WorldWideScience

Sample records for safety program plan

  1. Fusion safety program plan

    International Nuclear Information System (INIS)

    Crocker, J.G.; Holland, D.F.; Herring, J.S.

    1980-09-01

    The program plan consists of research that has been divided into 13 different areas. These areas focus on the radioactive inventories that are expected in fusion reactors, the energy sources potentially available to release a portion of these inventories, and analysis and design techniques to assess and ensure that the safety risks associated with operation of magnetic fusion facilities are acceptably low. The document presents both long-term program requirements that must be fulfilled as part of the commercialization of fusion power and a five-year plan for each of the 13 different program areas. Also presented is a general discussion of magnetic fusion reactor safety, a method for establishing priorities in the program, and specific priority ratings for each task in the five-year plan

  2. High-heat tank safety issue resolution program plan

    International Nuclear Information System (INIS)

    Wang, O.S.

    1993-12-01

    The purpose of this program plan is to provide a guide for selecting corrective actions that will mitigate and/or remediate the high-heat waste tank safety issue for single-shell tank (SST) 241-C-106. This program plan also outlines the logic for selecting approaches and tasks to mitigate and resolve the high-heat safety issue. The identified safety issue for high-heat tank 241-C-106 involves the potential release of nuclear waste to the environment as the result of heat-induced structural damage to the tank's concrete, if forced cooling is interrupted for extended periods. Currently, forced ventilation with added water to promote thermal conductivity and evaporation cooling is used to cool the waste. At this time, the only viable solution identified to resolve this safety issue is the removal of heat generating waste in the tank. This solution is being aggressively pursued as the permanent solution to this safety issue and also to support the present waste retrieval plan. Tank 241-C-106 has been selected as the first SST for retrieval. The program plan has three parts. The first part establishes program objectives and defines safety issues, drivers, and resolution criteria and strategy. The second part evaluates the high-heat safety issue and its mitigation and remediation methods and alternatives according to resolution logic. The third part identifies major tasks and alternatives for mitigation and resolution of the safety issue. Selected tasks and best-estimate schedules are also summarized in the program plan

  3. Revised GCFR safety program plan

    International Nuclear Information System (INIS)

    Kelley, A.P.; Boyack, B.E.; Torri, A.

    1980-05-01

    This paper presents a summary of the recently revised gas-cooled fast breeder reactor (GCFR) safety program plan. The activities under this plan are organized to support six lines of protection (LOPs) for protection of the public from postulated GCFR accidents. Each LOP provides an independent, sequential, quantifiable risk barrier between the public and the radiological hazards associated with postulated GCFR accidents. To implement a quantitative risk-based approach in identifying the important technology requirements for each LOP, frequency and consequence-limiting goals are allocated to each. To ensure that all necessary tasks are covered to achieve these goals, the program plan is broken into a work breakdown structure (WBS). Finally, the means by which the plan is being implemented are discussed

  4. High-temperature gas-cooled reactor safety-reliability program plan

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    The purpose of this document is to present a safety plan as part of an overall program plan for the design and development of the High Temperature Gas-Cooled Reactor (HTGR). This plan is intended to establish a logical framework for identifying the technology necessary to demonstrate that the requisite degree of public risk safety can be achieved economically. This plan provides a coherent system safety approach together with goals and success criterion as part of a unifying strategy for licensing a lead reactor plant in the near term. It is intended to provide guidance to program participants involved in producing a technology base for the HTGR that is fully responsive to safety consideration in the design, evaluation, licensing, public acceptance, and economic optimization of reactor systems.

  5. High-heat tank safety issue resolution program plan. Revision 2

    International Nuclear Information System (INIS)

    Wang, O.S.

    1994-12-01

    The purpose of this program plan is to provide a guide for selecting corrective actions that will mitigate and/or remediate the high-heat waste tank safety issue for single-shell tank 241-C-106. The heat source of approximately 110,000 Btu/hr is the radioactive decay of the stored waste material (primarily 90 Sr) inadvertently transferred into the tank in the later 1960s. Currently, forced ventilation, with added water to promote thermal conductivity and evaporation cooling, is used for heat removal. The method is very effective and economical. At this time, the only viable solution identified to permanently resolve this safety issue is the removal of heat-generating waste in the tank. This solution is being aggressively pursued as the only remediation method to this safety issue, and tank 241-C-106 has been selected as the first single-shell tank for retrieval. The current cooling method and other alternatives are addressed in this program as means to mitigate this safety issue before retrieval. This program plan has three parts. The first part establishes program objectives and defines safety issue, drivers, and resolution criteria and strategy. The second part evaluates the high-heat safety issue and its mitigation and remediation methods and other alternatives according to resolution logic. The third part identifies major tasks and alternatives for mitigation and resolution of the safety issue. A table of best-estimate schedules for the key tasks is also included in this program plan

  6. Health and safety plan for operations performed for the Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Trippet, W.A. II (IT Corp., (United States)); Reneau, M.; Morton, S.L. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

    1992-04-01

    This document constitutes the generic health and safety plan for the Environmental Restoration Program (ERP). It addresses the health and safety requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); Occupational Safety and Health Administration (OSHA) 29 CFR 1910.120 standard; and EG G Idaho, Inc. This plan is a guide to individuals who must complete a health and safety plan for a task performed for the EPR. It contains a task specific addendum that, when completed, specifically addresses task specific health and safety issues. This health and safety plan reduces the time it takes to write a task specific health and safety plan by providing discussions of requirements, guidance on where specific information is located, and specific topics in the Addendum that must be discussed at a task level. This format encourages a complete task specific health and safety plan and a standard for all health and safety plans written for ERP.

  7. Health and safety plan for operations performed for the Environmental Restoration Program

    International Nuclear Information System (INIS)

    Trippet, W.A. II; Reneau, M.; Morton, S.L.

    1992-04-01

    This document constitutes the generic health and safety plan for the Environmental Restoration Program (ERP). It addresses the health and safety requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); Occupational Safety and Health Administration (OSHA) 29 CFR 1910.120 standard; and EG ampersand G Idaho, Inc. This plan is a guide to individuals who must complete a health and safety plan for a task performed for the EPR. It contains a task specific addendum that, when completed, specifically addresses task specific health and safety issues. This health and safety plan reduces the time it takes to write a task specific health and safety plan by providing discussions of requirements, guidance on where specific information is located, and specific topics in the Addendum that must be discussed at a task level. This format encourages a complete task specific health and safety plan and a standard for all health and safety plans written for ERP

  8. 78 FR 61251 - The National Public Transportation Safety Plan, the Public Transportation Agency Safety Plan, and...

    Science.gov (United States)

    2013-10-03

    ...-0030] RIN 2132-AB20; 2132-AB07 The National Public Transportation Safety Plan, the Public Transportation Agency Safety Plan, and the Public Transportation Safety Certification Training Program; Transit... Public Transportation Safety Program (National Safety Program) and the requirements of the new transit...

  9. 49 CFR 659.25 - Annual review of system safety program plan and system security plan.

    Science.gov (United States)

    2010-10-01

    ... system security plan. 659.25 Section 659.25 Transportation Other Regulations Relating to Transportation... and system security plan. (a) The oversight agency shall require the rail transit agency to conduct an annual review of its system safety program plan and system security plan. (b) In the event the rail...

  10. Reactor safety research program. A description of current and planned reactor safety research sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research

    International Nuclear Information System (INIS)

    1975-06-01

    The reactor safety research program, sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research, is described in terms of its program objectives, current status, and future plans. Elements of safety research work applicable to water reactors, fast reactors, and gas cooled reactors are presented together with brief descriptions of current and planned test facilities. (U.S.)

  11. UMTRA project office federal employee occupational safety and health program plan

    International Nuclear Information System (INIS)

    1994-06-01

    This document establishes the Federal Employee Occupational Safety and Health (FEOSH) Program for the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project Office. This program will ensure compliance with applicable requirements of DOE Order 3790.1B and DOE Albuquerque Operations Office (AL) Order 3790.lA. FEOSH Program responsibilities delegated by the DOE-AL to the UMTRA Project Office by AL Order 3790.1A also are assigned. The UMTRA Project Office has developed the UMTRA Project Environmental, Safety, and Health (ES ampersand H) Plan (DOE, 1992), which establishes the basic programmatic ES ampersand H requirements for all participants on the UMTRA Project. The ES ampersand H plan is designed primarily to cover remedial action activities at UMTRA sites and defines the ES ampersand H responsibilities of both the UMTRA Project Office and its contractors. The UMTRA FEOSH Program described herein is a subset of the overall UMTRA ES ampersand H program and covers only federal employees working on the UMTRA Project

  12. Seismic safety research program plan

    International Nuclear Information System (INIS)

    1985-06-01

    This plan describes the safety issues, regulatory needs, and the research necessary to address these needs. The plan also discusses the relationship between current and proposed research within the NRC and research sponsored by other government agencies, universities, industry groups, professional societies, and foreign sources

  13. Water reactor safety research program. A description of current and planned research

    International Nuclear Information System (INIS)

    1978-07-01

    The U.S. Nuclear Regulatory Commission (NRC) sponsors confirmatory safety research on lightwater reactors in support of the NRC regulatory program. The principal responsibility of the NRC, as implemented through its regulatory program is to ensure that public health, public safety, and the environment are adequately protected. The NRC performs this function by defining conditions for the use of nuclear power and by ensuring through technical review, audit, and follow-up that these conditions are met. The NRC research program provides technical information, independent of the nuclear industry, to aid in discharging these regulatory responsibilities. The objectives of NRC's research program are the following: (1) to maintain a confirmatory research program that supports assurance of public health and safety, and public confidence in the regulatory program, (2) to provide objectively evaluated safety data and analytical methods that meet the needs of regulatory activities, (3) to provide better quantified estimates of the margins of safety for reactor systems, fuel cycle facilities, and transportation systems, (4) to establish a broad and coherent exchange of safety research information with other Federal agencies, industry, and foreign organization. Current and planned research toward these goals is described

  14. Prioritization of tasks in the draft LWR safety technology program plan. Final report

    International Nuclear Information System (INIS)

    Lim, E.Y.; Miller, W.J.; Parkinson, W.J.; Ritzman, R.L.; vonHerrmann, J.L.; Wood, P.J.

    1980-05-01

    The purpose of this report is to describe both the approach taken and the results produced in the SAI effort to prioritize the tasks in the Sandia draft LWR Safety Technology Program Plan. This work used the description of important safety issues developed in the Reactor Safety Study (2) to quantify the effect of safety improvements resulting from a research and development program on the risk from nuclear power plants. Costs of implementation of these safety improvements were also estimated to allow a presentation of the final results in a value (i.e., risk reduction) vs. impact (i.e., implementation costs) matrix

  15. System Safety Program Plan for Project W-314, tank farm restoration and safe operations

    International Nuclear Information System (INIS)

    Boos, K.A.

    1996-01-01

    This System Safety Program Plan (SSPP) outlines the safety analysis strategy for project W-314, ''Tank Farm Restoration and Safe Operations.'' Project W-314 will provide capital improvements to Hanford's existing Tank Farm facilities, with particular emphasis on infrastructure systems supporting safe operation of the double-shell activities related to the project's conceptual Design Phase, but is planned to be updated and maintained as a ''living document'' throughout the life of the project to reflect the current safety analysis planning for the Tank Farm Restoration and Safe Operations upgrades. This approved W-314 SSPP provides the basis for preparation/approval of all safety analysis documentation needed to support the project

  16. Health and safety plan for the Environmental Restoration Program at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Clark, C. Jr.; Burman, S.N.; Cipriano, D.J. Jr.; Uziel, M.S.; Kleinhans, K.R.; Tiner, P.F.

    1994-08-01

    This Programmatic Health and Safety plan (PHASP) is prepared for the U.S. Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) Program. This plan follows the format recommended by the U.S. Environmental Protection Agency (EPA) for remedial investigations and feasibility studies and that recommended by the EM40 Health and Safety Plan (HASP) Guidelines (DOE February 1994). This plan complies with the Occupational Safety and Health Administration (OSHA) requirements found in 29 CFR 1910.120 and EM-40 guidelines for any activities dealing with hazardous waste operations and emergency response efforts and with OSHA requirements found in 29 CFR 1926.65. The policies and procedures in this plan apply to all Environmental Restoration sites and activities including employees of Energy Systems, subcontractors, and prime contractors performing work for the DOE ORNL ER Program. The provisions of this plan are to be carried out whenever activities are initiated that could be a threat to human health or the environment. This plan implements a policy and establishes criteria for the development of procedures for day-to-day operations to prevent or minimize any adverse impact to the environment and personnel safety and health and to meet standards that define acceptable management of hazardous and radioactive materials and wastes. The plan is written to utilize past experience and best management practices to minimize hazards to human health and safety and to the environment from event such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactive materials to air, soil, or surface water

  17. Health and safety plan for the Environmental Restoration Program at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C. Jr.; Burman, S.N.; Cipriano, D.J. Jr.; Uziel, M.S.; Kleinhans, K.R.; Tiner, P.F.

    1994-08-01

    This Programmatic Health and Safety plan (PHASP) is prepared for the U.S. Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) Program. This plan follows the format recommended by the U.S. Environmental Protection Agency (EPA) for remedial investigations and feasibility studies and that recommended by the EM40 Health and Safety Plan (HASP) Guidelines (DOE February 1994). This plan complies with the Occupational Safety and Health Administration (OSHA) requirements found in 29 CFR 1910.120 and EM-40 guidelines for any activities dealing with hazardous waste operations and emergency response efforts and with OSHA requirements found in 29 CFR 1926.65. The policies and procedures in this plan apply to all Environmental Restoration sites and activities including employees of Energy Systems, subcontractors, and prime contractors performing work for the DOE ORNL ER Program. The provisions of this plan are to be carried out whenever activities are initiated that could be a threat to human health or the environment. This plan implements a policy and establishes criteria for the development of procedures for day-to-day operations to prevent or minimize any adverse impact to the environment and personnel safety and health and to meet standards that define acceptable management of hazardous and radioactive materials and wastes. The plan is written to utilize past experience and best management practices to minimize hazards to human health and safety and to the environment from event such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactive materials to air, soil, or surface water.

  18. System safety program plan for the Isotope Brayton Ground Demonstration System (phase I)

    International Nuclear Information System (INIS)

    1976-01-01

    The safety engineering effort to be undertaken in achieving an acceptable level of safety in the Brayton Isotope Power System (BIPS) development program is discussed. The safety organizational relationships, the methods to be used, the tasks to be completed, and the documentation to be published are described. The plan will be updated periodically as the need arises

  19. Environment, Safety, Health, and Quality Plan for the Buried Waste Integrated Demonstration Program

    International Nuclear Information System (INIS)

    Walker, S.

    1994-05-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the US Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. This document describes the Environment, Safety, Health, and Quality requirements for conducting BWID activities at the Idaho National Engineering Laboratory. Topics discussed in this report, as they apply to BWID operations, include Federal, State of Idaho, and Environmental Protection Agency regulations, Health and Safety Plans, Quality Program Plans, Data Quality Objectives, and training and job hazard analysis. Finally, a discussion is given on CERCLA criteria and System and Performance audits as they apply to the BWID Program

  20. Guidance for implementing an environmental, safety, and health-assurance program. Volume 15. A model plan for line organization environmental, safety, and health-assurance programs

    Energy Technology Data Exchange (ETDEWEB)

    Ellingson, A.C.; Trauth, C.A. Jr.

    1982-01-01

    This is 1 of 15 documents designed to illustrate how an Environmental, Safety and Health (ES and H) Assurance Program may be implemented. The generic definition of ES and H Assurance Programs is given in a companion document entitled An Environmental, Safety and Health Assurance Program Standard. This particular document presents a model operational-level ES and H Assurance Program that may be used as a guide by an operational-level organization in developing its own plan. The model presented here reflects the guidance given in the total series of 15 documents.

  1. Analisis Kepatuhan Supervisor Terhadap Implementasi Program Occupational Health & Safety (Ohs) Planned Inspection Di PT. Ccai

    OpenAIRE

    Sarah, Dewi; Ekawati, Ekawati; Widjasena, Baju

    2015-01-01

    The Government has issued Regulation Legislation No. 50 Year 2012 on Health and Safety Management System (SMK3). CCAI is a company that has implemented SMK3. The application of the CCAI SMK3 supported by K3 program one of them is OHS Planned Inspection. This study aimed to analyze the implementation of Occupational Health & Safety (OHS) program Planned Inspection in CCAI. The subjects of this study amounted to five people as the main informants and 2 as an informant triangulation. The res...

  2. OCRWM [Office of Civilian Radioactive Waste Management] Safety Plan

    International Nuclear Information System (INIS)

    1986-12-01

    The OCRWM Safety Plan sets forth management policies and general requirements for the safety of the public and of personnel associated with the Civilian Radioactive Waste Management Program (hereinafter called the ''Program''). It is applicable to all individuals and organizational elements of the Program, including all facilities and activities controlled by the Program pursuant to the Act, and to all phases of the Program. The plan defines the responsibilities assigned by the Director of the OCRWM to the various OCRWM line organizations, and to the contractors and the projects. It discusses the means by which safety policies and requirements will be communicated, and summarizes the applicable DOE Orders, and the procedures for reviewing, reporting, and evaluating safety problems. In addition, the OCRWM Safety Plan addresses DOE Orders applicable to occupational health and safety, worker protection, and public health and safety. OCRWM believes that it has an equally high level of commitment to both public safety and worker safety. The Plan also summarizes applicable NRC criteria and regulations that will be imposed through the formal licensing proceedings. While the Safety Plan sets forth OCRWM policy, it is not intended to be prescriptive in the details of implementation. Each OCRWM program element must develop and control its own set of detailed requirements for the protection of its workers and the public based on the principles set forth herein

  3. Overheads, Safety Analysis and Engineering FY 1995 Site Support Program Plan WBS 6.3.5

    Energy Technology Data Exchange (ETDEWEB)

    DiVincenzo, E.P.

    1994-09-27

    The Safety Analysis & Engineering (SA&E) department provides core competency for safety analysis and risk documentation that supports achievement of the goals and mission as described in the Hanford Mission Plan, Volume I, Site Guidance (DOE-RL 1993). SA&E operations are integrated into the programs that plan and conduct safe waste management, environmental restoration, and operational activities. SA&E personnel are key members of task teams assigned to eliminate urgent risks and inherent threats that exist at the Hanford Site. Key to ensuring protection of public health and safety, and that of onsite workers, are the products and services provided by the department. SA&E will continue to provide a leadership role throughout the DOE complex with innovative, cost-effective approaches to ensuring safety during environmental cleanup operations. The SA&E mission is to provide support to direct program operations through safety analysis and risk documentation and to maintain an infrastructure responsive to the evolutionary climate at the Hanford Site. SA&E will maintain the appropriate skills mix necessary to fulfill the customers need to conduct all operations in a safe and cost-effective manner while ensuring the safety of the public and the onsite worker.

  4. Seismic Safety Margins Research Program: Phase II program plan (FY 83-FY 84)

    International Nuclear Information System (INIS)

    Bohn, M.P.; Bernreuter, D.L.; Cover, L.E.; Johnson, J.J.; Shieh, L.C.; Shukla, S.N.; Wells, J.E.

    1982-01-01

    The Seismic Safety Margins Research Program (SSMRP) is an NRC-funded, multiyear program conducted by Lawrence Livermore National Laboratory (LLNL). Its goal is to develop a complete, fully coupled analysis procedure (including methods and computer codes) for estimating the risk of an earthquake-caused radioactive release from a commercial nuclear power plant. The analysis procedure is based upon a state-of-the-art evaluation of the current seismic analysis and design process and explicitly includes the uncertainties inherent in such a process. The results will be used to improve seismic licensing requirements for nuclear power plants. As currently planned, the SSMRP will be completed in September, 1984. This document presents the program plan for work to be done during the remainder of the program. In Phase I of the SSMRP, the necessary tools (both computer codes and data bases) for performing a detailed seismic risk analysis were identified and developed. Demonstration calculations were performed on the Zion Nuclear Power Plant. In the remainder of the program (Phase II) work will be concentrated on developing a simplified SSMRP methodology for routine probabilistic risk assessments, quantitative validation of the tools developed and application of the simplified methodology to a Boiling Water Reactor. (The Zion plant is a pressurized water reactor.) In addition, considerable effort will be devoted to making the codes and data bases easily accessible to the public

  5. USNRC HTGR safety research program overview

    International Nuclear Information System (INIS)

    Foulds, R.B.

    1982-01-01

    An overview is given of current activities and planned research efforts of the US Nuclear Regulatory Commission (NRC) HTGR Safety Program. On-going research at Brookhaven National Laboratory, Oak Ridge National Laboratory, Los Alamos National Laboratory, and Pacific Northwest Laboratory are outlined. Tables include: HTGR Safety Issues, Program Tasks, HTGR Computer Code Library, and Milestones for Long Range Research Plan

  6. UMTRA Project environmental, health, and safety plan

    International Nuclear Information System (INIS)

    1989-02-01

    The basic health and safety requirements established in this plan are designed to provide guidelines to be applied at all Uranium Mill Tailings Remedial Action (UMTRA) Project sites. Specific restrictions are given where necessary. However, an attempt has been made to provide guidelines which are generic in nature, and will allow for evaluation of site-specific conditions. Health and safety personnel are expected to exercise professional judgment when interpreting these guidelines to ensure the health and safety of project personnel and the general population. This UMTRA Project Environmental, Health, and Safety (EH ampersand S) Plan specifies the basic Federal health and safety standards and special DOE requirements applicable to this program. In addition, responsibilities in carrying out this plan are delineated. Some guidance on program requirements and radiation control and monitoring is also included. An Environmental, Health, and Safety Plan shall be developed as part of the remedial action plan for each mill site and associated disposal site. Special conditions at the site which may present potential health hazards will be described, and special areas that should should be addressed by the Remedial Action Contractor (RAC) will be indicated. Site-specific EH ampersand S concerns will be addressed by special contract conditions in RAC subcontracts. 2 tabs

  7. Overheads, Safety Analysis and Engineering FY 1995 Site Support Program Plan WBS 6.3.5

    International Nuclear Information System (INIS)

    DiVincenzo, E.P.

    1994-01-01

    The Safety Analysis ampersand Engineering (SA ampersand E) department provides core competency for safety analysis and risk documentation that supports achievement of the goals and mission as described in the Hanford Mission Plan, Volume I, Site Guidance (DOE-RL 1993). SA ampersand E operations are integrated into the programs that plan and conduct safe waste management, environmental restoration, and operational activities. SA ampersand E personnel are key members of task teams assigned to eliminate urgent risks and inherent threats that exist at the Hanford Site. Key to ensuring protection of public health and safety, and that of onsite workers, are the products and services provided by the department. SA ampersand E will continue to provide a leadership role throughout the DOE complex with innovative, cost-effective approaches to ensuring safety during environmental cleanup operations. The SA ampersand E mission is to provide support to direct program operations through safety analysis and risk documentation and to maintain an infrastructure responsive to the evolutionary climate at the Hanford Site. SA ampersand E will maintain the appropriate skills mix necessary to fulfill the customers need to conduct all operations in a safe and cost-effective manner while ensuring the safety of the public and the onsite worker

  8. Reliability and safety program plan outline for the operational phase of a waste isolation facility

    International Nuclear Information System (INIS)

    Ammer, H.G.; Wood, D.E.

    1977-01-01

    A Reliability and Safety Program plan outline has been prepared for the operational phase of a Waste Isolation Facility. The program includes major functions of risk assessment, technical support activities, quality assurance, operational safety, configuration monitoring, reliability analysis and support and coordination meetings. Detailed activity or task descriptions are included for each function. Activities are time-phased and presented in the PERT format for scheduling and interactions. Task descriptions include manloading, travel, and computer time estimates to provide data for future costing. The program outlined here will be used to provide guidance from a reliability and safety standpoint to design, procurement, construction, and operation of repositories for nuclear waste. These repositories are to be constructed under the National Waste Terminal Storage program under the direction of the Office of Waste Isolation, Union Carbide Corp. Nuclear Division

  9. Environment, Safety, Health and Waste Management Plan

    International Nuclear Information System (INIS)

    1988-01-01

    The mission of the Feed Materials Production Center (FMPC) is the production of high qaulity uranium metal for use by the US Department of Energy (DOE) in Defense Programs. In order to accomplish this mission and to maintain the FMPC as a viable facility in the DOE production complex, the facility must be brought into full compliance with all federal and state regulations and industry standards for environmental protection and worker safety. Where past practices have resulted in environmental insult, a comprehensive program of remediation must be implemented. The purpose of this combined Environment, Safety, Health and Waste Management Plan is to provide a road map for achieving needed improvements. The plan is structured to provide a comprehensive projection from the current fiscal year (FY) through FY 1994 of the programs, projects and funding required to achieve compliance. To do this, the plan is subdivided into chapters which discuss the applicable regulations;project schedules and funding requirements;details of the various programs for environment, safety, health and waste management;details of the ongoing National Environmental Policy Act (NEPA);the quality assurance program and the environmental monitoring program. 14 refs., 30 figs., 29 tabs

  10. 49 CFR 659.19 - System safety program plan: contents.

    Science.gov (United States)

    2010-10-01

    ... implementation of the system safety program. (j) A description of the process used by the rail transit agency to... the rail transit agency to manage safety issues. (d) The process used to control changes to the system... hazard management program. (n) A description of the process used for facilities and equipment safety...

  11. Quality assurance program plan for 324 Building B-Cell safety cleanout project (BCCP)

    International Nuclear Information System (INIS)

    Tanke, J.M.

    1997-01-01

    This Quality Assurance Program Plan (QAPP) provides information on how the Quality Assurance Program is implemented for the 324 Building B-Cell Safety Cleanout Project (BCCP). This QAPP is responsive to the Westinghouse Hanford Company Quality Assurance Program and Implementation Plan, WHC-SP-1131, for 10 CFR 830.120, Nuclear Safety Management, Quality Assurance Requirements; and DOE Order 5700.6C, Quality Assurance. This QAPP supersedes PNNL PNL-MA-70 QAP Quality Assurance Plan No. WTC-050 Rev. 2, issue date May 3, 1996. This QAPP has been developed specifically for the BCCP. It applies to those items and tasks which affect the completion of activities identified in the work breakdown structure of the Project Management Plan (PMP). These activities include all aspects of decontaminating B-Cell and project related operations within the 324 Building as it relates to the specific activities of this project. General facility activities (i.e. 324 Building Operations) are covered in the Building 324 QAPP. In addition, this QAPP supports the related quality assurance activities addressed in CM-2-14, Hazardous Material Packaging and Shipping, and HSRCM-1, Hanford Site Radiological Control Manual, The 324 Building is currently transitioning from being a Pacific Northwest National Laboratory (PNNL) managed facility to a B and W Hanford Company (BWHC) managed facility. During this transition process existing, PNNL procedures and documents will be utilized until replaced by BWHC procedures and documents. These documents conform to the requirements found in PNL-MA-70, Quality Assurance Manual and PNL-MA-8 1, Hazardous Materials Shipping Manual. The Quality Assurance Program Index (QAPI) contained in Table 1 provides a matrix which shows how project activities relate to 10 CFR 83 0.120 and 5700.6C criteria. Quality Assurance program requirements will be addressed separate from the requirements specified in this document. Other Hanford Site organizations/companies may be

  12. Seismic safety margin research program. Program plan, Revision I

    International Nuclear Information System (INIS)

    Smith, P.D.; Tokarz, F.J.; Bernreuter, D.L.; Cummings, G.E.; Chou, C.K.; Vagliente, V.N.

    1978-01-01

    The overall objective of the SSMRP is to develop mathematical models that realistically predict the probability of radioactive releases from seismically induced events in nuclear power plants. These models will be used for four purposes: (1) To perform sensitivity studies to determine the weak links in seismic methodology. The weak links will then be improved by research and development. (2) To estimate the probability of release for a plant. It is believed that the major difficulty in the program will be to obtain acceptably small confidence limits on the probability of release. (3) To estimate the conservatisms in the Standard Review Plan (SRP) seismic design methodology. This will be done by comparing the results of the SRP methodology and the methodology resulting from the research and development in (1). (4) To develop an improved seismic design methodology based on probability. The Phase I objective proposed in this report is to develop mathematical models which will accomplish the purposes No. 1 and No. 2 with simplified assumptions such as linear elastic analysis, limited assessment on component fragility (considering only accident sequences leading to core melt), and simplified safety system

  13. Guidance for implementing an environmental, safety and health assurance program. Volume 2. A model plan for environmental, safety and health staff audits and appraisals

    International Nuclear Information System (INIS)

    Ellingson, A.C.

    1980-09-01

    This is 1 of 15 documents designed to illustrate how an Environmental, Safety and Health (ES and H) Assurance Program may be implemented. The generic definition of ES and H Assurance Programs is given in a companion document entitled An Environmental, Safety and Health Assurance Program Standard. This document is concerned with ES and H audit and appraisal activities of an ES and H Staff Organization as they might be performed in an institution whose ES and H program is based upon the ES and H Assurance Program Standard. An annotated model plan for ES and H Staff audits and appraisals is presented and discussed

  14. Subseabed-disposal program: systems-analysis program plan

    International Nuclear Information System (INIS)

    Klett, R.D.

    1981-03-01

    This report contains an overview of the Subseabed Nuclear Waste Disposal Program systems analysis program plan, and includes sensitivity, safety, optimization, and cost/benefit analyses. Details of the primary barrier sensitivity analysis and the data acquisition and modeling cost/benefit studies are given, as well as the schedule through the technical, environmental, and engineering feasibility phases of the program

  15. NIF special equipment construction health and safety plan

    Energy Technology Data Exchange (ETDEWEB)

    Sawicki, R.H.

    1997-07-28

    The purpose of this plan is to identify how the construction and deployment activities of the National Ignition Facility (NIF) Special Equipment (SE) will be safely executed. This plan includes an identification of (1) the safety-related responsibilities of the SE people and their interaction with other organizations involved; (2) safety related requirements, policies, and documentation; (3) a list of the potential hazards unique to SE systems and the mechanisms that will be implemented to control them to acceptable levels; (4) a summary of Environmental Safety and Health (ES&H) training requirements; and (5) requirements of contractor safety plans that will be developed and used by all SE contractors participating in site activities. This plan is a subsidiary document to the NIF Construction Safety Program (CSP) and is intended to compliment the requirements stated therein with additional details specific to the safety needs of the SE construction-related activities. If a conflict arises between these two documents, the CSP will supersede. It is important to note that this plan does not list all of the potential hazards and their controls because the design and safety analysis process is still ongoing. Additional safety issues win be addressed in the Final Safety Analysis Report, Operational Safety Procedures (OSPs), and other plans and procedures as described in Section 3.0 of this plan.

  16. NIF special equipment construction health and safety plan

    International Nuclear Information System (INIS)

    Sawicki, R.H.

    1997-01-01

    The purpose of this plan is to identify how the construction and deployment activities of the National Ignition Facility (NIF) Special Equipment (SE) will be safely executed. This plan includes an identification of (1) the safety-related responsibilities of the SE people and their interaction with other organizations involved; (2) safety related requirements, policies, and documentation; (3) a list of the potential hazards unique to SE systems and the mechanisms that will be implemented to control them to acceptable levels; (4) a summary of Environmental Safety and Health (ES ampersand H) training requirements; and (5) requirements of contractor safety plans that will be developed and used by all SE contractors participating in site activities. This plan is a subsidiary document to the NIF Construction Safety Program (CSP) and is intended to compliment the requirements stated therein with additional details specific to the safety needs of the SE construction-related activities. If a conflict arises between these two documents, the CSP will supersede. It is important to note that this plan does not list all of the potential hazards and their controls because the design and safety analysis process is still ongoing. Additional safety issues win be addressed in the Final Safety Analysis Report, Operational Safety Procedures (OSPs), and other plans and procedures as described in Section 3.0 of this plan

  17. Health and safety plan for operations performed for the Environmental Restoration Program. Task, OU 1-03 and OU 4-10 Track 2 investigations

    Energy Technology Data Exchange (ETDEWEB)

    Trippet, W.A. II [IT Corp., (United States); Reneau, M.; Morton, S.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1992-04-01

    This document constitutes the generic health and safety plan for the Environmental Restoration Program (ERP). It addresses the health and safety requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); Occupational Safety and Health Administration (OSHA) 29 CFR 1910.120 standard; and EG&G Idaho, Inc. This plan is a guide to individuals who must complete a health and safety plan for a task performed for the EPR. It contains a task specific addendum that, when completed, specifically addresses task specific health and safety issues. This health and safety plan reduces the time it takes to write a task specific health and safety plan by providing discussions of requirements, guidance on where specific information is located, and specific topics in the Addendum that must be discussed at a task level. This format encourages a complete task specific health and safety plan and a standard for all health and safety plans written for ERP.

  18. Public Health Service Safety Program

    Energy Technology Data Exchange (ETDEWEB)

    McBride, J R [Southwestern Radiological Health Laboratory, Las Vegas, NV (United States)

    1969-07-01

    Off-Site Radiological Safety Programs conducted on past Plowshare experimental projects by the Southwestern Radiological Health Laboratory for the AEC will be presented. Emphasis will be placed on the evaluation of the potential radiation hazard to off-site residents, the development of an appropriate safety plan, pre- and post-shot surveillance activities, and the necessity for a comprehensive and continuing community relations program. In consideration of the possible wide use of nuclear explosives in industrial applications, a new approach to off-site radiological safety will be discussed. (author)

  19. Public Health Service Safety Program

    International Nuclear Information System (INIS)

    McBride, J.R.

    1969-01-01

    Off-Site Radiological Safety Programs conducted on past Plowshare experimental projects by the Southwestern Radiological Health Laboratory for the AEC will be presented. Emphasis will be placed on the evaluation of the potential radiation hazard to off-site residents, the development of an appropriate safety plan, pre- and post-shot surveillance activities, and the necessity for a comprehensive and continuing community relations program. In consideration of the possible wide use of nuclear explosives in industrial applications, a new approach to off-site radiological safety will be discussed. (author)

  20. Safety program considerations for space nuclear reactor systems

    International Nuclear Information System (INIS)

    Cropp, L.O.

    1984-08-01

    This report discusses the necessity for in-depth safety program planning for space nuclear reactor systems. The objectives of the safety program and a proposed task structure is presented for meeting those objectives. A proposed working relationship between the design and independent safety groups is suggested. Examples of safety-related design philosophies are given

  1. Quality assurance program plan for Building 324

    International Nuclear Information System (INIS)

    Tanke, J.M.

    1997-01-01

    This Quality Assurance Program Plan (QAPP) provides an overview of the quality assurance program for Building 324. This plan supersedes the PNNL Nuclear Facilities Quality Management System Description, PNL-NF-QMSD, Revision 2, dated March 1996. The program applies to the facility safety structures, systems, and components and to activities that could affect safety structures, systems, and components. Adherence to the quality assurance program ensures the following: US Department of Energy missions and objectives are effectively accomplished; Products and services are safe, reliable, and meet or exceed the requirements and expectations of the user; Hazards to the public, to Hanford Site and facility workers, and to the environment are minimized. The format of this Quality Assurance Program Plan is structured to parallel that of 10 CFR 83 0.120, Quality Assurance Requirements

  2. Software quality assurance plans for safety-critical software

    International Nuclear Information System (INIS)

    Liddle, P.

    2006-01-01

    Application software is defined as safety-critical if a fault in the software could prevent the system components from performing their nuclear-safety functions. Therefore, for nuclear-safety systems, the AREVA TELEPERM R XS (TXS) system is classified 1E, as defined in the Inst. of Electrical and Electronics Engineers (IEEE) Std 603-1998. The application software is classified as Software Integrity Level (SIL)-4, as defined in IEEE Std 7-4.3.2-2003. The AREVA NP Inc. Software Program Manual (SPM) describes the measures taken to ensure that the TELEPERM XS application software attains a level of quality commensurate with its importance to safety. The manual also describes how TELEPERM XS correctly performs the required safety functions and conforms to established technical and documentation requirements, conventions, rules, and standards. The program manual covers the requirements definition, detailed design, integration, and test phases for the TELEPERM XS application software, and supporting software created by AREVA NP Inc. The SPM is required for all safety-related TELEPERM XS system applications. The program comprises several basic plans and practices: 1. A Software Quality-Assurance Plan (SQAP) that describes the processes necessary to ensure that the software attains a level of quality commensurate with its importance to safety function. 2. A Software Safety Plan (SSP) that identifies the process to reasonably ensure that safety-critical software performs as intended during all abnormal conditions and events, and does not introduce any new hazards that could jeopardize the health and safety of the public. 3. A Software Verification and Validation (V and V) Plan that describes the method of ensuring the software is in accordance with the requirements. 4. A Software Configuration Management Plan (SCMP) that describes the method of maintaining the software in an identifiable state at all times. 5. A Software Operations and Maintenance Plan (SO and MP) that

  3. Site Support Program Plan Infrastructure Program

    International Nuclear Information System (INIS)

    1995-01-01

    The Fiscal Year 1996 Infrastructure Program Site Support Program Plan addresses the mission objectives, workscope, work breakdown structures (WBS), management approach, and resource requirements for the Infrastructure Program. Attached to the plan are appendices that provide more detailed information associated with scope definition. The Hanford Site's infrastructure has served the Site for nearly 50 years during defense materials production. Now with the challenges of the new environmental cleanup mission, Hanford's infrastructure must meet current and future mission needs in a constrained budget environment, while complying with more stringent environmental, safety, and health regulations. The infrastructure requires upgrading, streamlining, and enhancement in order to successfully support the site mission of cleaning up the Site, research and development, and economic transition

  4. Health, safety and environmental research program

    International Nuclear Information System (INIS)

    Dinner, P.J.

    1983-01-01

    This report outlines the Health, Safety and Environmental Research Program being undertaken by the CFFTP. The Program objectives, relationship to other CFFTP programs, implementation plans and expected outputs are stated. Opportunities to build upon the knowledge and experience gained in safely managing tritium in the CANDU program, by addressing generic questions pertinent to tritium safety for fusion facilities, are identified. These opportunities exist across a broad spectrum of issues covering the anticipated behaviour of tritium in fusion facilities, the surrounding environment and in man

  5. 30 CFR 75.161 - Plans for training programs.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Plans for training programs. 75.161 Section 75... Provision] § 75.161 Plans for training programs. Each operator must submit to the district manager, of the Coal Mine Safety and Health District in which the mine is located, a program or plan setting forth what...

  6. Site Support Program Plan Infrastructure Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-26

    The Fiscal Year 1996 Infrastructure Program Site Support Program Plan addresses the mission objectives, workscope, work breakdown structures (WBS), management approach, and resource requirements for the Infrastructure Program. Attached to the plan are appendices that provide more detailed information associated with scope definition. The Hanford Site`s infrastructure has served the Site for nearly 50 years during defense materials production. Now with the challenges of the new environmental cleanup mission, Hanford`s infrastructure must meet current and future mission needs in a constrained budget environment, while complying with more stringent environmental, safety, and health regulations. The infrastructure requires upgrading, streamlining, and enhancement in order to successfully support the site mission of cleaning up the Site, research and development, and economic transition.

  7. Electronuclear's safety culture assessment and enhancement program

    International Nuclear Information System (INIS)

    Selvatici, E.; Diaz-Francisco, J.M.; Diniz de Souza, V.

    2002-01-01

    The present paper describes the Eletronuclear's safety culture assessment and enhancement program. The program was launched by the company's top management one year after the creation of Eletronuclear in 1997, from the merging of two companies with different organizational cultures, the design and engineering company Nuclen and the nuclear directorate of the Utility Furnas, Operator of the Angra1 NPP. The program consisted of an assessment performed internally in 1999 with the support and advice of the IAEA. This assessment, performed with the help of a survey, pooled about 80% of the company's employees. The overall result of the assessment was that a satisfactory level of safety culture existed; however, a number of points with a considerable margin for improvement were also identified. These points were mostly related with behavioural matters such as motivation, stress in the workplace, view of mistakes, handling of conflicts, and last but not least a view by a considerable number of employees that a conflict between safety and production might exist. An Action Plan was established by the company managers to tackle these weak points. This Plan was issued as company guideline by the company's Directorate. The subsequent step was to detail and implement the different actions of the Plan, which is the phase that we are at present. In the detailing of the Action Plan, special care was taken to sum up efforts, avoiding duplication of work or competition with already existing programs. In this process it was identified that the company had a considerable number of initiatives directly related to organizational and safety culture improvement, already operational. These initiatives have been integrated in the detailed Action Plan. A new assessment, for checking the effectiveness of the undertaken actions, is planned for 2003. (author)

  8. Overview of the Nuclear Regulatory Commission's safety research program

    International Nuclear Information System (INIS)

    Beckjord, E.S.

    1989-01-01

    Accomplishments during 1988 of the Office of Nuclear Regulatory Research and the program of safety research are highlighted, and plans, expections, and needs of the next year and beyond are discussed. Topics discussed include: ECCS Appendix K Revision; pressurized thermal shock; NUREG-1150, or the PRA method performance document; resolution of station blackout; severe accident integration plan; nuclear safety research review committee; and program management

  9. Safety research basic plan of JNC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Japan Nuclear Cycle Development Institute (JNC) formally succeeded to Power Reactor and Nuclear Fuel Development Corporation (PNC) on October, 1 1998. This report describes the basic plan for major program of JNC which consists of two parts: management philosophy of the new institute and the latest revised medium term program. In the first part, the primary mission of JNC is to perform its R and D concentrating on fast breeder reactor and its fuel cycle, and treatment and disposal of high-level radioactive wastes, while at the same time giving special consideration to safety. In the second, individual programs in the new basic plan are discussed in detail. The outline and schedule of each program are also attached in the table form. (H. Itami)

  10. Seismic safety margins research program overview

    International Nuclear Information System (INIS)

    Tokarz, F.J.; Smith, P.D.

    1978-01-01

    A multiyear seismic research program has been initiated at the Lawrence Livermore Laboratory. This program, the Seismic Safety Margins Research Program (SSMRP) is funded by the U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. The program is designed to develop a probabilistic systems methodology for determining the seismic safety margins of nuclear power plants. Phase I, extending some 22 months, began in July 1978 at a funding level of approximately $4.3 million. Here we present an overview of the SSMRP. Included are discussions on the program objective, the approach to meet the program goal and objectives, end products, the probabilistic systems methodology, and planned activities for Phase I

  11. Quality assurance program plan for the Reactor Research Experiment Programs (RREP)

    International Nuclear Information System (INIS)

    Pipher, D.G.

    1982-05-01

    This document describes the Quality Assurance Program plans which will be applied to tasks on Reactor Research Experiments performed on Sandia National Laboratories' reactors. The program provides for individual project or experiment quality plan development and allows for reasonable plan flexibility and maximum plan visibility. Various controls and requirements in this program plan are considered mandatory on all features which are identified as important to public health and safety (Level I). It is the intent of this document that the Quality Assurance program comprise those elements which will provide adequate assurance that all components, equipment, and systems of the experiments will perform as designed, and hence prevent delays and costs due to rejections or failures

  12. Environmental, Safety, and Health Plan for the remedial investigation/feasibility study at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Revision 1, Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Davis, C. M.; El-Messidi, O. E.; Cowser, D. K.; Kannard, J. R.; Carvin, R. T.; Will, III, A. S.; Clark, Jr., C.; Garland, S. B.

    1993-05-01

    This Environmental, Safety, and Health (ES&H) Plan presents the concepts and methodologies to be followed during the remedial investigation/feasibility study (RI/FS) for Oak Ridge National Laboratory (ORNL) to protect the health and safety of employees, the public, and the environment. This ES&H Plan acts as a management extension for ORNL and Martin Marietta Energy Systems, Inc. (Energy Systems) to direct and control implementation of the project ES&H program. The subsections that follow describe the program philosophy, requirements, quality assurance measures, and methods for applying the ES&H program to individual waste area grouping (WAG) remedial investigations. Hazardous work permits (HWPs) will be used to provide task-specific health and safety requirements.

  13. ATLAS program for advanced thermal-hydraulic safety research

    International Nuclear Information System (INIS)

    Song, Chul-Hwa; Choi, Ki-Yong; Kang, Kyoung-Ho

    2015-01-01

    Highlights: • Major achievements of the ATLAS program are highlighted in conjunction with both developing advanced light water reactor technologies and enhancing the nuclear safety. • The ATLAS data was shown to be useful for the development and licensing of new reactors and safety analysis codes, and also for nuclear safety enhancement through domestic and international cooperative programs. • A future plan for the ATLAS testing is introduced, covering recently emerging safety issues and some generic thermal-hydraulic concerns. - Abstract: This paper highlights the major achievements of the ATLAS program, which is an integral effect test program for both developing advanced light water reactor technologies and contributing to enhancing nuclear safety. The ATLAS program is closely related with the development of the APR1400 and APR"+ reactors, and the SPACE code, which is a best-estimate system-scale code for a safety analysis of nuclear reactors. The multiple roles of ATLAS testing are emphasized in very close conjunction with the development, licensing, and commercial deployment of these reactors and their safety analysis codes. The role of ATLAS for nuclear safety enhancement is also introduced by taking some examples of its contributions to voluntarily lead to multi-body cooperative programs such as domestic and international standard problems. Finally, a future plan for the utilization of ATLAS testing is introduced, which aims at tackling recently emerging safety issues such as a prolonged station blackout accident and medium-size break LOCA, and some generic thermal-hydraulic concerns as to how to figure out multi-dimensional phenomena and the scaling issue.

  14. DOE Defense Program (DP) safety programs. Final report, Task 003

    International Nuclear Information System (INIS)

    1998-01-01

    The overall objective of the work on Task 003 of Subcontract 9-X52-W7423-1 was to provide LANL with support to the DOE Defense Program (DP) Safety Programs. The effort included the identification of appropriate safety requirements, the refinement of a DP-specific Safety Analysis Report (SAR) Format and Content Guide (FCG) and Comprehensive Review Plan (CRP), incorporation of graded approach instructions into the guidance, and the development of a safety analysis methodologies document. All tasks which were assigned under this Task Order were completed. Descriptions of the objectives of each task and effort performed to complete each objective is provided here

  15. Cesium legacy safety project management work plan

    International Nuclear Information System (INIS)

    Durham, J.S.

    1998-01-01

    This Management Work Plan (MWP) describes the process flow, quality assurance controls, and the Environment, Safety, and Health requirements of the Cesium Legacy Safety Project. This MWP provides an overview of the project goals and methods for repackaging the non-conforming Type W overpacks and packaging the CsCl powder and pellets. This MWP is not intended to apply to other activities associated with the CsCl Legacy Safety Program (i.e., clean out of South Cell)

  16. 2011 Annual Criticality Safety Program Performance Summary

    Energy Technology Data Exchange (ETDEWEB)

    Andrea Hoffman

    2011-12-01

    The 2011 review of the INL Criticality Safety Program has determined that the program is robust and effective. The review was prepared for, and fulfills Contract Data Requirements List (CDRL) item H.20, 'Annual Criticality Safety Program performance summary that includes the status of assessments, issues, corrective actions, infractions, requirements management, training, and programmatic support.' This performance summary addresses the status of these important elements of the INL Criticality Safety Program. Assessments - Assessments in 2011 were planned and scheduled. The scheduled assessments included a Criticality Safety Program Effectiveness Review, Criticality Control Area Inspections, a Protection of Controlled Unclassified Information Inspection, an Assessment of Criticality Safety SQA, and this management assessment of the Criticality Safety Program. All of the assessments were completed with the exception of the 'Effectiveness Review' for SSPSF, which was delayed due to emerging work. Although minor issues were identified in the assessments, no issues or combination of issues indicated that the INL Criticality Safety Program was ineffective. The identification of issues demonstrates the importance of an assessment program to the overall health and effectiveness of the INL Criticality Safety Program. Issues and Corrective Actions - There are relatively few criticality safety related issues in the Laboratory ICAMS system. Most were identified by Criticality Safety Program assessments. No issues indicate ineffectiveness in the INL Criticality Safety Program. All of the issues are being worked and there are no imminent criticality concerns. Infractions - There was one criticality safety related violation in 2011. On January 18, 2011, it was discovered that a fuel plate bundle in the Nuclear Materials Inspection and Storage (NMIS) facility exceeded the fissionable mass limit, resulting in a technical safety requirement (TSR) violation. The

  17. Supporting Fernald Site Closure with Integrated Health and Safety Plans as Documented Safety Analyses

    International Nuclear Information System (INIS)

    Kohler, S.; Brown, T.; Fisk, P.; Krach, F.; Klein, B.

    2004-01-01

    At the Fernald Closure Project (FCP) near Cincinnati, Ohio, environmental restoration activities are supported by Documented Safety Analyses (DSAs) that combine the required project-specific Health and Safety Plans, Safety Basis Requirements (SBRs), and Process Requirements (PRs) into single Integrated Health and Safety Plans (I-HASPs). These integrated DSAs employ Integrated Safety Management methodology in support of simplified restoration and remediation activities that, so far, have resulted in the decontamination and demolition (D and D) of over 200 structures, including eight major nuclear production plants. There is one of twelve nuclear facilities still remaining (Silos containing uranium ore residues) with its own safety basis documentation. This paper presents the status of the FCP's safety basis documentation program, illustrating that all of the former nuclear facilities and activities have now replaced. Basis of Interim Operations (BIOs) with I-HASPs as their safety basis during the closure process

  18. Comprehensive work plan and health and safety plan for the 7500 Area Contamination Site sampling at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Burman, S.N.; Landguth, D.C.; Uziel, M.S.; Hatmaker, T.L.; Tiner, P.F.

    1992-05-01

    As part of the Environmental Restoration Program sponsored by the US Department of Energy`s Office of Environmental Restoration and Waste Management, this plan has been developed for the environmental sampling efforts at the 7500 Area Contamination Site, Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee. This plan was developed by the Measurement Applications and Development Group (MAD) of the Health and Safety Research Division of ORNL and will be implemented by ORNL/MAD. Major components of the plan include (1) a quality assurance project plan that describes the scope and objectives of ORNL/MAD activities at the 7500 Area Contamination Site, assigns responsibilities, and provides emergency information for contingencies that may arise during field operations; (2) sampling and analysis sections; (3) a site-specific health and safety section that describes general site hazards, hazards associated with specific tasks, personnel protection requirements, and mandatory safety procedures; (4) procedures and requirements for equipment decontamination and responsibilities for generated wastes, waste management, and contamination control; and (5) a discussion of form completion and reporting required to document activities at the 7500 Area Contamination Site.

  19. Safety plan for the cooperative telerobotic retrieval system equipment development area

    Energy Technology Data Exchange (ETDEWEB)

    Haney, T.J.; Jessmore, J.J.

    1995-07-01

    This plan establishes guidelines to minimize safety risks for the cooperative telerobotic retrieval project at the North Boulevard Annex (NBA). This plan has the dual purpose of minimizing safety risks to workers and visitors and of securing sensitive equipment from inadvertent damage by nonqualified personnel. This goal will be accomplished through physical control of work zones and through assigned responsibilities for project personnel. The scope of this plan is limited to establishing the working zone boundaries and entry requirements, and assigning responsibilities for project personnel. This plan does not supersede current safety organization responsibilities for the Landfill Stabilization Focus Area Transuranic (LSFA TRU) Arid outlined in the Environment, Safety, Health, and Quality Plan for the Buried Waste Integrated Demonstration Program; Tenant Manual; Idaho Falls Building Emergency Control Plan;; applicable Company Procedures; the attached Interface Agreement (Appendix A).

  20. Safety plan for the cooperative telerobotic retrieval system equipment development area

    International Nuclear Information System (INIS)

    Haney, T.J.; Jessmore, J.J.

    1995-07-01

    This plan establishes guidelines to minimize safety risks for the cooperative telerobotic retrieval project at the North Boulevard Annex (NBA). This plan has the dual purpose of minimizing safety risks to workers and visitors and of securing sensitive equipment from inadvertent damage by nonqualified personnel. This goal will be accomplished through physical control of work zones and through assigned responsibilities for project personnel. The scope of this plan is limited to establishing the working zone boundaries and entry requirements, and assigning responsibilities for project personnel. This plan does not supersede current safety organization responsibilities for the Landfill Stabilization Focus Area Transuranic (LSFA TRU) Arid outlined in the Environment, Safety, Health, and Quality Plan for the Buried Waste Integrated Demonstration Program; Tenant Manual; Idaho Falls Building Emergency Control Plan;; applicable Company Procedures; the attached Interface Agreement (Appendix A)

  1. UMTRA Project: Environment, Safety, and Health Plan

    International Nuclear Information System (INIS)

    1995-02-01

    The US Department of Energy has prepared this UMTRA Project Environment, Safety, and Health (ES and H) Plan to establish the policy, implementing requirements, and guidance for the UMTRA Project. The requirements and guidance identified in this plan are designed to provide technical direction to UMTRA Project contractors to assist in the development and implementation of their ES and H plans and programs for UMTRA Project work activities. Specific requirements set forth in this UMTRA Project ES and H Plan are intended to provide uniformity to the UMTRA Project's ES and H programs for processing sites, disposal sites, and vicinity properties. In all cases, this UMTRA Project ES and H Plan is intended to be consistent with applicable standards and regulations and to provide guidance that is generic in nature and will allow for contractors' evaluation of site or contract-specific ES and H conditions. This plan specifies the basic ES and H requirements applicable to UMTRA Project ES and H programs and delineates responsibilities for carrying out this plan. DOE and contractor ES and H personnel are expected to exercise professional judgment and apply a graded approach when interpreting these guidelines, based on the risk of operations

  2. NIF conventional facilities construction health and safety plan

    International Nuclear Information System (INIS)

    Benjamin, D W

    1998-01-01

    The purpose of this Plan is to outline the minimum health and safety requirements to which all participating Lawrence Livermore National Laboratory (LLNL) and non-LLNL employees (excluding National Ignition Facility [NIF] specific contractors and subcontractors covered under the construction subcontract packages (e.g., CSP-9)-see Construction Safety Program for the National Ignition Facility [CSP] Section I.B. ''NIF Construction Contractors and Subcontractors'' for specifics) shall adhere to for preventing job-related injuries and illnesses during Conventional Facilities construction activities at the NIF Project. For the purpose of this Plan, the term ''LLNL and non-LLNL employees'' includes LLNL employees, LLNL Plant Operations staff and their contractors, supplemental labor, contract labor, labor-only contractors, vendors, DOE representatives, personnel matrixed/assigned from other National Laboratories, participating guests, and others such as visitors, students, consultants etc., performing on-site work or services in support of the NIF Project. Based upon an activity level determination explained in Section 1.2.18, in this document, these organizations or individuals may be required by site management to prepare their own NIF site-specific safety plan. LLNL employees will normally not be expected to prepare a site-specific safety plan. This Plan also outlines job-specific exposures and construction site safety activities with which LLNL and non-LLNL employees shall comply

  3. Quality-Assurance Program Plan

    International Nuclear Information System (INIS)

    Kettell, R.A.

