

    A broad application of risk-informed decision making in the regulation of safety of nuclear power plants is hindered by the lack of quantitative risk and safety standards as well as of precise instruments to demonstrate an appropriate safety. An additional severe problem is associated with the difficulty to harmonize deterministic design requirements and probabilistic safety assessment. The problem is strengthened by the vulnerability of PSA for subjective influences and the potential of misuse. Beside this scepticism the nuclear community is encouraged to intensify the efforts to improve the quality standards for probabilistic safety assessments and their quality assurance. A prerequisite for reliable risk-informed decision making processes is also a well-defined and transparent relationship between deterministic and probabilistic safety approaches. (author)

  12. Establishing research priorities for patient safety in emergency medicine: a multidisciplinary consensus panel.

    Science.gov (United States)

    Plint, Amy C; Stang, Antonia S; Calder, Lisa A

    2015-01-01

    Patient safety in the context of emergency medicine is a relatively new field of study. To date, no broad research agenda for patient safety in emergency medicine has been established. The objective of this study was to establish patient safety-related research priorities for emergency medicine. These priorities would provide a foundation for high-quality research, important direction to both researchers and health-care funders, and an essential step in improving health-care safety and patient outcomes in the high-risk emergency department (ED) setting. A four-phase consensus procedure with a multidisciplinary expert panel was organized to identify, assess, and agree on research priorities for patient safety in emergency medicine. The 19-member panel consisted of clinicians, administrators, and researchers from adult and pediatric emergency medicine, patient safety, pharmacy, and mental health; as well as representatives from patient safety organizations. In phase 1, we developed an initial list of potential research priorities by electronically surveying a purposeful and convenience sample of patient safety experts, ED clinicians, administrators, and researchers from across North America using contact lists from multiple organizations. We used simple content analysis to remove duplication and categorize the research priorities identified by survey respondents. Our expert panel reached consensus on a final list of research priorities through an in-person meeting (phase 3) and two rounds of a modified Delphi process (phases 2 and 4). After phases 1 and 2, 66 unique research priorities were identified for expert panel review. At the end of phase 4, consensus was reached for 15 research priorities. These priorities represent four themes: (1) methods to identify patient safety issues (five priorities), (2) understanding human and environmental factors related to patient safety (four priorities), (3) the patient perspective (one priority), and (4) interventions for

  13. Health and Safety Research Division progress report for the period October 1, 1991--March 31, 1993

    International Nuclear Information System (INIS)

    Berven, B.A.

    1993-09-01

    This is a progress report from the Health and Safety Research Division of Oak Ridge National Laboratory. Information is presented in the following sections: Assessment Technology, Biological and Radiation Physics, Chemical Physics, Biomedical and Environmental Information Analysis, Risk Analysis, Center for Risk Management, Associate Laboratories for Excellence in Radiation Technology (ALERT), and Contributions to National and Lead Laboratory Programs and Assignments--Environmental Restoration

  14. Health and Safety Research Division progress report for the period October 1, 1991--March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Berven, B.A.

    1993-09-01

    This is a progress report from the Health and Safety Research Division of Oak Ridge National Laboratory. Information is presented in the following sections: Assessment Technology, Biological and Radiation Physics, Chemical Physics, Biomedical and Environmental Information Analysis, Risk Analysis, Center for Risk Management, Associate Laboratories for Excellence in Radiation Technology (ALERT), and Contributions to National and Lead Laboratory Programs and Assignments--Environmental Restoration.

  15. Nuclear Safety Research Review Committee

    International Nuclear Information System (INIS)

    Todreas, N.E.

    1990-01-01

    The Nuclear Safety Research Review Committee has had a fundamental difficulty because of the atmosphere that has existed since it was created. It came into existence at a time of decreasing budgets. For any Committee the easiest thing is to tell the Director what additional to do. That does not really help him a lot in this atmosphere of reduced budgets which he reviewed for you on Monday. Concurrently the research arm of Nuclear Regulatory Commission has recognized that the scope of its activity needed to be increased rather than decreased. In the last two-and-a-half-year period, human factors work was reinstated, radiation and health effects investigations were reinvigorated, research in the waste area was given significant acceleration. Further, accident management came into being, and the NRC finally got back into the TMI-2 area. So with all of those activities being added to the program at the same time that the research budget was going down, the situation has become very strained. What that leads to regarding Committee membership is a need for technically competent generalists who will be able to sit as the Division Directors come in, as the contractors come in, and sort the wheat from the chaff. The Committee needs people who are interested in and have a broad perspective on what regulatory needs are and specifically how safety research activities can contribute to them. The author summarizes the history of the Committee, the current status, and plans for the future

  16. Nuclear Safety Research and Facilities Department. Annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E. [eds.

    2000-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  17. Nuclear Safety Research and Facilities Department annual report 1999

    DEFF Research Database (Denmark)

    Majborn, B.; Damkjær, A.; Jensen, Per Hedemann

    2000-01-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department´s research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and"Radioecology and Tracer Studies". The nuclear...... facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are includedtogether with a summary of the staff´s participation in national and international committees....

  18. Nuclear Safety Research and Facilities Department annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Aarkrog, A.; Brodersen, K. [and others

    1998-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1997. The department`s research and development activities were organized in four research programmes: Reactor Safety, Radiation protection, Radioecology, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the educational reactor DR1. Lists of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au) 11 tabs., 39 ills.; 74 refs.

  19. Nuclear Safety Research and Facilities Department annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E

    1999-04-01

    The report present a summary of the work of the Nuclear Safety Research and Facilities Department in 1998. The department`s research and development activities were organized in two research programmes: `Radiation Protection and Reactor Safety` and `Radioecology and Tracer Studies`. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment plant, and the educational reactor DR1. Lsits of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au)

  20. Nuclear Safety Research and Facilities department annual report 1996

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Floto, H.; Heydorn, K.; Oelgaard, P.L.

    1997-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1996. The Department's research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au) 2 tabs., 28 ills

  1. MAPLE research reactor safety uncertainty assessment methodology

    International Nuclear Information System (INIS)

    Sills, H.E.; Duffey, R.B.; Andres, T.H.

    1999-01-01

    The MAPLE (multipurpose Applied Physics Lattice Experiment) reactor is a low pressure, low temperature, open-tank-in pool type research reactor that operates at a power level of 5 to 35 MW. MAPLE is designed for ease of operation, maintenance, and to meet today's most demanding requirements for safety and licensing. The emphasis is on the use of passive safety systems and environmentally qualified components. Key safety features include two independent and diverse shutdown systems, two parallel and independent cooling loops, fail safe operation, and a building design that incorporates the concepts of primary containment supported by secondary confinement

  2. Human performance analysis in the frame of probabilistic safety assessment of research reactors

    International Nuclear Information System (INIS)

    Farcasiu, Mita; Nitoi, Mirela; Apostol, Minodora; Turcu, I.; Florescu, Gh.

    2005-01-01

    Full text: The analysis of operating experience has identified the importance of human performance in reliability and safety of research reactors. In Probabilistic Safety Assessment (PSA) of nuclear facilities, human performance analysis (HPA) is used in order to estimate human error contribution to the failure of system components or functions. HPA is a qualitative and quantitative analysis of human actions identified for error-likely situations or accident-prone situations. Qualitative analysis is used to identify all man-machine interfaces that can lead to an accident, types of human interactions which may mitigate or exacerbate the accident, types of human errors and performance shaping factors. Quantitative analysis is used to develop estimates of human error probability as effects of human performance in reliability and safety. The goal of this paper is to accomplish a HPA in the PSA frame for research reactors. Human error probabilities estimated as results of human actions analysis could be included in system event tree and/or system fault tree. The achieved sensitivity analyses determine human performance sensibility at systematically variations both for dependencies level between human actions and for operator stress level. The necessary information was obtained from operating experience of research reactor TRIGA from INR Pitesti. The required data were obtained from generic data bases. (authors)

  3. HTGR safety research program. Progress report, April--June 1975

    International Nuclear Information System (INIS)

    Kirk, W.L.

