- Home
- ▪
- About
- ▪
- News
- ▪
- Advanced Search
- ▪
- Mobile
- ▪
- Contact Us
- ▪
- Site Map
- ▪
- Help

1

Quantum information processing with hybrid spin-photon qubit encoding.

We introduce a scheme to perform quantum information processing that is based on a hybrid spin-photon qubit encoding. The proposed qubits consist of spin ensembles coherently coupled to microwave photons in coplanar waveguide resonators. The quantum gates are performed solely by shifting the resonance frequencies of the resonators on a nanosecond time scale. An additional cavity containing a Cooper-pair box is exploited as an auxiliary degree of freedom to implement two-qubit gates. The generality of the scheme allows its potential implementation with a wide class of spin systems. PMID:24074061

Carretta, S; Chiesa, A; Troiani, F; Gerace, D; Amoretti, G; Santini, P

2013-09-13

2

Abstract algebra, projective geometry and time encoding of quantum information

Algebraic geometrical concepts are playing an increasing role in quantum applications such as coding, cryptography, tomography and computing. We point out here the prominent role played by Galois fields viewed as cyclotomic extensions of the integers modulo a prime characteristic $p$. They can be used to generate efficient cyclic encoding, for transmitting secrete quantum keys, for quantum state recovery and for error correction in quantum computing. Finite projective planes...

Planat, Michel; Saniga, Metod

2005-01-01

3

Secure quantum private information retrieval using phase-encoded queries

We propose a quantum solution to the classical private information retrieval (PIR) problem, which allows one to query a database in a private manner. The protocol offers privacy thresholds and allows the user to obtain information from a database in a way that offers the potential adversary, in this model the database owner, no possibility of deterministically establishing the query contents. This protocol may also be viewed as a solution to the symmetrically private information retrieval problem in that it can offer database security (inability for a querying user to steal its contents). Compared to classical solutions, the protocol offers substantial improvement in terms of communication complexity. In comparison with the recent quantum private queries {[}Phys. Rev. Lett. 100, 230502 (2008)] protocol, it is more efficient in terms of communication complexity and the number of rounds, while offering a clear privacy parameter. We discuss the security of the protocol and analyze its strengths and conclude that...

Olejnik, L

2011-01-01

4

Quantum information encoding, protection, and correction from trace-norm isometries

International Nuclear Information System (INIS)

We introduce the notion of trace-norm isometric encoding and explore its implications for passive and active methods for protecting quantum information against errors. Beside providing an operational foundation to the 'subsystems principle' [E. Knill, Phys. Rev. A 74, 042301 (2006)] for faithfully realizing quantum information in physical systems, our approach allows additional explicit connections between noiseless, protectable, and correctable quantum codes to be identified. Robustness properties of isometric encodings against imperfect initialization and/or deviations from the intended error models are also analyzed.

5

Secure quantum private information retrieval using phase-encoded queries

International Nuclear Information System (INIS)

We propose a quantum solution to the classical private information retrieval (PIR) problem, which allows one to query a database in a private manner. The protocol offers privacy thresholds and allows the user to obtain information from a database in a way that offers the potential adversary, in this model the database owner, no possibility of deterministically establishing the query contents. This protocol may also be viewed as a solution to the symmetrically private information retrieval problem in that it can offer database security (inability for a querying user to steal its contents). Compared to classical solutions, the protocol offers substantial improvement in terms of communication complexity. In comparison with the recent quantum private queries [Phys. Rev. Lett. 100, 230502 (2008)] protocol, it is more efficient in terms of communication complexity and the number of rounds, while offering a clear privacy parameter. We discuss the security of the protocol and analyze its strengths and conclude that using this technique makes it challenging to obtain the unconditional (in the information-theoretic sense) privacy degree; nevertheless, in addition to being simple, the protocol still offers a privacy level. The oracle used in the protocol is inspired both by the classical computational PIR solutions as well as the Deutsch-Jozsa oracle.

6

Secure quantum private information retrieval using phase-encoded queries

Energy Technology Data Exchange (ETDEWEB)

We propose a quantum solution to the classical private information retrieval (PIR) problem, which allows one to query a database in a private manner. The protocol offers privacy thresholds and allows the user to obtain information from a database in a way that offers the potential adversary, in this model the database owner, no possibility of deterministically establishing the query contents. This protocol may also be viewed as a solution to the symmetrically private information retrieval problem in that it can offer database security (inability for a querying user to steal its contents). Compared to classical solutions, the protocol offers substantial improvement in terms of communication complexity. In comparison with the recent quantum private queries [Phys. Rev. Lett. 100, 230502 (2008)] protocol, it is more efficient in terms of communication complexity and the number of rounds, while offering a clear privacy parameter. We discuss the security of the protocol and analyze its strengths and conclude that using this technique makes it challenging to obtain the unconditional (in the information-theoretic sense) privacy degree; nevertheless, in addition to being simple, the protocol still offers a privacy level. The oracle used in the protocol is inspired both by the classical computational PIR solutions as well as the Deutsch-Jozsa oracle.

Olejnik, Lukasz [CERN, 1211 Geneva 23, Switzerland and Poznan Supercomputing and Networking Center, Noskowskiego 12/14, PL-61-704 Poznan (Poland)

2011-08-15

7

Hybrid quantum repeater with encoding

We present an encoded hybrid quantum repeater scheme using qubit-repetition and Calderbank-Shor-Steane codes. For the case of repetition codes, we propose an explicit implementation of the quantum error-correction protocol. Moreover, we analyze the entangled-pair distribution rate for the hybrid quantum repeater with encoding and we clearly identify a triple trade-off between the efficiency of the codes, the memory decoherence time, and the local gate errors. Finally, we sho...

Bernardes, Nadja K.; Loock, Peter

2011-01-01

8

Strong connections between quantum encodings, nonlocality, and quantum cryptography

Encoding information in quantum systems can offer surprising advantages but at the same time there are limitations that arise from the fact that measuring an observable may disturb the state of the quantum system. In our work, we provide an in-depth analysis of a simple question: What happens when we perform two measurements sequentially on the same quantum system? This question touches upon some fundamental properties of quantum mechanics, namely the uncertainty principle and the complementarity of quantum measurements. Our results have interesting consequences, for example, they can provide a simple proof of the optimal quantum strategy in the famous Clauser-Horne-Shimony-Holt game. Moreover, we show that the way information is encoded in quantum systems can provide a different perspective in understanding other fundamental aspects of quantum information, like nonlocality and quantum cryptography. We prove some strong equivalences between these notions and provide a number of applications in all areas.

Sikora, Jamie; Chailloux, André; Kerenidis, Iordanis

2014-02-01

9

Information encoder/decoder using chaotic systems

The present invention discloses a chaotic system-based information encoder and decoder that operates according to a relationship defining a chaotic system. Encoder input signals modify the dynamics of the chaotic system comprising the encoder. The modifications result in chaotic, encoder output signals that contain the encoder input signals encoded within them. The encoder output signals are then capable of secure transmissions using conventional transmission techniques. A decoder receives the encoder output signals (i.e., decoder input signals) and inverts the dynamics of the encoding system to directly reconstruct the original encoder input signals.

Miller, Samuel Lee (Albuquerque, NM); Miller, William Michael (Tijeras, NM); McWhorter, Paul Jackson (Albuquerque, NM)

1997-01-01

10

Encoding entanglement-assisted quantum stabilizer codes

International Nuclear Information System (INIS)

We address the problem of encoding entanglement-assisted (EA) quantum error-correcting codes (QECCs) and of the corresponding complexity. We present an iterative algorithm from which a quantum circuit composed of CNOT, H, and S gates can be derived directly with complexity O(n2) to encode the qubits being sent. Moreover, we derive the number of each gate consumed in our algorithm according to which we can design EA QECCs with low encoding complexity. Another advantage brought by our algorithm is the easiness and efficiency of programming on classical computers. (general)

11

Encoding information into precipitation structures

Material design at submicron scales would be profoundly affected if the formation of precipitation patterns could be easily controlled. It would allow the direct building of bulk structures, in contrast to traditional techniques which consist of removing material in order to create patterns. Here, we discuss an extension of our recent proposal of using electrical currents to control precipitation bands which emerge in the wake of reaction fronts in A^{+} + B^{-} -> C reaction-diffusion processes. Our main result, based on simulating the reaction-diffusion-precipitation equations, is that the dynamics of the charged agents can be guided by an appropriately designed time-dependent electric current so that, in addition to the control of the band spacing, the width of the precipitation bands can also be tuned. This makes straightforward the encoding of information into precipitation patterns and, as an amusing example, we demonstrate the feasibility by showing how to encode a musical rhythm.

Martens, Kirsten; Droz, Michel; Racz, Zoltan

2008-01-01

12

International Nuclear Information System (INIS)

There is more to information than a string of ones and zeroes the ability of ''quantum bits'' to be in two states at the same time could revolutionize information technology. In the mid-1930s two influential but seemingly unrelated papers were published. In 1935 Einstein, Podolsky and Rosen proposed the famous EPR paradox that has come to symbolize the mysteries of quantum mechanics. Two years later, Alan Turing introduced the universal Turing machine in an enigmatically titled paper, On computable numbers, and laid the foundations of the computer industry one of the biggest industries in the world today. Although quantum physics is essential to understand the operation of transistors and other solid-state devices in computers, computation itself has remained a resolutely classical process. Indeed it seems only natural that computation and quantum theory should be kept as far apart as possible surely the uncertainty associated with quantum theory is anathema to the reliability expected from computers? Wrong. In 1985 David Deutsch introduced the universal quantum computer and showed that quantum theory can actually allow computers to do more rather than less. The ability of particles to be in a superposition of more than one quantum state naturally introduces a form of parallelism that can, in principle, perform some traditional computing tasks faster than is possible with classical computers. Moreover, quantum computers are capable of other tasks that are not conceivapable of other tasks that are not conceivable with their classical counterparts. Similar breakthroughs in cryptography and communication followed. (author)

13

Energy Technology Data Exchange (ETDEWEB)

There is more to information than a string of ones and zeroes the ability of ''quantum bits'' to be in two states at the same time could revolutionize information technology. In the mid-1930s two influential but seemingly unrelated papers were published. In 1935 Einstein, Podolsky and Rosen proposed the famous EPR paradox that has come to symbolize the mysteries of quantum mechanics. Two years later, Alan Turing introduced the universal Turing machine in an enigmatically titled paper, On computable numbers, and laid the foundations of the computer industry one of the biggest industries in the world today. Although quantum physics is essential to understand the operation of transistors and other solid-state devices in computers, computation itself has remained a resolutely classical process. Indeed it seems only natural that computation and quantum theory should be kept as far apart as possible surely the uncertainty associated with quantum theory is anathema to the reliability expected from computers? Wrong. In 1985 David Deutsch introduced the universal quantum computer and showed that quantum theory can actually allow computers to do more rather than less. The ability of particles to be in a superposition of more than one quantum state naturally introduces a form of parallelism that can, in principle, perform some traditional computing tasks faster than is possible with classical computers. Moreover, quantum computers are capable of other tasks that are not conceivable with their classical counterparts. Similar breakthroughs in cryptography and communication followed. (author)

Rodgers, P

1998-03-01

14

Linear optical quantum computation with parity encoding

International Nuclear Information System (INIS)

Full text: We present a linear optics quantum computation scheme that employs an incremental parity encoding approach. The scheme is circuit-based but uses techniques from cluster state computation, and achieves comparable resource usage to the cluster state approach. Our scheme also offers increased tolerance to photon loss. (author)

15

Quantum Computation and Quantum Information

Quantum computation and quantum information are of great current interest in computer science, mathematics, physical sciences and engineering. They will likely lead to a new wave of technological innovations in communication, computation and cryptography. As the theory of quantum physics is fundamentally stochastic, randomness and uncertainty are deeply rooted in quantum computation, quantum simulation and quantum information. Consequently quantum algorithms are random in na...

Wang, Yazhen

2012-01-01

16

A photonic quantum information interface

Quantum communication is the art of transferring quantum states, or quantum bits of information (qubits), from one place to another. On the fundamental side, this allows one to distribute entanglement and demonstrate quantum nonlocality over significant distances. On the more applied side, quantum cryptography offers, for the first time in human history, a provably secure way to establish a confidential key between distant partners. Photons represent the natural flying qubit carriers for quantum communication, and the presence of telecom optical fibres makes the wavelengths of 1310 and 1550 nm particulary suitable for distribution over long distances. However, to store and process quantum information, qubits could be encoded into alkaline atoms that absorb and emit at around 800 nm wavelength. Hence, future quantum information networks made of telecom channels and alkaline memories will demand interfaces able to achieve qubit transfers between these useful wavelengths while preserving quantum coherence and en...

Tanzilli, S; Halder, M; Alibart, O; Baldi, P; Gisin, Nicolas; Zbinden, H; Tanzilli, Sebastien; Tittel, Wolfgang; Halder, Matthaeus; Alibart, Olivier; Baldi, Pascal; Gisin, Nicolas; Zbinden, Hugo

2005-01-01

17

Quantum information to the home

International Nuclear Information System (INIS)

Information encoded on individual quanta will play an important role in our future lives, much as classically encoded digital information does today. Combining quantum information carried by single photons with classical signals encoded on strong laser pulses in modern fibre-to-the-home (FTTH) networks is a significant challenge, the solution to which will facilitate the global distribution of quantum information to the home and with it a quantum internet. In real-world networks, spontaneous Raman scattering in the optical fibre would induce crosstalk between the high-power classical channels and a single-photon quantum channel, such that the latter is unable to operate. Here, we show that the integration of quantum and classical information on an FTTH network is possible by performing quantum key distribution (QKD) on a network while simultaneously transferring realistic levels of classical data. Our novel scheme involves synchronously interleaving a channel of quantum data with the Raman scattered photons from a classical channel, exploiting the periodic minima in the instantaneous crosstalk and thereby enabling secure QKD to be performed.

18

Quantum algorithmic information theory

The agenda of quantum algorithmic information theory, ordered `top-down,' is the quantum halting amplitude, followed by the quantum algorithmic information content, which in turn requires the theory of quantum computation. The fundamental atoms processed by quantum computation are the quantum bits which are dealt with in quantum information theory. The theory of quantum computation will be based upon a model of universal quantum computer whose elementary unit is a two-port i...

Svozil, Karl

1995-01-01

19

Quantum information theory is the study of the achievable limits of information processing within quantum mechanics. Many different types of information can be accommodated within quantum mechanics, including classical information, coherent quantum information, and entanglement. Exploring the rich variety of capabilities allowed by these types of information is the subject of quantum information theory, and of this Dissertation. In particular, I demonstrate several novel lim...

Nielsen, M. A.

2000-01-01

20

Quantum information with Rydberg atoms

Rydberg atoms with principal quantum number n >> 1 have exaggerated atomic properties including dipole-dipole interactions that scale as n^4 and radiative lifetimes that scale as n^3. It was proposed a decade ago to take advantage of these properties to implement quantum gates between neutral atom qubits. The availability of a strong, long-range interaction that can be coherently turned on and off is an enabling resource for a wide range of quantum information tasks stretching far beyond the original gate proposal. Rydberg enabled capabilities include long-range two-qubit gates, collective encoding of multi-qubit registers, implementation of robust light-atom quantum interfaces, and the potential for simulating quantum many body physics. We review the advances of the last decade, covering both theoretical and experimental aspects of Rydberg mediated quantum information processing.

Saffman, M; Mølmer, K

2009-01-01

21

Hybrid architecture for encoded measurement-based quantum computation

We present a hybrid scheme for quantum computation that combines the modular structure of elementary building blocks used in the circuit model with the advantages of a measurement-based approach to quantum computation. We show how to construct optimal resource states of minimal size to implement elementary building blocks for encoded quantum computation in a measurement-based way, including states for error correction and encoded gates. The performance of the scheme is determined by the quality of the resource states, where within the considered error model a threshold of the order of 10% local noise per particle for fault-tolerant quantum computation and quantum communication.

Zwerger, M.; Briegel, H. J.; Dür, W.

2014-06-01

22

Experimental Quantum Computations on a Topologically Encoded Qubit

The construction of a quantum computer remains a fundamental scientific and technological challenge, in particular due to unavoidable noise. Quantum states and operations can be protected from errors using protocols for fault-tolerant quantum computing (FTQC). Here we present a step towards this by implementing a quantum error correcting code, encoding one qubit in entangled states distributed over 7 trapped-ion qubits. We demonstrate the capability of the code to detect one...

Nigg, Daniel; Mueller, Markus; Martinez, Esteban A.; Schindler, Philipp; Hennrich, Markus; Monz, Thomas; Martin-delgado, Miguel A.; Blatt, Rainer

2014-01-01

23

A photonic quantum information interface.

Quantum communication requires the transfer of quantum states, or quantum bits of information (qubits), from one place to another. From a fundamental perspective, this allows the distribution of entanglement and the demonstration of quantum non-locality over significant distances. Within the context of applications, quantum cryptography offers a provably secure way to establish a confidential key between distant partners. Photons represent the natural flying qubit carriers for quantum communication, and the presence of telecommunications optical fibres makes the wavelengths of 1,310 nm and 1,550 nm particularly suitable for distribution over long distances. However, qubits encoded into alkaline atoms that absorb and emit at wavelengths around 800 nm have been considered for the storage and processing of quantum information. Hence, future quantum information networks made of telecommunications channels and alkaline memories will require interfaces that enable qubit transfers between these useful wavelengths, while preserving quantum coherence and entanglement. Here we report a demonstration of qubit transfer between photons of wavelength 1,310 nm and 710 nm. The mechanism is a nonlinear up-conversion process, with a success probability of greater than 5 per cent. In the event of a successful qubit transfer, we observe strong two-photon interference between the 710 nm photon and a third photon at 1,550 nm, initially entangled with the 1,310 nm photon, although they never directly interacted. The corresponding fidelity is higher than 98 per cent. PMID:16136138

Tanzilli, S; Tittel, W; Halder, M; Alibart, O; Baldi, P; Gisin, N; Zbinden, H

2005-09-01

24

Quantum Private Comparison Based on Phase Encoding of Single Photons

In this paper, we propose a scheme for quantum private comparison using phase encoding. The analysis indicates that the scheme is secure, and can prevent some familiar attacks. With the use of error-correcting code (ECC), it achieves a limited fault tolerant quantum private comparison. The scheme is easy to be realized in current experiments.

Li, Yan-Bing; Ma, Ying-Jie; Xu, Sheng-Wei; Huang, Wei; Zhang, Yan-shuo

2014-09-01

25

Quantal encoding of information in a retinal ganglion cell.

A retinal ganglion cell receives information about a white-noise stimulus as a flickering pattern of glutamate quanta. The ganglion cell reencodes this information as brief bursts of one to six spikes separated by quiescent periods. When the stimulus is repeated, the number of spikes in a burst is highly reproducible (variance white-noise stimulus and recording excitatory currents from a voltage-clamped, brisk-sustained ganglion cell. Quanta occurred in synchronous bursts of 3 to 65; the resulting postsynaptic currents summed to form excitatory postsynaptic currents (EPSCs). The number of quanta in an EPSC was only moderately reproducible (variance = mean), quantal timing was precise to within 14 ms, and each quantum encoded 0.1-0.4 bit. In conclusion, compared to a spike, a quantum has similar temporal precision, but is less reproducible and encodes less information. Summing multiple quanta into discrete EPSCs improves the reproducibility of the overall quantal pattern and contributes to the reproducibility of the spike train. PMID:15843476

Freed, Michael A

2005-08-01

26

Quantum Information An Introduction

Recently, quantum information theory has been developing through a fusion of results from various research fields. This requires that understanding of basic results on diverse topics, and derived from different disciplinary perspectives, is required for appreciating the overall picture. Intended to merge key topics from both the information-theoretic and quantum- mechanical viewpoints, this graduate-level textbook provides a unified viewpoint of quantum information theory and lucid explanations of those basic results, so that the reader fundamentally grasps advances and challenges. For example, advanced topics in quantum communication such as quantum teleportation, superdense coding, quantum state transmission (quantum error-correction), and quantum encryption especially benefit from this unified approach. Unlike earlier treatments, the text requires knowledge of only linear algebra, probability theory, and quantum mechanics, while it treats the topics of quantum hypothesis testing and the discrimination of q...

Hayashi, Masahito

2006-01-01

27

Evaluating standard terminologies for encoding allergy information

Objective Allergy documentation and exchange are vital to ensuring patient safety. This study aims to analyze and compare various existing standard terminologies for representing allergy information. Methods Five terminologies were identified, including the Systemized Nomenclature of Medical Clinical Terms (SNOMED CT), National Drug File–Reference Terminology (NDF-RT), Medication Dictionary for Regulatory Activities (MedDRA), Unique Ingredient Identifier (UNII), and RxNorm. A qualitative analysis was conducted to compare desirable characteristics of each terminology, including content coverage, concept orientation, formal definitions, multiple granularities, vocabulary structure, subset capability, and maintainability. A quantitative analysis was also performed to compare the content coverage of each terminology for (1) common food, drug, and environmental allergens and (2) descriptive concepts for common drug allergies, adverse reactions (AR), and no known allergies. Results Our qualitative results show that SNOMED CT fulfilled the greatest number of desirable characteristics, followed by NDF-RT, RxNorm, UNII, and MedDRA. Our quantitative results demonstrate that RxNorm had the highest concept coverage for representing drug allergens, followed by UNII, SNOMED CT, NDF-RT, and MedDRA. For food and environmental allergens, UNII demonstrated the highest concept coverage, followed by SNOMED CT. For representing descriptive allergy concepts and adverse reactions, SNOMED CT and NDF-RT showed the highest coverage. Only SNOMED CT was capable of representing unique concepts for encoding no known allergies. Conclusions The proper terminology for encoding a patient's allergy is complex, as multiple elements need to be captured to form a fully structured clinical finding. Our results suggest that while gaps still exist, a combination of SNOMED CT and RxNorm can satisfy most criteria for encoding common allergies and provide sufficient content coverage. PMID:23396542

Goss, Foster R; Zhou, Li; Plasek, Joseph M; Broverman, Carol; Robinson, George; Middleton, Blackford; Rocha, Roberto A

2013-01-01

28

Photonic Quantum Information Processing

International Nuclear Information System (INIS)

The advantage of the photon's mobility makes optical quantum system ideally suited for delegated quantum computation. I will present results for the realization for a measurement-based quantum network in a client-server environment, where quantum information is securely communicated and computed. Related to measurement-based quantum computing I will discuss a recent experiment showing that quantum discord can be used as resource for the remote state preparation, which might shine new light on the requirements for quantum-enhanced information processing. Finally, I will briefly review recent photonic quantum simulation experiments of four frustrated Heisenberg-interactions spins and present an outlook of feasible simulation experiments with more complex interactions or random walk structures. As outlook I will discuss the current status of new quantum technology for improving the scalability of photonic quantum systems by using superconducting single-photon detectors and tailored light-matter interactions. (author)

29

Quantum Particles From Quantum Information

International Nuclear Information System (INIS)

Many problems in modern physics demonstrate that for a fundamental entity a more general conception than quantum particles or quantum fields are necessary. These concepts cannot explain the phenomena of dark energy or the mind-body-interaction. Instead of any kind of 'small elementary building bricks', the Protyposis, an abstract and absolute quantum information, free of special denotation and open for some purport, gives the solution in the search for a fundamental substance. However, as long as at least relativistic particles are not constructed from the Protyposis, such an idea would remain in the range of natural philosophy. Therefore, the construction of relativistic particles without and with rest mass from quantum information is shown.

30

Quantum Information Technology

From the research laboratories of Hewlett Packard, Quantum Information Technology provides an informative look at current work in quantum information processing and communication (QIPC). The report, published in November 2002, recognizes the potential applications of QIPC and how it could revolutionize conventional information technology. It cites cryptography, quantum computers, and quantum teleportation as motivational factors for development of this technology, offering a basic introduction to each discipline. The paper concludes with an analysis of the direction current research is taking and what the future may hold. Several links to further sources of information are also included.

Spiller, Timothy.

2002-01-01

31

Hiding Quantum Information in the Perfect Code

We present and analyze a protocol for quantum steganography where the sender (Alice) encodes her steganographic information into the error syndromes of the perfect (five-qubit) quantum error-correcting code, and sends it to the receiver (Bob) over a depolarizing channel. Alice and Bob share a classical secret key, and hide quantum information in such a way that to an eavesdropper (Eve) without access to the secret key, the quantum message looks like an innocent codeword with a typical sequence of quantum errors. We calculate the average rate of key consumption, and show how the protocol improves in performance as information is spread over multiple codeword blocks. Alice and Bob utilize different encodings to optimize the average number of steganographic bits that they can send to each other while matching the error statistics of the depolarizing channel.

Shaw, Bilal A

2010-01-01

32

Quantum information and coherence

This book offers an introduction to ten key topics in quantum information science and quantum coherent phenomena, aimed at graduate-student level. The chapters cover some of the most recent developments in this dynamic research field where theoretical and experimental physics, combined with computer science, provide a fascinating arena for groundbreaking new concepts in information processing. The book addresses both the theoretical and experimental aspects of the subject, and clearly demonstrates how progress in experimental techniques has stimulated a great deal of theoretical effort and vice versa. Experiments are shifting from simply preparing and measuring quantum states to controlling and manipulating them, and the book outlines how the first real applications, notably quantum key distribution for secure communication, are starting to emerge. The chapters cover quantum retrodiction, ultracold quantum gases in optical lattices, optomechanics, quantum algorithms, quantum key distribution, quantum cont...

Öhberg, Patrik

2014-01-01

33

Spectral-temporal-polarization encoding of photons for multi-user secure quantum communication

We describe a Quantum Key Distribution protocol that combines temporal-, spectraland polarization-encoding of photons for secure communication over an interconnected network of users. Temporal encoding is used to identify a user's location or address on the network. Polarization encoding is used to generate private cryptographic key. Polarization encoded information is locally and randomly generated by users and exchanged only over a dedicated secure channel. Spectral encoding allows for the detection of eavesdropping and tampering by a malicious agent. Temporal-spectral signals sent from the network administrator (Alice) to a user are bright light source. On the other hand spectral-temporal signal from a network user (Bob) to the administrator (Alice) are single photons. Signals are sent across the network as ordered light pairs. The ordering format is randomly chosen and are revealed only at the time of key selection between the parties so that a secure one-time cryptographic pad can be generated

Donkor, Eric

2014-05-01

34

Elements of quantum information

International Nuclear Information System (INIS)

Elements of Quantum Information introduces the reader to the fascinating field of quantum information processing, which lives on the interface between computer science, physics, mathematics, and engineering. This interdisciplinary branch of science thrives on the use of quantum mechanics as a resource for high potential modern applications. With its wide coverage of experiments, applications, and specialized topics - all written by renowned experts - Elements of Quantum Information provides and indispensable, up-to-date account of the state of the art of this rapidly advancing field and takes the reader straight up to the frontiers of current research. The articles have first appeared as a special issue of the journal 'Fortschritte der Physik / Progress of Physics'. Since then, they have been carefully updated. The book will be an inspiring source of information and insight for anyone researching and specializing in experiments and theory of quantum information. Topics addressed in Elements of Quantum Information include - Cavity Quantum Electrodynamics - Segmented Paul Traps - Cold Atoms and Bose-Einstein Condensates in Microtraps, Optical Lattices, and on Atom Chips - Rydberg Gases - Factorization of Numbers with Physical Systems - Entanglement of Continuous Variables - NMR and Solid State Quantum Computation - Quantum Algorithms and Quantum Machines - Complexity Theory - Quantum Crytography. (orig.)

35

Utilizing encoding in scalable linear optics quantum computing

International Nuclear Information System (INIS)

We present a scheme which offers a significant reduction in the resources required to implement linear optics quantum computing. The scheme is a variation of the proposal of Knill, Laflamme and Milburn, and makes use of an incremental approach to the error encoding to boost probability of success

36

Quantum Information and Entropy

Thermodynamic entropy is not an entirely satisfactory measure of information of a quantum state. This entropy for an unknown pure state is zero, although repeated measurements on copies of such a pure state do communicate information. In view of this, we propose a new measure for the informational entropy of a quantum state that includes information in the pure states and the thermodynamic entropy. The origin of information is explained in terms of an interplay between unita...

Kak, Subhash

2006-01-01

37

We devise a new technique to enhance transmission of quantum information through linear optical quantum information processors. The idea is based on applying the Quantum Zeno effect to the process of photon absorption. By frequently monitoring the presence of the photon through a QND (quantum non-demolition) measurement the absorption is suppressed. Quantum information is encoded in the polarization degrees of freedom and is therefore not affected by the measurement. Some im...

Spedalieri, Federico M.; Lee, Hwang; Florescu, Marian; Kapale, Kishore T.; Yurtsever, Ulvi; Dowling, Jonathan P.

2004-01-01

38

We devise a new technique to enhance transmission of quantum information through linear optical quantum information processors. The idea is based on applying the Quantum Zeno effect to the process of photon absorption. By frequently monitoring the presence of the photon through a QND (quantum non-demolition) measurement the absorption is suppressed. Quantum information is encoded in the polarization degrees of freedom and is therefore not affected by the measurement. Some implementations of the QND measurement are proposed.

Spedalieri, F M; Florescu, M; Kapale, K T; Yurtsever, U; Dowling, J P; Spedalieri, Federico M.; Lee, Hwang; Florescu, Marian; Kapale, Kishore T.; Yurtsever, Ulvi; Dowling, Jonathan P.

2004-01-01

39

Lectures on quantum information

International Nuclear Information System (INIS)

Quantum Information Processing is a young and rapidly growing field of research at the intersection of physics, mathematics, and computer science. Its ultimate goal is to harness quantum physics to conceive - and ultimately build - 'quantum' computers that would dramatically overtake the capabilities of today's 'classical' computers. One example of the power of a quantum computer is its ability to efficiently find the prime factors of a large integer, thus shaking the supposedly secure foundations of standard encryption schemes. This comprehensive textbook on the rapidly advancing field introduces readers to the fundamental concepts of information theory and quantum entanglement, taking into account the current state of research and development. It thus covers all current concepts in quantum computing, both theoretical and experimental, before moving on to the latest implementations of quantum computing and communication protocols. With its series of exercises, this is ideal reading for students and lecturers in physics and informatics, as well as experimental and theoretical physicists, and physicists in industry. (orig.)

40

Quantum Information and Computing

Preface -- Coherent quantum control of [symbol]-atoms through the stochastic limit / L. Accardi, S. V. Kozyrev and A. N. Pechen -- Recent advances in quantum white noise calculus / L. Accardi and A. Boukas -- Control of quantum states by decoherence / L. Accardi and K. Imafuku -- Logical operations realized on the Ising chain of N qubits / M. Asano, N. Tateda and C. Ishii -- Joint extension of states of fermion subsystems / H. Araki -- Quantum filtering and optimal feedback control of a Gaussian quantum free particle / S. C. Edwards and V. P. Belavkin -- On existence of quantum zeno dynamics / P. Exner and T. Ichinose -- Invariant subspaces and control of decoherence / P. Facchi, V. L. Lepore and S. Pascazio -- Clauser-Horner inequality for electron counting statistics in multiterminal mesoscopic conductors / L. Faoro, F. Taddei and R. Fazio -- Fidelity of quantum teleportation model using beam splittings / K.-H. Fichtner, T. Miyadera and M. Ohya -- Quantum logical gates realized by beam splittings / W. Freudenberg ... [et al.] -- Information divergence for quantum channels / S. J. Hammersley and V. P. Belavkin -- On the uniqueness theorem in quantum information geometry / H. Hasegawa -- Noncanonical representations of a multi-dimensional Brownian motion / Y. Hibino -- Some of future directions of white noise theory / T. Hida -- Information, innovation and elemental random field / T. Hida -- Generalized quantum turing machine and its application to the SAT chaos algorithm / S. Iriyama, M. Ohya and I. Volovich -- A Stroboscopic approach to quantum tomography / A. Jamiolkowski -- Positive maps and separable states in matrix algebras / A. Kossakowski -- Simulating open quantum systems with trapped ions / S. Maniscalco -- A purification scheme and entanglement distillations / H. Nakazato, M. Unoki and K. Yuasa -- Generalized sectors and adjunctions to control micro-macro transitions / I. Ojima -- Saturation of an entropy bound and quantum Markov states / D. Petz -- An infinite dimensional Laplacian acting on some class of Lévy white noise functionals / K. Saitô -- Structure of linear processes / Si Si and Win Win Htay -- Group theory of dynamical maps / E. C. G. Sudarshan -- On quantum analysis, quantum transfer-matrix method, and effective information entropy / M. Suzuki -- Nonequilibrium steady states for a harmonic oscillator interacting with two bose fields-stochastic limit approach and C* algebraic approach / S. Tasaki and L. Accardi -- Control of decoherence with multipulse application / C. Uchiyama -- Quantum entanglement, purification, and linear-optics quantum gates with photonic qubits / P. Walther and A. Zeilinger -- On quantum mutual type measures and capacity / N. Watanabe.

Accardi, L.; Ohya, Masanori; Watanabe, N.

2006-03-01

41

Relativistic quantum information

Over the past few years, a new field of high research intensity has emerged that blends together concepts from gravitational physics and quantum computing. Known as relativistic quantum information, or RQI, the field aims to understand the relationship between special and general relativity and quantum information. Since the original discoveries of Hawking radiation and the Unruh effect, it has been known that incorporating the concepts of quantum theory into relativistic settings can produce new and surprising effects. However it is only in recent years that it has become appreciated that the basic concepts involved in quantum information science undergo significant revision in relativistic settings, and that new phenomena arise when quantum entanglement is combined with relativity. A number of examples illustrate that point. Quantum teleportation fidelity is affected between observers in uniform relative acceleration. Entanglement is an observer-dependent property that is degraded from the perspective of accelerated observers moving in flat spacetime. Entanglement can also be extracted from the vacuum of relativistic quantum field theories, and used to distinguish peculiar motion from cosmological expansion. The new quantum information-theoretic framework of quantum channels in terms of completely positive maps and operator algebras now provides powerful tools for studying matters of causality and information flow in quantum field theory in curved spacetimes. This focus issue provides a sample of the state of the art in research in RQI. Some of the articles in this issue review the subject while others provide interesting new results that will stimulate further research. What makes the subject all the more exciting is that it is beginning to enter the stage at which actual experiments can be contemplated, and some of the articles appearing in this issue discuss some of these exciting new developments. The subject of RQI pulls together concepts and ideas from special relativity, quantum optics, general relativity, quantum communication and quantum computation. The high level of current interest in these subjects is exemplified by the recent award of the 2012 Nobel Prize in Physics to Serge Haroche and David J Wineland for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems. It is our hope that this issue will encourage new researchers to enter this rapidly developing and exciting new field. R B Mann and T C RalphGuest Editors

Mann, R. B.; Ralph, T. C.

2012-11-01

42

Quantum information processing with trapped ions

International Nuclear Information System (INIS)

Single Ca+ ions and crystals of Ca+ ions are confined in a linear Paul trap and are investigated for quantum information processing. Here we report on recent experimental advancements towards a quantum computer with such a system. Laser-cooled trapped ions are ideally suited systems for the investigation and implementation of quantum information processing as one can gain almost complete control over their internal and external degrees of freedom. The combination of a Paul type ion trap with laser cooling leads to unique properties of trapped cold ions, such as control of the motional state down to the zero-point of the trapping potential, a high degree of isolation from the environment and thus a very long time available for manipulations and interactions at the quantum level. The very same properties make single trapped atoms and ions well suited for storing quantum information in long lived internal states, e.g. by encoding a quantum bit (qubit) of information within the coherent superposition of the S1/2 ground state and the metastable D5/2 excited state of Ca+. Recently we have achieved the implementation of simple algorithms with up to 3 qubits on an ion-trap quantum computer. We will report on methods to implement single qubit rotations, the realization of a two-qubit universal quantum gate (Cirac-Zoller CNOT-gate), the deterministic generation of multi-particle entangled states (GHZ- and W-states), their full tomographic reconstruction, the realization of deterministic quantum teleportation, its quantum process tomography and the encoding of quantum information in decoherence-free subspaces with coherence times exceeding 20 seconds. (author)

43

Duality Quantum Information and Duality Quantum Communication

International Nuclear Information System (INIS)

Quantum mechanical systems exhibit particle wave duality property. This duality property has been exploited for information processing. A duality quantum computer is a quantum computer on the move and passing through a multi-slits. It offers quantum wave divider and quantum wave combiner operations in addition to those allowed in an ordinary quantum computer. It has been shown that all linear bounded operators can be realized in a duality quantum computer, and a duality quantum computer with n qubits and d-slits can be realized in an ordinary quantum computer with n qubits and a qudit in the so-called duality quantum computing mode. The quantum particle-wave duality can be used in providing secure communication. In this paper, we will review duality quantum computing and duality quantum key distribution.