    1981-05-01

    This Quality Assurance Program Plan (QAPP) is provided to describe the Quality Assurance Program which is applied to the waste management activities conducted by AESD-Nevada Operations at the E-MAD Facility located in Area 25 of the Nevada Test Site. The AESD-Nevada Operations QAPP provides the necessary systematic and administrative controls to assure activities that affect quality, safety, reliability, and maintainability during design, procurement, fabrication, inspection, shipments, tests, and storage are conducted in accordance with established requirements

  4. IRSN research programs concerning reactor safety

    International Nuclear Information System (INIS)

    Bardelay, J.

    2005-01-01

    This paper is made up of 3 parts. The first part briefly presents the missions of IRSN (French research institute on nuclear safety), the second part reviews the research works currently led by IRSN in the following fields : -) the assessment of safety computer codes, -) thermohydraulics, -) reactor ageing, -) reactivity accidents, -) loss of coolant, -) reactor pool dewatering, -) core meltdown, -) vapor explosion, and -) fission product release. In the third part, IRSN is shown to give a major importance to experimental programs led on research or test reactors for collecting valid data because of the complexity of the physical processes that are involved. IRSN plans to develop a research program concerning the safety of high or very high temperature reactors. (A.C.)

  5. RISMC advanced safety analysis project plan: FY2015 - FY2019. Light Water Reactor Sustainability Program

    International Nuclear Information System (INIS)

    Szilard, Ronaldo H; Smith, Curtis L; Youngblood, Robert

    2014-01-01

    In this report, the Advanced Safety Analysis Program (ASAP) objectives and value proposition is described. ASAP focuses on modernization of nuclear power safety analysis (tools, methods and data); implementing state-of-the-art modeling techniques (which include, for example, enabling incorporation of more detailed physics as they become available); taking advantage of modern computing hardware; and combining probabilistic and mechanistic analyses to enable a risk informed safety analysis process. The modernized tools will maintain the current high level of safety in our nuclear power plant fleet, while providing an improved understanding of safety margins and the critical parameters that affect them. Thus, the set of tools will provide information to inform decisions on plant modifications, refurbishments, and surveillance programs, while improving economics. The set of tools will also benefit the design of new reactors, enhancing safety per unit cost of a nuclear plant. As part of the discussion, we have identified three sets of stakeholders, the nuclear industry, the Department of Energy (DOE), and associated oversight organizations. These three groups would benefit from ASAP in different ways. For example, within the DOE complex, the possible applications that are seen include the safety of experimental reactors, facility life extension, safety-by-design in future generation advanced reactors, and managing security for the storage of nuclear material. This report provides information in five areas: (1) A value proposition (@@@why is this important?@@@) that will make the case for stakeholder's use of the ASAP research and development (R&D) products; (2) An identification of likely end users and pathway to adoption of enhanced tools by the end-users; (3) A proposed set of practical and achievable @@use case@@@ demonstrations; (4) A proposed plan to address ASAP verification and validation (V&V) needs; and (5) A proposed schedule for the multi-year ASAP.

  6. Occupational Safety and Health Program at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    L. M. Calderon

    1999-01-01

    The West Valley Nuclear Services Co. LLC (WVNS) is committed to provide a safe, clean, working environment for employees, and to implement U.S. Department of Energy (DOE) requirements affecting worker safety. The West Valley Demonstration Project (WVDP) Occupational Safety and Health Program is designed to protect the safety, health, and well-being of WVDP employees by identifying, evaluating, and controlling biological, chemical, and physical hazards in the work place. Hazards are controlled within the requirements set forth in the reference section at the end of this report. It is the intent of the WVDP Occupational Safety and Health Program to assure that each employee is provided with a safe and healthy work environment. This report shows the logical path toward ensuring employee safety in planning work at the WVDP. In general, planning work to be performed safely includes: combining requirements from specific programs such as occupational safety, industrial hygiene, radiological control, nuclear safety, fire safety, environmental protection, etc.; including WVDP employees in the safety decision-making processes; pre-planning using safety support re-sources; and integrating the safety processes into the work instructions. Safety management principles help to define the path forward for the WVDP Occupational Safety and Health Program. Roles, responsibilities, and authority of personnel stem from these ideals. WVNS and its subcontractors are guided by the following fundamental safety management principles: ''Protection of the environment, workers, and the public is the highest priority. The safety and well-being of our employees, the public, and the environment must never be compromised in the aggressive pursuit of results and accomplishment of work product. A graded approach to environment, safety, and health in design, construction, operation, maintenance, and deactivation is incorporated to ensure the protection of the workers, the public, and the environment

  7. Quarterly report on the Ferrocyanide Safety Program for the period ending, March 31, 1995

    International Nuclear Information System (INIS)

    Cash, R.J.; Meacham, J.E.; Dukelow, G.T.

    1995-04-01

    This quarterly report provides a status of the activities underway on the Ferrocyanide Safety Issue at the Hanford Site, including actions in response to Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 90-7 (FR 1990). In March 1991, a DNFSB implementation plan (Cash 1991) responding to the six parts of Recommendation 90-7 was prepared and sent to the DNFSB. A Ferrocyanide Safety Program Plan addressing the total Ferrocyanide Safety Program, including the six parts of DNFSB Recommendation 90-7, was released in October 1994 (DOE 1994b). Activities in the program plan are underway or have been completed, and the status of each is described in Sections 2.0 and 3.0 of this report

  8. Safety case plan 2008

    International Nuclear Information System (INIS)

    2008-07-01

    Following the guidelines set forth by the Ministry of Trade and Industry (now Ministry of Employment and Economy) Posiva is preparing to submit the construction license application for a spent fuel repository by the end of the year 2012. The long-term safety section supporting the license application is based on a safety case, which, according to the internationally adopted definition, is a compilation of the evidence, analyses and arguments that quantify and substantiate the safety and the level of expert confidence in the safety of the planned repository. In 2005, Posiva presented a plan to prepare such a safety case. The present report provides a revised plan of the safety case contents mentioned above. The update of the safety case plan takes into account the recommendations made by the Radiation and Nuclear Safety Authority (STUK) about improving the focus and further developing the plan. Accordingly, particular attention is given to the quality management of the safety case work, the management of uncertainties and the scenario methodology. The quality management is based on the ISO 9001:2000 standard process thinking enhanced with special features arising from STUK's YVL Guides. The safety case production process is divided into four main sub-processes. The conceptualisation and methodology sub-process defines the framework for the assessment. The critical data handling and modelling sub-process links Posiva's main technical and scientific activities to the production of the safety case. The assessment sub-process analyses the consequences of the evolution of the disposal system in various scenarios, classified either as part of the expected evolution or as disruptive scenarios. The compliance and confidence sub-process is responsible for final evaluation of compliance of the assessment results with the regulatory criteria and the overall confidence in the safety case. As in the previous safety case plan, the safety case will be based on several reports, but

  9. Nuclear Regulatory Commission Human Factors Program Plan. Revision 2

    International Nuclear Information System (INIS)

    1986-04-01

    This document is the Second Annual Revision to the NRC Human Factors Program Plan. The first edition was published in August 1983. Revision 1 was published in July of 1984. Purpose of the NRC Human Factors Program is to ensure that proper consideration is given to human factors in the design and operation of nuclear power plants. This document describes the plans of the Office of Nuclear Reactor Regulation to address high priority human factors concerns of importance to reactor safety in FY 1986 and FY 1987. Revision 2 of the plan incorporates recent Commission decisions and policies bearing on the human factors aspects of reactor safety regulation. With a few exceptions, the principal changes from prior editions reflect a shift from developing new requirements to staff evaluation of industry progress in resolving human factors issues. The plan addresses seven major program elements: (1) Training, (2) Licensing Examinations, (3) Procedures, (4) Man-Machine Interface, (5) Staffing and Qualifications, (6) Management and Organization, and (7) Human Performance

  10. Tank waste remediation system environmental program plan

    International Nuclear Information System (INIS)

    Borneman, L.E.

    1998-01-01

    This Environmental Program Plan has been developed in support of the Integrated Environmental, Safety and Health Management System and consistent with the goals of DOE/RL-96-50, Hanford Strategic Plan (RL 1996a), and the specifications and guidance for ANSI/ISO 14001-1996, Environmental Management Systems Specification with guidance for use (ANSI/ISO 1996)

  11. Tank waste remediation system environmental program plan

    Energy Technology Data Exchange (ETDEWEB)

    Borneman, L.E.

    1998-01-09

    This Environmental Program Plan has been developed in support of the Integrated Environmental, Safety and Health Management System and consistent with the goals of DOE/RL-96-50, Hanford Strategic Plan (RL 1996a), and the specifications and guidance for ANSI/ISO 14001-1996, Environmental Management Systems Specification with guidance for use (ANSI/ISO 1996).

  12. SRS ES ampersand H standards compliance program management plan

    International Nuclear Information System (INIS)

    Hearn, W.H.

    1993-01-01

    On March 8, 1990, the Defense Nuclear Facilities Safety Board (DNFSB) issued Recommendation 90-2 to the Secretary of Energy. This recommendation, based upon the DNFSB's initial review and evaluation of the content and implementation of standards relating to the design, construction, operations, and decommissioning of defense nuclear facilities of the Department of Energy (DOE), called for three actions: (1) identification of specific standards that apply to design, construction, operation and decommissioning of DOE facilities; (2) assessment of the adequacy of those standards for protecting public health and safety; and (3) determination of the extent to which they have and are being implemented. This document defines the elements of the SRS program required to support the HQ program in response to DNFSB Recommendation 90-2. The objective is to ensure a consistent approach for all sitewide ES and H Standards Compliance Program efforts that satisfied the intent of Recommendation 90-2 and the HQ 90-2 Implementation Plan in a cost-effective manner. The methodology and instructions for implementation of the SRS program are contained in the Standards Compliance Program Implementation Plan. The Management Plan shall be used in conjunction with the Implementation Plan

  13. Tank waste remediation system nuclear criticality safety inspection and assessment plan

    International Nuclear Information System (INIS)

    VAIL, T.S.

    1999-01-01

    This plan provides a management approved procedure for inspections and assessments of sufficient depth to validate that the Tank Waste Remediation System (TWRS) facility complies with the requirements of the Project Hanford criticality safety program, NHF-PRO-334, ''Criticality Safety General, Requirements''

  14. Operations Program Plan for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1990-09-01

    This document, Revision 4 of the Operations Program Plan, has been developed as the seven-year master plan for operating of the Waste Isolation Pilot Plant (WIPP). Subjects covered include public and technical communications; regulatory and environmental programs; startup engineering; radiation handling, surface operations, and underground operations; waste certification and waste handling; transportation development; geotechnical engineering; experimental operations; engineering program; general maintenance; security program; safety, radiation, and regulatory assurance; quality assurance program; training program; administration activities; management systems program; and decommissioning. 243 refs., 19 figs., 25 tabs. (SM)

  15. Health and Safety Plan for Operations Performed for the Environmental Restoration Program: Task, Characterization of Potential Waste Sources at Auxiliary Reactor Area-1 Operable Unit 5--07 site ARA-02

    International Nuclear Information System (INIS)

    Pickett, S.L.; Morton, S.L.

    1992-06-01

    This document constitutes the generic health and safety plan for the Environmental Restoration Program (ERP). It addresses the health and safety requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); Occupational Safety and Health Administration (OSHA) 29 CFR 1910.120 standard; and EG ampersand G Idaho, Inc. This plan is a guide to individuals who must complete a health and safety plan for a task performed for the ERP. It contains a task specific addendum that, when completed, specifically addresses task specific health and safety issues. This health and safety plan reduces the time it takes to write a task specific health and safety plan by providing discussions of requirements, guidance on where specific information is located, and specific topics in the Addendum that must be discussed at a task level. This format encourages a complete task specific health and safety plan and a standard for all health and safety plans written for ERP

  16. Health and Safety Plan for Operations Performed for the Environmental Restoration Program: Task, Characterization of Potential Waste Sources at Auxiliary Reactor Area-1 Operable Unit 5--07 site ARA-02

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, S.L.; Morton, S.L.

    1992-06-01

    This document constitutes the generic health and safety plan for the Environmental Restoration Program (ERP). It addresses the health and safety requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); Occupational Safety and Health Administration (OSHA) 29 CFR 1910.120 standard; and EG G Idaho, Inc. This plan is a guide to individuals who must complete a health and safety plan for a task performed for the ERP. It contains a task specific addendum that, when completed, specifically addresses task specific health and safety issues. This health and safety plan reduces the time it takes to write a task specific health and safety plan by providing discussions of requirements, guidance on where specific information is located, and specific topics in the Addendum that must be discussed at a task level. This format encourages a complete task specific health and safety plan and a standard for all health and safety plans written for ERP.

  17. Health and Safety Plan for Operations Performed for the Environmental Restoration Program: Task, Characterization of Potential Waste Sources at Auxiliary Reactor Area-1 Operable Unit 5--07 site ARA-02

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, S.L.; Morton, S.L.

    1992-06-01

    This document constitutes the generic health and safety plan for the Environmental Restoration Program (ERP). It addresses the health and safety requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); Occupational Safety and Health Administration (OSHA) 29 CFR 1910.120 standard; and EG&G Idaho, Inc. This plan is a guide to individuals who must complete a health and safety plan for a task performed for the ERP. It contains a task specific addendum that, when completed, specifically addresses task specific health and safety issues. This health and safety plan reduces the time it takes to write a task specific health and safety plan by providing discussions of requirements, guidance on where specific information is located, and specific topics in the Addendum that must be discussed at a task level. This format encourages a complete task specific health and safety plan and a standard for all health and safety plans written for ERP.

  18. Safety and quality management and administration Fiscal Year 1995 site support program plan WBS 6.7.2.6

    International Nuclear Information System (INIS)

    Hagan, J.W.

    1994-09-01

    The mission of the Emergency, Safety, and Quality Services (ESQ) management and Program Integration is to provide leadership for the ESQ Department, coordinate business management activities of the ESQ department, and the programs it supports, as well as to plan organize, direct, and control other activities that require department-wide coordination. Primary activities include providing strategic and business planning and reporting support to ESQ management; developing and documenting ESQ management systems and procedures; coordinating ESQ's self-assessment and Award Fee self evaluation efforts; coordinating the ESQ departments's communication, total quality, cost savings, and productivity efforts; and tracking ESQ commitments and staffing data. This program element also provides program direction and performance assessment for the ESH ampersand Q division of ICF KH. The ESH ampersand Q Division educates ICF KH management and employees to protect personnel and the environment; identifies, interprets and inspects to requirements; provides administrative and field support; performs final acceptance of construction; assesses effectiveness of ICF KH programs and processes, and performs baseline ESH ampersand Q assessments

  19. Safety and quality management and administration Fiscal Year 1995 site support program plan WBS 6.7.2.6

    Energy Technology Data Exchange (ETDEWEB)

    Hagan, J.W.

    1994-09-01

    The mission of the Emergency, Safety, and Quality Services (ESQ) management and Program Integration is to provide leadership for the ESQ Department, coordinate business management activities of the ESQ department, and the programs it supports, as well as to plan organize, direct, and control other activities that require department-wide coordination. Primary activities include providing strategic and business planning and reporting support to ESQ management; developing and documenting ESQ management systems and procedures; coordinating ESQ`s self-assessment and Award Fee self evaluation efforts; coordinating the ESQ departments`s communication, total quality, cost savings, and productivity efforts; and tracking ESQ commitments and staffing data. This program element also provides program direction and performance assessment for the ESH&Q division of ICF KH. The ESH&Q Division educates ICF KH management and employees to protect personnel and the environment; identifies, interprets and inspects to requirements; provides administrative and field support; performs final acceptance of construction; assesses effectiveness of ICF KH programs and processes, and performs baseline ESH&Q assessments.

  20. 29 CFR 1915.502 - Fire safety plan.

    Science.gov (United States)

    2010-07-01

    ... implement a written fire safety plan that covers all the actions that employers and employees must take to ensure employee safety in the event of a fire. (See Appendix A to this subpart for a Model Fire Safety... safety plan for their employees, and this plan must comply with the host employer's fire safety plan. ...

  1. Safety evaluation report on Tennessee Valley Authority: Watts Bar Nuclear Performance Plan

    International Nuclear Information System (INIS)

    1990-01-01

    This safety evaluation report on the information submitted by the Tennessee Valley Authority in its Nuclear Performance Plan for the Watts Bar Nuclear Plant and in supporting documents has been prepared by the US Nuclear Regulatory Commission staff. The plan addresses the plant-specific corrective actions as part of the recovery program for licensing of Unit 1. The staff will be monitoring and inspecting the implementation of the programs. The plan does not address all licensing matters that will be required for fuel load and operation of Unit 1. Those remaining licensing matters have been addressed in previous safety evaluations or will be addressed in accordance with routing NRC licensing practices. 97 refs

  2. Fast reactor test facilities in the US safety program

    International Nuclear Information System (INIS)

    Avery, R.; Dickerman, C.E.; Lennox, D.H.; Rose, D.

    1979-01-01

    The needs for safety information derivable from in-pile programs are reviewed, and the correlation made with existing and planned capability. In view of the current status of the U.S. breeder program, emphasis is given in the review to the impact of different fast breeder options on the required program and facilities. It is concluded that facility needs are somewhat independent of specific fast breeder concept, even though the relative emphasis on the various safety issues will differ. 8 refs

  3. Oak Ridge National Laboratory Health and Safety Long-Range Plan: Fiscal years 1989--1995

    Energy Technology Data Exchange (ETDEWEB)

    1989-06-01

    The health and safety of its personnel is the first concern of ORNL and its management. The ORNL Health and Safety Program has the responsibility for ensuring the health and safety of all individuals assigned to ORNL activities. This document outlines the principal aspects of the ORNL Health and Safety Long-Range Plan and provides a framework for management use in the future development of the health and safety program. Each section of this document is dedicated to one of the health and safety functions (i.e., health physics, industrial hygiene, occupational medicine, industrial safety, nuclear criticality safety, nuclear facility safety, transportation safety, fire protection, and emergency preparedness). Each section includes functional mission and objectives, program requirements and status, a summary of program needs, and program data and funding summary. Highlights of FY 1988 are included.

  4. Oak Ridge National Laboratory Health and Safety Long-Range Plan: Fiscal years 1989--1995

    International Nuclear Information System (INIS)

    1989-06-01

    The health and safety of its personnel is the first concern of ORNL and its management. The ORNL Health and Safety Program has the responsibility for ensuring the health and safety of all individuals assigned to ORNL activities. This document outlines the principal aspects of the ORNL Health and Safety Long-Range Plan and provides a framework for management use in the future development of the health and safety program. Each section of this document is dedicated to one of the health and safety functions (i.e., health physics, industrial hygiene, occupational medicine, industrial safety, nuclear criticality safety, nuclear facility safety, transportation safety, fire protection, and emergency preparedness). Each section includes functional mission and objectives, program requirements and status, a summary of program needs, and program data and funding summary. Highlights of FY 1988 are included

  5. A program approach for site safety at oil spills

    International Nuclear Information System (INIS)

    Whipple, F.L.; Glenn, S.P.; Ocken, J.J.; Ott, G.L.

    1993-01-01

    When OSHA developed the hazardous waste operations (Hazwoper) regulations (29 CFR 1910.120) members of the response community envisioned a separation of oil and open-quotes hazmatclose quotes response operations. Organizations that deal with oil spills have had difficulty applying Hazwoper regulations to oil spill operations. This hinders meaningful implementation of the standard for their personnel. We should approach oil spills with the same degree of caution that is applied to hazmat response. Training frequently does not address the safety of oil spill response operations. Site-specific safety and health plans often are neglected or omitted. Certain oils expose workers to carcinogens, as well as chronic and acute hazards. Significant physical hazards are most important. In responding to oil spills, the hazards must be addressed. It is the authors' contention that a need exists for safety program at oil spill sites. Gone are the days of labor pool hires cleaning up spills in jeans and sneakers. The key to meaningful programs for oil spills requires application of controls focused on relevant safety risks rather than minimal chemical exposure hazards. Working with concerned reviewers from other agencies and organizations, the authors have developed a general safety and health program for oil spill response. It is intended to serve as the basis for organizations to customize their own written safety and health program (required by OSHA). It also provides a separate generic site safety plan for emergency phase oil spill operations (check-list) and long term post-emergency phase operations

  6. OPG - Waterways public safety program

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Tony [Ontario Power Generation (Canada)

    2011-07-01

    Ontario Power Generation (OPG) operates 65 hydroelectric generating stations in Ontario and has 241 dams. Security around dams is an important matter to minimize exposure of the public to hazards and to prevent an uncontrolled release of water and also to be prepared in case of failure. The purpose of this presentation is to describe the waterways public safety program developed by OPG in association with the Ontario Waterpower Associattion, the Canadian Dam Association and the Ontario Ministry of Natural Resoruces. This program takes a managed system approach with continuous review to address specific and changing conditions of sites. Policies, accountability mechanisms and assessments are first planned, and then implemented, every day functioning is monitored, corrective actions are developed on the basis of issues and reports are compiled for planning of new improvements. This research program provided OPG with new methods for preventing accidents more efficiently.

  7. Environment, safety, health, and quality plan for the TRU- Contaminated Arid Soils Project of the Landfill Stabilization Focus Area Program

    International Nuclear Information System (INIS)

    Watson, L.R.

    1995-06-01

    The Landfill Stabilization Focus Area (LSFA) is a program funded by the US Department of Energy Office of Technology Development. LSFA supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The TRU-Contaminated Arid Soils project is being conducted under the auspices of the LSFA Program. This document describes the Environment, Safety, Health, and Quality requirements for conducting LSFA/Arid Soils activities at the Idaho National Engineering Laboratory. Topics discussed in this report, as they apply to LSFA/Arid Soils operations, include Federal, State of Idaho, and Environmental Protection Agency regulations, Health and Safety Plans, Quality Program, Data Quality Objectives, and training and job hazard analysis. Finally, a discussion is given on CERCLA criteria and system and performance audits as they apply to the LSFA Program

  8. Seismic safety margin research program. Program plan, Revision II

    International Nuclear Information System (INIS)

    Smith, P.D.; Tokarz, F.J.; Bernreuter, D.L.; Cummings, G.E.; Chou, C.K.; Vagliente, V.N.; Johnson, J.J.; Dong, R.G.

    1978-01-01

    The document has been prepared pursuant to the second meeting of the Senior Research Review Group of the Seismic Safety Margin Research Program (SSMRP), which was held on June 15, 16, 1978. The major portion of the material contained in the document is descriptions of specific subtasks to be performed on the SSMRP. This is preceded by a brief discussion of the objective of the SSMRP and the approach to be used. Specific subtasks to be performed in Phase I of the SSMRP are as follows: (1) plant/site selection, (2) seismic input, (3) soil structure interaction, (4) structural building response, (5) structural sub-system response, (6) fragility, (7) system analysis, and (8) Phase II task definition

  9. Fusion Reactor Safety Research program. Annual report, FY-80

    International Nuclear Information System (INIS)

    Crocker, J.G.; Cohen, S.

    1981-06-01

    The report is in three sections. Outside contracts includes a report of newly-started study at the General Atomic Company to consider safety implications of low-activation materials, portions of two papers from ongoing work at PNL and ANL, reports of the lithium spill work at HEDL, the LITFIRE code development at MIT, and risk assessment at MIT, all of which are an expansion of FY-79 outside contracts. EG and G Activities includes adaptations of four papers of ongoing work in transient code development, tritium system risk assessment, heat transfer and fluid flow analysis, and fusion safety data base. Program Plan Development includes the Executive Summary of the Plan, which was completed in FY-80, and is accompanied by a list of publications and a brief outline of proposed FY-81 activities to be based on the Program Plan

  10. WAG 2 remedial investigation and site investigation site-specific work plan/health and safety checklist for the soil and sediment task

    International Nuclear Information System (INIS)

    Holt, V.L.; Burgoa, B.B.

    1993-12-01

    This document is a site-specific work plan/health and safety checklist (WP/HSC) for a task of the Waste Area Grouping 2 Remedial Investigation and Site Investigation (WAG 2 RI ampersand SI). Title 29 CFR Part 1910.120 requires that a health and safety program plan that includes site- and task-specific information be completed to ensure conformance with health- and safety-related requirements. To meet this requirement, the health and safety program plan for each WAG 2 RI ampersand SI field task must include (1) the general health and safety program plan for all WAG 2 RI ampersand SI field activities and (2) a WP/HSC for that particular field task. These two components, along with all applicable referenced procedures, must be kept together at the work site and distributed to field personnel as required. The general health and safety program plan is the Health and Safety Plan for the Remedial Investigation and Site Investigation of Waste Area Grouping 2 at the Oak Ridge National Laboratory, Oak Ridge, Tennessee (ORNL/ER-169). The WP/HSCs are being issued as supplements to ORNL/ER-169

  11. Tank farm health and safety plan. Revision 2

    International Nuclear Information System (INIS)

    Mickle, G.D.

    1995-01-01

    This Tank Farm Health and Safety Plan (HASP) for the conduct of all operations and work activities at the Hanford Site 200 Area Tank Farms is provided in order to minimize health and safety risks to workers and other onsite personnel. The HASP accomplishes this objective by establishing requirements, providing general guidelines, and conveying farm and facility-specific hazard communication information. The HASP, in conjunction with the job-specific information required by the HASP, is provided also as a reference for use during the planning of work activities at the tank farms. This HASP applies to Westinghouse Hanford Company (WHC), other prime contractors to the U.S. Department of Energy (DOE), and subcontractors to WHC who may be involved in tank farm work activities. This plan is intended to be both a requirements document and a useful reference to aid tank farm workers in understanding the safety and health issues that are encountered in routine and nonroutine work activities. The HASP defines the health and safety responsibilities of personnel working at the tank farms. It has been prepared in recognition of and is consistent with National Institute of Safety and Health (NIOSH), and Occupational Safety and Health Administration (OSHA)/Unlimited State Coast Guard (USCG)/U.S. Environmental Protection Agency (EPA), Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities (NIOSH 1985); WHC-CM-4-3, Industrial Safety Manual, Volume 4, open-quotes Health and Safety Programs for Hazardous Waste Operations;close quotes 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response; WHC-CM-1-1, Management Policies; and WHC-CM-1-3, Management Requirements and Procedures. When differences in governing regulations or policies exist, the more stringent requirements shall apply until the discrepancy can be resolved

  12. Tank farm health and safety plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Mickle, G.D.

    1995-03-29

    This Tank Farm Health and Safety Plan (HASP) for the conduct of all operations and work activities at the Hanford Site 200 Area Tank Farms is provided in order to minimize health and safety risks to workers and other onsite personnel. The HASP accomplishes this objective by establishing requirements, providing general guidelines, and conveying farm and facility-specific hazard communication information. The HASP, in conjunction with the job-specific information required by the HASP, is provided also as a reference for use during the planning of work activities at the tank farms. This HASP applies to Westinghouse Hanford Company (WHC), other prime contractors to the U.S. Department of Energy (DOE), and subcontractors to WHC who may be involved in tank farm work activities. This plan is intended to be both a requirements document and a useful reference to aid tank farm workers in understanding the safety and health issues that are encountered in routine and nonroutine work activities. The HASP defines the health and safety responsibilities of personnel working at the tank farms. It has been prepared in recognition of and is consistent with National Institute of Safety and Health (NIOSH), and Occupational Safety and Health Administration (OSHA)/Unlimited State Coast Guard (USCG)/U.S. Environmental Protection Agency (EPA), Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities (NIOSH 1985); WHC-CM-4-3, Industrial Safety Manual, Volume 4, {open_quotes}Health and Safety Programs for Hazardous Waste Operations;{close_quotes} 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response; WHC-CM-1-1, Management Policies; and WHC-CM-1-3, Management Requirements and Procedures. When differences in governing regulations or policies exist, the more stringent requirements shall apply until the discrepancy can be resolved.

  13. The advanced neutron source safety approach and plans

    International Nuclear Information System (INIS)

    Harrington, R.M.

    1989-01-01

    The Advanced Neutron Source (ANS) is a user facility for all areas of neutron research proposed for construction at the Oak Ridge National Laboratory. The neutron source is planned to be a 350-MW research reactor. The reactor, currently in conceptual design, will belong to the United States Department of Energy (USDOE). The safety approach and planned elements of the safety program for the ANS are described. The safety approach is to incorporate USDOE requirements [which, by reference, include appropriate requirements from the United States Nuclear Regulatory Commission (USNRC) and other national and state regulatory agencies] into the design, and to utilize probabilistic risk assessment (PRA) techniques during design to achieve extremely low probability of severe core damage. The PRA has already begun and will continue throughout the design and construction of the reactor. Computer analyses will be conducted for a complete spectrum of accidental events, from anticipated events to very infrequent occurrences. 8 refs., 2 tabs

  14. The Advanced Neutron Source safety approach and plans

    International Nuclear Information System (INIS)

    Harrington, R.M.

    1990-01-01

    The Advanced Neutron Source (ANS) is a user facility proposed for construction at the Oak Ridge National Laboratory for all areas of neutron research. The neutron source is planned to be a 350-MW research reactor. The reactor, currently in conceptual design, will belong to the United States Department of Energy (USDOE). The safety approach and planned elements of the safety program for the ANS are described. The safety approach is to incorporate USDOE requirements (which, by reference, include appropriate requirements from the United States Nuclear Regulatory Commission (USNRC) and other national and state regulatory agencies) into the design, and to utilize probabilistic risk assessment (PRA) techniques during design to achieve extremely low probability of severe core damage. The PRA has already begun and will continue throughout the design and construction of the reactor. Computer analyses will be conducted for a complete spectrum of accidental events, from anticipated events to very infrequent occurrences

  15. AEC sets five year nuclear safety research program

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The research by the government for the establishment of means of judging the adequacy of safety measures incorporated in nuclear facilities, including setting safety standards and collecting documents of general criteria, and the research by the industry on safety measures and the promotion of safety-related technique are stated in the five year program for 1976-80 reported by subcommittees, Atomic Energy Commission (AEC). Four considerations on the research items incorporated in the program are 1) technical programs relating to the safety of nuclear facilities and the necessary criteria, 2) priority of the relevant items decided according to their impact on circumstances, urgency, the defence-indepth concept and so on, 3) consideration of all relevant data and documents collected, and research subjects necessary to quantify safety measurement, and 4) consideration of technological actualization, the capability of each research body, the budget and the time schedule. In addition, seven major themes decided on the basis of these points are 1) reactivity-initiated accident, 2) LOCA, 3) fuel behavior, 4) structural safety, 5) radioactive release, 6) statistical method of safety evaluation, and 7) seismic characteristics. The committee has deliberated the appropriate division of researches between the government and the industry. A set of tables showing the nuclear safety research plan for 1976-80 are attached. (Iwakiri, K.)

  16. Site safety plan for Lawrence Livermore National Laboratory CERCLA investigations at site 300. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Kilmer, J.

    1997-08-01

    Various Department of Energy Orders incorporate by reference, health and safety regulations promulgated by the Occupational Safety and Health Administration (OSHA). One of the OSHA regulations, 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response, requires that site safety plans are written for activities such as those covered by work plans for Site 300 environmental investigations. Based upon available data, this Site Safety Plan (Plan) for environmental restoration has been prepared specifically for the Lawrence Livermore National Laboratory Site 300, located approximately 15 miles east of Livermore, California. As additional facts, monitoring data, or analytical data on hazards are provided, this Plan may need to be modified. It is the responsibility of the Environmental Restoration Program and Division (ERD) Site Safety Officer (SSO), with the assistance of Hazards Control, to evaluate data which may impact health and safety during these activities and to modify the Plan as appropriate. This Plan is not `cast-in-concrete.` The SSO shall have the authority, with the concurrence of Hazards Control, to institute any change to maintain health and safety protection for workers at Site 300.

  17. Minnesota urban partnership agreement national evaluation : safety data test plan.

    Science.gov (United States)

    2009-11-17

    This report provides the safety data test plan for the Minnesota Urban Partnership Agreement (UPA) under the United States Department of Transportation (U.S. DOT) UPA Program. The Minnesota UPA projects focus on reducing congestion by employing strat...

  18. Review of literature on the TMI accident and correlation to the LWR Safety Technology Program

    International Nuclear Information System (INIS)

    Miller, W.J.

    1980-05-01

    This report is the result of approximately two man-months of effort devoted to assimilating and comprehending significant publicly available material related to Three Mile Island Unit 2 and events during and subsequent to the accident experienced on March 28, 1979. Those events were then correlated with the Preliminary LWR Safety Technology Program Plan (Preliminary Program Plan) prepared for the US Department of Energy by Sandia National Lab. This report is being submitted simultaneously with the SAI report entitled Preliminary Prioritization of Tasks in the Draft LWR Safety Technology Program Plan

  19. Review of literature on the TMI accident and correlation to the LWR Safety Technology Program

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.J.

    1980-05-01

    This report is the result of approximately two man-months of effort devoted to assimilating and comprehending significant publicly available material related to Three Mile Island Unit 2 and events during and subsequent to the accident experienced on March 28, 1979. Those events were then correlated with the Preliminary LWR Safety Technology Program Plan (Preliminary Program Plan) prepared for the US Department of Energy by Sandia National Lab. This report is being submitted simultaneously with the SAI report entitled Preliminary Prioritization of Tasks in the Draft LWR Safety Technology Program Plan.

  20. Connected vehicle pilot deployment program phase 1, safety management plan - Tampa (THEA).

    Science.gov (United States)

    2016-04-01

    This document presents the Safety Management Plan for the THEA Connected Vehicle (CV) Pilot Deployment. The THEA CV Pilot : Deployment goal is to advance and enable safe, interoperable, networked wireless communications among vehicles, the : infrastr...

  1. NRC Seismic Design Margins Program Plan

    International Nuclear Information System (INIS)

    Cummings, G.E.; Johnson, J.J.; Budnitz, R.J.

    1985-08-01

    Recent studies estimate that seismically induced core melt comes mainly from earthquakes in the peak ground acceleration range from 2 to 4 times the safe shutdown earthquake (SSE) acceleration used in plant design. However, from the licensing perspective of the US Nuclear Regulatory Commission, there is a continuing need for consideration of the inherent quantitative seismic margins because of, among other things, the changing perceptions of the seismic hazard. This paper discusses a Seismic Design Margins Program Plan, developed under the auspices of the US NRC, that provides the technical basis for assessing the significance of design margins in terms of overall plant safety. The Plan will also identify potential weaknesses that might have to be addressed, and will recommend technical methods for assessing margins at existing plants. For the purposes of this program, a general definition of seismic design margin is expressed in terms of how much larger that the design basis earthquake an earthquake must be to compromise plant safety. In this context, margin needs to be determined at the plant, system/function, structure, and component levels. 14 refs., 1 fig

  2. Stress Tests Worldwide - IAEA Nuclear Safety Action Plan

    International Nuclear Information System (INIS)

    Lyons, J.E.

    2012-01-01

    The IAEA nuclear safety action plan relies on 11 important issues. 1) Safety assessments in light of the Fukushima accident: the IAEA secretariat will develop a methodology for stress tests against specific extreme natural hazards and will provide assistance for their implementation; 2) Strengthen existing IAEA peer reviews; 3) Emergency preparedness and response; 4) National Regulatory bodies in terms of independence and adequacy of human and financial resources; 5) The development of safety culture and scientific and technical capacity in Operating Organizations; 6) The upgrading of IAEA safety standards in a more efficient way; 7) A better implementation of relevant conventions concerning nuclear safety and nuclear accidents; 8) To provide a broad assistance on safety standard for countries embarking on a nuclear power program; 9) To facilitate the use of available information, expertise and techniques concerning radiation protection; 10) To enhance the transparency of nuclear industry; and 11) To promote the cooperation between member states in nuclear safety. (A.C.)

  3. Program plan for evaluation of the Ferrocyanide Waste Tank safety issue at the Hanford Site

    International Nuclear Information System (INIS)

    Borsheim, G.L.; Meacham, J.E.; Cash, R.J.; Dukelow, G.T.

    1994-03-01

    This document describes the background, priorities, strategy and logic, and task descriptions for the Ferrocyanide Waste Tank Safety Program. The Ferrocyanide Safety Program was established in 1990 to provide resolution of a major safety issue identified for 24 high-level radioactive waste tanks at the Hanford Site

  4. Phase II -- Photovoltaics for Utility Scale Applications (PVUSA): Safety and health action plan

    Energy Technology Data Exchange (ETDEWEB)

    Berg, K.

    1994-09-01

    To establish guidelines for the implementation and administration of an injury and illness prevention program for PVUSA and to assign specific responsibilities for the execution of the program. To provide a basic Safety and Health Action Plan (hereinafter referred to as Plan) that assists management, supervision, and project personnel in the recognition, evaluation, and control of hazardous activities and/or conditions within their respective areas of responsibility.

  5. National plan to enhance aviation safety through human factors improvements

    Science.gov (United States)

    Foushee, Clay

    1990-01-01

    The purpose of this section of the plan is to establish a development and implementation strategy plan for improving safety and efficiency in the Air Traffic Control (ATC) system. These improvements will be achieved through the proper applications of human factors considerations to the present and future systems. The program will have four basic goals: (1) prepare for the future system through proper hiring and training; (2) develop a controller work station team concept (managing human errors); (3) understand and address the human factors implications of negative system results; and (4) define the proper division of responsibilities and interactions between the human and the machine in ATC systems. This plan addresses six program elements which together address the overall purpose. The six program elements are: (1) determine principles of human-centered automation that will enhance aviation safety and the efficiency of the air traffic controller; (2) provide new and/or enhanced methods and techniques to measure, assess, and improve human performance in the ATC environment; (3) determine system needs and methods for information transfer between and within controller teams and between controller teams and the cockpit; (4) determine how new controller work station technology can optimally be applied and integrated to enhance safety and efficiency; (5) assess training needs and develop improved techniques and strategies for selection, training, and evaluation of controllers; and (6) develop standards, methods, and procedures for the certification and validation of human engineering in the design, testing, and implementation of any hardware or software system element which affects information flow to or from the human.

  6. Quality assurance program plan for radionuclide airborne emissions monitoring

    International Nuclear Information System (INIS)

    Boom, R.J.

    1995-03-01

    This Quality Assurance Program Plan identifies quality assurance program requirements and addresses the various Westinghouse Hanford Company organizations and their particular responsibilities in regards to sample and data handling of airborne emissions. The Hanford Site radioactive airborne emissions requirements are defined in National Emissions Standards for Hazardous Air Pollutants (NESHAP), Code of Federal Regulations, Title 40, Part 61, Subpart H (EPA 1991a). Reporting of the emissions to the US Department of Energy is performed in compliance with requirements of US Department of Energy, Richland Operations Office Order 5400.1, General Environmental Protection Program (DOE-RL 1988). This Quality Assurance Program Plan is prepared in accordance with and to the requirements of QAMS-004/80, Guidelines and Specifications for Preparing Quality Assurance Program Plans (EPA 1983). Title 40 CFR Part 61, Appendix B, Method 114, Quality Assurance Methods (EPA 1991b) specifies the quality assurance requirements and that a program plan should be prepared to meet the requirements of this regulation. This Quality Assurance Program Plan identifies NESHAP responsibilities and how the Westinghouse Hanford Company Environmental, Safety, Health, and Quality Assurance Division will verify that the methods are properly implemented

  7. Maine highway safety plan

    Science.gov (United States)

    2010-01-01

    Each September 1, the MeBHS must provide NHTSA a comprehensive plan to reduce : traffic crashes and resulting deaths, injuries and property damage. The Highway Safety : Plan (HSP) serves as Maines application for available federal funds for these ...

  8. Applying health education theory to patient safety programs: three case studies.

    Science.gov (United States)

    Gilkey, Melissa B; Earp, Jo Anne L; French, Elizabeth A

    2008-04-01

    Program planning for patient safety is challenging because intervention-oriented surveillance data are not yet widely available to those working in this nascent field. Even so, health educators are uniquely positioned to contribute to patient safety intervention efforts because their theoretical training provides them with a guide for designing and implementing prevention programs. This article demonstrates the utility of applying health education concepts from three prominent patient safety campaigns, including the concepts of risk perception, community participation, and social marketing. The application of these theoretical concepts to patient safety programs suggests that health educators possess a knowledge base and skill set highly relevant to patient safety and that their perspective should be increasingly brought to bear on the design and evaluation of interventions that aim to protect patients from preventable medical error.

  9. Seismic safety research program plan

    International Nuclear Information System (INIS)

    1987-05-01

    This document presents a plan for seismic research to be performed by the Structural and Seismic Engineering Branch in the Office of Nuclear Regulatory Research. The plan describes the regulatory needs and related research necessary to address the following issues: uncertainties in seismic hazard, earthquakes larger than the design basis, seismic vulnerabilities, shifts in building frequency, piping design, and the adequacy of current criteria and methods. In addition to presenting current and proposed research within the NRC, the plan discusses research sponsored by other domestic and foreign sources

  10. Highly enriched uranium (HEU) storage and disposition program plan

    International Nuclear Information System (INIS)

    Arms, W.M.; Everitt, D.A.; O'Dell, C.L.

    1995-01-01

    Recent changes in international relations and other changes in national priorities have profoundly affected the management of weapons-usable fissile materials within the United States (US). The nuclear weapon stockpile reductions agreed to by the US and Russia have reduced the national security requirements for these fissile materials. National policies outlined by the US President seek to prevent the accumulation of nuclear weapon stockpiles of plutonium (Pu) and HEU, and to ensure that these materials are subjected to the highest standards of safety, security and international accountability. The purpose of the Highly Enriched Uranium (HEU) Storage and Disposition Program Plan is to define and establish a planned approach for storage of all HEU and disposition of surplus HEU in support of the US Department of Energy (DOE) Fissile Material Disposition Program. Elements Of this Plan, which are specific to HEU storage and disposition, include program requirements, roles and responsibilities, program activities (action plans), milestone schedules, and deliverables

  11. A plan for safety and integrity of research reactor components

    International Nuclear Information System (INIS)

    Moatty, Mona S. Abdel; Khattab, M.S.

    2013-01-01

    Highlights: ► A plan for in-service inspection of research reactor components is put. ► Section XI of the ASME Code requirements is applied. ► Components subjected to inspection and their classes are defined. ► Flaw evaluation and its acceptance–rejection criteria are reviewed. ► A plan of repair or replacement is prepared. -- Abstract: Safety and integrity of a research reactor that has been operated over 40 years requires frequent and thorough inspection of all the safety-related components of the facility. The need of increasing the safety is the need of improving the reliability of its systems. Diligent and extensive planning of in-service inspection (ISI) of all reactor components has been imposed for satisfying the most stringent safety requirements. The Safeguards Officer's responsibilities of Section XI of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code ASME Code have been applied. These represent the most extensive and time-consuming part of ISI program, and identify the components subjected to inspection and testing, methods of component classification, inspection and testing techniques, acceptance/rejection criteria, and the responsibilities. The paper focuses on ISI planning requirements for welded systems such as vessels, piping, valve bodies, pump casings, and control rod-housing parts. The weld in integral attachments for piping, pumps, and valves are considered too. These are taken in consideration of safety class (1, 2, 3, etc.), reactor age, and weld type. The parts involve in the frequency of inspection, the examination requirements for each inspection, the examination method are included. Moreover the flaw evaluation, the plan of repair or replacement, and the qualification of nondestructive examination personnel are considered

  12. Chemical Hygiene and Safety Plan

    Energy Technology Data Exchange (ETDEWEB)

    Berkner, K.

    1992-08-01

    The objective of this Chemical Hygiene and Safety Plan (CHSP) is to provide specific guidance to all LBL employees and contractors who use hazardous chemicals. This Plan, when implemented, fulfills the requirements of both the Federal OSHA Laboratory Standard (29 CFR 1910.1450) for laboratory workers, and the Federal OSHA Hazard Communication Standard (29 CFR 1910.1200) for non-laboratory operations (e.g., shops). It sets forth safety procedures and describes how LBL employees are informed about the potential chemical hazards in their work areas so they can avoid harmful exposures and safeguard their health. Generally, communication of this Plan will occur through training and the Plan will serve as a the framework and reference guide for that training.

  13. Nordic nuclear safety research program 1994-1997. Project coordination incl. SAM-4 general information issues. Report 1996. Plans for 1997

    International Nuclear Information System (INIS)

    1997-04-01

    NKS (Nordic Nuclear Safety Research) is a cooperative body in nuclear safety, radiation protection and emergency preparedness. Its purpose is to carry out cost-effective Nordic projects, thus producing research results, exercises, information, recommendations, manuals etc., to be used by decision makers and other concerned staff members at authorities and within the nuclear industry. This is the annual report for 1996, the third year of the fifth four-year NKS program (1994-1997). The report also contains plans for the rest of the program period, including budget proposals. The following major fields of research have been identified: reactor safety; radioactive waste; radioecology; emergency preparedness; and information issues. A total of nine projects are now under way within that framework. One project (RAK-1) is dedicated to reactor safety strategies: how to avoid serious accidents. A parallel project (RAK-2) deals with minimizing releases in case of an accident. When can an overheated reactor core still be water-cooled? What might be the consequences of the cooling? All Nordic countries have long-lived low and medium level radioactive waste that requires final disposal. One project (AFA-1) addresses that issue. Environmental impact of radioactive releases is studied in two radioecology projects. The project on marine radioecology, including sediment research (EKO-1), encompasses sampling, analysis and modeling. These are also key issues in the project on long ecological half-lives in semi-natural systems (EKO-2). The transfer of radioactive cesium and strontium in the chains soil - vegetation - sheep and mushroom - roe deer is studied, along with freshwater systems. Long-term doses to main is the ultimate output from the obtained models. Another aspect of environmental impact is emergency preparedness. A recently started project, EKO-5, addresses the issue of early planning for cleanup operations following a fallout. 'Early' in this context means within the

  14. TWRS safety and technical integration risk management plan

    International Nuclear Information System (INIS)

    Fordham, R.A.

    1996-01-01

    The objectives of the Tank Waste Remediation System (TWRS) Safety and Technical Integration (STI) programmatic risk management program are to assess, analyze, and handle risks associated with TWRS STI responsibilities and to communicate information about the actions being taken and the results to enable decision making. The objective of this TWRS STI Risk Management Plan is to communicate a consistent approach to risk management that will be used by the organization

  15. Selenide isotope generator for the Galileo Mission: safety test plan

    International Nuclear Information System (INIS)

    1979-01-01

    The intent of this safety test plan is to outline particular kinds of safety tests designed to produce information which would be useful in the safety analysis process. The program deals primarily with the response of the RTG to accident environments; accordingly two criteria were established: (1) safety tests should be performed for environments which are the most critical in terms of risk contribution; and (2) tests should be formulated to determine failure conditions for critical heat source components rather than observe heat source response in reference accident environments. To satisfy criterion 1. results of a recent safety study were used to rank various accidents in terms of expected source terms. Six kinds of tests were then proposed which would provide information meeting the second criterion

  16. Site Support Program Plan for ICF Kaiser Hanford Company

    International Nuclear Information System (INIS)

    Benedetti, R.L.

    1994-10-01

    This document describes the Hanford Reservation site support program plan for each support division, in terms of safety, environmental concerns, costs, and reliability. Support services include the following: Piped Utilities; Electrical utilities; transportation; Energy management; General Administration Support Buildings; electrical safety upgrades. Contained in this Volume II is information covering the following: Operations and maintenance Utilities; Piped Utilities; Water systems Administration and Sampling; electrical utilities

  17. Implementation plan for the Defense Nuclear Facilities Safety Board Recommendation 90-7

    International Nuclear Information System (INIS)

    Borsheim, G.L.; Cash, R.J.; Dukelow, G.T.

    1992-12-01

    This document revises the original plan submitted in March 1991 for implementing the recommendations made by the Defense Nuclear Facilities Safety Board in their Recommendation 90-7 to the US Department of Energy. Recommendation 90-7 addresses safety issues of concern for 24 single-shell, high-level radioactive waste tanks containing ferrocyanide compounds at the Hanford Site. The waste in these tanks is a potential safety concern because, under certain conditions involving elevated temperatures and low concentrations of nonparticipating diluents, ferrocyanide compounds in the presence of oxidizing materials can undergo a runaway (propagating) chemical reaction. This document describes those activities underway by the Hanford Site contractor responsible for waste tank safety that address each of the six parts of Defense Nuclear Facilities Safety Board Recommendation 90-7. This document also identifies the progress made on these activities since the beginning of the ferrocyanide safety program in September 1990. Revised schedules for planned activities are also included

  18. Highway Safety Program Manual: Volume 3: Motorcycle Safety.

    Science.gov (United States)

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    Volume 3 of the 19-volume Highway Safety Program Manual (which provides guidance to State and local governments on preferred highway safety practices) concentrates on aspects of motorcycle safety. The purpose and specific objectives of a State motorcycle safety program are outlined. Federal authority in the highway safety area and general policies…

  19. NPP Krsko Periodic Safety Review action plan

    International Nuclear Information System (INIS)

    Bilic Zabric, T.

    2006-01-01

    In the current, internationally accepted, safety philosophy Periodic Safety Reviews (PSRs) are comprehensive reviews aimed at the verification that an operating NPP remains safe when judged against current safety objectives and practices and that adequate arrangements are in place to maintain an acceptable level of safety. These reviews are complementary to the routine and special safety reviews. They are long time-scale reviews intended to deal with the cumulative effects of plant ageing, modifications, operating experience and technical developments, which are not so easily comprehended over the shorter time-scale routine of safety reviews. The review was completed in 2005 and the next period will see the implementation of the action plan including some plant upgrades. The action plan lists issues that should be implemented at NPP Krsko together with associated milestones. The milestones were assumed based on best estimate resource availability and their ends can be potentially floated. In some cases, multiple corrective measures may be postulated to provide resolution for a given safety issue. The Slovenian Nuclear Safety Administration by decree approved the first periodic safety review and the implementation plan of activities arising from it. The entire implementation plan must be carried out by 15 October 2010. Report on the second periodic safety review must be submitted by the NEK not later than 15 December 2013. (author)

  20. Industrial Fuel Gas Demonstration Plant Program. Task III, Demonstration plant safety, industrial hygiene, and major disaster plan (Deliverable No. 35)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-03-01

    This Health and Safety Plan has been adopted by the IFG Demonstration Plant managed by Memphis Light, Gas and Water at Memphis, Tennessee. The plan encompasses the following areas of concern: Safety Plan Administration, Industrial Health, Industrial Safety, First Aid, Fire Protection (including fire prevention and control), and Control of Safety Related Losses. The primary objective of this plan is to achieve adequate control of all potentially hazardous activities to assure the health and safety of all employees and eliminate lost work time to both the employees and the company. The second objective is to achieve compliance with all Federal, state and local laws, regulations and codes. Some thirty specific safe practice instruction items are included.

  1. Mixed Waste Integrated Program Quality Assurance requirements plan

    International Nuclear Information System (INIS)

    1994-01-01

    Mixed Waste Integrated Program (MWIP) is sponsored by the US Department of Energy (DOE), Office of Technology Development, Waste Management Division. The strategic objectives of MWIP are defined in the Mixed Waste Integrated Program Strategic Plan, and expanded upon in the MWIP Program Management Plan. This MWIP Quality Assurance Requirement Plan (QARP) applies to mixed waste treatment technologies involving both hazardous and radioactive constituents. As a DOE organization, MWIP is required to develop, implement, and maintain a written Quality Assurance Program in accordance with DOE Order 4700.1 Project Management System, DOE Order 5700.6C, Quality Assurance, DOE Order 5820.2A Radioactive Waste Management, ASME NQA-1 Quality Assurance Program Requirements for Nuclear Facilities and ANSI/ASQC E4-19xx Specifications and Guidelines for Quality Systems for Environmental Data Collection and Environmental Technology Programs. The purpose of the MWIP QA program is to establish controls which address the requirements in 5700.6C, with the intent to minimize risks and potential environmental impacts; and to maximize environmental protection, health, safety, reliability, and performance in all program activities. QA program controls are established to assure that each participating organization conducts its activities in a manner consistent with risks posed by those activities

  2. Mixed Waste Integrated Program Quality Assurance requirements plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-15

    Mixed Waste Integrated Program (MWIP) is sponsored by the US Department of Energy (DOE), Office of Technology Development, Waste Management Division. The strategic objectives of MWIP are defined in the Mixed Waste Integrated Program Strategic Plan, and expanded upon in the MWIP Program Management Plan. This MWIP Quality Assurance Requirement Plan (QARP) applies to mixed waste treatment technologies involving both hazardous and radioactive constituents. As a DOE organization, MWIP is required to develop, implement, and maintain a written Quality Assurance Program in accordance with DOE Order 4700.1 Project Management System, DOE Order 5700.6C, Quality Assurance, DOE Order 5820.2A Radioactive Waste Management, ASME NQA-1 Quality Assurance Program Requirements for Nuclear Facilities and ANSI/ASQC E4-19xx Specifications and Guidelines for Quality Systems for Environmental Data Collection and Environmental Technology Programs. The purpose of the MWIP QA program is to establish controls which address the requirements in 5700.6C, with the intent to minimize risks and potential environmental impacts; and to maximize environmental protection, health, safety, reliability, and performance in all program activities. QA program controls are established to assure that each participating organization conducts its activities in a manner consistent with risks posed by those activities.

  3. Joint FAM/Line Management Assessment Report on LLNL Machine Guarding Safety Program

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, J. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-07-19

    The LLNL Safety Program for Machine Guarding is implemented to comply with requirements in the ES&H Manual Document 11.2, "Hazards-General and Miscellaneous," Section 13 Machine Guarding (Rev 18, issued Dec. 15, 2015). The primary goal of this LLNL Safety Program is to ensure that LLNL operations involving machine guarding are managed so that workers, equipment and government property are adequately protected. This means that all such operations are planned and approved using the Integrated Safety Management System to provide the most cost effective and safest means available to support the LLNL mission.