    1975-09-01

    Progress in HTGR safety research is reported under the following headings: fission product technology; primary coolant impurities; structural investigation; safety instrumentation and control systems; phenomena modeling and systems analysis. (JWR)

  4. Researching safety culture: deliberative dialogue with a restorative lens.

    Science.gov (United States)

    Lorenzini, Elisiane; Oelke, Nelly D; Marck, Patricia Beryl; Dall'agnol, Clarice Maria

    2017-10-01

    Safety culture is a key component of patient safety. Many patient safety strategies in health care have been adapted from high-reliability organizations (HRO) such as aviation. However, to date, attempts to transform the cultures of health care settings through HRO approaches have had mixed results. We propose a methodological approach for safety culture research, which integrates the theory and practice of restoration science with the principles and methods of deliberative dialogue to support active engagement in critical reflection and collective debate. Our aim is to describe how these two innovative approaches in health services research can be used together to provide a comprehensive effective method to study and implement change in safety culture. Restorative research in health care integrates socio-ecological theory of complex adaptive systems concepts with collaborative, place-sensitive study of local practice contexts. Deliberative dialogue brings together all stakeholders to collectively develop solutions on an issue to facilitate change. Together these approaches can be used to actively engage people in the study of safety culture to gain a better understanding of its elements. More importantly, we argue that the synergistic use of these approaches offers enhanced potential to move health care professionals towards actionable strategies to improve patient safety within today's complex health care systems. © The Author 2017. Published by Oxford University Press in association with the International Society for Quality in Health Care. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Proceedings of JAERI-JNC joint conference on nuclear safety research. March 7, 2003, Tokyo

    International Nuclear Information System (INIS)

    Sugimoto, Jun; Anoda, Yoshinari; Araya, Fumimasa; Yamaguchi, Toshio

    2003-08-01

    The JAERI-JNC Joint Conference on Nuclear Safety Research was held on March 7, 2003 in Tokyo with 188 participants, ahead of planned unification of JAERI and JNC in 2005. The objectives of the conference are to present recent results of safety research conducted in both institutes in accordance with the Five-Year Safety Research Plan by the Nuclear Safety Commission (NSC), and to reflect suggestions from the participants for future research program. Prof. Matsubara, Vice Chairperson of NSC, first presented a special lecture entitled 'Expectation on Future Nuclear Safety Research in Japan'. Twelve papers were then presented on the overview of research results and those of individual research activities in the fields of nuclear facilities, radioactive waste and environmental radioactivity. In the final session, a panel discussion was conducted with a title of 'Expectation on Future Nuclear Safety Research' chaired by Prof. Kimura, Chairperson of Special Committee on Nuclear Safety Research under NSC. Through the presentations and discussions, consensus has almost been obtained among participants for several key issues on safety research to be conducted by a unified new organization, such as giving priority to safety research as one of major missions, assurance of independence of safety research with the governmental funds, assurance of transparency of the planning process of safety research, separation and harmonization between safety research and developmental research, importance of maintaining fundamental research and research facilities, promotion of cooperation with relevant organizations considering the needs from industries, and importance of dissemination of research results and personnel training. The present report compiles the summaries of special lecture, papers, questions and comments, panel discussions, and OHPs presented in the conference. (author)

  6. The Role of the Radiation Safety Information Computational Center (RSICC) in Knowledge Management

    International Nuclear Information System (INIS)

    Valentine, T.

    2016-01-01

    Full text: The Radiation Safety Information Computational Center (RSICC) is an information analysis center that collects, archives, evaluates, synthesizes and distributes information, data and codes that are used in various nuclear technology applications. RSICC retains more than 2,000 packages that have been provided by contributors from various agencies. RSICC’s customers obtain access to such computing codes (source and/or executable versions) and processed nuclear data files to promote on-going research, to help ensure nuclear and radiological safety, and to advance nuclear technology. The role of such information analysis centers is critical for supporting and sustaining nuclear education and training programmes both domestically and internationally, as the majority of RSICC’s customers are students attending U.S. universities. RSICC also supports and promotes workshops and seminars in nuclear science and technology to further the use and/or development of computational tools and data. Additionally, RSICC operates a secure CLOUD computing system to provide access to sensitive export-controlled modeling and simulation (M&S) tools that support both domestic and international activities. This presentation will provide a general review of RSICC’s activities, services, and systems that support knowledge management and education and training in the nuclear field. (author

  7. HTGR Dust Safety Issues and Needs for Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Paul W. Humrickhouse

    2011-06-01

    This report presents a summary of high temperature gas-cooled reactor dust safety issues. It draws upon a literature review and the proceedings of the Very High Temperature Reactor Dust Assessment Meeting held in Rockville, MD in March 2011 to identify and prioritize the phenomena and issues that characterize the effect of carbonaceous dust on high temperature reactor safety. It reflects the work and input of approximately 40 participants from the U.S. Department of Energy and its National Labs, the U.S. Nuclear Regulatory Commission, industry, academia, and international nuclear research organizations on the topics of dust generation and characterization, transport, fission product interactions, and chemical reactions. The meeting was organized by the Idaho National Laboratory under the auspices of the Next Generation Nuclear Plant Project, with support from the U.S. Nuclear Regulatory Commission. Information gleaned from the report and related meetings will be used to enhance the fuel, graphite, and methods technical program plans that guide research and development under the Next Generation Nuclear Plant Project. Based on meeting discussions and presentations, major research and development needs include: generating adsorption isotherms for fission products that display an affinity for dust, investigating the formation and properties of carbonaceous crust on the inside of high temperature reactor coolant pipes, and confirming the predominant source of dust as abrasion between fuel spheres and the fuel handling system.

  8. Radiological safety design considerations for fusion research experiments

    International Nuclear Information System (INIS)

    Crase, K.W.; Singh, M.S.

    1979-01-01

    A wide variety of fusion research experiments are in the planning or construction stages. Two such experiments, the Nova Laser Fusion Facility and the Mirror Fusion Test Facility (MFTF), are currently under construction at Lawrence Livermore Laboratory. Although the plasma chamber vault for MFTF and the Nova target room will have thick concrete walls and roofs, the radiation safety problems are made complex by the numerous requirements for shield wall penetrations. This paper addresses radiation safety considerations for the MFTF and Nova experiments, and the need for integrated safety considerations and safety technology development during the planning stages of fusion experiments

  9. Reports on research programs in the field of reactor safety sponsored by the Federal Ministry of Research and Technology. Reported period: January 1 to June 30, 1993

    International Nuclear Information System (INIS)

    1993-01-01

    Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the Forschungsbetreuung at the GRS, (FB) (Research Coordination Department), within the framework of general informations of progress in reactor safety research. The individual reports are classified according to the research program of the safety of LWR 1977 - 1980 of the BMFT. Another table of uses the same classification system as applied in the nuclear safety index of the CEC (Commision of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in sequence of their project numbers. (orig.) [de

  10. Reports on research programs in the field of reactor safety sponsored by the Federal Ministry of Research and Technology. Reported period: January 1 to June 30, 1994

    International Nuclear Information System (INIS)

    1994-01-01

    Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the Forschungsbetreuung at the GRS, (FB) (Research Coordination Department), within the framework of general informations of progress in reactor safety research. The individual reports are classified according to the research program of the safety of LWR 1977 - 1980 of the BMFT. Another table of uses the same classification system as applied in the nuclear safety index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in sequence of their project numbers. (orig.) [de

  11. Forschungszentrum Rossendorf, Institute of Safety Research. Annual report 2004

    International Nuclear Information System (INIS)

    Weiss, F.P.; Rindelhardt, U.

    2005-01-01

    The Institute of Safety Research (ISR) is one of the six Research Institutes of Forschungszentrum Rossendorf e.V. (FZR e.V.) which is a member institution of the Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz (Leibniz Association). Together with the Institute of Radiochemistry, ISR constitutes the research programme ''Safety and Environment'' which is one from three scientific programmes of FZR. In the framework of this research programme, the institute is responsible for the two subprogrammes ''Plant and Reactor Safety'' and ''Thermal Fluid Dynamics'', respectively. We also provide minor contributions to the sub-programme ''Radio-Ecology''. Moreover, with the development of a pulsed photo-neutron source at the radiation source ELBE (Electron linear accelerator for beams of high brilliance and low emittance), we are involved in a networking project carried out by the FZR Institute of Nuclear and Hadron Physics, the Physics Department of TU Dresden, and ISR. (orig.)