44

Quantum information with Gaussian states

International Nuclear Information System (INIS)

Quantum optical Gaussian states are a type of important robust quantum states which are manipulatable by the existing technologies. So far, most of the important quantum information experiments are done with such states, including bright Gaussian light and weak Gaussian light. Extending the existing results of quantum information with discrete quantum states to the case of continuous variable quantum states is an interesting theoretical job. The quantum Gaussian states play a central role in such a case. We review the properties and applications of Gaussian states in quantum information with emphasis on the fundamental concepts, the calculation techniques and the effects of imperfections of the real-life experimental setups. Topics here include the elementary properties of Gaussian states and relevant quantum information device, entanglement-based quantum tasks such as quantum teleportation, quantum cryptography with weak and strong Gaussian states and the quantum channel capacity, mathematical theory of quantum entanglement and state estimation for Gaussian states

45

Presented is a study of quantum entanglement from the perspective of the theory of quantum information dynamics. We consider pairwise entanglement and present an analytical development using joint ladder operators, the sum of two single-particle fermionic ladder operators. This approach allows us to write down analytical representations of quantum algorithms and to explore quantum entanglement as it is manifested in a system of qubits. We present a topological representation of quantum logic that views entangled qubit spacetime histories (or qubit world lines) as a generalized braid, referred to as a super-braid. The crossing of world lines may be either classical or quantum mechanical in nature, and in the latter case most conveniently expressed with our analytical expressions for entangling quantum gates. At a quantum mechanical crossing, independent world lines can become entangled. We present quantum skein relations that allow complicated superbraids to be recursively reduced to alternate classical histories. If the superbraid is closed, then one can decompose the resulting superlink into an entangled superposition of classical links. Also, one can compute a superlink invariant, for example the Jones polynomial for the square root of a knot. We present measurement-based quantum computing based on our joint number operators. We take expectation values of the joint number operators to determine kinetic-level variables describing the quantum information dynamics in the qubit system at the mesoscopic scale. We explore the issue of reversibility in quantum maps at this scale using a quantum Boltzmann equation. We then present an example of quantum information processing using a qubit system comprised of nuclear spins. We also discuss quantum propositions cast in terms of joint number operators. We review the well known dynamical equations governing superfluidity, with a focus on self-consistent dynamics supporting quantum vortices in a Bose-Einstein condensate (BEC). Furthermore, we review the mutual vortex-vortex interaction and the consequent Kelvin wave instability. We derive an effective equation of motion for a Fermi condensate that is the basis of our qubit representation of superfluidity. We then present our quantum lattice gas representation of a superfluid. We explore aspects of our model with two qubits per point, referred to as a Q2 model, particularly its usefulness for carrying out practical quantum fluid simulations. We find that it is perhaps the simplest yet most comprehensive model of superfluid dynamics. As a prime application of Q2, we explore the power-law regions in the energy spectrum of a condensate in the low-temperature limit. We achieved the largest quantum simulations to date of a BEC and, for the first time, Kolmogorov scaling in superfluids, a flow regime heretofore only obtainably by classical turbulence models. Finally, we address the subject of turbulence regarding information conservation on the small scales (both mesoscopic and microscopic) underlying the flow dynamics on the large hydrodynamic (macroscopic) scale. We present a hydrodynamic-level momentum equation, in the form of a Navier-Stokes equation, as the basis for the energy spectrum of quantum turbulence at large scales. Quantum turbulence, in particular the representation of fluid eddies in terms of a coherent structure of polarized quantum vortices, offers a unique window into the heretofore intractable subject of energy cascades.

Yepez, Jeffrey

46

Reference frames, superselection rules, and quantum information

International Nuclear Information System (INIS)

Recently, there has been much interest in a new kind of 'unspeakable' quantum information that stands to regular quantum information in the same way that a direction in space or a moment in time stands to a classical bit string: the former can only be encoded using particular degrees of freedom while the latter are indifferent to the physical nature of the information carriers. The problem of correlating distant reference frames, of which aligning Cartesian axes and synchronizing clocks are important instances, is an example of a task that requires the exchange of unspeakable information and for which it is interesting to determine the fundamental quantum limit of efficiency. There have also been many investigations into the information theory that is appropriate for parties that lack reference frames or that lack correlation between their reference frames, restrictions that result in global and local superselection rules. In the presence of these, quantum unspeakable information becomes a new kind of resource that can be manipulated, depleted, quantified, etc. Methods have also been developed to contend with these restrictions using relational encodings, particularly in the context of computation, cryptography, communication, and the manipulation of entanglement. This paper reviews the role of reference frames and superselection rules in the theory of quantum-information processing

47

High-fidelity linear optical quantum computing with polarization encoding

International Nuclear Information System (INIS)

We show that the KLM scheme [Knill, Laflamme, and Milburn, Nature 409, 46 (2001)] can be implemented using polarization encoding, thus reducing the number of path modes required by half. One of the main advantages of this new implementation is that it naturally incorporates a loss detection mechanism that makes the probability of a gate introducing a non-detected error, when non-ideal detectors are considered, dependent only on the detector dark-count rate and independent of its efficiency. Since very low dark-count rate detectors are currently available, a high-fidelity gate (probability of error of order 10-6 conditional on the gate being successful) can be implemented using polarization encoding. The detector efficiency determines the overall success probability of the gate but does not affect its fidelity. This can be applied to the efficient construction of optical cluster states with very high fidelity for quantum computing

48

Spin-based quantum information processing with semiconductor quantum dots and cavity QED

A quantum information processing scheme is proposed with semiconductor quantum dots located in a high-Q single mode QED cavity. The spin degrees of freedom of one excess conduction electron of the quantum dots are employed as qubits. Excitonic states, which can be produced ultrafastly with optical operation, are used as auxiliary states in the realization of quantum gates. We show how properly tailored ultrafast laser pulses and Pauli-blocking effects, can be used to achieve a universal encoded quantum computing.

Feng, M; Zanardi, P; Rossi, F; Feng, Mang; Amico, Irene D'; Zanardi, Paolo; Rossi, Fausto

2003-01-01

49

Source-constrained retrieval influences the encoding of new information.

Jacoby, Shimizu, Daniels, and Rhodes (Psychonomic Bulletin & Review, 12, 852-857, 2005) showed that new words presented as foils among a list of old words that had been deeply encoded were themselves subsequently better recognized than new words presented as foils among a list of old words that had been shallowly encoded. In Experiment 1, by substituting a deep-versus-shallow imagery manipulation for the levels-of-processing manipulation, we demonstrated that the effect is robust and that it generalizes, also occurring with a different type of encoding. In Experiment 2, we provided more direct evidence for context-related encoding during tests of deeply encoded words, showing enhanced priming for foils presented among deeply encoded targets when participants made the same deep-encoding judgments on those items as had been made on the targets during study. In Experiment 3, we established that the findings from Experiment 2 are restricted to this specific deep judgment task and are not a general consequence of these foils being associated with deeply encoded items. These findings provide support for the source-constrained retrieval hypothesis of Jacoby, Shimizu, Daniels, and Rhodes: New information can be influenced by how surrounding items are encoded and retrieved, as long as the surrounding items recruit a coherent mode of processing. PMID:21647810

Danckert, Stacey L; MacLeod, Colin M; Fernandes, Myra A

2011-11-01

50

Quantum information and computation

Energy Technology Data Exchange (ETDEWEB)

During the past two decades, there has emerged the new subject of quantum information and computation which both offers the possibility of powerful new modes of computing and communication and also suggests deep links between the well established disciplines of quantum theory and information theory and computer science. In recent years, the growth of the subject has been explosive, with significant progress in theory and experiment. The area has a highly interdisciplinary character with contributions from physicists, mathematicians and computer scientists in particular. Developments have occurred in diverse areas including quantum algorithms, quantum communication, quantum cryptography, entanglement and nonlocality. This progress has been reflected in contributions to Journal of Physics A: Mathematical and General which traditionally provides a natural home for this area of research. Furthermore, the journal's commitment to this field has recently been strengthened by the appointments of Sandu Popescu and Nicolas Gisin to the Editorial Board, and in this special issue we take the opportunity to present a snapshot of the present state of the art. (author)

Popescu, Sandu; Linden, Noah; Jozsa, Richard

2001-09-07

51

We propose efficient-phase-encoding protocols for continuous-variable quantum key distribution using coherent states and postselection. By these phase encodings, the probability of basis mismatch is reduced and total efficiency is increased. We also propose mixed-state protocols by omitting a part of classical communication steps in the efficient-phase-encoding protocols. The omission implies a reduction of information to an eavesdropper and possibly enhances the security of the protocols. We investigate the security of the protocols against individual beam splitting attack.

Namiki, R; Hirano, Takuya; Namiki, Ryo

2006-01-01

52

Location of quantum information in additive graph codes

The location of quantum information in various subsets of the qudit carriers of an additive graph code is discussed using a collection of operators on the coding space which form what we call the information group. It represents the input information through an encoding operation constructed as an explicit quantum circuit. Partial traces of these operators down to a particular subset of carriers provide an isomorphism of a subgroup of the information group, and this gives a ...

Gheorghiu, Vlad; Looi, Shiang Yong; Griffiths, Robert B.

2009-01-01

53

Encoding techniques for complex information structures in connectionist systems

Two general information encoding techniques called relative position encoding and pattern similarity association are presented. They are claimed to be a convenient basis for the connectionist implementation of complex, short term information processing of the sort needed in common sense reasoning, semantic/pragmatic interpretation of natural language utterances, and other types of high level cognitive processing. The relationships of the techniques to other connectionist information-structuring methods, and also to methods used in computers, are discussed in detail. The rich inter-relationships of these other connectionist and computer methods are also clarified. The particular, simple forms are discussed that the relative position encoding and pattern similarity association techniques take in the author's own connectionist system, called Conposit, in order to clarify some issues and to provide evidence that the techniques are indeed useful in practice.

Barnden, John; Srinivas, Kankanahalli

1990-01-01

54

Digital signatures are frequently used in data transfer to prevent impersonation, repudiation and message tampering. Currently used classical digital signature schemes rely on public key encryption techniques, where the complexity of so-called `one-way' mathematical functions is used to provide security over sufficiently long timescales. No mathematical proofs are known for the long-term security of such techniques. Quantum digital signatures offer a means of sending a message, which cannot be forged or repudiated, with security verified by information-theoretical limits and quantum mechanics. Here we demonstrate an experimental system, which distributes quantum signatures from one sender to two receivers and enables message sending ensured against forging and repudiation. Additionally, we analyse the security of the system in some typical scenarios. Our system is based on the interference of phase-encoded coherent states of light and our implementation utilizes polarization-maintaining optical fibre and photons with a wavelength of 850nm.

Clarke, Patrick J.; Collins, Robert J.; Dunjko, Vedran; Andersson, Erika; Jeffers, John; Buller, Gerald S.

2012-11-01

55

Digital signatures are frequently used in data transfer to prevent impersonation, repudiation and message tampering. Currently used classical digital signature schemes rely on public key encryption techniques, where the complexity of so-called "one-way" mathematical functions is used to provide security over sufficiently long timescales. No mathematical proofs are known for the long-term security of such techniques. Quantum digital signatures offer a means of sending a message which cannot be forged or repudiated, with security verified by information-theoretical limits and quantum mechanics. Here we demonstrate an experimental system which distributes quantum signatures from one sender to two receivers and enables message sending ensured against forging and repudiation. Additionally, we analyse the security of the system in some typical scenarios. The system is based on the interference of phase encoded coherent states of light and our implementation utilises polarisation maintaining optical fibre and photon...

Clarke, Patrick J; Dunjko, Vedran; Andersson, Erika; Jeffers, John; Buller, Gerald S

2013-01-01

56

Encoding Frequency Information in Lexicalized Grammars

We address the issue of how to associate frequency information with lexicalized grammar formalisms, using Lexicalized Tree Adjoining Grammar as a representative framework. We consider systematically a number of alternative probabilistic frameworks, evaluating their adequacy from both a theoretical and empirical perspective using data from existing large treebanks. We also propose three orthogonal approaches for backing off probability estimates to cope with the large number ...

Carroll, John; Weir, David

1997-01-01

57

Encoding simplicial quantum geometry in group field theories

Energy Technology Data Exchange (ETDEWEB)

An extended group field theory formalism for quantum gravity, based on a field that is a function of both group variables, interpreted as discretized connection, and Lie algebra variables, interpreted as discretized triads, has been proposed recently as an attempt to define models with a clearer link with simplicial geometry. In the context of such a formalism, we introduce a new symmetry requirement on the field. This leads, in 3D, to Feynman amplitudes interpreted as simplicial path integrals based on the Regge action, to a proper relation between the discrete connection and the triad vectors appearing in the Regge action, and to a much more satisfactory and transparent encoding of simplicial geometry already at the level of the group field theory action.

Oriti, D [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Muehlenberg 1, D-14476 Golm (Germany); Tlas, T, E-mail: daniele.oriti@aei.mpg.d, E-mail: tamer.tlas@aub.edu.l [Department of Mathematics, American Univeristy of Beirut, Bliss Street, Beirut, PO Box 11-0236 (Lebanon)

2010-07-07

58

Hyperentanglement for quantum information

Entanglement, the most intriguing implication of quantum theory, embodies the most perfect correlations possible between two quantum systems. It underlies many important applications in quantum information processing, including quantum computing, quantum cryptography, dense coding, and teleportation. The power of these protocols is further enhanced with higher-order entanglement, realized in multi-particle and multi-dimensional systems. This thesis investigates the production and applications of pairs of photons simultaneously entangled in every degree of freedom, so-called "hyperentangled". Using pairs of photons produced in spontaneous parametric down-conversion, we produce hyperentanglement and verify it by observing a Bell-type inequality violation in each degree of freedom: polarization, spatial mode, and emission time. We produce and characterize maximally hyperentangled states and novel states simultaneously exhibiting both quantum and classical correlations. We also report the tomography of a 2x2x3x3 system, which was the largest photonic entangled system to be so characterized at the time it was reported. Using hyperentanglement in spin (polarization) and orbital angular momentum as well as single-photon spin-orbit Bell-state analyzers, we demonstrate two quantum protocols. First, we demonstrate a dense-coding experiment with the largest reported channel capacity (1.630(6) bits), which breaks the conventional linear-optics threshold. In addition, we investigate optimal schemes for the discrimination of hyperentangled Bell states. Second, we remotely prepare and tomographically characterize single-photon two-qubit states, including spin-orbit entangled states, radially polarized, and mixed states. Finally, we explore experimental schemes to create two novel states, "bound-entangled" and CGLMP states. The former are mixed states from which pure entanglement cannot be distilled; in particular, we consider the Smolin state, which is a mixture of hyperentangled states. The latter states present the puzzling property of violating a Bell-type inequality more strongly than would any maximally hyperentangled state.

Barreiro-Guerrero, Julio Tomas

59

Tools for Multimode Quantum Information: Modulation, Detection, and Spatial Quantum Correlations

We present here all the tools required for continuous variable parallel quantum information protocols based on spatial multi-mode quantum correlations and entanglement. We describe techniques for encoding and detecting this quantum information with high efficiency in the individual modes. We use the generation of spatial squeezing light in higher order transverse Hermite-Gauss modes as a demonstration of the quality of our scheme. The squeezing in selective modes is achieved by fine tuning...

Lassen, Mikael Østergaard; Delaubert, Vincent; Janousek, Jiri?; Wagner, Kate; Bachor, Hans A-; Lam, Ping Koy; Treps, Nikola; Buchhave, Preben; Fabre, Claude; Harb, Charles

2007-01-01

60

On the Automation of Encoding Processes in the Quantum IO Monad

Directory of Open Access Journals (Sweden)

Full Text Available It is now clear that the use of resilient encoding schemes will be required for any quantum computing device to be realised. However, quantum programmers of the future will not wish to be tied up in the particulars of such encoding schemes. Quantum programming languages and libraries are already being developed, one of which is the Quantum IO Monad. QIO, as it is often abbreviated to, provides an interface to define and simulate quantum computations via a library of functions written in Haskell, a purely functional programming language. A solution is presented that takes an arbitrary QIO program and returns an equivalent program incorporating some specified quantum error correction techniques.

James Barratt

2012-10-01

61

Identifying mechanisms in the control of quantum dynamics through Hamiltonian encoding

International Nuclear Information System (INIS)

A variety of means are now available to design control fields for manipulating the evolution of quantum systems. However, the underlying physical mechanisms often remain obscure, especially in the cases of strong fields and high quantum state congestion. This paper proposes a method to quantitatively determine the various pathways taken by a quantum system in going from the initial state to the final target. The mechanism is revealed by encoding a signal in the system Hamiltonian and decoding the resultant nonlinear distortion of the signal in the system time-evolution operator. The relevant interfering pathways determined by this analysis give insight into the physical mechanisms operative during the evolution of the quantum system. A hierarchy of mechanism identification algorithms with increasing ability to extract more detailed pathway information is presented. The mechanism identification concept is presented in the context of analyzing computer simulations of controlled dynamics. As illustrations of the concept, mechanisms are identified in the control of several simple, discrete-state quantum systems. The mechanism analysis tools reveal the roles of multiple interacting quantum pathways to maximally take advantage of constructive and destructive interference. Similar procedures may be applied directly in the laboratory to identify control mechanisms without resort to computer modeling, although this extension is not addressed in this paperressed in this paper

62

International Nuclear Information System (INIS)

While closed-loop control of quantum dynamics in the laboratory is proving to be broadly successful, the control mechanisms induced by the fields are often left obscure. Hamiltonian encoding (HE) was originally introduced as a method for understanding mechanisms in quantum dynamics in the context of computational simulations, based on access to the system wavefunction. As a step towards laboratory implementation of HE, this paper addresses the issues raised by the use of observables rather than the wavefunction in HE. The goal of laboratory based HE is to obtain an understanding of control mechanism through a sequence of systematic control experiments, whose collective information can identify the underlying control mechanism defined as the set of significant amplitudes connecting the initial and final states. Mechanism is determined by means of observing the dynamics of special sequences of system Hamiltonians encoded through the control field. The proposed algorithm can handle complex systems, operates with no recourse to dynamical simulations, and functions with limited understanding of the system Hamiltonian. As with the closed-loop control experiments, the HE control mechanism identification algorithm performs a new experiment each time the dynamical outcome from an encoded Hamiltonian is called for. This paper presents the basic HE algorithm in the context of physical systems described by a finite dimensional Hilbert space. The method is simulated with simple moce. The method is simulated with simple models, and the extension to more complex systems is discussed

63

Thermodynamical quantum information sharing

International Nuclear Information System (INIS)

Full text: Thermodynamical properties fully originate from classical physics and can be easily measured for macroscopic systems. On the other hand, entanglement is a widely spoken feature of quantum physics, which allows to perform certain task with efficiency unavailable with any classical resource. Therefore an interesting question is whether we can witness entanglement in a state of a macroscopic sample. We show, that some macroscopic properties, in particular magnetic susceptibility, can serve as an entanglement witnesses. We also study a mutual relation between magnetic susceptibility and magnetisation. Such a complementarity exhibits quantum information sharing between these two thermodynamical quantities. Magnetization expresses properties of individual spins, while susceptibility might reveal non-classical correlations as a witness. Therefore, a rapid change of one of these two quantities may mean a phase transition also in terms of entanglement. The complementarity relation is demonstrated by an analytical solution of an exemplary model. (author)

64

Quantum mechanics is about quantum information

I argue that quantum mechanics is fundamentally a theory about the representation and manipulation of information, not a theory about the mechanics of nonclassical waves or particles. The notion of quantum information is to be understood as a new physical primitive -- just as, following Einstein's special theory of relativity, a field is no longer regarded as the physical manifestation of vibrations in a mechanical medium, but recognized as a new physical primitive in its ow...

Bub, Jeffrey

2004-01-01

65

Tools for Multimode Quantum Information: Modulation, Detection, and Spatial Quantum Correlations

DEFF Research Database (Denmark)

We present here all the tools required for continuous variable parallel quantum information protocols based on spatial multi-mode quantum correlations and entanglement. We describe techniques for encoding and detecting this quantum information with high efficiency in the individual modes. We use the generation of spatial squeezing light in higher order transverse Hermite-Gauss modes as a demonstration of the quality of our scheme. The squeezing in selective modes is achieved by fine tuning of the phase matching condition of the nonlinear (2) material and the cavity resonance condition of the optical parametric amplifier. By combining these modes we can now build a practical multi-mode optical quantum information system.

Lassen, Mikael Østergaard; Delaubert, Vincent

2007-01-01

66

Foundations of quantum theory and quantum information applications

This thesis establishes a number of connections between foundational issues in quantum theory, and some quantum information applications. It starts with a review of quantum contextuality and non-locality, multipartite entanglement characterisation, and of a few quantum information protocols. Quantum non-locality and contextuality are shown to be essential for different implementations of quantum information protocols known as quantum random access codes and quantum communi...

Galvao, Ernesto F.

2002-01-01

67

Quantum Discord and its Role in Quantum Information Theory

Quantum entanglement is the most popular kind of quantum correlations, and its fundamental role in several tasks in quantum information theory like quantum cryptography, quantum dense coding, and quantum teleportation is undeniable. However, recent results suggest that various applications in quantum information theory do not require entanglement, and that their performance can be captured by a new type of quantum correlations which goes beyond entanglement. Quantum discord,...

Streltsov, Alexander

2014-01-01

68

Physics as quantum information processing

The experience from Quantum Information has lead us to look at Quantum Theory (QT) and the whole Physics from a different angle. The information-theoretical paradigm---"It from Bit'---prophesied by John Archibald Wheeler is relentlessly advancing. Recently it has been shown that QT is derivable from pure informational principles. The possibility that there is only QT at the foundations of Physics has been then considered, with space-time, Relativity, quantization rules and Quantum Field Theory (QFT) emerging from a quantum-information processing. The resulting theory is a discrete version of QFT with automatic relativistic invariance, and without fields, Hamiltonian, and quantization rules. In this paper I review some recent advances on these lines. In particular: i) How space-time and relativistic covariance emerge from the quantum computation; ii) The derivation of the Dirac equation as free information flow, without imposing Lorentz covariance; iii) the information-theoretical meaning of inertial mass and ...

D'Ariano, Giacomo Mauro

2010-01-01

69

Quantum Information Science and Nanotechnology

In this note is touched upon an application of quantum information science (QIS) in nanotechnology area. The laws of quantum mechanics may be very important for nano-scale objects. A problem with simulating of quantum systems is well known and quantum computer was initially suggested by R. Feynman just as the way to overcome such difficulties. Mathematical methods developed in QIS also may be applied for description of nano-devices. Few illustrative examples are mentioned an...

Vlasov, Alexander Yu

2009-01-01

70

Quantum Information and Relativity Theory

Quantum mechanics, information theory, and relativity theory are the basic foundations of theoretical physics. The acquisition of information from a quantum system is the interface of classical and quantum physics. Essential tools for its description are Kraus matrices and positive operator valued measures (POVMs). Special relativity imposes severe restrictions on the transfer of information between distant systems. Quantum entropy is not a Lorentz covariant concept. Lorentz transformations of reduced density matrices for entangled systems may not be completely positive maps. Quantum field theory, which is necessary for a consistent description of interactions, implies a fundamental trade-off between detector reliability and localizability. General relativity produces new, counterintuitive effects, in particular when black holes (or more generally, event horizons) are involved. Most of the current concepts in quantum information theory may then require a reassessment.

Peres, A; Peres, Asher; Terno, Daniel R.

2004-01-01

71

Quantum information transfer using photons

Optical communication channels have redefined the scope and applications of classical computing; similarly, photonic transfer of quantum information promises to open new horizons for quantum computing. The implementation of light-matter interfaces that preserve quantum information is technologically challenging, but key building blocks for such devices have recently been demonstrated by several research groups. Here, we outline the theoretical framework for information transfer between the nodes of a quantum network, review the current experimental state of the art and discuss the prospects for hybrid systems currently in development.

Northup, T. E.; Blatt, R.

2014-05-01

72

Basic Concepts in Quantum Information

In the last 25 years a new understanding has evolved of the role of information in quantum mechanics. At the same time there has been tremendous progress in atomic/optical physics and condensed matter physics, and particularly at the interface between these two formerly distinct fields, in developing experimental systems whose quantum states are long-lived and which can be engineered to perform quantum information processing tasks. These lecture notes will present a brief in...

Girvin, S. M.

2013-01-01

73

Isotope-based quantum information

International Nuclear Information System (INIS)

The present book provides to the main ideas and techniques of the rapid progressing field of quantum information and quantum computation using isotope - mixed materials. It starts with an introduction to the isotope physics and then describes of the isotope - based quantum information and quantum computation. The ability to manipulate and control electron and/or nucleus spin in semiconductor devices provides a new route to expand the capabilities of inorganic semiconductor-based electronics and to design innovative devices with potential application in quantum computing. One of the major challenges towards these objectives is to develop semiconductor-based systems and architectures in which the spatial distribution of spins and their properties can be controlled. For instance, to eliminate electron spin decoherence resulting from hyperfine interaction due to nuclear spin background, isotopically controlled devices are needed (i.e., nuclear spin-depleted). In other emerging concepts, the control of the spatial distribution of isotopes with nuclear spins is a prerequisite to implement the quantum bits (or qbits). Therefore, stable semiconductor isotopes are important elements in the development of solid-state quantum information. There are not only different algorithms of quantum computation discussed but also the different models of quantum computers are presented. With numerous illustrations this small book is of great interest for undergraduate students taking courset for undergraduate students taking courses in mesoscopic physics or nanoelectronics as well as quantum information, and academic and industrial researches working in this field.

74

Isotope-based quantum information

Energy Technology Data Exchange (ETDEWEB)

The present book provides to the main ideas and techniques of the rapid progressing field of quantum information and quantum computation using isotope - mixed materials. It starts with an introduction to the isotope physics and then describes of the isotope - based quantum information and quantum computation. The ability to manipulate and control electron and/or nucleus spin in semiconductor devices provides a new route to expand the capabilities of inorganic semiconductor-based electronics and to design innovative devices with potential application in quantum computing. One of the major challenges towards these objectives is to develop semiconductor-based systems and architectures in which the spatial distribution of spins and their properties can be controlled. For instance, to eliminate electron spin decoherence resulting from hyperfine interaction due to nuclear spin background, isotopically controlled devices are needed (i.e., nuclear spin-depleted). In other emerging concepts, the control of the spatial distribution of isotopes with nuclear spins is a prerequisite to implement the quantum bits (or qbits). Therefore, stable semiconductor isotopes are important elements in the development of solid-state quantum information. There are not only different algorithms of quantum computation discussed but also the different models of quantum computers are presented. With numerous illustrations this small book is of great interest for undergraduate students taking courses in mesoscopic physics or nanoelectronics as well as quantum information, and academic and industrial researches working in this field.

Plekhanov, Vladimir G. [Computer Science College, Tallinn (Estonia). Mathematics and Physics Dept.

2012-07-01

75

International Nuclear Information System (INIS)

Time, Quantum and Information, a paean to Professor Carl Friedrich von Weizsaecker, commemorates his 90th birthday. The range of Professor Weizsaecker's endeavours is an exhilarating example of what can be accomplished by one freely-soaring human spirit, who is at the same time a physicist, a philosopher, and a humanitarian. The editors, Lutz Castell and Otfried Ischebeck, have assembled an admirable collection of essays and articles written by Weizsaecker?s past students, collaborators, colleagues and acquaintances. Time, Quantum and Information offers the reader a panoply of unique insights into twentieth century science and history. Entangled with the stories about Weizsaecker?s influence on the lives of some of the contributors are discussions of the activities of German scientists during and following World War II, emphasizing their reluctance to work on atomic weapons following the war. By outlining Weizsaecker?s role in the early development of numerous tributaries of physical science, the book gives us a new glimpse into the origins of some of its disparate domains, such as nuclear physics, the physics of stellar nucleosynthesis, cosmic ray physics, fluid turbulence, and the formation of the solar system. We physicists have all studied Weizsaecker?s semi-empirical mass formula describing the binding energy of nuclei. We are aware too that both he and Hans Bethe independently discovered the nuclear cycles that provide stars with their enduring energy output. Wetars with their enduring energy output. We have studied the Weizsaecker--Williams technique of calculating the bremsstrahlung of relativistic electrons. But how many of us know of Weizsaecker's work in fluid turbulence that he, like Werner Heisenberg under whom he had earned his doctorate, pursued while holed up in Farm Hall? And how many of us are aware of his introduction of turbulent viscosity to account for the origin of planetary orbits, involving the migration of mass inwards and angular momentum outwards? Moreover, before finally turning his attention to philosophy in 1957, Weizsaecker became interested in nuclear fusion research and educated a generation of postwar German physicists in both plasma physics and astrophysics. Michael Frayn's play 'Copenhagen' has ignited worldwide interest in the mysterious meeting of Niels Bohr with Werner Heisenberg in September 1941. However, an article by R Luest indicates that in 1951 Bohr enjoyed a friendly visit with Heisenberg in Goettingen. This 1941 meeting of Heisenberg and Bohr is discussed further in an article by Goetz Neuneck, who also details the World War II and post-war research and interests of the Uranium Club, a group of 70--100 German physicists and chemists. Neuneck also discusses the resistance of individual scientists, such as Hahn, Heisenberg, and Bothe, to the Nazi regime. We learn that, unlike Wernher von Braun, no member of the Uranium Club was ever granted an audience with Hitler. After the war, German scientists renounced any role for German development of nuclear weapons in various manifestos, such as the Mainau and Goettingen Declarations that were both influenced by Weizsaecker. Time, Quantum and Information contains much anecdotal material. Examples include a touching quotation in a letter from Edward Teller to Weizsaecker: 'If I could share your religious belief, I would wish that you will one day come from a higher heaven and visit me in purgatory.' Another example, less complimentary, is a comment from Pauli after hearing from Weisskopf that Weizsaecker had made numerous errors in his habilitation thesis and realizing that Weizsaecker had accepted an offer from Peter Debye at Berlin: 'The measure of sloppiness in Weizsaecker's work exceeds altogether and by far the tolerable measure, and my pain of not having had him as an assistant has been alleviated by this.' Two-thirds of this compendium also explores the philosophical interests of Weizsaecker. This portion discusses his attempt to reconstruct quantum mechanics and build up a 'theory of everything' based on his 'ur' hypothesis.

76

Minimal-memory realization of pearl-necklace encoders of general quantum convolutional codes

International Nuclear Information System (INIS)

Quantum convolutional codes, like their classical counterparts, promise to offer higher error correction performance than block codes of equivalent encoding complexity, and are expected to find important applications in reliable quantum communication where a continuous stream of qubits is transmitted. Grassl and Roetteler devised an algorithm to encode a quantum convolutional code with a ''pearl-necklace'' encoder. Despite their algorithm's theoretical significance as a neat way of representing quantum convolutional codes, it is not well suited to practical realization. In fact, there is no straightforward way to implement any given pearl-necklace structure. This paper closes the gap between theoretical representation and practical implementation. In our previous work, we presented an efficient algorithm to find a minimal-memory realization of a pearl-necklace encoder for Calderbank-Shor-Steane (CSS) convolutional codes. This work is an extension of our previous work and presents an algorithm for turning a pearl-necklace encoder for a general (non-CSS) quantum convolutional code into a realizable quantum convolutional encoder. We show that a minimal-memory realization depends on the commutativity relations between the gate strings in the pearl-necklace encoder. We find a realization by means of a weighted graph which details the noncommutative paths through the pearl necklace. The weight of the longest path in this graph is equal to the minimal amount of memory neededual to the minimal amount of memory needed to implement the encoder. The algorithm has a polynomial-time complexity in the number of gate strings in the pearl-necklace encoder.

77

The cryptographic resistance of a quantum key distribution protocol with phase-time encoding has been analyzed for the case of a nonstrictly single-photon source and a communication channel with losses. It has been shown that eavesdropper’s information on the key for a long communication channel is determined only by the von Neumann entropy of the source at the receiver side and the critical length of the communication channel is determined primarily by dark counts of photodetectors.

Molotkov, S. N.

2008-10-01

78

Persistence of Quantum Information

There is an increasing interest in the role of macroscopic environments to our understanding of the basics of quantum theory. The knowledge of the implications of the quantum theory to other theories, especially to the statistical mechanics and the domain of validity has captivated scientists from the beginning of quantum description. In such a context, the presence of an environment is commonly thought as entanglement, decohering and mixing properties of quantum system. Gen...

Schulz, Michael; Trimper, Steffen

2006-01-01

79

Location of quantum information in additive graph codes

The location of quantum information in various subsets of the qudit carriers of an additive graph code is discussed using a collection of operators on the coding space which form what we call the information group. It represents the input information through an encoding operation constructed as an explicit quantum circuit. Partial traces of these operators down to a particular subset of carriers provide an isomorphism of a subgroup of the information group, and this gives a precise characterization of what kinds of information they contain. All carriers are assumed to have the same dimension D, an arbitrary integer greater than 1.

Gheorghiu, Vlad; Griffiths, Robert B

2009-01-01

80

Location of quantum information in additive graph codes

International Nuclear Information System (INIS)

The location of quantum information in various subsets of the qudit carriers of an additive graph code is discussed using a collection of operators on the coding space which form what we call the information group. It represents the input information through an encoding operation constructed as an explicit quantum circuit. Partial traces of these operators down to a particular subset of carriers provide an isomorphism of a subgroup of the information group, and this gives a precise characterization of what kinds of information they contain. All carriers are assumed to have the same dimension D, an arbitrary integer greater than 1.

81

Physics as quantum information processing

The experience from Quantum Information has lead us to look at Quantum Theory (QT) and the whole Physics from a different angle. The information-theoretical paradigm---"It from Bit'---prophesied by John Archibald Wheeler is relentlessly advancing. Recently it has been shown that QT is derivable from pure informational principles. The possibility that there is only QT at the foundations of Physics has been then considered, with space-time, Relativity, quantization rules and Q...

D Ariano, Giacomo Mauro

2010-01-01

82

Black hole entropy and quantum information

We review some recently established connections between the mathematics of black hole entropy in string theory and that of multipartite entanglement in quantum information theory. In the case of N=2 black holes and the entanglement of three qubits, the quartic [SL(2)]^3 invariant, Cayley's hyperdeterminant, provides both the black hole entropy and the measure of tripartite entanglement. In the case of N=8 black holes and the entanglement of seven qubits, the quartic E_7 invariant of Cartan provides both the black hole entropy and the measure of a particular tripartite entanglement encoded in the Fano plane.

Duff, M J

2006-01-01

83

Quantum information and convex optimization

Energy Technology Data Exchange (ETDEWEB)

This thesis is concerned with convex optimization problems in quantum information theory. It features an iterative algorithm for optimal quantum error correcting codes, a postprocessing method for incomplete tomography data, a method to estimate the amount of entanglement in witness experiments, and it gives necessary and sufficient criteria for the existence of retrodiction strategies for a generalized mean king problem. (orig.)

Reimpell, Michael

2008-07-01

84

Quantum information and convex optimization

International Nuclear Information System (INIS)

This thesis is concerned with convex optimization problems in quantum information theory. It features an iterative algorithm for optimal quantum error correcting codes, a postprocessing method for incomplete tomography data, a method to estimate the amount of entanglement in witness experiments, and it gives necessary and sufficient criteria for the existence of retrodiction strategies for a generalized mean king problem. (orig.)

85

Quantum information and computing

The main purpose of this volume is to emphasize the multidisciplinary aspects of this very active new line of research in which concrete technological and industrial realizations require the combined efforts of experimental and theoretical physicists, mathematicians and engineers. Contents: Coherent Quantum Control of ?-Atoms through the Stochastic Limit (L Accardi et al.); Recent Advances in Quantum White Noise Calculus (L Accardi & A Boukas); Joint Extension of States of Fermion Subsystems (H Araki); Fidelity of Quantum Teleportation Model Using Beam Splittings (K-H Fichtner et al.); Quantum

Ohya, M; Watanabe, N

2006-01-01

86

Energy Technology Data Exchange (ETDEWEB)

Time, Quantum and Information, a paean to Professor Carl Friedrich von Weizsaecker, commemorates his 90th birthday. The range of Professor Weizsaecker's endeavours is an exhilarating example of what can be accomplished by one freely-soaring human spirit, who is at the same time a physicist, a philosopher, and a humanitarian. The editors, Lutz Castell and Otfried Ischebeck, have assembled an admirable collection of essays and articles written by Weizsaecker?s past students, collaborators, colleagues and acquaintances. Time, Quantum and Information offers the reader a panoply of unique insights into twentieth century science and history. Entangled with the stories about Weizsaecker?s influence on the lives of some of the contributors are discussions of the activities of German scientists during and following World War II, emphasizing their reluctance to work on atomic weapons following the war. By outlining Weizsaecker?s role in the early development of numerous tributaries of physical science, the book gives us a new glimpse into the origins of some of its disparate domains, such as nuclear physics, the physics of stellar nucleosynthesis, cosmic ray physics, fluid turbulence, and the formation of the solar system. We physicists have all studied Weizsaecker?s semi-empirical mass formula describing the binding energy of nuclei. We are aware too that both he and Hans Bethe independently discovered the nuclear cycles that provide stars with their enduring energy output. We have studied the Weizsaecker--Williams technique of calculating the bremsstrahlung of relativistic electrons. But how many of us know of Weizsaecker's work in fluid turbulence that he, like Werner Heisenberg under whom he had earned his doctorate, pursued while holed up in Farm Hall? And how many of us are aware of his introduction of turbulent viscosity to account for the origin of planetary orbits, involving the migration of mass inwards and angular momentum outwards? Moreover, before finally turning his attention to philosophy in 1957, Weizsaecker became interested in nuclear fusion research and educated a generation of postwar German physicists in both plasma physics and astrophysics. Michael Frayn's play 'Copenhagen' has ignited worldwide interest in the mysterious meeting of Niels Bohr with Werner Heisenberg in September 1941. However, an article by R Luest indicates that in 1951 Bohr enjoyed a friendly visit with Heisenberg in Goettingen. This 1941 meeting of Heisenberg and Bohr is discussed further in an article by Goetz Neuneck, who also details the World War II and post-war research and interests of the Uranium Club, a group of 70--100 German physicists and chemists. Neuneck also discusses the resistance of individual scientists, such as Hahn, Heisenberg, and Bothe, to the Nazi regime. We learn that, unlike Wernher von Braun, no member of the Uranium Club was ever granted an audience with Hitler. After the war, German scientists renounced any role for German development of nuclear weapons in various manifestos, such as the Mainau and Goettingen Declarations that were both influenced by Weizsaecker. Time, Quantum and Information contains much anecdotal material. Examples include a touching quotation in a letter from Edward Teller to Weizsaecker: 'If I could share your religious belief, I would wish that you will one day come from a higher heaven and visit me in purgatory.' Another example, less complimentary, is a comment from Pauli after hearing from Weisskopf that Weizsaecker had made numerous errors in his habilitation thesis and realizing that Weizsaecker had accepted an offer from Peter Debye at Berlin: 'The measure of sloppiness in Weizsaecker's work exceeds altogether and by far the tolerable measure, and my pain of not having had him as an assistant has been alleviated by this.' Two-thirds of this compendium also explores the philosophical interests of Weizsaecker. This portion discusses his attempt to reconstruct quantum mechanics and build up a 'theory of everything' based on his

Turner, Leaf [Los Alamos, New Mexico (United States)

2004-04-09

87

Quantum Encoder and Decoder for Secret Key Distribution with Check Bits

Directory of Open Access Journals (Sweden)

Full Text Available The focus of this study is to develop a novel method of encoding the qubits and use as secret key in public key cryptography. In BB 84 protocol, 50% of the random number (generated at source is used as secret key and the remaining bits are used as “check bits”. The check bits are used to detect the presence of eve as well as the nature of quantum channels. In this protocol, random qubits are encoded using different type of polarizations like horizontal, veritical and diagonal. In the proposed quantum encoder, basic quantum gates are used to encode the random secret key along with the check bits. Quantum key distribution, (a cryptographic mechanism relies on the inherent randomness of quantum mechanics and serves as an option to replace techniques made vulnerable by quantum computing. However, it is still subject to clever forms of eavesdropping and poses a significant challenge to implementation. To study the challenges, quantum circuits are first simulated using QCAD.