  4. Safety evaluation report on Tennessee Valley Authority: Browns Ferry Nuclear Performance Plan

    International Nuclear Information System (INIS)

    1991-01-01

    This safety evaluation report (SER) was prepared by the US Nuclear Regulatory Commission (NRC) staff and represents the second and last supplement (SSER 2) to the staff's original SER published as Volume 3 of NUREG-1232 in April 1989. Supplement 1 of Volume 3 of NUREG-1232 (SSER 1) was published in October 1989. Like its predecessors, SSER 2 is composed of numerous safety evaluations by the staff regarding specific elements contained in the Browns Ferry Nuclear Performance Plan (BFNPP), Volume 3 (up to and including Revision 2), submitted by the Tennessee Valley Authority (TVA) for the Browns Ferry Nuclear Plant (BFN). The Browns Ferry Nuclear Plant consists of three boiling-water reactors (BWRs) at a site in Limestone County, Alabama. The BFNPP describes the corrective action plans and commitments made by TVA to resolve deficiencies with its nuclear programs before the startup of Unit 2. The staff has inspected and will continue to inspect TVA's implementation of these BFNPP corrective action plans that address staff concerns about TVA's nuclear program. SSER 2 documents the NRC staff's safety evaluations and conclusions for those elements of the BFNPP that were not previously addressed by the staff or that remained open as a result of unresolved issues identified by the staff in previous SERs and inspections

  5. Status of safety issues at licensed power plants: TMI action plan requirements, unresolved safety issues, generic safety issues

    International Nuclear Information System (INIS)

    1991-12-01

    As part of ongoing US Nuclear Regulatory Commission (NRC) efforts to ensure the quality and accountability of safety issue information, a program was established whereby an annual NUREG report would be published on the status of licensee implementation and NRC verification of safety issues in major NRC requirements areas. This information was compiled and reported in three NUREG volumes. Volume 1, published in March 1991, addressed the status of of Three Mile Island (TMI) Action Plan Requirements. Volume 2, published in May 1991, addressed the status of unresolved safety issues (USIs). Volume 3, published in June 1991, addressed the implementation and verification status of generic safety issues (GSIs). This annual NUREG report combines these volumes into a single report and provides updated information as of September 30, 1991. The data contained in these NUREG reports are a product of the NRC's Safety Issues Management System (SIMS) database, which is maintained by the Project Management Staff in the Office of Nuclear Reactor Regulation and by NRC regional personnel. This report is to provide a comprehensive description of the implementation and verification status of TMI Action Plan Requirements, safety issues designated as USIs, and GSIs that have been resolved and involve implementation of an action or actions by licensees. This report makes the information available to other interested parties, including the public. An additional purpose of this NUREG report is to serve as a follow-on to NUREG-0933, ''A Prioritization of Generic Safety Issues,'' which tracks safety issues up until requirements are approved for imposition at licensed plants or until the NRC issues a request for action by licensees

  6. FLUOR HANFORD SAFETY MANAGEMENT PROGRAMS

    Energy Technology Data Exchange (ETDEWEB)

    GARVIN, L. J.; JENSEN, M. A.

    2004-04-13

    This document summarizes safety management programs used within the scope of the ''Project Hanford Management Contract''. The document has been developed to meet the format and content requirements of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses''. This document provides summary descriptions of Fluor Hanford safety management programs, which Fluor Hanford nuclear facilities may reference and incorporate into their safety basis when producing facility- or activity-specific documented safety analyses (DSA). Facility- or activity-specific DSAs will identify any variances to the safety management programs described in this document and any specific attributes of these safety management programs that are important for controlling potentially hazardous conditions. In addition, facility- or activity-specific DSAs may identify unique additions to the safety management programs that are needed to control potentially hazardous conditions.

  7. Site Support Program Plan for ICF Kaiser Hanford Company

    International Nuclear Information System (INIS)

    Benedetti, R.L.

    1994-10-01

    This document describes the Hanford Reservation site support program plan for each support division, in terms of safety, environmental concerns, costs, and reliability. Support services include the following: Piped Utilities; Electrical utilities; transportation; Energy management; General Administration Support Buildings; electrical safety upgrades. This Volume III discusses Operations and Maintenance Transportation and the Transportation Department including fleet maintenance, railroad operations and track maintenance, bus operations, solid waste disposal, special delivery services, and road maintenance

  8. US Nuclear Regulatory Commission human-factors program plan

    International Nuclear Information System (INIS)

    1983-08-01

    The purpose of the NRC Human Factors Program Plan is to ensure that proper consideration is given to human factors in the design, operation, and maintenance of nuclear facilities. This initial plan addresses nuclear power plants (NPP) and describes (1) the technical assistance and research activities planned to provide the technical bases for the resolution of the remaining human factors related tasks described in NUREG-0660, The NRC Action Plan Developed as a Result of the TMI-2 Accident, and NUREG-0737, Clarification of TMI Action Plan Requirements, and (2) the additional human factors efforts identified during implementation of the Action Plan that should receive NRC attention. The plan represents a systematic and comprehensive approach for addressing human factors concerns important to NPP safety in the FY-83 through FY-85 time frame

  9. The USERDA transport R and D program for environment and safety

    International Nuclear Information System (INIS)

    Sisler, J.A.

    1976-01-01

    This paper describes the U.S. Energy Research and Development Administration's (ERDA) transportation environment and safety research and development program for energy fuels and wastes, including background, current activities, and future plans. It will serve as an overview and integrating factor for the several related technical papers to be presented at this meeting which will enlarge on the detail of specific projects. The transportation R and D program provides for the environmental and safety review of transport systems and procedures; standards development; and package, vehicle, and systems testing for nuclear materials transport. A primary output of the program is the collection, processing, and dissemination of transport environment and safety data, shipment statistics, and technical information. Special transport projects which do not easily fit elsewhere in ERDA are usually done as a part of this program. (author)

  10. Environment, safety, and health regulatory implementation plan

    International Nuclear Information System (INIS)

    1993-01-01

    To identify, document, and maintain the Uranium Mill Tailings Remedial Action (UMTRA) Project's environment, safety, and health (ES ampersand H) regulatory requirements, the US Department of Energy (DOE) UMTRA Project Office tasked the Technical Assistance Contractor (TAC) to develop a regulatory operating envelope for the UMTRA Project. The system selected for managing the UMTRA regulatory operating envelope data bass is based on the Integrated Project Control/Regulatory Compliance System (IPC/RCS) developed by WASTREN, Inc. (WASTREN, 1993). The IPC/RCS is a tool used for identifying regulatory and institutional requirements and indexing them to hardware, personnel, and program systems on a project. The IPC/RCS will be customized for the UMTRA Project surface remedial action and groundwater restoration programs. The purpose of this plan is to establish the process for implementing and maintaining the UMTRA Project's regulatory operating envelope, which involves identifying all applicable regulatory and institutional requirements and determining compliance status. The plan describes how the Project will identify ES ampersand H regulatory requirements, analyze applicability to the UMTRA Project, and evaluate UMTRA Project compliance status

  11. Construction safety program for the National Ignition Facility

    International Nuclear Information System (INIS)

    Cerruti, S.J.

    1997-01-01

    The Construction Safety Program (CSP) for NIF sets forth the responsibilities, guidelines, rules, policies and regulations for all workers involved in the construction, special equipment installation, acceptance testing, and initial activation and operation of NIF at LLNL during the construction period of NIF. During this period, all workers are required to implement measures to create a universal awareness which promotes safe practice at the work site, and which will achieve NIF's management objectives in preventing accidents and illnesses. Construction safety for NIF is predicated on everyone performing their jobs in a manner which prevents job-related disabling injuries and illnesses. The CSP outlines the minimum environment, safety, and health (ES ampersand H) standards, LLNL policies and the Construction Industry Institute (CII) Zero Injury Techniques requirements that all workers at the NIF construction site shall adhere to during the construction period of NIF. It identifies the safety requirements which the NIF organizational Elements, construction contractors and construction subcontractors must include in their safety plans for the construction period of NIF, and presents safety protocols and guidelines which workers shall follow to assure a safe and healthful work environment. The CSP also identifies the ES ampersand H responsibilities of LLNL employees, non-LLNL employees, construction contractors, construction subcontractors, and various levels of management within the NIF Program at LLNL. In addition, the CSP contains the responsibilities and functions of ES ampersand H support organizations and administrative groups, and describes their interactions with the NIF Program

  12. Construction safety program for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Cerruti, S.J.

    1997-01-01

    The Construction Safety Program (CSP) for NIF sets forth the responsibilities, guidelines, rules, policies and regulations for all workers involved in the construction, special equipment installation, acceptance testing, and initial activation and operation of NIF at LLNL during the construction period of NIF. During this period, all workers are required to implement measures to create a universal awareness which promotes safe practice at the work site, and which will achieve NIF`s management objectives in preventing accidents and illnesses. Construction safety for NIF is predicated on everyone performing their jobs in a manner which prevents job-related disabling injuries and illnesses. The CSP outlines the minimum environment, safety, and health (ES&H) standards, LLNL policies and the Construction Industry Institute (CII) Zero Injury Techniques requirements that all workers at the NIF construction site shall adhere to during the construction period of NIF. It identifies the safety requirements which the NIF organizational Elements, construction contractors and construction subcontractors must include in their safety plans for the construction period of NIF, and presents safety protocols and guidelines which workers shall follow to assure a safe and healthful work environment. The CSP also identifies the ES&H responsibilities of LLNL employees, non-LLNL employees, construction contractors, construction subcontractors, and various levels of management within the NIF Program at LLNL. In addition, the CSP contains the responsibilities and functions of ES&H support organizations and administrative groups, and describes their interactions with the NIF Program.

  13. Price-Anderson Nuclear Safety Enforcement Program. 1997 annual report

    International Nuclear Information System (INIS)

    1998-01-01

    This report summarizes activities in the Department of Energy's Price-Anderson Amendments Act (PAAA) Enforcement Program in calendar year 1997 and highlights improvements planned for 1998. The DOE Enforcement Program involves the Office of Enforcement and Investigation in the DOE Headquarters Office of Environment, Safety and Health, as well as numerous PAAA Coordinators and technical advisors in DOE Field and Program Offices. The DOE Enforcement Program issued 13 Notices of Violation (NOV's) in 1997 for cases involving significant or potentially significant nuclear safety violations. Six of these included civil penalties totaling $440,000. Highlights of these actions include: (1) Brookhaven National Laboratory Radiological Control Violations / Associated Universities, Inc.; (2) Bioassay Program Violations at Mound / EG ampersand G, Inc.; (3) Savannah River Crane Operator Uptake / Westinghouse Savannah River Company; (4) Waste Calciner Worker Uptake / Lockheed-Martin Idaho Technologies Company; and (5) Reactor Scram and Records Destruction at Sandia / Sandia Corporation (Lockheed-Martin). Sandia / Sandia Corporation (Lockheed-Martin)

  14. Breckinridge Project, initial effort. Report VII, Volume 4. Safety and health plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    The Safety and Health Plan recognizes the potential hazards associated with the Project and has been developed specifically to respond to these risks in a positive manner. Prevention, the primary objective of the Plan, starts with building safety controls into the process design and continues through engineering, construction, start-up, and operation of the Project facilities and equipment. Compliance with applicable federal, state, and local health and safety laws, regulations, and codes throughout all Project phases is required and assured. The Plan requires that each major Project phase be thoroughly reviewed and analyzed to determine that those provisions required to assure the safety and health of all employees and the public, and to prevent property and equipment losses, have been provided. The Plan requires followup on those items or situations where corrective action needs were identified to assure that the action was taken and is effective. Emphasis is placed on loss prevention. Exhibit 1 provides a breakdown of Ashland Synthetic Fuels, Inc.'s (ASFI's) Loss Prevention Program. The Plan recognizes that the varied nature of the work is such as to require the services of skilled, trained, and responsible personnel who are aware of the hazards and know that the work can be done safely, if done correctly. Good operating practice is likewise safe operating practice. Training is provided to familiarize personnel with good operational practice, the general sequence of activities, reporting requirements, and above all, the concept that each step in the operating procedures must be successfully concluded before the following step can be safely initiated. The Plan provides for periodic review and evaluation of all safety and loss prevention activities at the plant and departmental levels.

  15. NRC program for the resolution of generic issues related to nuclear power plants. (Includes plans for the resolution of ''unresolved safety issues'' pursuant to Section 210 of the Energy Reorganization Act of 1974, as amended)

    International Nuclear Information System (INIS)

    1977-12-01

    This report provides a description of the Nuclear Regulatory Commission's Program for the Resolution of Generic Issues Related to Nuclear Power Plants. The NRC program is of considerably broader scope than the ''Unresolved Safety Issues Plan'' required by Section 210. The NRC program does include plans for the resolution of ''Unresolved Safety Issues''; however, in addition, it includes generic tasks for the resolution of environmental issues, for the development of improvements in the reactor licensing process and for consideration of less conservative design criteria or operating limitations in areas where over conservatisms may be unnecessarily restrictive or costly

  16. Fusion Safety Program annual report, fiscal year 1985

    International Nuclear Information System (INIS)

    Holland, D.F.; Merrill, B.J.; Herring, J.S.; Piet, S.J.; Longhurst, G.R.

    1987-02-01

    The Fusion Safety Program (FSP) has supported magnetic fusion technology for seven years, and this is the seventh annual report issued by the FSP. Program focus is identification of the magnitude and distribution of radioactive inventories in fusion reactors, and research and analysis of postulated accident scenarios that could cause the release of a portion of these inventories. Research results are used to develop improved designs that can reduce the probability and magnitude of such releases and thus improve the overall safety of fusion reactors. During FY-1985, research activities continued and participation continued on the Ignition Systems Project (ISP). This report presents the significant results of EGandG Idaho, Inc., activities and those from outside contracts, and includes a list of publications produced during the year, and activities planned for FY-1986

  17. Development of Comprehensive Nuclear Safety Regulation Plan for 2007-2011

    International Nuclear Information System (INIS)

    Choi, Young Sung; Kim, Woong Sik; Park, Dong Keuk; Kim, Ho Ki

    2006-01-01

    The Article 8-2 of Atomic Energy Act requires the government to establish Atomic Energy Promotion Plan every five years. It sets out national nuclear energy policies in a systematic and consistent way. The plan presents the goals and basic directions of national nuclear energy policies on the basis of current status and prospects. Both areas of utilization and safety management of nuclear energy are included and various projects and schedules are delineated based on the national policy directions. The safety management area in this plan deals with the overall safety and regulation policy. Its detail projects and schedule should be developed in separate plans by responsible ministries under the mediation of the MOST. As a regulatory authority, MOST is responsible for safety management area and its technical support organization, KINS has developed Comprehensive Nuclear Safety Regulation Plan as an implementation plan of safety area. This paper presents the development process and specific projects contained in the Comprehensive Nuclear Safety Regulation Plan which is under development now

  18. Price-Anderson Nuclear Safety Enforcement Program. 1996 Annual report

    International Nuclear Information System (INIS)

    1996-01-01

    This first annual report on DOE's Price Anderson Amendments Act enforcement program covers the activities, accomplishments, and planning for calendar year 1996. It also includes the infrastructure development activities of 1995. It encompasses the activities of the headquarters' Office of Enforcement in the Office of Environment, Safety and Health (EH) and Investigation and the coordinators and technical advisors in DOE's Field and Program Offices and other EH Offices. This report includes an overview of the enforcement program; noncompliances, investigations, and enforcement actions; summary of significant enforcement actions; examples where enforcement action was deferred; and changes and improvements to the program

  19. Quarterly report on the Ferrocyanide Safety Program for the period ending June 30, 1995

    International Nuclear Information System (INIS)

    Meacham, J.E.; Cash, R.J.; Dukelow, G.T.

    1995-07-01

    This is the seventeenth quarterly report on the progress of activities addressing the Ferrocyanide Safety Issue associated with Hanford Site high-level radioactive waste tanks. Progress in the Ferrocyanide Safety Program is reviewed, including work addressing the six pans of Defense Nuclear Facilities Safety Board Recommendation 90-7 (FR 1990). All work activities are described in the revised program plan (DOE 1994b), and this report follows the same format presented there. A summary of the key events occurring this quarter is presented

  20. Laser programs facility management plan for environment, safety, and health

    International Nuclear Information System (INIS)

    Cruz, G.E.

    1996-01-01

    The Lawrence Livermore National Laboratory's (LLNL) Laser Programs ES ampersand H policy is established by the Associate Director for Laser Programs. This FMP is one component of that policy. Laser Programs personnel design, construct and operate research and development equipment located in various Livermore and Site 300 buildings. The Programs include a variety of activities, primarily laser research and development, inertial confinement fusion, isotope separation, and an increasing emphasis on materials processing, imaging systems, and signal analysis. This FMP is a formal statement of responsibilities and controls to assure operational activities are conducted without harm to employees, the general public, or the environment. This plan identifies the hazards associated with operating a large research and development facility and is a vehicle to control and mitigate those hazards. Hazards include, but are not limited to: laser beams, hazardous and radioactive materials, criticality, ionizing radiation or x rays, high-voltage electrical equipment, chemicals, and powered machinery

  1. RISMC Advanced Safety Analysis Project Plan – FY 2015 - FY 2019

    Energy Technology Data Exchange (ETDEWEB)

    Szilard, Ronaldo H. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Youngblood, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    In this report, a project plan is developed, focused on industry applications, using Risk-Informed Safety Margin Characterization (RISMC) tools and methods applied to realistic, relevant, and current interest issues to the operating nuclear fleet. RISMC focuses on modernization of nuclear power safety analysis (tools, methods and data); implementing state-of-the-art modeling techniques (which include, for example, enabling incorporation of more detailed physics as they become available); taking advantage of modern computing hardware; and combining probabilistic and mechanistic analyses to enable a risk informed safety analysis process. The modernized tools will maintain the current high level of safety in our nuclear power plant fleet, while providing an improved understanding of safety margins and the critical parameters that affect them. Thus, the set of tools will provide information to inform decisions on plant modifications, refurbishments, and surveillance programs, while improving economics. This set of tools will also benefit the design of new reactors, enhancing safety per unit cost of a nuclear plant. The proposed plan will focus on application of the RISMC toolkit, in particular, solving realistic problems of important current issues to the nuclear industry, in collaboration with plant owners and operators to demonstrate the usefulness of these tools in decision making.

  2. Nuclear Plant Aging Research (NPAR) program plan

    International Nuclear Information System (INIS)

    1991-06-01

    A comprehensive Nuclear Plant Aging Research (NPAR) Program was implemented by the US NRC office of Nuclear Regulatory Research in 1985 to identify and resolve technical safety issues related to the aging of systems, structures, and components in operating nuclear power plants. This is Revision 2 to the Nuclear Plant Aging Research Program Plant. This planes defines the goals of the program the current status of research, and summarizes utilization of the research results in the regulatory process. The plan also describes major milestones and schedules for coordinating research within the agency and with organizations and institutions outside the agency, both domestic and foreign. Currently the NPAR Program comprises seven major areas: (1) hardware-oriented engineering research involving components and structures; (2) system-oriented aging interaction studies; (3) development of technical bases for license renewal rulemaking; (4) determining risk significance of aging phenomena; (5) development of technical bases for resolving generic safety issues; (6) recommendations for field inspection and maintenance addressing aging concerns; (7) and residual lifetime evaluations of major LWR components and structures. The NPAR technical database comprises approximately 100 NUREG/CR reports by June 1991, plus numerous published papers and proceedings that offer regulators and industry important insights to aging characteristics and aging management of safety-related equipment. Regulatory applications include revisions to and development of regulatory guides and technical specifications; support to resolve generic safety issues; development of codes and standards; evaluation of diagnostic techniques; (e.g., for cables and valves); and technical support for development of the license renewal rule. 80 refs., 25 figs., 10 tabs

  3. Safety evaluation report on Tennessee Valley Authority: Browns Ferry nuclear performance plan

    International Nuclear Information System (INIS)

    1989-10-01

    This safety evaluation report (SER) on the information submitted by the Tennessee Valley Authority (TVA) in its Nuclear Performance Plan, through Revision 2, for the Browns Ferry Nuclear Plant and in supporting documents has been prepared by the US Nuclear Regulatory commission staff. The Browns Ferry Nuclear Plant consists of three boiling-water reactors at a site in Limestone County, Alabama. The plan addresses the plant-specific concerns requiring resolution before the startup of Unit 2. The staff will inspect implementation of those TVA programs that address these concerns. Where systems are common to Units 1 and 2 or to Units 2 and 3, the staff safety evaluations of those systems are included herein. 85 refs

  4. Environmental, Safety, and Health Plan for the remedial investigation/feasibility study at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-05-01

    This Environmental, Safety, and Health (ES ampersand H) Plan presents the concepts and methodologies to be followed during the remedial investigation/feasibility study (RI/FS) for Oak Ridge National Laboratory (ORNL) to protect the health and safety of employees, the public, and the environment. This ES ampersand H Plan acts as a management extension for ORNL and Martin Marietta Energy Systems, Inc. (Energy Systems) to direct and control implementation of the project ES ampersand H program. The subsections that follow describe the program philosophy, requirements, quality assurance measures, and methods for applying the ES ampersand H program to individual waste area grouping (WAG) remedial investigations. Hazardous work permits (HWPs) will be used to provide task-specific health and safety requirements

  5. Civilian radioactive waste management program plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    This revision of the Civilian Radioactive Waste Management Program Plan describes the objectives of the Civilian Radioactive Waste management Program (Program) as prescribed by legislative mandate, and the technical achievements, schedule, and costs planned to complete these objectives. The Plan provides Program participants and stakeholders with an updated description of Program activities and milestones for fiscal years (FY) 1998 to 2003. It describes the steps the Program will undertake to provide a viability assessment of the Yucca Mountain site in 1998; prepare the Secretary of Energy`s site recommendation to the President in 2001, if the site is found to be suitable for development as a repository; and submit a license application to the Nuclear Regulatory Commission in 2002 for authorization to construct a repository. The Program`s ultimate challenge is to provide adequate assurance to society that an operating geologic repository at a specific site meets the required standards of safety. Chapter 1 describes the Program`s mission and vision, and summarizes the Program`s broad strategic objectives. Chapter 2 describes the Program`s approach to transform strategic objectives, strategies, and success measures to specific Program activities and milestones. Chapter 3 describes the activities and milestones currently projected by the Program for the next five years for the Yucca Mountain Site Characterization Project; the Waste Acceptance, Storage and Transportation Project; ad the Program Management Center. The appendices present information on the Nuclear Waste Policy Act of 1982, as amended, and the Energy Policy Act of 1992; the history of the Program; the Program`s organization chart; the Commission`s regulations, Disposal of High-Level Radioactive Wastes in geologic Repositories; and a glossary of terms.

  6. Oak Ridge National Laboratory Environmenal, Safety, and Health Management Plan

    International Nuclear Information System (INIS)

    1991-12-01

    The 1990 Tiger Team Appraisal of Oak Ridge National Laboratory (ORNL) revealed that neither Martin Marietta Energy Systems, Inc. (Energy Systems) nor ORNL had a strategic plan for Environmental, Safety, and Health (ES ampersand H) activities. There were no detailed plans describing ORNL's mission, objectives, and strategies for ES ampersand H activities. A number of plans do exist that cover various aspects of ES ampersand H. Their scope ranges from multiyear program plans to annual audit schedules to compliance plans to action plans from specific audits. However, there is not a single document that identifies the plans and the objectives they are to address. This document describes the strategic plan for ORNL and provides the linkage among existing plans. It gives a brief description of the organization and management of ES ampersand H activities at ORNL. The plan identifies the general strategies to be taken by ORNL, using the overall guidance from Energy Systems in its corporate ES ampersand H Strategic Plan. It also identifies more detailed plans for implementation of these strategies, where appropriate

  7. Safety performance indicators program

    International Nuclear Information System (INIS)

    Vidal, Patricia G.

    2004-01-01

    In 1997 the Nuclear Regulatory Authority (ARN) initiated a program to define and implement a Safety Performance Indicators System for the two operating nuclear power plants, Atucha I and Embalse. The objective of the program was to incorporate a set of safety performance indicators to be used as a new regulatory tool providing an additional view of the operational performance of the nuclear power plants, improving the ability to detect degradation on safety related areas. A set of twenty-four safety performance indicators was developed and improved throughout pilot implementation initiated in July 1998. This paper summarises the program development, the main criteria applied in each stage and the results obtained. (author)

  8. [Post-marketing drug safety-risk management plan(RMP)].

    Science.gov (United States)

    Ezaki, Asami; Hori, Akiko

    2013-03-01

    The Guidance for Risk Management Plan(RMP)was released by the Ministry of Health, Labour and Welfare in April 2012. The RMP consists of safety specifications, pharmacovigilance plans and risk minimization action plans. In this paper, we outline post-marketing drug safety operations in PMDA and the RMP, with examples of some anticancer drugs.

  9. Review of the DOE Packaging and Transportation Safety Program

    International Nuclear Information System (INIS)

    Snyder, B.J.; Cece, J.M.

    1992-12-01

    This report documents the results of a year-long self-assessment of DOE-EH transportation and packaging safety activities. The self-assessment was initiated in September 1991 and concluded in August 1992. The self-assessment identified several significant issues, some of which have been resolved by EH. Also, improvements in the EH program were made during the course of the self-assessment. The report reflects the status of the EH transportation and packaging safety activities at the conclusion of the self-assessment. This report consists of several sections which discuss background, objectives and description of the review. Another section includes summary discussion and key conclusions. Appendix A, Issues, Observations and Recommendations, lists fifteen issues, including appropriate observations and recommendations. A Corrective Action Plan, which documents EH managements resolve to implement the agreed-upon recommendations, is included. The Corrective Action Plan reflects the status of completed and planned actions as of the date of the report

  10. Engineering and Safety Partnership Enhances Safety of the Space Shuttle Program (SSP)

    Science.gov (United States)

    Duarte, Alberto

    2007-01-01

    Project Management must use the risk assessment documents (RADs) as tools to support their decision making process. Therefore, these documents have to be initiated, developed, and evolved parallel to the life of the project. Technical preparation and safety compliance of these documents require a great deal of resources. Updating these documents after-the-fact not only requires substantial increase in resources - Project Cost -, but this task is also not useful and perhaps an unnecessary expense. Hazard Reports (HRs), Failure Modes and Effects Analysis (FMEAs), Critical Item Lists (CILs), Risk Management process are, among others, within this category. A positive action resulting from a strong partnership between interested parties is one way to get these documents and related processes and requirements, released and updated in useful time. The Space Shuttle Program (SSP) at the Marshall Space Flight Center has implemented a process which is having positive results and gaining acceptance within the Agency. A hybrid Panel, with equal interest and responsibilities for the two larger organizations, Safety and Engineering, is the focal point of this process. Called the Marshall Safety and Engineering Review Panel (MSERP), its charter (Space Shuttle Program Directive 110 F, April 15, 2005), and its Operating Control Plan emphasizes the technical and safety responsibilities over the program risk documents: HRs; FMEA/CILs; Engineering Changes; anomalies/problem resolutions and corrective action implementations, and trend analysis. The MSERP has undertaken its responsibilities with objectivity, assertiveness, dedication, has operated with focus, and has shown significant results and promising perspectives. The MSERP has been deeply involved in propulsion systems and integration, real time technical issues and other relevant reviews, since its conception. These activities have transformed the propulsion MSERP in a truly participative and value added panel, making a

  11. Status of safety issues at licensed power plants: TMI Action Plan requirements; unresolved safety issues; generic safety issues; other multiplant action issues

    International Nuclear Information System (INIS)

    1993-12-01

    As part of ongoing US Nuclear Regulatory Commission (NRC) efforts to ensure the quality and accountability of safety issue information, the NRC established a program for publishing an annual report on the status of licensee implementation and NRC verification of safety issues in major NRC requirements areas. This information was initially compiled and reported in three NUREG-series volumes. Volume 1, published in March 1991, addressed the status of Three Mile Island (TMI) Action Plan Requirements. Volume 2, published in May 1991, addressed the status of unresolved safety issues (USIs). Volume 3, published in June 1991, addressed the implementation and verification status of generic safety issues (GSIs). The first annual supplement, which combined these volumes into a single report and presented updated information as of September 30, 1991, was published in December 1991. The second annual supplement, which provided updated information as of September 30, 1992, was published in December 1992. Supplement 2 also provided the status of licensee implementation and NRC verification of other multiplant action (MPA) issues not related to TMI Action Plan requirements, USIs, or GSIs. This third annual NUREG report, Supplement 3, presents updated information as of September 30, 1993. This report gives a comprehensive description of the implementation and verification status of TMI Action Plan requirements, safety issues designated as USIs, GSIs, and other MPAs that have been resolved and involve implementation of an action or actions by licensees. This report makes the information available to other interested parties, including the public. Additionally, this report serves as a follow-on to NUREG-0933, ''A Prioritization of Generic Safety Issues,'' which tracks safety issues until requirements are approved for imposition at licensed plants or until the NRC issues a request for action by licensees

  12. Civilian radioactive waste management program plan. Revision 2

    International Nuclear Information System (INIS)

    1998-07-01

    This revision of the Civilian Radioactive Waste Management Program Plan describes the objectives of the Civilian Radioactive Waste management Program (Program) as prescribed by legislative mandate, and the technical achievements, schedule, and costs planned to complete these objectives. The Plan provides Program participants and stakeholders with an updated description of Program activities and milestones for fiscal years (FY) 1998 to 2003. It describes the steps the Program will undertake to provide a viability assessment of the Yucca Mountain site in 1998; prepare the Secretary of Energy's site recommendation to the President in 2001, if the site is found to be suitable for development as a repository; and submit a license application to the Nuclear Regulatory Commission in 2002 for authorization to construct a repository. The Program's ultimate challenge is to provide adequate assurance to society that an operating geologic repository at a specific site meets the required standards of safety. Chapter 1 describes the Program's mission and vision, and summarizes the Program's broad strategic objectives. Chapter 2 describes the Program's approach to transform strategic objectives, strategies, and success measures to specific Program activities and milestones. Chapter 3 describes the activities and milestones currently projected by the Program for the next five years for the Yucca Mountain Site Characterization Project; the Waste Acceptance, Storage and Transportation Project; ad the Program Management Center. The appendices present information on the Nuclear Waste Policy Act of 1982, as amended, and the Energy Policy Act of 1992; the history of the Program; the Program's organization chart; the Commission's regulations, Disposal of High-Level Radioactive Wastes in geologic Repositories; and a glossary of terms

  13. Fusion Safety Program annual report: Fiscal year 1986

    International Nuclear Information System (INIS)

    Holland, D.F.; Merrill, B.J.; Herring, J.S.; Piet, S.J.; Longhurst, G.R.

    1987-06-01

    This report summarizes the Fusion Safety Program's (FSP) major activities in fiscal year 1986. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory, and EG and G Idaho, Inc., is the prime contractor for FSP, which was initiated in 1979. Activities are conducted at the INEL and in participating facilities, including the Hanford Engineering Development Laboratory (HEDL), the Massachusetts Institute of Technology (MIT), and the University of Wisconsin. The technical areas covered in this report include tritium safety, activation product release, reactions involving lithium breeding materials, safety of fusion magnet systems, plasma disruption, risk assessment methodology, and computer code development for reactor transients. Contributions to the Technical Planning Activity (TPA) and the ''white paper'' study by the Environmental, Safety,and Economics Committee (ESECOM) are summarized. The report also includes a summary of the safety and environmental analysis and documentation performed by the INEL for the Compact Ignition Tokamak (CIT) design project

  14. Fusion Safety Program annual report, fiscal year 1984

    International Nuclear Information System (INIS)

    Crocker, J.G.; Holland, D.F.

    1985-06-01

    This report summarizes the Fusion Safety Program major activities in fiscal year 1984. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and EG and G Idaho, Inc., is the prime contractor for this program, which was initiated in 1979. A report section titled ''Activities at the INEL'' includes progress reports on the tritium implantation experiment, tritium blanket permeation, volatilization of reactor alloys, plasma disruptions, a comparative blanket safety assessment, transient code development, and a discussion of the INEL's participation in the Tokamak Fusion Core Experiment (TFCX) design study. The report section titled ''Outside Contracts'' includes progress reports on tritium conversion by the Oak Ridge National Laboratory (ORNL), lithium-lead reactions by the Hanford Engineering Development Laboratory (HEDL) and the University of Wisconsin, magnet safety by the Francis Bitter Magnet Laboratory of the Massachusetts Institute of Technology (MIT) and Argonne National Laboratory (ANL), risk assessment by MIT, tritium retention by the University of Virginia, and activation product release by GA Technologies. A list of publications produced during the year and brief descriptions of activities planned for FY-1985 are also included

  15. Plans for the NKS-program 1998-2001

    International Nuclear Information System (INIS)

    Bennerstedt, T.

    1999-08-01

    The present report is a comprehensive compilation of the adopted NKS project plans for the sixth four-year period, 1998-2001. Most of the plans are in English. One is in both English and Danish. One is in Norwegian, with a brief summary in English. Only two of the six appendices are in English. In spite of this, it is believed that the report will serve as a valuable source of information not only to those actually active in or closely following the NKS work, but also the international scientific community, e.g., within EU and in the Baltic States. The research program incorporates reactor safety, radioactive waste, emergency preparedness, radioecology, cross-disciplinary studies, and information issues. The necessary administrative support program, including the NKS Secretariat, is not described herein. Neither is the aim, scope or organization of NKS, since this has been covered elsewhere. (EHS)

  16. EM Health and Safety Plan Guidelines

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    This document contains information about the Health and Safety Plan Guidelines. Topics discussed include: Regulatory framework; key personnel; hazard assessment; training requirements; personal protective equipment; extreme temperature disorders or conditions; medical surveillance; exposure monitoring/air sampling; site control; decontamination; emergency response/contingency plan; emergency action plan; confined space entry; and spill containment.

  17. UMTRA technical assistance contractor quality assurance program plan

    International Nuclear Information System (INIS)

    1994-10-01

    This Quality Assurance Program Plan (QAPP) provides the primary requirements for the integration of quality functions into all Technical Assistance Contractor (TAC) Project organization activities. The QAPP is the written directive authorized by the TAc Program Manager to accomplish this task and to implement procedures that provide the controls and sound management practices needed to ensure TAC contractual obligations are met. The QA program is designed to use monitoring, audit, and surveillance functions as management tools to ensure that all Project organization functions are executed in a manner that will protect public health and safety, promote the success of the Project, and meet or exceed contract requirements

  18. Program plan for the resolution of tank vapor issues

    International Nuclear Information System (INIS)

    Osborne, J.W.

    1992-09-01

    The purpose of this document is to provide a detailed description of the priorities, logic, work breakdown structure (WBS), task descriptions, and program milestones required for the resolution of tank vapor issues associated with the single-shell tanks (SST) and double-shell tanks (DST). The primary objective of this plan is to determine whether a health (personnel exposure) and/or safety (flammability) hazard exists. This plan is focused upon one waste tank, 241-C-103, but contains all elements required to bring the vapor issues to resolution

  19. Program plan for the development of Solid Waste Storage Area 7 at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Lomenick, T.F.; Gonzales, S.; Byerly, D.W.

    1984-02-01

    The need for additional waste-burial facilities for low-level radwastes generated at Oak Ridge National Laboratory mandates development of a program to identify and evaluate an acceptable new Solid Waste Storage Area (SWSA 7). Provisions of this program include plans for identifying and evaluating SWSA 7 as well as plans for the necessary technical efforts for designing and monitoring a waste-burial facility. The development of the program plan is in accordance with general procedures issued by ORNL, and if adhered to, should meet proposed criteria and guidelines issued by such organizations as the Nuclear Regulatory Commission, the Environmental Protection Agency, the Department of Energy, and the Tennessee Department of Health. The major parts of the program include plans for (1) the acquisition of data necessary for geotechnical evaluation of a site, (2) the engineering design and construction of a facility which would be compatible with the geology and the classification and particular character of the wastes to be disposed, and (3) a monitoring system for achieving health and safety standards and environmental protection. The objective of the program, to develop SWSA 7, can only be achieved through sound management. Plans provided in this program which will ensure successful management include quality assurance, corrective measures, safety analysis, environmental impact statements, and schedule and budget

  20. Verification and Planning Based on Coinductive Logic Programming

    Science.gov (United States)

    Bansal, Ajay; Min, Richard; Simon, Luke; Mallya, Ajay; Gupta, Gopal

    2008-01-01

    Coinduction is a powerful technique for reasoning about unfounded sets, unbounded structures, infinite automata, and interactive computations [6]. Where induction corresponds to least fixed point's semantics, coinduction corresponds to greatest fixed point semantics. Recently coinduction has been incorporated into logic programming and an elegant operational semantics developed for it [11, 12]. This operational semantics is the greatest fix point counterpart of SLD resolution (SLD resolution imparts operational semantics to least fix point based computations) and is termed co- SLD resolution. In co-SLD resolution, a predicate goal p( t) succeeds if it unifies with one of its ancestor calls. In addition, rational infinite terms are allowed as arguments of predicates. Infinite terms are represented as solutions to unification equations and the occurs check is omitted during the unification process. Coinductive Logic Programming (Co-LP) and Co-SLD resolution can be used to elegantly perform model checking and planning. A combined SLD and Co-SLD resolution based LP system forms the common basis for planning, scheduling, verification, model checking, and constraint solving [9, 4]. This is achieved by amalgamating SLD resolution, co-SLD resolution, and constraint logic programming [13] in a single logic programming system. Given that parallelism in logic programs can be implicitly exploited [8], complex, compute-intensive applications (planning, scheduling, model checking, etc.) can be executed in parallel on multi-core machines. Parallel execution can result in speed-ups as well as in larger instances of the problems being solved. In the remainder we elaborate on (i) how planning can be elegantly and efficiently performed under real-time constraints, (ii) how real-time systems can be elegantly and efficiently model- checked, as well as (iii) how hybrid systems can be verified in a combined system with both co-SLD and SLD resolution. Implementations of co-SLD resolution

  1. Research on the Evaluation System for Rural Public Safety Planning

    Institute of Scientific and Technical Information of China (English)

    Ming; SUN; Jianxin; YAN

    2014-01-01

    The indicator evaluation system is introduced to the study of rural public safety planning in this article.By researching the current rural public safety planning and environmental carrying capacity,we select some carrying capacity indicators influencing the rural public safety,such as land,population,ecological environment,water resources,infrastructure,economy and society,to establish the environmental carrying capacity indicator system.We standardize the indicators,use gray correlation analysis method to determine the weight of indicators,and make DEA evaluation of the indicator system,to obtain the evaluation results as the basis for decision making in rural safety planning,and provide scientific and quantified technical support for rural public safety planning.

  2. Safety and economic impacts of photo radar program.

    Science.gov (United States)

    Chen, Greg

    2005-12-01

    means to manage traffic speed, reduce collisions and injuries, and combat the huge resulting economic burden to society. The cost-effectiveness of the program takes on special meaning and urgency when considering the present and future government funding constraints. The application of the program, however, should be planned and implemented with caution. Every effort should be made to focus on and to promote the program on safety improvement grounds. The program can be easily terminated because of political considerations, if the public perceives it as a cash cow to enhance government revenue.

  3. Configuration Management Program Plan

    International Nuclear Information System (INIS)

    1991-01-01

    Westinghouse Savannah River Company (WSRC) has established a configuration management (CM) plan to execute the SRS CM Policy and the requirements of the DOE Order 4700.1. The Reactor Restart Division (RRD) has developed its CM Plan under the SRS CM Program and is implementing it via the RRD CM Program Plan and the Integrated Action Plan. The purpose of the RRD CM program is to improve those processes which are essential to the safe and efficient operation of SRS production reactors. This document provides details of this plan

  4. Environmental Development Plan (EDP): magnetohydrodynamics program, FY 1977

    International Nuclear Information System (INIS)

    1978-03-01

    This magnetohydrodynamics (MHD) EDP identifies and examines the environmental, health, and safety issues concerning the development of the ERDA Magnetohydrodynamics Program, the environmental activities needed to resolve these issues, applicable ongoing and completed research, and a time-phased action plan for the evaluation and mitigation of environmental impacts. A schedule for environmental research, assessment, and other activities is laid out. The purpose of the EDP is to identify environmental issues and to specify actions to ensure the environmental acceptability of commercial energy technologies being developed by ERDA. The EDP also will assist in coordinating ERDA's environmental activities with those of other government agencies. This document addresses the following technologies associated with ERDA's MHD program: (1) open-cycle magnetohydrodynamics; (2) closed-cycle plasma magnetohydrodynamics; and (3) closed-cycle liquid metal magnetohydrodynamics. The proposed environmental action plan is designed to meet the following objectives: (1) develop methods for monitoring and measuring emissions; (2) characterize air emissions, water effluents, and solid wastes from MHD; (3) determine potential environmental impacts and health hazards associated with MHD; (4) model pollutant transport and transformation; (5) ensure adequate control of pollutant emissions; (6) identify and minimize occupational health and safety hazards; (7) prepare NEPA compliance documents; and (8) assess the environmental, health, and safety impacts of the commercialized industry. This EDP will be updated and revised annually to take into account the progress of technologies toward commercialization, the environmental work accomplished, and the resolution of outstanding environmental issues concerning the technologies

  5. SRS ES and H Standards Compliance Program Implementation Plan

    International Nuclear Information System (INIS)

    Hearn, W.H.

    1993-01-01

    On March 8, 1990, the Defense Nuclear Facilities Safety Board (DNFSB) issued Recommendation 90-2 to the Secretary of Energy. This recommendation, based upon the DNFSB's initial review and evaluation of the content and implementation of standards relating to the design, construction, operations, and decommissioning of defense nuclear facilities of the U.S. Department of Energy (DOE), called for three actions: identification of specific standards that apply to design, construction, operation and decommissioning of DOE facilities; assessment of the adequacy of those standards for protecting public health and safety; and determination of the extent to which they have and are being implemented. The purpose of this Implementation Plan is to define the single program for all sitewide and facility 90-2 ES and H Standards Compliance efforts, which will satisfy the HQ Implementation Plan, avoid duplicate efforts, be as simple and achievable as possible, include cost-saving innovations, use a graded approach based on facility hazards and future needs of facilities, and support configuration control for facility requirements. The Defense Waste Processing Facility (DWPF) has been designated a pilot facility for the 90-2 program and has progressed with their facility program ahead of the site-level program. The DWPF, and other Government-Owned Contractor-Operated (GOCO) facilities that progress on an enhanced schedule, will serve as pilot facilities for the site-level program. The lessons learned with their requirement identifications, and their assessments of the adequacy of and their compliance with these requirements will be used to improve the efficiency of the site-level and subsequent programs

  6. Health and Safety Plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Van Hoesen, S.D.; Clark, C. Jr.; Burman, S.N. [Oak Ridge National Lab., TN (United States); Manis, L.W.; Barre, W.L. [Analysas Corp., Oak Ridge, TN (United States)

    1993-12-01

    The Martin Marietta Energy Systems, Inc. (Energy Systems), policy is to provide a safe and healthful workplace for all employees and subcontractors. The accomplishment of this policy requires that operations at Waste Area Grouping (WAG) 6 at the Department of Energy (DOE) Oak Ridge National Laboratory are guided by an overall plan and consistent proactive approach to safety and health (S&H) issues. The plan is written to utilize past experience and best management practices to minimize hazards to human health or the environment from events such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactive materials to air, soil, or surface water This plan explains additional site-specific health and safety requirements such as Site Specific Hazards Evaluation Addendums (SSHEAs) to the Site Safety and Health Plan which should be used in concert with this plan and existing established procedures.

  7. Salt Repository Project Waste Package Program Plan: Draft

    International Nuclear Information System (INIS)

    Carr, J.A.; Cunnane, J.C.

    1986-01-01

    Under the direction of the Office of Civilian Radioactive Waste Management (OCRWM) created within the DOE by direction of the Nuclear Waste Policy Act of 1982 (NWPA), the mission of the Salt Repository Project (SRP) is to provide for the development of a candidate salt repository for disposal of high-level radioactive waste (HLW) and spent reactor fuel in a manner that fully protects the health and safety of the public and the quality of the environment. In consideration of the program needs and requirements discussed above, the SRP has decided to develop and issue this SRP Waste Package Program Plan. This document is intended to outline how the SRP plans to develop the waste package design and to show, with reasonable assurance, that the developed design will satisfy applicable requirements/performance objectives. 44 refs., 16 figs., 16 tabs

  8. Safety and health five-year plan, Fiscal years 1995--1999

    International Nuclear Information System (INIS)

    1994-10-01

    This report describes efforts by the Department of Energy (DOE) to size and allocate funding to safety and health activities that protect workers and the public from harm. Although it is well recognized that virtually every aspect of an operation has health and safety implications, this effort is directed at identifying planned efforts specifically directed at health and safety. The initial effort, to compile information for the period covering FY 1994--1998, served two primary needs: (1) to document what was actually taking place in the DOE Complex, from a budget and resource utilization standpoint (how the complex was reacting to the calls for greater protection for workers and the public); and (2) to embark on an effort to utilize forward-looking management plans to allocate resources to meet safety and health needs (to begin to be proactive). It was recognized that it would take several years to achieve full acceptance and implementation of a single, DOE-wide approach toward planning for safety and health, and to develop plans that emphasized the benefits from both risk management and accident prevention strategies. This report, describing safety and health plans and budgets for FY 1995, reflects the increasing acceptance of risk-based strategies in the development of safety and health plans. More operations are using the prioritization methodology recommended for the safety and health planning process, and more operations have begun to review planned expenditures of resources to better assure that resources are allocated to the highest risk reduction activities

  9. Quarterly report on the ferrocyanide safety program for the period ending December 31, 1994

    International Nuclear Information System (INIS)

    Meacham, J.E.; Cash, R.J.; Dukelow, G.T.

    1995-01-01

    This is the fifteenth quarterly report on the progress of active addressing the Ferrocyanide Safety Issue associated with Hanford Site high-level radioactive waste tanks. Progress in the Ferrocyanide Safety Program is reviewed, including work addressing the six parts of Defense Nuclear Facilities Safety Board Recommendation 90-7 (FR 1990). All work activities are described in the revised program plan (DOE 1994b), and this report follows the same format presented there. A summary of the key events occurring this quarter is presented in Section 1.2. More detailed discussions of progress are located in Sections 2.0 through 4.0. 60 refs

  10. Quarterly report on the Ferrocyanide Safety Program for the period ending September 30, 1995

    International Nuclear Information System (INIS)

    Meacham, J.E.; Cash, R.J.; Dukelow, G.T.

    1995-10-01

    This is the eighteenth quarterly report on the progress of activities addressing the Ferrocyanide Safety Issue associated with Hanford Site high-level radioactive waste tanks. Progress in the Ferrocyanide Safety Program is reviewed, including work addressing the six parts of Defense Nuclear Facilities Safety Board Recommendation 90-7 (FR 1990). All work activities are described in the revised program plan (DOE 1994b), and this report follows the same format presented there. A summary of the key events occurring this quarter is presented in Section 1.2. More detailed discussions of progress are located in Sections 2.0 through 4.0

  11. A risk characterization of safety research areas for integral fast reactor program planning

    International Nuclear Information System (INIS)

    Mueller, C.J.; Cahalan, J.E.; Hill, D.J.; Kramer, J.M.; Marchaterre, J.F.; Pedersen, D.R.; Sevy, R.H.; Tibbrook, R.W.; Wei, T.Y.; Wright, A.E.

    1988-01-01

    This paper characterizes the areas of integral fast reactor (IFR) safety research in terms of their importance in addressing the risk of core disruption sequences for innovative designs. Such sequences have traditionally been determined to constitute the primary risk to public health and safety. All core disruption sequences are folded into four fault categories: classic unprotected (unscrammed) events; loss of decay heat; local fault propagation; and failure to critical reactor structures. Event trees are used to describe these sequences and the areas in the IFR safety and related base technology research programs are discussed with respect to their relevance in addressing the key issues in preventing or delimiting core disruptive sequences. Thus a measure of potential for risk reduction is obtained for guidance in establishing research priorities

  12. A risk characterization of safety research areas for Integral Fast Reactor program planning

    International Nuclear Information System (INIS)

    Mueller, C.J.; Cahalan, J.E.; Hill, D.J.

    1988-01-01

    This paper characterizes the areas of Integral Fast Reactor (IFR) safety research in terms of their importance in addressing the risk of core disruption sequences for innovative designs. Such sequences have traditionally been determined to constitute the primary risk to public health and safety. All core disruption sequences are folded into four fault categories: classic unprotected (unscrammed) events; loss of decay heat; local fault propagation; and failure of critical reactor structures. Event trees are used to describe these sequences and the areas in the IFR Safety and related Base Technology research programs are discussed with respect to their relevance in addressing the key issues in preventing or delimiting core disruptive sequences. Thus a measure of potential for risk reduction is obtained for guidance in establishing research priorites

  13. Proceedings of the Second NASA Aviation Safety Program Weather Accident Prevention Review

    Science.gov (United States)

    Martzaklis, K. Gus (Compiler)

    2003-01-01

    The Second NASA Aviation Safety Program (AvSP) Weather Accident Prevention (WxAP) Annual Project Review held June 5-7, 2001, in Cleveland, Ohio, presented the NASA technical plans and accomplishments to the aviation community. NASA-developed technologies presented included an Aviation Weather Information System with associated digital communications links, electronic atmospheric reporting technologies, forward-looking turbulence warning systems, and turbulence mitigation procedures. The meeting provided feedback and insight from the aviation community of diverse backgrounds and assisted NASA in steering its plans in the direction needed to meet the national safety goal of 80-percent reduction of aircraft accidents by 2007. The proceedings of the review are enclosed.

  14. Nuclear safety research master plan

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jae Joo; Yang, J. U.; Jun, Y. S. and others

    2001-06-01

    The SRMP (Safety Research Master Plan) is established to cope with the changes of nuclear industry environments. The tech. tree is developed according to the accident progress of the nuclear reactor. The 11 research fields are derived to cover the necessary technologies to ensure the safety of nuclear reactors. Based on the developed tech. tree, the following four main research fields are derived as the main safety research areas: 1. Integrated nuclear safety enhancement, 2. Thermal hydraulic experiment and assessment, 3. Severe accident management and experiment, and 4. The integrity of equipment and structure. The research frame and strategies are also recommended to enhance the efficiency of research activity, and to extend the applicability of research output.

  15. Environmental Management Waste Management Facility (EMWMF) Site-Specific Health and Safety Plan, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, N.C. Bechtel Jacobs

    2008-04-21

    The Bechtel Jacobs Company LLC (BJC) policy is to provide a safe and healthy workplace for all employees and subcontractors. The implementation of this policy requires that operations of the Environmental Management Waste Management Facility (EMWMF), located one-half mile west of the U.S. Department of Energy (DOE) Y-12 National Security Complex, be guided by an overall plan and consistent proactive approach to environment, safety and health (ES&H) issues. The BJC governing document for worker safety and health, BJC/OR-1745, 'Worker Safety and Health Program', describes the key elements of the BJC Safety and Industrial Hygiene (IH) programs, which includes the requirement for development and implementation of a site-specific Health and Safety Plan (HASP) where required by regulation (refer also to BJC-EH-1012, 'Development and Approval of Safety and Health Plans'). BJC/OR-1745, 'Worker Safety and Health Program', implements the requirements for worker protection contained in Title 10 Code of Federal Regulations (CFR) Part 851. The EMWMF site-specific HASP requirements identifies safe operating procedures, work controls, personal protective equipment, roles and responsibilities, potential site hazards and control measures, site access requirements, frequency and types of monitoring, site work areas, decontamination procedures, and outlines emergency response actions. This HASP will be available on site for use by all workers, management and supervisors, oversight personnel and visitors. All EMWMF assigned personnel will be briefed on the contents of this HASP and will be required to follow the procedures and protocols as specified. The policies and procedures referenced in this HASP apply to all EMWMF operations activities. In addition the HASP establishes ES&H criteria for the day-to-day activities to prevent or minimize any adverse effect on the environment and personnel safety and health and to meet standards that define acceptable

  16. Task Group on Safety Margins Action Plan (SMAP). Safety Margins Action Plan - Final Report

    International Nuclear Information System (INIS)

    Hrehor, Miroslav; Gavrilas, Mirela; Belac, Josef; Sairanen, Risto; Bruna, Giovanni; Reocreux, Michel; Touboul, Francoise; Krzykacz-Hausmann, B.; Park, Jong Seuk; Prosek, Andrej; Hortal, Javier; Sandervaag, Odbjoern; Zimmerman, Martin

    2007-01-01

    The international nuclear community has expressed concern that some changes in existing plants could challenge safety margins while fulfilling all the regulatory requirements. In 1998, NEA published a report by the Committee on Nuclear Regulatory Activities on Future Nuclear Regulatory Challenges. The report recognized 'Safety margins during more exacting operating modes' as a technical issue with potential regulatory impact. Examples of plant changes that can cause such exacting operating modes include power up-rates, life extension or increased fuel burnup. In addition, the community recognized that the cumulative effects of simultaneous changes in a plant could be larger than the accumulation of the individual effects of each change. In response to these concerns, CSNI constituted the safety margins action plan (SMAP) task group with the following objectives: 'To agree on a framework for integrated assessments of the changes to the overall safety of the plant as a result of simultaneous changes in plant operation / condition; To develop a CSNI document which can be used by member countries to assess the effect of plant change on the overall safety of the plant; To share information and experience.' The two approaches to safety analysis, deterministic and probabilistic, use different methods and have been developed mostly independently of each other. This makes it difficult to assure consistency between them. As the trend to use information on risk (where the term risk means results of the PSA/PRA analysis) to support regulatory decisions is growing in many countries, it is necessary to develop a method of evaluating safety margin sufficiency that is applicable to both approaches and, whenever possible, integrated in a consistent way. Chapter 2 elaborates on the traditional view of safety margins and the means by which they are currently treated in deterministic analyses. This chapter also discusses the technical basis for safety limits as they are used today

  17. Status of safety issues at licensed power plants: TMI Action Plan requirements, unresolved safety issues, generic safety issues, other multiplant action issues. Supplement 4

    International Nuclear Information System (INIS)

    1994-12-01

    As part of ongoing US Nuclear Regulatory Commission (NRC) efforts to ensure the quality and accountability of safety issue information, the NRC established a program for publishing an annual report on the status of licensee implementation and NRC verification of safety issues in major NRC requirements areas. This information was initially compiled and reported in three NUREG-series volumes. Volume 1, published in March 1991, addressed the status of Three Mile Island (TMI) Action Plan Requirements. Volume 2, published in May 1991, addressed the status of unresolved safety issues (USIs). Volume 3, published in June 1991, addressed the implementation and verification status of generic safety issues (GSIs). The first annual supplement, which combined these volumes into a single report and presented updated information as of September 30, 1991, was published in December 1991. The second annual supplement, which provided updated information as of September 30, 1992, was published in December 1992. Supplement 2 also provided the status of licensee implementation and NRC verification of other multiplant action (MPA) issues not related to TMI Action Plan requirements, USIs, or GSIs. Supplement 3 gives status as of September 30, 1993. This annual report, Supplement 4, presents updated information as of September 30, 1994. This report gives a comprehensive description of the implementation and verification status of TMI Action Plan requirements, safety issues designated as USIs, GSIs, and other MPAs that have been resolved and involve implementation of an action or actions by licensees. This report makes the information available to other interested parties, including the public. Additionally, this report serves as a follow-on to NUREG-0933, ''A Prioritization of Generic Safety Issues,'' which tracks safety issues until requirements are approved for imposition at licensed plants or until the NRC issues a request for action by licensees

  18. Comprehensive work plan and health and safety plan for the 7500 Area Contamination Site sampling at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Burman, S.N.; Landguth, D.C.; Uziel, M.S.; Hatmaker, T.L.; Tiner, P.F.