  12. 'BeSAFE', effect-evaluation of internet-based, tailored safety information combined with personal counselling on parents' child safety behaviours: study design of a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    van Beeck Eduard F

    2010-08-01

    Full Text Available Abstract Background Injuries in or around the home are the most important cause of death among children aged 0-4 years old. It is also a major source of morbidity and loss of quality of life. In order to reduce the number of injuries, the Consumer Safety Institute introduced the use of Safety Information Leaflets in the Netherlands to provide safety education to parents of children aged 0-4 years. Despite current safety education, necessary safety behaviours are still not taken by a large number of parents, causing unnecessary risk of injury among young children. In an earlier study an E-health module with internet-based, tailored safety information was developed and applied. It concerns an advice for parents on safety behaviours in their homes regarding their child. The aim of this study is to evaluate the effect of this safety information combined with personal counselling on parents' child safety behaviours. Methods/Design Parents who are eligible for the regular well-child visit with their child at child age 5-8 months are invited to participate in this study. Participating parents are randomized into one of two groups: 1 internet-based, tailored safety information combined with personal counselling (intervention group, or 2 personal counselling using the Safety Information Leaflets of the Consumer Safety Institute in the Netherlands for children aged 12 to 24 months (control group. All parents receive safety information on safety topics regarding the prevention of falling, poisoning, drowning and burning. Parents of the intervention group will access the internet-based, tailored safety information module when their child is approximately 10 months old. After completion of the assessment questions, the program compiles a tailored safety advice. The parents are asked to devise and inscribe a personal implementation intention. During the next well-child visit, the Child Health Clinic professional will discuss this tailored safety information

  13. Safety features and research needs of westinghouse advanced reactors

    International Nuclear Information System (INIS)

    Carelli, M.D.; Winters, J.W.; Cummins, W.E.; Bruschi, H.J.

    2002-01-01

    The three Westinghouse advanced reactors - AP600, AP1000 and IRIS - are at different levels of readiness. AP600 has received a Design Certification, its larger size version AP1000 is currently in the design certification process and IRIS has just completed its conceptual design and will initiate soon a licensing pre-application. The safety features of the passive designs AP600/AP1000 are presented, followed by the features of the more revolutionary IRIS, a small size modular integral reactor. A discussion of the IRIS safety by design approach is given. The AP600/AP1000 design certification is backed by completed testing and development which is summarized, together with a research program currently in progress which will extend AP600 severe accident test data to AP1000 conditions. While IRIS will of course rely on applicable AP600/1000 data, a very extensive testing campaign is being planned to address all the unique aspects of its design. Finally, IRIS plans to use a risk-informed approach in its licensing process. (authors)

  14. Use of risk information to safety regulation. Fabrication facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    A procedure of ISA (Integrated Safety Analysis) for uranium fuel fabrication/enrichment facilities has been under the development aiming to utilize risk information for safety regulations in this project. Activities in the fiscal year 2012 are summarized in the paper. There are two major activities in the year. First one is a study on ISA procedure for external events such as earthquakes. Second one is that for chemical consequences such as UF6 and HF. Other than the activities a fundamental study on a policy of utilizing risk information was conducted. The outline and results are provided in the chapter 1 and 2 respectively. (author)

  15. Activities on safety for the cross-cutting issue of research reactors in the IAEA

    International Nuclear Information System (INIS)

    Perrotta, J.A.; Boado Magan, H.J.

    2003-01-01

    IAEA activities in the field of research reactor safety are included in the programme of the Division of Nuclear Installations Safety and implemented by the Engineering Safety Section through its Research Reactor Safety Unit. Following the objectives of the Division, the results of the IAEA missions and the recommendations from International Advisory Groups, the IAEA has conducted in recent years a certain number of activities aiming to enhance the safety of research reactors. The following activities are discussed in this paper: (a) the new Requirements for the Safety of Research Reactors, main features and differences with previous standards (SS-35-S1 and SS-35-S2) and the grading approach for implementation; (b) new documents being developed (safety guides, safety reports and TECDOCs); (c) activities related to the Incident Reporting System for Research Reactor (IRSRR); (d) the new features implemented for the (Integrated Safety Assessment of Research Reactors) INSARR missions; (e) the Code of Conduct on the Safety of Research Reactors developed, following the General Conference Resolution GC(45)/RES/10; and (f) the survey on the safety of research reactors conducted in the year 2002 and the results obtained. (author)

  16. Quantifying Safety Margin Using the Risk-Informed Safety Margin Characterization (RISMC)

    Energy Technology Data Exchange (ETDEWEB)

    Grabaskas, David; Bucknor, Matthew; Brunett, Acacia; Nakayama, Marvin

    2015-04-26

    The Risk-Informed Safety Margin Characterization (RISMC), developed by Idaho National Laboratory as part of the Light-Water Reactor Sustainability Project, utilizes a probabilistic safety margin comparison between a load and capacity distribution, rather than a deterministic comparison between two values, as is usually done in best-estimate plus uncertainty analyses. The goal is to determine the failure probability, or in other words, the probability of the system load equaling or exceeding the system capacity. While this method has been used in pilot studies, there has been little work conducted investigating the statistical significance of the resulting failure probability. In particular, it is difficult to determine how many simulations are necessary to properly characterize the failure probability. This work uses classical (frequentist) statistics and confidence intervals to examine the impact in statistical accuracy when the number of simulations is varied. Two methods are proposed to establish confidence intervals related to the failure probability established using a RISMC analysis. The confidence interval provides information about the statistical accuracy of the method utilized to explore the uncertainty space, and offers a quantitative method to gauge the increase in statistical accuracy due to performing additional simulations.

  17. Leader humility and team creativity: The role of team information sharing, psychological safety, and power distance.

    Science.gov (United States)

    Hu, Jia; Erdogan, Berrin; Jiang, Kaifeng; Bauer, Talya N; Liu, Songbo

    2018-03-01

    In this study, we identify leader humility, characterized by being open to admitting one's limitations, shortcomings, and mistakes, and showing appreciation and giving credit to followers, as a critical leader characteristic relevant for team creativity. Integrating the literatures on creativity and leadership, we explore the relationship between leader humility and team creativity, treating team psychological safety and team information sharing as mediators. Further, we hypothesize and examine team power distance as a moderator of the relationship. We tested our hypotheses using data gathered from 72 work teams and 354 individual members from 11 information and technology firms in China using a multiple-source, time-lagged research design. We found that the positive relationship between leader humility and team information sharing was significant and positive only within teams with a low power distance value. In addition, leader humility was negatively related to team psychological safety in teams with a high power distance value, whereas the relationship was positive yet nonsignificant in teams with low power distance. Furthermore, team information sharing and psychological safety were both significantly related to team creativity. We discuss theoretical and practical implications for leadership and work teams. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  18. Safety research programs sponsored by Office of Nuclear Regulatory Research

    International Nuclear Information System (INIS)

    Weiss, A.J.; Azarm, A.; Baum, J.W.

    1989-07-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through September 30, 1988

  19. *Abstracts - 7th IN-CAM Research Symposium, Evaluating CAM Practices: Effectiveness, Integration, Economics & Safety - November 2012.

    Science.gov (United States)

    Boon, Heather; Verhoef, Marja J

    2012-10-23

    Abstract The following are abstracts of oral and poster presentations given at the 7th IN-CAM Research Symposium - Evaluating CAM Practices: Effectiveness, Integration, Economics & Safety, and the 4th HomeoNet Research Forum, a pre-Symposium event. The IN-CAM Research Symposium was held November 2 to 4, 2012 at the Leslie Dan Faculty of Pharmacy, University of Toronto, in Toronto, Ontario, Canada. For more information, please visit: www.incamresearch.ca.