T. Godhavari

2013-12-01

88

Contextual Observables and Quantum Information

In this short paper we present the main features of a new quantum programming language proposed recently by Peter Selinger which gives a good idea about the difficulties of constructing a scalable quantum computer. We show how some of these difficulties are related to the contextuality of quantum observables and to the abstract and statistical character of quantun theory (QT). We discuss also, in some detail, the statistical interpretation (SI) of QT and the contextuality of observables indicating the importance of these concepts for the whole domain of quantum information.

Kupczynski, M

2004-01-01

89

Quantum Dot Cluster State Computing with Encoded Qubits

A class of architectures is advanced for cluster state quantum computation using quantum dots. These architectures include using single and multiple dots as logical qubits. Special attention is given to the supercoherent qubits introduced by Bacon, Brown, and Whaley [Phys. Rev. Lett. {\\bf 87}, 247902 (2001)] for which we discuss the effects of various errors, and present means of error protection.

Weinstein, Yaakov S.; Hellberg, C. Stephen; Levy, Jeremy

2005-01-01

90

Quantum-dot cluster-state computing with encoded qubits

International Nuclear Information System (INIS)

A class of architectures is advanced for cluster-state quantum computation using quantum dots. These architectures include using single and multiple dots as logical qubits. Special attention is given to supercoherent qubits introduced by Bacon et al. [Phys. Rev. Lett. 87, 247902 (2001)] for which we discuss the effects of various errors and present a means of error protection

91

Mechanisms of coordination in distributed neural circuits: encoding coordinating information.

We describe synaptic connections through which information essential for encoding efference copies reaches two coordinating neurons in each of the microcircuits that controls limbs on abdominal segments of the crayfish, Pacifastacus leniusculus. In each microcircuit, these coordinating neurons fire bursts of spikes simultaneously with motor neurons. These bursts encode timing, duration, and strength of each motor burst. Using paired microelectrode recordings, we demonstrate that one class of nonspiking neurons in each microcircuit's pattern-generating kernel--IPS--directly inhibits the ASCE coordinating neuron that copies each burst in power-stroke (PS) motor neurons. This inhibitory synapse parallels IPS's inhibition of the same PS motor neurons. Using a disynaptic pathway to control its membrane potential, we demonstrate that a second type of nonspiking interneuron in the pattern-generating kernel--IRSh--inhibits the DSC coordinating neuron that copies each burst in return-stroke (RS) motor neurons. This inhibitory synapse parallels IRS's inhibition of the microcircuit's RS motor neurons. Experimental changes in the membrane potential of one IPS or one IRSh neuron simultaneously changed the strengths of motor bursts, durations, numbers of spikes, and spike frequency in the simultaneous ASCE and DSC bursts. ASCE and DSC coordinating neurons link the segmentally distributed microcircuits into a coordinated system that oscillates with the same period and with stable phase differences. The inhibitory synapses from different pattern-generating neurons that parallel their inhibition of different sets of motor neurons enable ASCE and DSC to encode details of each oscillation that are necessary for stable, adaptive synchronization of the system. PMID:24741053

Smarandache-Wellmann, Carmen; Grätsch, Swantje

2014-04-16

92

Chaos and quantum Fisher information in the quantum kicked top

International Nuclear Information System (INIS)

Quantum Fisher information is related to the problem of parameter estimation. Recently, a criterion has been proposed for entanglement in multipartite systems based on quantum Fisher information. This paper studies the behaviours of quantum Fisher information in the quantum kicked top model, whose classical correspondence can be chaotic. It finds that, first, detected by quantum Fisher information, the quantum kicked top is entangled whether the system is in chaotic or in regular case. Secondly, the quantum Fisher information is larger in chaotic case than that in regular case, which means, the system is more sensitive in the chaotic case. (general)

93

Quantum Information Processing with Graphs

Graph states are an elegant and powerful quantum resource for measurement based quantum computation (MBQC). They are also used for many quantum protocols (error correction, secret sharing, etc.). The main focus of this paper is to provide a structural characterization of the graph states that can be used for quantum information processing. The existence of a gflow (generalized flow) is known to be a requirement for open graphs (graph, input set and output set) to perform uniformly and strongly deterministic computations. We weaken the gflow conditions to define two new more general types of MBQC: uniform equiprobability and constant probability. These classes can be useful from a cryptographic and information point of view because even though we can not do a deterministic computation in general we can preserve the information and transfer it perfectly from the inputs to the outputs. We derive simple graph characterizations for these classes and prove that the deterministic and uniform equiprobability classes ...

Mhalla, Mehdi; Perdrix, Simon; Someya, Masato; Turner, Peter S

2010-01-01

94

Foundations of quantum theory and quantum information applications

This thesis establishes a number of connections between foundational issues in quantum theory, and some quantum information applications. It starts with a review of quantum contextuality and non-locality, multipartite entanglement characterisation, and of a few quantum information protocols. Quantum non-locality and contextuality are shown to be essential for different implementations of quantum information protocols known as quantum random access codes and quantum communication complexity protocols. I derive sufficient experimental conditions for tests of these quantum properties. I also discuss how the distribution of quantum information through quantum cloning processes can be useful in quantum computing. Regarding entanglement characterisation, some results are obtained relating two problems, that of additivity of the relative entropy of entanglement, and that of identifying different types of tripartite entanglement in the asymptotic regime of manipulations of many copies of a given state. The thesis end...

Galvão, E F

2002-01-01

95

Information transfer through quantum channels

Energy Technology Data Exchange (ETDEWEB)

This PhD thesis represents work done between Aug. 2003 and Dec. 2006 in Reinhard F. Werner's quantum information theory group at Technische Universitaet Braunschweig, and Artur Ekert's Centre for Quantum Computation at the University of Cambridge. My thesis falls into the field of abstract quantum information theory. This work investigates both fundamental properties of quantum channels and their asymptotic capacities for classical as well as quantum information transfer. Stinespring's theorem is the basic structure theorem for quantum channels. It implies that every quantum channel can be represented as a unitary evolution on an enlarged system. In Ch. 3 we present a continuity theorem for Stinespring's representation: two quantum channels are similar if and only if it is possible to find unitary implementations that are likewise similar, with dimension-independent norm bounds. The continuity theorem allows to derive a formulation of the information-disturbance tradeoff in terms of quantum channels, and a continuity estimate for the no-broadcasting principle. In Ch. 4 we then apply the continuity theorem to give a strengthened no-go proof for quantum bit commitment, an important cryptographic primitive. This result also provides a natural characterization of those protocols that fall outside the standard setting of unconditional security, and thus may allow secure bit commitment. We present a new such protocol whose security relies on decoherence in the receiver's lab. Ch. 5 reviews the capacities of quantum channels for the transfer of both classical and quantum information, and investigates several variations in the notion of channel capacity. Memory effects are then investigated in detail in Ch. 6. We advertise a model which is sufficiently general to encompass all causal automata: every quantum process in which the outputs up to any given time t do not depend on the inputs at times t'>t can be represented as a concatenated memory channel. We then explain how all known coding theorems can be generalized from memoryless channels to forgetful memory channels. We also present examples for non-forgetful channels, and derive generic entropic upper bounds on their capacities for (private) classical and quantum information transfer. Ch. 7 provides a brief introduction to quantum information spectrum methods as a promising approach to coding theorems for completely general quantum sources and channels. We present a data compression theorem for general quantum sources and apply these results to ergodic as well as mixed sources. Finally we investigate the continuity of distillable entanglement - another key notion of the field, which characterizes the optimal asymptotic rate at which maximally entangled states can be generated from many copies of a less entangled state. We derive uniform norm bounds for all states with full support, and we extend some of these results to quantum channel capacities. (orig.)

Kretschmann, D.

2007-03-12

96

Information transfer through quantum channels

International Nuclear Information System (INIS)

This PhD thesis represents work done between Aug. 2003 and Dec. 2006 in Reinhard F. Werner's quantum information theory group at Technische Universitaet Braunschweig, and Artur Ekert's Centre for Quantum Computation at the University of Cambridge. My thesis falls into the field of abstract quantum information theory. This work investigates both fundamental properties of quantum channels and their asymptotic capacities for classical as well as quantum information transfer. Stinespring's theorem is the basic structure theorem for quantum channels. It implies that every quantum channel can be represented as a unitary evolution on an enlarged system. In Ch. 3 we present a continuity theorem for Stinespring's representation: two quantum channels are similar if and only if it is possible to find unitary implementations that are likewise similar, with dimension-independent norm bounds. The continuity theorem allows to derive a formulation of the information-disturbance tradeoff in terms of quantum channels, and a continuity estimate for the no-broadcasting principle. In Ch. 4 we then apply the continuity theorem to give a strengthened no-go proof for quantum bit commitment, an important cryptographic primitive. This result also provides a natural characterization of those protocols that fall outside the standard setting of unconditional security, and thus may allow secure bit commitment. We present a new such protocol whose security relies on decoherence in the receiver's lab. Ch. 5 reviews the capacities of quantum channels for the transfer of both classical and quantum information, and investigates several variations in the notion of channel capacity. Memory effects are then investigated in detail in Ch. 6. We advertise a model which is sufficiently general to encompass all causal automata: every quantum process in which the outputs up to any given time t do not depend on the inputs at times t'>t can be represented as a concatenated memory channel. We then explain how all known coding theorems can be generalized from memoryless channels to forgetful memory channels. We also present examples for non-forgetful channels, and derive generic entropic upper bounds on their capacities for (private) classical and quantum information transfer. Ch. 7 provides a brief introduction to quantum information spectrum methods as a promising approach to coding theorems for completely general quantum sources and channels. We present a data compression theorem for general quantum sources and apply these results to ergodic as well as mixed sources. Finally we investigate the continuity of distillable entanglement - another key notion of the field, which characterizes the optimal asymptotic rate at which maximally entangled states can be generated from many copies of a less entangled state. We derive uniform norm bounds for all states with full support, and we extend some of these results to quantum channel capacities. (orig.)

97

Black holes as mirrors: quantum information in random subsystems

International Nuclear Information System (INIS)

We study information retrieval from evaporating black holes, assuming that the internal dynamics of a black hole is unitary and rapidly mixing, and assuming that the retriever has unlimited control over the emitted Hawking radiation. If the evaporation of the black hole has already proceeded past the ''half-way'' point, where half of the initial entropy has been radiated away, then additional quantum information deposited in the black hole is revealed in the Hawking radiation very rapidly. Information deposited prior to the half-way point remains concealed until the half-way point, and then emerges quickly. These conclusions hold because typical local quantum circuits are efficient encoders for quantum error-correcting codes that nearly achieve the capacity of the quantum erasure channel. Our estimate of a black hole's information retention time, based on speculative dynamical assumptions, is just barely compatible with the black hole complementarity hypothesis

98

Black holes as mirrors: quantum information in random subsystems

We study information retrieval from evaporating black holes, assuming that the internal dynamics of a black hole is unitary and rapidly mixing, and assuming that the retriever has unlimited control over the emitted Hawking radiation. If the evaporation of the black hole has already proceeded past the "half-way" point, where half of the initial entropy has been radiated away, then additional quantum information deposited in the black hole is revealed in the Hawking radiation very rapidly. Information deposited prior to the half-way point remains concealed until the half-way point, and then emerges quickly. These conclusions hold because typical local quantum circuits are efficient encoders for quantum error-correcting codes that nearly achieve the capacity of the quantum erasure channel. Our estimate of a black hole's information retention time, based on speculative dynamical assumptions, is just barely compatible with the black hole complementarity hypothesis.

Hayden, Patrick

2007-01-01

99

Quantum information. Teleporation - cryptography - quantum computer

International Nuclear Information System (INIS)

The following topics are dealt with: Reality in the test house, quantum teleportation, 100 years of quantum theory, the reality of quanta, interactionless quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view into the future of quantum optics. (HSI)

100

Step-by-step magic state encoding for efficient fault-tolerant quantum computation

Quantum error correction allows one to make quantum computers fault-tolerant against unavoidable errors due to decoherence and imperfect physical gate operations. However, the fault-tolerant quantum computation requires impractically large computational resources for useful applications. This is a current major obstacle to the realization of a quantum computer. In particular, magic state distillation, which is a standard approach to universality, consumes the most resources in fault-tolerant quantum computation. For the resource problem, here we propose step-by-step magic state encoding for concatenated quantum codes, where magic states are encoded step by step from the physical level to the logical one. To manage errors during the encoding, we carefully use error detection. Since the sizes of intermediate codes are small, it is expected that the resource overheads will become lower than previous approaches based on the distillation at the logical level. Our simulation results suggest that the resource requirements for a logical magic state will become comparable to those for a single logical controlled-NOT gate. Thus, the present method opens a new possibility for efficient fault-tolerant quantum computation.

Goto, Hayato

2014-12-01

101

Scalable quantum information processing with atomic ensembles and flying photons

We present a scheme for scalable quantum information processing (QIP) with atomic ensembles and flying photons. Using the Rydberg blockade, we encode the qubits in the collective atomic states, which could be manipulated fast and easily due to the enhanced interaction, in comparison to the single-atom case. We demonstrate that our proposed gating could be applied to generation of two-dimensional cluster states for measurement-based quantum computation. Moreover, the atomic ensembles also function as quantum repeaters useful for long distance quantum state transfer. We show the possibility of our scheme to work in bad cavity or in weak coupling regime, which could much relax the experimental requirement. The efficient coherent operations on the ensemble qubits enable our scheme to be switchable between quantum computation and quantum communication using atomic ensembles.

Mei, Feng; Yu, Ya-Fei; Zhang, Zhi-Ming

2009-01-01

102

Multiplexed SNP genotyping using the Qbead™ system: a quantum dot-encoded microsphere-based assay

We have developed a new method using the Qbead™ system for high-throughput genotyping of single nucleotide polymorphisms (SNPs). The Qbead system employs fluorescent Qdot™ semiconductor nanocrystals, also known as quantum dots, to encode microspheres that subsequently can be used as a platform for multiplexed assays. By combining mixtures of quantum dots with distinct emission wavelengths and intensities, unique spectral ‘barcodes’ are created that enable the high levels of multiplexi...

Xu, Hongxia; Sha, Michael Y.; Wong, Edith Y.; Uphoff, Janet; Xu, Yanzhang; Treadway, Joseph A.; Truong, Anh; O’brien, Eamonn; Asquith, Steven; Stubbins, Michael; Spurr, Nigel K.; Lai, Eric H.; Mahoney, Walt

2003-01-01

103

Transfer and teleportation of quantum states encoded in decoherence-free subspace

Quantum state transfer and teleportation, with qubits encoded in internal states of the atoms in cavities, among spatially separated nodes of a quantum network in decoherence-free subspace are proposed, based on a cavity-assisted interaction by single-photon pulses. We show in details the implementation of a logic-qubit Hadamard gate and a two-logic-qubit conditional gate, and discuss the experimental feasibility of our scheme.

Wei, Hua; Zhang, XiaoLong; Feng, Mang

2007-01-01

104

Quantum information. Teleportation - cryptography - quantum computer

International Nuclear Information System (INIS)

The following topics are dealt with: Reality in the test facility, quantum teleportation, the reality of quanta, interaction-free quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view in the future of quantum optics. (HSI)

105

Small-scale quantum information processing with linear optics

International Nuclear Information System (INIS)

Full text: Photons are the ideal systems for carrying quantum information. Although performing large-scale quantum computation on optical systems is extremely demanding, non scalable linear-optics quantum information processing may prove essential as part of quantum communication networks. In addition efficient (scalable) linear-optical quantum computation proposal relies on the same optical elements. Here, by constructing multirail optical networks, we experimentally study two central problems in quantum information science, namely optimal discrimination between nonorthogonal quantum states, and controlling decoherence in quantum systems. Quantum mechanics forbids deterministic discrimination between nonorthogonal states. This is one of the central features of quantum cryptography, which leads to secure communications. Quantum state discrimination is an important primitive in quantum information processing, since it determines the limitations of a potential eavesdropper, and it has applications in quantum cloning and entanglement concentration. In this work, we experimentally implement generalized measurements in an optical system and demonstrate the first optimal unambiguous discrimination between three non-orthogonal states with a success rate of 55 %, to be compared with the 25 % maximum achievable using projective measurements. Furthermore, we present the first realization of unambiguous discrimination between a pure state and a nonorthogonal mixed state. In a see and a nonorthogonal mixed state. In a separate experiment, we demonstrate how decoherence-free subspaces (DFSs) may be incorporated into a prototype optical quantum algorithm. Specifically, we present an optical realization of two-qubit Deutsch-Jozsa algorithm in presence of random noise. By introduction of localized turbulent airflow we produce a collective optical dephasing, leading to large error rates and demonstrate that using DFS encoding, the error rate in the presence of decoherence can be reduced from 35 % to essentially its pre-noise value 7 %. (author)

106

Information Processing beyond Quantum Computation

Recent developments in quantum computation have made it clear that there is a lot more to computation than the conventional Boolean algebra. Is quantum computation the most general framework for processing information? Having gathered the courage to go beyond the traditional definitions, we are now in a position to answer: Certainly not. The meaning of a message being ``a collection of building blocks'' can be explored in a variety of situations. A generalised framework is proposed based on group theory, and it is illustrated with well-known physical examples. In many cases, systematic information theoretical approach is yet to be developed.

Patel, A

2003-01-01

107

Information Processing Structure of Quantum Gravity

The theory of quantum gravity is aimed to fuse general relativity with quantum theory into a more fundamental framework. The space of quantum gravity provides both the non-fixed causality of general relativity and the quantum uncertainty of quantum mechanics. In a quantum gravity scenario, the causal structure is indefinite and the processes are causally non-separable. In this work, we provide a model for the information processing structure of quantum gravity. We show that ...

Gyongyosi, Laszlo

2014-01-01

108

Quantum Theory and Classical Information

Transmission of classical information using quantum objects such as polarized photons is studied. The classical (Shannon) channel capacity and its relation to quantum (von Neumann) channel capacity is investigated for various receiver arrangements. A quantum channel with transmission impairment caused by attenuation and random polarization noise is considered. It is shown that the maximal (von Neumann) capacity of such a channel can be realized by a simple symbol by symbol detector followed by a classical error correcting decoder. For an intensity limited optical channel capacity is achieved by on-off keying (OOK). The capacity per unit cost is shown to be 1 nat/photon = 1.44 bit/photon, slightly larger than the 1 bit/photon obtained by orthogonal quantum signals.

Einarsson, G

2002-01-01

109

The classical-quantum multiple access channel with conferencing encoders and with common messages

We prove coding theorems for two scenarios of cooperating encoders for the multiple access channel with two classical inputs and one quantum output. In the first scenario (ccq-MAC with common messages), the two senders each have their private messages, but would also like to transmit common messages. In the second scenario (ccq-MAC with conferencing encoders), each sender has its own set of messages, but they are allowed to use a limited amount of noiseless classical communication among each other prior to encoding their messages. This conferencing protocol may depend on each individual message they intend to send. The two scenarios are related to each other not only in spirit—the existence of near-optimal codes for the ccq-MAC with common messages is used for proving the existence of near-optimal codes for the ccq-MAC with conferencing encoders.

Boche, H.; Nötzel, J.

2014-12-01

110

Channel simulation with quantum side information

We study and solve the problem of classical channel simulation with quantum side information at the receiver. This is a generalization of both the classical reverse Shannon theorem, and the classical-quantum Slepian-Wolf problem. The optimal noiseless communication rate is found to be reduced from the mutual information between the channel input and output by the Holevo information between the channel output and the quantum side information. Our main theorem has two important corollaries. The first is a quantum generalization of the Wyner-Ziv problem: rate-distortion theory with quantum side information. The second is an alternative proof of the trade-off between classical communication and common randomness distilled from a quantum state. The fully quantum generalization of the problem considered is quantum state redistribution. Here the sender and receiver share a mixed quantum state and the sender wants to transfer part of her state to the receiver using entanglement and quantum communication. We present o...

Luo, Z; Devetak, Igor; Luo, Zhicheng

2006-01-01

111

Representation of Quantum Field Theory by Elementary Quantum Information

In this paper is considered relativistic quantum field theory expressed by elementary units of quantum information as they are considered as fundamental entity of nature by Carl Friedrich von Weizsaecker. Through quantization of a Weyl spinor describing an elementary unit of quantum information and consisting of four real components one obtains four pairs of creation and annihilation operators acting in a tensor space of states containing many units of quantum information. T...

Kober, Martin

2011-01-01

112

Problems and solutions in quantum computing and quantum information

Quantum computing and quantum information are two of the fastest growing and most exciting research fields in physics. Entanglement, teleportation and the possibility of using the non-local behavior of quantum mechanics to factor integers in random polynomial time have also added to this new interest. This book supplies a huge collection of problems in quantum computing and quantum information together with their detailed solutions, which will prove to be invaluable to students as well as researchers in these fields. All the important concepts and topics such as quantum gates and quantum circuits, product Hilbert spaces, entanglement and entanglement measures, deportation, Bell states, Bell inequality, Schmidt decomposition, quantum Fourier transform, magic gate, von Neumann entropy, quantum cryptography, quantum error corrections, number states and Bose operators, coherent states, squeezed states, Gaussian states, POVM measurement, quantum optics networks, beam splitter, phase shifter and Kerr Hamilton opera...

Steeb, Willi-Hans

2012-01-01

113

The decoupling approach to quantum information theory

Quantum information theory studies the fundamental limits that physical laws impose on information processing tasks such as data compression and data transmission on noisy channels. This thesis presents general techniques that allow one to solve many fundamental problems of quantum information theory in a unified framework. The central theorem of this thesis proves the existence of a protocol that transmits quantum data that is partially known to the receiver through a single use of an arbitrary noisy quantum channel. In addition to the intrinsic interest of this problem, this theorem has as immediate corollaries several central theorems of quantum information theory. The following chapters use this theorem to prove the existence of new protocols for two other types of quantum channels, namely quantum broadcast channels and quantum channels with side information at the transmitter. These protocols also involve sending quantum information partially known by the receiver with a single use of the channel, and ha...

Dupuis, Frédéric

2010-01-01

114

Non-compression of quantum phase information

International Nuclear Information System (INIS)

We raise a general question of quantum information theory: whether quantum phase information can be compressed and retrieved. A general qubit contains both amplitude and phase information, while an equatorial qubit contains only phase information. We study whether it is possible to compress the phase information of n equatorial qubits into m general qubits, with m being less than n, and still perfectly retrieve that information. We prove that this process is not allowed by quantum mechanics. (paper)

115

Minimum-cost quantum measurements for quantum information

Knowing about optimal quantum measurements is important for many applications in quantum information and quantum communication. However, deriving optimal quantum measurements is often difficult. We present a collection of results for minimum-cost quantum measurements, and give examples of how they can be used. Among other results, we show that a minimum-cost measurement for a set of given pure states is formally equivalent to a minimum-error measurement for mixed states of t...

Wallden, Petros; Dunjko, Vedran; Andersson, Erika

2013-01-01

116

Relativistic quantum information theory and quantum reference frames

This thesis is a compilation of research in relativistic quantum information theory, and research in quantum reference frames. The research in the former category provides a fundamental construction of quantum information theory of localised qubits in curved spacetimes. For example, this concerns quantum experiments on free-space photons and electrons in the vicinity of the Earth. From field theory a description of localised qubits that traverse classical trajectories in cur...

Palmer, Matthew C.

2013-01-01

117

Relativistic quantum information and time machines

Relativistic quantum information combines the informational approach to understanding and using quantum mechanics systems - quantum information - with the relativistic view of the universe. In this introductory review we examine key results to emerge from this new field of research in physics and discuss future directions. A particularly active area recently has been the question of what happens when quantum systems interact with general relativistic closed timelike curves -...

Ralph, Timothy C.; Downes, Tony G.

2011-01-01

118

Quantum Cloning and Deletion in Quantum Information Theory

Quantum mechanics put restriction on performing some task which we can do classically. One such restriction is that we cannot copy an arbitrary quantum state. This is known as No-cloning theorem. Although quantum mechanics forbid us to construct a perfect cloner, there is no restriction to construct an imperfect cloner. Therefore, we have constructed and studied a special kind of quantum cloning machine named as Hybrid quantum cloning machine which is nothing but a different combination of pre-existing quantum cloning machines. We showed that this hybrid quantum cloning machine sometime gives better quality copy than the pre-existing quantum cloners. Quantum entanglement is a very astonishing property in a multi-partite system and it is a very useful ingredient of quantum information theory. Therefore broadcasting (cloning) of entanglement is a very important subject to study. In this regard we have studied the broadcasting of entanglement using state dependent quantum cloning machine. Further, we have invest...

Adhikari, Satyabrata

2006-01-01

119

Basic concepts in quantum information theory

International Nuclear Information System (INIS)

Full text: Quantum information theory provides a framework for the description of quantum systems and their applications in the context of quantum computation and quantum communication. Although several of the basic concepts on which such theory is built are reminiscent of those of (classical) Information Theory, the new rules provided by quantum mechanics introduce properties which have no classical counterpart and that are responsible for most of the applications. In particular, entangled states appear as one of the basic resources in this context. In this lecture I will introduce the basic concepts and applications in Quantum Information, particularly stressing the definition of entanglement, its quantification, and its applications. (author)

120

In this paper, we study the security of the so-called measurement device independent quantum key distribution (MDIQKD) with the basis-dependent flaw in the context of phase encoding schemes. We propose two schemes for the phase encoding, the first one employs a phase locking technique with the use of non-phase-randomized coherent pulses, and the second one uses conversion of standard BB84 phase encoding pulses into polarization modes. We prove the unconditional security of these schemes and we also simulate the key generation rate based on simple device models that accommodate imperfections. Our simulation results show the feasibility of these schemes with current technologies and highlights the importance of the state preparation with good fidelity between the density matrices in the two bases. Since the basis-dependent flaw is a problem not only for MDIQKD but also for standard QKD, our work highlights the importance of an accurate signal source in practical QKD systems.

Tamaki, Kiyoshi; Fung, Chi-Hang Fred; Qi, Bing

2011-01-01

121

Quantum (statistical) mechanics, measurement and information

International Nuclear Information System (INIS)

This chapter deals with the problems of measurement and information in quantum mechanics and opens with a review of quantum mechanics principles. The differences between measurements and preparations are discussed and the reduction of the state vector explained. The chapter closes with a section on aspects of quantum measurements connected with information theory. The paper deals with general properties of idealized measurements. (UK)

122

Quantum information processing with atoms and photons

International Nuclear Information System (INIS)

Quantum information processors exploit the quantum features of superposition and entanglement for applications not possible in classical devices, offering the potential for significant improvements in the communication and processing of information. Experimental realization of large-scale quantum information processors remains a long term vision, as the required nearly pure quantum behaviour is observed only in exotic hardware such as individual laser-cooled atoms and isolated photons. But recent theoretical and experimental advances suggest that cold atoms and individual photons may lead the way towards bigger and better quantum information processors, effectively building mesoscopic versions of Schroedinger's cat' from the bottom up. (author)

123

The aim of this study was to determine what visual information expert soccer players encode when they are asked to make a decision. We used a repetition-priming paradigm to test the hypothesis that experts encode a soccer pattern's structure independently of the players' physical characteristics (i.e., posture and morphology). The participants…

Poplu, Gerald; Ripoll, Hubert; Mavromatis, Sebastien; Baratgin, Jean

2008-01-01

124

Quantum Information in Communication and Imaging

A brief introduction to quantum information theory in the context of quantum optics is presented. After presenting the fundamental theoretical basis of the subject, experimental evaluation of entanglement measures are discussed, followed by applications to communication and imaging.

Simon, David S.; Jaeger, Gregg; Sergienko, Alexander V.

2015-10-01

125

Modern Quantum Technologies of Information Security

In this paper, the systematisation and classification of modern quantum technologies of information security against cyber-terrorist attack are carried out. The characteristic of the basic directions of quantum cryptography from the viewpoint of the quantum technologies used is given. A qualitative analysis of the advantages and disadvantages of concrete quantum protocols is made. The current status of the problem of practical quantum cryptography use in telecommunication ne...

Korchenko, Oleksandr; Vasiliu, Yevhen; Gnatyuk, Sergiy

2010-01-01

126

Quantum information and physics: some future directions

I consider some promising future directions for quantum information theory that could influence the development of 21st century physics. Advances in the theory of the distinguishability of superoperators may lead to new strategies for improving the precision of quantum-limited measurements. A better grasp of the properties of multi-partite quantum entanglement may lead to deeper understanding of strongly-coupled dynamics in quantum many-body systems, quantum field theory, an...

Preskill, John

1999-01-01

127

Negative entropy in quantum information theory

We present a quantum information theory that allows for the consistent description of quantum entanglement. It parallels classical (Shannon) information theory but is based entirely on density matrices, rather than probability distributions, for the description of quantum ensembles. We find that, unlike in Shannon theory, conditional entropies can be negative when considering quantum entangled systems such as an Einstein-Podolsky-Rosen pair, which leads to a violation of wel...

Cerf, Nicolas J.; Adami, Chris

1996-01-01

128

Philosophical Aspects of Quantum Information Theory

Quantum information theory represents a rich subject of discussion for those interested in the philosphical and foundational issues surrounding quantum mechanics for a simple reason: one can cast its central concerns in terms of a long-familiar question: How does the quantum world differ from the classical one? Moreover, deployment of the concepts of information and computation in novel contexts hints at new (or better) means of understanding quantum mechanics, and perhaps e...

Timpson, Christopher G.

2006-01-01

129

Applications of quantum information theory to quantum gravity

International Nuclear Information System (INIS)

Full text: I describe work by and with Fotini Markopoulou and Olaf Dreyeron the application of quantum information theory to quantum gravity. A particular application to black hole physics is described, which treats the black hole horizon as an open system, in interaction with an environment, which are the degrees of freedom in the bulk spacetime. This allows us to elucidate which quantum states of a general horizon contribute to the entropy of a Schwarzchild black hole. This case serves as an example of how methods from quantum information theory may help to elucidate how the classical limit emerges from a background independent quantum theory of gravity. (author)

130

nSQUID arrays as conveyers of quantum information

We have considered the quantum dynamics of an array of nSQUIDs—two-junction SQUIDs with negative mutual inductance between their two arms. Effective dual-rail structure of the array creates additional internal degree of freedom for the fluxons in the array, which can be used to encode and transport quantum information. Physically, this degree of freedom is represented by electromagnetic excitations localized on the fluxon. We have calculated the spatial profile and frequency spectrum of these excitations. Their dynamics can be reduced to two quantum states, so that each fluxon moving through the array carries with it a qubit of information. Coherence properties of such a propagating qubit in the nSQUID array are characterized by the dynamic suppression of the low-frequency decoherence due to the motion-induced spreading of the noise spectral density to a larger frequency interval.

Deng, Qiang; Averin, D. V.

2014-12-01

131

Reproducible electrochemically encoded quantum dot (QD) barcodes were prepared using the reverse-micelle synthetic approach. The encoding elements, Zn(2+), Cd(2+), and Pb(2+), were confined within a single QD, which eliminates the cumbersome encapsulation process used by other common nanoparticle-based barcode preparation schemes. The distinct voltammetric stripping patterns of Zn(2+), Cd(2+) and Pb(2+) at distinguishable potentials with controllable current intensities offer excellent encoding capability for the prepared electrochemical (EC) QDs. Additionally, the simultaneous modification of the QD barcode surface with organic ligands during the preparation process make them potentially useful in biomedical research. For proof of concept of their application in bioassays, the EC QD barcodes were further employed as tags for an immunoassay of a cancer marker, carcinoembryonic antigen (CEA). The voltammetric stripping response of the dissolved bardcode tags was proportional to log[CEA] in the range from 0.01 to 80 ng mL(-1), with a detection limit of 3.3 pg mL(-1). The synthesized EC QD barcodes hold considerable potential in biodetection, encrypted information, and product tracking. PMID:20067269

Xiang, Yun; Zhang, Yuyong; Chang, Yue; Chai, Yaqin; Wang, Joseph; Yuan, Ruo

2010-02-01

132

Reproducible electrochemically encoded quantum dot (QD) barcodes were prepared by using the reverse-micelle synthetic approach. The encoding elements, Zn2+, Cd2+, Pb2+ were confined within a single QD, which eliminates the cumbersome encapsulation process used by other common nanoparticle-based barcode preparation schemes. The distinct voltammetric stripping patterns of Zn2+, Cd2+, Pb2+ at distinguishable potentials with controllable current intensities offer excellent encoding capability for the prepared electrochemical (EC) QDs. Additionally, the simultaneous modification of the QD barcode surface with organic ligands during the preparation process make them potentially useful in biomedical research. For proof of concept of their application in bioassays, the EC QD barcodes were further employed as tags for an immunoassay of a cancer marker, carcinoembryonic antigen (CEA). The voltammetric stripping response of the dissolved bardcode tags was proportional to log[CEA] in the range from 0.01 ng mL?1 to 80 ng mL?1, with a detection limit of 3.3 pg mL?1. The synthesized EC QD barcodes hold considerable potentials in biodetection, encrypted information and product tracking. PMID:20067269

Xiang, Yun; Zhang, Yuyong; Chang, Yue; Chai, Yaqin; Wang, Joseph; Yuan, Ruo

2010-01-01

133

Relativistic quantum information theory and quantum reference frames

This thesis is a compilation of research in relativistic quantum information theory, and research in quantum reference frames. The research in the former category provides a fundamental construction of quantum information theory of localised qubits in curved spacetimes. For example, this concerns quantum experiments on free-space photons and electrons in the vicinity of the Earth. From field theory a description of localised qubits that traverse classical trajectories in curved spacetimes is obtained, for photons and massive spin-1/2 fermions. The equations governing the evolution of the two-dimensional quantum state and its absolute phase are determined. Quantum information theory of these qubits is then developed. The Stern-Gerlach measurement formalism for massive spin-1/2 fermions is also derived from field theory. In the latter category of research, the process of changing reference frames is considered for the case where the reference frames are quantum systems. As part of this process, it is shown that...

Palmer, Matthew C

2013-01-01

134

Representation of Quantum Field Theory by Elementary Quantum Information

In this paper is considered relativistic quantum field theory expressed by elementary units of quantum information as they are considered as fundamental entity of nature by Carl Friedrich von Weizsaecker. Through quantization of a Weyl spinor describing an elementary unit of quantum information and consisting of four real components one obtains four pairs of creation and annihilation operators acting in a tensor space of states containing many units of quantum information. There can be constructed position and momentum operators from the creation and annihilation operators and based on these operators the Poincare group can be represented in this abstract tensor space of quantum information. A general state in the tensor space can be mapped to a state in Minkowski space-time by using the position representation of the eigenstates of the occupation number operators which correspond to the eigenstates of the harmonic oscillator. This yields a description of relativistic quantum mechanics. Quantization of the co...

Kober, Martin

2011-01-01

135

Information Processing Structure of Quantum Gravity

The theory of quantum gravity is aimed to fuse general relativity with quantum theory into a more fundamental framework. The space of quantum gravity provides both the non-fixed causality of general relativity and the quantum uncertainty of quantum mechanics. In a quantum gravity scenario, the causal structure is indefinite and the processes are causally non-separable. In this work, we provide a model for the information processing structure of quantum gravity. We show that the quantum gravity environment is an information resource-pool from which valuable information can be extracted. We analyze the structure of the quantum gravity space and the entanglement of the space-time geometry. We study the information transfer capabilities of quantum gravity space and define the quantum gravity channel. We reveal that the quantum gravity space acts as a background noise on the local environment states. We characterize the properties of the noise of the quantum gravity space and show that it allows the separate local...

Gyongyosi, Laszlo

2014-01-01

136

Quantum Information Theoretical Analysis of Quantum Secret Sharing

International Nuclear Information System (INIS)

Quantum secret sharing (QSS) schemes are analyzed from an information theoretical perspective centered on the Araki—Lieb inequality. Based on this inequality, mathematical characterizations of QSS schemes and quantum error-correcting codes (QECCs) are given. Furthermore, we present a proof of the relation between QSS schemes and QECCs. This information theoretic description of QSS schemes is used to derive the quantum Singleton bound

137

Lest we remember a quantum: quantum information shredding

Given a bipartite quantum system, correlation between subsystems can be understood as information that each subsystem carries about the other. Here we introduce and analyze the task of quantum information shredding, corresponding to locally reducing correlations in a given bipartite state without transferring them to the environment. Such a constraint prevents adversaries from gaining information by accessing the environment left after the decoupling process. Remarkably, information carried by separable correlations is always perfectly shreddable.

Buscemi, Francesco

2009-01-01

138

The Nature of Information in Quantum Mechanics

A suitable unified statistical formulation of quantum and classical mechanics in a *-algebraic setting leads us to conclude that information itself is noncommutative in quantum mechanics. Specifically we refer here to an observer's information regarding a physical system. This is seen as the main difference from classical mechanics, where an observer's information regarding a physical system obeys classical probability theory. Quantum mechanics is then viewed purely as a mat...

Duvenhage, Rocco

2002-01-01

139

Quantum Information Theory and the Foundations of Quantum Mechanics

This thesis is a contribution to the debate on the implications of quantum information theory for the foundations of quantum mechanics. In Part 1, the logical and conceptual status of various notions of information is assessed. It is emphasized that the everyday notion of information is to be firmly distinguished from the technical notions arising in information theory; however it is maintained that in both settings `information' functions as an abstract noun, hence does not refer to a particular or substance (the worth of this point is illustrated in application to quantum teleportation). The claim that `Information is Physical' is assessed and argued to face a destructive dilemma. Accordingly, the slogan may not be understood as an ontological claim, but at best, as a methodological one. The reflections of Bruckner and Zeilinger (2001) and Deutsch and Hayden (2000) on the nature of information in quantum mechanics are critically assessed and some results presented on the characterization of entanglement in ...