    1992-05-01

    As part of the Environmental Restoration Program sponsored by the US Department of Energy's Office of Environmental Restoration and Waste Management, this plan has been developed for the environmental sampling efforts at the 7500 Area Contamination Site, Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee. This plan was developed by the Measurement Applications and Development Group (MAD) of the Health and Safety Research Division of ORNL and will be implemented by ORNL/MAD. Major components of the plan include (1) a quality assurance project plan that describes the scope and objectives of ORNL/MAD activities at the 7500 Area Contamination Site, assigns responsibilities, and provides emergency information for contingencies that may arise during field operations; (2) sampling and analysis sections; (3) a site-specific health and safety section that describes general site hazards, hazards associated with specific tasks, personnel protection requirements, and mandatory safety procedures; (4) procedures and requirements for equipment decontamination and responsibilities for generated wastes, waste management, and contamination control; and (5) a discussion of form completion and reporting required to document activities at the 7500 Area Contamination Site

  19. Comprehensive work plan and health and safety plan for the 7500 Area Contamination Site sampling at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Burman, S.N.; Landguth, D.C.; Uziel, M.S.; Hatmaker, T.L.; Tiner, P.F.

    1992-05-01

    As part of the Environmental Restoration Program sponsored by the US Department of Energy's Office of Environmental Restoration and Waste Management, this plan has been developed for the environmental sampling efforts at the 7500 Area Contamination Site, Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee. This plan was developed by the Measurement Applications and Development Group (MAD) of the Health and Safety Research Division of ORNL and will be implemented by ORNL/MAD. Major components of the plan include (1) a quality assurance project plan that describes the scope and objectives of ORNL/MAD activities at the 7500 Area Contamination Site, assigns responsibilities, and provides emergency information for contingencies that may arise during field operations; (2) sampling and analysis sections; (3) a site-specific health and safety section that describes general site hazards, hazards associated with specific tasks, personnel protection requirements, and mandatory safety procedures; (4) procedures and requirements for equipment decontamination and responsibilities for generated wastes, waste management, and contamination control; and (5) a discussion of form completion and reporting required to document activities at the 7500 Area Contamination Site.

  20. Implementation of Water Safety Plans (WSPs): A Case Study in the Coastal Area in Semarang City, Indonesia

    Science.gov (United States)

    Budiyono; Ginandjar, P.; Saraswati, L. D.; Pangestuti, D. R.; Martini; Jati, S. P.

    2018-02-01

    An area of 508.28 hectares in North Semarang is flooded by tidal inundation, including Bandarharjo village, which could affect water quality in the area. People in Bandarharjo use safe water from deep groundwater, without disinfection process. More than 90% of water samples in the Bandaharjo village had poor bacteriological quality. The aimed of the research was to describe the implementation of Water Safety Plans (WSPs) program in Bandarharjo village. This was a descriptive study with steps for implementations adopted the guidelines and tools of the World Health Organization. The steps consist of introducing WSPs program, team building, training the team, examination of water safety before risk assessment, risk assessment, minor repair I, examination of water safety risk, minor repair II (after monitoring). Data were analyzed using descriptive methods. WSPs program has been introduced and formed WSPs team, and the training of the team has been conducted. The team was able to conduct risks assessment, planned the activities, examined water quality, conduct minor repair and monitoring at the source, distribution, and households connection. The WSPs program could be implemented in the coastal area in Semarang, however regularly supervision and some adjustment are needed.

  1. U.S. Nuclear Regulatory Commission human factors program plan

    International Nuclear Information System (INIS)

    1986-04-01

    The purpose of the U.S. Nuclear Regulatory Commission (NRC) Human Factors Program Plan is to ensure that proper consideration is given to human factors in the design and operation of nuclear facilities. This revised plan addresses human factors issues related to the operation of nuclear power plants (NPPs). The three issues of concern are (1) the activities planned to provide the technical bases to resolve the remaining tasks related to human factors as described in NUREG-0660, The NRC Action Plan Developed as a Result of the TMI-2 Accident, and NUREG-0737, Clarification of TMI Action Plan Requirements; (2) the need to address the additional human factors efforts that were identified during implementation of the Action Plan; and (3) the actual fulfillment of those developmental activities specified in Revision 1 of this plan. The plan represents a systematic approach for addressing high priority human factors concerns important to NPP safety in FY 1986 through 1987

  2. Multi-Year Program Plan - Building Regulatory Programs

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-10-01

    This document presents DOE’s multi-year plan for the three components of the Buildings Regulatory Program: Appliance and Equipment Efficiency Standards, ENERGY STAR, and the Building Energy Codes Program. This document summarizes the history of these programs, the mission and goals of the programs, pertinent statutory requirements, and DOE’s 5-year plan for moving forward.

  3. Environmental development plan for transportation programs: FY80 update

    Energy Technology Data Exchange (ETDEWEB)

    Saricks, C.L.; Singh, M.K.; Bernard, M.J. III; Bevilacqua, O.M.

    1980-09-01

    This is the second annual update of the environmental development plan (EDP) for transportation programs. It has been prepared as a cooperative effort of the Assistant Secretaries for Conservation and Solar Energy (ASCS) Office of Transportation Programs (CS/TP) and the Environment (ASEV) Office of Environmental Assessments. EDPs identify the ecosystem, resource, physical environment, health, safety, socioeconomic, and environmental control concerns associated with DOE programs. The programs include the research, development, demonstration, and assessment (RDD and A) of 14 transportation technologies and several strategy implementation projects. This EDP update presents a research and assessment plan for resolving any potentially adverse environmental concerns arising from these programs. The EDP process provides a framework for: incorporating environmental concerns into CS/TP planning and decision processes early to ensure they are assigned the same importance as technological, fiscal, and institutional concerns in decision making; resolving environmental concerns concurrently with energy technology and strategy development; and providing a research schedule that mitigates adverse environmental effects through sound technological design or policy analysis. This EDP also describes the status of each environmental concern and the plan for its resolution. Much of ongoing DOE reseirch and technology development is aimed at resolving concerns identified in this EDP. Each EDP is intended to be so comprehensive that no concerns escape notice. Care is taken to include any CS/TP action that may eventually require an Environmental Impact Statement. Because technology demonstration and commercialization tend to raise more environmental concerns than other portions of the transportation program, most of this EDP addresses these concerns.

  4. Program management plan for the conduct of a research, development, and demonstration program for improving the safety of nuclear powerplants

    International Nuclear Information System (INIS)

    1981-12-01

    Congress passed Public Law 96-567, Nuclear Safety Research, Development, and Demonstration Act of 1980, (hereafter referred to as the Act) to provide for an accelerated and coordinated program of light water reactor safety research, development, and demonstration to be carried out by the Department of Energy. In order to assure that this program would be compatible with the needs of Nuclear Regulatory Commission (NRC) and industry, the Department of Energy (DOE) initiated its response to Section 4 of the Act by conducting individual information gathering meetings with NRC and a wide cross section of the nuclear industry. The Department received recommendations on needs of what type of activities would and would not be appropriate for the Department to assist in satisfying these needs. Based on the evaluation of these inputs, it is concluded that the Department's ongoing Light Water Reactor (LWR) safety program is responsive to the Act. Specifically, the Department's ongoing program includes tasks in the areas of regulatory assessment, risk assessment, fission product source term, and emergency preparedness as well as providing technical assistance to the Institute of Nuclear Power Operations (INPO) to improve training of nuclear power personnel. These were among the very high priority efforts that were identified as necessary and appropriate for support by the Department

  5. Updating a Strategic Highway Safety Plan : Learning from the Idaho Transportation Department (ITD) - Proceedings from the Federal Highway Administration's (FHWA) Highway Safety Peer-to-Peer Exchange Program

    Science.gov (United States)

    2009-10-01

    On November 4, 2009, ITDs Office of Highway Operations and Safety partnered with the FHWA Office of Safety to host a one-day peer exchange. This event focused on the update of Idahos Strategic Highway Safety Plan (SHSP), entitled Toward Zero...

  6. Hanford Site waste tank farm facilities design reconstitution program plan

    International Nuclear Information System (INIS)

    Vollert, F.R.

    1994-01-01

    Throughout the commercial nuclear industry the lack of design reconstitution programs prior to the mid 1980's has resulted in inadequate documentation to support operating facilities configuration changes or safety evaluations. As a result, many utilities have completed or have ongoing design reconstitution programs and have discovered that without sufficient pre-planning their program can be potentially very expensive and may result in end-products inconsistent with the facility needs or expectations. A design reconstitution program plan is developed here for the Hanford waste tank farms facility as a consequence of the DOE Standard on operational configuration management. This design reconstitution plan provides for the recovery or regeneration of design requirements and basis, the compilation of Design Information Summaries, and a methodology to disposition items open for regeneration that were discovered during the development of Design Information Summaries. Implementation of this plan will culminate in an end-product of about 30 Design Information Summary documents. These documents will be developed to identify tank farms facility design requirements and design bases and thereby capture the technical baselines of the facility. This plan identifies the methodology necessary to systematically recover documents that are sources of design input information, and to evaluate and disposition open items or regeneration items discovered during the development of the Design Information Summaries or during the verification and validation processes. These development activities will be governed and implemented by three procedures and a guide that are to be developed as an outgrowth of this plan

  7. Safety Evaluation report on Tennessee Valley Authority: Sequoyah nuclear performance plan

    International Nuclear Information System (INIS)

    1988-05-01

    This Safety Evaluation Report (SER) on the information submitted by the Tennessee Valley Authority (TVA) in its Sequoyah Nuclear Performance Plan, through Revision 2, and supporting documents has been prepared by the US Nuclear Regulatory Commission staff. The plan addresses the plant-specific concerns requiring resolution before startup of either of the Sequoyah units. In particular, the SER addresses required actions for Unit 2 restart. In many cases, the programmatic aspects for Unit 1 are identical to those for Unit 2; the staff will conduct inspections of implementation of those programs. Where the Unit 1 program is different, the staff evaluation will be provided in a supplement to this SER. On the basis of its review, the staff concludes that Sequoyah-specific issues have been resolved to the extent that would support restart of Sequoyah Unit 2

  8. 49 CFR 1106.4 - The Safety Integration Plan process.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false The Safety Integration Plan process. 1106.4 Section 1106.4 Transportation Other Regulations Relating to Transportation (Continued) SURFACE... CONSIDERATION OF SAFETY INTEGRATION PLANS IN CASES INVOLVING RAILROAD CONSOLIDATIONS, MERGERS, AND ACQUISITIONS...

  9. International Photovoltaic Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Costello, D.; Koontz, R.; Posner, D.; Heiferling, P.; Carpenter, P.; Forman, S.; Perelman, L.

    1979-12-01

    The International Photovoltaics Program Plan is in direct response to the Solar Photovoltaic Energy Research, Development, and Demonstration Act of 1978 (PL 95-590). As stated in the Act, the primary objective of the plan is to accelerate the widespread use of photovoltaic systems in international markets. Benefits which could result from increased international sales by US companies include: stabilization and expansion of the US photovoltaic industry, preparing the industry for supplying future domestic needs; contribution to the economic and social advancement of developing countries; reduced world demand for oil; and improvements in the US balance of trade. The plan outlines programs for photovoltaic demonstrations, systems developments, supplier assistance, information dissemination/purchaser assistance, and an informaion clearinghouse. Each program element includes tactical objectives and summaries of approaches. A program management office will be established to coordinate and manage the program plan. Although the US Department of Energy (DOE) had the lead responsibility for preparing and implementing the plan, numerous federal organizations and agencies (US Departments of Commerce, Justice, State, Treasury; Agency for International Development; ACTION; Export/Import Bank; Federal Trade Commission; Small Business Administration) were involved in the plan's preparation and implementation.

  10. Nuclear Plant Aging Research (NPAR) program plan

    International Nuclear Information System (INIS)

    1985-07-01

    The nuclear plant aging research described in this plan is intended to resolve issues related to the aging and service wear of equipment and systems at commercial reactor facilities and their possible impact on plant safety. Emphasis has been placed on identification and characterization of the mechansims of material and component degradation during service and evaluation of methods of inspection, surveillance, condition monitoring and maintenance as means of mitigating such effects. Specifically the goals of the program are as follows: (1) to identify and characterize aging and service wear effects which, if unchecked, could cause degradation of structures, components, and systems and thereby impair plant safety; (2) to identify methods of inspection, surveillance and monitoring, or of evaluating residual life of structures, components, and systems, which will assure timely detection of significant aging effects prior to loss of safety function; and (3) to evaluate the effectiveness of storage, maintenance, repair and replacement practices in mitigating the rate and extent of degradation caused by aging and service wear

  11. Russian Minatom nuclear safety research strategic plan. An international review

    International Nuclear Information System (INIS)

    Royen, J.

    1999-01-01

    An NEA study on safety research needs of Russian-designed reactors, carried out in 1996, strongly recommended that a strategic plan for safety research be developed with respect to Russian nuclear power plants. Such a plan was developed at the Russian International Nuclear Safety Centre (RINSC) of the Russian Ministry of Atomic Energy (Minatom). The Strategic Plan is designed to address high-priority safety-research needs, through a combination of domestic research, the application of appropriate foreign knowledge, and collaboration. It represents major progress toward developing a comprehensive and coherent safety-research programme for Russian nuclear power plants (NPPs). The NEA undertook its review of the Strategic Plan with the objective of providing independent verification on the scope, priority, and content of the research described in the Plan based upon the experience of the international group of experts. The principal conclusions of the review and the general comments of the NEA group are presented. (K.A.)

  12. Elements of a nuclear criticality safety program

    International Nuclear Information System (INIS)

    Hopper, C.M.

    1995-01-01

    Nuclear criticality safety programs throughout the United States are quite successful, as compared with other safety disciplines, at protecting life and property, especially when regarded as a developing safety function with no historical perspective for the cause and effect of process nuclear criticality accidents before 1943. The programs evolved through self-imposed and regulatory-imposed incentives. They are the products of conscientious individuals, supportive corporations, obliged regulators, and intervenors (political, public, and private). The maturing of nuclear criticality safety programs throughout the United States has been spasmodic, with stability provided by the volunteer standards efforts within the American Nuclear Society. This presentation provides the status, relative to current needs, for nuclear criticality safety program elements that address organization of and assignments for nuclear criticality safety program responsibilities; personnel qualifications; and analytical capabilities for the technical definition of critical, subcritical, safety and operating limits, and program quality assurance

  13. Role of nuclear safety research and future plan

    International Nuclear Information System (INIS)

    Kim, W. S.; Lee, J. I.; Kang, S. C.; Park, Y. W.; Lee, J. H.; Kim, M. W.; Lee, C. J.; Park, Y. I.

    2000-01-01

    For promoting and improving nuclear safety research activities, this report gives an insight on the scope of safety research and its role in the safety management of nuclear installations, and suggests measures to adequately utilize the research results through taking an optimized role share among research organizations. Several measures such as cooperative planning of common research areas and proper role assignment, improvement of the interfaces among researchers, and reflection of end-users' opinion in the course of planning and conducting research to promote application of research results are identified. It is expected that the identified measures will contribute to enhancing the efficiency and effectiveness of nuclear safety research, if they are implemented after deliberating with the government and safety research organizations

  14. An Introduction of Behavior-Based Safety Program in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Yong Hee; Lim, Hyeon Kyo

    2011-01-01

    There are many methods and approaches for a human error assessment that is valuable for investigating the causes of undesirable events and counter-plans to prevent their recurrence in the nuclear power plants (NPPs). There is behavior-based safety refers to the process of using a proactive approach to safety and health management. It either focuses on risk of behaviors that can lead to an injury, or on safe behaviors that can contribute to injury prevention. Early applications of behavior based safety included the construction and manufacturing industries, but today behavior based safety is applied to a wide variety of industries and service lines. This behavior based safety program can offer a set of significant human error countermeasures to be considered for human error in NPPs as well as other fields of industry. The current methods for the human error prevention in NPPs are several techniques such as Self-Check, Peer Check, Concurrent Verification, 3-way Communication, etc. However, it is not enough to grasp the whole human error problems in operations because the things are needed in fields are a behavior technique not a simple knowledge. Therefore, we applied a behavior based safety program on the current methods

  15. Pollution prevention program implementation plan

    International Nuclear Information System (INIS)

    Engel, J.A.

    1996-09-01

    The Pollution Prevention Program Implementation Plan (the Plan) describes the Pacific Northwest National Laboratory's (PNNL) Pollution Prevention (P2) Program. The Plan also shows how the P2 Program at PNNL will be in support of and in compliance with the Hanford Site Waste Minimization and Pollution Prevention (WMin/P2) Awareness Program Plan and the Hanford Site Guide for Preparing and Maintaining Generator Group Pollution Prevention Program Documentation. In addition, this plan describes how PNNL will demonstrate compliance with various legal and policy requirements for P2. This plan documents the strategy for implementing the PNNL P2 Program. The scope of the P2 Program includes implementing and helping to implement P2 activities at PNNL. These activities will be implemented according to the Environmental Protection Agency's (EPA) hierarchy of source reduction, recycling, treatment, and disposal. The PNNL P2 Program covers all wastes generated at the Laboratory. These include hazardous waste, low-level radioactive waste, radioactive mixed waste, radioactive liquid waste system waste, polychlorinated biphenyl waste, transuranic waste, and sanitary waste generated by activities at PNNL. Materials, resource, and energy conservation are also within the scope of the PNNL P2 Program

  16. 10 CFR 70.62 - Safety program and integrated safety analysis.

    Science.gov (United States)

    2010-01-01

    ...; (iv) Potential accident sequences caused by process deviations or other events internal to the... have experience in nuclear criticality safety, radiation safety, fire safety, and chemical process... this safety program; namely, process safety information, integrated safety analysis, and management...

  17. Planning and architectural safety considerations in designing nuclear power plants

    International Nuclear Information System (INIS)

    Konsowa, Ahmed A.

    2009-01-01

    To achieve optimum safety and to avoid possible hazards in nuclear power plants, considering architectural design fundamentals and all operating precautions is mandatory. There are some planning and architectural precautions should be considered to achieve a high quality design and construction of nuclear power plant with optimum safety. This paper highlights predicted hazards like fire, terrorism, aircraft crash attacks, adversaries, intruders, and earthquakes, proposing protective actions against these hazards that vary from preventing danger to evacuating and sheltering people in-place. For instance; using safeguards program to protect against sabotage, theft, and diversion. Also, site and building well design focusing on escape pathways, emergency exits, and evacuation zones, and the safety procedures such as; evacuation exercises and sheltering processes according to different emergency classifications. In addition, this paper mentions some important codes and regulations that control nuclear power plants design, and assessment methods that evaluate probable risks. (author)

  18. 12 CFR 308.303 - Filing of safety and soundness compliance plan.

    Science.gov (United States)

    2010-01-01

    ... time within which those steps will be taken. (c) Review of safety and soundness compliance plans... PRACTICE RULES OF PRACTICE AND PROCEDURE Submission and Review of Safety and Soundness Compliance Plans and... compliance plan. (a) Schedule for filing compliance plan—(1) In general. A bank shall file a written safety...

  19. Piping research program plan

    International Nuclear Information System (INIS)

    1988-09-01

    This document presents the piping research program plan for the Structural and Seismic Engineering Branch and the Materials Engineering Branch of the Division of Engineering, Office of Nuclear Regulatory Research. The plan describes the research to be performed in the areas of piping design criteria, environmentally assisted cracking, pipe fracture, and leak detection and leak rate estimation. The piping research program addresses the regulatory issues regarding piping design and piping integrity facing the NRC today and in the foreseeable future. The plan discusses the regulatory issues and needs for the research, the objectives, key aspects, and schedule for each research project, or group of projects focussing of a specific topic, and, finally, the integration of the research areas into the regulatory process is described. The plan presents a snap-shot of the piping research program as it exists today. However, the program plan will change as the regulatory issues and needs change. Consequently, this document will be revised on a bi-annual basis to reflect the changes in the piping research program. (author)

  20. Social marketing to plan a fall prevention program for Latino construction workers.

    Science.gov (United States)

    Menzel, Nancy N; Shrestha, Pramen P

    2012-08-01

    Latino construction workers experience disparities in occupational death and injury rates. The Occupational Safety and Health Administration funded a fall prevention training program at the University of Nevada, Las Vegas in response to sharp increases in fall-related accidents from 2005 to 2007. The grant's purpose was to improve fall protection for construction workers, with a focus on Latinos. This study assessed the effectiveness of social marketing for increasing fall prevention behaviors. A multi-disciplinary team used a social marketing approach to plan the program. We conducted same day class evaluations and follow-up interviews 8 weeks later. The classes met trainee needs as evidenced by class evaluations and increased safety behaviors. However, Spanish-speaking Latinos did not attend in the same proportion as their representation in the Las Vegas population. A social marketing approach to planning was helpful to customize the training to Latino worker needs. However, due to the limitations of behavior change strategies, future programs should target employers and their obligation to provide safer workplaces. Copyright © 2012 Wiley Periodicals, Inc.

  1. Use of a radiation therapy treatment planning computer in a hospital health physics program

    International Nuclear Information System (INIS)

    Addison, S.J.

    1984-01-01

    An onsite treatment planning computer has become state of the art in the care of radiation therapy patients, but in most installations the computer is used for therapy planning a diminutive amount of the day. At St. Mary's Hospital, arrangements have been negotiated for part time use of the treatment planning computer for health physics purposes. Computerized Medical Systems, Inc. (CMS) produces the Modulex radiotherapy planning system which is programmed in MUMPS, a user oriented language specially adapted for handling text string information. St. Mary's Hospital's CMS computer has currently been programmed to assist in data collection and write-up of diagnostic x-ray surveys, meter calibrations, and wipe/leak tests. The computer is setup to provide timely reminders of tests and surveys, and billing for consultation work. Programs are currently being developed for radionuclide inventories. Use of a therapy planning computer for health physics purposes can enhance the radiation safety program and provide additional grounds for the acquisition of such a computer system

  2. A Laboratory Safety Program at Delaware.

    Science.gov (United States)

    Whitmyre, George; Sandler, Stanley I.

    1986-01-01

    Describes a laboratory safety program at the University of Delaware. Includes a history of the program's development, along with standard safety training and inspections now being implemented. Outlines a two-day laboratory safety course given to all graduate students and staff in chemical engineering. (TW)

  3. Safety Evaluation Report on Tennessee Valley Authority: Browns Ferry Nuclear Performance Plan: Browns Ferry Unit 2 restart

    International Nuclear Information System (INIS)

    1989-04-01

    This safety evaluation report (SER) on the information submitted by the Tennessee Valley Authority (TVA) in its Nuclear Performance Plan, through Revision 2, for the Browns Ferry Nuclear Power Station and in supporting documents has been prepared by the US Nuclear Regulatory Commission staff. The plan addresses the plant-specific concerns requiring resolution before startup of Unit 2. The staff will inspect implementation of those programs. Where systems are common to Units 1 and 2 or to Units 2 and 3, the staff safety evaluations of those systems are included herein. 3 refs

  4. Guidance for implementing an environmental, safety, and health assurance program. Volume 10. Model guidlines for line organization environmental, safety and health audits and appraisals

    International Nuclear Information System (INIS)

    Ellingson, A.C.

    1981-10-01

    This is 1 of 15 documents designed to illustrate how an Environmental, Safety and Health (ES and H) Assurance Program may be implemented. The generic definition of ES and H Assurance Programs is given in a companion document entitled An Environmental, Safety and Health Assurance Program Standard. The Standard specifies that the operational level of an institution must have an internal assurance function, and this document provides guidance for the audit/appraisal portion of the operational level's ES and H program. The appendixes include an ES and H audit checklist, a sample element rating guide, and a sample audit plan for working level line organization internal audits

  5. 77 FR 70409 - System Safety Program

    Science.gov (United States)

    2012-11-26

    ...-0060, Notice No. 2] 2130-AC31 System Safety Program AGENCY: Federal Railroad Administration (FRA... rulemaking (NPRM) published on September 7, 2012, FRA proposed regulations to require commuter and intercity passenger railroads to develop and implement a system safety program (SSP) to improve the safety of their...

  6. Certification plan for safety and PRA codes

    International Nuclear Information System (INIS)

    Toffer, H.; Crowe, R.D.; Ades, M.J.

    1990-05-01

    A certification plan for computer codes used in Safety Analyses and Probabilistic Risk Assessment (PRA) for the operation of the Savannah River Site (SRS) reactors has been prepared. An action matrix, checklists, and a time schedule have been included in the plan. These items identify what is required to achieve certification of the codes. A list of Safety Analysis and Probabilistic Risk Assessment (SA ampersand PRA) computer codes covered by the certification plan has been assembled. A description of each of the codes was provided in Reference 4. The action matrix for the configuration control plan identifies code specific requirements that need to be met to achieve the certification plan's objectives. The checklist covers the specific procedures that are required to support the configuration control effort and supplement the software life cycle procedures based on QAP 20-1 (Reference 7). A qualification checklist for users establishes the minimum prerequisites and training for achieving levels of proficiency in using configuration controlled codes for critical parameter calculations

  7. Krsko NPP Periodic Safety Review program

    International Nuclear Information System (INIS)

    Basic, I.; Spiler, J.; Novsak, M.

    2001-01-01

    The need for conducting a Periodic Safety Review for the Krsko NPP has been clearly recognized both by the NEK and the regulator (SNSA). The PSR would be highly desirable both in the light of current trends in safety oversight practices and because of many benefits it is capable to provide. On January 11, 2001 the SNSA issued a decision requesting the Krsko NPP to prepare a program and determine a schedule for the implementation of the program for 'Periodic Safety Review of NPP Krsko'. The program, which is required to be in accordance with the IAEA safety philosophy and with the EU practice, was submitted for the approval to the SNSA by the end of March 2001. The paper summarizes Krsko NPP Periodic Safety Review Program [1] including implemented SNSA and IAEA Expert Mission comments.(author)

  8. Spent Nuclear Fuel Project Safety Management Plan

    International Nuclear Information System (INIS)

    Garvin, L.J.

    1996-02-01

    The Spent Nuclear Fuel Project Safety Management Plan describes the new nuclear facility regulatory requirements basis for the Spemt Nuclear Fuel (SNF) Project and establishes the plan to achieve compliance with this basis at the new SNF Project facilities

  9. DOE Region 6 Radiological Assistance Program plan. Revision 1

    International Nuclear Information System (INIS)

    Jakubowski, F.M.

    1995-11-01

    The US Department of Energy (DOE) has sponsored a Radiological Assistance Program (RAP) since the 1950's. The RAP is designed to make DOE resources available to other DOE facilities, state, tribal, local, private businesses, and individuals for the explicit purpose of assisting during radiological incidents. The DOE has an obligation, through the Atomic Energy Act of 1954, as amended, to provide resources through the Federal Radiological Emergency Response Plan (FRERP, Nov. 1985) in the event of a radiological incident. Toward this end, the RAP program is implemented on a regional basis, and has planned for an incremental response capability with regional coordination between states and DOE response elements. This regional coordination is intended to foster a working relationship between DOE radiological assistance elements and those state, tribal, and local agencies responsible for first response to protect public health and safety

  10. Sanitation health risk and safety planning in urban residential ...

    African Journals Online (AJOL)

    The aim of this review paper was to determine the best sanitation health risk and safety planning approach for sustainable management of urban environment. This was achieved by reviewing the concept of sanitation safety planning as a tool. The review adopted exploratory research approach and used secondary data ...

  11. Westinghouse Hanford Company safety analysis reports and technical safety requirements upgrade program

    International Nuclear Information System (INIS)

    Busche, D.M.

    1995-09-01

    During Fiscal Year 1992, the US Department of Energy, Richland Operations Office (RL) separately transmitted the following US Department of Energy (DOE) Orders to Westinghouse Hanford Company (WHC) for compliance: DOE 5480.21, ''Unreviewed Safety Questions,'' DOE 5480.22, ''Technical Safety Requirements,'' and DOE 5480.23, ''Nuclear Safety Analysis Reports.'' WHC has proceeded with its impact assessment and implementation process for the Orders. The Orders are closely-related and contain some requirements that are either identical, similar, or logically-related. Consequently, WHC has developed a strategy calling for an integrated implementation of the three Orders. The strategy is comprised of three primary objectives, namely: Obtain DOE approval of a single list of DOE-owned and WHC-managed Nuclear Facilities, Establish and/or upgrade the ''Safety Basis'' for each Nuclear Facility, and Establish a functional Unreviewed Safety Question (USQ) process to govern the management and preservation of the Safety Basis for each Nuclear Facility. WHC has developed policy-revision and facility-specific implementation plans to accomplish near-term tasks associated with the above strategic objectives. This plan, which as originally submitted in August 1993 and approved, provided an interpretation of the new DOE Nuclear Facility definition and an initial list of WHC-managed Nuclear Facilities. For each current existing Nuclear Facility, existing Safety Basis documents are identified and the plan/status is provided for the ISB. Plans for upgrading SARs and developing TSRs will be provided after issuance of the corresponding Rules

  12. The Norwegian Plan of Action for nuclear safety issues

    International Nuclear Information System (INIS)

    1997-07-01

    The Plan of Action underlies Norwegian activities in the field of international co-operation to enhance nuclear safety and prevent radioactive contamination from activities in Eastern Europe and the former Soviet Union. Geographically the highest priority has been given to support for safety measures in north-west Russia. This information brochure outlines the main content of the Plan of Action for nuclear safety issues and lists a number of associated measures and projects

  13. The Norwegian Plan of Action for nuclear safety issues

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The Plan of Action underlies Norwegian activities in the field of international co-operation to enhance nuclear safety and prevent radioactive contamination from activities in Eastern Europe and the former Soviet Union. Geographically the highest priority has been given to support for safety measures in north-west Russia. This information brochure outlines the main content of the Plan of Action for nuclear safety issues and lists a number of associated measures and projects.

  14. Aviation Safety/Automation Program Conference

    Science.gov (United States)

    Morello, Samuel A. (Compiler)

    1990-01-01

    The Aviation Safety/Automation Program Conference - 1989 was sponsored by the NASA Langley Research Center on 11 to 12 October 1989. The conference, held at the Sheraton Beach Inn and Conference Center, Virginia Beach, Virginia, was chaired by Samuel A. Morello. The primary objective of the conference was to ensure effective communication and technology transfer by providing a forum for technical interchange of current operational problems and program results to date. The Aviation Safety/Automation Program has as its primary goal to improve the safety of the national airspace system through the development and integration of human-centered automation technologies for aircraft crews and air traffic controllers.

  15. Equipment qualification research program: program plan

    International Nuclear Information System (INIS)

    Dong, R.G.; Smith, P.D.

    1982-01-01

    The Lawrence Livermore National Laboratory (LLNL) under the sponsorship of the US Nuclear Regulatory Commission (NRC) has developed this program plan for research in equipment qualification (EQA). In this report the research program which will be executed in accordance with this plan will be referred to as the Equipment Qualification Research Program (EQRP). Covered are electrical and mechanical equipment under the conditions described in the OBJECTIVE section of this report. The EQRP has two phases; Phase I is primarily to produce early results and to develop information for Phase II. Phase I will last 18 months and consists of six projects. The first project is program management. The second project is responsible for in-depth evaluation and review of EQ issues and EQ processes. The third project is responsible for detailed planning to initiate Phase II. The remaining three projects address specific equipment; i.e., valves, electrical equipment, and a pump

  16. AEC controlled area safety program

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, D W [Nevada Operations Office, Atomic Energy Commission, Las Vegas, NV (United States)

    1969-07-01

    The detonation of underground nuclear explosives and the subsequent data recovery efforts require a comprehensive pre- and post-detonation safety program for workers within the controlled area. The general personnel monitoring and environmental surveillance program at the Nevada Test Site are presented. Some of the more unusual health-physics aspects involved in the operation of this program are also discussed. The application of experience gained at the Nevada Test Site is illustrated by description of the on-site operational and safety programs established for Project Gasbuggy. (author)

  17. AEC controlled area safety program

    International Nuclear Information System (INIS)

    Hendricks, D.W.

    1969-01-01

    The detonation of underground nuclear explosives and the subsequent data recovery efforts require a comprehensive pre- and post-detonation safety program for workers within the controlled area. The general personnel monitoring and environmental surveillance program at the Nevada Test Site are presented. Some of the more unusual health-physics aspects involved in the operation of this program are also discussed. The application of experience gained at the Nevada Test Site is illustrated by description of the on-site operational and safety programs established for Project Gasbuggy. (author)

  18. Planning integration FY 1996 program plan. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    This Multi-Year Program Plan (MAP) Planning Integration Program, Work Breakdown Structure (WBS) Element 1.8.2, is the primary management tool to document the technical, schedule, and cost baseline for work directed by the US Department of Energy (DOE), Richland Operations Office (RL). As an approved document, it establishes an agreement between RL and the performing contractors for the work to be performed. It was prepared by Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratory (PNL). The MYPPs for the Hanford Site programs are to provide a picture from fiscal year (FY) 1996 through FY 2002. At RL Planning and Integration Division (PID) direction, only the FY 1996 Planning Integration Program work scope has been planned and presented in this MAP. Only those known significant activities which occur after FY 1996 are portrayed in this MAP. This is due to the uncertainty of who will be accomplishing what work scope when, following the award of the Management and Integration (M ampersand I) contract

  19. Program Planning in Health Professions Education

    Science.gov (United States)

    Schmidt, Steven W.; Lawson, Luan

    2018-01-01

    In this chapter, the major concepts from program planning in adult education will be applied to health professions education (HPE). Curriculum planning and program planning will be differentiated, and program development and planning will be grounded in a systems thinking approach.

  20. Fiscal year 1987 program plan

    International Nuclear Information System (INIS)

    1986-12-01

    The Defense TRU Waste Program (DTWP) is the focal point for the Department of Energy in national planning, integration, operation, and technical development for TRU waste management. The scope of this program extends from the point of TRU waste generation through delivery to a permanent repository. The TRU program maintains a close interface with repository development to ensure program compatibility and coordination. The defense TRU program does not directly address commercial activities that generate TRU waste. Instead, it is concerned with providing alternatives to manage existing and future defense TRU wastes. The FY 87 Program Plan is consistent with the Defense TRU Waste Program goals and objectives stated in the Defense Transuranic Waste Program Strategy Document, January 1984. The roles of participants, the responsibilities and authorities for Operations, and Research ampersand Development (R ampersand D), the organizational interfaces and communication channels for R ampersand D and the establishment of procedures for planning, reporting, and budgeting of Operations and R ampersand D activities meet requirements stated in the Technical Management Plan for the Transuranic Waste Management Program. Detailed budget planning (i.e., programmatic funding and capital equipment) is presented for FY 87; outyear budget projections are presented for future years

  1. HSE Nuclear Safety Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Bagley, M.J. [Health and Safety Executive, Sheffield (United Kingdom)

    1995-12-31

    HSE funds two programmes of nuclear safety research: a programme of {approx} 2.2M of extramural research to support the Nuclear Safety Division`s regulatory activities and a programme of {approx} 11M of generic safety research managed by the Nuclear Safety Research Management Unit (NSRMU) in Sheffield, UK. This paper is concerned only with the latter programme; it describes how it is planned and procured and outlines some of the work on structural integrity problems. It also describes the changes that are taking place in the way nuclear safety research is procured in the UK. (author).

  2. HSE Nuclear Safety Research Program

    International Nuclear Information System (INIS)

    Bagley, M.J.

    1995-01-01

    HSE funds two programmes of nuclear safety research: a programme of ∼ 2.2M of extramural research to support the Nuclear Safety Division's regulatory activities and a programme of ∼ 11M of generic safety research managed by the Nuclear Safety Research Management Unit (NSRMU) in Sheffield, UK. This paper is concerned only with the latter programme; it describes how it is planned and procured and outlines some of the work on structural integrity problems. It also describes the changes that are taking place in the way nuclear safety research is procured in the UK. (author)

  3. 78 FR 51754 - Request To Modify License by Replacing Security Plan With New Radiation Safety Plan; U.S...

    Science.gov (United States)

    2013-08-21

    ... Replacing Security Plan With New Radiation Safety Plan; U.S. Department of the Army, Jefferson Proving... security plan with a new radiation safety plan. DATES: Submit comments by September 20, 2013. Requests for.... The proposed change is to modify License Condition No. 12 D which refers to the security plan of...

  4. Safety research plan, JFY 2013 edition

    International Nuclear Information System (INIS)

    2013-09-01

    As for the regulatory issues the governments or JNES considered necessary, JNES had updated every year 'safety research plan' in respective research areas necessary for solving the regulatory issues (safety research needs) and was conducting safety research to obtain the results, etc. 'Safety research plan, JFY 2013 Edition' was compiled aiming at promotion of appropriate reflection and flexible application of research achievements for tacking the regulatory issues taking account of importance and urgency dependent on trend of nuclear safety regulations as well as collective management of safety research and safety survey. 5 new research projects were established with 4 unified research projects and 6 terminated research projects. Finally modified safety research areas, subjects and research projects, JFY 2013 Edition were as follows: design review of nuclear power plant (7 subjects and each subject having several research projects totaled 19), control management of nuclear power plant (one subject having 4 research projects), nuclear fuel cycle (2 subjects and each subject having several research projects totaled 4), nuclear fuel cycle backend (2 subjects and each subject having several research projects totaled 5), nuclear emergency preparedness and response (3 subjects and each subject having several research projects totaled 7) and bases of nuclear safety technology (3 subjects and each subject having several research projects totaled 6). Safety reviews consisted of 6 projects in 3 areas extracting the regulatory issues. As for urgent research projects on the basis of the disaster at Fukushima Daiichi NPP accident, 7 research projects in 4 urgent subjects were as follows: examination for new safety regulation (4 research projects generalized in the above research projects), development of newly necessary evaluation methods (one research project generalized in the above research project), evaluation of the validity for the work for convergence at Fukushima

  5. 20 CFR 632.255 - Program planning.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Program planning. 632.255 Section 632.255... EMPLOYMENT AND TRAINING PROGRAMS Summer Youth Employment and Training Programs § 632.255 Program planning. (a... with its title IV program. (2) Native American grantees shall use the planning process described in...

  6. HAZWOPER work plan and site safety and health plan for the Alpha characterization project at the solid waste storage area 4 bathtubbing trench at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1994-07-01

    This work plan/site safety and health plan is for the alpha sampling project at the Solid Waste Storage Area 4 bathtubbing trench. The work will be conducted by the Oak Ridge National Laboratory (ORNL) Environmental Sciences Division and associated ORNL environmental, safety, and health support groups. This activity will fall under the scope of 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response (HAZWOPER). The purpose of this document is to establish health and safety guidelines to be followed by all personnel involved in conducting work for this project. Work will be conducted in accordance with requirements as stipulated in the ORNL HAZWOPER Program Manual and applicable ORNL; Martin Marietta Energy Systems, Inc.; and U.S. Department of Energy policies and procedures. The levels of protection and the procedures specified in this plan are based on the best information available from historical data and preliminary evaluations of the area. Therefore, these recommendations represent the minimum health and safety requirements to be observed by all personnel engaged in this project. Unforeseeable site conditions or changes in scope of work may warrant a reassessment of the stated protection levels and controls. All adjustments to the plan must have prior approval by the safety and health disciplines signing the original plan

  7. Nordic nuclear safety research. Summary report for 1995. Plans for 1996 and 1997

    International Nuclear Information System (INIS)

    1996-04-01

    NKS (Nordic Nuclear Safety Research) is a cooperative body in nuclear safety and radiation protection. Its purpose is to carry out cost-effective Nordic projects, thus producing research results, exercises, information, recommendations, manuals and other types of background material, to be used by decision makers and other concerned staff members at authorities and within the nuclear industry. This is the annual report for 1995. The report also contains plans for the rest of the program period. The program comprises four major fields of research: reactor safety; radioactive waste; radioecology; and emergency preparedness. Finland and Sweden presently operate a total of 16 power producing reactors. Denmark, Norway and Sweden operate research reactors. There is a plant for nuclear fuel manufacture in Sweden. All five Nordic countries have intermediate waste storage facilities. In addition, there are a number of power, research and naval reactors and other nuclear installations in Nordic surroundings, both in Eastern and Western Europe. Hence, nuclear safety, radiation protection, waste management, environmental impact and emergency preparedness issues are of common interest to all Nordic countries. Environmental impact of radioactive releases is studied in two radioecology projects. The project on marine radioecology, including sediment research (EKO-1), includes sampling, analysis and modeling. These are also key issues in the project on long ecological half-lives in semi-natural systems (EKO-2). The transfer of the seven presently ongoing projects are summarized in this report by the project leaders, both in terms of results in 1995 and plans for 1996/97. (EG)

  8. Highway Safety Program Manual: Volume 8: Alcohol in Relation to Highway Safety.

    Science.gov (United States)

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    Volume 8 of the 19-volume Highway Safety Program Manual (which provides guidance to State and local governments on preferred highway safety practices) concentrates on alcohol in relation to highway safety. The purpose and objectives of the alcohol program are outlined. Federal authority in the area of highway safety and general policies regarding…

  9. Groundwater protection management program plan

    International Nuclear Information System (INIS)

    1992-06-01

    US Department of Energy (DOE) Order 5400.1 requires the establishment of a groundwater protection management program to ensure compliance with DOE requirements and applicable Federal, state, and local laws and regulations. The Uranium Mill Tailings Remedial Action (UMTRA) Project Office has prepared a ''Groundwater Protection Management Program Plan'' (groundwater protection plan) of sufficient scope and detail to reflect the program's significance and address the seven activities required in DOE Order 5400.1, Chapter 3, for special program planning. The groundwater protection plan highlights the methods designed to preserve, protect, and monitor groundwater resources at UMTRA Project processing and disposal sites. The plan includes an overview of the remedial action status at the 24 designated processing sites and identifies project technical guidance documents and site-specific documents for the UMTRA groundwater protection management program. In addition, the groundwater protection plan addresses the general information required to develop a water resources protection strategy at the permanent disposal sites. Finally, the plan describes ongoing activities that are in various stages of development at UMTRA sites (long-term care at disposal sites and groundwater restoration at processing sites). This plan will be reviewed annually and updated every 3 years in accordance with DOE Order 5400.1

  10. Implementation of a Radiological Safety Coach program

    Energy Technology Data Exchange (ETDEWEB)

    Konzen, K.K. [Safe Sites of Colorado, Golden, CO (United States). Rocky Flats Environmental Technology Site; Langsted, J.M. [M.H. Chew and Associates, Golden, CO (United States)

    1998-02-01

    The Safe Sites of Colorado Radiological Safety program has implemented a Safety Coach position, responsible for mentoring workers and line management by providing effective on-the-job radiological skills training and explanation of the rational for radiological safety requirements. This position is significantly different from a traditional classroom instructor or a facility health physicist, and provides workers with a level of radiological safety guidance not routinely provided by typical training programs. Implementation of this position presents a challenge in providing effective instruction, requiring rapport with the radiological worker not typically developed in the routine radiological training environment. The value of this unique training is discussed in perspective with cost-savings through better radiological control. Measures of success were developed to quantify program performance and providing a realistic picture of the benefits of providing one-on-one or small group training. This paper provides a description of the unique features of the program, measures of success for the program, a formula for implementing this program at other facilities, and a strong argument for the success (or failure) of the program in a time of increased radiological safety emphasis and reduced radiological safety budgets.

  11. Implementation of a Radiological Safety Coach program

    International Nuclear Information System (INIS)

    Konzen, K.K.

    1998-01-01

    The Safe Sites of Colorado Radiological Safety program has implemented a Safety Coach position, responsible for mentoring workers and line management by providing effective on-the-job radiological skills training and explanation of the rational for radiological safety requirements. This position is significantly different from a traditional classroom instructor or a facility health physicist, and provides workers with a level of radiological safety guidance not routinely provided by typical training programs. Implementation of this position presents a challenge in providing effective instruction, requiring rapport with the radiological worker not typically developed in the routine radiological training environment. The value of this unique training is discussed in perspective with cost-savings through better radiological control. Measures of success were developed to quantify program performance and providing a realistic picture of the benefits of providing one-on-one or small group training. This paper provides a description of the unique features of the program, measures of success for the program, a formula for implementing this program at other facilities, and a strong argument for the success (or failure) of the program in a time of increased radiological safety emphasis and reduced radiological safety budgets

  12. PFR/TREAT program: objectives, accomplishments, and plans

    International Nuclear Information System (INIS)

    Cowking, C.B.; Alter, H.; Stillwell, J.; Wood, M.H.; Woods, W.J.; Culley, G.E.; Klickman, A.E.; Borys, S.S.

    1984-01-01

    The PFR-TREAT collaborative program of transient safety testing of fast reactor fuel was established in 1979 to provide mutual advantage to USDOE and the UKAEA through irradiation of US and UK full-length fuel pins in PFR, followed by safety testing in TREAT. The tests which were planned include Transient Over-Power (TOP) and Transient Under-Cooling with Over-Power (TUCOP) tests to fuel destruction and re-distribution; the results will provide significant new information on fuel and cladding behavior in hypothetical reactor faults. The information obtained in both US and UK fuel pins is to be interpreted by both partners and published jointly when mutually agreed. Thirteen tests, on fresh and irradiated fuel, in single-pin and 7-pin test sections, were completed by the end of 1983. The test matrix, which is currently being re-evaluated, calls for additional tests to be run under the present agreement. There has been an extensive program of post irradiation examination of sibling pins in both the UK and the US to characterize the test fuel prior to destructive irradiation, including testing of irradiated cladding to determine its failure characteristics

  13. 49 CFR 244.11 - Contents of a Safety Integration Plan.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Contents of a Safety Integration Plan. 244.11 Section 244.11 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION REGULATIONS ON SAFETY INTEGRATION PLANS GOVERNING RAILROAD...

  14. US Nuclear Regulatory Commission Human Factors Program Plan. Revision 1

    International Nuclear Information System (INIS)

    1984-09-01

    The purpose of the NRC Human Factors Program Plan (NUREG-0985) is to ensure that proper consideration is given to human factors in the design, operation, and maintenance of nuclear facilities. This revised plan addresses nuclear power plants (NPPs) and describes (1) the technical assistance and research activities planned to provide the technical bases for the resolution of the remaining human factors related tasks described in NUREG-0660, THE NRC Action Plan developed as a result of the TMI-2 Accident, and NUREG-0737, Clarification of TMI Action Plan Requirements; (2) the additional human factors efforts identified during implementation of the Action Plan that should receive NRC attention; (3) conduct of developmental activities specified in NUREG-0985 during FY-83; and (4) the impact of Section 306 of the Nuclear Waste Policy Act of 1982, PL 97-425. The plan represents a systematic and comprehensive approach for addressing human factors concerns important to NPP safety in the FY-84 through FY-86 time frame

  15. Environmental, Safety, and Health Plan for the remedial investigation of the liquid low-level waste tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-09-01

    The Environmental, Safety, and Health (ES ampersand H) Plan presents the concepts and methodologies to be used during the Oak Ridge National Laboratory (ORNL) RI/FS project to protect the health and safety of employees, the public, and the environment. The ES ampersand H Plan acts as a management extension for ORNL and Energy Systems to direct and control implementation of the project ES ampersand H program. This report describes the program philosophy, requirements, quality assurance measures, and methods for applying the ES ampersand H program to individual task remedial investigations, project facilities, and other major tasks assigned to the project

  16. Sign up to Safety: developing a safety improvement plan.

    Science.gov (United States)

    Dight, Carol; Peters, Hayley

    2015-04-01

    The Sign up to Safety (SutS) programme was launched in June 2014 by health secretary Jeremy Hunt. It focuses on listening to patients, carers and staff, learning from what they say when things go wrong, and then taking action to improve patient safety. The programme aims to make the NHS the safest healthcare system in the world by creating a culture devoted to continuous learning and improvement (NHS England 2014). Musgrove Park Hospital, part of Taunton and Somerset NHS Foundation Trust, was one of 12 NHS organisations that signed up to the SutS programme, making public its commitment to the national pledges to be 'open and transparent' and to develop a safety improvement plan. This paper describes the development of the strategy.

  17. 45 CFR 1355.35 - Program improvement plans.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Program improvement plans. 1355.35 Section 1355.35... plans. (a) Mandatory program improvement plan. (1) States found not to be operating in substantial conformity shall develop a program improvement plan. The program improvement plan must: (i) Be developed...

  18. The Emergency Action Plan of the Spanish Nuclear Safety Council (CSN)

    International Nuclear Information System (INIS)

    Calvin Cuarteto, M.; Camarma, J. R.; Martin Calvarro, J. M

    2007-01-01

    The Spanish Nuclear safety Council (CSN) has assigned by law among others the function to coordinate the measures of support and answer to nuclear emergency situations for all the aspects related with nuclear safety and radiological protection. Integrating and coordinating the different organisations public and private companies whose aid is necessary for the fulfilment of the functions attributed to the Regulatory Body. In order to suitable perform this function, CSN has equipped itself with an Emergency Action Plan that structures the response organization, establishes responsibility levels, incorporates basic performance procedures and includes capabilities to face the nuclear and radiological emergencies considering the external supports, resulting from the collaboration agreements with public institutions and private companies. To accomplish the above mentioned Emergency Action Plan, CSN has established and implanted a formation and training and re-training program for the organization response for emergencies and has update an operative centre (Emergency Room called Salem), equipped with infrastructures, tools and communication and operative systems that incorporate the more advanced technologies available to date. (Author)

  19. IAEA Sets Up Team to Drive Nuclear Safety Action Plan

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: The International Atomic Energy Agency is setting up a Nuclear Safety Action Team to oversee prompt implementation of the IAEA Action Plan on Nuclear Safety and ensure proper coordination among all stakeholders. The 12-point Action Plan, drawn up in the wake of the Fukushima Daiichi accident, was approved by the Agency's Board of Governors on 13 September and endorsed by all 151 Member States at its General Conference last week. The team will work within the Agency's Department of Nuclear Safety and Security, headed by Deputy Director General Denis Flory, and will coordinate closely with the Director General's Office for Policy. ''The Action Plan requires immediate follow-up,'' Director General Yukiya Amano said. ''This compact, dedicated team will assist Deputy Director General Flory in implementing the measures agreed in the Action Plan.'' Gustavo Caruso, Head of the Regulatory Activities Section in the IAEA's Division of Installation Safety, has been designated as the team's Special Coordinator for the implementation of the Action Plan. The IAEA has already started implementing its responsibilities under the Action Plan, including development of an IAEA methodology for stress tests for nuclear power plants. The methodology will be ready in October. (IAEA)

  20. Human Factors Regulatory Research Program Plan, FY 1989--FY 1992

    International Nuclear Information System (INIS)

    Coffman, F.; Persensky, J.; Ryan, T.; Ramey-Smith, A.; Goodman, C.; Serig, D.; Trager, E; Nuclear Regulatory Commission, Washington, DC; Nuclear Regulatory Commission, Washington, DC; Nuclear Regulatory Commission, Washington, DC

    1989-10-01

    This report describes the currently ongoing (FY 1989) and planned (FY 1989-1992) Human Factors Regulatory Research Program in the NRC Office of Nuclear Regulatory Research (RES). Examples of the influence of human factors on nuclear safety are presented, and the role of personnel is discussed. Current regulatory issues associated with human factors in the nuclear system and the purpose of the research plan are provided. The report describes the research process applied to the human factors research issues and the program activities: Personnel Performance Measurement, Personnel Subsystem, Human-System Interface. Organization and Management, and Reliability Assessment. The research being conducted within each activity is summarized along with the objectives, background information, and expected regulatory products. Budget and personnel forecasts are provided along with a summary of contractors performing some of the ongoing research. Appendices contain a chronology of human factors research at NRC, a description of the research approach, an update on human factors programs and initiatives in RES and other NRC offices, and the integration among these programs. 46 refs., 5 tabs

  1. Validation and verification plan for safety and PRA codes

    International Nuclear Information System (INIS)

    Ades, M.J.; Crowe, R.D.; Toffer, H.

    1991-04-01

    This report discusses a verification and validation (V ampersand V) plan for computer codes used for safety analysis and probabilistic risk assessment calculations. The present plan fulfills the commitments by Westinghouse Savannah River Company (WSRC) to the Department of Energy Savannah River Office (DOE-SRO) to bring the essential safety analysis and probabilistic risk assessment codes in compliance with verification and validation requirements

  2. Implementing corporate wellness programs: a business approach to program planning.

    Science.gov (United States)

    Helmer, D C; Dunn, L M; Eaton, K; Macedonio, C; Lubritz, L

    1995-11-01

    1. Support of key decision makers is critical to the successful implementation of a corporate wellness program. Therefore, the program implementation plan must be communicated in a format and language readily understood by business people. 2. A business approach to corporate wellness program planning provides a standardized way to communicate the implementation plan. 3. A business approach incorporates the program planning components in a format that ranges from general to specific. This approach allows for flexibility and responsiveness to changes in program planning. 4. Components of the business approach are the executive summary, purpose, background, ground rules, approach, requirements, scope of work, schedule, and financials.

  3. GSG-GIS development program plan

    International Nuclear Information System (INIS)

    Lee, R.C.