  20. Development of a computational database for application in Probabilistic Safety Analysis of nuclear research reactors

    International Nuclear Information System (INIS)

    Macedo, Vagner dos Santos

    2016-01-01

    The objective of this work is to present the computational database that was developed to store technical information and process data on component operation, failure and maintenance for the nuclear research reactors located at the Nuclear and Energy Research Institute (Instituto de Pesquisas Energéticas e Nucleares, IPEN), in São Paulo, Brazil. Data extracted from this database may be applied in the Probabilistic Safety Analysis of these research reactors or in less complex quantitative assessments related to safety, reliability, availability and maintainability of these facilities. This database may be accessed by users of the corporate network, named IPEN intranet. Professionals who require the access to the database must be duly registered by the system administrator, so that they will be able to consult and handle the information. The logical model adopted to represent the database structure is an entity-relationship model, which is in accordance with the protocols installed in IPEN intranet. The open-source relational database management system called MySQL, which is based on the Structured Query Language (SQL), was used in the development of this work. The PHP programming language was adopted to allow users to handle the database. Finally, the main result of this work was the creation a web application for the component reliability database named PSADB, specifically developed for the research reactors of IPEN; furthermore, the database management system provides relevant information efficiently. (author)

  1. Inventory of Federal energy-related environment and safety research for FY 1979. Volume 1. Executive summary

    International Nuclear Information System (INIS)

    1980-12-01

    The FY 1979 Federal Inventory contains information on 3506 federally funded energy-related environmental and safety research projects. The Inventory is published in two volumes: Volume I, an executive summary and overview of the data and Volume II, project listings, summaries, and indexes. Research and development (R and D) categories were reorganized into three main areas; environmental and safety control technology, technology impacts overview and assessments, and biological and environmental R and D and assessments. Federal offices submitting project data were: Council on Environmental Quality; Department of Agriculture; Department of Commerce; Department of Defense; Department of Energy; Department of Health, Education, and Welfare; Department of Housing and Urban Development; Department of the Interior; Department of Transportation; Environmental Protection Agency; National Aeronautics and Space Administration; Nuclear Regulatory Commission; National Science Foundation; Office of Technology Assessment; and Tennessee Valley Authority. The inventory also breaks out research sponsored by various federal agencies and the amount of funding provided by each in various research categories. The format and index system allows efficient access to information compiled. Users are able to identify projects by log agency, performing organization, principal investigator and subject

  2. Use of information technologies to contribute for optimizing the safety radiation management in Cuba

    International Nuclear Information System (INIS)

    Valdes Ramos, M.; Prendes Alonso, M.; Hernandez Saiz, A.; Manzano de Armas, J.

    2013-01-01

    This paper presents the results achieved in Cuba, with the development of a group of information management tools to implement radiation safety systemic and proactive approaches to safety and ICT supported. These tools were designed for different organisms with responsibility for the security at the country level, to the regulatory authority, for user entities, for individual monitoring services and other radiation protection services. It describes the philosophy of information management model used, the characteristics of the developed tools and their integration, the work performed for the homogenization of information available and the ability to capture and deliver data at different levels in decision making. The tools developed are based on the use of variables and indicators of importance to the safety and the systemic approach adopted allows to facilitate the optimization process for supervision of safety practices as well as contribute to the management of knowledge in radiation safety, through a synergistic combination of process data, information, information management systems, and the creative and innovative radiation safety experts

  3. THE FORMATION OF THE CONTOUR OF THE DOCUMENTED AND REAL FLIGHT SAFETY IN THE SYSTEM OF THE INFORMATION PROVISION OF SAFETY OF FLIGHTS

    Directory of Open Access Journals (Sweden)

    B. I. Bachkalo

    2015-01-01

    Full Text Available The article discusses the principles and mechanisms of formation of the contour of the real safety of flights and contour of the documented safety, allowing us to obtain information to control fligh safety. The proposed approach can be used in the algorithms of active on-board flight safety management system for the implementation of information support to the crew in flight and automatic control of flight safety.

  4. 75 FR 36615 - Pipeline Safety: Information Collection Gas Distribution Annual Report Form

    Science.gov (United States)

    2010-06-28

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part 192 [Docket No. PHMSA-RSPA-2004-19854] Pipeline Safety: Information Collection Gas Distribution Annual Report Form AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: Request...

  5. Integrated deterministic and probabilistic safety assessment: Concepts, challenges, research directions

    International Nuclear Information System (INIS)

    Zio, Enrico

    2014-01-01

    Highlights: • IDPSA contributes to robust risk-informed decision making in nuclear safety. • IDPSA considers time-dependent interactions among component failures and system process. • Also, IDPSA considers time-dependent interactions among control and operator actions. • Computational efficiency by advanced Monte Carlo and meta-modelling simulations. • Efficient post-processing of IDPSA output by clustering and data mining. - Abstract: Integrated deterministic and probabilistic safety assessment (IDPSA) is conceived as a way to analyze the evolution of accident scenarios in complex dynamic systems, like nuclear, aerospace and process ones, accounting for the mutual interactions between the failure and recovery of system components, the evolving physical processes, the control and operator actions, the software and firmware. In spite of the potential offered by IDPSA, several challenges need to be effectively addressed for its development and practical deployment. In this paper, we give an overview of these and discuss the related implications in terms of research perspectives

  6. Integrated deterministic and probabilistic safety assessment: Concepts, challenges, research directions

    Energy Technology Data Exchange (ETDEWEB)

    Zio, Enrico, E-mail: enrico.zio@ecp.fr [Ecole Centrale Paris and Supelec, Chair on System Science and the Energetic Challenge, European Foundation for New Energy – Electricite de France (EDF), Grande Voie des Vignes, 92295 Chatenay-Malabry Cedex (France); Dipartimento di Energia, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano (Italy)

    2014-12-15

    Highlights: • IDPSA contributes to robust risk-informed decision making in nuclear safety. • IDPSA considers time-dependent interactions among component failures and system process. • Also, IDPSA considers time-dependent interactions among control and operator actions. • Computational efficiency by advanced Monte Carlo and meta-modelling simulations. • Efficient post-processing of IDPSA output by clustering and data mining. - Abstract: Integrated deterministic and probabilistic safety assessment (IDPSA) is conceived as a way to analyze the evolution of accident scenarios in complex dynamic systems, like nuclear, aerospace and process ones, accounting for the mutual interactions between the failure and recovery of system components, the evolving physical processes, the control and operator actions, the software and firmware. In spite of the potential offered by IDPSA, several challenges need to be effectively addressed for its development and practical deployment. In this paper, we give an overview of these and discuss the related implications in terms of research perspectives.

  7. Report on probabilistic safety assessment (PSA) quality assurance in utilization of risk information

    International Nuclear Information System (INIS)

    2006-12-01

    Recently in Japan, introduction of nuclear safety regulations using risk information such as probabilistic safety assessment (PSA) has been considered and utilization of risk information in the rational and practical measures on safety assurance has made a progress to start with the operation or inspection area. The report compiled results of investigation and studies of PSA quality assurance in risk-informed activities in the USA. Relevant regulatory guide and standard review plan as well as issues and recommendations were reviewed for technical adequacy and advancement of probabilistic risk assessment technology in risk-informed decision making. Useful and important information to be referred as issues in PSA quality assurance was identified. (T. Tanaka)

  8. Safety Assessment for Research Reactors and Preparation of the Safety Analysis Report. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    . The standards are also applied by regulatory bodies and operators around the world to enhance safety in nuclear power generation and in nuclear applications in medicine, industry, agriculture and research. Safety is not an end in itself but a prerequisite for the purpose of the protection of people in all States and of the environment - now and in the future. The risks associated with ionizing radiation must be assessed and controlled without unduly limiting the contribution of nuclear energy to equitable and sustainable development. Governments, regulatory bodies and operators everywhere must ensure that nuclear material and radiation sources are used beneficially, safely and ethically. The IAEA safety standards are designed to facilitate this, and I encourage all Member States to make use of them.