Timpson, C G

2004-01-01

140

Quantum Bertrand duopoly of incomplete information

International Nuclear Information System (INIS)

We study Bertrand's duopoly of incomplete information. It is found that the effect of quantum entanglement on the outcome of the game is dramatically changed by the uncertainty of information. In contrast with the case of complete information where the outcome increases with entanglement, when information is incomplete the outcome is maximized at some finite entanglement. As a consequence, information and entanglement are both crucial factors that determine the properties of a quantum oligopoly

141

A flow cytometric assay technology based on quantum dots-encoded beads

International Nuclear Information System (INIS)

A flow cytometric detecting technology based on quantum dots (QDs)-encoded beads has been described. Using this technology, several QDs-encoded beads with different code were identified effectively, and the target molecule (DNA sequence) in solution was also detected accurately by coupling to its complementary sequence probed on QDs-encoded beads through DNA hybridization assay. The resolution of this technology for encoded beads is resulted from two longer wavelength fluorescence identification signals (yellow and red fluorescent signals of QDs), and the third shorter wavelength fluorescence signal (green reporting signal of fluorescein isothiocyanate (FITC)) for the determination of reaction between probe and target. In experiment, because of QDs' unique optical character, only one excitation light source was needed to excite the QDs and probe dye FITC synchronously comparing with other flow cytometric assay technology. The results show that this technology has present excellent repeatability and good accuracy. It will become a promising multiple assay platform in various application fields after further improvement

142

Encoding and updating spatial information presented in narratives.

Four experiments investigated whether directional spatial relations encoded by reading narratives are updated following described protagonist rotations. Participants memorized locations of objects described in short stories that placed them, as the protagonist, in remote settings. After reading a description that the protagonist rotated to the left or the right of the initial orientation, participants made judgements about object relations in the described environment (Experiment 1). Before making these judgements, participants were instructed to physically rotate to match (Experiment 2) or mismatch (Experiment 4) the protagonist's described rotation and in Experiments 3 and 4 to also visualize the changed relations following rotation. Participants' performance suggested that they relied on the initial representation they constructed during encoding rather than on the updated protagonist-to-object relations. Participants' physical movement to match the described rotation and additional visualization instructions did not facilitate updating through a sensorimotor process. In these respects, updating spatial relations in situation models constructed from narratives differs from updating in perceptually experienced environments. PMID:22943593

Avraamides, Marios N; Galati, Alexia; Pazzaglia, Francesca; Meneghetti, Chiara; Denis, Michel

2013-01-01

143

Aspects of multistation quantum information broadcasting

International Nuclear Information System (INIS)

We study quantum information transmission over multiparty quantum channel. In particular, we show an equivalence of different capacity notions and provide a multiletter characterization of a capacity region for a general quantum channel with k senders and m receivers. We point out natural generalizations to the case of two-way classical communication capacity.

144

Physics as Quantum Information Processing: Quantum Fields as Quantum Automata

Can we reduce Quantum Field Theory (QFT) to a quantum computation? Can physics be simulated by a quantum computer? Do we believe that a quantum field is ultimately made of a numerable set of quantum systems that are unitarily interacting? A positive answer to these questions corresponds to substituting QFT with a theory of quantum cellular automata (QCA), and the present work is examining this hypothesis. These investigations are part of a large research program on a "quantu...

D Ariano, Giacomo Mauro

2011-01-01

145

Gaussian states in continuous variable quantum information

These notes originated out of a set of lectures in Quantum Optics and Quantum Information given by one of us (MGAP) at the University of Napoli and the University of Milano. A quite broad set of issues are covered, ranging from elementary concepts to current research topics, and from fundamental concepts to applications. A special emphasis has been given to the phase space analysis of quantum dynamics and to the role of Gaussian states in continuous variable quantum informat...

Ferraro, Alessandro; Olivares, Stefano; Paris, Matteo G. A.

2005-01-01

146

Distinguishability and accessible information in quantum theory

This document focuses on translating various information-theoretic measures of distinguishability for probability distributions into measures of distin- guishability for quantum states. These measures should have important appli- cations in quantum cryptography and quantum computation theory. The results reported include the following. An exact expression for the quantum fidelity between two mixed states is derived. The optimal measurement that gives rise to it is studied in detail. Several upper and lower bounds on the quantum mutual information are derived via similar techniques and compared to each other. Of note is a simple derivation of the important upper bound first proved by Holevo and an explicit expression for another (tighter) upper bound that appears implicitly in the same derivation. Several upper and lower bounds to the quan- tum Kullback relative information are derived. The measures developed are also applied to ferreting out the extent to which quantum systems must be disturbed by information...

Fuchs, C

1996-01-01

147

Quantum Stackelberg duopoly with incomplete information

International Nuclear Information System (INIS)

We investigate the quantum version of the Stackelberg duopoly with incomplete information, especially how the quantum entanglement affects the first-mover advantage in the classical form. It is found that while positive entanglement enhances the first-mover advantage beyond the classical limit, the advantage is dramatically suppressed by negative entanglement. Moreover, despite that positive quantum entanglement improves the first-mover's tolerance for the informational incompleteness, the quantum effect does not change the basic fact that Firm A's lack of complete information of Firm B's unit cost is eradicating the first-mover advantage

148

Quantum information and space-time

International Nuclear Information System (INIS)

A pedestrian description of possible connection between quantum information theory and relativity theory is given. I picked up topics of synchronization by entanglement and causality of completely positive maps in special relativity, while the problems of information loss in the black hole evaporation and the possible quantum state at the space-like singularities are briefly touched upon in general relativity but in short of quantum gravity. (author)

149

Towards Nonadditive Quantum Information Theory

A definition of the nonadditive (nonextensive) conditional entropy indexed by q is presented. Based on the composition law in terms of it, the Shannon-Khinchin axioms are generalized and the uniqueness theorem is established for the Tsallis entropy. The nonadditive conditional entropy, when considered in the quantum context, is always positive for separable states but takes negative values for entangled states, indicating its utility for characterizing entanglement. A criterion deduced from it for separability of the density matrix is examined in detail by using a bipartite spin-half system. It is found that the strongest criterion for separability obtained by Peres using an algebraic method is recovered in the present information-theoretic approach.

Abe, S; Abe, Sumiyoshi

2000-01-01

150

Canonical Relational Quantum Mechanics from Information Theory

In this paper we construct a theory of quantum mechanics based on Shannon information theory. We define a few principles regarding information-based frames of reference, including explicitly the concept of information covariance, and show how an ensemble of all possible physical states can be setup on the basis of the accessible information in the local frame of reference. In the next step the Bayesian principle of maximum entropy is utilized in order to constrain the dynamics. We then show, with the aid of Lisi's universal action reservoir approach, that the dynamics is equivalent to that of quantum mechanics. Thereby we show that quantum mechanics emerges when classical physics is subject to incomplete information. We also show that the proposed theory is relational and that it in fact is a path integral version of Rovelli's relational quantum mechanics. Furthermore we give a discussion on the relation between the proposed theory and quantum mechanics, in particular the role of observation and correspondenc...

Munkhammar, Joakim

2011-01-01

151

Unified meta-theory of information, consciousness, time and the classical-quantum universe

As time advances in our perceived real world, existing information is preserved and new information is added to history. All the information that may ever be encoded in history must be about some fundamental, unique, atemporal and pre-physical structure: the bare world. Scientists invent model worlds to efficiently explain aspects of the real world. This paper explores the features of and relationships between the bare, real, and model worlds. Time -- past, present and future -- is naturally explained. Both quantum uncertainty and state reduction are needed for time to progress, since unpredictable new information must be added to history. Deterministic evolution preserves existing information. Finite, but steadily increasing, information about the bare world is jointly encoded in equally uncertain spacetime geometry and quantum matter. Because geometry holds no information independent of matter, there is no need to quantize gravity. At the origin of time, information goes to zero and geometry and matter fade...

Green, Martin A

2013-01-01

152

Private Quantum Channels and the Cost of Randomizing Quantum Information

We investigate how a classical private key can be used by two players, connected by an insecure one-way quantum channel, to perform private communication of quantum information. In particular we show that in order to transmit n qubits privately, 2n bits of shared private key are necessary and sufficient. This result may be viewed as the quantum analogue of the classical one-time pad encryption scheme. From the point of view of the eavesdropper, this encryption process can be...

Mosca, Michele; Tapp, Alain; Wolf, Ronald

2000-01-01

153

Critical and maximally informative encoding between neural populations in the retina

Computation in the brain involves multiple types of neurons, yet the organizing principles for how these neurons work together remain unclear. Information theory has offered explanations for how different types of neurons can optimize the encoding of different stimulus features. However, recent experiments indicate that separate neuronal types exist that encode the same stimulus features, but do so with different thresholds. Here we show that the emergence of these types of ...

Kastner, David B.; Baccus, Stephen A.; Sharpee, Tatyana O.

2014-01-01

154

Information Causality in the Quantum and Post-Quantum Regime

Quantum correlations can be stronger than anything achieved by classical systems, yet they are not reaching the limit imposed by relativity. The principle of information causality offers a possible explanation for why the world is quantum and why there appear to be no even stronger correlations. Generalizing the no-signaling condition it suggests that the amount of accessible information must not be larger than the amount of transmitted information. Here we study this principle experimentally in the classical, quantum and post-quantum regimes. We simulate correlations that are stronger than allowed by quantum mechanics by exploiting the effect of polarization-dependent loss in a photonic Bell-test experiment. Our method also applies to other fundamental principles and our results highlight the special importance of anisotropic regions of the no-signalling polytope in the study of fundamental principles.

Ringbauer, Martin; Fedrizzi, Alessandro; Berry, Dominic W.; White, Andrew G.

2014-11-01

155

Holography, Quantum Geometry, and Quantum Information Theory

Directory of Open Access Journals (Sweden)

Full Text Available Abstract: We interpret the Holographic Conjecture in terms of quantum bits (qubits. N-qubit states are associated with surfaces that are punctured in N points by spin networks' edges labelled by the spin-Ã‚Â½ representation of SU(2, which are in a superposed quantum state of spin "up" and spin "down". The formalism is applied in particular to de Sitter horizons, and leads to a picture of the early inflationary universe in terms of quantum computation. A discrete micro-causality emerges, where the time parameter is being defined by the discrete increase of entropy. Then, the model is analysed in the framework of the theory of presheaves (varying sets on a causal set and we get a quantum history. A (bosonic Fock space of the whole history is considered. The Fock space wavefunction, which resembles a Bose-Einstein condensate, undergoes decoherence at the end of inflation. This fact seems to be responsible for the rather low entropy of our universe.

P. A. Zizzi

2000-03-01

156

Quantum information-flow, concretely, and axiomatically

These lecture notes survey some joint work with Samson Abramsky. Somewhat informally I will discuss the main results in a pedestrian not too technical way. These include: (1) `The logic of entanglement', that is, the identification and abstract axiomatization of the `quantum information-flow' which enables protocols such as quantum teleportation. To this means we define strongly compact closed categories which abstractly capture the behavioral properties of quantum entanglement. (2) `Postulates for an abstract quantum formalism' in which classical information-flow (e.g. token exchange) is part of the formalism. As an example, we provide a purely formal description of quantum teleportation and prove correctness in abstract generality. In this formalism types reflect kinds, contra the essentially typeless von Neumann formalism. Hence even concretely this formalism manifestly improves on the usual one. (3) `A high-level approach to quantum informatics'.

Coecke, B

2005-01-01

157

There are several views about the organization of memory functions in the human prefrontal cortex. One view assumes a process-specific brain lateralization according to different memory subprocesses, that is, encoding and retrieval. An alternative view emphasizes content-specific lateralization of brain systems involved in memory processes. This study addresses this apparent inconsistency between process- and content-specific lateralization of brain activity by investigating the effects of verbal and nonverbal encoding on prefrontal activations during encoding and retrieval of environmental novel sounds using fMRI. An intentional memory task was applied in which subjects were required either to judge the sounds' loudness (nonverbal encoding task) or to indicate whether or not a sound can be verbally described (verbal encoding task). Retrieval processes were examined in a subsequent yes/no recognition test. In the study phase the right posterior dorsolateral prefrontal cortex (PFC) was activated in both tasks. During verbal encoding additional activation of the left dorsolateral PFC was obtained. Retrieval-related fMRI activity varied as a function of encoding task: For the nonverbal task we detected an activation focus in the right posterior dorsolateral PFC whereas an activation in the left dorsolateral PFC was observed for the verbal task. These findings indicate that the right dorsolateral PFC is engaged in encoding of auditory information irrespective of encoding task. The lateralization of PFC activity during retrieval was shown to depend on the availability of verbal codes, with left hemispheric involvement for verbally and right hemispheric activation for nonverbally coded information. PMID:10753975

Opitz, B; Mecklinger, A; Friederici, A D

2000-01-01

158

A Quantum Private Comparison Protocol with Splitting Information Carriers

Based on quantum information splitting and reconstruction, we present a quantum private comparison (QPC) protocol, enabling two distrustful parties (Alice and Bob) to compare the equality of their information without revealing the information content. In this protocol, the information carriers are split into two wave packets by a beam splitter (BS), which is owned by a semi-honest third party Trent, and then they are sent to Alice and Bob, respectively. Alice and Bob encodes their secret information on the received wave packets. Only the superimposition of the two wave packets in Trent's site can reveal the compared result. Compared with the QPC protocols using entangled states, the information carriers used in our protocol is single-photon pulse, which reduces the difficulty of realization in practical. In addition, our protocol is feasible with the present techniques since only linear optical components, BS, single-photon detector, phase shifter (PS) and switcher (SWT) are required. The security of the protocol is ensured by principles on the phenomenon of quantum interference. And through the security analysis it shows that the protocol is secure and resists against the well-known attacks.

Wang, Yu-kun; Zhang, Jie; Huang, Wei; Zhang, Jia-li; Sun, Ying

2015-01-01

159

Quantum Causality, Stochastics, Trajectories and Information

A history of the discovery of quantum mechanics and paradoxes of its interpretation is reconsidered from the modern point of view of quantum stochastics and information. It is argued that in the orthodox quantum mechanics there is no place for quantum phenomenology such as events. The development of quantum measurement theory, initiated by von Neumann, and Bell's conceptual critics of hidden variable theories indicated a possibility for resolution of this crisis. This can be done by divorcing the algebra of the dynamical generators and an extended algebra of the potential (quantum) and the actual (classical) observables. The latter, called beables, form the center of the algebra of all observables, as the only visible (macroscopic) observables must be compatible with any hidden (microscopic) observable. It is shown that within this approach quantum causality can be rehabilitated within an extended quantum mechanics (eventum mechanics) in the form of a superselection rule for compatibility of the consistent hi...

Belavkin, V P

2002-01-01

160

Cavity mode entanglement in relativistic quantum information

A central aim of relativistic quantum information (RQI) is the investigation of quantum information tasks and resources taking into account the relativistic aspects of nature. More precisely, it is of fundamental interest to understand how the storage, manipulation, and transmission of information utilizing quantum systems are influenced by the fact that these processes take place in a relativistic spacetime. In particular, many studies in RQI have been focused on the effects of non-uniform motion on entanglement, the main resource of quantum information protocols. Early investigations in this direction were performed in highly idealized settings that prompted questions as to the practical accessibility of these results. To overcome these limitations it is necessary to consider quantum systems that are in principle accessible to localized observers. In this thesis we present such a model, the rigid relativistic cavity, and its extensions, focusing on the effects of motion on entanglement and applications such...

Friis, Nicolai

2013-01-01

161

Conventional quantum key distribution (QKD) typically uses binary encoding based on photon polarization or time-bin degrees of freedom and achieves a key capacity of at most one bit per photon. Under photon-starved conditions the rate of detection events is much lower than the photon generation rate, because of losses in long distance propagation and the relatively long recovery times of available single-photon detectors. Multi-bit encoding in the photon arrival times can be beneficial in such photon-starved situations. Recent security proofs indicate high-dimensional encoding in the photon arrival times is robust and can be implemented to yield high secure throughput. In this work we demonstrate entanglement-based QKD with high-dimensional encoding whose security against collective Gaussian attacks is provided by a high-visibility Franson interferometer. We achieve unprecedented key capacity and throughput for an entanglement-based QKD system because of four principal factors: Franson interferometry that does not degrade with loss; error correction coding that can tolerate high error rates; optimized time–energy entanglement generation; and highly efficient WSi superconducting nanowire single-photon detectors. The secure key capacity yields as much as 8.7 bits per coincidence. When optimized for throughput we observe a secure key rate of 2.7 Mbit s?1 after 20 km fiber transmission with a key capacity of 6.9 bits per photon coincidence. Our results demonstrate a viable approach to high-rate QKD using practical photonic entanglement and single-photon detection technologies.

Zhong, Tian; Zhou, Hongchao; Horansky, Robert D.; Lee, Catherine; Verma, Varun B.; Lita, Adriana E.; Restelli, Alessandro; Bienfang, Joshua C.; Mirin, Richard P.; Gerrits, Thomas; Nam, Sae Woo; Marsili, Francesco; Shaw, Matthew D.; Zhang, Zheshen; Wang, Ligong; Englund, Dirk; Wornell, Gregory W.; Shapiro, Jeffrey H.; Wong, Franco N. C.

2015-02-01

162

In contrast to historical assumptions about the affective nature of animal vocalizations, it is now clear that many vertebrates are capable of producing specific alarm calls in response to different predators, calls that provide information that goes beyond the motivational state of a caller. However, although these calls function referentially, it does not mean that they are devoid of motivational content. Studies on meerkats (Suricata suricatta) directly support this conclusion. The acoustic structure of their alarm calls simultaneously encodes information that is both motivational (level of urgency) and referential (predator specific). In this study, we investigated whether alarm calls of young meerkats undergo developmental modification and whether the motivational or the referential aspect of calls changes more over time. We found that, based on their acoustic structure, calls of young showed a high correct assignment to low- and high-urgency contexts but, in contrast to adults, low assignment to specific predator types. However, the discrimination among predator types was better in high-urgency than in low-urgency contexts. Our results suggest that acoustic features related to level of urgency are expressed earlier than those related to predator-specific information and may support the idea that referential calls evolve from motivational signals. PMID:17479462

Hollén, Linda I; Manser, Marta B

2007-06-01

163

Recently, there has been increased interest in understanding entanglement and quantum communication in black hole spacetimes and in using quantum information techniques to address questions in gravity. Studies on relativistic entanglement show the emergence of conceptually important qualitative differences to a non-relativistic treatment. For instance, entanglement was found to be an observer-dependent property that changes from the perspective of accelerated observers moving in flat spacetime. Relativisitic quantum information theory uses well-known tools coming from quantum information and quantum optics to study quantum effects provoked by gravity to learn information about the spacetime. We can take advantage of our knowledge about quantum correlations and effects produced by the gravitational interaction to set the basis for experimental proposals ultimately aiming at finding corrections due to quantum gravity effects, too mild to be directly observed. This doctoral thesis dissertation summarises most of...

Martin-Martinez, E

2011-01-01

164

Representation of Quantum Field Theory by Elementary Quantum Information

In this paper is considered relativistic quantum field theory expressed by elementary units of quantum information as they are considered as fundamental entity of nature by Carl Friedrich von Weizsaecker. Through quantization of a Weyl spinor describing an elementary unit of quantum information and consisting of four real components one obtains four pairs of creation and annihilation operators acting in a tensor space of states containing many units of quantum information. There can be constructed position and momentum operators from the creation and annihilation operators and based on these operators the Poincare group can be represented in this abstract tensor space of quantum information. A general state in the tensor space can be mapped to a state in Minkowski space-time by using the position representation of the eigenstates of the occupation number operators which correspond to the eigenstates of the harmonic oscillator. This yields a description of relativistic quantum mechanics. Quantization of the coefficients of a general state in the tensor space leads to many particle theory and thus to quantum field theory.

Kober, Martin

2012-08-01

165

Quantum information processing through nuclear magnetic resonance

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: English Abstract in english We discuss the applications of Nuclear Magnetic Resonance (NMR) to quantum information processing, focusing on the use of quadrupole nuclei for quantum computing. Various examples of experimental implementation of logic gates are given and compared to calculated NMR spectra and their respective dens [...] ity matrices. The technique of Quantum State Tomography for quadrupole nuclei is briefly described, and examples of measured density matrices in a two-qubit I = 3/2 spin system are shown. Experimental results of density matrices representing pseudo-Bell states are given, and an analysis of the entropy of theses states is made. Considering an NMR experiment as a depolarization quantum channel we calculate the entanglement fidelity and discuss the criteria for entanglement in liquid state NMR quantum information. A brief discussion on the perspectives for NMR quantum computing is presented at the end.

J. D., Bulnes; F. A., Bonk; R. S., Sarthour; E. R. de, Azevedo; J. C. C., Freitas; T. J., Bonagamba; I. S., Oliveira.

2005-09-01

166

Temporal encoding of spatial information during active visual fixation.

Humans and other species continually perform microscopic eye movements, even when attending to a single point. These movements, which include drifts and microsaccades, are under oculomotor control, elicit strong neural responses, and have been thought to serve important functions. The influence of these fixational eye movements on the acquisition and neural processing of visual information remains unclear. Here, we show that during viewing of natural scenes, microscopic eye movements carry out a crucial information-processing step: they remove predictable correlations in natural scenes by equalizing the spatial power of the retinal image within the frequency range of ganglion cells' peak sensitivity. This transformation, which had been attributed to center-surround receptive field organization, occurs prior to any neural processing and reveals a form of matching between the statistics of natural images and those of normal eye movements. We further show that the combined effect of microscopic eye movements and retinal receptive field organization is to convert spatial luminance discontinuities into synchronous firing events, beginning the process of edge detection. Thus, microscopic eye movements are fundamental to two goals of early visual processing: redundancy reduction and feature extraction. PMID:22342751

Kuang, Xutao; Poletti, Martina; Victor, Jonathan D; Rucci, Michele

2012-03-20

167

Quantum causality, stochastics, trajectories and information

International Nuclear Information System (INIS)

A history of the discovery of 'new' quantum mechanics and the paradoxes of its probabilistic interpretation are briefly reviewed from the modern point of view of quantum probability and information. Modern quantum theory, which has been developed during the last 20 years for the treatment of quantum open systems including quantum noise, decoherence, quantum diffusions and spontaneous jumps occurring under continuous in time observation, is not yet a part of the standard curriculum of quantum physics. It is argued that the conventional formalism of quantum mechanics is insufficient for the description of quantum events, such as spontaneous decays say, and the new experimental phenomena related to individual quantum measurements, but they have all received an adequate mathematical treatment in quantum stochastics of open systems. Moreover, the only reasonable probabilistic interpretation of quantum mechanics put forward by Max Born was, in fact, in irreconcilable contradiction with traditional mechanical reality and causality. This led to numerous quantum paradoxes, some of them due to the great inventors of quantum theory such as Einstein and Schroedinger. They are reconsidered in this paper from the modern point of view of quantum stochastics and information. The development of quantum measurement theory, initiated by von Neumann, indicated a possibility for resolution of this interpretational crisis by divorcing the algebra of the dynamical generators and the algebraf the dynamical generators and the algebra of the actual observables, or Bell's beables. It is shown that within this approach quantum causality can be rehabilitated in the form of a superselection rule for compatibility of the actual histories with the potential future. This rule, together with the self-compatibility of the measurements ensuring the consistency of the histories, is called the nondemolition, or causality principle in modern quantum theory. The application of this rule in the form of dynamical commutation relations leads to the derivation of the von Neumann projection postulate, and also to the more general reductions, instantaneous, spontaneous, and even continuous in time. This gives a dynamical solution, in the form of the quantum stochastic filtering equations, of the notorious measurement problem which was tackled unsuccessfully by many famous physicists starting with Schroedinger and Bohr. It has been recently proved that the quantum stochastic model for the continuous in time measurements is equivalent to a Dirac type boundary-value problem for the secondary quantized input 'offer waves from future' in one extra dimension, and to a reduction of the algebra of the consistent histories of past events to an Abelian subalgebra for the 'trajectories of the output particles'. This supports the corpuscular-wave duality in the form of the thesis that everything in the future are quantized waves, while everything in the past are trajectories of the recorded particles. (author)

168

Quantum Correlations, Chaos and Information

Quantum chaos is the study of quantum systems whose classical description is chaotic. How does chaos manifest itself in the quantum world? In this spirit, we study the dynamical generation of entanglement as a signature of chaos in a system of periodically kicked coupled-tops, where chaos and entanglement arise from the same physical mechanism. The long-time entanglement as a function of the position of an initially localized wave packet very closely correlates with the clas...

Madhok, Vaibhav

2012-01-01

169

Quantum metrology from a quantum information science perspective

We summarise important recent advances in quantum metrology, in connection to experiments in cold gases, trapped cold atoms and photons. First we review simple metrological setups, such as quantum metrology with spin squeezed states, with Greenberger-Horne-Zeilinger states, Dicke states and singlet states. We calculate the highest precision achievable in these schemes. Then, we present the fundamental notions of quantum metrology, such as shot-noise scaling, Heisenberg scaling, the quantum Fisher information and the Cramer-Rao bound. Using these, we demonstrate that entanglement is needed to surpass the shot-noise scaling in very general metrological tasks with a linear interferometer. We discuss some applications of the quantum Fisher information, such as how it can be used to obtain a criterion for a quantum state to be a macroscopic superposition. We show how it is related to the the speed of a quantum evolution, and how it appears in the theory of the quantum Zeno effect. Finally, we explain how uncorrela...

Toth, Geza

2015-01-01

170

Quantum metrology from a quantum information science perspective

We summarize important recent advances in quantum metrology, in connection to experiments in cold gases, trapped cold atoms and photons. First we review simple metrological setups, such as quantum metrology with spin squeezed states, with Greenberger–Horne–Zeilinger states, Dicke states and singlet states. We calculate the highest precision achievable in these schemes. Then, we present the fundamental notions of quantum metrology, such as shot-noise scaling, Heisenberg scaling, the quantum Fisher information and the Cramér–Rao bound. Using these, we demonstrate that entanglement is needed to surpass the shot-noise scaling in very general metrological tasks with a linear interferometer. We discuss some applications of the quantum Fisher information, such as how it can be used to obtain a criterion for a quantum state to be a macroscopic superposition. We show how it is related to the speed of a quantum evolution, and how it appears in the theory of the quantum Zeno effect. Finally, we explain how uncorrelated noise limits the highest achievable precision in very general metrological tasks. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘50 years of Bell’s theorem’.

Tóth, Géza; Apellaniz, Iagoba

2014-10-01

171

Information transfer rates in spin quantum channels

We analyze the communication efficiency of quantum information transfer along unmodulated spin chains by computing the communication rates of various protocols. The effects of temporal correlations are discussed, showing that they can be exploited to boost the transmission efficiency.

Rossini, D; Fazio, R; Rossini, Davide; Giovannetti, Vittorio; Fazio, Rosario

2006-01-01

172

Quantum Gravity Sensor by Curvature Energy: their Encoding and Computational Models*

Directory of Open Access Journals (Sweden)

Full Text Available Through of the concept of curvature energy encoded in non-harmonic signals due to the effect that characterizes the curvature as a deformation of field in the corresponding resonance space ( and an obstruction to the displacement to the corresponding shape operator is developed and designed a sensor of quantum gravity considering the quantized version of curvature as observable of gravitational field where the space is distorted by the strong interactions between particles, interpreting their observable in this case, as light fields deformations obtained on space-time background. To the application of this measurement we use a hypothetical particle graviton modeled as a magnetic dilaton which must be gauge graviton (gauge boson. Also are obtained several computational models of these photonic measurements, likewise their prototype photonic devices

Francisco Bulnes

2014-11-01

173

Towards Hybrid Quantum Information Processing with Polar Molecules

With the ongoing miniaturization of on-chip traps for atoms and ions it is timely to think about coherent interfaces between AMO and solid state systems with potential applications for new hybrid implementations for quantum computers. In this talk I will discuss a potential scenario, where ensembles of polar molecules serve as long-lived quantum memories for superconducting qubits and quantum information is transmitted via a high-Q microwave cavity. Polar molecules combine the exceptional features of a large electric dipole moment and long-lived rotational states with level splittings in the GHz regime. When trapped close to the surface of a chip this combination allows strong interactions with coherent solid state devices, e.g., superconducting microwave cavities or Josephson qubits. I will first introduce the system consisting of a single polar molecule coupled to a stripline cavity which realizes a cavity QED system in the microwave regime and discuss applications for quantum information processing, state detection and new cavity-assisted cooling schemes for polar molecules. I will then switch to molecular ensemble qubits where quantum information is encoded in collective spin or rotational excitations of an ensemble of N molecules. Ensemble qubits benefit from a collectively enhanced coupling ˜?N which allows quantum state transfer between the molecules and, e.g., a charge qubit on a timescale that is compatible with typical coherence times in a solid state environment. With the goal to protect ensemble qubits from collisions, I will finally discuss a scenario, where molecules are prepared in a crystalline phase under 1D trapping conditions and dipole moments aligned by an external field.

Rabl, Peter

2008-05-01

174

Quantum information theory with Gaussian systems

Energy Technology Data Exchange (ETDEWEB)

This thesis applies ideas and concepts from quantum information theory to systems of continuous-variables such as the quantum harmonic oscillator. The focus is on three topics: the cloning of coherent states, Gaussian quantum cellular automata and Gaussian private channels. Cloning was investigated both for finite-dimensional and for continuous-variable systems. We construct a private quantum channel for the sequential encryption of coherent states with a classical key, where the key elements have finite precision. For the case of independent one-mode input states, we explicitly estimate this precision, i.e. the number of key bits needed per input state, in terms of these parameters. (orig.)

Krueger, O.

2006-04-06

175

Quantum information theory with Gaussian systems

International Nuclear Information System (INIS)

This thesis applies ideas and concepts from quantum information theory to systems of continuous-variables such as the quantum harmonic oscillator. The focus is on three topics: the cloning of coherent states, Gaussian quantum cellular automata and Gaussian private channels. Cloning was investigated both for finite-dimensional and for continuous-variable systems. We construct a private quantum channel for the sequential encryption of coherent states with a classical key, where the key elements have finite precision. For the case of independent one-mode input states, we explicitly estimate this precision, i.e. the number of key bits needed per input state, in terms of these parameters. (orig.)

176

Normal aging is characterized by deficits that cross multiple cognitive domains including episodic memory and attention. Compared to young adults (YA), older adults (OA) not only show reduction in true memories, but also an increase in false memories. In this study we aim to elucidate how the production of confabulation is influenced by encoding and retrieval processes. We hypothesized that in OA, compared to YA, over-learned information interferes with the recall of specific, unique past episodes and this interference should be more prominent when a concurrent task perturbs the encoding of the episodes to be recalled. We tested this hypothesis using an experimental paradigm in which a group of OA and a group of YA had to recall three different types of story: a previously unknown story, a well-known fairy tale (Snow White), and a modified well-known fairy tale (Little Red Riding Hood is not eaten by the wolf), in three different experimental conditions: (1) free encoding and free retrieval; (2) Divided attention (DA) at encoding and free retrieval; and (3) free encoding and DA at retrieval. Results showed that OA produced significantly more confabulations than YA, particularly, in the recall of the modified fairy tale. Moreover, DA at encoding markedly increased the number of confabulations, whereas DA at retrieval had no effect on confabulation. Our findings reveal the implications of two phenomena in the production of confabulation in normal aging: the effect of poor encoding and the interference of strongly represented, over-learned information in episodic memory recall. PMID:22934610

Attali, Eve; Dalla Barba, Gianfranco

2013-01-01

177

Quantum information processing : science & technology.

Energy Technology Data Exchange (ETDEWEB)

Qubits demonstrated using GaAs double quantum dots (DQD). The qubit basis states are the (1) singlet and (2) triplet stationary states. Long spin decoherence times in silicon spurs translation of GaAs qubit in to silicon. In the near term the goals are: (1) Develop surface gate enhancement mode double quantum dots (MOS & strained-Si/SiGe) to demonstrate few electrons and spin read-out and to examine impurity doped quantum-dots as an alternative architecture; (2) Use mobility, C-V, ESR, quantum dot performance & modeling to feedback and improve upon processing, this includes development of atomic precision fabrication at SNL; (3) Examine integrated electronics approaches to RF-SET; (4) Use combinations of numerical packages for multi-scale simulation of quantum dot systems (NEMO3D, EMT, TCAD, SPICE); and (5) Continue micro-architecture evaluation for different device and transport architectures.

Horton, Rebecca; Carroll, Malcolm S.; Tarman, Thomas David

2010-09-01

178

Although the hippocampus is critical for the formation and retrieval of spatial memories, it is unclear how subregions are differentially involved in these processes. Previous high-resolution functional magnetic resonance imaging (fMRI) studies have shown that CA2, CA3, and dentate gyrus (CA23DG) regions support the encoding of novel associations, whereas the subicular cortices support the retrieval of these learned associations. Whether these subregions are used in humans during encoding and retrieval of spatial information has yet to be explored. Using high-resolution fMRI (1.6 mm × 1.6-mm in-plane), we found that activity within the right CA23DG increased during encoding compared to retrieval. Conversely, right subicular activity increased during retrieval compared to encoding of spatial associations. These results are consistent with the previous studies illustrating dissociations within human hippocampal subregions and further suggest that these regions are similarly involved during the encoding and retrieval of spatial information. PMID:20882543

Suthana, Nanthia; Ekstrom, Arne; Moshirvaziri, Saba; Knowlton, Barbara; Bookheimer, Susan

2011-07-01

179

Black holes, quantum information, and unitary evolution

The unitary crisis for black holes indicates an apparent need to modify local quantum field theory. This paper explores the idea that quantum mechanics and in particular unitarity are fundamental principles, but at the price of familiar locality. Thus, one should seek to parameterize unitary evolution, extending the field theory description of black holes, such that their quantum information is transferred to the external state. This discussion is set in a broader framework of unitary evolution acting on Hilbert spaces comprising subsystems. Here, various constraints can be placed on the dynamics, based on quantum information-theoretic and other general physical considerations, and one can seek to describe dynamics with "minimal" departure from field theory. While usual spacetime locality may not be a precise concept in quantum gravity, approximate locality seems an important ingredient in physics. In such a Hilbert space approach an apparently "coarser" form of localization can be described in terms of tenso...

Giddings, Steven B

2012-01-01

180

Predictive Information for Quantum Bio-Systems

We consider the evolution of a quantum bio-system that interacts with an external environment in a stochastic manner. We ask an important question: when can a bio-system be more predictive to a changing environment? We prove that the non-predictive information for a driven quantum bio-system is lower bounded by the change in the quantum correlation and upper bounded by the entropy production in the system and the environment. We argue that for a system to have more predictive information, it must retain the quantum correlation. This shows that at a fundamental level if a biological system has to be energetically efficient, it must minimize the loss of quantum correlation.

Pati, Arun Kumar

2014-07-01

181

Principles of quantum computation and information

Quantum computation and information is a new, rapidly developing interdisciplinary field. Therefore, it is not easy to understand its fundamental concepts and central results without facing numerous technical details. This book provides the reader a useful and not-too-heavy guide. It offers a simple and self-contained introduction; no previous knowledge of quantum mechanics or classical computation is required. Volume I may be used as a textbook for a one-semester introductory course in quantum information and computation, both for upper-level undergraduate students and for graduate students.

Benenti, Giuliano; Strini, Giuliano

2004-01-01

182

Quantum contextuality in classical information retrieval

Document ranking based on probabilistic evaluations of relevance is known to exhibit non-classical correlations, which may be explained by admitting a complex structure of the event space, namely, by assuming the events to emerge from multiple sample spaces. The structure of event space formed by overlapping sample spaces is known in quantum mechanics, they may exhibit some counter-intuitive features, called quantum contextuality. In this Note I observe that from the structural point of view quantum contextuality looks similar to personalization of information retrieval scenarios. Along these lines, Knowledge Revision is treated as operationalistic measurement and a way to quantify the rate of personalization of Information Retrieval scenarios is suggested.

Zapatrin, Roman

2012-01-01

183

Information loss, made worse by quantum gravity

Quantum gravity is often expected to solve both the singularity problem and the information-loss problem of black holes. This article presents an example from loop quantum gravity in which the singularity problem is solved in such a way that the information-loss problem is made worse. Quantum effects in this scenario, in contrast to previous non-singular models, do not eliminate the event horizon and introduce a new Cauchy horizon where determinism breaks down. Although infinities are avoided, for all practical purposes the core of the black hole plays the role of a naked singularity. Recent developments in loop quantum gravity indicate that this aggravated information loss problem is likely to be the generic outcome, putting strong conceptual pressure on the theory.

Bojowald, Martin

2014-01-01

184

Hybrid Quantum Information Processing with Polar Molecules

We describe the integration of polar molecules with mesoscopic solid state devices in a way that produces robust, coherent, quantum-level control with applications for quantum information processing. The exceptional features of polar molecules, i.e. long-lived rotational states in combination with electric dipole moments of several Debye, provide the necessary ingredients to achieve strong coupling to the quantized field of a high-Q microwave cavity. We discuss two scenarios, where quantum information is stored either in rotational states of a single molecule or in collective spin excitation of an ensemble of molecules. In the latter case we benefit from an enhanced coupling strength, which allows a coherent transfer of quantum information between molecules and solid state qubits.

André, A.; DeMille, D.; Doyle, J. M.; Lukin, M. D.; Maxwell, S. E.; Rabl, P.; Schoelkopf, R. J.; Zoller, P.

2006-11-01

185

Superconducting Circuits and Quantum Information

Superconducting circuits can behave like atoms making transitions between two levels. Such circuits can test quantum mechanics at macroscopic scales and be used to conduct atomic-physics experiments on a silicon chip.

You, J. Q.; Nori, Franco

2006-01-01

186

Quenching Dynamics and Quantum Information

We review recent studies on the measures of zero temperature quantum correlations namely, the quantum entanglement (concurrence) and discord present in the final state of a transverse XY spin chain following a quench through quantum critical points; the aim of these studies is to explore the scaling of the above quantities as a function of the quench rate. A comparative study between the concurrence and the quantum discord shows that their behavior is qualitatively the same though there are quantitative differences. For the present model, the scaling of both the quantities are given by the scaling of the density of the defect present in the final state though one can not find a closed form expression for the discord. We also extend our study of quantum discord to a transverse Ising chain in the presence of a three spin interaction. Finally, we present a study of the dynamical evolution of quantum discord and concurrence when two central qubits, initially prepared in a Werner state, are coupled to the environm...

Nag, Tanay; Patra, Ayoti

2012-01-01

187

Mutual Entropy in Quantum Information and Information Genetics

After Shannon, entropy becomes a fundamental quantity to describe not only uncertainity or chaos of a system but also information carried by the system. Shannon's important discovery is to give a mathematical expression of the mutual entropy (information), information transmitted from an input system to an output system, by which communication processes could be analyzed on the stage of mathematical science. In this paper, first we review the quantum mutual entropy and discuss its uses in quantum information theory, and secondly we show how the classical mutual entropy can be used to analyze genomes, in particular, those of HIV.