    1992-01-01

    For the past 40 years, the Savannah River Site (SRS) has been subjected to numerous geological and geotechnical investigations in support of facility construction and waste site development and remediation. Over this period,.a variety of different subcontractors have collected large quantities of geoscience data. In addition, current programs involve numerous investigators from different departments, and consequently, earth science data and interpretations are scattered among the departments, investigators, and subcontractors at SRS. As a result, scientific and management decisions cannot take advantage of the significant body of information that exists at SRS. Recent DOE Orders (Systematic Evaluation Program, 1991) have put specific requirements on their contractors to compile geological databases to coordinate DOE site data gathering and interpretations, and to assist in compiling safety analysis reports. The Earth Science Advisory Committee and the Environmental Advisory Committee have also made specific recommendations on the management of SRS geoscience data. This plan describes a management system to identify, communicate, and compile SRS geological (including geohydrologic), seismological, and geotechnical (656) data and interpretations on a Geographic Information System (GIS)

  4. Hawaii State Plan for Occupational Safety and Health. Final rule.

    Science.gov (United States)

    2012-09-21

    This document announces the Occupational Safety and Health Administration's (OSHA) decision to modify the Hawaii State Plan's ``final approval'' determination under Section 18(e) of the Occupational Safety and Health Act (the Act) and to transition to ``initial approval'' status. OSHA is reinstating concurrent federal enforcement authority over occupational safety and health issues in the private sector, which have been solely covered by the Hawaii State Plan since 1984.

  5. Canadian Nuclear Safety Commission 2003-2004 estimates. Part III - report on plans and priorities

    International Nuclear Information System (INIS)

    2003-01-01

    The Commission replace the Atomic Energy Control Board in 2000 as Canada's independent agency which regulates the use of nuclear energy and materials to protect health, safety, security, and the environment. This report is an individual expenditure plan that provides details on a business line basis and contains information on objectives, initiatives, and planned results, including links to related resource requirements over a three-year period. It also provides details on human resource requirements, major capital projects, grants and contributions, and net program costs. Introductory sections with a minister's message are followed by sections giving a departmental or organization overview; plans, results, activities, resources, and initiatives, as applicable; and financial information

  6. 77 FR 42462 - Hawaii State Plan for Occupational Safety and Health; Proposed Modification of 18(e) Plan Approval

    Science.gov (United States)

    2012-07-19

    ... DEPARTMENT OF LABOR Occupational Safety and Health Administration 29 CFR Part 1952 [Docket ID. OSHA 2012-0029] RIN 1218-AC78 Hawaii State Plan for Occupational Safety and Health; Proposed Modification of 18(e) Plan Approval AGENCY: Occupational Safety and Health Administration (OSHA), Department of...

  7. Safety demonstration test (SR-1/S1C-1) plan of HTTR (Contract research)

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Shigeaki; Sakaba, Nariaki; Takada, Eiji; Tachibana, Yukio; Saito, Kenji; Furusawa, Takayuki; Sawa, Kazuhiro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2003-03-01

    Safety demonstration tests in the HTTR (High Temperature Engineering Test Reactor) will be carried out in order to verify inherent safety features of the HTGR (High Temperature Gas-cooled Reactor). The first phase of the safety demonstration tests includes the reactivity insertion test by the control rod withdrawal and the coolant flow reduction test by the circulator trip. In the second phase, accident simulation tests will be conducted. By comparison of their experimental and analytical results, the prediction capability of the safety evaluation codes such as the core and the plant dynamics codes will be improved and verified, which will contribute to establish the safety design and the safety evaluation technologies of the HTGRs. The results obtained through its safety demonstration tests will be also utilised for the establishment of the safety design guideline, the safety evaluation guideline, etc. This paper describes the test program of the overall safety demonstration tests and the test method, the test conditions and the results of the pre-test analysis of the reactivity insertion test and the partial gas circulator trip test planned in March 2003. (author)

  8. New Production Reactors Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    Part I of this New Production Reactors (NPR) Program Plan: describes the policy basis of the NPR Program; describes the mission and objectives of the NPR Program; identifies the requirements that must be met in order to achieve the mission and objectives; and describes and assesses the technology and siting options that were considered, the Program's preferred strategy, and its rationale. The implementation strategy for the New Production Reactors Program has three functions: Linking the design, construction, operation, and maintenance of facilities to policies requirements, and the process for selecting options. The development of an implementation strategy ensures that activities and procedures are consistent with the rationale and analysis underlying the Program. Organization of the Program. The strategy establishes plans, organizational structure, procedures, a budget, and a schedule for carrying out the Program. By doing so, the strategy ensures the clear assignment of responsibility and accountability. Management and monitoring of the Program. Finally, the strategy provides a basis for monitoring the Program so that technological, cost, and scheduling issues can be addressed when they arise as the Program proceeds. Like the rest of the Program Plan, the Implementation Strategy is a living document and will be periodically revised to reflect both progress made in the Program and adjustments in plans and policies as they are made. 21 figs., 5 tabs.

  9. New Production Reactors Program Plan

    International Nuclear Information System (INIS)

    1990-12-01

    Part I of this New Production Reactors (NPR) Program Plan: describes the policy basis of the NPR Program; describes the mission and objectives of the NPR Program; identifies the requirements that must be met in order to achieve the mission and objectives; and describes and assesses the technology and siting options that were considered, the Program's preferred strategy, and its rationale. The implementation strategy for the New Production Reactors Program has three functions: Linking the design, construction, operation, and maintenance of facilities to policies requirements, and the process for selecting options. The development of an implementation strategy ensures that activities and procedures are consistent with the rationale and analysis underlying the Program. Organization of the Program. The strategy establishes plans, organizational structure, procedures, a budget, and a schedule for carrying out the Program. By doing so, the strategy ensures the clear assignment of responsibility and accountability. Management and monitoring of the Program. Finally, the strategy provides a basis for monitoring the Program so that technological, cost, and scheduling issues can be addressed when they arise as the Program proceeds. Like the rest of the Program Plan, the Implementation Strategy is a living document and will be periodically revised to reflect both progress made in the Program and adjustments in plans and policies as they are made. 21 figs., 5 tabs

  10. 12 CFR 30.4 - Filing of safety and soundness compliance plan.

    Science.gov (United States)

    2010-01-01

    ... steps the bank will take to correct the deficiency and the time within which those steps will be taken. (c) Review of safety and soundness compliance plans. Within 30 days after receiving a safety and... AND SOUNDNESS STANDARDS § 30.4 Filing of safety and soundness compliance plan. (a) Schedule for filing...

  11. Simplifying documentation while approaching site closure: integrated health and safety plans as documented safety analysis

    International Nuclear Information System (INIS)

    Brown, Tulanda

    2003-01-01

    At the Fernald Closure Project (FCP) near Cincinnati, Ohio, environmental restoration activities are supported by Documented Safety Analyses (DSAs) that combine the required project-specific Health and Safety Plans, Safety Basis Requirements (SBRs), and Process Requirements (PRs) into single Integrated Health and Safety Plans (I-HASPs). By isolating any remediation activities that deal with Enriched Restricted Materials, the SBRs and PRs assure that the hazard categories of former nuclear facilities undergoing remediation remain less than Nuclear. These integrated DSAs employ Integrated Safety Management methodology in support of simplified restoration and remediation activities that, so far, have resulted in the decontamination and demolition (D and D) of over 150 structures, including six major nuclear production plants. This paper presents the FCP method for maintaining safety basis documentation, using the D and D I-HASP as an example

  12. NASA Aviation Safety Program Systems Analysis/Program Assessment Metrics Review

    Science.gov (United States)

    Louis, Garrick E.; Anderson, Katherine; Ahmad, Tisan; Bouabid, Ali; Siriwardana, Maya; Guilbaud, Patrick

    2003-01-01

    The goal of this project is to evaluate the metrics and processes used by NASA's Aviation Safety Program in assessing technologies that contribute to NASA's aviation safety goals. There were three objectives for reaching this goal. First, NASA's main objectives for aviation safety were documented and their consistency was checked against the main objectives of the Aviation Safety Program. Next, the metrics used for technology investment by the Program Assessment function of AvSP were evaluated. Finally, other metrics that could be used by the Program Assessment Team (PAT) were identified and evaluated. This investigation revealed that the objectives are in fact consistent across organizational levels at NASA and with the FAA. Some of the major issues discussed in this study which should be further investigated, are the removal of the Cost and Return-on-Investment metrics, the lack of the metrics to measure the balance of investment and technology, the interdependencies between some of the metric risk driver categories, and the conflict between 'fatal accident rate' and 'accident rate' in the language of the Aviation Safety goal as stated in different sources.

  13. Determination of Safety Performance Grade of NPP Using Integrated Safety Performance Assessment (ISPA) Program

    International Nuclear Information System (INIS)

    Chung, Dae Wook

    2011-01-01

    Since the beginning of 2000, the safety regulation of nuclear power plant (NPP) has been challenged to be conducted more reasonable, effective and efficient way using risk and performance information. In the United States, USNRC established Reactor Oversight Process (ROP) in 2000 for improving the effectiveness of safety regulation of operating NPPs. The main idea of ROP is to classify the NPPs into 5 categories based on the results of safety performance assessment and to conduct graded regulatory programs according to categorization, which might be interpreted as 'Graded Regulation'. However, the classification of safety performance categories is highly comprehensive and sensitive process so that safety performance assessment program should be prepared in integrated, objective and quantitative manner. Furthermore, the results of assessment should characterize and categorize the actual level of safety performance of specific NPP, integrating all the substantial elements for assessing the safety performance. In consideration of particular regulatory environment in Korea, the integrated safety performance assessment (ISPA) program is being under development for the use in the determination of safety performance grade (SPG) of a NPP. The ISPA program consists of 6 individual assessment programs (4 quantitative and 2 qualitative) which cover the overall safety performance of NPP. Some of the assessment programs which are already implemented are used directly or modified for incorporating risk aspects. The others which are not existing regulatory programs are newly developed. Eventually, all the assessment results from individual assessment programs are produced and integrated to determine the safety performance grade of a specific NPP

  14. Pressure Safety Program Implementation at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Lower, Mark [ORNL; Etheridge, Tom [ORNL; Oland, C. Barry [XCEL Engineering, Inc.

    2013-01-01

    The Oak Ridge National Laboratory (ORNL) is a US Department of Energy (DOE) facility that is managed by UT-Battelle, LLC. In February 2006, DOE promulgated worker safety and health regulations to govern contractor activities at DOE sites. These regulations, which are provided in 10 CFR 851, Worker Safety and Health Program, establish requirements for worker safety and health program that reduce or prevent occupational injuries, illnesses, and accidental losses by providing DOE contractors and their workers with safe and healthful workplaces at DOE sites. The regulations state that contractors must achieve compliance no later than May 25, 2007. According to 10 CFR 851, Subpart C, Specific Program Requirements, contractors must have a structured approach to their worker safety and health programs that at a minimum includes provisions for pressure safety. In implementing the structured approach for pressure safety, contractors must establish safety policies and procedures to ensure that pressure systems are designed, fabricated, tested, inspected, maintained, repaired, and operated by trained, qualified personnel in accordance with applicable sound engineering principles. In addition, contractors must ensure that all pressure vessels, boilers, air receivers, and supporting piping systems conform to (1) applicable American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (2004) Sections I through XII, including applicable code cases; (2) applicable ASME B31 piping codes; and (3) the strictest applicable state and local codes. When national consensus codes are not applicable because of pressure range, vessel geometry, use of special materials, etc., contractors must implement measures to provide equivalent protection and ensure a level of safety greater than or equal to the level of protection afforded by the ASME or applicable state or local codes. This report documents the work performed to address legacy pressure vessel deficiencies and comply

  15. UMTRA Project Office quality assurance program plan. Revision 6

    International Nuclear Information System (INIS)

    1994-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project was established to accomplish remedial actions at inactive uranium mill tailings sites. The UMTRA Project's mission is to stabilize and control the residual radioactive materials at designated sites in a safe and environmentally sound manner so as to minimize or eliminate radiation health hazards to the public. Because these efforts may involve possible risks to public health and safety, a quality assurance (QA) program that conforms to the applicable criteria has been established to control the quality of the work. This document, the Quality Assurance Program Plan (QAPP), brings into one document the essential criteria to be applied on a selective basis, depending upon the nature of the activity being conducted, and describes how those criteria shall be applied to the UMTRA Project. QA requirements contained in this QAPP shall apply to all personnel, processes, and activities, including planning, scheduling, and cost control, performed by the UMTRA Project Office and its contractors

  16. Bechtel Hanford, Inc./ERC team health and safety plan Environmental Restoration Disposal Facility operations

    International Nuclear Information System (INIS)

    Turney, S.R.

    1996-02-01

    A comprehensive safety and health program is essential for reducing work-related injuries and illnesses while maintaining a safe and health work environment. This document establishes Bechtel Hanford, Inc. (BHI)/Environmental Restoration Contractor (ERC) team requirements, policies, and procedures and provides preliminary guidance to the Environmental Restoration Disposal Facility (ERDF) subcontractor for use in preparing essential safety and health documents. This health and safety plan (HASP) defines potential safety and health issues associated with operating and maintaining the ERDF. A site-specific HASP shall be developed by the ERDF subcontractor and shall be implemented before operations and maintenance work can proceed. An activity hazard analysis (AHA) shall also be developed to provide procedures to identify, assess, and control hazards or potential incidents associated with specific operations and maintenance activities

  17. National Ignition Facility Project Site Safety Program

    International Nuclear Information System (INIS)

    Dun, C

    2003-01-01

    This Safety Program for the National Ignition Facility (NIF) presents safety protocols and requirements that management and workers shall follow to assure a safe and healthful work environment during activities performed on the NIF Project site. The NIF Project Site Safety Program (NPSSP) requires that activities at the NIF Project site be performed in accordance with the ''LLNL ES and H Manual'' and the augmented set of controls and processes described in this NIF Project Site Safety Program. Specifically, this document: (1) Defines the fundamental NIF site safety philosophy. (2) Defines the areas covered by this safety program (see Appendix B). (3) Identifies management roles and responsibilities. (4) Defines core safety management processes. (5) Identifies NIF site-specific safety requirements. This NPSSP sets forth the responsibilities, requirements, rules, policies, and regulations for workers involved in work activities performed on the NIF Project site. Workers are required to implement measures to create a universal awareness that promotes safe practice at the work site and will achieve NIF management objectives in preventing accidents and illnesses. ES and H requirements are consistent with the ''LLNL ES and H Manual''. This NPSSP and implementing procedures (e.g., Management Walkabout, special work procedures, etc.,) are a comprehensive safety program that applies to NIF workers on the NIF Project site. The NIF Project site includes the B581/B681 site and support areas shown in Appendix B

  18. National Evaluation of the Weatherization Assistance Program: Preliminary Evaluation Plan for Program Year 2006

    Energy Technology Data Exchange (ETDEWEB)

    Ternes, Mark P [ORNL; Schweitzer, Martin [ORNL; Tonn, Bruce Edward [ORNL; Schmoyer, Richard L [ORNL; Eisenberg, Joel Fred [ORNL

    2007-02-01

    The U.S. Department of Energy's (DOE's) Weatherization Assistance Program was created by Congress in 1976 under Title IV of the Energy Conservation and Production Act. The purpose and scope of the Program as currently stated in the Code of Federal Regulations (CFR) 10CFR 440.1 is 'to increase the energy efficiency of dwellings owned or occupied by low-income persons, reduce their total residential expenditures, and improve their health and safety, especially low-income persons who are particularly vulnerable such as the elderly, persons with disabilities, families with children, high residential energy users, and households with high energy burden' (Code of Federal Regulations, 2005). DOE sponsored a comprehensive evaluation of the Program in the early 1990's to provide policy makers and program implementers with up-to-date and reliable information they needed for effective decision making and cost-effective operations. Oak Ridge National Laboratory (ORNL) managed the five part study which was based primarily on data from Program Year (PY) 1989 and supplemented by data from 1991-92 (Brown, Berry, and Kinney, 1994). In more recent years, ORNL has conducted four metaevaluations of the Program's energy savings using studies conducted by individual states between the years 1990-1996 (Berry, 1997), 1996-1998 (Schweitzer and Berry, 1999), 1993-2002 (Berry and Schweitzer, 2003), and 1993-2005 (Schweitzer, 2005). DOE announced through its Weatherization Program Notice 05-1 (DOE, 2004) that it would undertake a new national evaluation of the Program because the Program that was evaluated comprehensively in the early 1990's is vastly different from the Program of today. The Program has incorporated new funding sources, management principles, audit procedures, and energy-efficiency measures in response to findings and recommendations resulting from the 1989 National Evaluation, the Weatherization Plus strategic planning process, and other

  19. Yearly plan of safety research on environmental radioactivity for 1996 - 2000

    International Nuclear Information System (INIS)

    1996-01-01

    'Yearly Plan of Safety Research on Environmental Radioactivity' proposed from the special meeting for safety research of environmental radioactivity on December 14, 1995 was investigated by Nuclear Safety Commission. And the safety research of environmental radioactivity in Japan was decided to be pursued according to the plan. The contents of this plan consisted of the purpose and the contents of research as well as the research period and the facilities to be done for each theme. The following themes were included; 1) study on environment·radiation dose and study on radiation exposure reduction. 2) study on biological effects of radiation. 3) study on internal exposure by specified nuclides. 4) study on medical measures for acute radiation exposure. 5) study on assessment of nuclear safety. 6) investigation on radioactivities released from various nuclear facilities in Japan to demonstrate their safety. (M.N.)

  20. Fusion Safety Program annual report, fiscal year 1983

    International Nuclear Information System (INIS)

    Crocker, J.G.; Holland, D.F.

    1984-07-01

    The Fusion Safety Program major activities for Fiscal Year 1983 are summarized in this report. The program was initiated in FY 1979, with the Idaho National Engineering Laboratory (INEL) designated lead laboratory, and EG and G Idaho, inc., named as prime contractor to implement this role. The report contains four sections: EG and G Idaho, Inc., activities at the INEL includes progress reports and portions of papers on the tritium implantation experiment, tritium control systems, tritium release from solid breeding blankets, plasma disruptions, risk assessment, transient code development, data base development, and a discussion of participation in the blanket comparison and selection study. The section outside contracts includes progress reports and portions of papers on lithium-lead reactions by Hanford Engineering Development Laboratory (HEDL) and the University of Wisconsin, magnet safety by the Francis Bitter Magnet Laboratory of the Massachusetts Institute of Technology (MIT) and Argonne National Laboratory (ANL), risk assessment by the University of California at Los Angeles (UCLA) and MIT, tritium retention by the University of Virginia, and effects of plasma disruptions by MIT. A list of publications and planned fiscal year 1984 activities are also included

  1. Program plan for future regulatory activity in nuclear-power-plant maintenance

    International Nuclear Information System (INIS)

    Badalamente, R.V.

    1982-10-01

    The intent of this paper is to describe the results of a study of nuclear power plant (NPP) maintenance conducted by Battelle's Pacific Northwest Laboratories (PNL) for the Nuclear Regulatory Commission (NRC). The purpose of the study for the NRC was to determine problems affecting human performance in NPP maintenance, pinpoint those which adversely affect public health and safety, review strategies for overcoming the problems, and suggest the direction that regulatory activities should take. Results of the study were presented to the NRC (Division of Human Factors Safety) in the form of a recommended program plan for future regulatory activity in NPP maintenance

  2. Committee on the safety of nuclear installations - Operating plan (2006 - 2009)

    International Nuclear Information System (INIS)

    2007-01-01

    In 2004, NEA issued its Strategic Plan covering the period 2005-2009, addressing the NEA activities associated with nuclear safety and regulation. Committee on the Safety of Nuclear Installations (CSNI) and Committee on Nuclear Regulatory Activities (CNRA), which have the primary responsibility for activities in this area, have developed and issued a joint strategic plan covering this same time period. As requested in the Joint Strategic Plan, each committee is to prepare an operating plan which describes in more detail the committee's organisation, planned activities, priorities and operating procedures to be used to implement the Joint Strategic Plan. In effect, the Joint Strategic Plan defines what type of work CSNI should do, whereas the Operating Plan describes the overall work scope and how to accomplish it to meet the joint CSNI/CNRA Strategic Plan objectives and mission. The present Operating Plan follows and takes into account the outcome of a CSNI assessment group, which has evaluated the CSNI activities. The assessment group expressed appreciation for the CSNI role and activity, while making recommendations with regards to scope of work and way to operate in order to further improve efficiency. The main objectives of CSNI are to: - Keep all member countries involved in and abreast of developments in safety technology. - Review operating experience with the objective to identify safety issues that need to be addressed by new research. - Review the state-of-knowledge on selected topics of nuclear safety technology and safety assessment. - Promote training and research projects that serve to maintain competence in nuclear safety matters. - Promote research as needed to reach consensus on nuclear safety issues of common interest. - Consider the safety implications of scientific and technical developments. To accomplish these objectives, CSNI is organised into six permanent working groups (as described in Section II), each covering a different set of

  3. Cost-effective facility disposition planning with safety and health lessons learned and good practices from the Oak Ridge Decontamination and Decommissioning Program

    International Nuclear Information System (INIS)

    1998-05-01

    An emphasis on transition and safe disposition of DOE excess facilities has brought about significant challenges to managing worker, public, and environmental risks. The transition and disposition activities involve a diverse range of hazardous facilities that are old, poorly maintained, and contain radioactive and hazardous substances, the extent of which may be unknown. In addition, many excess facilities do not have historical facility documents such as operating records, plant and instrumentation diagrams, and incident records. The purpose of this report is to present an overview of the Oak Ridge Decontamination and Decommissioning (D and D) Program, its safety performance, and associated safety and health lessons learned and good practices. Illustrative examples of these lessons learned and good practices are also provided. The primary focus of this report is on the safety and health activities and implications associated with the planning phase of Oak Ridge facility disposition projects. Section 1.0 of this report provides the background and purpose of the report. Section 2.0 presents an overview of the facility disposition activities from which the lessons learned and good practices discussed in Section 3.0 were derived

  4. Landlord Program multi-year program plan fiscal year 1995 WBS 7.5

    International Nuclear Information System (INIS)

    Young, C.L.

    1994-01-01

    The Landlord Program mission is to maintain, preserve, or upgrade the strategic assets of the Hanford Site to meet the overall cleanup mission. This encompasses innovative, appropriate, and cost effective general purpose infrastructure support, services, and long range strategic site planning that is the foundation for seven major Hanford programs. These programs are (1) Environmental Restoration, (2) Tank Waste Remediation System, (3) Solid/Liquid Waste Decontamination, (4) Facility Transition, (5) Spent Fuel, (6) Technology Development, and (7) the Multi-Program Laboratory. General infrastructure support consists of facilities, systems, and equipment that by design or use are not essentially dedicated to a single program mission. Facilities include laboratories, shops, warehouses, and general work space. Systems include electrical, process sewers, rail, roads, telecommunications, water, fire and emergency response, and steam supply and distribution. Funding also supports capital equipment critical to maintaining, upgrading, or operating the general infrastructure. Paramount to these objectives is compliance with all applicable laws, orders, agreements, codes, standards, best management and safety practices. The objectives for general infrastructure support are reflected in five programmatic functions, (1) Program Integration, (2) Capital Equipment, (3) Expense Funded Projects, (4) General Plant Projects, and (5) Line Items

  5. Management response plan for the Chemical Safety Vulnerability Working Group report. Volume 2

    International Nuclear Information System (INIS)

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 146 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. To address the facility-specific and site-specific vulnerabilities, responsible DOE and site-contractor line organizations have developed initial site response plans. These plans, presented as Volume 2 of this Management Response Plan, describe the actions needed to mitigate or eliminate the facility- and site-specific vulnerabilities identified by the CSV Working Group field verification teams. Initial site response plans are described for: Brookhaven National Lab., Hanford Site, Idaho National Engineering Lab., Lawrence Livermore National Lab., Los Alamos National Lab., Oak Ridge Reservation, Rocky Flats Plant, Sandia National Laboratories, and Savannah River Site

  6. 76 FR 17808 - Final Vehicle Safety Rulemaking and Research Priority Plan 2011-2013

    Science.gov (United States)

    2011-03-31

    ... [Docket No. NHTSA-2009-0108] Final Vehicle Safety Rulemaking and Research Priority Plan 2011- 2013 AGENCY... availability. SUMMARY: This document announces the availability of the Final NHTSA Vehicle Safety and Fuel.... This Priority Plan is an update to the Final Vehicle Safety Rulemaking and Research Priority Plan 2009...

  7. Fusion safety program Annual report, Fiscal year 1995

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Cadwallader, L.C.; Carmack, W.J.

    1995-12-01

    This report summarizes the major activities of the Fusion Safety Program in FY-95. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory, and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions. Among the technical areas covered in this report are tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and the technical support for commercial fusion facility conceptual design studies. A final activity described is work to develop DOE Technical Standards for Safety of Fusion Test Facilities

  8. Gap Analysis Approach for Construction Safety Program Improvement

    Directory of Open Access Journals (Sweden)

    Thanet Aksorn

    2007-06-01

    Full Text Available To improve construction site safety, emphasis has been placed on the implementation of safety programs. In order to successfully gain from safety programs, factors that affect their improvement need to be studied. Sixteen critical success factors of safety programs were identified from safety literature, and these were validated by safety experts. This study was undertaken by surveying 70 respondents from medium- and large-scale construction projects. It explored the importance and the actual status of critical success factors (CSFs. Gap analysis was used to examine the differences between the importance of these CSFs and their actual status. This study found that the most critical problems characterized by the largest gaps were management support, appropriate supervision, sufficient resource allocation, teamwork, and effective enforcement. Raising these priority factors to satisfactory levels would lead to successful safety programs, thereby minimizing accidents.

  9. Computer program for storage of historical and routine safety data related to radiologically controlled facilities

    International Nuclear Information System (INIS)

    Marsh, D.A.; Hall, C.J.

    1984-01-01

    A method for tracking and quick retrieval of radiological status of radiation and industrial safety systems in an active or inactive facility has been developed. The system uses a mini computer, a graphics plotter, and mass storage devices. Software has been developed which allows input and storage of architectural details, radiological conditions such as exposure rates, current location of safety systems, and routine and historical information on exposure and contamination levels. A blue print size digitizer is used for input. The computer program retains facility floor plans in three dimensional arrays. The software accesses an eight pen color plotter for output. The plotter generates color plots of the floor plans and safety systems on 8 1/2 x 11 or 20 x 30 paper or on overhead transparencies for reports and presentations

  10. Management response plan for the Chemical Safety Vulnerability Working Group report. Volume 1

    International Nuclear Information System (INIS)

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 146 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 1 contains a discussion of the chemical safety improvements planned or already underway at DOE sites to correct facility or site-specific vulnerabilities. The main part of the report is a discussion of each of the programmatic deficiencies; a description of the tasks to be accomplished; the specific actions to be taken; and the organizational responsibilities for implementation

  11. LANDSCAPE PLANNING IN UKRAINE: THE FIRST LANDSCAPE-PLANNING PROGRAM

    Directory of Open Access Journals (Sweden)

    Leonid Rudenko

    2013-01-01

    Full Text Available The paper presents the results of the first, in Ukraine; project on landscape planning widely accepted in European countries. Under the project implemented in 2010–2013, a landscape-planning program has been developed for the Cherkassy oblast. This is the first document of this kind in Ukraine. The program is mainly based on the experience of the German and Russian schools of landscape planning and on research and assessment conducted by the authors, which allowed identifying approaches to landscape planning, principles of the national policy, and characteristics and potential of environmentally friendly planning in Ukraine. The paper discusses the main phases of the work on the development of the landscape program for the oblast. It also identifies the main stages and key concepts and principles of landscape planning. The paper presents the results of integrated research on the identification and classification of conflicts in land use and the integral concept of the developmental goals for the oblast. The results can be the foundation for adopting management decisions and development of action plans for the lower hierarchal branches.

  12. Nuclear Criticality Safety Department Qualification Program

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1996-01-01

    The Nuclear Criticality Safety Department (NCSD) is committed to developing and maintaining a staff of highly qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. This document defines the Qualification Program to address the NCSD technical and managerial qualification as required by the Y-1 2 Training Implementation Matrix (TIM). This Qualification Program is in compliance with DOE Order 5480.20A and applicable Lockheed Martin Energy Systems, Inc. (LMES) and Y-1 2 Plant procedures. It is implemented through a combination of WES plant-wide training courses and professional nuclear criticality safety training provided within the department. This document supersedes Y/DD-694, Revision 2, 2/27/96, Qualification Program, Nuclear Criticality Safety Department There are no backfit requirements associated with revisions to this document

  13. Environmental Restoration Program Management Control Plan

    International Nuclear Information System (INIS)

    1991-09-01

    This Management Control Plan has been prepared to define the Energy Systems approach to managing its participation in the US DOE's Environmental Restoration (ER) Program in a manner consistent with DOE/ORO 931: Management Plan for the DOE Field Office, Oak Ridge, Decontamination and Decommissioning Program; and the Energy Systems Environmental Restoration Contract Management Plan (CMP). This plan discusses the systems, procedures, methodology, and controls to be used by the program management team to attain these objectives

  14. Active sites environmental monitoring Program - Program Plan: Revision 2

    International Nuclear Information System (INIS)

    Morrissey, C.M.; Hicks, D.S.; Ashwood, T.L.; Cunningham, G.R.

    1994-05-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of active low-level-waste (LLW) and transuranic (TRU) waste facilities at Oak Ridge National Laboratory (ORNL). Several changes have recently occurred in regard to the sites that are currently used for waste storage and disposal. These changes require a second set of revisions to the ASEMP program plan. This document incorporates those revisions. This program plan presents the organization and procedures for monitoring the active sites. The program plan also provides internal reporting levels to guide the evaluation of monitoring results

  15. National HTGR safety program

    International Nuclear Information System (INIS)

    Davis, D.E.; Kelley, A.P. Jr.

    1982-01-01

    This paper presents an overview of the National HTGR Program in the US with emphasis on the safety and licensing strategy being pursued. This strategy centers upon the development of an integrated approach to organizing and classifying the functions needed to produce safe and economical nuclear power production. At the highest level, four plant goals are defined - Normal Operation, Core and Plant Protection, Containment Integrity and Emergency Preparedness. The HTGR features which support the attainment of each goal are described and finally a brief summary is provided of the current status of the principal safety development program supporting the validation of the four plant goals

  16. Implementing 10 CFR 830 at the FEMP Silos: Nuclear Health and Safety Plans as Documented Safety Analysis

    International Nuclear Information System (INIS)

    Fisk, Patricia; Rutherford, Lavon

    2003-01-01

    The objective of the Silos Project at the Fernald Closure Project (FCP) is to safely remediate high-grade uranium ore residues (Silos 1 and 2) and metal oxide residues (Silo 3). The evolution of Documented Safety Analyses (DSAs) for these facilities has reflected the changes in remediation processes. The final stage in silos DSAs is an interpretation of 10 CFR 830 Safe Harbor Requirements that combines a Health and Safety Plan with nuclear safety requirements. This paper will address the development of a Nuclear Health and Safety Plan, or N-HASP

  17. Environmental Restoration Information Resource Management Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The Environmental Restoration Information Resources Management (ER IRM) Program Plan defines program requirements, organizational structures and responsibilities, and work breakdown structure and to establish an approved baseline against which overall progress of the program as well as the effectiveness of its management will be measured. This plan will guide ER IRM Program execution and define the program`s essential elements. This plan will be routinely updated to incorporate key decisions and programmatic changes and will serve as the project baseline document. Environmental Restoration Waste Management Program intersite procedures and work instructions will be developed to facilitate the implementation of this plan.

  18. The affordable care act and family planning services: the effect of optional medicaid expansion on safety net programs.

    Science.gov (United States)

    Lanese, Bethany G; Oglesby, Willie H

    2016-01-01

    Title X of the Public Health Service Act provides funding for a range of reproductive health services, with a priority given to low-income persons. Now that many of these services are provided to larger numbers of people with low-income since the passage of the Affordable Care Act and Medicaid expansion, questions remain on the continued need for the Title X program. The current project highlights the importance of these safety net programs. To help inform this policy issue, research was conducted to examine the revenue and service changes for Title X per state and compare those findings to the states' Medicaid expansion and demographics. The dataset include publicly available data from 2013 and 2014 Family Planning Annual Reports (FPAR). Paired samples differences of means t-tests were then used to compare the means of family planning participation rates for 2013 and 2014 across the different categories for Medicaid expansion states and non-expansion states. The ACA has had an impact on Title X services, but the link is not as direct as previously thought. The findings indicate that all states' Title X funded clinics lost revenue; however, expansion states fared better than non-expansion states. While the general statements from the FPAR National surveys certainly are supported in that Title X providers have decreased in number and scope of services, which has led to the decrease in total clients, these variations are not evenly applied across the states. The ACA has very likely had an impact on Title X services, but the link is not as obvious as previously thought. Title X funded clinics have helped increase access to health insurance at a greater rate in expansion states than non-expansion states. There was much concern from advocates that with the projected increased revenue from Medicaid and private insurance, that Title X programs could be deemed unnecessary. However, this revenue increase has yet to actually pan out. Title X still helps fill a much needed

  19. Program Implementation Plan

    International Nuclear Information System (INIS)

    1987-06-01

    The Program Implementation Plan (PIP) describes the US Department of Energy's (DOE's) current approaches for managing the permanent disposal of defense high-level waste (HLW), transuranic (TRU) waste, and low-level waste (LLW) from atomic energy defense activities. It documents the implementation of the HLW and TRU waste policies as stated in the Defense Waste Management Plan (DWMP) (DOE/DP-0015), dated June 1983, and also addresses the management of LLW. The narrative reflects both accomplishments and changes in the scope of activities. All cost tables and milestone schedules are current as of January 1987. The goals of the program, to provide safe processing and utilization, storage, and disposal of DOE radioactive waste and byproducts to support defense nuclear materials production activities, and to implement cost-effective improvements in all of its ongoing and planned activities, have not changed

  20. Overview of IAEA Action Plan on Nuclear Safety

    International Nuclear Information System (INIS)

    Monti, Stefano

    2012-01-01

    The IAEA Action Plan represents a work programme to strengthen and improve nuclear safety world wide. The plan identifies actions for Member States and the IAEA. Success depends upon: • Cooperation between IAEA, Member States, and other stakeholders; • Availability of appropriate financial resources (MS voluntary contributions)

  1. Effective safety training program design

    International Nuclear Information System (INIS)

    Chilton, D.A.; Lombardo, G.J.; Pater, R.F.

    1991-01-01

    Changes in the oil industry require new strategies to reduce costs and retain valuable employees. Training is a potentially powerful tool for changing the culture of an organization, resulting in improved safety awareness, lower-risk behaviors and ultimately, statistical improvements. Too often, safety training falters, especially when applied to pervasive, long-standing problems. Stepping, Handling and Lifting injuries (SHL) more commonly known as back injuries and slips, trips and falls have plagued mankind throughout the ages. They are also a major problem throughout the petroleum industry. Although not as widely publicized as other immediately-fatal accidents, injuries from stepping, materials handling, and lifting are among the leading causes of employee suffering, lost time and diminished productivity throughout the industry. Traditional approaches have not turned the tide of these widespread injuries. a systematic safety training program, developed by Anadrill Schlumberger with the input of new training technology, has the potential to simultaneously reduce costs, preserve employee safety, and increase morale. This paper: reviews the components of an example safety training program, and illustrates how a systematic approach to safety training can make a positive impact on Stepping, Handling and Lifting injuries

  2. The Department of Energy nuclear criticality safety program

    International Nuclear Information System (INIS)

    Felty, J.R.

    2004-01-01

    This paper broadly covers key events and activities from which the Department of Energy Nuclear Criticality Safety Program (NCSP) evolved. The NCSP maintains fundamental infrastructure that supports operational criticality safety programs. This infrastructure includes continued development and maintenance of key calculational tools, differential and integral data measurements, benchmark compilation, development of training resources, hands-on training, and web-based systems to enhance information preservation and dissemination. The NCSP was initiated in response to Defense Nuclear Facilities Safety Board Recommendation 97-2, Criticality Safety, and evolved from a predecessor program, the Nuclear Criticality Predictability Program, that was initiated in response to Defense Nuclear Facilities Safety Board Recommendation 93-2, The Need for Critical Experiment Capability. This paper also discusses the role Dr. Sol Pearlstein played in helping the Department of Energy lay the foundation for a robust and enduring criticality safety infrastructure.

  3. The evolving role and care management approaches of safety-net Medicaid managed care plans.

    Science.gov (United States)

    Gusmano, Michael K; Sparer, Michael S; Brown, Lawrence D; Rowe, Catherine; Gray, Bradford

    2002-12-01

    This article provides new empirical data about the viability and the care management activities of Medicaid managed-care plans sponsored by provider organizations that serve Medicaid and other low-income populations. Using survey and case study methods, we studied these "safety-net" health plans in 1998 and 2000. Although the number of safety-net plans declined over this period, the surviving plans were larger and enjoying greater financial success than the plans we surveyed in 1998. We also found that, based on a partnership with providers, safety-net plans are moving toward more sophisticated efforts to manage the care of their enrollees. Our study suggests that, with supportive state policies, safety-net plans are capable of remaining viable. Contracting with safety-net plans may not be an efficient mechanism for enabling Medicaid recipients to "enter the mainstream of American health care," but it may provide states with an effective way to manage and coordinate the care of Medicaid recipients, while helping to maintain the health care safety-net for the uninsured.

  4. Lessons learned in planning the Canadian Nuclear Legacy Liabilities Program

    International Nuclear Information System (INIS)

    Stephens, Michael E.; Brooks, Sheila M.; Miller, Joan M.; Mason, Robert A.

    2011-01-01

    limited available resources of the suppliers to execute the work. Several internal and external reviews of the Program during the start-up phase examined progress and identified several improvements to planning. These improvements included strengthening communications among the groups within the Program, conducting more detailed advance planning of the interlinked activities, and being cautious about making detailed commitments for activities for which major decisions had yet to be made. The second phase was planned using a dedicated core team, and involved much more involvement of the suppliers to ensure feasibility of the proposed program of work and more detailed specification of the required resources. Priorities for executing the diverse activities in the Program were originally set using criteria based on the risks that the liabilities presented to health and safety, to the environment and to AECL's ability to meet its obligations as the owner-operator of licensed nuclear sites. The LMU later recognized that the decision criteria should also explicitly include the value gained in reducing the risks and liabilities for expended funds. Greater consideration should be given to mitigating risks to the execution of the Program that might materialize. In addition, licensing strategies and processes should be better-defined, and waste characterization methods and disposition pathways would have to be put in place, or clearly identified, to deal with the wastes the Program would generate before many of the planned activities could be initiated. The NLLP has developed several processes to assist in the detailed planning of the numerous projects and activities. These include developing a more formal procedure for setting priorities of the different parts of the Program, preparing an Integrated Waste Plan to identify the optimal suite of support facilities to be constructed, the creation of a series of 'pre-project initiation' procedures and documents to guide the development

  5. Environmental Restoration Information Resource Management Program Plan

    International Nuclear Information System (INIS)

    1994-09-01

    The Environmental Restoration Information Resources Management (ER IRM) Program Plan defines program requirements, organizational structures and responsibilities, and work breakdown structure and to establish an approved baseline against which overall progress of the program as well as the effectiveness of its management will be measured. This plan will guide ER IRM Program execution and define the program's essential elements. This plan will be routinely updated to incorporate key decisions and programmatic changes and will serve as the project baseline document. Environmental Restoration Waste Management Program intersite procedures and work instructions will be developed to facilitate the implementation of this plan

  6. Health and safety work plan for sampling colloids in Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Marsh, J.D.; McCarthy, J.F.

    1994-07-01

    This Work Plan/Site Safety and Health Plan (SSHP) and the attached work plan are for the performance of the colloid sampling project at WAG 5. The work will be conducted by the Oak Ridge National Laboratory (ORNL) Environmental Sciences Division (ESD) and associated ORNL environmental, safety, and health support groups. This activity will fall under the scope of 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response (HAZWOPER). The purpose of this document is to establish health and safety guidelines to be followed by all personnel involved in conducting work for this project. Work will be conducted in accordance with requirements as stipulated in the ORNL HAZWOPER Program manual, and applicable ORNL, Martin Marietta Energy Systems, Inc., and US Department of Energy (DOE) policies and procedures

  7. Fusion Safety Program annual report, fiscal year 1994

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Cadwallader, L.C.; Dolan, T.J.; Herring, J.S.; McCarthy, K.A.; Merrill, B.J.; Motloch, C.G.; Petti, D.A.

    1995-03-01

    This report summarizes the major activities of the Fusion Safety Program in fiscal year 1994. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions, including the University of Wisconsin. The technical areas covered in this report include tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate data base development, and thermalhydraulics code development and their application to fusion safety issues. Much of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and of the technical support for commercial fusion facility conceptual design studies. A major activity this year has been work to develop a DOE Technical Standard for the safety of fusion test facilities

  8. Safety analysis report for packaging (onsite) transuranic performance demonstration program sample packaging

    International Nuclear Information System (INIS)

    Mccoy, J.C.

    1997-01-01

    The Transuranic Performance Demonstration Program (TPDP) sample packaging is used to transport highway route controlled quantities of weapons grade (WG) plutonium samples from the Plutonium Finishing Plant (PFP) to the Waste Receiving and Processing (WRAP) facility and back. The purpose of these shipments is to test the nondestructive assay equipment in the WRAP facility as part of the Nondestructive Waste Assay PDP. The PDP is part of the U. S. Department of Energy (DOE) National TRU Program managed by the U. S. Department of Energy, Carlsbad Area Office, Carlsbad, New Mexico. Details of this program are found in CAO-94-1045, Performance Demonstration Program Plan for Nondestructive Assay for the TRU Waste Characterization Program (CAO 1994); INEL-96/0129, Design of Benign Matrix Drums for the Non-Destructive Assay Performance Demonstration Program for the National TRU Program (INEL 1996a); and INEL-96/0245, Design of Phase 1 Radioactive Working Reference Materials for the Nondestructive Assay Performance Demonstration Program for the National TRU Program (INEL 1996b). Other program documentation is maintained by the national TRU program and each DOE site participating in the program. This safety analysis report for packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the TRU PDP sample packaging meets the onsite transportation safety requirements of WHC-CM-2-14, Hazardous Material Packaging and Shipping, for an onsite Transportation Hazard Indicator (THI) 2 packaging. This SARP, however, does not include evaluation of any operations within the PFP or WRAP facilities, including handling, maintenance, storage, or operating requirements, except as they apply directly to transportation between the gate of PFP and the gate of the WRAP facility. All other activities are subject to the requirements of the facility safety analysis reports (FSAR) of the PFP or WRAP facility and requirements of the PDP

  9. Implementation of radiation safety program in a medical institution

    International Nuclear Information System (INIS)

    Palanca, Elena D.

    1999-01-01

    A medical institution that utilizes radiation for the diagnosis and treatment of diseases of malignancies develops and implements a radiation safety program to keep occupational exposures of radiation workers and exposures of non-radiation workers and the public to the achievable and a more achievable minimum, to optimize the use of radiation, and to prevent misadministration. The hospital radiation safety program is established by a core medical radiation committee composed of trained radiation safety officers and head of authorized users of radioactive materials and radiation machines from the different departments. The radiation safety program sets up procedural guidelines of the safe use of radioactive material and of radiation equipment. It offers regular training to radiation workers and radiation safety awareness courses to hospital staff. The program has a comprehensive radiation safety information system or radsis that circularizes the radiation safety program in the hospital. The radsis keeps the drafted and updated records of safety guides and policies, radioactive material and equipment inventory, personnel dosimetry reports, administrative, regulatory and licensing activity document, laboratory procedures, emergency procedures, quality assurance and quality control program process, physics and dosimetry procedures and reports, personnel and hospital staff training program. The medical radiation protection committee is tasked to oversee the actual implementation of the radiation safety guidelines in the different radiation facilities in the hospital, to review personnel exposures, incident reports and ALARA actions, operating procedures, facility inspections and audit reports, to evaluate the existing radiation safety procedures, to make necessary changes to these procedures, and make modifications of course content of the training program. The effective implementation of the radiation safety program provides increased confidence that the physician and

  10. Environmental Planning and Ecology Program Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2008-01-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Environmental Planning and Ecology Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The program report describes the activities undertaken during the past year, and activities planned in future years to implement the Planning and Ecology Program, one of six programs that supports environmental management at SNL/CA.

  11. The radiation safety self-assessment program of Ontario Hydro

    International Nuclear Information System (INIS)

    Armitage, G.; Chase, W.J.

    1987-01-01

    Ontario Hydro has developed a self-assessment program to ensure that high quality in its radiation safety program is maintained. The self-assessment program has three major components: routine ongoing assessment, accident/incident investigation, and detailed assessments of particular radiation safety subsystems or of the total radiation safety program. The operation of each of these components is described

  12. Westinghouse Hanford Company Pollution Prevention Program Implementation Plan

    International Nuclear Information System (INIS)

    Floyd, B.C.

    1994-10-01

    This plan documents Westinghouse Hanford Company's (WHC) Pollution Prevention (P2) (formerly Waste Minimization) program. The program includes WHC; BCS Richland, Inc. (BCSR); and ICF Kaiser Hanford Company (ICF KH). The plan specifies P2 program activities and schedules for implementing the Hanford Site Waste Minimization and Pollution Prevention Awareness (WMin/P2) Program Plan requirements (DOE 1994a). It is intended to satisfy the U.S. Department of Energy (DOE) and other legal requirements that are discussed in both the Hanford Site WMin/P2 plan and paragraph C of this plan. As such, the Pollution Prevention Awareness Program required by DOE Order 5400.1 (DOE 1988) is included in the WHC P2 program. WHC, BCSR, and ICF KH are committed to implementing an effective P2 program as identified in the Hanford Site WMin/P2 Plan. This plan provides specific information on how the WHC P2 program will develop and implement the goals, activities, and budget needed to accomplish this. The emphasis has been to provide detailed planning of the WHC P2 program activities over the next 3 years. The plan will guide the development and implementation of the program. The plan also provides background information on past program activities. Because the plan contains greater detail than in the past, activity scope and implementation schedules may change as new priorities are identified and new approaches are developed and realized. Some activities will be accelerated, others may be delayed; however, all of the general program elements identified in this plan and contractor requirements identified in the Site WMin/P2 plan will be developed and implemented during the next 3 years. This plan applies to all WHC, BCSR, and ICF KH organizations and subcontractors. It will be distributed to those with defined responsibilities in this plan; and the policy, goals, objectives, and strategy of the program will be communicated to all WHC, BCSR, and ICF KH employees

  13. Evaluation procedure of software safety plan for digital I and C of KNGR

    International Nuclear Information System (INIS)

    Lee, Jang Soo; Park, Jong Kyun; Lee, Ki Young; Kwon, Ki Choon; Kim, Jang Yeol; Cheon, Se Woo

    2000-05-01

    The development, use, and regulation of computer systems in nuclear reactor instrumentation and control (I and C) systems to enhance reliability and safety is a complex issue. This report is one of a series of reports from the Korean next generation reactor (KNGR) software safety verification and validation (SSVV) task, Korea Atomic Energy Research Institute, which investigates different aspects of computer software in reactor I and C systems, and describes the engineering procedures for developing such a software. The purpose of this guideline is to give the software safety evaluator the trail map between the code and standards layer and the design methodology and documents layer for the software important to safety in nuclear power plants. Recently, the safety planning for safety-critical software systems is being recognized as the most important phase in the software life cycle, and being developed new regulatory positions and standards by the regulatory and the standardization organizations. The requirements for software important to safety of nuclear reactor are described in such positions and standards, for example, the new standard review plan (SRP), IEC 880 supplements, IEEE standard 1228-1994, IEEE standard 7-4.3.2-1993, and IAEA safety series No. 50-SG-D3 and D8. We presented the guidance for evaluating the safety plan of the software in the KNGR protection systems. The guideline consists of the regulatory requirements for software safety in chapter 2, the evaluation checklist of software safety plan in chapter3, and the evaluation results of KNGR software safety plan in chapter 4

  14. Evaluation procedure of software safety plan for digital I and C of KNGR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang Soo; Park, Jong Kyun; Lee, Ki Young; Kwon, Ki Choon; Kim, Jang Yeol; Cheon, Se Woo

    2000-05-01

    The development, use, and regulation of computer systems in nuclear reactor instrumentation and control (I and C) systems to enhance reliability and safety is a complex issue. This report is one of a series of reports from the Korean next generation reactor (KNGR) software safety verification and validation (SSVV) task, Korea Atomic Energy Research Institute, which investigates different aspects of computer software in reactor I and C systems, and describes the engineering procedures for developing such a software. The purpose of this guideline is to give the software safety evaluator the trail map between the code and standards layer and the design methodology and documents layer for the software important to safety in nuclear power plants. Recently, the safety planning for safety-critical software systems is being recognized as the most important phase in the software life cycle, and being developed new regulatory positions and standards by the regulatory and the standardization organizations. The requirements for software important to safety of nuclear reactor are described in such positions and standards, for example, the new standard review plan (SRP), IEC 880 supplements, IEEE standard 1228-1994, IEEE standard 7-4.3.2-1993, and IAEA safety series No. 50-SG-D3 and D8. We presented the guidance for evaluating the safety plan of the software in the KNGR protection systems. The guideline consists of the regulatory requirements for software safety in chapter 2, the evaluation checklist of software safety plan in chapter3, and the evaluation results of KNGR software safety plan in chapter 4.

  15. Subseabed Disposal Program Plan. Volume II. FY80 budget and subtask work plans

    International Nuclear Information System (INIS)

    1980-01-01

    This volume of the Subseabed Disposal Program Plan presents a breakdown of the master program structure by major activity. Each activity is described and accompanied by a specific cost plan schedule and a milestone plan. The costs have been compiled in the Cost Plan Schedules attached to each Subtask Work Plan. The FY 1980 budget for the Subseabed Disposal Program is summarized at the second level of the Work Breakdown Structure. The milestone plans for FY 80 are presented. The milestones can be changed only with the concurrence of the Sandia Subseabed Program Manager

  16. Seismic safety margins research program. Project I SONGS 1 AFWS Project

    International Nuclear Information System (INIS)

    Chuang, T.Y.; Smith, P.D.; Dong, R.G.; Bernreuter, D.L.; Bohn, M.P.; Cummings, G.E.; Wells, J.E.

    1981-01-01

    The seismic qualification requirements of auxiliary feedwater systems (AFWS) of Pressurized Water Reactors (PWR) were developed over a number of years. These are formalized in the publication General Design Criteria (Appendix A to 10CFR50). The full recognition of the system as an engineered safety feature did not occur until publication of the Standard Review Plan (1975). Efforts to determine how to backfit seismic requirements to earlier plants has been undertaken primarily in the Systematic Evaluation Program (SEP) for a limited number of operating reactors. Nuclear Reactor Research (RES) and NRR have requested LLNL to perform a probabilistic study on the AFWS of San Onofre Nuclear Generating Station (SONGS) Unit 1 utilizing the tools developed by the Seismic Safety Margins Research Program (SSMRP). The main objectives of this project are to: identify the weak links of AFWS; compare the failure probabilities of SONGS 1 and Zion 1 AFWS: and compare the seismic responses due to different input spectra and design values

  17. [Implementation of a safety and health planning system in a teaching hospital].

    Science.gov (United States)

    Mariani, F; Bravi, C; Dolcetti, L; Moretto, A; Palermo, A; Ronchin, M; Tonelli, F; Carrer, P

    2007-01-01

    University Hospital "L. Sacco" had started in 2006 a two-year project in order to set up a "Health and Safety Management System (HSMS)" referring to the technical guideline OHSAS 18001:1999 and the UNI and INAIL "Guidelines for a health and safety management system at workplace". So far, the following operations had been implemented: Setting up of a specific Commission within the Risk Management Committee; Identification and appointment of Departmental Representatives of HSMS; Carrying out of a training course addressed to Workers Representatives for Safety and Departmental Representatives of HSMS; Development of an Integrated Informative System for Prevention and Safety; Auditors qualification; Inspection of the Occupational Health Unit and the Prevention and Safety Service: reporting of critical situations and monitoring solutions adopted. Short term objectives are: Self-evaluation through check-lists of each department; Sharing of the Improvement Plan among the departments of the hospital; Planning of Health and Safety training activities in the framework of the Hospital Training Plan; Safety audit.

  18. 76 FR 7098 - Dealer Floor Plan Pilot Program

    Science.gov (United States)

    2011-02-09

    ... Plan Pilot Program AGENCY: U.S. Small Business Administration (SBA). ACTION: Program implementation with request for comments. SUMMARY: SBA is introducing a new Dealer Floor Plan Pilot Program to make... Plan Pilot Program was created in the Small Business Jobs Act of 2010. Under the new Dealer Floor Plan...

  19. Using Contemporary Leadership Skills in Medication Safety Programs.

    Science.gov (United States)

    Hertig, John B; Hultgren, Kyle E; Weber, Robert J

    2016-04-01

    The discipline of studying medication errors and implementing medication safety programs in hospitals dates to the 1970s. These initial programs to prevent errors focused only on pharmacy operation changes - and not the broad medication use system. In the late 1990s, research showed that faulty systems, and not faulty people, are responsible for errors and require a multidisciplinary approach. The 2013 ASHP Statement on the Role of the Medication Safety Leader recommended that medication safety leaders be integrated team members rather than a single point of contact. Successful medication safety programs must employ a new approach - one that embraces the skills of all health care team members and positions many leaders to improve safety. This approach requires a new set of leadership skills based on contemporary management principles, including followership, team-building, tracking and assessing progress, storytelling and communication, and cultivating innovation, all of which promote transformational change. The application of these skills in developing or changing a medication safety program is reviewed in this article.