  9. Safety Assessment for Research Reactors and Preparation of the Safety Analysis Report. Specific Safety Guide

    International Nuclear Information System (INIS)

    2011-01-01

    . The standards are also applied by regulatory bodies and operators around the world to enhance safety in nuclear power generation and in nuclear applications in medicine, industry, agriculture and research. Safety is not an end in itself but a prerequisite for the purpose of the protection of people in all States and of the environment - now and in the future. The risks associated with ionizing radiation must be assessed and controlled without unduly limiting the contribution of nuclear energy to equitable and sustainable development. Governments, regulatory bodies and operators everywhere must ensure that nuclear material and radiation sources are used beneficially, safely and ethically. The IAEA safety standards are designed to facilitate this, and I encourage all Member States to make use of them.

  10. Safety classification of systems, structures, and components for pool-type research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ryong [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2016-08-15

    Structures, systems, and components (SSCs) important to safety of nuclear facilities shall be designed, fabricated, erected, and tested to quality standards commensurate with the importance of the safety functions. Although SSC classification guidelines for nuclear power plants have been well established and applied, those for research reactors have been only recently established by the International Atomic Energy Agency (IAEA). Korea has operated a pool-type research reactor (the High Flux Advanced Neutron Application Reactor) and has recently exported another pool-type reactor (Jordan Research and Training Reactor), which is being built in Jordan. Korea also has a plan to build one more pool-type reactor, the Kijang Research Reactor, in Kijang, Busan. The safety classification of SSCs for pool-type research reactors is proposed in this paper based on the IAEA methodology. The proposal recommends that the SSCs of pool-type research reactors be categorized and classified on basis of their safety functions and safety significance. Because the SSCs in pool-type research reactors are not the pressure-retaining components, codes and standards for design of the SSCs following the safety classification can be selected in a graded approach.

  11. RATU - Nuclear power plant structural safety research programme

    International Nuclear Information System (INIS)

    Rintamaa, R.

    1992-07-01

    Studies on the structural materials in nuclear power plants create the experimental data and background information necessary for the structural integrity assessments of mechanical components. The research is carried out by developing experimental fracture mechanics methods including statistical analysis methods of materials property data, and by studying material ageing and, in particular, mechanisms of material deterioration due to neutron irradiation, corrosion and water chemistry. Besides material studies, new testing methods and sensors for measurement of loading and water chemistry parameters have been developed. The monitoring data obtained in real power plants has been used to simulate more precisely the real environment during laboratory tests. The research on structural analysis has focused on extending and verifying the analysis capabilities for structural assessments of nuclear power plants. A widely applicable system including various computational fracture assessment methods has been created with which different structural problems can be solved reliably and effectively. Research on reliability assessment of maintenance in nuclear power plants is directed to practical case studies on components and structures of safety importance, and to the development of models for maintenance related decision support. A systematic analysis of motor-operated valve has been performed

  12. High committee for nuclear safety transparency and information. July 1, 2009 meeting

    International Nuclear Information System (INIS)

    2009-07-01

    The high committee for the nuclear safety transparency and information (HCTISN) is an information, consultation and debate authority devoted to the assessment of the risks linked with nuclear activities and to the analysis of their impact on public health, on the environment and on nuclear safety. Each year, the HCTISN organizes several ordinary meetings in order to analyze some specific topics of the moment. This meeting was organized around 5 main points: 1 - radioactive waste management: status and steps of the June 28, 2006 law, ANDRA's projects of deep geologic disposal for long living/high-medium activity wastes and of low depth disposal for long living/low activity wastes, French nuclear safety authority (ASN) opinion about the sites choice, implementation of article 10 of the June 28, 2006 law relative to public information; 2 - progress of the working groups' works on transparency and secrecy, on the development of a communication scale, and on the creation of an Internet portal for the radio-ecological follow-up of nuclear sites; 3 - comments of the ASN's report on the nuclear safety and radiation protection in France in 2008; 4 - procedure of management of the radio-physicists shortage in order to warrant the patients' safety and information; 5 - miscellaneous points: project of European directive on nuclear safety, organisation of a visit day onboard of a ship for nuclear materials transportation, comments about the by-law from May 5, 2009, relative to the exemption to informing consumers about the addition of radionuclides to consumption and construction products. (J.S.)

  13. Yearly program of safety research for nuclear facilities and others

    International Nuclear Information System (INIS)

    1987-01-01

    The development of FBRs in Japan has steadily progressed, and subsequently to the experimental reactor 'Joyo' and the prototype reactor 'Monju', by promoting the construction of a demonstration reactor, the stage of verifying and acquiring skill of the electricity generation plant technology of practical scale, improving the performance and establishing the economical efficiency is about to begin. The development of FBRs in Japan has been advanced independently as a national project, and the method of preventing accidents in the actual reactors has been thoroughly taken. 'On the way of thinking in the safety evaluation of FBRs' was decided by the Nuclear Safety Commission. When the safety research from 1987 is systematized, as the constituents of safety logic, the way of thinking of the defense in depth, the way of thinking of the classification according to importance, the way of thinking of multilayer barriers against radioactive substances, and the way of thinking on severe accidents were investigated. The research concerning the decision of safety design and evaluation policy, and the safety research regarding accident prevention and relaxation, accident evaluation and severe accidents are reported. (Kako, I.)

  14. Risk-informed decision making a keystone in advanced safety assessment

    International Nuclear Information System (INIS)

    Reinhart, M.

    2007-01-01

    Probabilistic Safety Assessment (PSA) has provided extremely valuable complementary insight, perspective, comprehension, and balance to deterministic nuclear reactor safety assessment. This integrated approach of risk-informed management and decision making has been called Risk-Informed Decision Making (RIDM). RIDM provides enhanced safety, reliability, operational flexibility, reduced radiological exposure, and improved fiscal economy. Applications of RIDM continuously increase. Current applications are in the areas of design, construction, licensing, operations, and security. Operational phase safety applications include the following: technical specifications improvement, risk-monitors and configuration control, maintenance planning, outage planning and management, in-service inspection, inservice testing, graded quality assurance, reactor oversight and inspection, inspection finding significance determination, operational events assessment, and rulemaking. Interestingly there is a significant spectrum of approaches, methods, programs, controls, data bases, and standards. The quest of many is to assimilate the full compliment of PSA and RIDM information and to achieve a balanced international harmony. The goal is to focus the best of the best, so to speak, for the benefit of all. Accordingly, this presentation will address the principles, benefits, and applications of RIDM. It will also address some of the challenges and areas to improve. Finally it will highlight efforts by the IAEA and others to capture the international thinking, experience, successes, challenges, and lessons in RIDM. (authors)

  15. The development and application of electronic information system for safety administration of newborns in the rooming-in care.

    Science.gov (United States)

    Wang, Fang; Dong, Jian-Cheng; Chen, Jian-Rong; Wu, Hui-Qun; Liu, Man-Hua; Xue, Li-Ly; Zhu, Xiang-Hua; Wang, Jian

    2015-01-01

    To independently research and develop an electronic information system for safety administration of newborns in the rooming-in care, and to investigate the effects of its clinical application. By VS 2010 SQL SERVER 2005 database and adopting Microsoft visual programming tool, an interactive mobile information system was established, with integrating data, information and knowledge with using information structures, information processes and information technology. From July 2011 to July 2012, totally 210 newborns from the rooming-in care of the Obstetrics Department of the Second Affiliated Hospital of Nantong University were chosen and randomly divided into two groups: the information system monitoring group (110 cases) and the regular monitoring group (100 cases). Incidence of abnormal events and degree of satisfaction were recorded and calculated. ① The wireless electronic information system has four main functions including risk scaling display, identity recognition display, nursing round notes board and health education board; ② statistically significant differences were found between the two groups both on the active or passive discovery rate of abnormal events occurred in the newborns (P<0.05) and the satisfaction degree of the mothers and their families (P<0.05); ③ the system was sensitive and reliable, and the wireless transmission of information was correct and safety. The system is with high practicability in the clinic and can ensure the safety for the newborns with improved satisfactions.

  16. 10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.