Ohya, M

2004-01-01

188

Single photon sources for quantum information applications

Efficient sources of indistinguishable single photons are a key resource for various applications in fields like quantum sensing, quantum metrology and quantum information processing. In this contribution we report on single photon generation based on III-V semiconductor quantum dots (QDs). To increase the emission efficiency of single photons, it is essential to tailor the radiative properties of the quantum dot emitters by engineering their photonic environment. We present optimized single photon emitters being based on both micropillar and photonics crystal cavities, for applications in a vertical platform and on-chip in-plane platform, respectively. Electrically driven single photon sources with self assembled semiconductor QDs embedded into GaAs/AlAs micropillar cavities emit on demand net rates of ~35 MHz single photons, thus being well exploitable in quantum key distribution systems. In order to establish also a spatially deterministic fabrication platform, position controlled quantum dots are integrated into p-i-n micropillar cavities and single photon emission of a coupled QD-micropillar diode system is observed. Efficient broadband coupling of single photons into photonic crystal waveguides provides the basis for all on-chip quantum information processing, and an according approach is reported.

Höfling, S.; Schneider, C.; Heindel, T.; Lermer, M.; Hoang, T. B.; Beetz, J.; Braun, T.; Balet, L.; Chauvin, N.; Li, L.; Reitzenstein, S.; Fiore, A.; Kamp, M.; Forchel, A.

2012-03-01

189

On the Multiple Access Channel with Asymmetric Noisy State Information at the Encoders

We consider the problem of reliable communication over multiple-access channels (MAC) where the channel is driven by an independent and identically distributed state process and the encoders and the decoder are provided with various degrees of asymmetric noisy channel state information (CSI). For the case where the encoders observe causal, asymmetric noisy CSI and the decoder observes complete CSI, we provide inner and outer bounds to the capacity region, which are tight for the sum-rate capacity. We then observe that, under a Markov assumption, similar capacity results also hold in the case where the receiver observes noisy CSI. Furthermore, we provide a single letter characterization for the capacity region when the CSI at the encoders are asymmetric deterministic functions of the CSI at the decoder and the encoders have non-causal noisy CSI (its causal version is recently solved in \\cite{como-yuksel}). When the encoders observe asymmetric noisy CSI with asymmetric delays and the decoder observes complete C...

?en, Nevroz; Yüksel, Serdar; Como, Giacomo

2012-01-01

190

Quantum information processing with graph states

Energy Technology Data Exchange (ETDEWEB)

Graph states are multiparticle states which are associated with graphs. Each vertex of the graph corresponds to a single system or particle. The links describe quantum correlations (entanglement) between pairs of connected particles. Graph states were initiated independently by two research groups: On the one hand, graph states were introduced by Briegel and Raussendorf as a resource for a new model of one-way quantum computing, where algorithms are implemented by a sequence of measurements at single particles. On the other hand, graph states were developed by the author of this thesis and ReinhardWerner in Braunschweig, as a tool to build quantum error correcting codes, called graph codes. The connection between the two approaches was fully realized in close cooperation of both research groups. This habilitation thesis provides a survey of the theory of graph codes, focussing mainly, but not exclusively on the author's own research work. We present the theoretical and mathematical background for the analysis of graph codes. The concept of one-way quantum computing for general graph states is discussed. We explicitly show how to realize the encoding and decoding device of a graph code on a one-way quantum computer. This kind of implementation is to be seen as a mathematical description of a quantum memory device. In addition to that, we investigate interaction processes, which enable the creation of graph states on very large systems. Particular graph states can be created, for instance, by an Ising type interaction between next neighbor particles which sits at the points of an infinitely extended cubic lattice. Based on the theory of quantum cellular automata, we give a constructive characterization of general interactions which create a translationally invariant graph state. (orig.)

Schlingemann, Dirk-Michael

2005-04-15

191

Quantum information processing with graph states

International Nuclear Information System (INIS)

Graph states are multiparticle states which are associated with graphs. Each vertex of the graph corresponds to a single system or particle. The links describe quantum correlations (entanglement) between pairs of connected particles. Graph states were initiated independently by two research groups: On the one hand, graph states were introduced by Briegel and Raussendorf as a resource for a new model of one-way quantum computing, where algorithms are implemented by a sequence of measurements at single particles. On the other hand, graph states were developed by the author of this thesis and ReinhardWerner in Braunschweig, as a tool to build quantum error correcting codes, called graph codes. The connection between the two approaches was fully realized in close cooperation of both research groups. This habilitation thesis provides a survey of the theory of graph codes, focussing mainly, but not exclusively on the author's own research work. We present the theoretical and mathematical background for the analysis of graph codes. The concept of one-way quantum computing for general graph states is discussed. We explicitly show how to realize the encoding and decoding device of a graph code on a one-way quantum computer. This kind of implementation is to be seen as a mathematical description of a quantum memory device. In addition to that, we investigate interaction processes, which enable the creation of graph states on very large systems. Particular graph states can be crsystems. Particular graph states can be created, for instance, by an Ising type interaction between next neighbor particles which sits at the points of an infinitely extended cubic lattice. Based on the theory of quantum cellular automata, we give a constructive characterization of general interactions which create a translationally invariant graph state. (orig.)

192

Quantum Computation and Information From Theory to Experiment

Recently, the field of quantum computation and information has been developing through a fusion of results from various research fields in theoretical and practical areas. This book consists of the reviews of selected topics charterized by great progress and cover the field from theoretical areas to experimental ones. It contains fundamental areas, quantum query complexity, quantum statistical inference, quantum cloning, quantum entanglement, additivity. It treats three types of quantum security system, quantum public key cryptography, quantum key distribution, and quantum steganography. A photonic system is highlighted for the realization of quantum information processing.

Imai, Hiroshi

2006-01-01

193

Manipulating quantum information by propagation

We study the creation of bipartite and multipartite continuous variable entanglement in structures of coupled quantum harmonic oscillators. By adjusting the interaction strengths between nearest neighbours we show how to maximize the entanglement production between the arms in a Y-shaped structure where an initial single mode squeezed state is created in the first oscillator of the input arm. We also consider the action of the same structure as an approximate quantum cloner. For a specific time in the system dynamics the last oscillators in the output arms can be considered as imperfect copies of the initial state. By increasing the number of arms in the structure, multipartite entanglement is obtained, as well as 1 \\rightarrow M cloning. Finally, we consider configurations that implement the symmetric splitting of an initial entangled state. All calculations are carried out within the framework of the rotating wave approximation in quantum optics, and our predictions could be tested with current available experimental techniques.

Perales, Álvaro; Plenio, Martin B.

2005-12-01

194

Manipulating quantum information by propagation

International Nuclear Information System (INIS)

We study the creation of bipartite and multipartite continuous variable entanglement in structures of coupled quantum harmonic oscillators. By adjusting the interaction strengths between nearest neighbours we show how to maximize the entanglement production between the arms in a Y-shaped structure where an initial single mode squeezed state is created in the first oscillator of the input arm. We also consider the action of the same structure as an approximate quantum cloner. For a specific time in the system dynamics the last oscillators in the output arms can be considered as imperfect copies of the initial state. By increasing the number of arms in the structure, multipartite entanglement is obtained, as well as 1 ?M cloning. Finally, we consider configurations that implement the symmetric splitting of an initial entangled state. All calculations are carried out within the framework of the rotating wave approximation in quantum optics, and our predictions could be tested with current available experimental techniques

195

A quantum information approach to statistical mechanics

International Nuclear Information System (INIS)

We review some connections between quantum information and statistical mechanics. We focus on three sets of results for classical spin models. First, we show that the partition function of all classical spin models (including models in different dimensions, different types of many-body interactions, different symmetries, etc) can be mapped to the partition function of a single model. Second, we give efficient quantum algorithms to estimate the partition function of various classical spin models, such as the Ising or the Potts model. The proofs of these two results are based on a mapping from partition functions to quantum states and to quantum circuits, respectively. Finally, we show how classical spin models can be used to describe certain fluctuating lattices appearing in models of discrete quantum gravity. (tutorial)

196

Quantum Information approach to the Ising model

We present detailed analytical calculations for an 1D Ising ring of arbitrary number of spin-1/2 particles, in order to reveal entanglement properties of the stationary states. We show that the ground state and specific eigenstates of the Ising Hamiltonian posses remarkable entanglement properties that can reveal new insight into quantum correlations present in the Ising model. This correlations might be exploited in quantum information processing. We propose an intuitive pi...

S?telmachovic?, P.; Buz?ek, V.

2003-01-01

197

Information Theoretic Axioms for Quantum Theory

In this paper we derive the complex Hilbert space formalism of quantum theory from four simple information theoretic axioms. It is shown that quantum theory is the only non classical probabilistic theory satisfying the following axioms: distinguishability, conservation, reversibility, composition. The new results of this reconstruction compared to other reconstructions by other authors are: (i) we get rid of axiom "subspace" in favor of axiom conservation eliminating mathema...

Zaopo, Marco

2012-01-01

198

Theory of solid state quantum information processing

Recent theoretical work on solid-state proposals for the implementation of quantum computation and quantum information processing is reviewed. The differences and similarities between microscopic and macroscopic qubits are highlighted and exemplified by the spin qubit proposal on one side and the superconducting qubits on the other. Before explaining the spin and supercondcuting qubits in detail, some general concepts that are relevant for both types of solid-state qubits ar...

Burkard, Guido

2004-01-01

199

A quantum information approach to statistical mechanics

We review some connections between quantum information and statistical mechanics. We focus on three sets of results for classical spin models. First, we show that the partition function of all classical spin models (including models in different dimensions, different types of many-body interactions, different symmetries, etc) can be mapped to the partition function of a single model. Second, we give efficient quantum algorithms to estimate the partition function of various c...

Cuevas, Gemma Las

2013-01-01

200

Trapped-ion quantum information processing

International Nuclear Information System (INIS)

Full text: Trapped strings of cold ions provide an ideal system for quantum information processing. The quantum information can be stored in individual ions and these qubits can be individually prepared, the corresponding quantum states can be manipulated and measured with nearly 100 % detection efficiency. With a small ion-trap quantum computer based on two and three trapped Ca+ ions as qubits we have generated in a pre-programmed way genuine quantum states. These states are of particular interest for the implementation of an ion quantum register: we have demonstrated selective read-out of single qubits and manipulation of single qubits of the register conditioned on the read-out results. Moreover, entangled states of up to eight particles were generated using an algorithmic procedure and the resulting states were analyzed using state tomography proving genuine multi-partite entanglement. With a new cavity QED setup we create an ion-qubit to photon-qubit interface for interconnecting ion-trap based quantum computers. With this device a source of deterministically generated single photons can be built and atom-photon entanglement can be investigated

201

The Ion Trap Quantum Information Processor

An introductory review of the linear ion trap is given, with particular regard to its use for quantum information processing. The discussion aims to bring together ideas from information theory and experimental ion trapping, to provide a resource to workers unfamiliar with one or the other of these subjects. It is shown that information theory provides valuable concepts for the experimental use of ion traps, especially error correction, and conversely the ion trap provides a...

Steane, Andrew M.

1996-01-01

202

Encoding and decoding spatio-temporal information for super-resolution microscopy.

The challenge of increasing the spatial resolution of an optical microscope beyond the diffraction limit can be reduced to a spectroscopy task by proper manipulation of the molecular states. The nanoscale spatial distribution of the molecules inside the detection volume of a scanning microscope can be encoded within the fluorescence dynamics and decoded by resolving the signal into its dynamics components. Here we present a robust and general method to decode this information using phasor analysis. As an example of the application of this method, we optically generate spatially controlled gradients in the fluorescence lifetime by stimulated emission. Spatial resolution can be increased indefinitely by increasing the number of resolved dynamics components up to a maximum determined by the amount of noise. We demonstrate that the proposed method provides nanoscale imaging of subcellular structures, opening new routes in super-resolution microscopy based on the encoding/decoding of spatial information through manipulation of molecular dynamics. PMID:25833391

Lanzanò, Luca; Coto Hernández, Iván; Castello, Marco; Gratton, Enrico; Diaspro, Alberto; Vicidomini, Giuseppe

2015-01-01

203

Restrictions on Information Transfer in Quantum Measurements

Information-theoretical restrictions on the information transfer in quantum measurements are studied. They are derived for the measurement of system S by detector D, registrated and processed by information system O. The formalism of inference maps in Hilbert space is used for it; it permit to calculate O restricted state which contains all finally available information on S parameters. It's shown that the principal information losses, inevitable in this formalism, stipulate the stochasticity of measurement outcomes registrated by O in the individual events.

Mayburov, S

2006-01-01

204

A New Approach to Encoding and Hiding Information in an Image

The information age brings some unique challenges to society. New technology and new applications bring new threats and force us to invent new protection mechanisms. So every few years, computer security needs to reinvent itself. In this paper we propose a new image encoding system utilizing fractal theories; this approach exploits the main feature of fractals generated by IFS techniques. Two levels of encryption and decryption methods performed to enhance the security of the system, this is ...

Fadhil Salman Abed

2011-01-01

205

Protection of information in quantum databases

The conventional protection of information by cryptographical keys makes no sense if a key can be quickly discovered by an unauthorized person. This way of penetration to the protected systems was made possible by a quantum computers in view of results of P.Shor and L.Grover. This work presents the method of protection of an information in a database from a spy even he knows all about its control system and has a quantum computer, whereas a database can not distinguish between operations of spy and legal user.

Ozhigov, Y I

1997-01-01

206

Information theory, spectral geometry, and quantum gravity.

We show that there exists a deep link between the two disciplines of information theory and spectral geometry. This allows us to obtain new results on a well-known quantum gravity motivated natural ultraviolet cutoff which describes an upper bound on the spatial density of information. Concretely, we show that, together with an infrared cutoff, this natural ultraviolet cutoff beautifully reduces the path integral of quantum field theory on curved space to a finite number of ordinary integrations. We then show, in particular, that the subsequent removal of the infrared cutoff is safe. PMID:18232851

Kempf, Achim; Martin, Robert

2008-01-18

207

Quantum information and computation for chemistry

Examines the intersection of quantum information and chemical physics The Advances in Chemical Physics series is dedicated to reviewing new and emerging topics as well as the latest developments in traditional areas of study in the field of chemical physics. Each volume features detailed comprehensive analyses coupled with individual points of view that integrate the many disciplines of science that are needed for a full understanding of chemical physics. This volume of the series explores the latest research findings, applications, and new research paths from the quantum information science

Kais, Sabre; Rice, Stuart A

2014-01-01

208

Achievable Qubit Rates for Quantum Information Wires

Suppose Alice and Bob have access to two separated regions, respectively, of a system of electrons moving in the presence of a regular one-dimensional lattice of binding atoms. We consider the problem of communicating as much quantum information, as measured by the qubit rate, through this quantum information wire as possible. We describe a protocol whereby Alice and Bob can achieve a qubit rate for these systems which is proportional to N^-1/3 qubits per unit time, where N is the number of lattice sites. Our protocol also functions equally in the presence of interactions modelled via the t-J and Hubbard models.

Osborne, Tobias J

2011-01-01

209

Existence of an information unit as a postulate of quantum theory.

Does information play a significant role in the foundations of physics? Information is the abstraction that allows us to refer to the states of systems when we choose to ignore the systems themselves. This is only possible in very particular frameworks, like in classical or quantum theory, or more generally, whenever there exists an information unit such that the state of any system can be reversibly encoded in a sufficient number of such units. In this work, we show how the abstract formalism of quantum theory can be deduced solely from the existence of an information unit with suitable properties, together with two further natural assumptions: the continuity and reversibility of dynamics, and the possibility of characterizing the state of a composite system by local measurements. This constitutes a set of postulates for quantum theory with a simple and direct physical meaning, like the ones of special relativity or thermodynamics, and it articulates a strong connection between physics and information. PMID:24062431

Masanes, Lluís; Müller, Markus P; Augusiak, Remigiusz; Pérez-García, David

2013-10-01

210

Network information theory for classical-quantum channels

Network information theory is the study of communication problems involving multiple senders, multiple receivers and intermediate relay stations. The purpose of this thesis is to extend the main ideas of classical network information theory to the study of classical-quantum channels. We prove coding theorems for quantum multiple access channels, quantum interference channels, quantum broadcast channels and quantum relay channels. A quantum model for a communication channel...

Savov, Ivan

2012-01-01

211

Scavenging quantum information: Multiple observations of quantum systems

International Nuclear Information System (INIS)

Given an unknown state of a qudit that has already been measured optimally, can one still extract any information about the original unknown state? Clearly, after a maximally informative measurement, the state of the system collapses into a postmeasurement state from which the same observer cannot obtain further information about the original state of the system. However, the system still encodes a significant amount of information about the original preparation for a second observer who is unaware of the actions of the first one. We study how a series of independent observers can obtain, or can scavenge, information about the unknown state of a system (quantified by the fidelity) when they sequentially measure it. We give closed-form expressions for the estimation fidelity when one or several qudits are available to carry information about the single-qudit state, and we study the classical limit when an arbitrarily large number of observers can obtain (nearly) complete information on the system. In addition to the case where all observers perform most informative measurements, we study the scenario where a finite number of observers estimates the state with equal fidelity, regardless of their position in the measurement sequence and the scenario where all observers use identical measurement apparatuses (up to a mutually unknown orientation) chosen so that a particular observer's estimation fidelity is maximized.

212

Quantum metrology from an information theory perspective

International Nuclear Information System (INIS)

Questions about quantum limits on measurement precision were once viewed from the perspective of how to reduce or avoid the effects of quantum noise. With the advent of quantum information science came a paradigm shift to proving rigorous bounds on measurement precision. These bounds have been interpreted as saying, first, that the best achievable sensitivity scales as 1/n, where n is the number of particles one has available for a measurement and, second, that the only way to achieve this Heisenberg-limited sensitivity is to use quantum entanglement. We review these results and show that using quadratic couplings of n particles to a parameter to be estimated, one can achieve sensitivities that scale as 1/n2 if one uses entanglement, but even in the absence of any entanglement at any time during the measurement protocol, one can achieve a super-Heisenberg scaling of 1/n3/2.

213

The new field of quantum error correction has developed spectacularly since its origin less than two years ago. Encoded quantum information can be protected from errors that arise due to uncontrolled interactions with the environment. Recovery from errors can work effectively even if occasional mistakes occur during the recovery procedure. Furthermore, encoded quantum information can be processed without serious propagation of errors. Hence, an arbitrarily long quantum compu...

Preskill, John

1997-01-01

214

This article explores the time course of the functional interplay between detection and encoding stages of information processing in the brain and the role they play in conscious visual perception. We employed a multitarget rapid serial visual presentation (RSVP) approach and examined the electrophysiological P3 component elicited by a target terminating an RSVP sequence. Target-locked P3 activity was detected both at frontal and parietal recording sites and an independent component analysis confirmed the presence of two distinct P3 components. The posterior P3b varied with intertarget lag, with diminished amplitude and postponed latency at short relative to long lags-an electroencephalographic signature of the attentional blink (AB). Under analogous conditions, the anterior P3a was also reduced in amplitude but did not vary in latency. Collectively, the results provide an electrophysiological record of the interaction between frontal and posterior components linked to detection (P3a) and encoding (P3b) of visual information. Our findings suggest that, although the AB delays target encoding into working memory, it does not slow down detection of a target but instead reduces the efficacy of this process. A functional characterization of P3a in attentive tasks is discussed with reference to current models of the AB phenomenon. PMID:25390207

Dell'Acqua, Roberto; Dux, Paul E; Wyble, Brad; Doro, Mattia; Sessa, Paola; Meconi, Federica; Jolicœur, Pierre

2015-04-01

215

Information-technology approach to quantum feedback control

Quantum control theory is profitably reexamined from the perspective of quantum information, two results on the role of quantum information technology in quantum feedback control are presented and two quantum feedback control schemes, teleportation-based distant quantum feedback control and quantum feedback control with quantum cloning, are proposed. In the first feedback scheme, the output from the quantum system to be controlled is fed back into the distant actuator via teleportation to alter the dynamics of system. The result theoretically shows that it can accomplish some tasks such as distant feedback quantum control that Markovian or Bayesian quantum feedback can't complete. In the second feedback strategy, the design of quantum feedback control algorithms is separated into a state recognition step, which gives "on-off" signal to the actuator through recognizing some copies from the cloning machine, and a feedback (control) step using another copies of cloning machine. A compromise between information a...

Dong, D Y; Chen, Z H; Zhang, Chen-Bin; Chen, Zong-Hai

2005-01-01

216

Minimum-cost quantum measurements for quantum information

International Nuclear Information System (INIS)

Knowing about optimal quantum measurements is important for many applications in quantum information and quantum communication. However, deriving optimal quantum measurements is often difficult. We present a collection of results for minimum-cost quantum measurements, and give examples of how they can be used. Among other results, we show that a minimum-cost measurement for a set of given pure states is formally equivalent to a minimum-error measurement for certain mixed states of those same pure states. For pure symmetric states it turns out that for a certain class of cost matrices, the minimum-cost measurement is the square-root measurement. That is, the optimal minimum-cost measurement is in this case the same as the minimum-error measurement. These results are in agreement with Nakahira and Usuda (2012 Phys. Rev. A 86 062305). Finally, we consider sequences of individual uncorrelated systems, and examine when the global minimum-cost measurement is a sequence of optimal local measurements. We consider an example where the global minimum-cost measurement is, perhaps counter-intuitively, not a sequence of local measurements, and discuss how this is related to the Pusey–Barrett–Rudolph argument for the nature of the wave function. (paper)

217

Quantum Symmetrically-Private Information Retrieval

Private information retrieval systems (PIRs) allow a user to extract an item from a database that is replicated over k>=1 servers, while satisfying various privacy constraints. We exhibit quantum k-server symmetrically-private information retrieval systems (QSPIRs) that use sublinear communication, do not use shared randomness among the servers, and preserve privacy against honest users and dishonest servers. Classically, SPIRs without shared randomness do not exist at all.

Kerenidis, Iordanis; Wolf, Ronald

2003-01-01

218

Leftover Hashing Against Quantum Side Information

The Leftover Hash Lemma states that the output of a two-universal hash function applied to an input with sufficiently high entropy is almost uniformly random. In its standard formulation, the lemma refers to a notion of randomness that is (usually implicitly) defined with respect to classical side information. Here, we prove a (strictly) more general version of the Leftover Hash Lemma that is valid even if side information is represented by the state of a quantum system. Fur...

Tomamichel, Marco; Schaffner, Christian; Smith, Adam; Renner, Renato

2010-01-01

219

Quantum Information through Angular momentum of Photon

The angular momentum of photons is the key source of quantum information. The transfer of angular momentum is possible as circularly polarized light is passed through wave plates. The passage of LCP through two consecutive half wave plates traces a closed curve on Poincare sphere. As a result the geometric phase is developed associated with gain of orbital angular momentum.

Banerjee, Dipti

2014-01-01

220

The structure and size of sensory bursts encode stimulus information but only size affects behavior.

Cricket ultrasound avoidance is a classic model system for neuroethology. Avoidance steering is triggered by high-firing-rate bursts of spikes in the auditory command neuron AN2. Although bursting is common among sensory neurons, and although the detailed structure of bursts may encode information about the stimulus, it is as yet unclear whether this information is decoded. We address this question in two ways: from an information coding point of view, by showing the relationship between stimulus and burst structure; and also from a functional point of view by showing the relationship between burst structure and behavior. We conclude that the burst structure carries detailed temporal information about the stimulus but that this has little impact on the behavioral response, which is affected mainly by burst size. PMID:20213110

Marsat, Gary; Pollack, Gerald S

2010-04-01

221

Quantum information, oscillations and the psyche

In this paper, taking the theory of quantum information as a model, we consider the human unconscious, pre-consciousness and consciousness as sets of quantum bits (qubits). We view how there can be communication between these various qubit sets. In doing this we are inspired by the theory of nuclear magnetic resonance. In this way we build a model of handling a mental qubit with the help of pulses of a mental field. Starting with an elementary interaction between two qubits we build two-qubit quantum logic gates that allow information to be transferred from one qubit to the other. In this manner we build a quantum process that permits consciousness to ``read{''} the unconscious and vice versa. The elementary interaction, e.g. between a pre-consciousness qubit and a consciousness one, allows us to predict the time evolution of the pre-consciousness + consciousness system in which pre-consciousness and consciousness are quantum entangled. This time evolution exhibits Rabi oscillations that we name mental Rabi o...

Martin, F; Carminati, G Galli

2010-01-01

222

A quantum password is a quantum mechanical analogue of the classical password. Our proposal is completely quantum mechanical in nature, i.e. at no point is information stored and manipulated classically. We show that, in contrast to quantum protocols that encode classical information, we are able to prevent the distribution of reusable passwords even when Alice actively cooperates with Eve. This allows us to confront and address security issues that are unavoidable in classi...

Gu, Mile; Weedbrook, Christian

2005-01-01

223

Energy Technology Data Exchange (ETDEWEB)

The following topics are dealt with: Reality in the test house, quantum teleportation, 100 years of quantum theory, the reality of quanta, interactionless quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view into the future of quantum optics. (HSI)

Breuer, Reinhard (comp.)

2010-07-01

224

Revealed Quantum Information in Weak Interaction Processes

We analyze the achievable limits of the quantum information processing of the weak interaction revealed by hyperons with spin. We find that the weak decay process corresponds to an interferometric device with a fixed visibility and fixed phase difference for each hyperon. Nature chooses rather low visibilities expressing a preference to parity conserving or violating processes (except for the decay $\\Sigma^+\\longrightarrow p \\pi^0$). The decay process can be considered as an open quantum channel that carries the information of the hyperon spin to the angular distribution of the momentum of the daughter particles. We find a simple geometrical information theoretic interpretation of this process: two quantization axes are chosen spontaneously with probabilities $\\frac{1\\pm\\alpha}{2}$ where $\\alpha$ is proportional to the visibility times the real part of the phase shift. Differently stated the weak interaction process corresponds to spin measurements with an imperfect Stern-Gerlach apparatus. Equipped with this...

Hiesmayr, B C

2014-01-01

225

Cryptography from quantum uncertainty in the presence of quantum side information

The thesis starts with a high-level introduction into cryptography and quantum mechanics. Chapter 2 gives a theoretical foundation by introducing probability theory, information theory, functional analysis, quantum mechanics and quantum information theory. Chapter 3, 4 and 5 are editions of work published earlier. In Chapter 3, we present a quantum-information-theoretic tool to analyze random sampling in a quantum setting. In particular, we present two new rigorous security proofs that ma...

Bouman, Niek Johannes

2012-01-01

226

Quantum information processing based on cavity QED with mesoscopic systems

Introduction: Recent developments in quantum communication and computing [1-3] stimulated an intensive search for physical systems that can be used for coherent processing of quantum information. It is generally believed that quantum entanglement of distinguishable quantum bits (qubits) is at the heart of quantum information processing. Significant efforts have been directed towards the design of elementary logic gates, which perform certain unitary processes on pairs of qubits. These gates m...

Lukin, Mikhail; Fleischhauer, Michael; Imamoglu, Atac

2000-01-01

227

Quantum mechanics and quantum information a guide through the quantum world

Alongside a thorough definition of the basic concepts and their interrelations, backed by numerous examples, this textbook features a rare discussion of the quantum information theory. It also deals with other important topics hardly found in the literature, including the Robertson-Schrodinger-relation, angle and angular momentum uncertainties, interaction-free measurements, and the limitations of the no-cloning theorem With its interpretations of quantum mechanics and its discussions of quantum computing, this book is poised to become the standard textbook for advanced undergraduate and beginning graduate quantum mechanics courses and as an essential reference for physics students and physics professionals.

Fayngold, Moses

2013-01-01

228

Quantum information and continuous variable systems

International Nuclear Information System (INIS)

This thesis treats several questions concerning quantum information theory of infinite dimensional continuous variable (CV) systems. We investigate the separability properties of Gaussian states of such systems. Both the separability and the distillability problem for bipartite Gaussian states are solved by deriving operational criteria for these properties. We consider multipartite Gaussian states and obtain a necessary and sufficient condition that allows the complete classification of three-mode tripartite states according to their separability properties. Moreover we study entanglement distillation protocols. We show that the standard protocols for qubits are robust against imperfect implementation of the required quantum operations. For bipartite Gaussian states we find a universal scheme to distill all distillable states and propose a concrete quantum optical realization. (author)

229

International Nuclear Information System (INIS)

In an optical encoder, light from an optical fibre input A is encoded by means of the encoding disc and is subsequently collected for transmission via optical fibre B. At some point in the optical path between the fibres A and B, the light is separated into component form by means of a filtering or dispersive system and each colour component is associated with a respective one of the coding channels of the disc. In this way, the significance of each bit of the coded information is represented by a respective colour thereby enabling the components to be re-combined for transmission by the fibre B without loss of information. (author)

230

Quantum information processing architecture with endohedral fullerenes in a carbon nanotube

A potential quantum information processor is proposed using a fullerene peapod, i.e., an array of the endohedral fullerenes 15N@C60 or 31P@C60 contained in a single walled carbon nanotube (SWCNT). The qubits are encoded in the nuclear spins of the doped atoms, while the electronic spins are used for initialization and readout, as well as for two-qubit operations.

Yang, Wan Li; Wei, Hua; Feng, Mang; Suter, Dieter

2010-01-01

231

Energy Technology Data Exchange (ETDEWEB)

The following topics are dealt with: Reality in the test facility, quantum teleportation, the reality of quanta, interaction-free quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view in the future of quantum optics. (HSI)

Koenneker, Carsten (comp.)

2012-11-01

232

Towards Quantum Information Theory in Space and Time

Modern quantum information theory deals with an idealized situation when the spacetime dependence of quantum phenomena is neglected. However the transmission and processing of (quantum) information is a physical process in spacetime. Therefore such basic notions in quantum information theory as qubit, channel, composite systems and entangled states should be formulated in space and time. In particlular we suggest that instead of a two level system (qubit) the basic notion in...

Volovich, Igor V.

2002-01-01

233

Thermodynamical analogues in quantum information theory

The first step in quantum information theory is the identification of entanglement as a valuable resource. The next step is learning how to exploit this resource efficiently. We learn how to exploit entanglement efficiently by applying analogues of thermodynamical concepts. These concepts include reversibility, entropy, and the distinction between intensive and extensive quantities. We discuss some of these analogues and show how they lead to a measure of entanglement for pu...

Rohrlich, Daniel

2001-01-01

234

Neural systems may be characterized by measuring functional interactions in the healthy brain, but it is unclear whether components of systems defined in this way share functional properties. For instance, within the medial temporal lobes (MTL), different subregions show different patterns of cortical connectivity. It is unknown, however, whether these intrinsic connections predict similarities in how these regions respond during memory encoding. Here, we defined brain networks using resting state functional connectivity (RSFC) then quantified the functional similarity of regions within each network during an associative memory encoding task. Results showed that anterior MTL regions affiliated with a network of anterior temporal cortical regions, whereas posterior MTL regions affiliated with a network of posterior medial cortical regions. Importantly, these connectivity relationships also predicted similarities among regions during the associative memory task. Both in terms of task-evoked activation and trial-specific information carried in multivoxel patterns, regions within each network were more similar to one another than were regions in different networks. These findings suggest that functional heterogeneity among MTL subregions may be related to their participation in distinct large-scale cortical systems involved in memory. At a more general level, the results suggest that components of neural systems defined on the basis of RSFC share similar functional properties in terms of recruitment during cognitive tasks and information carried in voxel patterns. PMID:24283495

Ritchey, Maureen; Yonelinas, Andrew P; Ranganath, Charan

2014-05-01

235

Byuons, Quantum Information Channel, Consciousness and Universe

Directory of Open Access Journals (Sweden)

Full Text Available The physics of consciousness and universal mind is shown on the base of theory of byuons, the theory of “life’ of special unobservable discrete objects—byuons from which the surrounding space and the world of elementary particles are formed. An essential distinction of that theory from the modern models in the classical and quantum field theories is that the potentials of physical fields (gravitational, electromagnetic, asf. gain exactly fixable, measurable values. Basic axioms and some conclusions of this theory are discussed. The theory of byuons predicts the existence of a new force and a new quantum information channel in nature. All objects of the Universe are shown to be united into the unique information field due to the huge interval of uncertainty in the coordinate (?x = L = 10^{28} cm of objects 4b (object formed during four-contact byuon-byuon interaction ( mc^{2}_{4b} = 33 eV forming the surrounding physical space. It is a new quantum information channel.

Y. A. Baurov

2011-08-01

236

PREFACE: Quantum Information, Communication, Computation and Cryptography

The application of quantum mechanics to information related fields such as communication, computation and cryptography is a fast growing line of research that has been witnessing an outburst of theoretical and experimental results, with possible practical applications. On the one hand, quantum cryptography with its impact on secrecy of transmission is having its first important actual implementations; on the other hand, the recent advances in quantum optics, ion trapping, BEC manipulation, spin and quantum dot technologies allow us to put to direct test a great deal of theoretical ideas and results. These achievements have stimulated a reborn interest in various aspects of quantum mechanics, creating a unique interplay between physics, both theoretical and experimental, mathematics, information theory and computer science. In view of all these developments, it appeared timely to organize a meeting where graduate students and young researchers could be exposed to the fundamentals of the theory, while senior experts could exchange their latest results. The activity was structured as a school followed by a workshop, and took place at The Abdus Salam International Center for Theoretical Physics (ICTP) and The International School for Advanced Studies (SISSA) in Trieste, Italy, from 12-23 June 2006. The meeting was part of the activity of the Joint European Master Curriculum Development Programme in Quantum Information, Communication, Cryptography and Computation, involving the Universities of Cergy-Pontoise (France), Chania (Greece), Leuven (Belgium), Rennes1 (France) and Trieste (Italy). This special issue of Journal of Physics A: Mathematical and Theoretical collects 22 contributions from well known experts who took part in the workshop. They summarize the present day status of the research in the manifold aspects of quantum information. The issue is opened by two review articles, the first by G Adesso and F Illuminati discussing entanglement in continuous variable systems, the second by T Prosen, discussing chaos and complexity in quantum systems. Both topics have theoretical as well as experimental relevance and are likely to witness a fast growing development in the near future. The remaining contributions present more specific and very recent results. They involve the study of the structure of quantum states and their estimation (B Baumgartner et al, C King et al, S Olivares et al, D Petz et al and W van Dam et al), of entanglement generation and its quantification (G Brida et al, F Ciccarello et al, G Costantini et al, O Romero-Isart et al, D Rossini et al, A Serafini et al and D Vitali et al), of randomness related effects on entanglement behaviour (I Akhalwaya et al, O Dahlsten et al and L Viola et al), and of abstract and applied aspects of quantum computation and communication (K Audenart, G M D'Ariano et al, N Datta et al, L C Kwek et al and M Nathanson et al). We would like to express our gratitude to the European Commission, the Abdus Salam ICTP, SISSA and Eurotech SpA (Amaro, Udine, Italy) for financial and/or logistic support. Special thanks also go to the workshop secretary Marina De Comelli, and the secretaries of the Department of Theoretical Physics, University of Trieste, Sabrina Gaspardis and Rosita Glavina for their precious help and assistance.

Benatti, F.; Fannes, M.; Floreanini, R.; Petritis, D.

2007-07-01

237

Schmidt information and entanglement in quantum systems

The purpose of this paper is to study entanglement of quantum states by means of Schmidt decomposition. The notion of Schmidt information which characterizes the non-randomness of correlations between two observers that conduct measurements of EPR-states is proposed. In two important particular cases - a finite number of Schmidt modes with equal probabilities and Gaussian correlations- Schmidt information is equal to Shannon information. A universal measure of a dependence of two variables is proposed. It is based on Schmidt number and it generalizes the classical Pearson correlation coefficient. It is demonstrated that the analytical model obtained can be applied to testing the numerical algorithm of Schmidt modes extraction. A thermodynamic interpretation of Schmidt information is given. It describes the level of entanglement and correlations of micro-system with its environment

Bogdanov, A Y; Valiev, K A; Bogdanov, Yu.I.

2005-01-01

238

Information Nano-Technologies: Transition from Classical to Quantum

In this presentation are discussed some problems, relevant with application of information technologies in nano-scale systems and devices. Some methods already developed in quantum information technologies may be very useful here. Here are considered two illustrative models: representation of data by quantum bits and transfer of signals in quantum wires.

Vlasov, Alexander Yu

2009-01-01

239

Quantum thermodynamic processes energy and information flow at the nanoscale

The point of departure of this book is a triad of themes: information theory, thermodynamics, and quantum mechanics. These are related: thermodynamics and quantum mechanics form the basis of quantum thermodynamics; information and quantum mechanics underly, inter alia, the notorious quantum measurement problem; and information and thermodynamics have much to say about control limits in the tension between micro- and macro-descriptions.Why does the world around us typically look thermal-from cosmology down to individual embedded spins? Do informational measures constitute additional (independen

Mahler, Guenter

2015-01-01

240

Quantum entanglement and informational activities of biomolecules

Our model of holographic Universe [1] explains the surprising property of quantum entanglement and reveals its biological implications. The suggested holographic mechanism handles 2D slices of the physical world as a whole. Fitting this simple holistic process in the Procrustean bed of individual particles interactions leads to intricacies of quantum theory with an unintelligible protrusion of distant correlations. Holographic medium imposes dependence of quantum effects on absolute positioning. Testing this prediction for a non-exponential radioactive decay could resolutely point to outside ``memory.'' The essence of Life is in the sophistication of macromolecules. Distinctions in biological information processing of nucleotides in DNA and amino acids in proteins are related to entropies of their structures. Randomness of genetic configurations as exposed by their maximal entropy is characteristic of passive identification rather than active storage functionality. Structural redundancy of proteins shows their operability, of which different foldings of prions is most indicative. Folding of one prion can reshape another prion without a direct contact appearing like ``quantum entanglement,'' or ``teleportation.'' Testing the surmised influence of absolute orientation on the prion reshaping can uncover the latency effects in the ``mad cow'' disease. 1. Simon Berkovich, TR-GWU-CS-07-006, http://www.cs.gwu.edu/research/reports.php

Al-Shargi, Hanan; Berkovich, Simon

2009-03-01

241

Quantum information processing beyond ten ion-qubits

International Nuclear Information System (INIS)

Successful processing of quantum information is, to a large degree, based on two aspects: a) the implementation of high-fidelity quantum gates, as well as b) avoiding or suppressing decoherence processes that destroy quantum information. The presented work shows our progress in the field of experimental quantum information processing over the last years: the implementation and characterisation of several quantum operations, amongst others the first realisation of the quantum Toffoli gate in an ion-trap based quantum computer. The creation of entangled states with up to 14 qubits serves as basis for investigations of decoherence processes. Based on the realised quantum operations as well as the knowledge about dominant noise processes in the employed apparatus, entanglement swapping as well as quantum operations within a decoherence-free subspace are demonstrated. (author)

242

Some Novel Thought Experiments Involving Foundations of Quantum Mechanics and Quantum Information

In this thesis, we have proposed some novel thought experiments involving foundations of quantum mechanics and quantum information theory, using quantum entanglement property. Concerning foundations of quantum mechanics, we have suggested some typical systems including two correlated particles which can distinguish between the two famous theories of quantum mechanics, i.e. the standard and Bohmian quantum mechanics, at the individual level of pair of particles. Meantime, the two theories present the same predictions at the ensemble level of particles. Regarding quantum information theory, two theoretical quantum communication schemes including quantum dense coding and quantum teleportation schemes have been proposed by using entangled spatial states of two EPR particles shared between two parties. It is shown that the rate of classical information gain in our dense coding scheme is greater than some previously proposed multi-qubit protocols by a logarithmic factor dependent on the dimension of Hilbert space. ...