  20. Performance Demonstration Program Plan for the WIPP Experimental-Waste Characterization Program

    International Nuclear Information System (INIS)

    1991-02-01

    The Performance Demonstration Program is designed to ensure that compliance with the Quality Assurance Objective, identified in the Quality Assurance Program Plan for the WIPP Experimental-Waste Characterization Program (QAPP), is achieved. This Program Plan is intended for use by the WPO to assess the laboratory support provided for the characterization of WIPP TRU waste by the storage/generator sites. Phase 0 of the Performance Demonstration Program encompasses the analysis of headspace gas samples for inorganic and organic components. The WPO will ensure the implementation of this plan by designating an independent organization to coordinate and provide technical oversight for the program (Program Coordinator). Initial program support, regarding the technical oversight and coordination functions, shall be provided by the USEPA-ORP. This plan identifies the criteria that will be used for the evaluation of laboratory performance, the responsibilities of the Program Coordinator, and the responsibilities of the participating laboratories. 5 tabs

  1. Performance Demonstration Program Management Plan

    International Nuclear Information System (INIS)

    2005-01-01

    To demonstrate compliance with the Waste Isolation Pilot Plant (WIPP) waste characterization program, each testing and analytical facility performing waste characterization activities participates in the Performance Demonstration Program (PDP). The PDP serves as a quality control check against expected results and provides information about the quality of data generated in the characterization of waste destined for WIPP. Single blind audit samples are prepared and distributed by an independent organization to each of the facilities participating in the PDP. There are three elements within the PDP: analysis of simulated headspace gases, analysis of solids for Resource Conservation and Recovery Act (RCRA) constituents, and analysis for transuranic (TRU) radionuclides using nondestructive assay (NDA) techniques. Because the analysis for TRU radionuclides using NDA techniques involves both the counting of drums and standard waste boxes, four PDP plans are required to describe the activities of the three PDP elements. In accordance with these PDP plans, the reviewing and approving authority for PDP results and for the overall program is the CBFO PDP Appointee. The CBFO PDP Appointee is responsible for ensuring the implementation of each of these plans by concurring with the designation of the Program Coordinator and by providing technical oversight and coordination for the program. The Program Coordinator will designate the PDP Manager, who will coordinate the three elements of the PDP. The purpose of this management plan is to identify how the requirements applicable to the PDP are implemented during the management and coordination of PDP activities. The other participants in the program (organizations that perform site implementation and activities under CBFO contracts or interoffice work orders) are not covered under this management plan. Those activities are governed by the organization's quality assurance (QA) program and procedures or as otherwise directed by CBFO.

  2. FY85 Program plan for the Defense Transuranic Waste Program (DTWP)

    International Nuclear Information System (INIS)

    1984-11-01

    The Defense TRU Waste Program (DTWP) is the focal point for the Department of Energy in national planning, integration, and technical development for TRU waste management. The scope of this program extends from the point of TRU waste generation through delivery to a permanent repository. The TRU program maintains a close interface with repository development to ensure program compatibility and coordination. The defense TRU program does not directly address commercial activities that generate TRU waste. Instead, it is concerned with providing alternatives to manage existing and future defense TRU wastes. The FY85 Program Plan is consistent with the Defense TRU Waste Program goals and objectives stated in the Defense Transuranic Waste Program Strategy Document, January 1984. The roles of participants, the responsibilities and authorities for Research and Development (R and D), the organizational interfaces and communication channels for R and D and the establishment of procedures for planning, reporting, and budgeting of all R and D activities meet requirements stated in the Technical Management Plan for the Transuranic Waste Management Program. The Program Plan is revised as needed. The work breakdown structure is reflected graphically immediately following the Administration section and is described in the subsequent narrative. Detailed budget planning (i.e., programmatic funding and capital equipment) is presented for FY85; outyear budget projections are presented for future years

  3. Hanford Environmental Management Program implementation plan

    International Nuclear Information System (INIS)

    1988-08-01

    The Hanford Environmental Management Program (HEMP) was established to facilitate compliance with the applicable environmental statues, regulations, and standards on the Hanford Site. The HEMP provides a structured approach to achieve environmental management objectives. The Hanford Environmental Management Program Plan (HEMP Plan) was prepared as a strategic level planning document to describe the program management, technical implementation, verification, and communications activities that guide the HEMP. Four basic program objectives are identified in the HEMP Plan as follows: establish ongoing monitoring to ensure that Hanford Site operations comply with environmental requirements; attain regulatory compliance through the modification of activities; mitigate any environmental consequences; and minimize the environmental impacts of future operations at the Hanford Site. 2 refs., 24 figs., 27 tabs

  4. Light Water Reactor Sustainability Program Reactor Safety Technologies Pathway Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, M. L. [Univ. of Wisconsin, Madison, WI (United States); Peko, D. [US Dept. of Energy, Washington, DC (United States); Farmer, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Rempe, J. [Rempe and Associates LLC, Idaho Falls, ID (United States); Humrickhouse, P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); O' Brien, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Robb, K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauntt, R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Osborn, D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-06-01

    In the aftermath of the March 2011 multi-unit accident at the Fukushima Daiichi nuclear power plant (Fukushima), the nuclear community has been reassessing certain safety assumptions about nuclear reactor plant design, operations and emergency actions, particularly with respect to extreme events that might occur and that are beyond each plant’s current design basis. Because of our significant domestic investment in nuclear reactor technology (99 operating reactors in the fleet of commercial LWRs with five under construction), the United States has been a major leader internationally in these activities. The U.S. nuclear industry is voluntarily pursuing a number of additional safety initiatives. The NRC continues to evaluate and, where deemed appropriate, establish new requirements for ensuring adequate protection of public health and safety in the occurrence of low probability events at nuclear plants; (e.g., mitigation strategies for beyond design basis events initiated by external events like seismic or flooding initiators). The DOE has also played a major role in the U.S. response to the Fukushima accident. Initially, DOE worked with the Japanese and the international community to help develop a more complete understanding of the Fukushima accident progression and its consequences, and to respond to various safety concerns emerging from uncertainties about the nature of and the effects from the accident. DOE R&D activities are focused on providing scientific and technical insights, data, analyses methods that ultimately support industry efforts to enhance safety. These activities are expected to further enhance the safety performance of currently operating U.S. nuclear power plants as well as better characterize the safety performance of future U.S. plants. In pursuing this area of R&D, DOE recognizes that the commercial nuclear industry is ultimately responsible for the safe operation of licensed nuclear facilities. As such, industry is considered the primary

  5. Light Water Reactor Sustainability Program: Reactor Safety Technologies Pathway Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, M. L. [Univ. of Wisconsin, Madison, WI (United States)

    2015-06-01

    In the aftermath of the March 2011 multi-unit accident at the Fukushima Daiichi nuclear power plant (Fukushima), the nuclear community has been reassessing certain safety assumptions about nuclear reactor plant design, operations and emergency actions, particularly with respect to extreme events that might occur and that are beyond each plant’s current design basis. Because of our significant domestic investment in nuclear reactor technology (99 operating reactors in the fleet of commercial LWRs with five under construction), the United States has been a major leader internationally in these activities. The U.S. nuclear industry is voluntarily pursuing a number of additional safety initiatives. The NRC continues to evaluate and, where deemed appropriate, establish new requirements for ensuring adequate protection of public health and safety in the occurrence of low probability events at nuclear plants; (e.g., mitigation strategies for beyond design basis events initiated by external events like seismic or flooding initiators). The DOE has also played a major role in the U.S. response to the Fukushima accident. Initially, DOE worked with the Japanese and the international community to help develop a more complete understanding of the Fukushima accident progression and its consequences, and to respond to various safety concerns emerging from uncertainties about the nature of and the effects from the accident. DOE R&D activities are focused on providing scientific and technical insights, data, analyses methods that ultimately support industry efforts to enhance safety. These activities are expected to further enhance the safety performance of currently operating U.S. nuclear power plants as well as better characterize the safety performance of future U.S. plants. In pursuing this area of R&D, DOE recognizes that the commercial nuclear industry is ultimately responsible for the safe operation of licensed nuclear facilities. As such, industry is considered the primary

  6. Towards confidence in transport safety

    International Nuclear Information System (INIS)

    Robison, R.W.

    1992-01-01

    The U.S. Department of Energy (US DOE) plans to demonstrate to the public that high-level waste can be transported safely to the proposed repository. The author argues US DOE should begin now to demonstrate its commitment to safety by developing an extraordinary safety program for nuclear cargo it is now shipping. The program for current shipments should be developed with State, Tribal, and local officials. Social scientists should be involved in evaluating the effect of the safety program on public confidence. The safety program developed in cooperation with western states for shipments to the Waste Isolation Pilot plant is a good basis for designing that extraordinary safety program

  7. Performance-based planning and programming guidebook.

    Science.gov (United States)

    2013-09-01

    "Performance-based planning and programming (PBPP) refers to the application of performance management principles within the planning and programming processes of transportation agencies to achieve desired performance outcomes for the multimodal tran...

  8. Nuclear safety training program (NSTP) for dismantling

    International Nuclear Information System (INIS)

    Cretskens, Pieter; Lenie, Koen; Mulier, Guido

    2014-01-01

    European Control Services (GDF Suez) has developed and is still developing specific training programs for the dismantling and decontamination of nuclear installations. The main topic in these programs is nuclear safety culture. We therefore do not focus on technical training but on developing the right human behavior to work in a 'safety culture' environment. The vision and techniques behind these programs have already been tested in different environments: for example the dismantling of the BN MOX Plant in Dessel (Belgium), Nuclear Safety Culture Training for Electrabel NPP Doel..., but also in the non-nuclear industry. The expertise to do so was found in combining the know-how of the Training and the Nuclear Department of ECS. In training, ECS is one of the main providers of education in risky tasks, like elevation and manipulation of charges, working in confined spaces... but it does also develop training on demand to improve safety in a certain topic. Radiation Protection is the core business in the Nuclear Department with a presence on most of the nuclear sites in Belgium. Combining these two domains in a nuclear safety training program, NSTP, is an important stage in a dismantling project due to specific contamination, technical and other risks. It increases the level of safety and leads to a harmonization of different working cultures. The modular training program makes it possible to evaluate constantly as well as in group or individually. (authors)

  9. Medication safety programs in primary care: a scoping review.

    Science.gov (United States)

    Khalil, Hanan; Shahid, Monica; Roughead, Libby

    2017-10-01

    Medication safety plays an essential role in all healthcare organizations; improving this area is paramount to quality and safety of any wider healthcare program. While several medication safety programs in the hospital setting have been described and the associated impact on patient safety evaluated, no systematic reviews have described the impact of medication safety programs in the primary care setting. A preliminary search of the literature demonstrated that no systematic reviews, meta-analysis or scoping reviews have reported on medication safety programs in primary care; instead they have focused on specific interventions such as medication reconciliation or computerized physician order entry. This scoping review sought to map the current medication safety programs used in primary care. The current scoping review sought to examine the characteristics of medication safety programs in the primary care setting and to map evidence on the outcome measures used to assess the effectiveness of medication safety programs in improving patient safety. The current review considered participants of any age and any condition using care obtained from any primary care services. We considered studies that focussed on the characteristics of medication safety programs and the outcome measures used to measure the effectiveness of these programs on patient safety in the primary care setting. The context of this review was primary care settings, primary healthcare organizations, general practitioner clinics, outpatient clinics and any other clinics that do not classify patients as inpatients. We considered all quantitative studied published in English. A three-step search strategy was utilized in this review. Data were extracted from the included studies to address the review question. The data extracted included type of medication safety program, author, country of origin, aims and purpose of the study, study population, method, comparator, context, main findings and outcome

  10. LDRD FY 2014 Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Anita Gianotto; Dena Tomchak

    2013-08-01

    As required by DOE Order 413.2B the FY 2014 Program Plan is written to communicate ares of investment and approximate amounts being requested for the upcoming fiscal year. The program plan also includes brief highlights of current or previous LDRD projects that have an opportunity to impact our Nation's current and future energy challenges.

  11. Portsmouth Gaseous Diffusion Plant Decontamination and Decommissioning Program surveillance and maintenance plan, FY 1993--2002

    International Nuclear Information System (INIS)

    Schloesslin, W.

    1992-11-01

    The Decontamination and Decommissioning (D ampersand D) Program at the Portsmouth Gaseous Diffusion Plant (PORTS) is part of the Environmental Restoration (ER) and Waste Management (WM) Programs (ERWM). The objective of the ER Program is to provide PORTS the capability to meet applicable environmental regulations through facility development activities and site remedial actions. The WM Program supports the ER Program. The D ampersand D Program provides collective management of the sites within the plant which require decontamination and decommissioning, prioritizes those areas in terms of health, safety and environmental concerns, and implements the appropriate level of remedial action. The D ampersand D Program provides support to facilities which formerly served one or more of the many Plant functions. Program activities include (1) surveillance and maintenance of facilities awaiting decommissioning; (2) planning safe and orderly facility decommissioning; and (3) implementing a program to accomplish facility disposition in a safe, cost effective, and timely manner. In order to achieve the first objective, a formal plan which documents the surveillance and maintenance needs for each inactive facility has been prepared. This report provides this documentation for the PORTS facilities currently included in the D ampersand D Program and includes projected resource requirements for the planning period of FY 1993 through FY 2002

  12. Safety Standards Plan for Middlesex County Vocational & Technical High Schools.

    Science.gov (United States)

    Sommer, Cy

    This vocational education safety standards plan outlines rules and regulations adopted by the Board of Education of Middlesex County Vocational and Technical High Schools. The first of eleven chapters presents demographics and a safety organization table for Middlesex County Vocational and Technical Schools. In chapter 2, six safety program…

  13. Seismic qualification program plan for continued operation at DOE-SRS nuclear material processing facilities

    International Nuclear Information System (INIS)

    Talukdar, B.K.; Kennedy, W.N.

    1991-01-01

    The Savannah River Facilities for the most part were constructed and maintained to standards that were developed by Du Pont and are not rigorously in compliance with the current General Design Criteria (GDC); DOE Order 6430.IA requirements. In addition, many of the facilities were built more than 30 years ago, well before DOE standards for design were issued. The Westinghouse Savannah River Company (WSRC) his developed a program to address the evaluation of the Nuclear Material Processing (NMP) facilities to GDC requirements. The program includes a facility base-line review, assessment of areas that are not in compliance with the GDC requirements, planned corrective actions or exemptions to address the requirements, and a safety assessment. The authors from their direct involvement with the Program, describe the program plan for seismic qualification including other natural phenomena hazards,for existing NMP facility structures to continue operation Professionals involved in similar effort at other DOE facilities may find the program useful

  14. Canadian hydrogen safety program

    International Nuclear Information System (INIS)

    MacIntyre, I.; Tchouvelev, A.V.; Hay, D.R.; Wong, J.; Grant, J.; Benard, P.

    2007-01-01

    The Canadian hydrogen safety program (CHSP) is a project initiative of the Codes and Standards Working Group of the Canadian transportation fuel cell alliance (CTFCA) that represents industry, academia, government, and regulators. The Program rationale, structure and contents contribute to acceptance of the products, services and systems of the Canadian Hydrogen Industry into the Canadian hydrogen stakeholder community. It facilitates trade through fair insurance policies and rates, effective and efficient regulatory approval procedures and accommodation of the interests of the general public. The Program integrates a consistent quantitative risk assessment methodology with experimental (destructive and non-destructive) failure rates and consequence-of-release data for key hydrogen components and systems into risk assessment of commercial application scenarios. Its current and past six projects include Intelligent Virtual Hydrogen Filling Station (IVHFS), Hydrogen clearance distances, comparative quantitative risk comparison of hydrogen and compressed natural gas (CNG) refuelling options; computational fluid dynamics (CFD) modeling validation, calibration and enhancement; enhancement of frequency and probability analysis, and Consequence analysis of key component failures of hydrogen systems; and fuel cell oxidant outlet hydrogen sensor project. The Program projects are tightly linked with the content of the International Energy Agency (IEA) Task 19 Hydrogen Safety. (author)

  15. Evaluation of the Navy Master Planning Program

    Science.gov (United States)

    1976-05-01

    Navy planning directives, interviews with Navy planning personnel, researc " of applicable literature on planning and program evaluation, and the...master planning has absorbed the additional roles of program management and public relations marketing . The Navy planner is now deeply involved in...master planning 62conducted by NAVFAC headquarters in 1972, various Navy planning directives, a " Market Survey" of NAVFAC services and customer 63

  16. 49 CFR 1106.3 - Actions for which Safety Integration Plan is required.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false Actions for which Safety Integration Plan is required. 1106.3 Section 1106.3 Transportation Other Regulations Relating to Transportation (Continued... TRANSPORTATION BOARD CONSIDERATION OF SAFETY INTEGRATION PLANS IN CASES INVOLVING RAILROAD CONSOLIDATIONS...

  17. Occupational Safety and Health Programs in Career Education.

    Science.gov (United States)

    DiCarlo, Robert D.; And Others

    This resource guide was developed in response to the Occupational Safety and Health Act of 1970 and is intended to assist teachers in implementing courses in occupational safety and health as part of a career education program. The material is a synthesis of films, programed instruction, slides and narration, case studies, safety pamphlets,…

  18. Sandia Laboratories environment and safety programs

    International Nuclear Information System (INIS)

    Zak, B.D.; McGrath, P.E.; Trauth, C.A. Jr.

    1975-01-01

    Sandia, one of ERDA's largest laboratories, is primarily known for its extensive work in the nuclear weapons field. In recent years, however, Sandia's role has expanded to embrace sizeable programs in the energy, resource recovery, and the environment and safety fields. In this latter area, Sandia has programs which address nuclear, fossil fuel, and general environment and safety issues. Here we survey ongoing activities and describe in more detail aa few projects of particular interest. These range from a study of the impact of sealed disposal of radioactive wastes, through reactor safety and fossil fuel plume chemistry, to investigations of the composition and dynamics of the stratosphere

  19. Natural Gas Multi-Year Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This document comprises the Department of Energy (DOE) Natural Gas Multi-Year Program Plan, and is a follow-up to the `Natural Gas Strategic Plan and Program Crosscut Plans,` dated July 1995. DOE`s natural gas programs are aimed at simultaneously meeting our national energy needs, reducing oil imports, protecting our environment, and improving our economy. The Natural Gas Multi-Year Program Plan represents a Department-wide effort on expanded development and use of natural gas and defines Federal government and US industry roles in partnering to accomplish defined strategic goals. The four overarching goals of the Natural Gas Program are to: (1) foster development of advanced natural gas technologies, (2) encourage adoption of advanced natural gas technologies in new and existing markets, (3) support removal of policy impediments to natural gas use in new and existing markets, and (4) foster technologies and policies to maximize environmental benefits of natural gas use.

  20. In-House Energy Management Program Plan

    International Nuclear Information System (INIS)

    1991-01-01

    DOE facilities are required to develop a documented energy management program encompassing owned and leased facilities and vehicles and equipment. The program includes an Energy Management Plan consistent with the requirements of the DOE ten-year In-House Energy Management Plan, an ECP specifying actions associated with the sudden disruption in the supply of critical fuels, an Energy Management Committee comprised of WIPP employees, and reporting criteria for quarterly energy consumption reporting to DOE Headquarters. The In-House Energy Management Program will include an implementation plan, a budget, and an interaction and coordination plan. The goal of this program is to sensitize the WIPP employees to the energy consequences of their actions and to motivate them to use energy more efficiently. To achieve this goal, the program is designed to both improve energy conservation at the WIPP through the direct efforts of every employee, and to encourage employees to take the lead in conserving energy at home, on the road, and in the community

  1. OSHA Training Programs. Module SH-48. Safety and Health.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on OSHA (Occupational Safety and Health Act) training programs is one of 50 modules concerned with job safety and health. This module provides a list of OSHA training requirements and describes OSHA training programs and other safety organizations' programs. Following the introduction, 11 objectives (each keyed to a page in the…

  2. Russian MINATOM nuclear safety research strategic plan. An international review

    International Nuclear Information System (INIS)

    1999-03-01

    The 'Safety Research Strategic Plan for Russian Nuclear Power Plants' was published in draft form at the Russian International Nuclear Safety Centre (RINSC) by a working group of fifteen senior Russian experts. The Plan consists of 12 chapters, each addressing a specific technical area and containing a number of proposed research programmes and projects to advance the state-of-knowledge in that area. In part because a strong Recommendation to undertake such a Plan was made by the 1998 OECD/NEA study, the OECD Nuclear Energy Agency was asked by the Director of RINSC and the Director of USINSC to organize an international review of the Plan when the English-language version became available in October, 1998. This report represents the results of that review. (R.P.)

  3. Safety assessment plans for authorization and inspection of radiation sources

    International Nuclear Information System (INIS)

    2002-05-01

    The objective of this TECDOC is to enhance the efficacy, quality and efficiency of the whole regulatory process. It provides advice on good practice administrative procedures for the regulatory process for preparation of applications, granting of authorizations, inspection, and enforcement. It also provides information on the development and use of standard safety assessment plans for authorization and inspection. The plans are intended to be used in conjunction with more detailed advice related to specific practices. In this sense, this TECDOC provides advice on a systematic approach to evaluations of protection and safety while other IAEA Safety Guides assist the user to distinguish between the acceptable and the unacceptable. This TECDOC covers administrative advice to facilitate the regulatory process governing authorization and inspection. It also covers the use of standard assessment and inspection plans and provides simplified plans for the more common, well established uses of radiation sources in medicine and industry, i.e. sources for irradiation facilities, industrial radiography, well logging, industrial gauging, unsealed sources in industry, X ray diagnosis, nuclear medicine, teletherapy and brachytherapy

  4. Safety assessment plans for authorization and inspection of radiation sources

    International Nuclear Information System (INIS)

    1999-09-01

    The objective of this TECDOC is to enhance the efficacy, quality and efficiency of the whole regulatory process. It provides advice on good practice administrative procedures for the regulatory process for preparation of applications, granting of authorizations, inspection, and enforcement. It also provides information on the development and use of standard safety assessment plans for authorization and inspection. The plans are intended to be used in conjunction with more detailed advice related to specific practices. In this sense, this TECDOC provides advice on a systematic approach to evaluations of protection and safety while other IAEA Safety Guides assist the user to distinguish between the acceptable and the unacceptable. This TECDOC covers administrative advice to facilitate the regulatory process governing authorization and inspection. It also covers the use of standard assessment and inspection plans and provides simplified plans for the more common, well established uses of radiation sources in medicine and industry, i.e. sources for irradiation facilities, industrial radiography, well logging, industrial gauging, unsealed sources in industry, X ray diagnosis, nuclear medicine, teletherapy and brachytherapy

  5. Fusion safety program annual report fiscal year 1997

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Cadwallader, L.C.

    1998-01-01

    This report summarizes the major activities of the Fusion Safety Program in FY 1997. The Idaho National Engineering and Environmental Laboratory (INEEL) is the designated lead laboratory, and Lockheed Martin Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in FY 1979 to perform research and develop data needed to ensure safety in fusion facilities. Activities include experiments, analysis, code development and application, and other forms of research. These activities are conducted at the INEEL, different DOE laboratories, and other institutions. The technical areas covered in this report include chemical reactions and activation product release, tritium safety, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER) project. Work done for ITER this year has focused on developing the needed information for the Non-site Specific Safety Report (NSSR-2)

  6. Fusion safety program annual report fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R.; Anderl, R.A.; Cadwallader, L.C. [and others

    1998-01-01

    This report summarizes the major activities of the Fusion Safety Program in FY 1997. The Idaho National Engineering and Environmental Laboratory (INEEL) is the designated lead laboratory, and Lockheed Martin Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in FY 1979 to perform research and develop data needed to ensure safety in fusion facilities. Activities include experiments, analysis, code development and application, and other forms of research. These activities are conducted at the INEEL, different DOE laboratories, and other institutions. The technical areas covered in this report include chemical reactions and activation product release, tritium safety, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER) project. Work done for ITER this year has focused on developing the needed information for the Non-site Specific Safety Report (NSSR-2).

  7. Safer Roads: Comparisons Between Road Assessment Program and Composite Road Safety Index Method

    Directory of Open Access Journals (Sweden)

    Mohd Razelan Intan Suhana

    2017-01-01

    Full Text Available In most countries, crash statistics have becoming very crucial in evaluating road’s safety level. In Malaysia, these data are very important in deciding crash-prone areas known as black spot where specific road improvements plan will be proposed. However due to the unavailability of reliable crash data in many developing countries, appropriate road maintenance measures are facing great troubles. In light of that, several proactive methods in defining road’s safety level such as Road Assessment Program (RAP have emerged. This research aim to compare two proactive methods that have been tested in Malaysian roads ; road assessment program and road environment risk index which was developed based on composite index theory in defining road’s safety level. Composite road environment risk index was combining several crucial environment indicators, assigning weight and aggregating the individual index together to form a single value representing the road’s safety level. Based on the results, it can be concluded that both road assessment program and composite road environment risk index are contradicted in six different ways such as type of speed used, type of analysis used and their final outcomes. However, with an aim to promote safer roads, these two methods can be used concurrently as the outcomes in both methods seems to fulfil each other’s gap very well.

  8. Balanced program plan: analysis for biomedical and environmental research. Volume 7. Conservation and energy efficiency

    International Nuclear Information System (INIS)

    1975-07-01

    Energy conservation technologies encompass the entire spectrum of human activities: electrical supply, industry, commercial and residential buildings, transportation and various overlapping combinations of these. This report is concerned with those conservation technologies that appear to be most important in the near and intermediate terms. Many of the specific R and D programs are contained in the preliminary ''Conservation Program Plan'' of the ERDA Assistant Administrator for Conservation. However, some projects are included that are supported by other Federal agencies and private industry. Section 1 contains a brief description of each conservation technology and an enumeration of health/safety/environmental impacts, both beneficial and adverse, that are expected to accrue from the new technology. Section 2 contains a brief discussion of problems, priorities and programs. Section 3 contains ''Problem Definitions'' and ''Program Units'' that are recommended to become a part of the ''BER Balanced Program Plan.''

  9. Fusion Safety Program Annual Report, Fiscal Year 1996

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Cadwallader, L.C.

    1996-12-01

    This report summarizes the major activities of the Fusion Safety Program in FY 1996. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory, and Lockheed Martin Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. The objective is to perform research and develop data needed to ensure safety in fusion facilities. Activities include experiments, analysis, code development and application, and other forms of research. These activities are conducted at the INEL, at other DOE laboratories, and at other institutions. Among the technical areas covered in this report are tritium safety, chemical reactions and activation product release, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Work done for ITER this year has focused on developing the needed information for the Non- Site- Specific Safety Report (NSSR-1). A final area of activity described is development of the new DOE Technical Standards for Safety of Magnetic Fusion Facilities

  10. 78 FR 43091 - Technical Operations Safety Action Program (T-SAP) and Air Traffic Safety Action Program (ATSAP)

    Science.gov (United States)

    2013-07-19

    ... Administration 14 CFR Part 193 [Docket No.: FAA-2013-0375] Technical Operations Safety Action Program (T-SAP) and... Disclosure. SUMMARY: The FAA is proposing that safety information provided to it under the T-SAP, established... to the FAA under the T-SAP and ATSAP, so the FAA can learn about and address aviation safety hazards...

  11. Single Shell Tank (SST) Program Plan

    International Nuclear Information System (INIS)

    HAASS, C.C.

    2000-01-01

    This document provides an initial program plan for retrieval of the single-shell tank waste. Requirements, technical approach, schedule, organization, management, and cost and funding are discussed. The program plan will be refined and updated in fiscal year 2000

  12. Single Shell Tank (SST) Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    HAASS, C.C.

    2000-03-21

    This document provides an initial program plan for retrieval of the single-shell tank waste. Requirements, technical approach, schedule, organization, management, and cost and funding are discussed. The program plan will be refined and updated in fiscal year 2000.

  13. Planning and evaluation of plant under safety aspects

    International Nuclear Information System (INIS)

    Strnad, H.

    1985-01-01

    Plant denotes a technical product characterized as being structured, complex, comprising the use of energy, and that of measuring, automatic control and monitoring systems to keep track of present, control and monitor processes. Particular attention is paid to methods of developing plant concepts, measures to exclude or detect risks, integration of safety engineering into the course of planning, safety concept and ergonomics in plant design. (DG) [de

  14. 75 FR 15484 - Railroad Safety Technology Program Grant Program

    Science.gov (United States)

    2010-03-29

    ... governments for projects that have a public benefit of improved railroad safety and efficiency. The program... State and local governments for projects * * * that have a public benefit of improved safety and network... minimum 20 percent grantee cost share (cash or in-kind) match requirement. DATES: FRA will begin accepting...

  15. Fast reactor safety program. Progress report, January-March 1980

    International Nuclear Information System (INIS)

    1980-05-01

    The goal of the DOE LMFBR Safety Program is to provide a technology base fully responsive to safety considerations in the design, evaluation, licensing, and economic optimization of LMFBRs for electrical power generation. A strategy is presented that divides safety technology development into seven program elements, which have been used as the basis for the Work Breakdown Structure (WBS) for the Program. These elements include four lines of assurance (LOAs) involving core-related safety considerations, an element supporting non-core-related plant safety considerations, a safety R and D integration element, and an element for the development of test facilities and equipment to be used in Program experiments: LOA-1 (prevent accidents); LOA-2 (limit core damage); LOA-3 (maintain containment integrity); LOA-4 (attenuate radiological consequences); plant considerations; R and D integration; and facility development

  16. Research program on regulatory safety research

    International Nuclear Information System (INIS)

    Mailaender, R.

    2010-02-01

    This paper elaborated for the Swiss Federal Office of Energy (SFOE) presents the synthesis report for 2009 made by the SFOE's program leader on the research program concerning regulatory nuclear safety research, as co-ordinated by the Swiss Nuclear Safety Inspectorate ENSI. Work carried out in various areas is reviewed, including that done on reactor safety, radiation protection and waste disposal as well as human aspects, organisation and safety culture. Work done concerning materials, pressure vessel integrity, transient analysis, the analysis of serious accidents in light-water reactors, fuel and material behaviour, melt cooling and concrete interaction is presented. OECD data bank topics are discussed. Transport and waste disposal research at the Mont Terri rock laboratory is looked at. Requirements placed on the personnel employed in nuclear power stations are examined and national and international co-operation is reviewed

  17. WAG 2 remedial investigation and site investigation site-specific work plan/health and safety checklist for the sediment transport modeling task

    International Nuclear Information System (INIS)

    Holt, V.L.; Baron, L.A.

    1994-05-01

    This site-specific Work Plan/Health and Safety Checklist (WP/HSC) is a supplement to the general health and safety plan (HASP) for Waste Area Grouping (WAG) 2 remedial investigation and site investigation (WAG 2 RI ampersand SI) activities [Health and Safety Plan for the Remedial Investigation and Site Investigation of Waste Area Grouping 2 at the Oak Ridge National Laboratory, Oak Ridge, Tennessee (ORNL/ER-169)] and provides specific details and requirements for the WAG 2 RI ampersand SI Sediment Transport Modeling Task. This WP/HSC identifies specific site operations, site hazards, and any recommendations by Oak Ridge National Laboratory (ORNL) health and safety organizations [i.e., Industrial Hygiene (IH), Health Physics (HP), and/or Industrial Safety] that would contribute to the safe completion of the WAG 2 RI ampersand SI. Together, the general HASP for the WAG 2 RI ampersand SI (ORNL/ER-169) and the completed site-specific WP/HSC meet the health and safety planning requirements specified by 29 CFR 1910.120 and the ORNL Hazardous Waste Operations and Emergency Response (HAZWOPER) Program Manual. In addition to the health and safety information provided in the general HASP for the WAG 2 RI ampersand SI, details concerning the site-specific task are elaborated in this site-specific WP/HSC, and both documents, as well as all pertinent procedures referenced therein, will be reviewed by all field personnel prior to beginning operations

  18. Multiobjective programming and planning

    CERN Document Server

    Cohon, Jared L

    2004-01-01

    This text takes a broad view of multiobjective programming, emphasizing the methods most useful for continuous problems. It reviews multiobjective programming methods in the context of public decision-making problems, developing each problem within a context that addresses practical aspects of planning issues. Topics include a review of linear programming, the formulation of the general multiobjective programming problem, classification of multiobjective programming methods, techniques for generating noninferior solutions, multiple-decision-making methods, multiobjective analysis of water reso

  19. Educational program emergency planning.

    Science.gov (United States)

    Curtis, Tammy

    2009-01-01

    Tragic university shootings have prompted administrators of higher education institutions to re-evaluate their emergency preparedness plans and take appropriate measures for preventing and responding to emergencies. To review the literature and identify key components needed to prevent shootings at higher education institutions in the United States, and in particular, institutions housing radiologic science programs. Twenty-eight emergency preparedness plans were retrieved electronically and reviewed from a convenience sample of accredited radiologic science programs provided by the Joint Review Committee on Education in Radiologic Technology Web site. The review of the 28 emergency preparedness plans confirmed that most colleges are prepared for basic emergencies, but lack the key components needed to successfully address mass-casualty events. Only 5 (18%) of the 28 institutions addressed policies concerning school shootings.

  20. Use of the Home Safety Self-Assessment Tool (HSSAT) within Community Health Education to Improve Home Safety.

    Science.gov (United States)

    Horowitz, Beverly P; Almonte, Tiffany; Vasil, Andrea

    2016-10-01

    This exploratory research examined the benefits of a health education program utilizing the Home Safety Self-Assessment Tool (HSSAT) to increase perceived knowledge of home safety, recognition of unsafe activities, ability to safely perform activities, and develop home safety plans of 47 older adults. Focus groups in two senior centers explored social workers' perspectives on use of the HSSAT in community practice. Results for the health education program found significant differences between reported knowledge of home safety (p = .02), ability to recognize unsafe activities (p = .01), safely perform activities (p = .04), and develop a safety plan (p = .002). Social workers identified home safety as a major concern and the HSSAT a promising assessment tool. Research has implications for reducing environmental fall risks.

  1. Site Safety Plan for Lawrence Livermore National Laboratory CERCLA investigations

    Energy Technology Data Exchange (ETDEWEB)

    Bainer, R.; Duarte, J.

    1993-07-01

    The safety policy of LLNL is to take every reasonable precaution in the performance of work to protect the environment and the health and safety of employees and the public, and to prevent property damage. With respect to hazardous agents, this protection is provided by limiting human exposures, releases to the environment, and contamination of property to levels that are as low as reasonably achievable (ALARA). It is the intent of this Plan to supply the broad outline for completing environmental investigations within ALARA guidelines. It may not be possible to determine actual working conditions in advance of the work; therefore, planning must allow the opportunity to provide a range of protection based upon actual working conditions. Requirements will be the least restrictive possible for a given set of circumstances, such that work can be completed in an efficient and timely fashion. Due to the relatively large size of the LLNL Site and the different types of activities underway, site-specific Operational Safety Procedures (OSPs) will be prepared to supplement activities not covered by this Plan. These site-specific OSPs provide the detailed information for each specific activity and act as an addendum to this Plan, which provides the general plan for LLNL Main Site operation.

  2. Addendum to the health and safety plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    International Nuclear Information System (INIS)

    Clark, C. Jr.; Burman, S.N.; Wilson, K.A.

    1995-08-01

    There are three purposes for this addendum to the health and safety plan for Waste Area Grouping 6. The first purpose is to provide record of a corrective action response concerning an occurrence on WAG 6 in October 1994 (ORO-MMES-ENVRES-1994-0016.) This occurrence involved a precautionary evacuation of subcontractor field crews due to malfunctioning monitor alarms for organic vapors. The corrective action is to revise the WAG 6 Site health and safety plan to improve communications during emergency events. The second purpose is to incorporate any outstanding health and safety issues not addressed in the original health and safety plan for WAG 6 document (ORNL/ER-183). The only variance of note is tritium air monitoring in the Tumulus building. The tritium air monitor is added in this addendum as monitoring equipment for WAG 6 with description of action level and calibration. The third purpose of this addendum is to satisfy a condition of approval for the pending Nuclear Criticality Safety Assessment (NCSA) pertaining to KEMA fuel storage at WAG 6. This approval condition requires the following: ''The location of the KEMA burial shall be recorded and maintained in a controlled document that identifies the quantity and the general physical conditions at the time of the entombment with an admonishment to obtain nuclear criticality safety guidance before altering the burial condition.'' In order to satisfy the approval, this document must be controlled. The predecessor to the pending NCSA is NSR No. 0002WM22001

  3. A Computer Program for Assessing Nuclear Safety Culture Impact

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kiyoon; Jae, Moosung [Hanyang Univ., Seoul (Korea, Republic of)

    2014-10-15

    Through several accidents of NPP including the Fukushima Daiichi in 2011 and Chernobyl accidents in 1986, a lack of safety culture was pointed out as one of the root cause of these accidents. Due to its latent influences on safety performance, safety culture has become an important issue in safety researches. Most of the researches describe how to evaluate the state of the safety culture of the organization. However, they did not include a possibility that the accident occurs due to the lack of safety culture. Because of that, a methodology for evaluating the impact of the safety culture on NPP's safety is required. In this study, the methodology for assessing safety culture impact is suggested and a computer program is developed for its application. SCII model which is the new methodology for assessing safety culture impact quantitatively by using PSA model. The computer program is developed for its application. This program visualizes the SCIs and the SCIIs. It might contribute to comparing the level of the safety culture among NPPs as well as improving the management safety of NPP.

  4. Revised Severe Accident Research Program plan, FY 1990--1992

    International Nuclear Information System (INIS)

    1989-08-01

    For the past 10 years, since the Three Mile Island accident, the NRC has sponsored an active research program on light-water-reactor severe accidents as part of a multi-faceted approach to reactor safety. This report describes the revised Severe Accident Research Program (SARP) and how the revisions are designed to provide confirmatory information and technical support to the NRC staff in implementing the staff's Integration Plan for Closure of Severe Accident Issues as described in SECY-88-147. The revised SARP addresses both the near-term research directed at providing a technical basis upon which decisions on important containment performance issues can be made and the long-term research needed to confirm and refine our understanding of severe accidents. In developing this plan, the staff recognized that the overall goal is to reduce the uncertainties in the source term sufficiently to enable the staff to make regulatory decisions on severe accident issues. However, the staff also recognized that for some issues it may not be practical to attempt to further reduce uncertainties, and some regulatory decisions or conclusions will have to be made with full awareness of existing uncertainties. 2 figs., 1 tab

  5. Nuclear criticality safety program at the Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Lell, R.M.; Fujita, E.K.; Tracy, D.B.; Klann, R.T.; Imel, G.R.; Benedict, R.W.; Rigg, R.H.

    1994-01-01

    The Fuel Cycle Facility (FCF) is designed to demonstrate the feasibility of a novel commercial-scale remote pyrometallurgical process for metallic fuels from liquid metal-cooled reactors and to show closure of the Integral Fast Reactor (IFR) fuel cycle. Requirements for nuclear criticality safety impose the most restrictive of the various constraints on the operation of FCF. The upper limits on batch sizes and other important process parameters are determined principally by criticality safety considerations. To maintain an efficient operation within appropriate safety limits, it is necessary to formulate a nuclear criticality safety program that integrates equipment design, process development, process modeling, conduct of operations, a measurement program, adequate material control procedures, and nuclear criticality analysis. The nuclear criticality safety program for FCF reflects this integration, ensuring that the facility can be operated efficiently without compromising safety. The experience gained from the conduct of this program in the Fuel cycle Facility will be used to design and safely operate IFR facilities on a commercial scale. The key features of the nuclear criticality safety program are described. The relationship of these features to normal facility operation is also described

  6. 23 CFR 1200.25 - Improvement plan.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Improvement plan. 1200.25 Section 1200.25 Highways... Implementation and Management of the Highway Safety Program § 1200.25 Improvement plan. If a review of the Annual... improvement plan. This plan will detail strategies, program activities, and funding targets to meet the...

  7. Research notes : are safety corridors really safe? Evaluation of the corridor safety improvement program.

    Science.gov (United States)

    1998-08-26

    High accident frequencies on Oregons highway corridors are of concern to the Oregon Department of Transportation (ODOT). : ODOT adopted the Corridor Safety Improvement Program as part of an overall program of safety improvements using federal and ...

  8. Summary of NRC LWR safety research programs on fuel behavior, metallurgy/materials and operational safety

    International Nuclear Information System (INIS)

    Bennett, G.L.

    1979-09-01

    The NRC light-water reactor safety-research program is part of the NRC regulatory program for ensuring the safety of nuclear power plants. This paper summarizes the results of NRC-sponsored research into fuel behavior, metallurgy and materials, and operational safety. The fuel behavior research program provides a detailed understanding of the response of nuclear fuel assemblies to postulated off-normal or accident conditions. Fuel behavior research includes studies of basic fuel rod properties, in-reactor tests, computer code development, fission product release and fuel meltdown. The metallurgy and materials research program provides independent confirmation of the safe design of reactor vessels and piping. This program includes studies on fracture mechanics, irradiation embrittlement, stress corrosion, crack growth, and nondestructive examination. The operational safety research provides direct assistance to NRC officials concerned with the operational and operational-safety aspects of nuclear power plants. The topics currently being addressed include qualification testing evaluation, fire protection, human factors, and noise diagnostics

  9. Environmental development plan: magnetic fusion

    International Nuclear Information System (INIS)

    1979-09-01

    This Environmental Development Plan (EDP) identifies the planning and management requirements and schedules needed to evaluate and assess the environmental, health and safety (EH and S) aspects of the Magnetic Fusion Energy Program (MFE). Environment is defined to include the environmental, health (occupational and public), and safety aspects

  10. Integrated plant safety assessment. Systematic evaluation program, Big Rock Point Plant (Docket No. 50-155). Final report

    International Nuclear Information System (INIS)

    1984-05-01

    The Systematic Evaluation Program was initiated in February 1977 by the U.S. Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to reconfirm and document their safety. The review provides (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety when the supplement to the Final Integrated Plant Safety Assessment Report has been issued. This report documents the review of the Big Rock Point Plant, which is one of ten plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. It also addresses a majority of the pending licensing actions for Big Rock Point, which include TMI Action Plan requirements and implementation criteria for resolved generic issues. Equipment and procedural changes have been identified as a result of the review

  11. Planning Document for an NBSR Conversion Safety Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Diamond D. J.; Baek J.; Hanson, A.L.; Cheng, L-Y.; Brown, N.; Cuadra, A.

    2013-09-25

    The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the National Bureau of Standards Reactor (NBSR). The NBSR is a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in an aluminum alloy, and the development of the fabrication techniques. This report is a planning document for the conversion Safety Analysis Report (SAR) that would be submitted to, and approved by, the Nuclear Regulatory Commission (NRC) before the reactor could be converted.This report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis herein is on the SAR chapters that require significant changes as a result of conversion, primarily Chapter 4, Reactor Description, and Chapter 13, Safety Analysis. The document provides information on the proposed design for the LEU fuel elements and identifies what information is still missing. This document is intended to assist ongoing fuel development efforts, and to provide a platform for the development of the final conversion SAR. This report contributes directly to the reactor conversion pillar of the GTRI program, but also acts as a boundary condition for the fuel development and fuel fabrication pillars.

  12. 77 FR 58488 - Hawaii State Plan for Occupational Safety and Health

    Science.gov (United States)

    2012-09-21

    ... DEPARTMENT OF LABOR Occupational Safety and Health Administration 29 CFR Part 1952 [Docket ID. OSHA 2012-0029] RIN 1218-AC78 Hawaii State Plan for Occupational Safety and Health AGENCY: Occupational... announces the Occupational Safety and Health Administration's (OSHA) decision to modify the Hawaii State...

  13. Work plan, health and safety plan, and site characterization for the Rust Spoil Area (D-106)

    International Nuclear Information System (INIS)

    Bohrman, D.E.; Uziel, M.S.; Landguth, D.C.; Hawthorne, S.W.

    1990-06-01

    As part of the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) of the Department of Energy's Y-12 Plant located in Oak Ridge, Tennessee, this work plan has been developed for the Rust Spoil Area (a solid waste disposal area). The work plan was developed by the Measurement Applications and Development Group (MAD) of the Health and Safety Research Division (HASRD) at Oak Ridge National Laboratory (ORNL) and will be implemented jointly by ORNL/MAD and the Y-12 Environmental Surveillance Section. This plan consists of four major sections: (1) a project description giving the scope and objectives of the investigation at the Rust Spoil Area; (2) field and sampling procedures describing sample documentation, soil sampling techniques, sample packaging and preservation, equipment decontamination, and disposal of investigation generated wastes; (3) sample analysis procedures detailing necessary analytical laboratory procedures to ensure the quality of chemical results from sample receipt through analysis and data reporting; and (4) a health and safety plan which describes general site hazards and particular hazards associated with specific tasks, assigns responsibilities, establishes personnel protection standards and mandatory safety procedures, and provides emergency information for contingencies that may arise during the course of field operations

  14. A report on developing a checklist to assess company plans focused on improving safety awareness, safe behaviour and safety culture: final report

    NARCIS (Netherlands)

    Steijger, N.; Starren, H.; Keus, M.; Gort, J.; Vervoort, M.

    2003-01-01

    This report describes the process of developing a checklist to asses company plans focused on improving safety awareness, safe behaviour and safety culture. These plans are part of a programme initiated by the Ministry of Social Affairs and Employment aiming at improving the safety performance of

  15. Safety issue resolution strategy plan for inactive miscellaneous underground storage tanks

    International Nuclear Information System (INIS)

    Wang, O.S.; Powers, T.B.

    1994-09-01

    The purpose of this strategy plan is to identify, confirm, and resolve safely issues associated with inactive miscellaneous underground storage tanks (MUSTs) using a risk-based priority approach. Assumptions and processes to assess potential risks and operational concerns are documented in this report. Safety issue priorities are ranked based on a number of considerations including risk ranking and cost effectiveness. This plan specifies work scope and recommends schedules for activities related to resolving safety issues, such as collecting historical data, searching for authorization documents, performing Unreviewed Safety Question (USQ) screening and evaluation, identifying safety issues, imposing operational controls and monitoring, characterizing waste contents, mitigating and resolving safety issues, and fulfilling other remediation requirements consistent with the overall Tank Waste Remediation System strategy. Recommendations for characterization and remediation are also recommended according to the order of importance and practical programmatic consideration

  16. Directory of Academic Programs in Occupational Safety and Health.

    Science.gov (United States)

    Weis, William J., III; And Others

    This booklet describes academic program offerings in American colleges and universities in the area of occupational safety and health. Programs are divided into five major categories, corresponding to each of the core disciplines: (1) occupational safety and health/industrial hygiene, (2) occupational safety, (3) industrial hygiene, (4)…

  17. OPG waterways public safety program

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, T [Ontario Power Generation Inc., Niagara Falls, ON (Canada)

    2009-07-01

    Ontario Power Generation (OPG) has 64 hydroelectric generating stations, 241 dams, and 109 dams in Ontario's registry with the International Commission on Large Dams (ICOLD). In 1986, it launched a formal dam safety program. This presentation addressed the importance of public safety around dams. The safety measures are timely because of increasing public interaction around dams; the public's unawareness of hazards; public interest in extreme sports; easier access by recreational vehicles; the perceived right of public to access sites; and the remote operation of hydroelectric stations. The presentation outlined the OPG managed system approach, with particular reference to governance; principles; standards and procedures; and aspects of implementation. Specific guidelines and governing documents for public safety around dams were identified, including guidelines for public safety of waterways; booms and buoys; audible warning devices and lights; public safety signage; fencing and barricades; and risk assessment for public safety around waterways. The presentation concluded with a discussion of audits and management reviews to determine if safety objectives and targets have been met. figs.

  18. K basins interim remedial action health and safety plan

    Energy Technology Data Exchange (ETDEWEB)

    DAY, P.T.

    1999-09-14

    The K Basins Interim Remedial Action Health and Safety Plan addresses the requirements of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as they apply to the CERCLA work that will take place at the K East and K West Basins. The provisions of this plan become effective on the date the US Environmental Protection Agency issues the Record of Decision for the K Basins Interim Remedial Action, currently planned in late August 1999.

  19. Fundamentals of a patient safety program

    International Nuclear Information System (INIS)

    Frush, Karen S.

    2008-01-01

    Thousands of people are injured or die from medical errors and adverse events each year, despite being cared for by hard-working, intelligent and well-intended health care professionals, working in the highly complex and high-risk environment of the American health care system. Patient safety leaders have described a need for health care organizations to make error prevention a major strategic objective while at the same time recognizing the importance of transforming the traditional health care culture. In response, comprehensive patient safety programs have been developed with the aim of reducing medical errors and adverse events and acting as a catalyst in the development of a culture of safety. Components of these programs are described, with an emphasis on strategies to improve pediatric patient safety. Physicians, as leaders of the health care team, have a unique opportunity to foster the culture and commitment required to address the underlying systems causes of medical error and harm. (orig.)

  20. Gas-cooled fast reactor safety - and overview and status of the U.S. program

    International Nuclear Information System (INIS)

    Torri, A.; Buttemer, D.R.

    1981-01-01

    In the revised GCFR Safety Program Plan a quantitative risk limit line has been adopted to establish requirements for the safety related functions and systems. The risk limit line is derived from an interpretation of NRC established licensing requirements, including those for LMFBR's. Multiple barriers to the progression of accident sequences are defined in the form of six Lines of Protection (LOPs). LOPs-1 to 3 are dedicated to accident prevention and represent the normal operating systems, the dedicated safety systems and the inherent design features, respectively. LOPs-4 to 6 are dedicated to the mitigation of core melt accident consequences and include in-vessel accident containment, secondary containment integrity and radiological attenuation, respectively. Cumulative frequency limits and consequence limits are established for each LOP. Design features associated with each LOP are described and the results of supporting safety analyses are summarized. (author)

  1. 78 FR 11902 - Review of Gun Safety Technologies

    Science.gov (United States)

    2013-02-20

    ... DEPARTMENT OF JUSTICE Office of Justice Programs [OJP (NIJ) Docket No. 1615] Review of Gun Safety...'s Plan to reduce gun violence released on January 16, 2013, the U.S. Department of Justice, Office... emerging gun safety technologies and plans to issue a report on the availability and use of those...

  2. A Guide to Program Planning Vol. II.

    Science.gov (United States)

    Allen, Earl, Sr.

    This booklet is a simplified guide for program planning and is intended to complement a somewhat lengthier companion booklet on program evaluation. It spells out in outline fashion the basic elements and steps involved in the planning process. Brief sections focus in turn on different phases of the planning process, including problem…

  3. Planning integration FY 1995 Multi-Year Program Plan (MYPP)/Fiscal Year Work Plan (FYWP)

    International Nuclear Information System (INIS)

    1994-09-01

    This Multi-Year Program Plan (MYPP) for the Planning Integration Program, Work Breakdown structure (WBS) Element 1.8.2, is the primary management tool to document the technical, schedule, and cost baseline for work directed by the US Department of Energy (DOE), Richland Operations Office (RL). As an approved document, it establishes a binding agreement between RL and the performing contractors for the work to be performed. It was prepared by the Westinghouse Hanford Company (WHC) and the Pacific Northwest Laboratory (PNL). This MYPP provides a picture from fiscal year 1995 through FY 2001 for the Planning Integration Program. The MYPP provides a window of detailed information for the first three years. It also provides 'execution year' work plans. The MYPP provides summary information for the next four years, documenting the same period as the Activity Data Sheets

  4. Planning integration FY 1995 Multi-Year Program Plan (MYPP)/Fiscal Year Work Plan (FYWP)

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This Multi-Year Program Plan (MYPP) for the Planning Integration Program, Work Breakdown structure (WBS) Element 1.8.2, is the primary management tool to document the technical, schedule, and cost baseline for work directed by the US Department of Energy (DOE), Richland Operations Office (RL). As an approved document, it establishes a binding agreement between RL and the performing contractors for the work to be performed. It was prepared by the Westinghouse Hanford Company (WHC) and the Pacific Northwest Laboratory (PNL). This MYPP provides a picture from fiscal year 1995 through FY 2001 for the Planning Integration Program. The MYPP provides a window of detailed information for the first three years. It also provides `execution year` work plans. The MYPP provides summary information for the next four years, documenting the same period as the Activity Data Sheets.

  5. Fusion Safety Program annual report, fiscal year 1992

    International Nuclear Information System (INIS)

    Holland, D.F.; Cadwallader, L.C.; Herring, J.S.; Longhurst, G.R.; McCarthy, K.A.; Merrill, B.J.; Piet, S.J.

    1993-01-01

    This report summarizes the major activities of the Fusion Safety Program in fiscal year 1992. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and EG ampersand G Idaho, Inc. is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL and in participating organizations including the Westinghouse Hanford Company at the Hanford Engineering Development Laboratory, the Massachusetts Institute of Technology, and the University of Wisconsin. The technical areas covered in the report include tritium safety, activation product release, reactions involving beryllium, reactions involving lithium breeding materials, safety of fusion magnet systems, plasma disruptions, risk assessment failure rate data base, and computer code development for reactor transients. Also included in the report is a summary of the safety and environmental studies performed by the INEL for the Tokamak Physics Experiments and the Tokamak Fusion Test Reactor, the safety analysis for the International Thermonuclear Experimental Reactor design, and the technical support for the ARIES commercial reactor design study

  6. First regional CSM program planned.

    Science.gov (United States)

    1982-09-01

    6 countries in the English-speaking Caribbean (Antigua, Barbados, Dominica, St. Kitts/Nevis, St. Lucia, and St. Vincent) are scheduled to form the 1st regional contraceptive social marketing program. The program will be under the auspices of the Barbados Family Planning Association. By combining resources, contraceptive social marketing should be able to effectively augment family planning activities in smaller countries where individual programs wuld be too costly. The regional program will also determine whether program elements from 1 country in a region are relevant in other countries. The Caribbean region as a whole has experienced a general decline in both crude birth rates and fertility rates during the past 15 years; however, adolescent fertility rates remain high and an average of 46% of the populations of Caribbean countries are under 15 years of age. Although heavy emigration has traditionally curbed population increases, new restrictive immigration laws are expected. Further increases in the working age population will contribute to already high unemployment rates and hinder economic development. The 6 countries selected for the social marketing program are receptive to innovative family planning approaches and have the basic marketing infrastructure required. Community-based distribution programs already in operation in these countries distribute condoms, oral contraceptives, and barrier methods. The success of these programs has plateaued, and there is a need for delivery systems capable of reaching broader segments of the population. The social marketing program will be phased in to ensure local acceptance among national leaders and consumers. The regional program hopes to borrow elements from Jamaica's contraceptive social marketing program to avoid the costs involved in starting a program from scratch. A major innovation will be the use of mass media advertising for contraceptives.

  7. Plan for safety case of spent fuel repository at Olkiluoto

    International Nuclear Information System (INIS)

    Vieno, T.; Ikonen, A.T.K.