    Science.gov (United States)

    2010-01-01

    ...; technical information in final safety analysis report. The application must contain a final safety analysis... 10 Energy 2 2010-01-01 2010-01-01 false Contents of applications; technical information in final safety analysis report. 52.157 Section 52.157 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES...

  17. 10 CFR 52.79 - Contents of applications; technical information in final safety analysis report.

    Science.gov (United States)

    2010-01-01

    ...; technical information in final safety analysis report. (a) The application must contain a final safety... 10 Energy 2 2010-01-01 2010-01-01 false Contents of applications; technical information in final safety analysis report. 52.79 Section 52.79 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES...

  18. Risk-informed approaches to assess ecological safety of facilities with radioactive waste

    International Nuclear Information System (INIS)

    Vashchenko, V.N.; Zlochevskij, V.V.; Skalozubov, V.I.

    2011-01-01

    Ingenious risk-informed methods to assess ecological safety of facilities with radioactive waste are proposed in the paper. Probabilistic norms on lethal outcomes and reliability of safety barriers are used as safety criteria. Based on the probability measures, it is established that ecological safety conditions are met for the standard criterion of lethal outcomes

  19. Forschungszentrum Rossendorf, Institute of Safety Research. Annual report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, F.P.; Rindelhardt, U. (eds.)

    2005-07-01

    The Institute of Safety Research (ISR) is one of the six Research Institutes of Forschungszentrum Rossendorf e.V. (FZR e.V.) which is a member institution of the Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz (Leibniz Association). Together with the Institute of Radiochemistry, ISR constitutes the research programme ''Safety and Environment'' which is one from three scientific programmes of FZR. In the framework of this research programme, the institute is responsible for the two subprogrammes ''Plant and Reactor Safety'' and ''Thermal Fluid Dynamics'', respectively. We also provide minor contributions to the sub-programme ''Radio-Ecology''. Moreover, with the development of a pulsed photo-neutron source at the radiation source ELBE (Electron linear accelerator for beams of high brilliance and low emittance), we are involved in a networking project carried out by the FZR Institute of Nuclear and Hadron Physics, the Physics Department of TU Dresden, and ISR. (orig.)

  20. TU-EF-BRD-01: Topics in Quality and Safety Research and Level of Evidence

    Energy Technology Data Exchange (ETDEWEB)

    Pawlicki, T. [UCSD Medical Center (United States)

    2015-06-15

    Research related to quality and safety has been a staple of medical physics academic activities for a long time. From very early on, medical physicists have developed new radiation measurement equipment and analysis techniques, created ever increasingly accurate dose calculation models, and have vastly improved imaging, planning, and delivery techniques. These and other areas of interest have improved the quality and safety of radiotherapy for our patients. With the advent of TG-100, quality and safety is an area that will garner even more research interest in the future. As medical physicists pursue quality and safety research in greater numbers, it is worthwhile to consider what actually constitutes research on quality and safety. For example, should the development of algorithms for real-time EPID-based in-vivo dosimetry be defined as “quality and safety” research? How about the clinical implementation of such as system? Surely the application of failure modes and effects analysis to a clinical process would be considered quality and safety research, but is this type of research that should be included in the medical physics peer-reviewed literature? The answers to such questions are of critical importance to set researchers in a direction that will provide the greatest benefit to our field and the patients we serve. The purpose of this symposium is to consider what constitutes research in the arena of quality and safety and differentiate it from other research directions. The key distinction here is developing the tool itself (e.g. algorithms for EPID dosimetry) vs. studying the impact of the tool with some quantitative metric. Only the latter would I call quality and safety research. Issues of ‘basic’ versus ‘applied’ quality and safety research will be covered as well as how the research results should be structured to provide increasing levels of support that a quality and safety intervention is effective and sustainable. Examples from existing

  1. TU-EF-BRD-04: Summing It Up: The Future of Quality and Safety Research

    Energy Technology Data Exchange (ETDEWEB)

    Ford, E. [University of Washington (United States)

    2015-06-15

    Research related to quality and safety has been a staple of medical physics academic activities for a long time. From very early on, medical physicists have developed new radiation measurement equipment and analysis techniques, created ever increasingly accurate dose calculation models, and have vastly improved imaging, planning, and delivery techniques. These and other areas of interest have improved the quality and safety of radiotherapy for our patients. With the advent of TG-100, quality and safety is an area that will garner even more research interest in the future. As medical physicists pursue quality and safety research in greater numbers, it is worthwhile to consider what actually constitutes research on quality and safety. For example, should the development of algorithms for real-time EPID-based in-vivo dosimetry be defined as “quality and safety” research? How about the clinical implementation of such as system? Surely the application of failure modes and effects analysis to a clinical process would be considered quality and safety research, but is this type of research that should be included in the medical physics peer-reviewed literature? The answers to such questions are of critical importance to set researchers in a direction that will provide the greatest benefit to our field and the patients we serve. The purpose of this symposium is to consider what constitutes research in the arena of quality and safety and differentiate it from other research directions. The key distinction here is developing the tool itself (e.g. algorithms for EPID dosimetry) vs. studying the impact of the tool with some quantitative metric. Only the latter would I call quality and safety research. Issues of ‘basic’ versus ‘applied’ quality and safety research will be covered as well as how the research results should be structured to provide increasing levels of support that a quality and safety intervention is effective and sustainable. Examples from existing

  2. TU-EF-BRD-04: Summing It Up: The Future of Quality and Safety Research

    International Nuclear Information System (INIS)

    Ford, E.

    2015-01-01

    Research related to quality and safety has been a staple of medical physics academic activities for a long time. From very early on, medical physicists have developed new radiation measurement equipment and analysis techniques, created ever increasingly accurate dose calculation models, and have vastly improved imaging, planning, and delivery techniques. These and other areas of interest have improved the quality and safety of radiotherapy for our patients. With the advent of TG-100, quality and safety is an area that will garner even more research interest in the future. As medical physicists pursue quality and safety research in greater numbers, it is worthwhile to consider what actually constitutes research on quality and safety. For example, should the development of algorithms for real-time EPID-based in-vivo dosimetry be defined as “quality and safety” research? How about the clinical implementation of such as system? Surely the application of failure modes and effects analysis to a clinical process would be considered quality and safety research, but is this type of research that should be included in the medical physics peer-reviewed literature? The answers to such questions are of critical importance to set researchers in a direction that will provide the greatest benefit to our field and the patients we serve. The purpose of this symposium is to consider what constitutes research in the arena of quality and safety and differentiate it from other research directions. The key distinction here is developing the tool itself (e.g. algorithms for EPID dosimetry) vs. studying the impact of the tool with some quantitative metric. Only the latter would I call quality and safety research. Issues of ‘basic’ versus ‘applied’ quality and safety research will be covered as well as how the research results should be structured to provide increasing levels of support that a quality and safety intervention is effective and sustainable. Examples from existing

  3. Health and safety at the Whiteshell Nuclear Research Establishment

    International Nuclear Information System (INIS)

    LeNeveu, D.M.

    1982-04-01

    This report outlines the health and safety program at the Whiteshell Nuclear Research Establishment. It describes the procedures in place to ensure that a high standard of conventional industrial and radiation safety is maintained in the workplace

  4. Factors shaping effective utilization of health information technology in urban safety-net clinics.

    Science.gov (United States)

    George, Sheba; Garth, Belinda; Fish, Allison; Baker, Richard

    2013-09-01

    Urban safety-net clinics are considered prime targets for the adoption of health information technology innovations; however, little is known about their utilization in such safety-net settings. Current scholarship provides limited guidance on the implementation of health information technology into safety-net settings as it typically assumes that adopting institutions have sufficient basic resources. This study addresses this gap by exploring the unique challenges urban resource-poor safety-net clinics must consider when adopting and utilizing health information technology. In-depth interviews (N = 15) were used with key stakeholders (clinic chief executive officers, medical directors, nursing directors, chief financial officers, and information technology directors) from staff at four clinics to explore (a) nonhealth information technology-related clinic needs, (b) how health information technology may provide solutions, and (c) perceptions of and experiences with health information technology. Participants identified several challenges, some of which appear amenable to health information technology solutions. Also identified were requirements for effective utilization of health information technology including physical infrastructural improvements, funding for equipment/training, creation of user groups to share health information technology knowledge/experiences, and specially tailored electronic billing guidelines. We found that despite the potential benefit that can be derived from health information technologies, the unplanned and uninformed introduction of these tools into these settings might actually create more problems than are solved. From these data, we were able to identify a set of factors that should be considered when integrating health information technology into the existing workflows of low-resourced urban safety-net clinics in order to maximize their utilization and enhance the quality of health care in such settings.