Akhavan, O

2004-01-01

243

Storing Quantum Information via Atomic Dark Resonances

In this thesis, after a brief review of some concepts of Quantum Optics, we analyze a three-level atomic system in the conditions of electromagnetically induced transparency (EIT), and we investigate the propagation of a gaussian pulse along a cigar-shaped cloud of both cold and hot atoms in EIT regime. In particular, we show that it is possible to amplify a slow propagating pulse without population inversion. We also analyze the regime of anomalous light propagation showing that it is possible to observe superluminal energy propagation. In these conditions, it is possible to imprint reversibly ('write') the information carried by the photons onto the atoms, specifically as a coherent pattern of atomic spins, and later the information stored in the atomic spins can be transferred back ('read') to the light field, implementing in this way a quantum memory. Besides, we analyze the propagation of a quantum field in an EIT medium sustaining dark state polaritons (DSP) in a quasi-particle picture. Here, the decohe...

Caruso, Filippo

2010-01-01

244

Generalized mutual informations of quantum critical chains

We study the R\\'enyi mutual information $\\tilde{I}_n$ of the ground state of different critical quantum chains. The R\\'enyi mutual information definition that we use is based on the well established concept of the R\\'enyi divergence. We calculate this quantity numerically for several distinct quantum chains having either discrete $Z(Q)$ symmetries (Q-state Potts model with $Q=2,3,4$ and $Z(Q)$ parafermionic models with $Q=5,6,7,8$ and also Ashkin-Teller model with different anisotropies) or the $U(1)$ continuous symmetries(Klein-Gordon field theory, XXZ and spin-1 Fateev-Zamolodchikov quantum chains with different anisotropies). For the spin chains these calculations were done by expressing the ground-state wavefunctions in two special basis. Our results indicate some general behavior for particular ranges of values of the parameter $n$ that defines $\\tilde{I}_n$. For a system, with total size $L$ and subsystem sizes $\\ell$ and $L-\\ell$, the$\\tilde{I}_n$ has a logarithmic leading behavior given by $\\frac{\\til...

Alcaraz, F C

2015-01-01

245

Critical and maximally informative encoding between neural populations in the retina.

Computation in the brain involves multiple types of neurons, yet the organizing principles for how these neurons work together remain unclear. Information theory has offered explanations for how different types of neurons can maximize the transmitted information by encoding different stimulus features. However, recent experiments indicate that separate neuronal types exist that encode the same filtered version of the stimulus, but then the different cell types signal the presence of that stimulus feature with different thresholds. Here we show that the emergence of these neuronal types can be quantitatively described by the theory of transitions between different phases of matter. The two key parameters that control the separation of neurons into subclasses are the mean and standard deviation (SD) of noise affecting neural responses. The average noise across the neural population plays the role of temperature in the classic theory of phase transitions, whereas the SD is equivalent to pressure or magnetic field, in the case of liquid-gas and magnetic transitions, respectively. Our results account for properties of two recently discovered types of salamander Off retinal ganglion cells, as well as the absence of multiple types of On cells. We further show that, across visual stimulus contrasts, retinal circuits continued to operate near the critical point whose quantitative characteristics matched those expected near a liquid-gas critical point and described by the nearest-neighbor Ising model in three dimensions. By operating near a critical point, neural circuits can maximize information transmission in a given environment while retaining the ability to quickly adapt to a new environment. PMID:25675497

Kastner, David B; Baccus, Stephen A; Sharpee, Tatyana O

2015-02-24

246

Can non-private channels transmit quantum information?

We study the power of quantum channels with little or no capacity for private communication. Because privacy is a necessary condition for quantum communication, one might expect that such channels would be of little use for transmitting quantum states. Nevertheless, we find strong evidence that there are pairs of such channels that, when used together, can transmit far more quantum information than the sum of their individual private capacities. Because quantum transmissions...

Smith, Graeme; Smolin, John

2008-01-01

247

A Fast General Methodology for Information-Theoretically Optimal Encodings of Graphs

We propose a fast methodology for encoding graphs with information-theoretically minimum numbers of bits. Specifically, a graph with property pi is called a pi-graph. If pi satisfies certain properties, then an n-node m-edge pi-graph G can be encoded by a binary string X such that (1) G and X can be obtained from each other in O(n log n) time, and (2) X has at most beta(n)+o(beta(n)) bits for any continuous super-additive function beta(n) so that there are at most 2^{beta(n)+o(beta(n))} distinct n-node pi-graphs. The methodology is applicable to general classes of graphs; this paper focuses on planar graphs. Examples of such pi include all conjunctions over the following groups of properties: (1) G is a planar graph or a plane graph; (2) G is directed or undirected; (3) G is triangulated, triconnected, biconnected, merely connected, or not required to be connected; (4) the nodes of G are labeled with labels from {1, ..., ell_1} for ell_1 <= n; (5) the edges of G are labeled with labels from {1, ..., ell_2}...

He, X; Lu, H I; He, Xin; Kao, Ming-Yang; Lu, Hsueh-I

2000-01-01

248

NMR Quantum Information Processing with Para-Hydrogen

This thesis addresses the problems of initialization and separability in liquid state NMR based quantum information processors. We prepare pure quantum states lying above the entanglement threshold. Our pure state quantum computer derives its purity from the highly polarized nuclear spin states in the para-hydrogen molecule. The thesis begins with a critique of conventional NMR based quantum information processing outlining the major strengths and weaknesses of the technolog...

Anwar, M. S.

2005-01-01

249

Towards the quantification of the semantic information encoded in written language

Written language is a complex communication signal capable of conveying information encoded in the form of ordered sequences of words. Beyond the local order ruled by grammar, semantic and thematic structures affect long-range patterns in word usage. Here, we show that a direct application of information theory quantifies the relationship between the statistical distribution of words and the semantic content of the text. We show that there is a characteristic scale, roughly around a few thousand words, which establishes the typical size of the most informative segments in written language. Moreover, we find that the words whose contributions to the overall information is larger, are the ones more closely associated with the main subjects and topics of the text. This scenario can be explained by a model of word usage that assumes that words are distributed along the text in domains of a characteristic size where their frequency is higher than elsewhere. Our conclusions are based on the analysis of a large data...

Montemurro, Marcelo A

2009-01-01

250

Quantum Stochastics and Information Statistics, Filtering and Control

pt. A. Quantum probability and analysis. Approximation via toy Fock space - the vacuum-adapted viewpoint / A. C. R. Belton. Regular solutions of quantum stochastic differential equations / F. Fagnola. From algebraic to analytic double product integrals / R. Hudson. Product systems; a survey with commutants in view / M. Skeide. Clifford algebras, random graphs, and quantum random variables / R. Schott & G. S. Staples. The set of density operators modelled on an Orlicz space / R. F. Streater. Quantum extensions of the classical domination principle / V. Umanità. Analysis in operator spaces / B. Zegarli?ski -- pt. B. Quantum statistics, filtering and control. Quantum filtering and optimal control / V. P. Belavkin & S. Edwards. On the separation principle in quantum control / L. Bouten & R. van Handel. Conciliation of Bayes and pointwise quantum state estimation / R. D. Gill. Optimal quantum feedback for canonical observables / J. Gough. Feedback control of quantum systems / M. James. Local asymptotic normality and optimal estimation for d-dimensional quantum systems / J. Kahn & M. Guza -- pt. C. Quantum measurements and information. Information gain in quantum continual measurements / A. Barchielli & G. Lupieri. Noisy qutrit channel / A. Chici?ska & K. W?dkiewicz. Additivity of entangled channel capacity given quantum input states / V. P. Belavkin & X. Dai. Classical coding and the Cauchy-Schwarz inequality / B. Janssens. Note on information transmission in quantum systems / N. Watanabe.

Belavkin, V. P.; Gut?, M.

2008-08-01

251

Towards quantum information processing with impurity spins in silicon

International Nuclear Information System (INIS)

The finding of algorithms for factoring and data base search that promise substantially increased computational power, as well as the expectation for efficient simulation of quantum systems have spawned an intense interest in the realization of quantum information processors [1]. Solid state implementations of quantum computers scaled to >1000 quantum bits ('qubits') promise to revolutionize information technology, but requirements with regard to sources of decoherence in solid state environments are sobering. Here, we briefly review basic approaches to impurity spin based qubits and present progress in our effort to form prototype qubit test structures. Since Kane's bold silicon based spin qubit proposal was first published in 1998 [2], several groups have taken up the challenge of fabricating elementary building blocks [3-5], and several exciting variations of single donor qubit schemes have emerged [6]. Single donor atoms, e. g. 31P, are 'natural quantum dots' in a silicon matrix, and the spins of electrons and nuclei of individual donor atoms are attractive two level systems for encoding of quantum information. The coupling to the solid state environment is weak, so that decoherence times are long (hours for nuclear spins, and ?60 ms for electron spins of isolated P atoms in silicon [7]), while control over individual spins for one qubit operations becomes possible when individual qubits are aligned to electrodes that allow shifting of electron spin resonances in global magnetic fields by application of control voltages. Two qubit operations require an interaction that couples, and entangles qubits. The exchange interaction, J, is a prime candidate for mediation of two qubit operations, since it can be turned on and off by variation of the wave function overlap between neighboring qubits, and coherent manipulation of quantum information with the exchange interaction alone has been shown to be universal [8]. However, detailed band structure calculations and theoretical analysis of J coupling between electrons bound to phosphorus atoms at low temperatures in silicon revealed strong oscillations of the coupling strength as a function of donor spacing on a sub-nm length scale [9]. These oscillations translate into scattering of interaction strength for ensembles of qubit spacings which in turn poses a serious obstacle to scalability [10]. Two alternatives to J coupling are dipolar coupling [11] and spin coherent shuttling of electrons between donor sites [12]. Readout of single electron spins poses another critical challenge [13, 14], and inferring spin orientations from charge measurements in spin dependent charge transfer reactions seems to be viable route to single shot single spin readout. This readout can be accomplished with single electron transistors, which are used as sensitive electrometers [15]. Impurity spin based qubit schemes in silicon have to overcome a significant nanofabrication challenge so that a test bed regime can be entered where fundamental properties and rudimentary operations can be investigated. In order to form such test devices, three key components have to be integrated: (1) an array of single dopant atoms has to be formed; (2) single dopant atoms are aligned to control gates; and (3) single dopant atoms are also aligned to a readout device

252

Locally Accessible Information of Multisite Quantum Ensembles Violates Monogamy

Locally accessible information is a useful information-theoretic physical quantity of an ensemble of multiparty quantum states. We find it has properties akin to quantum as well as classical correlations of single multiparty quantum states. It satisfies monotonicity under local quantum operations and classical communication. However we show that it does not follow monogamy, an important property usually satisfied by quantum correlations, and actually violates any such relation to the maximal extent. Violation is obtained even for locally indistinguishable, but globally orthogonal, multisite ensembles. The results assert that while single multiparty quantum states are monogamous with respect to their shared quantum correlations, ensembles of multiparty quantum states may not be so. The results have potential implications for quantum communication systems.

De, Aditi Sen

2011-01-01

253

In contrast to historical assumptions about the affective nature of animal vocalizations, it is now clear that many vertebrates are capable of producing specific alarm calls in response to different predators, calls that provide information that goes beyond the motivational state of a caller. However, although these calls function referentially, it does not mean that they are devoid of motivational content. Studies on meerkats (Suricata suricatta) directly support this conclusion. The acousti...

Holle?n, L. I.; Manser, M. B.

2007-01-01

254

Information leakage resistant quantum dialogue against collective noise

In this paper, two information leakage resistant quantum dialogue (QD) protocols over a collective-noise channel are proposed. Decoherence-free subspace (DFS) is used to erase the influence from two kinds of collective noise, i.e., collective-dephasing noise and collective-rotation noise, where each logical qubit is composed of two physical qubits and free from noise. In each of the two proposed protocols, the secret messages are encoded on the initial logical qubits via two composite unitary operations. Moreover, the single-photon measurements rather than the Bell-state measurements or the more complicated measurements are needed for decoding, making the two proposed protocols easier to implement. The initial state of each logical qubit is privately shared between the two authenticated users through the direct transmission of its auxiliary counterpart. Consequently, the information leakage problem is avoided in the two proposed protocols. Moreover, the detailed security analysis also shows that Eve's several famous active attacks can be effectively overcome, such as the Trojan horse attack, the intercept-resend attack, the measure-resend attack, the entangle-measure attack and the correlation-elicitation (CE) attack.

Ye, TianYu

2014-12-01

255

Entropy of quantum channel in the theory of quantum information

Quantum channels, also called quantum operations, are linear, trace preserving and completely positive transformations in the space of quantum states. Such operations describe discrete time evolution of an open quantum system interacting with an environment. The thesis contains an analysis of properties of quantum channels and different entropies used to quantify the decoherence introduced into the system by a given operation. Part I of the thesis provides a general introduc...

Roga, Wojciech

2011-01-01

256

Instantaneous Quantum Channel Estimation during Quantum Information Processing

We present a nonintrusive method for reliably estimating the noise level during quantum computation and quantum communication protected by quantum error-correcting codes. As preprocessing of quantum error correction, our scheme estimates the current noise level through a negligible amount of classical computation using error syndromes and updates the decoder's knowledge on the spot before inferring the locations of errors. This preprocessing requires no additional quantum in...

Fujiwara, Yuichiro

2014-01-01

257

International Nuclear Information System (INIS)

Spectral switching is now a well-known phenomenon. Recently, its potential applications have been explored for information encoding and transmission in free space. In this paper, we demonstrate a novel type of scheme to encode and process information at multiple levels through spectral switching. A new technique is also proposed to establish multiple parallel free-space optical (FSO) links using a single critical direction in the phase singularity domain of diffracted polychromatic light. These are contrived ideas on the basis of theoretical and experimental studies carried out so far on spectral switching. The study might find potential application in the fields of FSO interconnects and FSO communication

258

Quantum Holonomies for Quantum Computing

Holonomic Quantum Computation (HQC) is an all-geometrical approach to quantum information processing. In the HQC strategy information is encoded in degenerate eigen-spaces of a parametric family of Hamiltonians. The computational network of unitary quantum gates is realized by driving adiabatically the Hamiltonian parameters along loops in a control manifold. By properly designing such loops the non-trivial curvature of the underlying bundle geometry gives rise to unitary tr...

Pachos, Jiannis; Zanardi, Paolo

2000-01-01

259

Information criteria for efficient quantum state estimation

International Nuclear Information System (INIS)

Recently several more efficient versions of quantum state tomography have been proposed, with the purpose of making tomography feasible even for many-qubit states. The number of state parameters to be estimated is reduced by tentatively introducing certain simplifying assumptions on the form of the quantum state, and subsequently using the data to rigorously verify these assumptions. The simplifying assumptions considered so far were (i) the state can be well approximated to be of low rank, or (ii) the state can be well approximated as a matrix product state, or (iii) only the permutationally invariant part of the density matrix is determined. We add one more method in that same spirit: We allow in principle any model for the state, using any (small) number of parameters (which can, e.g., be chosen to have a clear physical meaning), and the data are used to verify the model. The proof that this method is valid cannot be as strict as in the above-mentioned cases, but is based on well-established statistical methods that go under the name of ''information criteria.'' We exploit here, in particular, the Akaike information criterion. We illustrate the method by simulating experiments on (noisy) Dicke states.

260

Information-Technology Approach to Quantum Feedback Control

Quantum control theory is profitably reexamined from the perspective of quantum information, two results on the role of quantum information technology in quantum feedback control are presented and two quantum feedback control schemes, teleportation-based distant quantum feedback control and quantum feedback control with quantum cloning, are proposed. In the first feedback scheme, the output from the quantum system to be controlled is fed back into the distant actuator via teleportation to alter the dynamics of system. The result theoretically shows that it can accomplish some tasks such as distant feedback quantum control that Markovian or Bayesian quantum feedback can not complete. In the second feedback strategy, the design of quantum feedback control algorithms is separated into a state recognition step, which gives "on-off" signal to the actuator through recognizing some copies from the cloning machine, and a feedback (control) step using another copies of cloning machine. A compromise between information acquisition and measurement disturbance is established, and this strategy can perform some quantum control tasks with coherent feedback.

Dong, Dao-Yi; Zhang, Chen-Bin; Chen, Zong-Hai; Chen, Chun-Lin

261

Quantum Computers: A New Paradigm in Information Technology

Directory of Open Access Journals (Sweden)

Full Text Available The word 'quantum' comes from the Latin word quantus meaning 'how much'. Quantum computing is a fundamentally new mode of information processing that can be performed only by harnessing physical phenomena unique to quantum mechanics (especially quantum interference. Paul Benioff of the Argonne National Laboratory first applied quantum theory to computers in 1981 and David Deutsch of Oxford proposed quantum parallel computers in 1985, years before the realization of qubits in 1995. However, it may be well into the 21st century before we see quantum computing used at a commercial level for a variety of reasons discussed in this paper. The subject of quantum computing brings together ideas from classical information theory, computer science, and quantum physics. This paper discusses some of the current advances, applications, and chal-lenges of quantum computing as well as its impact on corporate computing and implications for management. It shows how quantum computing can be utilized to process and store information, as well as impact cryptography for perfectly secure communication, algorithmic searching, factorizing large numbers very rapidly, and simulating quantum-mechanical systems efficiently. A broad interdisciplinary effort will be needed if quantum com-puters are to fulfill their destiny as the world's fastest computing devices.

Mahesh S. Raisinghani

2001-01-01

262

Objectivity in a noisy photonic environment through quantum state information broadcasting.

Recently, the emergence of classical objectivity as a property of a quantum state has been explicitly derived for a small object embedded in a photonic environment in terms of a spectrum broadcast form-a specific classically correlated state, redundantly encoding information about the preferred states of the object in the environment. However, the environment was in a pure state and the fundamental problem was how generic and robust is the conclusion. Here, we prove that despite the initial environmental noise, the emergence of the broadcast structure still holds, leading to the perceived objectivity of the state of the object. We also show how this leads to a quantum Darwinism-type condition, reflecting the classicality of proliferated information in terms of a limit behavior of the mutual information. Quite surprisingly, we find "singular points" of the decoherence, which can be used to faithfully broadcast a specific classical message through the noisy environment. PMID:24724630

Korbicz, J K; Horodecki, P; Horodecki, R

2014-03-28

263

Quantum information and information loss in general relativity

When it comes to performing thought experiments with black holes, Einstein-Bohr like discussions have to be re-opened. For instance one can ask what happens to the quantum state of a black hole when the wave function of a single ingoing particle is replaced by an other one that is orthogonal to the first, while keeping the total energy and momentum unaffected. Observers at t\\rightarrow\\infty will not notice any difference, or so it seems in certain calculational schemes. If one argues that this cannot be correct for the complete theory because a black hole should behave in accordance with conventional quantum mechanics, implying a unitary evolution, one is forced to believe that local quantum field theory near the black hole horizon is very different from what had hitherto been accepted. This would give us very valuable information concerning physics in the Planck length region, notably a mathematical structure very close to that of super string theory, but it does lead to conceptual difficulties. An approach...

't Hooft, Gerardus

1995-01-01

264

A New Approach to Encoding and Hiding Information in an Image

Directory of Open Access Journals (Sweden)

Full Text Available The information age brings some unique challenges to society. New technology and new applications bring new threats and force us to invent new protection mechanisms. So every few years, computer security needs to reinvent itself. In this paper we propose a new image encoding system utilizing fractal theories; this approach exploits the main feature of fractals generated by IFS techniques. Two levels of encryption and decryption methods performed to enhance the security of the system, this is based on the fact that all fractal functions use real number to ensure satisfaction of contraction property. If the cryptosystem parameters are based on real numbers (a continuous infinite interval then the search space is massive. Hence, many well known attacks fail to solve the nonlinear systems and find the imprecise secret key parameter from the given public one. Even if it is theoretically possible, it is computationally not feasible. The encrypted date represents the attractor generated by the IFS transformation, Collage theorem is used to find the IFS for decrypting data. The proposed method gives the possibility to hide maximum amount of data in an image that represent the attractor of the IFS without degrading its quality. Also to make the hidden data robust enough to withstand known cryptographic attacks and image processing techniques which do not change the appearance of image. The security level is high because the jointly coded images cannot be correctly reconstructed without all the required information.

Fadhil Salman Abed

2011-09-01

265

The vision for graphene and other two-dimensional electronics is the direct production of nanoelectronic circuits and barrier materials from a single precursor sheet. DNA origami and single-stranded tiles are powerful methods to encode complex shapes within a DNA sequence, but their translation to patterning other nanomaterials has been limited. Here we develop a metallized DNA nanolithography that allows transfer of spatial information to pattern two-dimensional nanomaterials capable of plasma etching. Width, orientation and curvature can be programmed by specific sequence design and transferred, as we demonstrate for graphene. Spatial resolution is limited by distortion of the DNA template upon Au metallization and subsequent etching. The metallized DNA mask allows for plasmonic enhanced Raman spectroscopy of the underlying graphene, providing information on defects, doping and lattice symmetry. This DNA nanolithography enables wafer-scale patterning of two-dimensional electronic materials to create diverse circuit elements, including nanorings, three- and four-membered nanojunctions, and extended nanoribbons. PMID:23575667

Jin, Zhong; Sun, Wei; Ke, Yonggang; Shih, Chih-Jen; Paulus, Geraldine L C; Hua Wang, Qing; Mu, Bin; Yin, Peng; Strano, Michael S

2013-01-01

266

In the Crocodylia order, all species are known for their ability to produce sounds in several communication contexts. Though recent experimental studies have brought evidence of the important biological role of young crocodilian calls, especially at hatching time, the juvenile vocal repertoire still needs to be clarified in order to describe thoroughly the crocodilian acoustic communication channel. The goal of this study is to investigate the acoustic features (structure and information coding) in the contact call of juveniles from three different species (Nile crocodile Crocodylus niloticus, Black caiman, Melanosuchus niger and Spectacled caiman, Caiman crocodilus). We have shown that even though substantial structural differences exist between the calls of different species, they do not seem relevant for crocodilians. Indeed, juveniles and adults from the species studied use a similar and non-species-specific way of encoding information, which relies on frequency modulation parameters. Interestingly, using conditioning experiments, we demonstrated that this tolerance in responses to signals of different acoustic structures was unlikely to be related to a lack of discriminatory abilities. This result reinforced the idea that crocodilians have developed adaptations to use sounds efficiently for communication needs. PMID:22820991

Vergne, Amélie L; Aubin, Thierry; Martin, Samuel; Mathevon, Nicolas

2012-11-01

267

This paper proposes a generic approach for providing enhanced security to communication systems which encode their data for reliability before encrypting it through a stream cipher for security. We call this counter-intuitive technique the {\\em encoding-encryption} paradigm, and use as motivating example the standard for mobile telephony GSM. The enhanced security is based on a dedicated homophonic or wire-tap channel coding that introduces pure randomness, combined with the randomness of the noise occurring over the communication channel. Security evaluation regarding recovery of the secret key employed in the keystream generator is done through an information theoretical approach. We show that with the aid of a dedicated wire-tap encoder, the amount of uncertainty that the adversary must face about the secret key given all the information he could gather during different passive or active attacks he can mount, is a decreasing function of the sample available for cryptanalysis. This means that the wire-tap e...

Oggier, Frederique

2010-01-01

268

The current study sought to examine the relative contributions of encoding and retrieval processes in accessing contextual information in the absence of item memory using an extralist cuing procedure in which the retrieval cues used to query memory for contextual information were related to the target item but never actually studied. In Experiments 1 and 2, participants studied 1 category member (e.g., onion) from a variety of different categories and at test were presented with an unstudied category label (e.g., vegetable) to probe memory for item and source information. In Experiments 3 and 4, 1 member of unidirectional (e.g., credit or card) or bidirectional (e.g., salt or pepper) associates was studied, whereas the other unstudied member served as a test probe. When recall failed, source information was accessible only when items were processed deeply during encoding (Experiments 1 and 2) and when there was strong forward associative strength between the retrieval cue and target (Experiments 3 and 4). These findings suggest that a retrieval probe diagnostic of semantically related item information reinstantiates information bound in memory during encoding that results in reactivation of associated contextual information, contingent upon sufficient learning of the item itself and the association between the item and its context information. PMID:24933700

Ball, B Hunter; DeWitt, Michael R; Knight, Justin B; Hicks, Jason L

2014-09-01

269

Information Constraints on Quantum Measurements 1.Dynamics and Information Patterns

The quantum-mechanical constraints on the information transfer in the measuring devices and systems and their influence on measurement outcomes are studied. As the model example, the measurement of dichotomic observable A, describing the object S, is performed by the information system O during S,O interaction. The measurement of two S ensembles is considered, first one is the pure ensemble, in which S state is the superposition of A eigenstates |S_1,2>, other one is their probabilistic mixture. It is shown that this information constraints, induced by Heisenberg commutation relations, bloke the transfer of information about the purity of S state; for the studied ensembles it is described by the expectation value of observable A', conjugated to A. Due to this restrictions, O can't discriminate the pure and mixed S ensembles with the same A expectation value. We demonstrate that this information losses result in the appearance of stochasticity in the measurement of such S pure ensemble, so that in the individu...

Mayburov, S

2010-01-01

270

Dynamical Casimir effect in quantum-information processing

We demonstrate, in the regime of ultrastrong matter-field coupling, the strong connection between the dynamical Casimir effect (DCE) and the performance of quantum-information protocols. Our results are illustrated by means of a realistic quantum communication channel and show that the DCE is a fundamental limit for quantum computation and communication and that novel schemes are required to implement ultrafast and reliable quantum gates. Strategies to partially counteract the DCE are also discussed.

Benenti, Giuliano; D'Arrigo, Antonio; Siccardi, Stefano; Strini, Giuliano

2014-11-01

271

A neural-network-like quantum information processing system

The Hopfield neural networks and the holographic neural networks are models which were successfully simulated on conventional computers. Starting with these models, an analogous fundamental quantum information processing system is developed in this article. Neuro-quantum interaction can regulate the "collapse"-readout of quantum computation results. This paper is a comprehensive introduction into associative processing and memory-storage in quantum-physical framework.

Perus, Mitja; Bischof, Horst

2003-01-01

272

An improved derivation of minimum information quantum gravity

Minimum information quantum gravity (MIQG) is a theory of quantum gravity which requires no explicite microscopic quantum structure. In this article, it is shown that the MIQG action can be derived using a more elegant and straight-forward method than in the first existence proof. The required assumptions are dramatically reduced. In particular, former assumptions regarding the existence of quantum boxes, the exact differential of the entropy variation and the role of the bo...

Mandrin, Pierre A.

2014-01-01

273

Von Neumann and Luders postulates and quantum information theory

This note is devoted to some foundational aspects of quantum mechanics (QM) related to quantum information (QI) theory, especially quantum teleportation and ``one way quantum computing.'' We emphasize the role of the projection postulate (determining post-measurement states) in QI and the difference between its L\\"uders and von Neumann versions. These projection postulates differ crucially in the case of observables with degenerate spectra. Such observables play the fundamen...

Khrennikov, Andrei

2009-01-01

274

Conservation of information and the foundations of quantum mechanics

We review a recent approach to the foundations of quantum mechanics inspired by quantum information theory. The approach is based on a general framework, which allows one to address a large class of physical theories which share basic information-theoretic features. We first illustrate two very primitive features, expressed by the axioms of causality and purity-preservation, which are satisfied by both classical and quantum theory. We then discuss the axiom of purification, which expresses a strong version of the Conservation of Information and captures the core of a vast number of protocols in quantum information. Purification is a highly non-classical feature and leads directly to the emergence of entanglement at the purely conceptual level, without any reference to the superposition principle. Supplemented by a few additional requirements, satisfied by classical and quantum theory, it provides a complete axiomatic characterization of quantum theory for finite dimensional systems.

Chiribella, G

2014-01-01

275

Quantum-Classical Hybrid for Information Processing

Based upon quantum-inspired entanglement in quantum-classical hybrids, a simple algorithm for instantaneous transmissions of non-intentional messages (chosen at random) to remote distances is proposed. The idea is to implement instantaneous transmission of conditional information on remote distances via a quantum-classical hybrid that preserves superposition of random solutions, while allowing one to measure its state variables using classical methods. Such a hybrid system reinforces the advantages, and minimizes the limitations, of both quantum and classical characteristics. Consider n observers, and assume that each of them gets a copy of the system and runs it separately. Although they run identical systems, the outcomes of even synchronized runs may be different because the solutions of these systems are random. However, the global constrain must be satisfied. Therefore, if the observer #1 (the sender) made a measurement of the acceleration v(sub 1) at t =T, then the receiver, by measuring the corresponding acceleration v(sub 1) at t =T, may get a wrong value because the accelerations are random, and only their ratios are deterministic. Obviously, the transmission of this knowledge is instantaneous as soon as the measurements have been performed. In addition to that, the distance between the observers is irrelevant because the x-coordinate does not enter the governing equations. However, the Shannon information transmitted is zero. None of the senders can control the outcomes of their measurements because they are random. The senders cannot transmit intentional messages. Nevertheless, based on the transmitted knowledge, they can coordinate their actions based on conditional information. If the observer #1 knows his own measurements, the measurements of the others can be fully determined. It is important to emphasize that the origin of entanglement of all the observers is the joint probability density that couples their actions. There is no centralized source, or a sender of the signal, because each receiver can become a sender as well. An observer receives a signal by performing certain measurements synchronized with the measurements of the others. This means that the signal is uniformly and simultaneously distributed over the observers in a decentralized way. The signals transmit no intentional information that would favor one agent over another. All the sequence of signals received by different observers are not only statistically equivalent, but are also point-by-point identical. It is important to assume that each agent knows that the other agent simultaneously receives the identical signals. The sequences of the signals are true random, so that no agent could predict the next step with the probability different from those described by the density. Under these quite general assumptions, the entangled observers-agents can perform non-trivial tasks that include transmission of conditional information from one agent to another, simple paradigm of cooperation, etc. The problem of behavior of intelligent agents correlated by identical random messages in a decentralized way has its own significance: it simulates evolutionary behavior of biological and social systems correlated only via simultaneous sensoring sequences of unexpected events.

Zak, Michail

2011-01-01

276

Single-Photon Secure Quantum Dialogue Protocol Without Information Leakage

Combining the idea of ping-pong protocol with Controlled-NOT operation, we propose a secure quantum dialogue protocol based on single-photonss. Bob obtains the information of the encrypted quantum state by performing Controlled-NOT operation on the auxiliary particle and the encrypted single-photonss. Unlike the previous quantum dialogue protocols based on single-photonss, the proposed protocol not only overcomes information leakage but also possesses an acceptable efficiency.

Zhou, Nan-Run; Hua, Tian-Xiang; Wu, Gui-Tong; He, Chao-Sheng; Zhang, Ye

2014-11-01

277

Simple scheme for expanding photonic cluster states for quantum information

International Nuclear Information System (INIS)

We show how an entangled cluster state encoded in the polarization of single photons can be straightforwardly expanded by deterministically entangling additional qubits encoded in the path degree of freedom of the constituent photons. This can be achieved using a polarization-path controlled-phase gate. We experimentally demonstrate a practical and stable realization of this approach by using a Sagnac interferometer to entangle a path qubit and polarization qubit on a single photon. We demonstrate precise control over phase of the path qubit to change the measurement basis and experimentally demonstrate properties of measurement-based quantum computing using a two-photon, three-qubit cluster state.

278

Information criteria for efficient quantum state estimation

Recently several more efficient versions of quantum state tomography have been proposed, with the purpose of making tomography feasible even for many-qubit states. The number of state parameters to be estimated is reduced by tentatively introducing certain simplifying assumptions on the form of the quantum state, and subsequently using the data to rigorously verify these assumptions. The simplifying assumptions considered so far were (i) the state can be well approximated to be of low rank, or (ii) the state can be well approximated as a matrix product state. We add one more method in that same spirit: we allow in principle any model for the state, using any (small) number of parameters (which can, e.g., be chosen to have a clear physical meaning), and the data are used to verify the model. The proof that this method is valid cannot be as strict as in above-mentioned cases, but is based on well-established statistical methods that go under the name of "information criteria." We exploit here, in particular, th...

Yin, J O S

2011-01-01

279

On the Possibility of Quantum Informational Structural Realism

In The Philosophy of Information (2011 book), Luciano Floridi presents an ontological theory of Being qua Being, which he calls "Informational Structural Realism", a theory which applies, he says, to every possible world. He identifies primordial information ("dedomena") as the foundation of any structure in any possible world. The present essay examines Floridi's defense of that theory, as well as his refutation of "Digital Ontology" (which some people might confuse with his own). Then, using Floridi's ontology as a starting point, the present essay adds quantum features to dedomena, yielding an ontological theory for our own universe, Quantum Informational Structural Realism, which provides a metaphysical interpretation of key quantum phenomena, and diminishes the "weirdness" or "spookiness" of quantum mechanics. Key Words: digital ontology, dedomena, structural realism, quantum information, primordial qubit

Bynum, Terrell Ward

2013-01-01

280

Photonic Architecture for Scalable Quantum Information Processing in Diamond

Physics and information are intimately connected, and the ultimate information processing devices will be those that harness the principles of quantum mechanics. Many physical systems have been identified as candidates for quantum information processing, but none of them are immune from errors. The challenge remains to find a path from the experiments of today to a reliable and scalable quantum computer. Here, we develop an architecture based on a simple module comprising an optical cavity containing a single negatively charged nitrogen vacancy center in diamond. Modules are connected by photons propagating in a fiber-optical network and collectively used to generate a topological cluster state, a robust substrate for quantum information processing. In principle, all processes in the architecture can be deterministic, but current limitations lead to processes that are probabilistic but heralded. We find that the architecture enables large-scale quantum information processing with existing technology.

Nemoto, Kae; Trupke, Michael; Devitt, Simon J.; Stephens, Ashley M.; Scharfenberger, Burkhard; Buczak, Kathrin; Nöbauer, Tobias; Everitt, Mark S.; Schmiedmayer, Jörg; Munro, William J.

2014-07-01

281

Episodic retrieval involves early and sustained effects of reactivating information from encoding.

Several fMRI studies have shown a correspondence between the brain regions activated during encoding and retrieval, consistent with the view that memory retrieval involves hippocampally-mediated reinstatement of cortical activity. With the limited temporal resolution of fMRI, the precise timing of such reactivation is unclear, calling into question the functional significance of these effects. Whereas reactivation influencing retrieval should emerge with neural correlates of retrieval success, that signifying post-retrieval monitoring would trail retrieval. The present study employed EEG to provide a temporal landmark of retrieval success from which we could investigate the sub-trial time course of reactivation. Pattern-classification analyses revealed that early-onsetting reactivation differentiated the outcome of recognition-memory judgments and was associated with individual differences in behavioral accuracy, while reactivation was also evident in a sustained form later in the trial. The EEG findings suggest that, whereas prior fMRI findings could be interpreted as reflecting the contribution of reinstatement to retrieval success, they could also indicate the maintenance of episodic information in service of post-retrieval evaluation. PMID:25463451

Johnson, Jeffrey D; Price, Mason H; Leiker, Emily K

2015-02-01

282

Directory of Open Access Journals (Sweden)

Full Text Available We developed a model of the input circuitry of the FD1 cell, an identified motion-sensitive interneuron in the blowfly’s visual system. The model circuit successfully reproduces the FD1 cell’s most conspicuous property: Its larger responses to objects than to spatially extended patterns. The model circuit also mimics the time-dependent responses of FD1 to dynamically complex naturalistic stimuli, shaped by the blowfly’s saccadic flight and gaze strategy: The FD1 responses are enhanced when, as a consequence of self-motion, a nearby object crosses the receptive field during intersaccadic intervals. Moreover, the model predicts that these object-induced responses are superimposed by pronounced pattern-dependent fluctuations during movements on virtual test flights in a three-dimensional environment with systematic modifications of the environmental patterns. Hence, the FD1 cell is predicted to detect not unambiguously objects defined by the spatial layout of the environment, but to be also sensitive to objects distinguished by textural features. These ambiguous detection abilities suggest an encoding of information about objects - irrespective of the features by which the objects are defined - by a population of cells, with the FD1 cell presumably playing a prominent role in such an ensemble.

PatrickHennig

2012-03-01

283

Non-Markovianity as a Resource for Quantum Technologies

Quantum technologies rely on the ability to coherently manipulate, process and transfer information, encoded in quantum states, along quantum channels. Decoherence induced by the environment introduces errors, thus setting limits on the efficiency of any quantum-enhanced protocol or device. A fundamental bound on the ability of a noisy quantum channel to transmit quantum (classical) information is given by its quantum (classical) capacity. Generally, the longer is a quantum ...

Bylicka, Bogna; Chrus?cin?ski, Dariusz; Maniscalco, Sabrina

2013-01-01

284

Quantum Logic circuits for solid-state quantum information processing

This thesis describes research on the design of quantum logic circuits suitable for the experimental demonstration of a three-qubit quantum computation prototype. The design is based on a proposal for optically controlled, solid-state quantum logic gates. In this proposal, typically referred to as SFG model, the qubits are stored in the electron spin of donors in a solid-state substrate while the interactions between them are mediated through the optical excitation of control particles placed...