    2005-02-01

    Posiva aims to present the Safety Case supporting the construction license application of the spent fuel repository at Olkiluoto by 2012. An outline and preliminary assessments will be presented in 2009. Interim reporting and an update of the Safety Case plan will be presented in 2006, as required by the authorities. The KBS-3 disposal concept aims at long-term isolation and containment of spent fuel assemblies in durable copper-iron canisters emplaced in a repository to be constructed at a depth between 400 and 600 metres in crystalline bedrock. By 2012, studies on the KBS-3 disposal concept and site investigations at Olkiluoto will have been continued over about thirty years. The construction of an underground rock characterisation facility (called ONKALO) was started in June 2004. The investigations are carried out in close cooperation with the Swedish SKB developing and assessing the same disposal concept at candidate sites, resembling Olkiluoto, at the other side of the Baltic Sea. A safety case is the synthesis of evidence, analyses and arguments that quantify and substantiate the safety, and the level of expert confidence in the safety, of a planned repository. Posiva's Safety Case will be organised in a portfolio including ten main reports, which will be periodically updated according the overall schedule presented in the plan. The Site report describing the present state and past evolution of the Olkiluoto site, as well as the disturbances caused by the construction of ONKALO and the first stage of the repository, forms the geoscientific basis of the Safety Case. The engineering basis is provided by the reports on the Characteristics of spent fuel, Canister design, and Repository design. The Process report containing descriptions and analyses of features, events and processes potentially affecting the disposal system, and the report on the Evolution of site and repository form the scientific basis of the Safety Case. The latter report will describe and

  8. Development of a residency program in radiation oncology physics: an inverse planning approach.

    Science.gov (United States)

    Khan, Rao F H; Dunscombe, Peter B

    2016-03-08

    Over the last two decades, there has been a concerted effort in North America to organize medical physicists' clinical training programs along more structured and formal lines. This effort has been prompted by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP) which has now accredited about 90 residency programs. Initially the accreditation focused on standardized and higher quality clinical physics training; the development of rounded professionals who can function at a high level in a multidisciplinary environment was recognized as a priority of a radiation oncology physics residency only lately. In this report, we identify and discuss the implementation of, and the essential components of, a radiation oncology physics residency designed to produce knowledgeable and effective clinical physicists for today's safety-conscious and collaborative work environment. Our approach is that of inverse planning, by now familiar to all radiation oncology physicists, in which objectives and constraints are identified prior to the design of the program. Our inverse planning objectives not only include those associated with traditional residencies (i.e., clinical physics knowledge and critical clinical skills), but also encompass those other attributes essential for success in a modern radiation therapy clinic. These attributes include formal training in management skills and leadership, teaching and communication skills, and knowledge of error management techniques and patient safety. The constraints in our optimization exercise are associated with the limited duration of a residency and the training resources available. Without compromising the knowledge and skills needed for clinical tasks, we have successfully applied the model to the University of Calgary's two-year residency program. The program requires 3840 hours of overall commitment from the trainee, of which 7%-10% is spent in obtaining formal training in nontechnical "soft skills".

  9. Light Water Reactor Sustainability Program: Risk-Informed Safety Margins Characterization (RISMC) Pathway Technical Program Plan

    International Nuclear Information System (INIS)

    Smith, Curtis; Rabiti, Cristian; Martineau, Richard; Szilard, Ronaldo

    2016-01-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). As the current Light Water Reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of Systems, Structures, and Components (SSCs) degradations or failures that initiate safety-significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly ''over-design'' portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degree of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as ''safety margin.'' Historically, specific safety margin provisions have been formulated, primarily based on ''engineering judgment.''

  10. Bottom head failure program plan

    International Nuclear Information System (INIS)

    Meyer, R.O.

    1989-01-01

    Earlier this year the NRC staff presented a Revised Severe Accident Research Program Plan (SECY-89-123) to the Commission and initiated work on that plan. Two of the near-term issues in that plan involve failure of the bottom head of the reactor pressure vessel. These two issues are (1) depressurization and DCH and (2) BWR Mark I Containment Shell Meltthrough. ORNL has developed models for several competing failure mechanisms for BWRs. INEL has performed analytical and experimental work directly related to bottom head failure in connection with several programs. SNL has conducted a number of analyses and experimental activities to examine the failure of LWR vessels. In addition to the government-sponsored work mentioned above, EPRI and FAI performed studies on vessel failure for the Industry Degraded Core Rulemaking Program (IDCOR). EPRI examined the failure of a PWR vessel bottom head without penetrations, as found in some Combustion Engineering reactors. To give more attention to this subject as called for by the revised Severe Accident Research Plan, two things are being done. First, work previously done is being reviewed carefully to develop an overall picture and to determine the reliability of assumptions used in those studies. Second, new work is being planned for FY90 to try to complete a reasonable understanding of the failure process. The review and planning are being done in close cooperation with the ACRS. Results of this exercise will be presented in this paper

  11. School Climate: An Essential Component of a Comprehensive School Safety Plan

    Science.gov (United States)

    Stark, Heidi

    2017-01-01

    The intentional assessment and management of school climate is an essential component of a comprehensive school safety plan. The value of this preventive aspect of school safety is often diminished as schools invest resources in physical security measures as a narrowly focused effort to increase school safety (Addington, 2009). This dissertation…

  12. 48 CFR 970.5223-1 - Integration of environment, safety, and health into work planning and execution.

    Science.gov (United States)

    2010-10-01

    ..., safety, and health into work planning and execution. 970.5223-1 Section 970.5223-1 Federal Acquisition... Integration of environment, safety, and health into work planning and execution. As prescribed in 970.2303-3(b), insert the following clause: Integration of Environment, Safety, and Health Into Work Planning and...

  13. CHANDA and ERINDA: Joint European programs for research on safety of nuclear facilities and waste reduction

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Roland; Hannaske, Roland; Koegler, Toni [Institut fuer Strahlenphysik, Helmholtz Zentrum DD-Rossendorf, 01328 Dresden (Germany); Institut fuer Kern- und Teilchenphysik, TU Dresden, 01069 Dresden (Germany); Grosse, Eckart [Institut fuer Kern- und Teilchenphysik, TU Dresden, 01069 Dresden (Germany); Junghans, Arnd R. [Institut fuer Strahlenphysik, Helmholtz Zentrum DD-Rossendorf, 01328 Dresden (Germany)

    2014-07-01

    In spite of the planned termination of the German nuclear power program neutron beam facilities in Germany can contribute considerably to research studies on the reduction of hazards due to nuclear waste. Transnational research programs support EU groups who want to carry out projects at the new tof set-up nELBE at HZDR, the calibrated n-flux at PTB and the FRANZ accelerator under construction at Frankfurt. Vice versa various facilities in the EU offer beams for transmutation and safety related studies with neutrons to German scientists under support by ERINDA (2011-2013) and CHANDA (2014-2017; solving challenges in nuclear data for the safety of European nuclear facilities). For work in that field scientific visits are also fostered to improve the exchange of experience between the partners (13 and in future about 35 from 18 countries). Plans for new projects as well as results obtained so far are discussed, and special emphasis is given to the present research performed at nELBE on neutron scattering and absorption.

  14. Light Water Reactor Sustainability Program Risk-Informed Safety Margins Characterization (RISMC) PathwayTechnical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Curtis Smith; Cristian Rabiti; Richard Martineau

    2012-11-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). As the current Light Water Reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of Systems, Structures, and Components (SSCs) degradations or failures that initiate safety-significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly “over-design” portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degree of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as “safety margin.” Historically, specific safety margin provisions have been formulated, primarily based on “engineering judgment.”

  15. Light Water Reactor Sustainability Program: Risk-Informed Safety Margins Characterization (RISMC) Pathway Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Martineau, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Szilard, Ronaldo [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). As the current Light Water Reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of Systems, Structures, and Components (SSCs) degradations or failures that initiate safety-significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly “over-design” portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degree of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as “safety margin.” Historically, specific safety margin provisions have been formulated, primarily based on “engineering judgment.”

  16. Management services, quality assurance, and safety

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Broad technical and administrative support for the programmatic research and development activities of the Fusion Energy Division is provided by the Management Services Section and by the division's quality assurance (QA) and safety programs. Support is provided through effective communication with division programmatic staff and through the coordination of resources from disciplines outside the division. The QA activity in the division emphasizes the development and documentation of a QA program that conforms to national standards, the review and approval of engineering documents, supplier surveillance, identification and documentation of nonconforming items, audits, and QA assessments/plans. The division's safety activities include a formal safety program, emergency planning activities, and environmental protection services. Efforts devoted to the removal of hazardous wastes from division facilities were expanded during 1986

  17. Sun Safety at Work Canada: a multiple case-study protocol to develop sun safety and heat protection programs and policies for outdoor workers.

    Science.gov (United States)

    Kramer, Desre M; Tenkate, Thomas; Strahlendorf, Peter; Kushner, Rivka; Gardner, Audrey; Holness, D Linn

    2015-07-10

    CAREX Canada has identified solar ultraviolet radiation (UV) as the second most prominent carcinogenic exposure in Canada, and over 75 % of Canadian outdoor workers fall within the highest exposure category. Heat stress also presents an important public health issue, particularly for outdoor workers. The most serious form of heat stress is heat stroke, which can cause irreversible damage to the heart, lungs, kidneys, and liver. Although the need for sun and heat protection has been identified, there is no Canada-wide heat and sun safety program for outdoor workers. Further, no prevention programs have addressed both skin cancer prevention and heat stress in an integrated approach. The aim of this partnered study is to evaluate whether a multi-implementation, multi-evaluation approach can help develop sustainable workplace-specific programs, policies, and procedures to increase the use of UV safety and heat protection. This 2-year study is a theory-driven, multi-site, non-randomized study design with a cross-case analysis of 13 workplaces across four provinces in Canada. The first phase of the study includes the development of workplace-specific programs with the support of the intensive engagement of knowledge brokers. There will be a three-points-in-time evaluation with process and impact components involving the occupational health and safety (OHS) director, management, and workers with the goal of measuring changes in workplace policies, procedures, and practices. It will use mixed methods involving semi-structured key informant interviews, focus groups, surveys, site observations, and UV dosimetry assessment. Using the findings from phase I, in phase 2, a web-based, interactive, intervention planning tool for workplaces will be developed, as will the intensive engagement of intermediaries such as industry decision-makers to link to policymakers about the importance of heat and sun safety for outdoor workers. Solar UV and heat are both health and safety hazards

  18. CEBAF - environmental protection program plan

    International Nuclear Information System (INIS)

    1995-01-01

    An important objective in the successful operation of the Continuous Electron Beam Accelerator Facility (CEBAF) is to ensure protection of the public and the environment. To meet this objective, the Southeastern Universities Research Association, Inc., (SURA) is committed to working with the US Department of Energy (DOE) to develop, implement, and manage a sound and workable environmental protection program at CEBAF. This environmental protection plan includes information on environmental monitoring, long-range monitoring, groundwater protection, waste minimization, and pollution prevention awareness program plan

  19. ESnet Program Plan 1994

    Energy Technology Data Exchange (ETDEWEB)

    Merola, S.

    1994-11-01

    This Program Plan characterizes ESnet with respect to the current and future needs of Energy Research programs for network infrastructure, services, and development. In doing so, this document articulates the vision and recommendations of the ESnet Steering Committee regarding ESnet`s development and its support of computer networking facilities and associated user services. To afford the reader a perspective from which to evaluate the ever-increasing utility of networking to the Energy Research community, we have also provided a historical overview of Energy Research networking. Networking has become an integral part of the work of DOE principal investigators, and this document is intended to assist the Office of Scientific Computing in ESnet program planning and management, including prioritization and funding. In particular, we identify the new directions that ESnet`s development and implementation will take over the course of the next several years. Our basic goal is to ensure that the networking requirements of the respective scientific programs within Energy Research are addressed fairly. The proliferation of regional networks and additional network-related initiatives by other Federal agencies is changing the process by which we plan our own efforts to serve the DOE community. ESnet provides the Energy Research community with access to many other peer-level networks and to a multitude of other interconnected network facilities. ESnet`s connectivity and relationship to these other networks and facilities are also described in this document. Major Office of Energy Research programs are managed and coordinated by the Office of Basic Energy Sciences, the Office of High Energy and Nuclear Physics, the Office of Magnetic Fusion Energy, the Office of Scientific Computing, and the Office of Health and Environmental Research. Summaries of these programs are presented, along with their functional and technical requirements for wide-area networking.

  20. ESnet Program Plan 1994

    International Nuclear Information System (INIS)

    Merola, S.

    1994-01-01

    This Program Plan characterizes ESnet with respect to the current and future needs of Energy Research programs for network infrastructure, services, and development. In doing so, this document articulates the vision and recommendations of the ESnet Steering Committee regarding ESnet's development and its support of computer networking facilities and associated user services. To afford the reader a perspective from which to evaluate the ever-increasing utility of networking to the Energy Research community, we have also provided a historical overview of Energy Research networking. Networking has become an integral part of the work of DOE principal investigators, and this document is intended to assist the Office of Scientific Computing in ESnet program planning and management, including prioritization and funding. In particular, we identify the new directions that ESnet's development and implementation will take over the course of the next several years. Our basic goal is to ensure that the networking requirements of the respective scientific programs within Energy Research are addressed fairly. The proliferation of regional networks and additional network-related initiatives by other Federal agencies is changing the process by which we plan our own efforts to serve the DOE community. ESnet provides the Energy Research community with access to many other peer-level networks and to a multitude of other interconnected network facilities. ESnet's connectivity and relationship to these other networks and facilities are also described in this document. Major Office of Energy Research programs are managed and coordinated by the Office of Basic Energy Sciences, the Office of High Energy and Nuclear Physics, the Office of Magnetic Fusion Energy, the Office of Scientific Computing, and the Office of Health and Environmental Research. Summaries of these programs are presented, along with their functional and technical requirements for wide-area networking

  1. India's power program and its concern over environmental safety

    International Nuclear Information System (INIS)

    Prasad, G.E.; Mittra, J.

    2001-01-01

    India's need of electrical power is enormous and per capita consumption of power is to be increased at least by ten times to reach the level of world average. Thermal Power generation faces two fold problems. First, there is scarcity of good quality fuel and second, increasing environmental pollution. India's self reliant, three stage, 'closed-fuel-cycle' nuclear power program is promising better solution to the above problems. To ensure Radiation Protection and Safety of Radiation Sources, Indian Nuclear Power program emphasizes upon design and engineering safety by incorporating necessary safety features in the design, operational safety through structured training program and typically through software packages to handle rare unsafe events and regulation by complying safety directives. A health survey among the radiation workers indicates that there is no extra threat to the public from nuclear power program. Based on latest technology, as available in case of nuclear power option, it is quite possible to meet high energy requirement with least impact on the environment.. (authors)

  2. Oil program implementation plan FY 1996--2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This document reaffirms the US Department of Energy (DOE) Office of Fossil Energy commitment to implement the National Oil Research Program in a way to maximize assurance of energy security, economic growth, environmental protection, jobs, improved economic competitiveness, and improved US balance of trade. There are two sections and an appendix in this document. Section 1 is background information that guided its formulation and a summary of the Oil Program Implementation Plan. This summary includes mission statements, major program drivers, oil issues and trends, budget issues, customers/stakeholders, technology transfer, measures of program effectiveness, and benefits. Section 2 contains more detailed program descriptions for the eight technical areas and the NIPER infrastructure. The eight technical areas are reservoir characterization; extraction research; exploration, drilling, and risk-based decision management; analysis and planning; technology transfer; field demonstration projects; oil downstream operations; and environmental research. Each description contains an overview of the program, descriptions on main areas, a discussion of stakeholders, impacts, planned budget projections, projected schedules with Gantt charts, and measures of effectiveness. The appendix is a summary of comments from industry on an earlier draft of the plan. Although changes were made in response to the comments, many of the suggestions will be used as guidance for the FY 1997--2001 plan.

  3. Systems autonomy technology: Executive summary and program plan

    Science.gov (United States)

    Bull, John S (Editor)

    1987-01-01

    The National Space Strategy approved by the President and Congress in 1984 sets for NASA a major goal of conducting effective and productive space applications and technology programs which contribute materially toward United States leadership and security. To contribute to this goal, OAST supports the Nation's civil and defense space programs and overall economic growth. OAST objectives are to ensure timely provision of new concepts and advanced technologies, to support both the development of NASA missions in space and the space activities of industry and other organizations, to utilize the strengths of universities in conducting the NASA space research and technology program, and to maintain the NASA centers in positions of strength in critical space technology areas. In line with these objectives, NASA has established a new program in space automation and robotics that will result in the development and transfer and automation technology to increase the capabilities, productivity, and safety of NASA space programs including the Space Station, automated space platforms, lunar bases, Mars missions, and other deep space ventures. The NASA/OAST Automation and Robotics program is divided into two parts. Ames Research Center has the lead role in developing and demonstrating System Autonomy capabilities for space systems that need to make their own decisions and do their own planning. The Jet Propulsion Laboratory has the lead role for Telerobotics (that portion of the program that has a strong human operator component in the control loop and some remote handling requirement in space). This program is intended to be a working document for NASA Headquarters, Program Offices, and implementing Project Management.

  4. Program plan for environmental qualification of mechanical and dynamic (including seismic) qualification of mechanical and electrical equipment program (EDQP)

    International Nuclear Information System (INIS)

    Weidenhamer, G.H.

    1986-06-01

    The equipment qualification program described in this plan is intended to provide the technical basis for resolving uncertainties in existing equipment qualification standards. In addition, research results are contributing to the resolution of safety issues GI-23, GI-87, USI-A44, titled, ''Reactor Coolant Pump Seal Failure,'' ''Failure of HPCI Steam Line Without Isolation,'' and ''Station Blackout,'' respectively. Also, research effort is being directed at providing information on the behavior of containment isolation valves under severe accident environments. Although the results of the latter research will not contribute to resolving uncertainties in qualification standards, it has proven cost effective to obtain this information under this program

  5. Japan's international cooperation programs on seismic safety of nuclear power plants

    International Nuclear Information System (INIS)

    Sanada, Akira

    1997-01-01

    MITI is promoting many international cooperation programs on nuclear safety area. The seismic safety of nuclear power plants (NPPs) is a one of most important cooperation areas. Experts from MITI and related organization join the multilateral cooperation programs carried out by international organization such as IAEA, OECD/NEA etc. MITI is also promoting bilateral cooperation programs such as information exchange meetings, training programs and seminars on nuclear safety with several countries. Concerning to the cooperation programs on seismic safety of NPPs such as information exchange and training, MITI shall continue and expand these programs. (J.P.N.)

  6. An integrated approach for improving occupational health and safety management: the voluntary protection program in Taiwan.

    Science.gov (United States)

    Su, Teh-Sheng; Tsai, Way-Yi; Yu, Yi-Chun

    2005-05-01

    A voluntary compliance program for occupational health and safety management, Voluntary Protection Programs (VPP), was implemented with a strategy of cooperation and encouragement in Taiwan. Due to limitations on increasing the human forces of inspection, a regulatory-based guideline addressing the essence of Occupational Health and Safety Management Systems (OHSMS) was promulgated, which combined the resources of third parties and insurance providers to accredit a self-improving worksite with the benefits of waived general inspection and a merit contributing to insurance premium payment reduction. A designated institute accepts enterprise's applications, performs document review and organizes the onsite inspection. A final review committee of Council of Labor Affairs (CLA) confers a two-year certificate on an approved site. After ten years, the efforts have shown a dramatic reduction of occupational injuries and illness in the total number of 724 worksites granted certification. VPP worksites, in comparison with all industries, had 49% lower frequency rate in the past three years. The severity rate reduction was 80% in the same period. The characteristics of Taiwan VPP program and international occupational safety and health management programs are provided. A Plan-Do-Check-Act management cycle was employed for pursuing continual improvements to the culture fostered. The use of a quantitative measurement for assessing the performance of enterprises' occupational safety and health management showed the efficiency of the rating. The results demonstrate that an employer voluntary protection program is a promising strategy for a developing country.

  7. Safety Test Program Summary SNAP 19 Pioneer Heat Source Safety Program

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1971-07-01

    Sixteen heat source assemblies have been tested in support of the SNAP 19 Pioneer Safety Test Program. Seven were subjected to simulated reentry heating in various plasma arc facilities followed by impact on earth or granite. Six assemblies were tested under abort accident conditions of overpressure, shrapnel impact, and solid and liquid propellant fires. Three capsules were hot impacted under Transit capsule impact conditions to verify comparability of test results between the two similar capsule designs, thus utilizing both Pioneer and Transit Safety Test results to support the Safety Analysis Report for Pioneer. The tests have shown the fuel is contained under all nominal accident environments with the exception of minor capsule cracks under severe impact and solid fire environments. No catastrophic capsule failures occurred in this test which would release large quantities of fuel. In no test was fuel visible to the eye following impact or fire. Breached capsules were defined as those which exhibit thoria contamination on its surface following a test, or one which exhibited visible cracks in the post test metallographic analyses.

  8. The evolving role and care management approaches of safety-net medicaid managed care plans

    OpenAIRE

    Gusmano, Michael K.; Sparer, Michael S.; Brown, Lawrence D.; Rowe, Catherine; Gray, Bradford

    2002-01-01

    This article provides new empirical data about the viability and the care management activities of Medicaid managed-care plans sponsored by provider organizations that serve Medicaid and other low-income populations. Using survey and case study methods we studied these “safety-net” health plans in 1998 and 2000. Although the number of safety-net plans declined over this period, the surviving plans were larger and enjoying greater financial success than the plans we surveyed in 1998. We also f...

  9. Hanford Surplus Facilities Program plan

    International Nuclear Information System (INIS)

    Hughes, M.C.; Wahlen, R.K.; Winship, R.A.

    1989-09-01

    The Hanford Surplus Facilities Program is responsible for the safe and cost-effective surveillance, maintenance, and decommissioning of surplus facilities at the Hanford Site. The management of these facilities requires a surveillance and maintenance program to keep them in a safe condition and development of a plan for ultimate disposition. Criteria used to evaluate each factor relative to decommissioning are based on the guidelines presented by the US Department of Energy-Richland Operations Office, Defense Facilities Decommissioning Program Office, and are consistent with the Westinghouse Hanford Company commitment to decommission the Hanford Site retired facilities in the safest and most cost-effective way achievable. This document outlines the plan for managing these facilities to the end of disposition

  10. The NASA Aviation Safety Program: Overview

    Science.gov (United States)

    Shin, Jaiwon

    2000-01-01

    In 1997, the United States set a national goal to reduce the fatal accident rate for aviation by 80% within ten years based on the recommendations by the Presidential Commission on Aviation Safety and Security. Achieving this goal will require the combined efforts of government, industry, and academia in the areas of technology research and development, implementation, and operations. To respond to the national goal, the National Aeronautics and Space Administration (NASA) has developed a program that will focus resources over a five year period on performing research and developing technologies that will enable improvements in many areas of aviation safety. The NASA Aviation Safety Program (AvSP) is organized into six research areas: Aviation System Modeling and Monitoring, System Wide Accident Prevention, Single Aircraft Accident Prevention, Weather Accident Prevention, Accident Mitigation, and Synthetic Vision. Specific project areas include Turbulence Detection and Mitigation, Aviation Weather Information, Weather Information Communications, Propulsion Systems Health Management, Control Upset Management, Human Error Modeling, Maintenance Human Factors, Fire Prevention, and Synthetic Vision Systems for Commercial, Business, and General Aviation aircraft. Research will be performed at all four NASA aeronautics centers and will be closely coordinated with Federal Aviation Administration (FAA) and other government agencies, industry, academia, as well as the aviation user community. This paper provides an overview of the NASA Aviation Safety Program goals, structure, and integration with the rest of the aviation community.

  11. Preretirement Programs within Service Firms: Existing and Planned Programs.

    Science.gov (United States)

    Siegel, Sidney R.; Rives, Janet M.

    1980-01-01

    A study of 300 nonmanufacturing firms' current and projected preretirement programs indicated that (1) personnel departments have primary responsibility for existing programs, (2) focus is changing from financial planning to psychological counseling, and (3) such programs benefit the company as well as the employee. (SK)

  12. The Canadian Nuclear Safety Commission Compliance Program for Uranium Mines and Mills

    Energy Technology Data Exchange (ETDEWEB)

    Schryer, D., E-mail: denis.schryer@cnsc-ccsn.gc.ca [Canadian Nuclear Safety Commission, Saskatoon, Saskatchewan (Canada)

    2014-05-15

    The Canadian Nuclear Safety Commission (CNSC) is the principal nuclear regulator in Canada. The CNSC is empowered through the Nuclear Safety and Control Act (NSCA) and its associated regulations, to regulate the entire nuclear cycle which includes: uranium mining and milling, uranium refining and processing, fuel fabrication, power generation and nuclear waste management. A CNSC uranium mine licence is required by a proponent to site, prepare, construct, operate, decommission and abandon this nuclear facility. The CNSC licence is the legal instrument that authorizes the regulated activities and incorporates conditions and regulatory controls. Following a favourable Commission Tribunal decision to issue a licence to authorize the licensed activities, CNSC develops and executes a compliance plan of the licensee’s programs and procedures. The CNSC compliance plan is risk-informed and applies its resources to the identified higher risk areas. The compliance program is designed to encourage compliance by integrating three components: promotion, verification and enforcement and articulates the CNSC expectations to attain and maintain compliance with its regulatory requirements. The licensee performance is assessed through compliance activities and reported to the Commission to inform the licensing process during licence renewal. The application of the ongoing compliance assessment and risk management model ensures that deviations from impact predictions are addressed in a timely manner. The Uranium Mines and Mills Division of the CNSC are preparing to meet the challenges of the planned expansion of their Canadian uranium mining industry. The presentation will discuss these challenges and the measures required to address them. The Uranium Mines and Mills Division (UMMD) have adopted a structured compliance framework which includes formal procedures to conduct site inspections. New UMMD staff are trained to apply the regulations to licensed sites and to manage non

  13. Environmental Restoration Remedial Action Program records management plan

    International Nuclear Information System (INIS)

    Michael, L.E.

    1991-07-01

    The US Department of Energy-Richland Operations Office (DOE-RL) Environmental Restoration Field Office Management Plan [(FOMP) DOE-RL 1989] describes the plans, organization, and control systems to be used for management of the Hanford Site environmental restoration remedial action program. The FOMP, in conjunction with the Environmental Restoration Remedial Action Quality Assurance Requirements document [(QARD) DOE-RL 1991], provides all the environmental restoration remedial action program requirements governing environmental restoration work on the Hanford Site. The FOMP requires a records management plan be written. The Westinghouse Hanford Company (Westinghouse Hanford) Environmental Restoration Remedial Action (ERRA) Program Office has developed this ERRA Records Management Plan to fulfill the requirements of the FOMP. This records management plan will enable the program office to identify, control, and maintain the quality assurance, decisional, or regulatory prescribed records generated and used in support of the ERRA Program. 8 refs., 1 fig

  14. Plans for the NKS-program 1998-2001; Planer for NKS-programmet 1998-2001

    Energy Technology Data Exchange (ETDEWEB)

    Bennerstedt, T [ed.

    1999-08-01

    The present report is a comprehensive compilation of the adopted NKS project plans for the sixth four-year period, 1998-2001. Most of the plans are in English. One is in both English and Danish. One is in Norwegian, with a brief summary in English. Only two of the six appendices are in English. In spite of this, it is believed that the report will serve as a valuable source of information not only to those actually active in or closely following the NKS work, but also the international scientific community, e.g., within EU and in the Baltic States. The research program incorporates reactor safety, radioactive waste, emergency preparedness, radioecology, cross-disciplinary studies, and information issues. The necessary administrative support program, including the NKS Secretariat, is not described herein. Neither is the aim, scope or organization of NKS, since this has been covered elsewhere. (EHS)

  15. Environmental Restoration Remedial Actions Program Field Office Work Plan

    International Nuclear Information System (INIS)

    1989-02-01

    The Environmental Restoration Remedial Actions (ERRA) Program was established by DP to comply with regulations for characterization and cleanup of inactive waste sites. The program specifically includes inactive site identification and characterization, technology development and demonstration, remedial design and cleanup action, and postclosure activities of inactive radioactive, chemically hazardous, and mixed waste sites. It does not include facility decontamination and decommissioning activities; these are included in a parallel program, Environmental Restoration Decontamination and Decommissioning (ERD and D), also managed by DP. The ERRA program was formally established in fiscal year (FY) 1988 at the Hanford Site to characterize and remediate inactive waste sites at Hanford. The objectives, planned implementation activities, and management planning for the ERRA Program are contained in several planning documents. These documents include planning for the national program and for the Hanford Program. This summary describes the major documents and the role and purpose of this Field Office Work Plan (FOWP) within the overall hierarchy of planning documents. 4 refs., 7 figs., 8 tabs

  16. German Light-Water-Reactor Safety-Research Program

    International Nuclear Information System (INIS)

    Seipel, H.G.; Lummerzheim, D.; Rittig, D.

    1977-01-01

    The Light-Water-Reactor Safety-Research Program, which is part of the energy program of the Federal Republic of Germany, is presented in this article. The program, for which the Federal Minister of Research and Technology of the Federal Republic of Germany is responsible, is subdivided into the following four main problem areas, which in turn are subdivided into projects: (1) improvement of the operational safety and reliability of systems and components (projects: quality assurance, component safety); (2) analysis of the consequences of accidents (projects: emergency core cooling, containment, external impacts, pressure-vessel failure, core meltdown); (3) analysis of radiation exposure during operation, accident, and decommissioning (project: fission-product transport and radiation exposure); and (4) analysis of the risk created by the operation of nuclear power plants (project: risk and reliability). Various problems, which are included in the above-mentioned projects, are concurrently studied within the Heiss-Dampf Reaktor experiments

  17. FY97 Geothermal R&D Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-09-01

    This is the Sandia National Laboratories Geothermal program plan. This is a DOE Geothermal Program planning and control document. Many of these reports were issued only in draft form. This one is of special interest for historical work because it contains what seems to be a complete list of Sandia geothermal program publications (citations / references) from about 1975 to late 1996. (DJE 2005)

  18. Therapeutic risk management of the suicidal patient: safety planning.

    Science.gov (United States)

    Matarazzo, Bridget B; Homaifar, Beeta Y; Wortzel, Hal S

    2014-05-01

    This column is the fourth in a series describing a model for therapeutic risk management of the suicidal patient. Previous columns presented an overview of the therapeutic risk management model, provided recommendations for how to augment risk assessment using structured assessments, and discussed the importance of risk stratification in terms of both severity and temporality. This final column in the series discusses the safety planning intervention as a critical component of therapeutic risk management of suicide risk. We first present concerns related to the relatively common practice of using no-suicide contracts to manage risk. We then present the safety planning intervention as an alternative approach and provide recommendations for how to use this innovative strategy to therapeutically mitigate risk in the suicidal patient.

  19. 49 CFR 613.200 - Statewide transportation planning and programming.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Statewide transportation planning and programming. 613.200 Section 613.200 Transportation Other Regulations Relating to Transportation (Continued... Transportation Planning and Programming § 613.200 Statewide transportation planning and programming. The...

  20. Sodium Fast Reactor Safety and Licensing Research Plan

    International Nuclear Information System (INIS)

    Denman, Matthew; Lachance, Jeff; Sofu, Tanju; Wigeland, Roald; Flanagan, George; Bari, Robert

    2013-01-01

    Conclusions: The Sodium Fast Reactor Safety and Licensing Research Plan reports conclude a multi-year expert elicitation process. All information included in the studies are publicly available and the reports are UUR. These reports are intended to guide SFR researchers in the safety and licensing arena to important and outstanding issues Two (and a half) projects have been funded based on the recommendations in this report: • Modernization of SAS4A; • Incorporation of Contain/LMR with MELCOR; • (Data recovery at INL and PNNL)

  1. National Waste Terminal Storage Program: planning and control plan. Volume II. Plan description

    International Nuclear Information System (INIS)

    1977-05-01

    Objective of the NWTS program planning and control plan is to provide the information necessary for timely and effective OWI management decisions. Purpose is to describe the concepts and techniques that will be utilized by OWI to establish structured, completely planned and controlled technical, cost, and schedule NWTS baselines from which performance or progress can be accurately measured

  2. 76 FR 74723 - New Car Assessment Program (NCAP); Safety Labeling

    Science.gov (United States)

    2011-12-01

    ... [Docket No. NHTSA 2010-0025] RIN 2127-AK51 New Car Assessment Program (NCAP); Safety Labeling AGENCY... NHTSA's regulation on vehicle labeling of safety rating information to reflect the enhanced NCAP ratings... Traffic Safety Administration under the enhanced NCAP testing and rating program. * * * * * (e) * * * (4...

  3. Water Safety Plan on cruise ships: A promising tool to prevent waterborne diseases

    Energy Technology Data Exchange (ETDEWEB)

    Mouchtouri, Varvara A., E-mail: mouchtourib@med.uth.gr [Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, Larissa (Greece); Bartlett, Christopher L.R. [University College London, Centre for Infectious Disease Epidemiology Department of Primary Care and Population Sciences Royal Free and University College Medical School, London (United Kingdom); Diskin, Arthur [Royal Caribbean Cruise Line, Miami (United States); Hadjichristodoulou, Christos [Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, Larissa (Greece)

    2012-07-01

    Background: Legionella spp. and other waterborne pathogens have been isolated from various water systems on land based premises as well as on ships and cases of Legionnaires' disease have been associated with both sites. Peculiarities of cruise ships water systems make the risk management a challenging process. The World Health Organization suggests a Water Safety Plan (WSP) as the best approach to mitigate risks and hazards such as Legionella spp. and others. Objectives: To develop WSP on a cruise ship and discuss challenges, perspectives and key issues to success. Methods: Hazards and hazardous events were identified and risk assessment was conducted of the ship water system. Ship company management, policies and procedures were reviewed, site visits were conducted, findings and observations were recorded and discussed with engineers and key crew members were interviewed. Results: A total of 53 hazards and hazardous events were taken into consideration for the risk assessment and additional essential barriers were established when needed. Most of them concerned control measures for biofilm development and Legionella spp. contamination. A total of 29 operational limits were defined. Supplementary verification and supportive programs were established. Conclusions: Application of the WSP to ship water systems, including potable water, recreational water facilities and decorative water features and fountains, is expected to improve water management on ships. The success of a WSP depends on support from senior management, commitment of the Captain and crew members, correct execution of all steps of a risk assessment and practicality and applicability in routine operation. The WSP provides to shipping industry a new approach and a move toward evidence based water safety policy. - Highlights: Black-Right-Pointing-Pointer We conducted risk assessment and developed a Water Safety Plan on a cruise ship. Black-Right-Pointing-Pointer 53 hazards and hazardous events were

  4. Water Safety Plan on cruise ships: A promising tool to prevent waterborne diseases

    International Nuclear Information System (INIS)

    Mouchtouri, Varvara A.; Bartlett, Christopher L.R.; Diskin, Arthur; Hadjichristodoulou, Christos

    2012-01-01

    Background: Legionella spp. and other waterborne pathogens have been isolated from various water systems on land based premises as well as on ships and cases of Legionnaires' disease have been associated with both sites. Peculiarities of cruise ships water systems make the risk management a challenging process. The World Health Organization suggests a Water Safety Plan (WSP) as the best approach to mitigate risks and hazards such as Legionella spp. and others. Objectives: To develop WSP on a cruise ship and discuss challenges, perspectives and key issues to success. Methods: Hazards and hazardous events were identified and risk assessment was conducted of the ship water system. Ship company management, policies and procedures were reviewed, site visits were conducted, findings and observations were recorded and discussed with engineers and key crew members were interviewed. Results: A total of 53 hazards and hazardous events were taken into consideration for the risk assessment and additional essential barriers were established when needed. Most of them concerned control measures for biofilm development and Legionella spp. contamination. A total of 29 operational limits were defined. Supplementary verification and supportive programs were established. Conclusions: Application of the WSP to ship water systems, including potable water, recreational water facilities and decorative water features and fountains, is expected to improve water management on ships. The success of a WSP depends on support from senior management, commitment of the Captain and crew members, correct execution of all steps of a risk assessment and practicality and applicability in routine operation. The WSP provides to shipping industry a new approach and a move toward evidence based water safety policy. - Highlights: ► We conducted risk assessment and developed a Water Safety Plan on a cruise ship. ► 53 hazards and hazardous events were taken into consideration for the risk assessment.

  5. 25 CFR 87.9 - Programming aspects of plans.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Programming aspects of plans. 87.9 Section 87.9 Indians... JUDGMENT FUNDS § 87.9 Programming aspects of plans. In assessing any tribal programming proposal the... such reservation residents; the nature of recent programming affecting the subject tribe or group and...

  6. Safety guidance and inspection program for particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Do Whey [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Lee, Hee Seock; Yeo, In Whan [Pohang Accelerator Laboratory, Pohang (Korea, Republic of)] (and others)

    2001-03-15

    The inspection program and the safety guidance were developed to enhance the radiation protection for the use of particle accelerators. First the classification of particle accelerators was conducted to develop the safety inspection protocol efficiently. The status of particle accelerators which were operated at the inside and outside of the country, and their safety programs were surveyed. The characteristics of radiation production was researched for each type of particle accelerators. Two research teams were launched for industrial and research accelerators and for medical accelerators, respectively. In each stages of a design, a fabrication, an installation, a commissioning, and normal operation of accelerators, those safety inspection protocols were developed. Because all protocols resulted from employing safety experts, doing the questionnaire, and direct facility surveys, it can be applicable to present safety problem directly. The detail improvement concepts were proposed to revise the domestic safety rule. This results might also be useful as a practical guidance for the radiation safety officer of an accelerator facility, and as the detail standard for the governmental inspection authorities.

  7. Containment integrity research program plan

    International Nuclear Information System (INIS)

    1987-08-01

    This report presents a plan for research on the question of containment performance in postulated severe accident scenarios. It focuses on the research being performed by the Structural and Seismic Engineering Branch, Division of Engineering, Office of Nuclear Regulatory Research. Summaries of the plans for this work have previously been published in the ''Nuclear Power Plant Severe Accident Research Plan'' (NUREG-0900). This report provides an update to reflect current status. This plan provides a summary of results to date as well as an outline of planned activities and milestones to the contemplated completion of the program in FY 1989

  8. Program Plan: field radionuclide migration studies in Climax granite

    International Nuclear Information System (INIS)

    Isherwood, D.; Raber, E.; Coles, D.; Stone, R.

    1980-01-01

    This Program Plan describes the field radionuclide migration studies we plan to conduct in the Climax granite at the Nevada Test Site. Laboratory support studies are included to help us understand the geochemical and hydrologic processes involved in the field. The Program Plan begins with background information (Section 1) on how this program fits into the National Waste Terminal Storage Program Plan and discusses the needs for field studies of this type. The objectives stated in Section 2 are in direct response to these needs, particularly the need to determine whether laboratory studies accurately reflect actual field conditions and the need for field testing to provide a data base for verification of hydrologic and mass transport models. The technical scope (Section 3) provides a work breakdown structure that integrates the various activities and establishes a base for the technical approach described in Section 4. Our approach combines an interactive system of field and laboratory migration experiments with the use of hydrologic models for pre-test predictions and data interpretation. Section 5 on program interfaces identifies how information will be transferred to other related DOE projects. A schedule of activities and major milestones (Section 6) and the budget necessary to meet the project objectives (Section 7) are included in the Program Plan. Sections 8 and 9 contain brief descriptions of how the technical and program controls will be established and maintained and an outline of our quality assurance program. This program plan is an initial planning document and provides a general description of activities. An Engineering Test Plan containing detailed experimental test plans, an instrumentation plan and equipment design drawings will be published as a separate document

  9. A Template Analysis of Intimate Partner Violence Survivors' Experiences of Animal Maltreatment: Implications for Safety Planning and Intervention.

    Science.gov (United States)

    Collins, Elizabeth A; Cody, Anna M; McDonald, Shelby Elaine; Nicotera, Nicole; Ascione, Frank R; Williams, James Herbert

    2018-03-01

    This study explores the intersection of intimate partner violence (IPV) and animal cruelty in an ethnically diverse sample of 103 pet-owning IPV survivors recruited from community-based domestic violence programs. Template analysis revealed five themes: (a) Animal Maltreatment by Partner as a Tactic of Coercive Power and Control, (b) Animal Maltreatment by Partner as Discipline or Punishment of Pet, (c) Animal Maltreatment by Children, (d) Emotional and Psychological Impact of Animal Maltreatment Exposure, and (e) Pets as an Obstacle to Effective Safety Planning. Results demonstrate the potential impact of animal maltreatment exposure on women and child IPV survivors' health and safety.

  10. India's power programs and its concern over environmental safety

    International Nuclear Information System (INIS)

    Prasad, G.E.; Mittra, J.; Sarma, M.S.R.

    2000-01-01

    India's need for electrical power is enormous and per capita consumption of power is to be increased at least by 10 times to reach the level of the world average. Thermal power generation faces two-fold problems. First, there is scarcity of good quality fuel and second, increasing environmental pollution. India 's self reliant, . three stage, 'closed-fuel-cycle' nuclear power program is promising a better solution to the above problems. To ensure Radiation Protection and Safety of Radiation Sources, the Indian Nuclear Power program emphasizes upon design and engineering safety by incorporating' necessary safety features in the design, operational safety through a structured training program and typically through software packages to handle rare unsafe events and regulation by complying safety directives. A health survey among the radiation workers indicates that there is no extra threat to the public from the nuclear power program. Based on the latest technology, as available in case of the nuclear power option, it is quite possible to meet high energy requirements with least impact on the environment. (authors)

  11. EPRI program in water reactor safety

    International Nuclear Information System (INIS)

    Loewenstein, W.B.; Gelhaus, F.; Gopalakrishnan, A.

    1975-01-01

    The basis for EPRI's water reactor safety program is twofold. First is compilation and development of fundamental background data necessary for quantified light-water reactor (LWR) safety assurance appraisals. Second is development of realistic and experimentally bench-marked analytical procedures. The results are expected either to confirm the safety margins in current operating parameters, and to identify overly conservative controls, or, in some cases, to provide a basis for improvements to further minimize uncertainties in expected performance. Achievement of these objectives requires the synthesis of related current and projected experimental-analytical projects toward establishment of an experimentally-based analysis for the assurance of safety for LWRs

  12. Safety in the Chemical Laboratory: Safety in the Chemistry Laboratories: A Specific Program.

    Science.gov (United States)

    Corkern, Walter H.; Munchausen, Linda L.

    1983-01-01

    Describes a safety program adopted by Southeastern Louisiana University. Students are given detailed instructions on laboratory safety during the first laboratory period and a test which must be completely correct before they are allowed to return to the laboratory. Test questions, list of safety rules, and a laboratory accident report form are…

  13. Savannah River waste management program plan

    International Nuclear Information System (INIS)

    1980-04-01

    This document provides the program plan as requested by the Savannah River Operations Office of the Department of Energy. The plan was developed to provide a working knowledge of the nature and extent of the waste management programs being undertaken by Savannah River contractors for the Fiscal Year 1980. In addition, the document projects activities for several years beyond 1980 to adequately plan for safe handling and storage of radioactive wastes generated at Savannah River, for developing technology to immobilize high-level radioactive wastes generated and stored at SR, and for developing technology for improved management of low-level solid wastes

  14. National Waste Terminal Storage Program: management and technical program plan, FY 1976--FY 1978

    International Nuclear Information System (INIS)

    1976-01-01

    The discussion on the management plan covers the program, responsibilities, general program schedule and logic, Office of Waste Isolation organization and facilities, management approach, administrative plan, and public affairs plan. The technical program plan includes geological studies, technical support studies, engineering studies, waste facility projects, environmental studies, system studies, data management, and international activities. The information contained in this report is obsolete and of historical interest only

  15. HTGR safety research program

    International Nuclear Information System (INIS)

    Barsell, A.W.; Olsen, B.E.; Silady, F.A.

    1981-01-01

    An HTGR safety research program is being performed supporting and guided in priorities by the AIPA Probabilistic Risk Study. Analytical and experimental studies have been conducted in four general areas where modeling or data assumptions contribute to large uncertainties in the consequence assessments and thus, in the risk assessment for key core heat-up accident scenarios. Experimental data have been obtained on time-dependent release of fission products from the fuel particles, and plateout characteristics of condensible fission products in the primary circuit. Potential failure modes of primarily top head PCRV components as well as concrete degradation processes have been analyzed using a series of newly developed models and interlinked computer programs. Containment phenomena, including fission product deposition and potential flammability of liberated combustible gases have been studied analytically. Lastly, the behaviour of boron control material in the core and reactor subcriticality during core heatup have been examined analytically. Research in these areas has formed the basis for consequence updates in GA-A15000. Systematic derivation of future safety research priorities is also discussed. (author)

  16. Analysis of School Food Safety Programs Based on HACCP Principles

    Science.gov (United States)

    Roberts, Kevin R.; Sauer, Kevin; Sneed, Jeannie; Kwon, Junehee; Olds, David; Cole, Kerri; Shanklin, Carol

    2014-01-01

    Purpose/Objectives: The purpose of this study was to determine how school districts have implemented food safety programs based on HACCP principles. Specific objectives included: (1) Evaluate how schools are implementing components of food safety programs; and (2) Determine foodservice employees food-handling practices related to food safety.…

  17. Stakeholders' Perspectives About and Priorities for Economic Evaluation of Health and Safety Programs in Healthcare.

    Science.gov (United States)

    Tompa, Emile; de Boer, Henriette; Macdonald, Sara; Alamgir, Hasanat; Koehoorn, Mieke; Guzman, Jaime

    2016-04-01

    This study identified and prioritized resources and outcomes that should be considered in more comprehensive and scientifically rigorous health and safety economic evaluations according to healthcare sector stakeholders. A literature review and stakeholder interviews identified candidate resources and outcomes and then a Delphi panel ranked them. According to the panel, the top five resources were (a) health and safety staff time; (b) training workers; (c) program planning, promotion, and evaluation costs; (d) equipment purchases and upgrades; and (e) administration costs. The top five outcomes were (a) number of injuries, illnesses, and general sickness absences; (b) safety climate; (c) days lost due to injuries, illnesses, and general sickness absences; (d) job satisfaction and engagement; and (e) quality of care and patient safety. These findings emphasize stakeholders' stated priorities and are useful as a benchmark for assessing the quality of health and safety economic evaluations and the comprehensiveness of these findings. © 2016 The Author(s).

  18. Development of a safety communication and recognition program for construction.

    Science.gov (United States)

    Sparer, Emily H; Herrick, Robert F; Dennerlein, Jack T

    2015-05-01

    Leading-indicator-based (e.g., hazard recognition) incentive programs provide an alternative to controversial lagging-indicator-based (e.g., injury rates) programs. We designed a leading-indicator-based safety communication and recognition program that incentivized safe working conditions. The program was piloted for two months on a commercial construction worksite and then redesigned using qualitative interview and focus group data from management and workers. We then ran the redesigned program for six months on the same worksite. Foremen received detailed weekly feedback from safety inspections, and posters displayed worksite and subcontractor safety scores. In the final program design, the whole site, not individual subcontractors, was the unit of analysis and recognition. This received high levels of acceptance from workers, who noted increased levels of site unity and team-building. This pilot program showed that construction workers value solidarity with others on site, demonstrating the importance of health and safety programs that engage all workers through a reliable and consistent communication infrastructure. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  19. Fusion Safety Program. Annual report, FY 1982

    International Nuclear Information System (INIS)

    Crocker, J.G.; Cohen, S.

    1983-07-01

    The Fusion Safety Program major activities for Fiscal Year 1982 are summarized in this report. The program was started in FY-79, with the Idaho National Engineering Laboratory (INEL) designated as lead laboratory and EG and G Idaho, Inc., named as prime contractor to implement this role. The report contains four sections: EG and G Idaho, Inc., Activities at INEL includes major portions of papers dealing with ongoing work in tritium implantation experiments, tritium risk assessment, transient code development, heat transfer and fluid flow analysis, and high temperature oxidation and mobilization of structural material experiments. The section Outside Contracts includes studies of superconducting magnet safety conducted by Argonne National Laboratory, experiments concerning superconductor safety issues performed by the Francis Bitter Magnet Laboratory of the Massachusetts Institute of Technology (MIT) to verify analytical work, a continuation of safety and environmental studies by MIT, a summary of lithium safety experiments at Hanford Engineering Development Laboratory, and the results of tritium gas conversion to oxide experiments at Oak Ridge National Laboratory. A List of Publications and Proposed FY-83 Activities are also presented

  20. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This document is the second volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, except for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of failure modes and effects analysis; accident analysis; operational safety requirements; quality assurance program; ES&H management program; environmental, safety, and health systems critical to safety; summary of waste-management program; environmental monitoring program; facility expansion, decontamination, and decommissioning; summary of emergency response plan; summary plan for employee training; summary plan for operating procedures; glossary; and appendices A and B.

  1. LMFBR safety experiment facility planning and analysis

    International Nuclear Information System (INIS)

    Stevenson, M.G.; Scott, J.H.

    1976-01-01

    In the past two years considerable effort has been placed on the planning and design of new facilities for the resolution of LMFBR safety issues. The paper reviews the key issues, the experiments needed to resolve them, and the design aspects of proposed new facilities. In addition, it presents a decision theory approach to selecting an optimal combination of modified and new facilities

  2. Safety evaluation by living probabilistic safety assessment. Procedures and applications for planning of operational activities and analysis of operating experience

    International Nuclear Information System (INIS)

    Johanson, Gunnar; Holmberg, J.

    1994-01-01

    Living Probabilistic Safety Assessment (PSA) is a daily safety management system and it is based on a plant-specific PSA and supporting information systems. In the living use of PSA, plant status knowledge is used to represent actual plant safety status in monitoring or follow-up perspective. The PSA model must be able to express the risk at a given time and plant configuration. The process, to update the PSA model to represent the current or planned configuration and to use the model to evaluate and direct the changes in the configuration, is called living PSA programme. The main purposes to develop and increase the usefulness of living PSA are: Long term safety planning: To continue the risk assessment process started with the basic PSA by extending and improving the basic models and data to provide a general risk evaluation tool for analyzing the safety effects of changes in plant design and procedures. Risk planning of operational activities: To support the operational management by providing means for searching optimal operational maintenance and testing strategies from the safety point of view. The results provide support for risk decision making in the short term or in a planning mode. The operational limits and conditions given by technical specifications can be analyzed by evaluating the risk effects of alternative requirements in order to balance the requirements with respect to operational flexibility and plant economy. Risk analysis of operating experience: To provide a general risk evaluation tool for analyzing the safety effects of incidents and plant status changes. The analyses are used to: identify possible high risk situations, rank the occurred events from safety point of view, and get feedback from operational events for the identification of risk contributors. This report describes the methods, models and applications required to continue the process towards a living use of PSA. 19 tabs, 20 figs

  3. Operation safety at Ignalina NPP

    International Nuclear Information System (INIS)

    Zheltobriukh, G.

    1999-01-01

    An improvement of operational safety at Ignalina NPP covers: improvement of management structure and safety culture; symptom-based emergency operating procedures; staff training and full scope simulator; program of components ageing; metal inspection; improvement of fire safety. The first plan of Ignalina NPP Safety culture development for 1997 purposed to the SAR recommendation implementation was prepared and approved by the General Director

  4. Ferrocyanide Safety Program rationale for removing six tanks from the safety watch list

    International Nuclear Information System (INIS)

    Borsheim, G.L.

    1993-09-01

    This report documents an in-depth study of single-shell tanks containing ferrocyanide wastes. Topics include: safety assessments, tank histories, supportive documentation about interim stabilization and planned remedial activities

  5. 29 CFR 1960.12 - Dissemination of occupational safety and health program information.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Dissemination of occupational safety and health program... OCCUPATIONAL SAFETY AND HEALTH PROGRAMS AND RELATED MATTERS Administration § 1960.12 Dissemination of occupational safety and health program information. (a) Copies of the Act, Executive Order 12196, program...

  6. OCCUPATIONAL EDUCATION--PLANNING AND PROGRAMMING. VOLUME TWO.

    Science.gov (United States)

    KOTZ, ARNOLD

    ADDITIONAL POSITION PAPERS BASED ON INFORMATION GATHERED IN THE RECONNAISSANCE SURVEYS OF PLANNING AND PROGRAMING IN OCCUPATIONAL EDUCATION, REPORTED IN VOLUME ONE (VT 005 041), ARE PRESENTED. PART IV, CONCERNED WITH PROGRAM STRUCTURE AND BUDGETING AND THEIR RELATION TO THE PLANNING PROCESS, INCLUDES THE PAPERS--(1) "CURRENT POLICIES AND…

  7. Safety Culture Perceptions in a Collegiate Aviation Program: A Systematic Assessment

    OpenAIRE

    Adjekum, Daniel Kwasi

    2014-01-01

    An assessment of the perceptions of respondents on the safety culture at an accredited Part 141 four year collegiate aviation program was conducted as part of the implementation of a safety management system (SMS). The Collegiate Aviation Program Safety Culture Assessment Survey (CAPSCAS), which was modified and revalidated from the existing Commercial Aviation Safety Survey (CASS), was used. Participants were drawn from flight students and certified flight instructors in the program. The sur...

  8. Nuclear safety policy working group recommendations on nuclear propulsion safety for the space exploration initiative

    Science.gov (United States)

    Marshall, Albert C.; Lee, James H.; Mcculloch, William H.; Sawyer, J. Charles, Jr.; Bari, Robert A.; Cullingford, Hatice S.; Hardy, Alva C.; Niederauer, George F.; Remp, Kerry; Rice, John W.

    1993-01-01

    An interagency Nuclear Safety Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative (SEI) nuclear propulsion program. These recommendations, which are contained in this report, should facilitate the implementation of mission planning and conceptual design studies. The NSPWG has recommended a top-level policy to provide the guiding principles for the development and implementation of the SEI nuclear propulsion safety program. In addition, the NSPWG has reviewed safety issues for nuclear propulsion and recommended top-level safety requirements and guidelines to address these issues. These recommendations should be useful for the development of the program's top-level requirements for safety functions (referred to as Safety Functional Requirements). The safety requirements and guidelines address the following topics: reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, safeguards, risk/reliability, operational safety, ground testing, and other considerations.