  5. Application of Code Of Conduct on the Safety of Research Reactor (RTP)

    International Nuclear Information System (INIS)

    Ligam, A.S.; Ahmad Nabil Abd Rahim; Zarina Masood

    2014-01-01

    The implementation and the practices of the effective safety system at research reactors are important to ensure that the worker, public and environment do not receive any abnormal causes. Many international safety related support agencies for research reactor such as International Atomic Energy Agency (IAEA) providing guidelines that can be applied to enhance and strengthen the enforcement of safety namely Code of Conduct on the Safety of Research Reactor (IAEA/CODEOC/RR/2006). The excellent safety management, reliability, and maintainability of RTP reactor structures, coupled with personnel numerous lessons and experiences learned, Reactor TRIGA PUSPATI research reactor providing Nuclear Malaysia personnel and visitor the very safe working and visiting environment. This paper will discuss the status, practices and improvement strategies over the past few years. (author)

  6. 2004 annual report. Defense, safety, energy, information, health. CEA in the center of big European challenges

    International Nuclear Information System (INIS)

    2005-01-01

    This document is the 2004 annual report of the French atomic energy commission (CEA). It presents the R and D activities of the CEA in three main domains: 1 - defense and safety, maintaining perenniality of nuclear dissuasion and nuclear safety: supplying nuclear weapons to armies, maintaining dissuasion capability with the simulation program, sharing R and D means with the scientific community and the industrial world, designing and maintaining naval nuclear propulsion reactors, cleansing Marcoule and Pierrelatte facilities, monitoring treaties and fighting against proliferation and terrorism; 2 - energy, developing more competitive and cleaner energy sources: nuclear waste management, optimization of industrial nuclear activities, future nuclear systems and new energy technologies, basic research on energy, radiobiology and toxicology; 3 - information and health, valorizing industry thanks to technological research and supplying new tools for health and medical research: micro- and nano-technologies, software technologies, basic research for industrial innovation, nuclear technologies for health and bio-technologies. (J.S.)

  7. Licensing decisions and safety research related to LMFBR accidents

    International Nuclear Information System (INIS)

    Denise, R.P.; Speis, T.P.; Kelber, C.N.; Curtis, R.T.

    1977-01-01

    The licensing approach which ensures adequate protection of the public health and safety against serious accidents is described. This paper describes the role of core melt and core disruptive accidents in the design, safety research, and licensing processes, using the Clinch River Breeder Reactor (CRBR) as a focal point. Major design attention is placed on the prevention of these accidents so that the probability of core melt accidents is reduced to a sufficiently low level that they are not treated as design basis accidents. Additional requirements are placed upon the design to further reduce residual risk. This licensing process is supported by a confirmatory research program designed to provide an independent basis for licensing judgements. It has as a goal the resolution of generic safety issues prior to the establishment of a commercial LMFBR industry. The program includes accident analysis, experiments in materials interactions, aerosol transport and system integrity and planning for new safety test facilities. The problems are approached in a multi-disciplinary functional manner that identifies key safety issues and centralizes efforts to resolve them. The near term objectives of the program support the licensing of the Clinch River Breeder Reactor (CRBR) and the proposed Prototype Large Breeder Reactor (PLBR). The long term objectives of the program support the licensing of commercial LMFBRs during the late 1980's and beyond. This safety research is designed to provide an independent basis for the licensing judgements which must be made by the Nuclear Regulatory Commission

  8. Decommissioning of Medical, Industrial and Research Facilities. Safety Guide

    International Nuclear Information System (INIS)

    2010-01-01

    Radioactive waste is produced in the generation of nuclear power and the use of radioactive materials in industry, research and medicine. The importance of the safe management of radioactive waste for the protection of human health and the environment has long been recognized, and considerable experience has been gained in this field. The IAEA's Radioactive Waste Safety Standards Programme aimed at establishing a coherent and comprehensive set of principles and requirements for the safe management of waste and formulating the guidelines necessary for their application. This is accomplished within the IAEA Safety Standards Series in an internally consistent set of publications that reflect an international consensus. The publications will provide Member States with a comprehensive series of internationally agreed publications to assist in the derivation of, and to complement, national criteria, standards and practices. The Safety Standards Series consists of three categories of publications: Safety Fundamentals, Safety Requirements and Safety Guides. With respect to the Radioactive Waste Safety Standards Programme, the set of publications is currently undergoing review to ensure a harmonized approach throughout the Safety Standards Series. This Safety Guide addresses the subject of decommissioning of medical, industrial and research facilities where radioactive materials and sources are produced, received, used and stored. It is intended to provide guidance to national authorities and operating organizations, particularly to those in developing countries (as such facilities are predominant in these countries), for the planning and safe management of the decommissioning of such facilities. The Safety Guide has been prepared through a series of Consultants meetings and a Technical Committee meeting

  9. Decommissioning of medical, industrial and research facilities. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    Radioactive waste is produced in the generation of nuclear power and the use of radioactive materials in industry, research and medicine. The importance of the safe management of radioactive waste for the protection of human health and the environment has long been recognized, and considerable experience has been gained in this field. The IAEA's Radioactive Waste Safety Standards Programme aimed at establishing a coherent and comprehensive set of principles and requirements for the safe management of waste and formulating the guidelines necessary for their application. This is accomplished within the IAEA Safety Standards Series in an internally consistent set of publications that reflect an international consensus. The publications will provide Member States with a comprehensive series of internationally agreed publications to assist in the derivation of, and to complement, national criteria, standards and practices. The Safety Standards Series consists of three categories of publications: Safety Fundamentals, Safety Requirements and Safety Guides. With respect to the Radioactive Waste Safety Standards Programme, the set of publications is currently undergoing review to ensure a harmonized approach throughout the Safety Standards Series. This Safety Guide addresses the subject of decommissioning of medical, industrial and research facilities where radioactive materials and sources are produced, received, used and stored. It is intended to provide guidance to national authorities and operating organizations, particularly to those in developing countries (as such facilities are predominant in these countries), for the planning and safe management of the decommissioning of such facilities. The Safety Guide has been prepared through a series of Consultants meetings and a Technical Committee meeting

  10. Information Management of Health and Safety at the Tarkwa Mine of ...

    African Journals Online (AJOL)

    Michael

    2016-06-01

    Jun 1, 2016 ... Information Management of Health and Safety at the Tarkwa ... heap leach technology. ... the quality of information was assessed using the content of information ..... managing library users' expectations; and reference service.

  11. Annual report on reactor safety research projects sponsored by the Ministry for Research and Technology of the Federal Republic of Germany 1988

    International Nuclear Information System (INIS)

    1989-06-01

    The GRS (Society for Reactor Safety), Gesellschaft fuer Reaktorsicherheit mbH, by order of the BMFT, informs continuously of the status of such investigations by means of semi-annual and annual publication of progress reports within the series GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about objectives, the work performed, the results, the next steps of the work etc. The individual reports are prepared in a standard form by the contractors themselves as a documentation of their progress in work and published by the FB (Research Coordination Department) Forschungsbetreuung at the GRS, within the framework of general information of progress in the reactor safety research. The individual reports are classified according to the same classification system as applied in the nuclear index of the CEC (Commission of the European Communities) and the OECD (Organization for Economic Cooperation and Development). The reports are arranged in sequence of their project numbers. Besides the progress reports, lists of reports exchanged under international exchange agreements by the BMFT are published within this series. (orig./HP)

  12. Safety system upgrades to a research reactor: A regulatory perspective

    International Nuclear Information System (INIS)

    Lamarre, G.B.; Martin, W.G.