Del Duce, A.

2010-01-01

285

Classical and quantum Fisher information in the geometrical formulation of quantum mechanics

International Nuclear Information System (INIS)

The tomographic picture of quantum mechanics has brought the description of quantum states closer to that of classical probability and statistics. On the other hand, the geometrical formulation of quantum mechanics introduces a metric tensor and a symplectic tensor (Hermitian tensor) on the space of pure states. By putting these two aspects together, we show that the Fisher information metric, both classical and quantum, can be described by means of the Hermitian tensor on the manifold of pure states.

286

Classical and quantum Fisher information in the geometrical formulation of quantum mechanics

Energy Technology Data Exchange (ETDEWEB)

The tomographic picture of quantum mechanics has brought the description of quantum states closer to that of classical probability and statistics. On the other hand, the geometrical formulation of quantum mechanics introduces a metric tensor and a symplectic tensor (Hermitian tensor) on the space of pure states. By putting these two aspects together, we show that the Fisher information metric, both classical and quantum, can be described by means of the Hermitian tensor on the manifold of pure states.

Facchi, Paolo [Dipartimento di Matematica, Universita di Bari, I-70125 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); MECENAS, Universita Federico II di Napoli and Universita di Bari (Italy); Kulkarni, Ravi [Vivekananda Yoga Research Foundation, Bangalore 560 080 (India); Man' ko, V.I., E-mail: manko@na.infn.i [P.N. Lebedev Physical Institute, Leninskii Prospect 53, Moscow 119991 (Russian Federation); Marmo, Giuseppe [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , I-80126 Napoli (Italy); INFN, Sezione di Napoli, I-80126 Napoli (Italy); MECENAS, Universita Federico II di Napoli and Universita di Bari (Italy); Sudarshan, E.C.G. [Department of Physics, University of Texas, Austin, TX 78712 (United States); Ventriglia, Franco [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , I-80126 Napoli (Italy); INFN, Sezione di Napoli, I-80126 Napoli (Italy); MECENAS, Universita Federico II di Napoli and Universita di Bari (Italy)

2010-11-01

287

Transition from Quantum to Classical Information in a Superfluid

Whereas the entropy of any deterministic classical system described by a principle of least action is zero, one can assign a "carry quantum information" to quantum mechanical degree of freedom equal to Hausdorff area of the deviation from a classical path. This raises the question whether superfluids have a quantum information. We show that in general the transition from the classical to quantum behavior depends on the probing length scale, and occurs for microscopic length scales, except when the interactions between the particles are very weak. This transition explains why, on macroscopic length scales, physics is described by classical equations.

Granik, A

2003-01-01

288

Although the hippocampus is critical for the formation and retrieval of spatial memories, it is unclear how subregions are differentially involved in these processes. Previous high-resolution functional magnetic resonance imaging (fMRI) studies have shown that CA2, CA3, and dentate gyrus (CA23DG) regions support the encoding of novel associations, while the subicular cortices support the retrieval of these learned associations. Whether these subregions are employed in humans during encoding a...

Suthana, Nanthia; Ekstrom, Arne; Moshirvaziri, Saba; Knowlton, Barbara; Bookheimer, Susan

2010-01-01

289

The capacity of black holes to transmit quantum information

We study the properties of the quantum information transmission channel that emerges from the quantum dynamics of particles interacting with a black hole horizon. We calculate the quantum channel capacity in two limiting cases where a single-letter capacity is known to exist: the limit of perfectly reflecting and perfectly absorbing black holes. We find that the perfectly reflecting black hole channel is closely related to the Unruh channel and that its capacity is non-vanishing, allowing for the perfect reconstruction of quantum information. We also find that the complementary channel (transmitting entanglement behind the horizon) is entanglement-breaking in this case, with vanishing capacity. We calculate the quantum capacity of the black hole channel in the limit of a perfectly absorbing black hole and find that this capacity vanishes, while the capacity of the complementary channel is non-vanishing instead, implying that the quantum state itself survives unharmed beyond the horizon. These results together...

Bradler, Kamil

2014-01-01

290

School on Advances in Quantum Information: Theory and Applications

The Abdus Salam International Centre for Theoretical Physics (ICTP) in collaboration with the University Mohamed V Agdal in Rabat and the COST Action MP1006, is organizing a "School in Advances in Quantum Information: Theory and Applications" from 15 to 19 September 2014, followed by the "3rd Quantum Africa Conference: Advances in Quantum Sciences", from 22 to 26 Sep 2014, both events to be held at University Mohamed V Agdal in Rabat, Morocco. The last years have witnessed fast growing developments in the use of quantum mechanics in technology-oriented and information-related fields, including metrology, nano-devices development, biophysics together with computation, communication and cryptography. Topics as quantum entanglement, quantum coherence and decohering phenomena both in microscopic and mesoscopic systems have been attracting the interest of a growing number of researchers, especially young ones from developing countries. A School on these themes would provide an invaluable focus on the interdiscipl...

2014-01-01

291

Semiconductor sources of twin photons for quantum information

Energy Technology Data Exchange (ETDEWEB)

A large number of scientific proposals made in the last few years are based on transport and manipulation of information using single quantum objects. Some of them make use of entanglement in pairs of particles such as twin photons. Although theoretical proposals have demonstrated highly interesting perspectives in the quantum information domain, experimental realizations and applications still suffer from the complexity of experimental set-ups and technological limitations. This paper presents various approaches aiming at efficient twin photon semiconductor sources. The emergence of these compact and integrated devices would be an important technological breakthrough in quantum information applications.

Ducci, S [Laboratoire Materiaux et Phenomenes Quantiques, UMR 7162, Universite Paris 7-Denis Diderot, 2, Place Jussieu, Case 7021, 75251 Paris (France); Lanco, L [Laboratoire Materiaux et Phenomenes Quantiques, UMR 7162, Universite Paris 7-Denis Diderot, 2, Place Jussieu, Case 7021, 75251 Paris (France); Seurin, Y [Laboratoire Materiaux et Phenomenes Quantiques, UMR 7162, Universite Paris 7-Denis Diderot, 2, Place Jussieu, Case 7021, 75251 Paris (France); Leo, G [Laboratoire Materiaux et Phenomenes Quantiques, UMR 7162, Universite Paris 7-Denis Diderot, 2, Place Jussieu, Case 7021, 75251 Paris (France); Berger, V [Laboratoire Materiaux et Phenomenes Quantiques, UMR 7162, Universite Paris 7-Denis Diderot, 2, Place Jussieu, Case 7021, 75251 Paris (France); Rossi, A De [Thales Research and Technology, Domaine de Corbeville, 91404 Orsay (France); Marcadet, X [Thales Research and Technology, Domaine de Corbeville, 91404 Orsay(France)

2005-07-01

292

A Matter of Principle: The Principles of Quantum Theory, Dirac's Equation, and Quantum Information

This article is concerned with the role of fundamental principles in theoretical physics, especially quantum theory. The fundamental principles of relativity will be be addressed as well in view of their role in quantum electrodynamics and quantum field theory, specifically Dirac's work, which, in particular Dirac's derivation of his relativistic equation for the electron from the principles of relativity and quantum theory, is the main focus of this article. I shall, however, also consider Heisenberg's derivation of quantum mechanics, which inspired Dirac. I argue that Heisenberg's and Dirac's work alike was guided by their adherence to and confidence in the fundamental principles of quantum theory. The final section of the article discusses the recent work by G. M. D' Ariano and his coworkers on the principles of quantum information theory, which extends quantum theory and its principles in a new direction. This extension enabled them to offer a new derivation of Dirac's equation from these principles alone...

Plotnitsky, Arkady

2015-01-01

293

The mother of all protocols: Restructuring quantum information's family tree

We give a simple, direct proof of the "mother" protocol of quantum information theory. In this new formulation, it is easy to see that the mother, or rather her generalization to the fully quantum Slepian-Wolf protocol, simultaneously accomplishes two goals: quantum communication-assisted entanglement distillation, and state transfer from the sender to the receiver. As a result, in addition to her other "children," the mother protocol generates the state merging primitive of Horodecki, Oppenheim and Winter, a fully quantum reverse Shannon theorem, and a new class of distributed compression protocols for correlated quantum sources which are optimal for sources described by separable density operators. Moreover, the mother protocol described here is easily transformed into the so-called "father" protocol whose children provide the quantum capacity and the entanglement-assisted capacity of a quantum channel, demonstrating that the division of single-sender/single-receiver protocols into two families was unnecess...

Abeyesinghe, A; Hayden, P; Winter, A; Abeyesinghe, Anura; Devetak, Igor; Hayden, Patrick; Winter, Andreas

2006-01-01

294

Quantum Information Processing with Delocalized Qubits under Global Control

Any technology for quantum information processing (QIP) must embody within it quantum bits (qubits) and maintain control of their key quantum properties of superposition and entanglement. Typical QIP schemes envisage an array of physical systems, such as electrons or nuclei, with each system representing a given qubit. For adequate control, systems must be distinguishable either by physical separation or unique frequencies, and their mutual interactions must be individually ...

Fitzsimons, J.; Xiao, L.; Benjamin, Sc; Jones, Ja

2006-01-01

295

Quantum Gravity and Recovery of Information in Black Hole Evaporation

The Generalized Uncertainty Principle (GUP), motivated by current alternatives of quantum gravity, produces significant modifications to the Hawking radiation and the final stage of black hole evaporation. We show that incorporation of the GUP into the quantum tunneling process (based on the null-geodesic method) causes correlations between the tunneling probability of different modes in the black hole radiation spectrum. In this manner, the quantum information becomes encry...

Nozari, Kourosh; Mehdipour, S. Hamid

2008-01-01

296

Meaning-focused and Quantum-inspired Information Retrieval

In recent years, quantum-based methods have promisingly integrated the traditional procedures in information retrieval (IR) and natural language processing (NLP). Inspired by our research on the identification and application of quantum structures in cognition, more specifically our work on the representation of concepts and their combinations, we put forward a 'quantum meaning based' framework for structured query retrieval in text corpora and standardized testing corpora. ...

Aerts, Diederik; Broekaert, Jan; Sozzo, Sandro; Veloz, Tomas

2013-01-01

297

Decoherence, Entanglement and Information Protection in Complex Quantum Systems

This book is a collection of articles on the contemporary status of quantum mechanics, dedicated to the fundamental issues of entanglement, decoherence, irreversibility, information processing, and control of quantum evolution, with a view of possible applications. It has multidisciplinary character and is addressed at a broad readership in physics, computer science, chemistry, and electrical engineering. It is written by the world-leading experts in pertinent fields such as quantum computing, atomic, molecular and optical physics, condensed matter physics, and statistical physics.

Akulin, V.M; Kurizki, G; Pellegrin, S

2005-01-01

298

PREFACE Quantum Groups, Quantum Foundations and Quantum Information: a Festschrift for Tony Sudbery

On 29 July 2008, Professor Anthony Thomas Sudbery - known as Tony to his friends and colleagues - celebrated his 65th birthday. To mark this occasion and to honour Tony's scientific achievements, a 2-day Symposion was held at the University of York on 29-30 September 2008 under the sponsorship of the Institute of Physics and the London Mathematical Society. The breadth of Tony's research interests was reflected in the twelve invited lectures by A Beige, I Bengtsson, K Brown, N Cerf, E Corrigan, J Ladyman, A J Macfarlane, S Majid, C Manogue, S Popescu, J Ryan and R W Tucker. This Festschrift, also made possible by the generosity of the IOP and the LMS, reproduces the majority of these contributions together with other invited papers. Tony obtained his PhD from the University of Cambridge in 1970. His thesis, written under the guidance of Alan Macfarlane, is entitled Some aspects of chiral su(3) × su(3) symmetry in hadron dynamics. He arrived in York in 1971 with his wife Rodie, two young daughters, a lively mind and a very contemporary shock of hair. He was at that stage interested in mathematical physics and so was classed as an applied mathematician in the departmental division in place at that time. But luckily Tony did not fit into this category. His curiosity is combined with a good nose for problems and his capacity for knocking off conjectures impressed us all. Within a short time of his arrival he was writing papers on group theory, complex analysis and combinatorics, while continuing to work on quantum mechanics. His important paper on quaternionic analysis is an example of the imagination and elegance of his ideas. By developing a derivative, he replaced the relatively obscure analytical theory of quaternions by one informed by modern complex analysis. Other interests emerged, centred round the quantum: quantum mechanics and its foundations, quantum groups and quantum information. He didn't just dabble in these areas but mastered them, gaining a national and international reputation; for instance he joined Roger Penrose in a discussion on 'The Physics of Reality' in Melvyn Bragg's radio series 'In our time'. He was much in demand for contributions to the 'News and Views' section in Nature and has written numerous book reviews in scientific and semi-popular journals as well as newspaper commentaries on important scientific developments. Quantum foundations and quantum information have remained Tony's main professional preoccupations. As a contribution to the conceptual problems surrounding quantum measurement, he undertook a detailed analysis of the observation of decay, introducing the crucial distinction between continuous measurement and continual observation. A red thread through his work in quantum mechanics has been the critical scrutiny of different interpretations of quantum mechanics and the question of their experimental testability. As a result he has become an eloquent proponent of a version of what is commonly known as the 'many-worlds' interpretation in his most recent paper (arXiv:1009.3914), Tony explains why he considers the name 'Everett-Wheeler interpretation' as most appropriate and 'many worlds' unnecessary. Tony started directing his research effort to quantum information theory in the late 1990s. He quickly established himself in the quantum information community, putting York on the map in this field. He was among the first people to investigate entanglement properties of multipartite states, particularly the 3-qubit states. While studying the pure 4-qubit states he mysteriously came up with what could rightly be called the 'Sudbery state': equation (where ? is a primitive root of 1), which is the most entangled 4-qubit state in natural measures of entanglement. He continues to work in quantum information theory, particularly on quantum entanglement. Not least there is also Tony the philosopher who wrote articles with such intriguing titles as 'The necessity of not doing otherwise' or 'Why am I me? and why is my world so classical?'. Tony was a teacher of the old school. His lectures wer

Weigert, Stefan

2010-11-01

299

Strings, black holes, and quantum information

We find multiple relations between extremal black holes in string theory and 2- and 3-qubit systems in quantum information theory. We show that the entropy of the axion-dilaton extremal black hole is related to the concurrence of a 2-qubit state, whereas the entropy of the STU black holes, Bogomol’nyi-Prasad-Sommerfield (BPS) as well as non-BPS, is related to the 3-tangle of a 3-qubit state. We relate the 3-qubit states with the string theory states with some number of D-branes. We identify a set of large black holes with the maximally entangled Greenberger, Horne, Zeilinger (GHZ) class of states and small black holes with separable, bipartite, and W states. We sort out the relation between 3-qubit states, twistors, octonions, and black holes. We give a simple expression for the entropy and the area of stretched horizon of small black holes in terms of a norm and 2-tangles of a 3-qubit system. Finally, we show that the most general expression for the black hole and black ring entropy in N=8 supergravity/M theory, which is given by the famous quartic Cartan E7(7) invariant, can be reduced to Cayley’s hyperdeterminant describing the 3-tangle of a 3-qubit state.

Kallosh, Renata; Linde, Andrei

2006-05-01

300

Strings, Black Holes, and Quantum Information

We find multiple relations between extremal black holes in string theory and 2- and 3-qubit systems in quantum information theory. We show that the entropy of the axion-dilaton extremal black hole is related to the concurrence of a 2-qubit state, whereas the entropy of the STU black holes, BPS as well as non-BPS, is related to the 3-tangle of a 3-qubit state. We relate the 3-qubit states with the string theory states with some number of D-branes. We identify a set of "large" black holes with the maximally entangled GHZ-class of states and some "small" black holes with bipartite or W states. We sort out the relation between 3-qubit states, twistors, octonions, and black holes. We give a simple expression for the entropy and the area of stretched horizon of "small" black holes in terms of 2-tangles of a 3-qubit system. Finally, we show that the most general expression for the black hole and black ring entropy in N=8 supergravity/M-theory, which is given by the famous quartic Cartan E_{7(7)} invariant, can be re...

Kallosh, Renata E; Kallosh, Renata; Linde, Andrei

2006-01-01

301

Strings, black holes, and quantum information

International Nuclear Information System (INIS)

We find multiple relations between extremal black holes in string theory and 2- and 3-qubit systems in quantum information theory. We show that the entropy of the axion-dilaton extremal black hole is related to the concurrence of a 2-qubit state, whereas the entropy of the STU black holes, Bogomol'nyi-Prasad-Sommerfield (BPS) as well as non-BPS, is related to the 3-tangle of a 3-qubit state. We relate the 3-qubit states with the string theory states with some number of D-branes. We identify a set of large black holes with the maximally entangled Greenberger, Horne, Zeilinger (GHZ) class of states and small black holes with separable, bipartite, and W states. We sort out the relation between 3-qubit states, twistors, octonions, and black holes. We give a simple expression for the entropy and the area of stretched horizon of small black holes in terms of a norm and 2-tangles of a 3-qubit system. Finally, we show that the most general expression for the black hole and black ring entropy in N=8 supergravity/M theory, which is given by the famous quartic Cartan E7(7) invariant, can be reduced to Cayley's hyperdeterminant describing the 3-tangle of a 3-qubit state

302

Quantum Oblivious Transfer Based on a Quantum Symmetrically Private Information Retrieval Protocol

Private information retrieval implies oblivious transfer in classical cryptography. Following this clue, we present a novel quantum one-out-of-two OT protocol based on a practical quantum symmetrically private information retrieval protocol Jakobi et al. (Phys. Rev. A 83, 022301 2011), with changes only in the classical postprocessing of the key. While unconditionally secure oblivious transfer is known to be impossible, we argue that an interesting degree of security can be achieved by means of quantum physical principles instead of unproven security assumptions in order to protect both the sender and the receiver. The proposed OT protocol is loss tolerant, practical and robust against quantum memory attack.

Yang, Yu-Guang; Sun, Si-Jia; Wang, Yan

2015-03-01

303

Quantum secret sharing based on quantum error-correcting codes

International Nuclear Information System (INIS)

Quantum secret sharing(QSS) is a procedure of sharing classical information or quantum information by using quantum states. This paper presents how to use a [2k ? 1, 1, k] quantum error-correcting code (QECC) to implement a quantum (k, 2k ? 1) threshold scheme. It also takes advantage of classical enhancement of the [2k ? 1, 1, k] QECC to establish a QSS scheme which can share classical information and quantum information simultaneously. Because information is encoded into QECC, these schemes can prevent intercept-resend attacks and be implemented on some noisy channels. (general)

304

Quantum Information Approach to the Ultimatum Game

The paper is devoted to quantization of extensive games with the use of both the Marinatto-Weber and the Eisert-Wilkens-Lewenstein concept of quantum game. We revise the current conception of quantum ultimatum game and we show why the proposal is unacceptable. To support our approach, we present a new idea of the quantum ultimatum game. Our scheme also makes a point of departure for a general protocol for quantizing extensive games.

Fra¸ckiewicz, Piotr; S?adkowski, Jan

2014-10-01

305

Quantum algorithms: entanglement-enhanced information processing

We discuss the fundamental role of entanglement as the essential non-classical feature providing the computational speed-up in the known quantum algorithms. We review the construction of the Fourier transform on an Abelian group and the principles underlying the fast Fourier transform (FFT) algorithm. We describe the implementation of the FFT algorithm for the group of integers modulo 2n in the quantum context, showing how the group-theoretic formalism leads to the standard quantum network, a...

Ekert, A.; Jozsa, R.

1998-01-01

306

Non-linear operations in quantum information theory

Quantum information theory is used to analize various non-linear operations on quantum states. The universal disentanglement machine is shown to be impossible, and partial (negative) results are obtained in the state-dependent case. The efficiency of the transformation of non-orthogonal states into orthogonal ones is discussed.

Terno, Daniel R.

1998-01-01

307

Quantum Coding with Entanglement

Quantum error-correcting codes will be the ultimate enabler of a future quantum computing or quantum communication device. This theory forms the cornerstone of practical quantum information theory. We provide several contributions to the theory of quantum error correction--mainly to the theory of ``entanglement-assisted'' quantum error correction where the sender and receiver share entanglement in the form of entangled bits (ebits) before quantum communication begins. Our first contribution is an algorithm for encoding and decoding an entanglement-assisted quantum block code. We then give several formulas that determine the optimal number of ebits for an entanglement-assisted code. The major contribution of this thesis is the development of the theory of entanglement-assisted quantum convolutional coding. A convolutional code is one that has memory and acts on an incoming stream of qubits. We explicitly show how to encode and decode a stream of information qubits with the help of ancilla qubits and ebits. Our...

Wilde, Mark M

2008-01-01

308

BOOK REVIEW: Time, Quantum and Information

Time, Quantum and Information, a paean to Professor Carl Friedrich von Weizsäcker, commemorates his 90th birthday. The range of Professor Weizsäcker’s endeavours is an exhilarating example of what can be accomplished by one freely-soaring human spirit, who is at the same time a physicist, a philosopher, and a humanitarian. The editors, Lutz Castell and Otfried Ischebeck, have assembled an admirable collection of essays and articles written by Weizsäcker’s past students, collaborators, colleagues and acquaintances. Time, Quantum and Information offers the reader a panoply of unique insights into twentieth century science and history. Entangled with the stories about Weizsäcker’s influence on the lives of some of the contributors are discussions of the activities of German scientists during and following World War II, emphasizing their reluctance to work on atomic weapons following the war. By outlining Weizsäcker’s role in the early development of numerous tributaries of physical science, the book gives us a new glimpse into the origins of some of its disparate domains, such as nuclear physics, the physics of stellar nucleosynthesis, cosmic ray physics, fluid turbulence, and the formation of the solar system. We physicists have all studied Weizsäcker’s semi-empirical mass formula describing the binding energy of nuclei. We are aware too that both he and Hans Bethe independently discovered the nuclear cycles that provide stars with their enduring energy output. We have studied the Weizsäcker--Williams technique of calculating the bremsstrahlung of relativistic electrons. But how many of us know of Weizsäcker’s work in fluid turbulence that he, like Werner Heisenberg under whom he had earned his doctorate, pursued while holed up in Farm Hall? And how many of us are aware of his introduction of turbulent viscosity to account for the origin of planetary orbits, involving the migration of mass inwards and angular momentum outwards? Moreover, before finally turning his attention to philosophy in 1957, Weizsäcker became interested in nuclear fusion research and educated a generation of postwar German physicists in both plasma physics and astrophysics. Michael Frayn’s play `Copenhagen' has ignited worldwide interest in the mysterious meeting of Niels Bohr with Werner Heisenberg in September 1941. However, an article by R Lüst indicates that in 1951 Bohr enjoyed a friendly visit with Heisenberg in Göttingen. This 1941 meeting of Heisenberg and Bohr is discussed further in an article by Götz Neuneck, who also details the World War II and post-war research and interests of the Uranium Club, a group of 70--100 German physicists and chemists. Neuneck also discusses the resistance of individual scientists, such as Hahn, Heisenberg, and Bothe, to the Nazi regime. We learn that, unlike Wernher von Braun, no member of the Uranium Club was ever granted an audience with Hitler. After the war, German scientists renounced any role for German development of nuclear weapons in various manifestos, such as the Mainau and G\\"ottingen Declarations that were both influenced by Weizsäcker. Time, Quantum and Information contains much anecdotal material. Examples include a touching quotation in a letter from Edward Teller to Weizsäcker: `If I could share your religious belief, I would wish that you will one day come from a higher heaven and visit me in purgatory.' Another example, less complimentary, is a comment from Pauli after hearing from Weisskopf that Weizsäcker had made numerous errors in his habilitation thesis and realizing that Weizsäcker had accepted an offer from Peter Debye at Berlin: `The measure of sloppiness in Weizsäcker’s work exceeds altogether and by far the tolerable measure, and my pain of not having had him as an assistant has been alleviated by this.' Two-thirds of this compendium also explores the philosophical interests of Weizsäcker. This portion discusses his attempt to reconstruct quantum mechanics and build up a `theory of everything' based on his `ur' hypothesis. As stated by the mat

Turner, Leaf

2004-04-01

309

Towards Efficient Encoding of Hydrologic Information via a Fractal Geometric Approach

Hydrologic data series typically show complex features that are difficult to represent as a whole using classical stochastic models. While these models reproduce with a certain degree of confidence important statistical qualifiers (e.g., low order moments, power and multifractal spectra), they typically do not allow an exact representation of the fine details of a given realization (e.g., relative position of the major peaks, periods of no activity). In recent years, we have developed a fully deterministic procedure aimed at reproducing not only the major statistical qualifiers, but also the fine details of individual data sets as found in geophysical applications. Our procedure is based on a natural combination of fractal functions and multifractal measures via iterations of affine mappings, and yields an amazingly vast set of patterns that are indistinguishable from real world data sets. While the generation of these patterns is relatively straightforward, matching to real data measurements has proven to be a challenging task. In this work we report on the progress that we have achieved on the inversion of synthetic data sets generated by means of our procedure, which are taken as a close proxy of real world data sets. As it is shown, through a combination of heuristic procedures which include Artificial Neural Network Pattern Recognition and Particle Swarm and Differential Evolution searches, we have been able to achieve successful inversion of a relatively large class of synthetic data sets. These patterns are described by a very small (less than 15) set of parameters, leading to compression ratios exceeding 100:1. We envision an efficient implementation of this inverse problem procedure for general data sets, at comparable compression ratios, by improving our computational capabilities, using hardware acceleration (e.g., Field Programmable Gate Arrays boards) that should result in computational speed-ups of the order of x1000. This way our fractal geometric procedure would not only be a useful tool to simulate geophysical information but also an elegant tool for data encoding and compression.

Cortis, A.; Puente, C. E.; Sivakumar, B.

2008-12-01

310

Private quantum decoupling and secure disposal of information

Given a bipartite system, correlations between its subsystems can be understood as information that each one carries about the other. In order to give a model-independent description of secure information disposal, we propose the paradigm of private quantum decoupling, corresponding to locally reducing correlations in a given bipartite quantum state without transferring them to the environment. In this framework, the concept of private local randomness naturally arises as a ...

Buscemi, Francesco

2009-01-01

311

Limitations on information-theoretically-secure quantum homomorphic encryption

Homomorphic encryption is a form of encryption which allows computation to be carried out on the encrypted data without the need for decryption. The success of quantum approaches to related tasks in a delegated computation setting has raised the question of whether quantum mechanics may be used to achieve information-theoretically-secure fully homomorphic encryption. Here we show, via an information localization argument, that deterministic fully homomorphic encryption necessarily incurs exponential overhead if perfect security is required.

Yu, Li; Pérez-Delgado, Carlos A.; Fitzsimons, Joseph F.

2014-11-01

312

Adaptive Controller Design for Faulty UAVs via Quantum Information Technology

In this paper, an adaptive controller is designed for a UAV flight control system against faults and parametric uncertainties based on quantum information technology and the Popov hyperstability theory. First, considering the bounded control input, the state feedback controller is designed to make the system stable. The model of adaptive control is introduced to eliminate the impact by the uncertainties of system parameters via quantum information technology. Then, according to the model refe...

Fuyang Chen; Rui Hou; Gang Tao

2012-01-01

313

Designing robust gate implementations for quantum information processing

Quantum information processing systems are often operated through time dependent controls; choosing these controls in a way that makes the resulting operation insensitive to variations in unknown or uncontrollable system parameters is an important prerequisite for obtaining high-fidelity gate operations. In this article we present a numerical method for constructing such robust control sequences for a quite general class of quantum information processing systems. As an appli...

Wesenberg, Janus H.

2003-01-01

314

Quantum Information Becomes Classical When Distributed to Many Users

Any physical transformation that equally distributes quantum information over a large number M of users can be approximated by a classical broadcasting of measurement outcomes. The accuracy of the approximation is at least of the order O(M-1). In particular, quantum cloning of pure and mixed states can be approximated via quantum state estimation. As an example, for optimal qubit cloning with 10 output copies, a single user has an error probability perr?0.45 in distinguishing classical from quantum output, a value close to the error probability of the random guess.

Chiribella, Giulio; D'Ariano, Giacomo Mauro

2006-12-01

315

Quantum information becomes classical when distributed to many users

Any physical transformation that equally distributes quantum information over a large number M of users can be approximated by classically broadcasting the outcome of a suitable measurement. The accuracy of the approximation is at least of order 1/M. In particular, quantum cloning of pure and mixed states can be approximated via quantum state estimation. As an example, for optimal qubit cloning with 10 output copies, a single user has error probability p = 0.45 in distinguishing classical from quantum output, close to the error probability of a purely random guess.

Chiribella, G

2006-01-01

316

An Information-Geometric Reconstruction of Quantum Theory, I: The Abstract Quantum Formalism

In this paper and a companion paper, we show how the framework of information geometry, a geometry of discrete probability distributions, can form the basis of a derivation of the quantum formalism. The derivation rests upon a few elementary features of quantum phenomena, such as the statistical nature of measurements, complementarity, and global gauge invariance. It is shown that these features can be traced to experimental observations characteristic of quantum phenomena and to general theoretical principles, and thus can reasonably be taken as a starting point of the derivation. When appropriately formulated within an information geometric framework, these features lead to (i) the abstract quantum formalism for finite-dimensional quantum systems, (ii) the result of Wigner's theorem, and (iii) the fundamental correspondence rules of quantum theory, such as the canonical commutation relationships. The formalism also comes naturally equipped with a metric (and associated measure) over the space of pure states...

Goyal, Philip

2008-01-01

317

Quantum teleportation and entanglement. A hybrid approach to optical quantum information procesing

International Nuclear Information System (INIS)

Unique in that it is jointly written by an experimentalist and a theorist, this monograph presents universal quantum computation based on quantum teleportation as an elementary subroutine and multi-party entanglement as a universal resource. Optical approaches to measurement-based quantum computation are also described, including schemes for quantum error correction, with most of the experiments carried out by the authors themselves. Ranging from the theoretical background to the details of the experimental realization, the book describes results and advances in the field, backed by numerous illustrations of the authors' experimental setups. Aimed at researchers, physicists, and graduate and PhD students in physics, theoretical quantum optics, quantum mechanics, and quantum information. (orig.)

318

Designing robust gate implementations for quantum information processing

Quantum information processing systems are often operated through time dependent controls; choosing these controls in a way that makes the resulting operation insensitive to variations in unknown or uncontrollable system parameters is an important prerequisite for obtaining high-fidelity gate operations. In this article we present a numerical method for constructing such robust control sequences for a quite general class of quantum information processing systems. As an application of the method we have designed a robust implementation of a phase-shift operation central to rare earth quantum computing, an ensemble quantum computing system proposed by Ohlsson et. al. [Opt. Comm. 201, 71 (2002)]. In this case the method has been used to obtain a high degree of insensitivity with respect to differences between ensemble members, but it is equally well suited for quantum computing with a single physical system.

Wesenberg, J H

2003-01-01

319

Designing robust gate implementations for quantum-information processing

International Nuclear Information System (INIS)

Quantum-information processing systems are often operated through time-dependent controls; choosing these controls in a way that makes the resulting operation insensitive to variations in unknown or uncontrollable system parameters is an important prerequisite for obtaining high-fidelity gate operations. In this article we present a numerical method for constructing such robust control sequences for a quite general class of quantum-information processing systems. As an application of the method we have designed a robust implementation of a phase-shift operation central to rare-earth-metal quantum computing, an ensemble quantum computing system proposed by Ohlsson et al. [Opt. Commun. 201, 71 (2002)]. In this case the method has been used to obtain a high degree of insensitivity with respect to differences between ensemble members, but it is equally well suited for quantum computing with a single physical system

320

Quantum discord in quantum information theory - From strong subadditivity to the mother protocol

Positivity of quantum discord is shown to be equivalent to the strong sub additivity of the von Neumann entropy. This leads to a connection between the mother protocol of quantum information theory [17] and quantum discord. We exploit this to show that discord is a measure coherence in the performance of the mother protocol. Since the mother protocol is a unification of an important class of problems (those that are bipartite, unidirectional and memoryless), we show discord to be a measure of...

Madhok, V.; Datta, A.

2014-01-01

321

International Nuclear Information System (INIS)

We investigate schemes for quantum information processing via radio frequency superconducting quantum interference device (rf-SQUID) coupled to imperfect cavity and liner optics devices. Our schemes combine two distinct advantages: rf-SQUID qubit with long coherent time sevres as memory bit and photonic qubit as flying bit, thus they are suitable for long distant quantum communication. Our schemes also requires less experimental demands, thus they can be demonstrated experimentally within current techniques

322

Quantum information transfer between topological and spin qubit systems

Energy Technology Data Exchange (ETDEWEB)

In this talk I introduce a method to coherently transfer quantum information, and to create entanglement, between topological qubits and conventional spin qubits. The transfer method uses gated control to transfer an electron (spin qubit) between a quantum dot and edge Majorana modes in adjacent topological superconductors. Because of the spin polarization of the Majorana modes, the electron transfer translates spin superposition states into superposition states of the Majorana system, and vice versa. Furthermore, I discuss how a topological superconductor can be used to facilitate long-distance quantum information transfer and entanglement between spatially separated spin qubits.

Leijnse, Martin; Flensberg, Karsten [Nano-Science Center and Niels Bohr Institute, University of Copenhagen (Denmark)

2012-07-01

323

Quantum information transfer between topological and spin qubit systems

We propose a method to coherently transfer quantum information, and to create entanglement, between topological qubits and conventional spin qubits. Our suggestion uses gated control to transfer an electron (spin qubit) between a quantum dot and edge Majorana modes in adjacent topological superconductors. Because of the spin polarization of the Majorana modes, the electron transfer translates spin superposition states into superposition states of the Majorana system, and vice versa. Furthermore, we show how a topological superconductor can be used to facilitate long-distance quantum information transfer and entanglement between spatially separated spin qubits.

Leijnse, Martin

2011-01-01

324

Quantum information transfer between topological and spin qubit systems

International Nuclear Information System (INIS)

In this talk I introduce a method to coherently transfer quantum information, and to create entanglement, between topological qubits and conventional spin qubits. The transfer method uses gated control to transfer an electron (spin qubit) between a quantum dot and edge Majorana modes in adjacent topological superconductors. Because of the spin polarization of the Majorana modes, the electron transfer translates spin superposition states into superposition states of the Majorana system, and vice versa. Furthermore, I discuss how a topological superconductor can be used to facilitate long-distance quantum information transfer and entanglement between spatially separated spin qubits.

325

Decoherence, Control, and Symmetry in Quantum Computers

In this thesis we describe methods for avoiding the detrimental effects of decoherence while at the same time still allowing for computation of the quantum information. The philosophy of the method discussed in the first part of this thesis is to use a symmetry of the decoherence mechanism to find robust encodings of the quantum information. Stability, control, and methods for using decoherence-free information in a quantum computer are presented with a specific emphasis on decoherence due to a collective coupling between the system and its environment. Universal quantum computation on such collective decoherence decoherence-free encodings is demonstrated. Rigorous definitions of control and the use of encoded universality in quantum computers are addressed. Explicit gate constructions for encoded universality on ion trap and exchange based quantum computers are given. In the second part of the thesis we examine physical systems with error correcting properties. We examine systems that can store quantum infor...

Bacon, D J

2003-01-01

326

Toolbox for reconstructing quantum theory from rules on information acquisition

We develop a novel operational approach for reconstructing (qubit) quantum theory from elementary rules on information acquisition. The focus lies on an observer O interrogating a system S with binary questions and S's state is taken as O's `catalogue of knowledge' about S. The mathematical tools of the framework are simple and we attempt to highlight all underlying assumptions to provide a handle for future generalizations. Five principles are imposed, asserting (1) a limit on the amount of information available to O; (2) the mere existence of complementary information; (3) the possibility for O's information to be `in superposition'; (4) O's information to be preserved in between interrogations; and, (5) continuity of time evolution. This approach permits a constructive derivation of quantum theory, elucidating how the ensuing independence, complementarity and compatibility structure of O's questions matches that of projective measurements in quantum theory, how entanglement and monogamy of entanglement and...

Hoehn, Philipp A

2015-01-01

327

QIS-XML: A metadata specification for Quantum Information Science

While Quantum Information Science (QIS) is still in its infancy, the ability for quantum based hardware or computers to communicate and integrate with their classical counterparts will be a major requirement towards their success. Little attention however has been paid to this aspect of QIS. To manage and exchange information between systems, today's classic Information Technology (IT) commonly uses the eXtensible Markup Language (XML) and its related tools. XML is composed of numerous specifications related to various fields of expertise. No such global specification however has been defined for quantum computers. QIS-XML is a proposed XML metadata specification for the description of fundamental components of QIS (gates & circuits) and a platform for the development of a hardware independent low level pseudo-code for quantum algorithms. This paper lays out the general characteristics of the QIS-XML specification and outlines practical applications through prototype use cases.

Heus, Pascal

2007-01-01

328

Initialization and Readout of Spin Chains for Quantum Information Transport

Linear chains of spins acting as quantum wires are a promising approach to achieve scalable quantum information processors. Nuclear spins in apatite crystals provide an ideal test-bed for the experimental study of quantum information transport, as they closely emulate a one-dimensional spin chain. Nuclear Magnetic Resonance techniques can be used to drive the spin chain dynamics and probe the accompanying transport mechanisms. Here we demonstrate initialization and readout capabilities in these spin chains, even in the absence of single-spin addressability. These control schemes enable preparing desired states for quantum information transport and probing their evolution under the transport Hamiltonian. We further optimize the control schemes by a detailed analysis of $^{19}$F NMR lineshape.