  9. Nuclear Plant Aging Research (NPAR) program plan: Components, systems, and structures

    International Nuclear Information System (INIS)

    1987-09-01

    The nuclear plant aging research described in this plan is intended to resolve issues related to the aging and service wear of equipment and systems and major components at commercial reactor facilities and their possible impact on plant safety. Emphasis has been placed on identification and characterization of the mechanisms of material and component degradation during service and evaluation of methods of inspection, surveillance, condition monitoring, and maintenance as means of mitigating such effects. Specifically, the goals of the program are as follows: (1) to identify and characterize aging and service wear effects which, if unchecked, could cause degradation of equipment, a systems, and major components and thereby impair plant safety; (2) to identify methods of inspection, surveillance, and monitoring, or of evaluating residual life of equipment, systems, and major components, which will ensure timely detection of significant aging effects prior to loss of safety function; and (3) to evaluate the effectiveness of storage, maintenance, repair, and replacement practices in mitigating the rate and extent of degradation caused by aging and service wear

  10. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation's scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory's ongoing research programs. The plan is an institutional management report for integration with the Department of Energy's strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory's scientific and support divisions.

  11. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    Energy Technology Data Exchange (ETDEWEB)

    Chew, Joseph T.; Stroh, Suzanne C.; Maio, Linda R.; Olson, Karl R.; Grether, Donald F.; Clary, Mary M.; Smith, Brian M.; Stevens, David F.; Ross, Loren; Alper, Mark D.; Dairiki, Janis M.; Fong, Pauline L.; Bartholomew, James C.

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The plan is an institutional management report for integration with the Department of Energy`s strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory`s scientific and support divisions.

  12. Effective radiological safety program for electron linear accelerators

    International Nuclear Information System (INIS)

    Swanson, W.P.

    1980-10-01

    An outline is presented of some of the main elements of an electron accelerator radiological safety program. The discussion includes types of accelerator facilities, types of radiations to be anticipated, activity induced in components, air and water, and production of toxic gases. Concepts of radiation shielding design are briefly discussed and organizational aspects are considered as an integral part of the overall safety program

  13. 41 CFR 128-1.8006 - Seismic Safety Program requirements.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Seismic Safety Program requirements. 128-1.8006 Section 128-1.8006 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF JUSTICE 1-INTRODUCTION 1.80-Seismic Safety Program...

  14. Fusion Safety Program annual report, Fiscal Year 1993

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Cadwallader, L.C.; Dolan, T.J.; Herring, J.S.; McCarthy, K.A.; Merrill, B.J.; Motloch, C.G.; Petti, D.A.

    1993-12-01

    This report summarizes the major activities of the Fusion Safety Program in Fiscal Year 1993. The Idaho National Engineering Laboratory (INEL) has been designated by DOE as the lead laboratory for fusion safety, and EG ampersand G Idaho, Inc., is the prime contractor for INEL operations. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL and in participating organizations, including universities and private companies. Technical areas covered in the report include tritium safety, beryllium safety, activation product release, reactions involving potential plasma-facing materials, safety of fusion magnet systems, plasma disruptions and edge physics modeling, risk assessment failure rates, computer codes for reactor transient analysis, and regulatory support. These areas include work completed in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed at the INEL for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor projects at the Princeton Plasma Physics Laboratory and a summary of the technical support for the ARIES/PULSAR commercial reactor design studies

  15. Savannah River Site management response plan for chemical safety vulnerability field assessment. Revision 1

    International Nuclear Information System (INIS)

    Kahal, E.J.; Murphy, S.L.; Salaymeh, S.R.

    1994-09-01

    As part of the U.S. Department of Energy's (DOE) initiative to identify potential chemical safety vulnerabilities in the DOE complex, the Chemical Safety Vulnerability Core Working Group issued a field verification assessment report. While the report concluded that Savannah River Site (SRS) is moving in a positive direction, the report also identified five chemical safety vulnerabilities with broad programmatic impact that are not easily nor quickly remedied. The May 1994 SRS Management Response Plan addressed the five SRS vulnerabilities identified in the field assessment report. The SRS response plan listed observations supporting the vulnerabilities and any actions taken or planned toward resolution. Many of the observations were resolved by simple explanations, such as the existence of implementation plans for Safety Analysis Report updates. Recognizing that correcting individual observations does not suffice in remedying the vulnerabilities, a task team was assembled to address the broader programmatic issues and to recommend corrective actions

  16. Implementing national nuclear safety plan at the preliminary stage of nuclear power project development

    International Nuclear Information System (INIS)

    Xue Yabin; Cui Shaozhang; Pan Fengguo; Zhang Lizhen; Shi Yonggang

    2014-01-01

    This study discusses the importance of nuclear power project design and engineering methods at the preliminary stage of its development on nuclear power plant's operational safety from the professional view. Specifically, we share our understanding of national nuclear safety plan's requirement on new reactor accident probability, technology, site selection, as well as building and improving nuclear safety culture and strengthening public participation, with a focus on plan's implications on preliminary stage of nuclear power project development. Last, we introduce China Huaneng Group's work on nuclear power project preliminary development and the experience accumulated during the process. By analyzing the siting philosophy of nuclear power plant and the necessity of building nuclear safety culture at the preliminary stage of nuclear power project development, this study explicates how to fully implement the nuclear safety plan's requirements at the preliminary stage of nuclear power project development. (authors)

  17. WIPP facility representative program plan

    International Nuclear Information System (INIS)

    1994-01-01

    This plan describes the Department of Energy (DOE), Carlsbad Area Office (CAO) facility representative (FR) program at the Waste Isolation Pilot Plant (WIPP). It provides the following information: (1) FR and support organization authorities and responsibilities; (2) FR program requirements; and (3) FR training and qualification requirements

  18. Lawrence Berkeley Laboratory, Institutional Plan FY 1994--1999

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. For FY 1994-1999 the Institutional Plan reflects significant revisions based on the Laboratory`s strategic planning process. The Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory, and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff diversity and development program. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The new section on Information Resources reflects the importance of computing and communication resources to the Laboratory. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process.

  19. Implementation of a patient safety program at a tertiary health system: A longitudinal analysis of interventions and serious safety events.

    Science.gov (United States)

    Cropper, Douglas P; Harb, Nidal H; Said, Patricia A; Lemke, Jon H; Shammas, Nicolas W

    2018-04-01

    We hypothesize that implementation of a safety program based on high reliability organization principles will reduce serious safety events (SSE). The safety program focused on 7 essential elements: (a) safety rounding, (b) safety oversight teams, (c) safety huddles, (d) safety coaches, (e) good catches/safety heroes, (f) safety education, and (g) red rule. An educational curriculum was implemented focusing on changing high-risk behaviors and implementing critical safety policies. All unusual occurrences were captured in the Midas system and investigated by risk specialists, the safety officer, and the chief medical officer. A multidepartmental committee evaluated these events, and a root cause analysis (RCA) was performed. Events were tabulated and serious safety event (SSE) recorded and plotted over time. Safety success stories (SSSs) were also evaluated over time. A steady drop in SSEs was seen over 9 years. Also a rise in SSSs was evident, reflecting on staff engagement in the program. The parallel change in SSEs, SSSs, and the implementation of various safety interventions highly suggest that the program was successful in achieving its goals. A safety program based on high-reliability organization principles and made a core value of the institution can have a significant positive impact on reducing SSEs. © 2018 American Society for Healthcare Risk Management of the American Hospital Association.

  20. MORT: a safety management program developed for ERDA

    International Nuclear Information System (INIS)

    1977-03-01

    ERDA's System Safety Development Center (SSDC) is located at the Idaho National Engineering Laboratory under the EG and G Idaho, Inc., contract administered by the Idaho Operations Office. The SSDC performs a variety of tasks for ERDA's Division of Safety, Standards, and Compliance, for the purpose of improvement and application of safety program elements. Primary among these tasks are development and demonstration of new methodologies, training, consultation, and technical writing. This information package (ERDA 77-38) is an example of the later task, aimed at communicating to a general audience the nature and purpose of major features of the Management Oversight and Risk Tree (MORT) program. The SSDC also originates a guideline series of monographs (the ERDA 76-45 series) for individuals who desire more specific explanations of the MORT program

  1. Nuclear Criticality Safety Organization qualification program. Revision 4

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1997-01-01

    The Nuclear Criticality Safety Organization (NCSO) is committed to developing and maintaining a staff of highly qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. This document defines the Qualification Program to address the NCSO technical and managerial qualification as required by the Y-12 Training Implementation Matrix (TIM). It is implemented through a combination of LMES plant-wide training courses and professional nuclear criticality safety training provided within the organization. This Qualification Program is applicable to technical and managerial NCSO personnel, including temporary personnel, sub-contractors and/or LMES employees on loan to the NCSO, who perform the NCS tasks or serve NCS-related positions as defined in sections 5 and 6 of this program

  2. Nuclear criticality safety specialist training and qualification programs

    International Nuclear Information System (INIS)

    Hopper, C.M.

    1993-01-01

    Since the beginning of the Nuclear Criticality Safety Division of the American Nuclear Society (ANS) in 1967, the nuclear criticality safety (NCS) community has sought to provide an exchange of information at a national level to facilitate the education and development of NCS specialists. In addition, individual criticality safety organizations within government contractor and licensed commercial nonreactor facilities have developed training and qualification programs for their NCS specialists. However, there has been substantial variability in the content and quality of these program requirements and personnel qualifications, at least as measured within the government contractor community. The purpose of this paper is to provide a brief, general history of staff training and to describe the current direction and focus of US DOE guidance for the content of training and qualification programs designed to develop NCS specialists

  3. 30 CFR 77.107-1 - Plans for training programs.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Plans for training programs. 77.107-1 Section... COAL MINES Qualified and Certified Persons § 77.107-1 Plans for training programs. Each operator must..., a program or plan setting forth what, when, how, and where the operator will train and retrain...

  4. International Photovoltaic Program Plan. Volume II. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Costello, D.; Koontz, R.; Posner, D.; Heiferling, P.; Carpenter, P.; Forman, S.; Perelman, L.

    1979-12-01

    This second volume of a two-part report on the International Photovoltaic Program Plan contains appendices summarizing the results of analyses conducted in preparation of the plan. These analyses include compilations of relevant statutes and existing Federal programs; strategies designed to expand the use of photovoltaics abroad; information on the domestic photovoltaic plan and its impact on the proposed international plan; perspectives on foreign competition; industry views on the international photovoltaic market and ideas about how US government actions could affect this market; international financing issues; and information on issues affecting foreign policy and developing countries.

  5. Work Plans 2011 – Norwegian Scientific Committee for Food Safety

    OpenAIRE

    Norwegian Scientific Committee for Food Safety

    2011-01-01

    The annual work plan for 2011 summaries activities for the Scientific Steering Committee and the 9 panels of the Norwegian Scientific Committee for Food Safety (VKM). VKM carries out independent risk assessments for the Norwegian Food Safety Authority across the Authority’s field of responsibility as well as environmental risk assessments of genetically modified organisms for the Directorate for Nature Management.

  6. 18 CFR 740.4 - State water management planning program.

    Science.gov (United States)

    2010-04-01

    ... STATE WATER MANAGEMENT PLANNING PROGRAM § 740.4 State water management planning program. (a) A State...) The integration of water quantity and water quality planning and management; (ii) The protection and... integration of ground and surface water planning and management; and (v) Water conservation. (4) Identify...

  7. Nuclear power safety

    International Nuclear Information System (INIS)

    1988-01-01

    The International Atomic Energy Agency, the organization concerned with worldwide nuclear safety has produced two international conventions to provide (1) prompt notification of nuclear accidents and (2) procedures to facilitate mutual assistance during an emergency. IAEA has also expanded operational safety review team missions, enhanced information exchange on operational safety events at nuclear power plants, and planned a review of its nuclear safety standards to ensure that they include the lessons learned from the Chernobyl nuclear plant accident. However, there appears to be a nearly unanimous belief among IAEA members that may attempt to impose international safety standards verified by an international inspection program would infringe on national sovereignty. Although several Western European countries have proposed establishing binding safety standards and inspections, no specific plant have been made; IAEA's member states are unlikely to adopt such standards and an inspection program

  8. UMTRA technical assistance contractor Quality Assurance Program Plan

    International Nuclear Information System (INIS)

    Pehrson, P.

    1993-01-01

    This Quality Assurance Program Plan (QAPP) provides the primary requirements for the integration of quality functions into all Technical Assistance Contractor (TAC) Project organization activities. The QAPP is the written directive authorized by the TAC Program Manager to accomplish this task and to implement procedures that provide the controls and sound management practices needed to ensure TAC contractual obligations are met. The QA program is designed to use monitoring, audit, and surveillance functions as management tools to ensure that all Project organization functions are executed in a manner that will protect public health and safety, promote the success of the Project, and meet or exceed contract requirements. The key to ensuring compliance with this directive is a two-step professional approach: utilize the quality system in all areas of activity, and generate a personal commitment from all personnel to provide quality service. The quality staff will be experienced, trained professionals capable of providing maximum flexibility to Project goal attainment. Such flexibility will enable the staff to be more cost effective and to further improve communication and coordination. To provide control details, this QAPP will be supplemented by approved standard operating procedures that provide requirements for performing the various TAC quality-related activities. These procedures shall describe applicable design input and document control activities and documentation

  9. 48 CFR 952.223-71 - Integration of environment, safety, and health into work planning and execution.

    Science.gov (United States)

    2010-10-01

    ..., safety, and health into work planning and execution. 952.223-71 Section 952.223-71 Federal Acquisition... Provisions and Clauses 952.223-71 Integration of environment, safety, and health into work planning and... safety and health standards applicable to the work conditions of contractor and subcontractor employees...

  10. Japan`s international cooperation programs on seismic safety of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Sanada, Akira [Agency of Natural Resources and Energy, Tokyo (Japan)

    1997-03-01

    MITI is promoting many international cooperation programs on nuclear safety area. The seismic safety of nuclear power plants (NPPs) is a one of most important cooperation areas. Experts from MITI and related organization join the multilateral cooperation programs carried out by international organization such as IAEA, OECD/NEA etc. MITI is also promoting bilateral cooperation programs such as information exchange meetings, training programs and seminars on nuclear safety with several countries. Concerning to the cooperation programs on seismic safety of NPPs such as information exchange and training, MITI shall continue and expand these programs. (J.P.N.)

  11. 49 CFR 659.29 - Oversight agency safety and security reviews.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Oversight agency safety and security reviews. 659... Role of the State Oversight Agency § 659.29 Oversight agency safety and security reviews. At least... safety program plan and system security plan. Alternatively, the on-site review may be conducted in an on...

  12. Integrated plant-safety assessment, Systematic Evaluation Program: Big Rock Point Plant (Docket No. 50-155)

    International Nuclear Information System (INIS)

    1983-09-01

    The Systematic Evaluation Program was initiated in February 1977 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to reconfirm and document their safety. This report documents the review of the Big Rock Point Plant, which is one of ten plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. It also addresses a majority of the pending licensing actions for Big Rock Point, which include TMI Action Plan requirements and implementation criteria for resolved generic issues. Equipment and procedural changes have been identified as a result of the review

  13. United States high-level radioactive waste management program: Current status and plans

    International Nuclear Information System (INIS)

    Williams, J.

    1992-01-01

    The inventory of spent fuel in storage at reactor sites in the United States is approximately 20,000 metric tons heavy metal (MTHM). It is increasing at a rate of 1700 to 2100 MTHM per year. According to current projections, by the time the last license for the current generation of nuclear reactors expires, there will be an estimated total of 84,000 MTHm. No commercial reprocessing capacity exists or is planned in the US. Therefore, the continued storage of spent fuel is required. The majority of spent fuel remains in the spent fuel pools of the utilities that generated it. Three utilities are presently supplementing pool capacity with on-site dry storage technologies, and four others are planning dry storage. Commercial utilities are responsible for managing their spent fuel until the Federal waste management system, now under development, accepts spent fuel for storage and disposal. Federal legislation charges the Office of Civilian Radioactive Waste Management (OCRWM) within the US Department of Energy (DOE) with responsibility for developing a system to permanently dispose of spent fuel and high level radioactive waste in a manner that protects the health and safety of the public and the quality of the environment. We are developing a waste management system consisting for three components: a mined geologic repository, with a projected start date of 2010; a monitored retrievable storage facility (MRS), scheduled to begin waste acceptance in 1998; and a transportation system to support MRS and repository operations. This paper discusses the background and framework for the program, as well as the current status and plans for management of spent nuclear fuel at commercial utilities; the OCRWM's development of a permanent geologic repository, an MRS, and a transportation system; the OCRWM's safety approach; the OCRWM's program management initiatives; and the OCRWM's external relations activities

  14. SDDOT transportation systems management & operations program plan.

    Science.gov (United States)

    2016-06-01

    The objective of this project is the development of a comprehensive Transportation Systems Management and : Operations (TSM&O) Program Plan for the South Dakota Department of Transportation. This plan guides : business planning and strategic decision...

  15. Safety implications of standardized continuous quality improvement programs in community pharmacy.

    Science.gov (United States)

    Boyle, Todd A; Ho, Certina; Mackinnon, Neil J; Mahaffey, Thomas; Taylor, Jeffrey M

    2013-06-01

    Standardized continuous quality improvement (CQI) programs combine Web-based technologies and standardized improvement processes, tools, and expectations to enable quality-related events (QREs) occurring in individual pharmacies to be shared with pharmacies in other jurisdictions. Because standardized CQI programs are still new to community pharmacy, little is known about how they impact medication safety. This research identifies key aspects of medication safety that change as a result of implementing a standardized CQI program. Fifty-three community pharmacies in Nova Scotia, Canada, adopted the SafetyNET-Rx standardized CQI program in April 2010. The Institute for Safe Medication Practices (ISMP) Canada's Medication Safety Self-Assessment (MSSA) survey was administered to these pharmacies before and 1 year into their use of the SafetyNET-Rx program. The nonparametric Wilcoxon signed-rank test was used to explore where changes in patient safety occurred as a result of SafetyNETRx use. Significant improvements occurred with quality processes and risk management, staff competence, and education, and communication of drug orders and other information. Patient education, environmental factors, and the use of devices did not show statistically significant changes. As CQI programs are designed to share learning from QREs, it is reassuring to see that the largest improvements are related to quality processes, risk management, staff competence, and education.

  16. Alcohol and Traffic Safety.

    Science.gov (United States)

    Dickman, Frances Baker, Ed.

    1988-01-01

    Seven papers discuss current issues and applied social research concerning alcohol traffic safety. Prevention, policy input, methodology, planning strategies, anti-drinking/driving programs, social-programmatic orientations of Mothers Against Drunk Driving, Kansas Driving Under the Influence Law, New Jersey Driving While Impaired Programs,…

  17. Critical experiment needs and plans of the consolidated fuel reprocessing program

    International Nuclear Information System (INIS)

    Primm, R.T.

    1984-01-01

    An integral part of the United States Department of Energy (DOE) plan for the development of breeder reactors is the development of the capability for fuel reprocessing. The Consolidated Fuel Reprocessing Program (CFRP) was established by the DOE to identify and conduct research and development activities in this area. The DOE is currently proposing that a capability to reprocess fast reactor fuel be established in the Fuels and Materials Examination Facility at the Hanford Engineering Development Laboratory. This capability would include conversion of plutonium nitrate to plutonium oxide. The reprocessing line is designated the Breeder Reprocessing Engineering Test (BRET). Criticality safety remains an important critetion in the design of the BRET. The different steps in the reprocessing are reviewed and areas where additional critical experiments are needed have been indentified as also areas where revision or clarification of existing criticality safety standards are desirable

  18. 24 Command Fire Improvement Action Program Plan

    International Nuclear Information System (INIS)

    GRIFFIN, G.B.

    2000-01-01

    Fluor Hanford (FH) is responsible for providing support to the Department of Energy Richland Operations Office (RL) in the implementation of the Hanford Emergency Preparedness (EP) program. During fiscal year 2000, a number of program improvements were identified from various sources including a major range fire (24 Command Fire). Evaluations of the emergency preparedness program have confirmed that it currently meets all requirements and that performance of personnel involved is good, however the desire to effect continuous improvement resulted in the development of this improvement program plan. This program plan defines the activities that will be performed in order to achieve the desired performance improvements

  19. Developing an integrated dam safety program

    International Nuclear Information System (INIS)

    Nielsen, N. M.; Lampa, J.

    1996-01-01

    An effort has been made to demonstrate that dam safety is an integral part of asset management which, when properly done, ensures that all objectives relating to safety and compliance, profitability, stakeholders' expectations and customer satisfaction, are achieved. The means to achieving this integration of the dam safety program and the level of effort required for each core function have been identified using the risk management approach to pinpoint vulnerabilities, and subsequently to focus priorities. The process is considered appropriate for any combination of numbers, sizes and uses of dams, and is designed to prevent exposure to unacceptable risks. 5 refs., 1 tab

  20. Research Devices Maintenance Programs and Safety Network Infrastructures in Nuclear Malaysia

    International Nuclear Information System (INIS)

    Zainudin Jaafar; Muhammad Zahidee Taat; Ishak Mansor

    2015-01-01

    Instrumentation and Automation Center (PIA) is responsible in carrying out maintenance work for building safety infrastructure and area for nuclear scientific and research work. Care cycle and nuclear scientific tools starting from the preparation of specifications until devices disposal- to get the maximum output from devices therefore PIA has introduced Effective and Comprehensive Maintenance Plan under Management/ Trust/ Development/ Science Fund budgets and also user, Asset Management, caring and handling of the devices. This paper also discussed more on case study related to using and handling so that it can be guidance and standard when its involving mishandling, improper maintenance, inadequacy of supervision and others including improvement suggestion programs. (author)

  1. Research and development program in reactor safety for NUCLEBRAS

    International Nuclear Information System (INIS)

    Pinheiro, R.B.; Resende Lobo, A.A. de; Horta, J.A.L.; Avelar Esteves, F. de; Lepecki, W.P.S.; Mohr, K.; Selvatici, E.

    1984-01-01

    With technical assistance from the IAEA, it was established recently an analytical and experimental Research and Development Program for NUCLEBRAS in the area of reactor safety. The main objectives of this program is to make possible, with low investments, the active participation of NUCLEBRAS in international PWR safety research. The analytical and experimental activities of the program are described with some detail, and the main results achieved up to now are presented. (Author) [pt

  2. A Template Analysis of Intimate Partner Violence Survivors’ Experiences of Animal Maltreatment: Implications for Safety Planning and Intervention

    Science.gov (United States)

    Collins, Elizabeth A.; Cody, Anna M.; McDonald, Shelby Elaine; Nicotera, Nicole; Ascione, Frank R.; Williams, James Herbert

    2018-01-01

    This study explores the intersection of intimate partner violence (IPV) and animal cruelty in an ethnically diverse sample of 103 pet-owning IPV survivors recruited from community-based domestic violence programs. Template analysis revealed five themes: (a) Animal Maltreatment by Partner as a Tactic of Coercive Power and Control, (b) Animal Maltreatment by Partner as Discipline or Punishment of Pet, (c) Animal Maltreatment by Children, (d) Emotional and Psychological Impact of Animal Maltreatment Exposure, and (e) Pets as an Obstacle to Effective Safety Planning. Results demonstrate the potential impact of animal maltreatment exposure on women and child IPV survivors’ health and safety. PMID:29332521

  3. 76 FR 55056 - Toy Safety Standard: Strategic Outreach and Education Plan

    Science.gov (United States)

    2011-09-06

    ... to test and certify to the toy safety standard. We plan to use traditional and social media to... testing and certification requirements for children's toys and toy chests and their compliance with ASTM... manufacturers of children's toys must ensure that covered toys are tested for compliance with the toy safety...

  4. 12 CFR 263.303 - Filing of safety and soundness compliance plan.

    Science.gov (United States)

    2010-01-01

    ... member bank will take to correct the deficiency and the time within which those steps will be taken. (c... FEDERAL RESERVE SYSTEM RULES OF PRACTICE FOR HEARINGS Submission and Review of Safety and Soundness... safety and soundness compliance plan. (a) Schedule for filing compliance plan—(1) In general. A State...

  5. The Nordic safety program on accident consequence assessment

    International Nuclear Information System (INIS)

    Tveten, U.

    1988-01-01

    One important part of Nordic cooperation is partially funded by the Nordic Council of Ministers, namely the work performed within the Nordic Safety Program (often referred to as the NKA projects). NKA is the Nordic abbreviation of the Nordic Liaison Committee on Atomic Energy. One program area in the present four-year period is concerned with problems related to reactor accident consequence assessment, and contains almost twenty projects covering a wide range of subjects. The author is program coordinator for this program area. The program will be completed in 1989. The program was strongly influenced by Chernobyl, and a number of new projects were included in the program in 1986. Involved in the program are these Nordic institutions: Riso National Laboratory (Denmark). Technical Research Centre of Finland. Finnish Centre for Radiation and Nuclear Safety. Finnish Meteorological Institute. Institute for Energy Technology (Norway). Agricultural University of Norway. Meteorological Institute of Norway. Studsvik Energiteknik AB (Sweden). National Defence Research Laboratory (Sweden)

  6. Systems Analysis of NASA Aviation Safety Program: Final Report

    Science.gov (United States)

    Jones, Sharon M.; Reveley, Mary S.; Withrow, Colleen A.; Evans, Joni K.; Barr, Lawrence; Leone, Karen

    2013-01-01

    A three-month study (February to April 2010) of the NASA Aviation Safety (AvSafe) program was conducted. This study comprised three components: (1) a statistical analysis of currently available civilian subsonic aircraft data from the National Transportation Safety Board (NTSB), the Federal Aviation Administration (FAA), and the Aviation Safety Information Analysis and Sharing (ASIAS) system to identify any significant or overlooked aviation safety issues; (2) a high-level qualitative identification of future safety risks, with an assessment of the potential impact of the NASA AvSafe research on the National Airspace System (NAS) based on these risks; and (3) a detailed, top-down analysis of the NASA AvSafe program using an established and peer-reviewed systems analysis methodology. The statistical analysis identified the top aviation "tall poles" based on NTSB accident and FAA incident data from 1997 to 2006. A separate examination of medical helicopter accidents in the United States was also conducted. Multiple external sources were used to develop a compilation of ten "tall poles" in future safety issues/risks. The top-down analysis of the AvSafe was conducted by using a modification of the Gibson methodology. Of the 17 challenging safety issues that were identified, 11 were directly addressed by the AvSafe program research portfolio.

  7. Management of radioactive material safety programs at medical facilities. Final report

    International Nuclear Information System (INIS)

    Camper, L.W.; Schlueter, J.; Woods, S.

    1997-05-01

    A Task Force, comprising eight US Nuclear Regulatory Commission and two Agreement State program staff members, developed the guidance contained in this report. This report describes a systematic approach for effectively managing radiation safety programs at medical facilities. This is accomplished by defining and emphasizing the roles of an institution's executive management, radiation safety committee, and radiation safety officer. Various aspects of program management are discussed and guidance is offered on selecting the radiation safety officer, determining adequate resources for the program, using such contractual services as consultants and service companies, conducting audits, and establishing the roles of authorized users and supervised individuals; NRC's reporting and notification requirements are discussed, and a general description is given of how NRC's licensing, inspection and enforcement programs work

  8. 29 CFR 1960.80 - Secretary's evaluations of agency occupational safety and health programs.

    Science.gov (United States)

    2010-07-01

    ... EMPLOYEE OCCUPATIONAL SAFETY AND HEALTH PROGRAMS AND RELATED MATTERS Evaluation of Federal Occupational Safety and Health Programs § 1960.80 Secretary's evaluations of agency occupational safety and health... evaluating an agency's occupational safety and health program. To accomplish this, the Secretary shall...

  9. Fusion Safety Program annual report: Fiscal year 1987

    International Nuclear Information System (INIS)

    Holland, D.F.; Herring, J.S.; Longhurst, G.R.; Lyon, R.E.; Merrill, B.J.; Piet, S.J.

    1988-02-01

    This report summarizes the Fusion Safety Program major activities in fiscal year 1987. The Idaho National Engineering Laboratory (INEL) is the designated lead laboraotry and EG and G Idaho, Inc., is the prime contractor for this program, which was initiated in 1979. Activities are conducted at the INEL and in participating laboratories including the Hanford Engineering Development Laboratory (HEDL), the Massachusetts Institute of Technology (MIT), and the University of Wisconsin. The technical areas covered in the report include tritium safety, activation product release, reactions involving lithium breeding materials, safety of fusion magnet systems, plasma disruptions, risk assessment methodology, computer codes development for reactor transients, and fusion waste management. Also included in the report is a summary of the safety and environmental analysis and conventional facilities design performed by INEL for the Compact Ignition Tokamak design project, the safety analysis and documentation performed for the Tokamak Ignition/Burn Experimental Reactor design, and the technical support provided to the Environmental Safety and Economics Committee (ESECOM). 42 refs., 17 figs., 4 tabs

  10. N Area Final Project Program Plan

    International Nuclear Information System (INIS)

    Day, R.S.; Duncan, G.M; Trent, S.J.

    1998-07-01

    The N Area Final Project Program Plan is issued for information and use by the U.S. Department of Energy (DOE), the Environmental Restoration Contractor (ERC) for the Hanford Site, and other parties that require workscope knowledge for the deactivation of N Reactor facilities and remediation of the 100-N Area. This revision to the program plan contains the updated critical path schedule to deactivate N Reactor and its supporting facilities, cleanout of the N Reactor Fuel Storage Basin (105-N Basin), and remediate the 100-N Area. This document reflects notable changes in the deactivation plan for N Reactor, including changes in deactivation status, the N Basin cleanout task, and 100-N Area remediation

  11. A tailored online safety and health intervention for women experiencing intimate partner violence: the iCAN Plan 4 Safety randomized controlled trial protocol

    Directory of Open Access Journals (Sweden)

    Marilyn Ford-Gilboe

    2017-03-01

    Full Text Available Abstract Background Intimate partner violence (IPV threatens the safety and health of women worldwide. Safety planning is a widely recommended, evidence-based intervention for women experiencing IPV, yet fewer than 1 in 5 Canadian women access safety planning through domestic violence services. Rural, Indigenous, racialized, and immigrant women, those who prioritize their privacy, and/or women who have partners other than men, face unique safety risks and access barriers. Online IPV interventions tailored to the unique features of women’s lives, and to maximize choice and control, have potential to reduce access barriers, and improve fit and inclusiveness, maximizing effectiveness of these interventions for diverse groups. Methods/Design In this double blind randomized controlled trial, 450 Canadian women who have experienced IPV in the previous 6 months will be randomized to either a tailored, interactive online safety and health intervention (iCAN Plan 4 Safety or general online safety information (usual care. iCAN engages women in activities designed to increase their awareness of safety risks, reflect on their plans for their relationships and priorities, and create a personalize action plan of strategies and resources for addressing their safety and health concerns. Self-reported outcome measures will be collected at baseline and 3, 6, and 12 months post-baseline. Primary outcomes are depressive symptoms (Center for Epidemiological Studies Depression Scale, Revised and PTSD Symptoms (PTSD Checklist, Civilian Version. Secondary outcomes include helpful safety actions, safety planning self-efficacy, mastery, and decisional conflict. In-depth qualitative interviews with approximately 60 women who have completed the trial and website utilization data will be used to explore women’s engagement with the intervention and processes of change. Discussion This trial will contribute timely evidence about the effectiveness of online safety and

  12. 29 CFR 1960.79 - Self-evaluations of occupational safety and health programs.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Self-evaluations of occupational safety and health programs. 1960.79 Section 1960.79 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... AND HEALTH PROGRAMS AND RELATED MATTERS Evaluation of Federal Occupational Safety and Health Programs...

  13. NASA Year 2000 (Y2K) Program Plan

    Science.gov (United States)

    1998-01-01

    NASA initiated the Year 2000 (Y2K) program in August 1996 to address the challenges imposed on Agency software, hardware, and firmware systems by the new millennium. The Agency program is centrally managed by the NASA Chief Information Officer, with decentralized execution of program requirements at each of the nine NASA Centers, Headquarters and the Jet Propulsion Laboratory. The purpose of this Program Plan is to establish Program objectives and performance goals; identify Program requirements; describe the management structure; and detail Program resources, schedules, and controls. Project plans are established for each NASA Center, Headquarters, and the Jet Propulsion Laboratory.

  14. 45 CFR 235.62 - State plan requirements for training programs.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 2 2010-10-01 2010-10-01 false State plan requirements for training programs. 235... ADMINISTRATION OF FINANCIAL ASSISTANCE PROGRAMS § 235.62 State plan requirements for training programs. A State plan under title I, IV-A, X, XIV, or XVI (AABD) of the Act must provide for a training program for...

  15. Seismic Safety Guide

    International Nuclear Information System (INIS)

    Eagling, D.G.

    1985-01-01

    The Seismic Safety Guide provides facilities managers with practical guidelines for administering a comprehensive earthquake safety program. Most facilities managers, unfamiliar with earthquake engineering, tend to look for answers in techniques more sophisticated than required to solve the actual problems in earthquake safety. Often the approach to solutions to these problems is so academic, legalistic, and financially overwhelming that mitigation of actual seismic hazards simply does not get done in a timely, cost-effective way. The objective of the Guide is to provide practical advice about earthquake safety so that managers and engineers can get the job done without falling into common pitfalls, prolonged diagnosis, and unnecessary costs. It is comprehensive with respect to earthquakes in that it covers the most important aspects of natural hazards, site planning, rehabilitation of existing buildings, design of new facilities, operational safety, emergency planning, non-structural elements, life lines, and risk management. 5 references

  16. Krsko NPP Quality Assurance Plan Application to Nuclear Safety Upgrade Projects (PCFV System and PAR System)

    International Nuclear Information System (INIS)

    Biscan, Romeo; Fifnja, Igor

    2014-01-01

    Nuklearna Elektrarna Krsko (NEK) has undertaken Nuclear Safety Upgrade Projects as a safety improvement driven by the lessons learned from the Fukushima-Daiichi Accident. Among other projects, new modification 1008-VA-L Passive Containment Filtered Vent (PCFV) System has been installed which acts as the last barrier minimizing the release of radioactive material into the environment in case of failure of all safety systems, and to insure containment integrity during beyond design basis accidents (BDBA). In addition, modification 1002-GH-L Severe Accident Hydrogen Control System (PAR) has been implemented to prevent and mitigate the consequences of explosive gas generation (hydrogen and carbon monoxide) in case of reactor core melting. To ensure containment integrity for all design basis accidents (DBA) and BDBA conditions, NEK has eliminated existing safety-related electrical recombiners, replaced them with two safety-related passive autocatalytic recombiners (PARs) and added 20 new PARs designed for the BDBA conditions. Krsko NPP Quality Assurance Plan has been applied to Nuclear Safety Upgrade Projects (PCFV System and PAR System) through the following activities: · Internal audit of modification process was performed. · Supplier audits were performed to evaluate QA program efficiency of the main design organization and engineering organizations. · Evaluation and approval of Suppliers were performed. · QA engineer was involved in the review and approval of 1008-VA-L and 1002-GH-L modification documentation (Conceptual Design Package, Design Modification Package, Installation Package, Field Design Change Request, Problem/Deficiency Report, and Final Documentation Package). · Purchasing documentation for modifications 1008-VA-L and 1002-GH-L (technical specifications, purchase orders) has been verified and approved by QA. · QA and QC engineers were involved in oversight of production and testing of the new 1008-VA-L and 1002-GH-L plant components.

  17. Is it necessary to plan with safety margins for actively scanned proton therapy?

    Science.gov (United States)

    Albertini, F.; Hug, E. B.; Lomax, A. J.

    2011-07-01

    In radiation therapy, a plan is robust if the calculated and the delivered dose are in agreement, even in the case of different uncertainties. The current practice is to use safety margins, expanding the clinical target volume sufficiently enough to account for treatment uncertainties. This, however, might not be ideal for proton therapy and in particular when using intensity modulated proton therapy (IMPT) plans as degradation in the dose conformity could also be found in the middle of the target resulting from misalignments of highly in-field dose gradients. Single field uniform dose (SFUD) and IMPT plans have been calculated for different anatomical sites and the need for margins has been assessed by analyzing plan robustness to set-up and range uncertainties. We found that the use of safety margins is a good way to improve plan robustness for SFUD and IMPT plans with low in-field dose gradients but not necessarily for highly modulated IMPT plans for which only a marginal improvement in plan robustness could be detected through the definition of a planning target volume.

  18. Integrated program of using of Probabilistic Safety Analysis in Spain

    International Nuclear Information System (INIS)

    1998-01-01

    Since 25 June 1986, when the CSN (Nuclear Safety Conseil) approve the Integrated Program of Probabilistic Safety Analysis, this program has articulated the main activities of CSN. This document summarize the activities developed during these years and reviews the Integrated programme

  19. Status of safety issues at licensed power plants: TMI Action Plan requirements, unresolved safety issues, generic safety issues, other multiplant action issues

    International Nuclear Information System (INIS)

    1992-12-01

    This report is to provide a comprehensive description of the implementation and verification status of Three Mile Island (TMI) Action Plan requirements, safety issues designated as Unresolved Safety Issues (USIs), Generic Safety Issues(GSIs), and other Multiplant Actions (MPAs) that have been resolved and involve implementation of an action or actions by licensees. This report makes the information available to other interested parties, including the public. An additional purpose of this NUREG report is to serve as a follow-on to NUREG-0933, ''A Prioritization of Generic Safety Issues,'' which tracks safety issues up until requirements are approved for imposition at licensed plants or until the NRC issues a request for action by licensees

  20. Management of radioactive material safety programs at medical facilities. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Camper, L.W.; Schlueter, J.; Woods, S. [and others

    1997-05-01

    A Task Force, comprising eight US Nuclear Regulatory Commission and two Agreement State program staff members, developed the guidance contained in this report. This report describes a systematic approach for effectively managing radiation safety programs at medical facilities. This is accomplished by defining and emphasizing the roles of an institution`s executive management, radiation safety committee, and radiation safety officer. Various aspects of program management are discussed and guidance is offered on selecting the radiation safety officer, determining adequate resources for the program, using such contractual services as consultants and service companies, conducting audits, and establishing the roles of authorized users and supervised individuals; NRC`s reporting and notification requirements are discussed, and a general description is given of how NRC`s licensing, inspection and enforcement programs work.

  1. 12 CFR 570.3 - Filing of safety and soundness compliance plan.

    Science.gov (United States)

    2010-01-01

    ... compliance plan shall include a description of the steps the savings association will take to correct the deficiency and the time within which those steps will be taken. (c) Review of safety and soundness compliance... plan. (a) Schedule for filing compliance plan—(1) In general. A savings association shall file a...

  2. Indonesia's family planning program works toward self-sufficiency.

    Science.gov (United States)

    Kunii, C

    1989-07-01

    Started in 1970, the Indonesian Family Planning Program is doing very well. It is coordinated by the National Family Planning Coordinating Board (BKKBN). Many new acceptors are being enrolled daily. Its aim is to reduce to 1971 fertility rate of 50% in 1990. Strategy factors are listed. The following paper, "BKKBN and the Expanding Role of Private Sector Family Planning Services and Commercial Contraceptive Sales in Indonesia," by Dr. Haryono Suyono is introduced. Another article, "A breakthrough in Family Planning Promotional Strategy," by Mr. Sumarsono is also introduced. This article deals with the marketing aspect of Indonesia's family planning program.

  3. Tank waste remediation system program plan

    Energy Technology Data Exchange (ETDEWEB)

    Powell, R.W.

    1998-01-09

    This TWRS Program plan presents the planning requirements and schedules and management strategies and policies for accomplishing the TWRS Project mission. It defines the systems and practices used to establish consistency for business practices, engineering, physical configuration and facility documentation, and to maintain this consistency throughout the program life cycle, particularly as changes are made. Specifically, this plan defines the following: Mission needs and requirements (what must be done and when must it be done); Technical objectives/approach (how well must it be done); Organizational structure and philosophy (roles, responsibilities, and interfaces); and Operational methods (objectives and how work is to be conducted in both management and technical areas). The plan focuses on the TWRS Retrieval and Disposal Mission and supports the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing contracts with private contractors for the treatment (immobilization) of Hanford tank high-level radioactive waste.

  4. Tank waste remediation system program plan

    International Nuclear Information System (INIS)

    Powell, R.W.

    1998-01-01

    This TWRS Program plan presents the planning requirements and schedules and management strategies and policies for accomplishing the TWRS Project mission. It defines the systems and practices used to establish consistency for business practices, engineering, physical configuration and facility documentation, and to maintain this consistency throughout the program life cycle, particularly as changes are made. Specifically, this plan defines the following: Mission needs and requirements (what must be done and when must it be done); Technical objectives/approach (how well must it be done); Organizational structure and philosophy (roles, responsibilities, and interfaces); and Operational methods (objectives and how work is to be conducted in both management and technical areas). The plan focuses on the TWRS Retrieval and Disposal Mission and supports the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing contracts with private contractors for the treatment (immobilization) of Hanford tank high-level radioactive waste

  5. Planning and Preparing for Emergency Response to Transport Accidents Involving Radioactive Material. Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This Safety Guide provides guidance on various aspects of emergency planning and preparedness for dealing effectively and safely with transport accidents involving radioactive material, including the assignment of responsibilities. It reflects the requirements specified in Safety Standards Series No. TS-R-1, Regulations for the Safe Transport of Radioactive Material, and those of Safety Series No. 115, International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. Contents: 1. Introduction; 2. Framework for planning and preparing for response to accidents in the transport of radioactive material; 3. Responsibilities for planning and preparing for response to accidents in the transport of radioactive material; 4. Planning for response to accidents in the transport of radioactive material; 5. Preparing for response to accidents in the transport of radioactive material; Appendix I: Features of the transport regulations influencing emergency response to transport accidents; Appendix II: Preliminary emergency response reference matrix; Appendix III: Guide to suitable instrumentation; Appendix IV: Overview of emergency management for a transport accident involving radioactive material; Appendix V: Examples of response to transport accidents; Appendix VI: Example equipment kit for a radiation protection team; Annex I: Example of guidance on emergency response to carriers; Annex II: Emergency response guide.

  6. SNL/CA Environmental Planning and Ecology Program Annual Report 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2007-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Environmental Planning and Ecology Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The 2006 program report describes the activities undertaken during the past year, and activities planned in future years to implement the Planning and Ecology Program, one of six programs that supports environmental management at SNL/CA.

  7. Research program on regulatory safety research - Synthesis report 2008

    International Nuclear Information System (INIS)

    Mailaender, R

    2009-06-01

    This report for the Swiss Federal Office of Energy (SFOE) summarises the program's main points of interest, work done in the year 2008 and the results obtained. The main points of the research program, which is co-ordinated by the Swiss Federal Nuclear Safety Inspectorate ENSI, are discussed. Topics covered concern reactor safety as well as human, organisational and safety aspects. Work done in several areas concerning reactor safety and materials as well as interactions in severe accidents in light-water reactors is described. Radiation protection, the transport and disposal of radioactive wastes and safety culture are also looked at. Finally, national and international co-operation is briefly looked at and work to be done in 2009 is reviewed. The report is completed with a list of research and development projects co-ordinated by ENSI

  8. Research and development program for PWR safety at the CEA reactor thermal hydraulics laboratories

    International Nuclear Information System (INIS)

    Bernard, M.

    1995-01-01

    Since the start of the French electronuclear program, the three partners Fermate, EDF and Cea (DRN and IPSN) have devoted considerable effort to research and development for safety issues. In particular an important program on thermal hydraulics was initiated at the beginning of the seventies. It is illustrated by the development of the CATHARE thermalhydraulic safety code which includes physical models derived from a large experimental support program and the construction of the BETHSY integral facility which is aimed to assess both the CATHARE code and the physical relevance of the accident management procedures to be applied on reactors. The state of the art on this program is described with particular emphasis on the capabilities and the assessment of the last version of CATHARE and the lessons drawn from 50 BETHSY tests performed so far. The future plans for safety research cover the following strategy: - to solve the few problems identified on present computing tools and extend the assessment - to solve the few problems identified on present computing tools and extend the assessment - to perform safety studies on the basis of plant operation feedback - to contribute to treating the safety issues related to the future reactors and in particular the case of severe accidents which have to be taken into account from the design stage. The program on severe accidents is aimed to support the design studies performed by the industrial partners and to provide computing tools which model the various phases of severe accidents and will be validated on experiments performed with real and simulating materials. The main lines of the program are: - the development of the TOLBIAC 3D code for the thermal hydraulics of core melt pools, which will be validated against the Bali experiment presently under construction - the Sultan experiment, to study the capability of cooling by external flooding of the reactor vessel - the development of the MC-3D code for core melt

  9. Standard Review Plan for Environmental Restoration Program Quality Management Plans

    International Nuclear Information System (INIS)

    1993-12-01

    The Department of Energy, Richland Operations Office (RL) Manual Environmental Restoration Program Quality System Requirements (QSR) for the Hanford Site, defines all quality requirements governing Hanford Environmental Restoration (ER) Program activities. The QSR requires that ER Program participants develop Quality Management Plans (QMPs) that describe how the QSR requirements will be implemented for their assigned scopes of work. This standard review plan (SRP) describes the ER program participant responsibilities for submittal of QMPs to the RL Environmental Restoration Division for review and the RL methodology for performing the reviews of participant QMPS. The SRP serves the following functions: acts as a guide in the development or revision of QMPs to assure that the content is complete and adequate; acts as a checklist to be used by the RL staff in their review of participant QMPs; acts as an index or matrix between the requirements of the QSR and implementing methodologies described in the QMPs; decreases the time and subjectivity of document reviews; and provides a formal, documented method for describing exceptions, modifications, or waivers to established ER Program quality requirements

  10. Solid waste programs Fiscal Year 1995 multi-year program plan/fiscal year work plan WBS 1.2.1

    International Nuclear Information System (INIS)

    McCarthy, M.M.

    1994-09-01

    The Hanford Mission Plan, Volume 1, Site Guidance identifies the need for the Solid Waste Program to treat, store, and dispose of a wide variety of solid material types consisting of multiple radioactive and hazardous waste classes. This includes future Hanford Site activities which will generate new wastes that must be handled as cleanup activities are completed. Solid wastes are typically categorized as transuranic waste, low level waste, low level mixed waste, and hazardous waste. To meet this need the Solid Waste Program has defined its mission as the following - receive, store, treat, decontaminate, and dispose of solid radioactive and nonradioactive dangerous wastes in a safe, cost effective and environmentally compliant manner. This workbook contains the program overview, program baselines and fiscal year work plan for the Solid Waste Program

  11. Strategic planning in an academic radiation medicine program.

    Science.gov (United States)

    Hamilton, J L; Foxcroft, S; Moyo, E; Cooke-Lauder, J; Spence, T; Zahedi, P; Bezjak, A; Jaffray, D; Lam, C; Létourneau, D; Milosevic, M; Tsang, R; Wong, R; Liu, F F

    2017-12-01

    In this paper, we report on the process of strategic planning in the Radiation Medicine Program (rmp) at the Princess Margaret Cancer Centre. The rmp conducted a strategic planning exercise to ensure that program priorities reflect the current health care environment, enable nimble responses to the increasing burden of cancer, and guide program operations until 2020. Data collection was guided by a project charter that outlined the project goal and the roles and responsibilities of all participants. The process was managed by a multidisciplinary steering committee under the guidance of an external consultant and consisted of reviewing strategic planning documents from close collaborators and institutional partners, conducting interviews with key stakeholders, deploying a program-wide survey, facilitating an anonymous and confidential e-mail feedback box, and collecting information from group deliberations. The process of strategic planning took place from December 2014 to December 2015. Mission and vision statements were developed, and core values were defined. A final document, Strategic Roadmap to 2020, was established to guide programmatic pursuits during the ensuing 5 years, and an implementation plan was developed to guide the first year of operations. The strategic planning process provided an opportunity to mobilize staff talents and identify environmental opportunities, and helped to enable more effective use of resources in a rapidly changing health care environment. The process was valuable in allowing staff to consider and discuss the future, and in identifying strategic issues of the greatest importance to the program. Academic programs with similar mandates might find our report useful in guiding similar processes in their own organizations.

  12. 49 CFR 613.100 - Metropolitan transportation planning and programming.

    Science.gov (United States)

    2010-10-01

    ... programming. 613.100 Section 613.100 Transportation Other Regulations Relating to Transportation (Continued... Metropolitan Transportation Planning and Programming § 613.100 Metropolitan transportation planning and programming. The regulations in 23 CFR 450, subpart C, shall be followed in complying with the requirements of...

  13. A reliability program approach to operational safety

    International Nuclear Information System (INIS)

    Mueller, C.J.; Bezella, W.A.

    1985-01-01

    A Reliability Program (RP) model based on proven reliability techniques is being formulated for potential application in the nuclear power industry. Methods employed under NASA and military direction, commercial airline and related FAA programs were surveyed and a review of current nuclear risk-dominant issues conducted. The need for a reliability approach to address dependent system failures, operating and emergency procedures and human performance, and develop a plant-specific performance data base for safety decision making is demonstrated. Current research has concentrated on developing a Reliability Program approach for the operating phase of a nuclear plant's lifecycle. The approach incorporates performance monitoring and evaluation activities with dedicated tasks that integrate these activities with operation, surveillance, and maintenance of the plant. The detection, root-cause evaluation and before-the-fact correction of incipient or actual systems failures as a mechanism for maintaining plant safety is a major objective of the Reliability Program. (orig./HP)

  14. Seismic safety margin assessment program (Annual safety research report, JFY 2010)

    International Nuclear Information System (INIS)

    Suzuki, Kenichi; Iijima, Toru; Inagaki, Masakatsu; Taoka, Hideto; Hidaka, Shinjiro

    2011-01-01

    Seismic capacity test data, analysis method and evaluation code provided by Seismic Safety Margin Assessment Program have been utilized for the support of seismic back-check evaluation of existing plants. The summary of the program in 2010 is as follows. 1. Component seismic capacity test and quantitative seismic capacity evaluation. Many seismic capacity tests of various snubbers were conducted and quantitative seismic capacities were evaluated. One of the emergency diesel generator partial-model seismic capacity tests was conducted and quantitative seismic capacity was evaluated. Some of the analytical evaluations of piping-system seismic capacities were conducted. 2. Analysis method for minute evaluation of component seismic response. The difference of seismic response of large components such as primary containment vessel and reactor pressure vessel when they were coupled with 3-dimensional FEM building model or 1-dimensional lumped mass building model, was quantitatively evaluated. 3. Evaluation code for quantitative evaluation of seismic safety margin of systems, structures and components. As the example, quantitative evaluation of seismic safety margin of systems, structures and components were conducted for the reference plant. (author)

  15. 7 CFR 22.304 - Multiyear planning and programming.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Multiyear planning and programming. 22.304 Section 22.304 Agriculture Office of the Secretary of Agriculture RURAL DEVELOPMENT COORDINATION Roles and Responsibilities of State Governments § 22.304 Multiyear planning and programming. State and multicounty...

  16. Women's experiences after Planned Parenthood's exclusion from a family planning program in Texas.

    Science.gov (United States)

    Woo, C Junda; Alamgir, Hasanat; Potter, Joseph E

    2016-04-01

    We assessed the impact on depot medroxyprogesterone continuation when a large care provider was banned from a state-funded family planning program. We used three methods to assess the effect of the ban: (a) In a records review, we compared how many state program participants returned to two Planned Parenthood affiliates for a scheduled dose of depot medroxyprogesterone acetate (DMPA) immediately after the ban; (b) We conducted phone interviews with 224 former Planned Parenthood patients about DMPA use and access to contraception immediately after the ban; (c) We compared current contraceptive method of our interviewees to that of comparable DMPA users in the National Survey of Family Growth 2006-2010 (NSFG). (a) Fewer program clients returned for DMPA at a large urban Planned Parenthood, compared to a remotely located affiliate (14.4%, vs. 64.8%), reflecting different levels of access to alternative providers in the two cities. (b) Among program participants who went elsewhere for the injection, only 56.8% obtained it at no cost and on time. More than one in five women missed a dose because of barriers, most commonly due to difficulty finding a provider. (c) Compared to NSFG participants, our interviewees used less effective methods of contraception, even more than a year after the ban went into effect. Injectable contraception use was disrupted during the rollout of the state-funded family planning program. Women living in a remote area of Texas encountered more barriers. Requiring low-income family planning patients to switch healthcare providers has adverse consequences. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Urban planning, traffic planning and traffic safety of pedestrians and cyclists : report presented to the 1979 Road Research Symposium on Safety of Pedestrians and Cyclists, OECD Headquarters, Paris, 14-16 May 1979. Session III: Physical Countermeasures; Subsession III.1: Urban planning and traffic planning.

    NARCIS (Netherlands)

    Wegman, F.C.M.

    1979-01-01

    The traffic safety of pedestrians and cyclists can be improved by means of urban planning and traffic planning, as one of the possibilities. This paper discusses the framework of these measures and activities and also the effects on the field of traffic planning. Chapter I show that it is not

  18. 49 CFR 659.27 - Internal safety and security reviews.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Internal safety and security reviews. 659.27... State Oversight Agency § 659.27 Internal safety and security reviews. (a) The oversight agency shall... safety and security reviews in its system safety program plan. (b) The internal safety and security...

  19. Management plan for the Nuclear Standards Program

    International Nuclear Information System (INIS)

    1979-11-01

    This Management Plan was prepared to describe the manner in which Oak Ridge National Laboratory will provide technical management of the Nuclear Standards Program. The organizational structure that has been established within ORNL for this function is the Nuclear Standards Management Center, which includes the Nuclear Standards Office (NSO) already in existence at ORNL. This plan is intended to support the policies and practices for the development and application of technical standards in ETN projects, programs, and technology developments as set forth in a standards policy memorandum from the DOE Program Director for Nuclear Energy

  20. Status report of the US Department of Energy's International Nuclear Safety Program

    International Nuclear Information System (INIS)

    1994-12-01

    The US Department of Energy (DOE) implements the US Government's International Nuclear Safety Program to improve the level of safety at Soviet-designed nuclear power plants in Central and Eastern Europe, Russia, and Unkraine. The program is conducted consistent with guidance and policies established by the US Department of State (DOS) and the Agency for International Development and in close collaboration with the Nuclear Regulatory Commission. Some of the program elements were initiated in 1990 under a bilateral agreement with the former Soviet Union; however, most activities began after the Lisbon Nuclear Safety Initiative was announced by the DOS in 1992. Within DOE, the program is managed by the International Division of the Office of Nuclear Energy. The overall objective of the International Nuclear Safety Program is to make comprehensive improvements in the physical conditions of the power plants, plant operations, infrastructures, and safety cultures of countries operating Soviet-designed reactors. This status report summarizes the Internatioal Nuclear Safety Program's activities that have been completed as of September 1994 and discusses those activities currently in progress