    2003-01-01

    The NRU (National Research Universal) reactor, located at the Chalk River Laboratories of Atomic Energy of Canada Limited (AECL), first achieved criticality November 3, 1957. AECL continues to operate NRU for research to support safety and reliability studies for CANDU reactors and as a major supplier of medical radioisotopes. Following a detailed systematic review and assessment of NRU's design and the condition of its primary systems, AECL formally notified the Canadian Nuclear Safety Commission's (CNSC) predecessor - the Atomic Energy Control Board - in 1992 of its intention to upgrade NRU's safety systems. AECL proposed seven major upgrades to provide improvements in shutdown capability, heat removal, confinement, and reactor monitoring, particularly during and after a seismic event. From a CNSC perspective, these upgrades were necessary to meet modern safety standards. From the start of the upgrades project, the CNSC provided regulatory oversight aimed at ensuring that AECL maintained a structured approach to the upgrades. The elements of the approach include, but are not limited to, the determination of project milestones and target dates; the formalization of the design process and project quality assurance requirements; the requirements for updated documentation, including safety reports, safety notes and commissioning reports; and the approval and authorization process. This paper details, from a regulatory perspective, the structured approach used in approving the design, construction, commissioning and subsequent operation of safety system upgrades for an existing and operating research reactor, including the many challenges faced when attempting to balance the requirements of the upgrades project with AECL's need to keep NRU operating to meet its important research and production objectives. (author)

  13. Disposition of recommendations of the National Research Council in the report ''Revitalizing Nuclear Safety Research''

    International Nuclear Information System (INIS)

    1988-06-01

    On December 8, 1986, the Committee on Nuclear Safety Research of the National Research Council submitted its report, ''Revitalizing Nuclear Safety Research,'' to the US Nuclear Regulatory Commission (NRC). The Commission and its staff have carefully reviewed the Committee's report and have extensively examined the planning, implementation, and management of NRC research programs in order to respond most effectively to the Committee's recommendations. This report presents the Commission's view of the Committee's report and describes the actions that are under way in response to its recommendations

  14. Power reactor core safety research

    International Nuclear Information System (INIS)

    Rim, C.S.; Kim, W.C.; Shon, D.S.; Kim, J.

    1981-01-01

    As a part of nuclear safety research program, a project was launched to develop a model to predict fuel failure, to produce the data required for the localizaton of fuel design and fabrication technology, to establish safety limits for regulation of nuclear power plants and to develop reactor operation method to minimize fuel failure through the study of fuel failure mechanisms. During 1980, the first year of this project, various fuel failure mechanisms were analyzed, an experimental method for out-of-pile tests to study the stress corrosion cracking (SCC) behaviour of Zircaloy cladding underiodine environment was established, and characteristics of PWR and CANDU Zircaloy specimens were examined. Also developed during 1980 were the methods and correlations to evaluate fuel failures in the reactor core based on operating data from power reactors

  15. Safety and regulatory researches on the SMART reactor

    International Nuclear Information System (INIS)

    Seul, Kwang Won; Kim, Wee Kyong; Chang, Moo Hee

    2000-01-01

    The 330 MW thermal power of integral pressurized water reactor, named SMART (System integrated Modular Advanced ReacTor), is under development at the Korea Atomic Energy Research Institute (KAERI) for seawater desalination application and electricity generation. The plant is expected to install near the population zone. Thus, the public around the plant should be in depth protected from the possible release of radioactive materials, and also the fresh water should be prevented from radioactivity contamination. Currently, in parallel with the design development, the regulatory research is being conducted to identify and resolve the safety concerns of the nuclear desalination plant. Until now, some general items to be considered in the safety aspects have been identified for the conceptual design of SMART. They include the use of proven technology, application of strengthening defense-in-depth, event categorization and selection, effects of desalination plant, and maintainability of major components. These cooperative researches with regulatory body in the design stage are expected to provide an opportunity to early resolve the safety concerns and eventually the licensing stability of the SMART design. (author)

  16. Organisation of safety research programmes and infrastructure for existing reactors

    International Nuclear Information System (INIS)

    Micaelli, J.C.

    2008-01-01

    The author reviewed the main drivers of safety research, noting that challenging research is an excellent means to preserve know-how and professional skills. International efforts such the NEA-CSNI joint projects are an efficient means to support experimental infrastructure for safety research, while providing useful experimental results. Other initiatives, e.g. within the EU, aimed at developing networks of international expertise and infrastructure were also mentioned. (author)

  17. Annual report on reactor safety research projects sponsored by the Ministry of Economics and Labour of the Federal Republic of Germany. Reporting period 2003. Progress report

    International Nuclear Information System (INIS)

    2003-01-01

    The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, by order of the BMWi, continuously issues information on the status of the investigations into the safety of nuclear power plants by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work and are published by the Research Management Division of GRS within the framework of general information on the progress in reactor safety research. The compilation of the reports is classified according to general topics related to reactor safety research. Further, use is made of the classification system ''Joint Safety Research Index'' of the CEC (commission of the european communities). The reports are arranged in sequence of their project numbers

  18. Nuclear safety research in HGF 2011; Nukleare Energieforschung 2011. Forschungszentren. Status und Entwicklung

    Energy Technology Data Exchange (ETDEWEB)

    Tromm, Walter [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Programm NUKLEAR

    2012-06-15

    After the events at the Japanese nuclear power plant of Fukushima Daiichi, the German federal government decided that Germany will give up electricity generation from nuclear power within a decade. The last reactor will be disconnected from the power grid in 2022. Helping to make this opt-out as safe as possible is one of the duties of the Helmholtz Association with its Nuclear Safety Research Program within the Energy Research Area. Also the demolition of nuclear power plants and the repository problem will keep society, and thus also research, busy for a number of decades to come. Giving up electricity production from nuclear power thus must not mean giving up the required nuclear technology competences. In the fields of reactor safety, demolition, final storage, radiation protection, and crisis management, in critical support of international developments, and for competent evaluation of nuclear facilities around Germany, these competences will be in demand far beyond the German opt-out. This is the reason why the final report by the Ethics Committee on 'Safe Energy Supply' emphasizes the importance of nuclear technology research. Close cooperation on national, European and international levels is indispensable in this effort. Also nuclear safety research in the Helmholtz Association is aligned with the challenges posed by the opt-out of the use of nuclear power. It is important that the high competences in the areas of plant safety and demolition, handling of radioactive waste, and safe final storage as well as radiation protection be preserved. The Nuclear Safety Research Program within the Energy Research Area of the Helmholtz Association therefore will continue studying scientific and technical aspects of the safety of nuclear reactors and the safety of nuclear waste management. These research activities are provident research conducted for society and must be preserved for a long period of time. The work is closely harmonized with the activities

  19. Safety-related LWR research. Annual report 1989

    International Nuclear Information System (INIS)

    1990-11-01

    The main topics in this annual report 1989 are phenomena of heavy fuel damage and single aspects of a core meltdown accident. The examined single aspects refer to aerosol behavior and filter engineering and to methods for assessment and minimization of the radiological consequences of reactor accidents. Different contributions to selected, safety-related problems of an advanced pressurized-water reactor complete the topic spectrum. The annual report 1989 describes the progress of the research work wich was carried out in the area of safety research by institutes and departments of the KfK, and on behalf of the KfK by external institutions. The individual contributions represent the status of work at the end of the year under review, 1989. (orig./HP) [de

  20. Research and development program in reactor safety for NUCLEBRAS

    International Nuclear Information System (INIS)

    Pinheiro, R.B.; Resende Lobo, A.A. de; Horta, J.A.L.; Avelar Esteves, F. de; Lepecki, W.P.S.; Mohr, K.; Selvatici, E.

    1984-01-01

    With technical assistance from the IAEA, it was established recently an analytical and experimental Research and Development Program for NUCLEBRAS in the area of reactor safety. The main objectives of this program is to make possible, with low investments, the active participation of NUCLEBRAS in international PWR safety research. The analytical and experimental activities of the program are described with some detail, and the main results achieved up to now are presented. (Author) [pt