Kaur, Gurneet

2011-01-01

329

State reduction, information and entropy in quantum measurement processes

International Nuclear Information System (INIS)

Information obtained by a quantum measurement process performed on a physical system and the entropy change of the measured physical system are considered in detail. It is shown that the condition for the amount of information obtained by the quantum measurement process to be represented by the Shannon mutual entropy is that the intrinsic observable of the measured physical system commutes with the operational observable defined by the quantum measurement process. When some measurement outcome is obtained, the decrease of the Shannon entropy of the measured system is compared with that of the von Neumann entropy. Furthermore, a condition is established under which the amount of information that can be established by the quantum measurement process becomes equal to the decrease of the Shannon entropy of the measured physical system. (author)

330

Quantum information primitives using linear optics

We report on two experiments implementing quantum communications primitives in linear optics systems: a secure Quantum Random Bit Generator (QRBG) and a multi-qubit gate based on Two-Photon Multiple-Qubit (TPMQ) quantum logic. In the first we use photons to generate random numbers and introduce and implement a physics-based estimation of the sequence randomness as opposed to the commonly used statistical tests. This scheme allows one to detect and neutralize attempts to eavesdrop or influence the random number sequence. We also demonstrate a C-SWAP gate that can be used to implement quantum signature and fingerprinting protocols. A source of momentum-entangled photons, remote state preparation, and a C-SWAP gate are the ingredients used for this proof-of-principle experiment. While this implementation cannot be used in field applications due to the limitations of TPMQ logic, it provides useful insights into this protocol.

Fiorentino, Marco; Fattal, David A.; Santori, Charles M.; Spillane, Sean M.; Munro, William J.; Beausoleil, Raymond G.

2006-08-01

331

The information-theoretic costs of simulating quantum measurements

International Nuclear Information System (INIS)

Winter’s measurement compression theorem stands as one of the most penetrating insights of quantum information theory. In addition to making an original and profound statement about measurement in quantum theory, it also underlies several other general protocols used for entanglement distillation and local purity distillation. The theorem provides for an asymptotic decomposition of any quantum measurement into noise and information. This decomposition leads to an optimal protocol for having a sender simulate many independent instances of a quantum measurement and send the measurement outcomes to a receiver, using as little communication as possible. The protocol assumes that the parties have access to some amount of common randomness, which is a strictly weaker resource than classical communication. In this review, we provide a second look at Winter’s measurement compression theorem, detailing the information processing task, giving examples for understanding it, reviewing Winter’s achievability proof, and detailing a new approach to its single-letter converse theorem. We prove an extension of the theorem to the case in which the sender is not required to receive the outcomes of the simulated measurement. The total cost of common randomness and classical communication can be lower for such a ‘non-feedback’ simulation, and we prove a single-letter converse theorem demonstrating optimality. We then review the Devetak–Winter theorem on classical data compressrem on classical data compression with quantum side information, providing new proofs of its achievability and converse parts. From there, we outline a new protocol that we call ‘measurement compression with quantum side information,’ announced previously by two of us in our work on triple trade-offs in quantum Shannon theory. This protocol has several applications, including its part in the ‘classically-assisted state redistribution’ protocol, which is the most general protocol on the static side of the quantum information theory tree, and its role in reducing the classical communication cost in a task known as local purity distillation. We also outline a connection between measurement compression with quantum side information and recent work on entropic uncertainty relations in the presence of quantum memory. Finally, we prove a single-letter theorem characterizing measurement compression with quantum side information when the sender is not required to obtain the measurement outcome. (topical review)

332

Optomechanical transducers for quantum information processing

We discuss the implementation of optical quantum networks where the interface between stationary and photonic qubits is realized by optomechanical transducers [K. Stannigel et al., PRL 105, 220501 (2010)]. This approach does not rely on the optical properties of the qubit and thereby enables optical quantum communication applications for a wide range of solid-state spin- and charge-based systems. We present an effective description of such networks for many qubits and give a...

Stannigel, K.; Rabl, P.; Sørensen, A. S.; Lukin, M. D.; Zoller, P.

2011-01-01

333

Visual-spatial working memory tasks can be decomposed into encoding, and retrieval phases. It was hypothesized that encoding of visual-spatial information is cognitively more challenging than retrieval. This was tested by combining Electroencephalography with a Virtual Reality paradigm to observe the modulation in EEG activity. EEG power analysis results demonstrated an increase in theta activity during encoding in comparison to retrieval whereas alpha activity was significantly higher for retrieval in comparison to encoding. We found that encoding required more cerebral efforts than retrieval. Further, as seen in fMRI studies we observed an encoding/retrieval flip in that encoding and retrieval differentially activated similar neural substrates. Results obtained from sLORETA identified cortical sources in inferior frontal gyrus which is a part of dorsolateral prefrontal cortex (DLPFC) during encoding, whereas the inferior parietal lobe and precuneus cortical sources were identified during retrieval. We further tie our results into studies examining the default network which have shown increased activation in DLPFC occurs in response to increased cerebral challenge while posterior parietal areas show activation during baseline or internal processing tasks. We conclude that encoding of visual-spatial information via VR navigation task is more cerebrally challenging than retrieval. PMID:20570660

Jaiswal, N; Ray, W; Slobounov, S

2010-01-01

334

Efficient On-line Schemes for Encoding Individual Sequences with Side Information at the Decoder

We present adaptive on-line schemes for lossy encoding of individual sequences under the conditions of the Wyner-Ziv (WZ) problem. In the first part of this article, a set of fixed-rate scalar source codes with zero delay is presented. We propose a randomized on-line coding scheme, which achieves asymptotically (and with high probability), the performance of the best source code in the set, uniformly over all source sequences. The scheme uses the same rate and has zero delay. We then present an efficient algorithm for implementing our on-line coding scheme in the case of a relatively small set of encoders. We also present an efficient algorithm for the case of a larger set of encoders with a structure, using the method of the weighted graph and the Weight Pushing Algorithm (WPA). In the second part of this article, we extend our results to the case of variable-rate coding. A set of variable-rate scalar source codes is presented. We generalize the randomized on-line coding scheme, to our case. This time, the p...

Reani, Avraham

2009-01-01

335

Quantum engineering of continuous variable quantum states

International Nuclear Information System (INIS)

Quantum information with continuous variables is a field attracting increasing attention recently. In continuous variable quantum information one makes use of the continuous information encoded into the quadrature of a quantized light field instead of binary quantities such as the polarization state of a single photon. This brand new research area is witnessing exciting theoretical and experimental achievements such as teleportation, quantum computation and quantum error correction. The rapid development of the field is mainly due higher optical data rates and the availability of simple and efficient manipulation tools in continuous-variable quantum information processing. We in this thesis extend the work in continuous variable quantum information processing and report on novel experiments on amplification, cloning, minimal disturbance and noise erasure protocols. The promising results we obtain in these pioneering experiments indicate that the future of continuous variable quantum information is bright and many advances can be foreseen. (orig.)

336

Quantum engineering of continuous variable quantum states

Energy Technology Data Exchange (ETDEWEB)

Quantum information with continuous variables is a field attracting increasing attention recently. In continuous variable quantum information one makes use of the continuous information encoded into the quadrature of a quantized light field instead of binary quantities such as the polarization state of a single photon. This brand new research area is witnessing exciting theoretical and experimental achievements such as teleportation, quantum computation and quantum error correction. The rapid development of the field is mainly due higher optical data rates and the availability of simple and efficient manipulation tools in continuous-variable quantum information processing. We in this thesis extend the work in continuous variable quantum information processing and report on novel experiments on amplification, cloning, minimal disturbance and noise erasure protocols. The promising results we obtain in these pioneering experiments indicate that the future of continuous variable quantum information is bright and many advances can be foreseen. (orig.)

Sabuncu, Metin

2009-10-29

337

Quantum Entropy Bound by Information in Black Hole Spacetime

We show that the increase of the generalized entropy by a quantum process outside the horizon of a black hole is more than the Holevo bound of the classical information lost into the black hole and which could be obtained by further observations outside the horizon. In the optimal case, the prepared information can be completely retrieved.

Hosoya, A

2002-01-01

338

Quantum Private Information Retrieval with Sublinear Communication Complexity

This note presents a quantum protocol for private information retrieval, in the single-server case and with information-theoretical privacy, that has O(\\sqrt{n})-qubit communication complexity, where n denotes the size of the database. In comparison, it is known that any classical protocol must use \\Omega(n) bits of communication in this setting.

Gall, François Le

2011-01-01

339

Quantum entropy bound by information in black hole spacetime

International Nuclear Information System (INIS)

We show that the increase of the generalized entropy by a quantum process outside the horizon of a black hole is more than the Holevo bound of the classical information which could be obtained by further observations outside the horizon. In the optimal case, the prepared information can be completely retrieved

340

Quantum mechanics, common sense and the black hole information paradox

The purpose of this paper is to analyse, in the light of information theory and with the arsenal of (elementary) quantum mechanics (EPR correlations, copying machines, teleportation, mixing produced in sub-systems owing to a trace operation, etc.) the scenarios available on the market to resolve the so-called black-hole information paradox. We shall conclude that the only plausible ones are those where either the unitary evolution of quantum mechanics is given up, in which information leaks continuously in the course of black-hole evaporation through non-local processes, or those in which the world is polluted by an infinite number of meta-stable remnants.

Danielsson, U H; Danielsson, Ulf H.; Schiffer, Marcelo

1993-01-01

341

Controllable quantum information network with a superconducting system

International Nuclear Information System (INIS)

We propose a controllable and scalable architecture for quantum information processing using a superconducting system network, which is composed of current-biased Josephson junctions (CBJJs) as tunable couplers between the two superconducting transmission line resonators (TLRs), each coupling to multiple superconducting qubits (SQs). We explicitly demonstrate that the entangled state, the phase gate, and the information transfer between any two selected SQs can be implemented, respectively. Lastly, numerical simulation shows that our scheme is robust against the decoherence of the system. -- Highlights: •An architecture for quantum information processing is proposed. •The quantum information transfer between any two selected SQs is implemented. •This proposal is robust against the decoherence of the system. •This architecture can be fabricated on a chip down to the micrometer scale

342

Controllable quantum information network with a superconducting system

Energy Technology Data Exchange (ETDEWEB)

We propose a controllable and scalable architecture for quantum information processing using a superconducting system network, which is composed of current-biased Josephson junctions (CBJJs) as tunable couplers between the two superconducting transmission line resonators (TLRs), each coupling to multiple superconducting qubits (SQs). We explicitly demonstrate that the entangled state, the phase gate, and the information transfer between any two selected SQs can be implemented, respectively. Lastly, numerical simulation shows that our scheme is robust against the decoherence of the system. -- Highlights: •An architecture for quantum information processing is proposed. •The quantum information transfer between any two selected SQs is implemented. •This proposal is robust against the decoherence of the system. •This architecture can be fabricated on a chip down to the micrometer scale.

Zhang, Feng-yang, E-mail: zhangfy@mail.dlut.edu.cn [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Liu, Bao [Beijing Computational Science Research Center (CSRC), Beijing 100084 (China); Chen, Zi-hong [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Wu, Song-lin [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Song, He-shan [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

2014-07-15

343

Spin-based quantum gating with semiconductor quantum dots

We propose a potential scheme for realizing a two-qubit quantum gate in semiconductor quantum dots. Information is encoded in the spin degrees of freedom of one excess conduction electron of each quantum dot. The proposed gate is based on properly tailored ultrafast laser pulses and exploits both Pauli-blocking effect and dipole-dipole coupling between intermediate excitonic states.

Feng, M; Zanardi, P; Rossi, F; Feng, Mang; Amico, Irene D'; Zanardi, Paolo; Rossi, Fausto

2003-01-01

344

Quantum mechanics is the most ground-breaking and fascinating theoretical concept developed in physics during the past century. Much of our present understanding of the microscopic world and its extension into the macroscopic world, including modern technical applications, is based upon quantum mechanics. We have experienced a remarkable development of information and communication technology during the past two decades, to a large extent depending upon successful fabrication of smaller and smaller components and circuits. However, we are finally approaching the physical limits of component miniaturization as we enter a microscopic world ruled by quantum mechanics. Present technology is mainly based upon classical physics such as mechanics and electromagnetism. We now face a similar paradigm shift as was experienced two hundred years ago, at the time of the industrial revolution. Engineered construction of systems is currently increasingly based on quantum physics instead of classical physics, and quantum information is replacing much of classical communication. Quantum computing is one of the most exciting sub-fields of this revolution. Individual quantum systems can be used to store and process information. They are called quantum bits, or qubits for short. A quantum computer could eventually be constructed by combining a number of qubits that act coherently. Important computations can be performed much more quickly than by classical computers. However, while we control and measure a qubit, it must be sufficiently isolated from its environment to avoid noise that causes decoherence at the same time. Currently, low temperature is generally needed to obtain sufficiently long decoherence times. Single qubits of many different kinds can be built and manipulated; some research groups have managed to successfully couple qubits and perform rudimentary logic operations. However, the fundamental problems, such as decoherence, entanglement, quantum measurements and error correction, have yet to be solved. It has been predicted that quantum computers will be able to perform certain complicated computations or simulations in minutes or hours instead of years as with present computers. So far there exist very few useful quantum algorithms; however there is hope that the development of these will be stimulated once there is a breakthrough in hardware. Remarkable progress has been made in quantum engineering and quantum measurements, but a large scale quantum computer is still far off. Quantum communication and cryptography are much closer to the market than a quantum computer. The development of quantum information has meant a large push in the field of quantum physics, that previously could only be studied in the microscopic world. Artificial atoms, realized by circuit technology and mimicking the properties of 'natural' atoms, are one example of the new possibilities opened up by quantum engineering. Several different types of qubits have been suggested. Some are based upon microscopic entities, like atoms and ions in traps, or nuclear spins in molecules. They can have long coherence times (i.e. a long period allowing many operations, of the order of 10 000, to be performed before the state needs to be refreshed) but they are difficult to integrate into large systems. Other qubits are based upon solid state components that facilitate integration and coupling between qubits, but they suffer from interactions with the environment and their coherent states have a limited lifetime. Advanced experiments have been performed with superconducting Josephson junctions and many breakthroughs have been reported in the last few years. They have an advantage in the inherent coherence of superconducting Cooper pairs over macroscopic distances. We chose to focus the Nobel Symposium on Qubits for Future Quantum Information on superconducting qubits to allow for depth in discussions, but at the same time to allow comparison with other types of qubits that may prevail in the long run. The purpose of the symposium was to bring together leading resear

Claeson, Tord; Delsing, Per; Wendin, Göran

2009-12-01

345

A simple example of "Quantum Darwinism": Redundant information storage in many-spin environments

As quantum information science approaches the goal of constructing quantum computers, understanding loss of information through decoherence becomes increasingly important. The information about a system that can be obtained from its environment can facilitate quantum control and error correction. Moreover, observers gain most of their information indirectly, by monitoring (primarily photon) environments of the "objects of interest." Exactly how this information is inscribed ...

Blume-kohout, Robin; Zurek, Wojciech H.

2004-01-01

346

Optomechanical transducers for quantum information processing

We discuss the implementation of optical quantum networks where the interface between stationary and photonic qubits is realized by optomechanical transducers [K. Stannigel et al., PRL 105, 220501 (2010)]. This approach does not rely on the optical properties of the qubit and thereby enables optical quantum communication applications for a wide range of solid-state spin- and charge-based systems. We present an effective description of such networks for many qubits and give a derivation of a state transfer protocol for long-distance quantum communication. We also describe how to mediate local on-chip interactions by means of the optomechanical transducers that can be used for entangling gates. We finally discuss experimental systems for the realization of our proposal.

Stannigel, K; Sørensen, A S; Lukin, M D; Zoller, P

2011-01-01

347

Optomechanical transducers for quantum-information processing

International Nuclear Information System (INIS)

We discuss the implementation of optical quantum networks where the interface between stationary and photonic qubits is realized by optomechanical transducers [K. Stannigel et al., Phys. Rev. Lett. 105, 220501 (2010)]. This approach does not rely on the optical properties of the qubit and thereby enables optical quantum communication applications for a wide range of solid-state spin- and charge-based systems. We present an effective description of such networks for many qubits and give a derivation of a state transfer protocol for long-distance quantum communication. We also describe how to mediate local on-chip interactions by means of the optomechanical transducers that can be used for entangling gates. We finally discuss experimental systems for the realization of our proposal.

348

Optomechanical transducers for quantum-information processing

Energy Technology Data Exchange (ETDEWEB)

We discuss the implementation of optical quantum networks where the interface between stationary and photonic qubits is realized by optomechanical transducers [K. Stannigel et al., Phys. Rev. Lett. 105, 220501 (2010)]. This approach does not rely on the optical properties of the qubit and thereby enables optical quantum communication applications for a wide range of solid-state spin- and charge-based systems. We present an effective description of such networks for many qubits and give a derivation of a state transfer protocol for long-distance quantum communication. We also describe how to mediate local on-chip interactions by means of the optomechanical transducers that can be used for entangling gates. We finally discuss experimental systems for the realization of our proposal.

Stannigel, K.; Zoller, P. [Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, A-6020 Innsbruck (Austria); Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck (Austria); Rabl, P. [Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, A-6020 Innsbruck (Austria); Soerensen, A. S. [QUANTOP, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen O (Denmark); Lukin, M. D. [Physics Department, Harvard University, Cambridge, Massachusetts 02138 (United States)

2011-10-15

349

Optomechanical transducers for quantum-information processing

We discuss the implementation of optical quantum networks where the interface between stationary and photonic qubits is realized by optomechanical transducers [K. Stannigel , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.105.220501 105, 220501 (2010)]. This approach does not rely on the optical properties of the qubit and thereby enables optical quantum communication applications for a wide range of solid-state spin- and charge-based systems. We present an effective description of such networks for many qubits and give a derivation of a state transfer protocol for long-distance quantum communication. We also describe how to mediate local on-chip interactions by means of the optomechanical transducers that can be used for entangling gates. We finally discuss experimental systems for the realization of our proposal.

Stannigel, K.; Rabl, P.; Sørensen, A. S.; Lukin, M. D.; Zoller, P.

2011-10-01

350

Thermodynamics of quantum informational systems - Hamiltonian description

It is often claimed, that from a quantum system of d levels, and entropy S and heat bath of temperature T one can draw kT(ln d -S) amount of work. However, the usual arguments based on Szilard engine are not fully rigorous. Here we prove the formula within Hamiltonian description of drawing work from a quantum system and a heat bath, at a cost of entropy of the system. We base on the derivation of thermodynamical laws and quantities in [R. Alicki, J. Phys. A, 12, L103 (1979)] within a weak coupling limit. Our result provides fully physical scenario for extracting thermodynamical work from quantum correlations [J. Oppenheim et al. Phys. Rev. Lett. 89, 180402 (2002)]. We also derive Landauer principle as a consquence of second law within the considered model.

Alicki, R; Horodecki, P; Horodecki, R; Alicki, Robert; Horodecki, Michal; Horodecki, Pawel; Horodecki, Ryszard

2004-01-01

351

Information and entropic characteristics of photon and qudit quantum states

International Nuclear Information System (INIS)

The probability distribution determining the quantum states of photons and qudits are reviewed. Shannon, Renyi and Tsallis entropies associated with the probability distributions are discussed. Shannon information associated with quantum states in the probability representation is considered. Known inequalities for the classical joint probability distributions determining quantum states of multipartite systems are discussed in detail and the relationship to the inequalities known for quantum von Neumann entropy of the states is presented. Properties of subadditivity and strong subadditivity of the von Neumann entropy of two-partite and multipartite qudit states are considered in view of the subadditivity and strong subadditivity properties of Shannon entropies associated with classical joint probability distributions determining the multiqudit quantum states. The new entropic uncertainty relationships for optical tomograms are suggested as a test for accuracy of the homodyne reconstructing the photon state.

352

An improved derivation of minimum information quantum gravity

It is shown that, in minimum information quantum gravity (MIQG), the action can be derived using a more elegant and straight-forward method than has been used in the first existence proof. Assumptions regarding the quantum boxes, the exact differential of the entropy variation and the role of the boundary can be omitted, and the model structure requirements can be reduced. Moreover, the open problem of the quantum occupation number per box is solved. Thus, the arguments in favour of MIQG become even more stringent. The remaining assumptions are 1. the principle of optimization of the resulting per imposed degrees of freedom, 2. abstract quantum number conservation, 3. the validity of the laws of thermodynamics, 4. identification of a macroscopic parametrization with space-time and 6. unspecific interactions. Even though the assuptions are considerably reduced, all former results remain valid. In particular, no explicite microscopic quantum structure is required in order to recover all well established physics...

Mandrin, Pierre A

2014-01-01

353

Adiabatic topological quantum computing

Topological quantum computing promises error-resistant quantum computation without active error correction. However, there is a worry that during the process of executing quantum gates by braiding anyons around each other, extra anyonic excitations will be created that will disorder the encoded quantum information. Here we explore this question in detail by studying adiabatic code deformations on Hamiltonians based on topological codes, notably Kitaev's surface codes and the...

Cesare, Chris; Landahl, Andrew J.; Bacon, Dave; Flammia, Steven T.; Neels, Alice

2014-01-01

354

Quantum mechanics with applications to nanotechnology and information science

Quantum mechanics transcends and supplants classical mechanics at the atomic and subatomic levels. It provides the underlying framework for many subfields of physics, chemistry and materials science, including condensed matter physics, atomic physics, molecular physics, quantum chemistry, particle physics, and nuclear physics. It is the only way we can understand the structure of materials, from the semiconductors in our computers to the metal in our automobiles. It is also the scaffolding supporting much of nanoscience and nanotechnology. The purpose of this book is to present the fundamentals of quantum theory within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology. As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today. Hence, the emphasis on new topics that are not included in older reference texts, such as quantum information th...

Band, Yehuda B

2013-01-01

355

Directory of Open Access Journals (Sweden)

Full Text Available We discuss the architecture and design of parallel sampling front ends for analog to information (A2I converters. As a way of example, we detail the design of a custom 0.5 µm CMOS implementation of a mixed signal parallel sampling encoder architecture. The system consists of configurable parallel analog processing channels, whose output is sampled by traditional analog-to-digital converters (ADCs. The analog front-end modulates the signal of interest with a high-speed digital chipping sequence and integrates the result prior to sampling at a low rate. An FPGA is employed to generate the chipping sequences and process the digitized samples.

Andreas G. Andreou

2013-03-01

356

Distribution of quantum Fisher information in asymmetric cloning machines

An unknown quantum state cannot be copied on demand and broadcast freely due to the famous no-cloning theorem. Approximate cloning schemes have been proposed to achieve the optimal cloning characterized by the maximal fidelity between the original and its copies. Here, from the perspective of quantum Fisher information (QFI), we investigate the distribution of QFI in asymmetric cloning machines which produce two nonidentical copies. As one might expect, improving the QFI of ...

Xiao, Xing; Yao, Yao; Zhou, Lei-ming; Wang, Xiaoguang

2014-01-01

357

Quantum information transfer between topological and spin qubit systems

We propose a method to coherently transfer quantum information, and to create entanglement, between topological qubits and conventional spin qubits. Our suggestion uses gated control to transfer an electron (spin qubit) between a quantum dot and edge Majorana modes in adjacent topological superconductors. Because of the spin polarization of the Majorana modes, the electron transfer translates spin superposition states into superposition states of the Majorana system, and vic...

Leijnse, Martin; Flensberg, Karsten

2011-01-01

358

Fast, high fidelity information transmission through spin chain quantum wires

Spin chains have been proposed as quantum wires for information transfer in solid state quantum architectures. We show that huge gains in both transfer speed and fidelity are possible using a minimalist control approach that relies only a single, local, on-off switch actuator. Effective switching time sequences can be determined using optimization techniques for both ideal and disordered chains. Simulations suggest that effective optimization is possible even in the absence of accurate models.

Schirmer, S G

2009-01-01

359

Quantum information: source of triggered entangled photon pairs?

The realization of an entangled photon source will be of great importance in quantum information--for example, for quantum key distribution and quantum computation--and Stevenson et al. have described such a source. However, we show here that first, their source is not entangled; second, they use inappropriate entanglement indicators that rely on assumptions invalidated by their data; and third, their source has insignificant entanglement even after simulating subtraction of the significant quantity of background noise. We therefore find that the standard of proof required for a semiconductor source of triggered entangled photon pairs has not been met by Stevenson et al.. PMID:17215801

Gilchrist, Alexei; Resch, Kevin J; White, Andrew G

2007-01-11

360

Quantum correlation: Comparison of measures with geometry and mutual information

Two measures for quantum correlations were proposed recently from a geometric perspective [Phys. Rev. Lett. 104, 080501 (2010); e-print arXiv:1004.0190]. We prove the the equivalence of the two geometric measures with respect to Bell-diagonal states, and demonstrate the similarities and differences for quantum correlation using the geometry-based measure and mutual-information-based measure. Our study on critical point of sudden transition might be useful for keeping long time quantum correlation under decoherence.

Xu, Zhenyu; Xiao, Xin; Feng, Mang

2010-01-01

361

Experimental quantum coding against qubit loss error

A significant obstacle for practical quantum computation is the loss of physical qubits in quantum computers, a decoherence mechanism most notably in optical systems. Here we experimentally demonstrate, both in the quantum circuit model and in the one-way quantum computer model, the smallest non-trivial quantum codes to tackle this problem. In the experiment, we encode single-qubit input states into highly-entangled multiparticle codewords, and we test their ability to protect encoded quantum information from detected one-qubit loss error. Our results prove the in-principle feasibility of overcoming the qubit loss error by quantum codes.

Lu, Chao-Yang; Zhang, Jin; Zhou, Xiao-Qi; Yang, Tao; Pan, Jian-Wei

2008-01-01

362

EDITORIAL: Focus on Quantum Information and Many-Body Theory

Quantum many-body models describing natural systems or materials and physical systems assembled piece by piece in the laboratory for the purpose of realizing quantum information processing share an important feature: intricate correlations that originate from the coherent interaction between a large number of constituents. In recent years it has become manifest that the cross-fertilization between research devoted to quantum information science and to quantum many-body physics leads to new ideas, methods, tools, and insights in both fields. Issues of criticality, quantum phase transitions, quantum order and magnetism that play a role in one field find relations to the classical simulation of quantum systems, to error correction and fault tolerance thresholds, to channel capacities and to topological quantum computation, to name but a few. The structural similarities of typical problems in both fields and the potential for pooling of ideas then become manifest. Notably, methods and ideas from quantum information have provided fresh approaches to long-standing problems in strongly correlated systems in the condensed matter context, including both numerical methods and conceptual insights. Focus on quantum information and many-body theory Contents TENSOR NETWORKS Homogeneous multiscale entanglement renormalization ansatz tensor networks for quantum critical systems M Rizzi, S Montangero, P Silvi, V Giovannetti and Rosario Fazio Concatenated tensor network states R Hübener, V Nebendahl and W Dür Entanglement renormalization in free bosonic systems: real-space versus momentum-space renormalization group transforms G Evenbly and G Vidal Finite-size geometric entanglement from tensor network algorithms Qian-Qian Shi, Román Orús, John Ove Fjærestad and Huan-Qiang Zhou Characterizing symmetries in a projected entangled pair state D Pérez-García, M Sanz, C E González-Guillén, M M Wolf and J I Cirac Matrix product operator representations B Pirvu, V Murg, J I Cirac and F Verstraete SIMULATION AND DYNAMICS A quantum differentiation of k-SAT instances B Tamir and G Ortiz Classical Ising model test for quantum circuits Joseph Geraci and Daniel A Lidar Exact matrix product solutions in the Heisenberg picture of an open quantum spin chain S R Clark, J Prior, M J Hartmann, D Jaksch and M B Plenio Exact solution of Markovian master equations for quadratic Fermi systems: thermal baths, open XY spin chains and non-equilibrium phase transition Tomaž Prosen and Bojan Žunkovi? Quantum kinetic Ising models R Augusiak, F M Cucchietti, F Haake and M Lewenstein ENTANGLEMENT AND SPECTRAL PROPERTIES Ground states of unfrustrated spin Hamiltonians satisfy an area law Niel de Beaudrap, Tobias J Osborne and Jens Eisert Correlation density matrices for one-dimensional quantum chains based on the density matrix renormalization group W Münder, A Weichselbaum, A Holzner, Jan von Delft and C L Henley The invariant-comb approach and its relation to the balancedness of multipartite entangled states Andreas Osterloh and Jens Siewert Entanglement scaling of fractional quantum Hall states through geometric deformations Andreas M Läuchli, Emil J Bergholtz and Masudul Haque Entanglement versus gap for one-dimensional spin systems Daniel Gottesman and M B Hastings Entanglement spectra of critical and near-critical systems in one dimension F Pollmann and J E Moore Macroscopic bound entanglement in thermal graph states D Cavalcanti, L Aolita, A Ferraro, A García-Saez and A Acín Entanglement at the quantum phase transition in a harmonic lattice Elisabeth Rieper, Janet Anders and Vlatko Vedral Multipartite entanglement and frustration P Facchi, G Florio, U Marzolino, G Parisi and S Pascazio Entropic uncertainty relations—a survey Stephanie Wehner and Andreas Winter Entanglement in a spin system with inverse square statistical interaction D Giuliano, A Sindona, G Falcone, F Plastina and L Amico APPLICATIONS Time-dependent currents of one-dimensional bosons in an optical lattice J Schachenmayer, G Pupillo and A J Daley Implementing quantum gates using t

Eisert, Jens; Plenio, Martin B.

2010-02-01

363

Quantum History cannot be Copied

We show that unitarity does not allow cloning of any two points in a ray. This has implication for cloning of the geometric phase information in a quantum state. In particular, the quantum history which is encoded in the geometric phase during cyclic evolution of a quantum system cannot be copied. We also prove that the generalized geometric phase information cannot be copied by a unitary operation. We argue that our result also holds in the consistent history formulation of quantum mechanics.

Pati, A K

2005-01-01

364

Quantum history cannot be copied

International Nuclear Information System (INIS)

We show that unitarity does not allow cloning of any two points in a ray. This has implication for cloning of the geometric phase information in a quantum state. In particular, the quantum history which is encoded in the geometric phase during cyclic evolution of a quantum system cannot be copied. We also prove that the generalized geometric phase information cannot be copied by a unitary operation. We argue that our result also holds in the consistent history formulation of quantum mechanics

365

Quantum history cannot be copied

We show that unitarity does not allow cloning of any two points in a ray. This has implication for cloning of the geometric phase information in a quantum state. In particular, the quantum history which is encoded in the geometric phase during cyclic evolution of a quantum system cannot be copied. We also prove that the generalized geometric phase information cannot be copied by a unitary operation. We argue that our result also holds in the consistent history formulation of quantum mechanics.

Pati, Arun K.

2006-01-01

366

Towards Quantum Information Processing with Superconducting Circuits

In the dozen years since the initial demonstrations that superconducting circuits based on Josephson junctions could be considered as qubits, there has been remarkable progress in the field. Several different "species" of these artificial atoms have been designed and tested, and coherence times have increased by more than 1,000, or a factor of 10 every three years. While real devices are still far from satisfying all the DiVincenzo criteria with fidelities that would meet the error correction threshold, one can nonetheless perform preparation, control, quantum logic, and measurement on multiple superconducting qubits, all with surprisingly high purity and precision given that these are man-made, solid-state systems. In recent years we have seen the preparation of highly-entangled multi-qubit states that violate the Bell and Mermin inequalities, as well as the demonstration of single quantum algorithms, which all benefit from the strong coupling, addressability, and all-electronic control that is possible with these systems. Many experiments employ the concept of a "quantum bus," where qubits couple via superconducting transmission lines that form high-quality resonant cavities. A spinoff of this work is the advent of quantum optics on a chip: microwaves are photons too! The combination of qubits coupled to cavities has allowed the preparation and detection of single gigahertz photons, as well as other highly non-classical states of microwave light. Great progress has also been made in quantum measurement, and other Josephson circuits are now delivering amplifiers that operate at or beyond the Heisenberg limit. In this talk I will attempt to give an overview of some of the key concepts, some experimental highlights from recent years, and point out some possible directions for the future in this field.

Schoelkopf, Robert

2011-03-01

367

Statistical properties of quantum entanglement and information entropy

International Nuclear Information System (INIS)

Key words: entropy, entanglement, atom-field interaction, trapped ions, cold atoms, information entropy. Objects of research: Pure state entanglement, entropy squeezing mazer. The aim of the work: Study of the new entanglement features and new measures for both pure-state and mixed state of particle-field interaction. Also, the impact of the information entropy on the quantum information theory. Method of investigation: Methods of theoretical physics and applied mathematics (statistical physics, quantum optics) are used. Results obtained and their novelty are: All the results of the dissertation are new and many new features have been discovered. Particularly: the most general case of the pure state entanglement has been introduced. Although various special aspects of the quantum entropy have been investigated previously, the general features of the dynamics, when a multi-level system and a common environment are considered, have not been treated before and our work therefore, field a gap in the literature. Specifically: 1) A new entanglement measure due to quantum mutual entropy (mixed-state entanglement) we called it DEM, has been introduced, 2) A new treatment of the atomic information entropy in higher level systems has been presented. The problem has been completely solved in the case of three-level system, 3) A new solution of the interaction between the ultra cold atoms and cavity field has been discovered, 4) Some new models of the atom-field interaction have been adopted. Practical value: The subject carries out theoretic character. Application region: Results can be used in quantum computer developments. Also, the presented results can be used for further developments of the quantum information and quantum communications. (author)

368

CETIS: COMPLEX EFFLUENTS TOXICITY INFORMATION SYSTEM. DATA ENCODING GUIDELINES AND PROCEDURES

The computerized Complex Effluent Toxicity Information System (CETIS) data base includes data extracted from aquatic bioassay reprints as well as facility and receiving water information. Data references are obtained from both published papers and from unpublished results of test...

369

In list-method directed forgetting, people are cued to forget a previously studied item list and to learn a new list instead. Such cuing typically leads to forgetting of the first list and to memory enhancement of the second, referred to as list 1 forgetting and list 2 enhancement. In the present study, two experiments are reported that examined influences of items' serial learning position in a list and the two lists' output order on list-method directed forgetting. The results show that list output order influences list 2 enhancement but not list 1 forgetting. The enhancement was higher when list 2 was recalled first than when list 1 was recalled first and, in both cases, was higher for early list 2 items than for middle and late list 2 items. In contrast, the forgetting was equally present for all list 1 items and did not depend on the two lists' output order. The findings suggest that two separate factors can contribute to list 2 enhancement: one (encoding) factor that is restricted to early list 2 items and does not depend on list output order, and another (retrieval) factor that pertains to all list 2 items and varies with the two lists' output order. A new two-mechanism account of directed forgetting is suggested that reconciles previous (encoding or retrieval) views on list 2 enhancement. PMID:22588948

Pastötter, Bernhard; Kliegl, Oliver; Bäuml, Karl-Heinz T

2012-08-01

370

QUBIT4MATLAB V3.0: A program package for quantum information science and quantum optics for MATLAB

A program package for MATLAB is introduced that helps calculations in quantum information science and quantum optics. It has commands for the following operations: (i) Reordering the qudits of a quantum register, computing the reduced state of a quantum register. (ii) Defining important quantum states easily. (iii) Formatted input and output for quantum states and operators. (iv) Constructing operators acting on given qudits of a quantum register and constructing spin chain Hamiltonians. (v) Partial transposition, matrix realignment and other commands related to the detection of quantum entanglement. (vi) Generating random state vectors, random density matrices and random unitaries.

Tóth, Géza

2007-01-01

371

Virtual photonic couplings of quantum nanostructures for quantum information technology

DEFF Research Database (Denmark)

The effectiveness of virtual photons (VPHs) that need neither to conserve energy nor to follow temporal sequences because of the time-energy uncertainty principle, in the electric interactions between detuned non-identical two level atoms having different size and shape is demonstrated in terms of a model of resonance dynamic multipolemultipole interaction (RDMMI), on the basis of microphotoluminescence (?-PL) experiment of a single asymmetric pair of GaAs/AlGaAs quantum dots (QDs). The ranges of the mediating photons in various RDMMI are estimated, proving the significance of RDMMI in the nanometer regime. Furthermore, prospective device concepts based on the RDMMI assistedby the VPHs, having possibility of autonomic routing of signals like a fallingdominoes effect not only throughout spatial extent but also over temporal differences are deiscussed.

Matsueda, H.; Hvam, JØrn Märcher

2008-01-01

372

Information–theoretic implications of quantum causal structures

DEFF Research Database (Denmark)

It is a relatively new insight of classical statistics that empirical data can contain information about causation rather than mere correlation. First algorithms have been proposed that are capable of testing whether a presumed causal relationship is compatible with an observed distribution. However, no systematic method is known for treating such problems in a way that generalizes to quantum systems. Here, we describe a general algorithm for computing information–theoretic constraints on the correlations that can arise from a given causal structure, where we allow for quantum systems as well as classical random variables. The general technique is applied to two relevant cases: first, we show that the principle of information causality appears naturally in our framework and go on to generalize and strengthen it. Second, we derive bounds on the correlations that can occur in a networked architecture, where a set of few-body quantum systems is distributed among some parties.

Chaves, Rafael; Majenz, Christian

2014-01-01

373

Information-theoretic implications of quantum causal structures.

It is a relatively new insight of classical statistics that empirical data can contain information about causation rather than mere correlation. First algorithms have been proposed that are capable of testing whether a presumed causal relationship is compatible with an observed distribution. However, no systematic method is known for treating such problems in a way that generalizes to quantum systems. Here, we describe a general algorithm for computing information-theoretic constraints on the correlations that can arise from a given causal structure, where we allow for quantum systems as well as classical random variables. The general technique is applied to two relevant cases: first, we show that the principle of information causality appears naturally in our framework and go on to generalize and strengthen it. Second, we derive bounds on the correlations that can occur in a networked architecture, where a set of few-body quantum systems is distributed among some parties. PMID:25562600

Chaves, Rafael; Majenz, Christian; Gross, David

2015-01-01

374

Information–theoretic implications of quantum causal structures

It is a relatively new insight of classical statistics that empirical data can contain information about causation rather than mere correlation. First algorithms have been proposed that are capable of testing whether a presumed causal relationship is compatible with an observed distribution. However, no systematic method is known for treating such problems in a way that generalizes to quantum systems. Here, we describe a general algorithm for computing information–theoretic constraints on the correlations that can arise from a given causal structure, where we allow for quantum systems as well as classical random variables. The general technique is applied to two relevant cases: first, we show that the principle of information causality appears naturally in our framework and go on to generalize and strengthen it. Second, we derive bounds on the correlations that can occur in a networked architecture, where a set of few-body quantum systems is distributed among some parties.

Chaves, Rafael; Majenz, Christian; Gross, David

2015-01-01

375

Delocalization power of global unitary operations on quantum information

We investigate how originally localized two pieces of quantum information represented by a tensor product of two unknown qudit states are delocalized by performing two-qudit global unitary operations. To characterize the delocalization power of global unitary operations on quantum information, we analyze the necessary and sufficient condition to deterministically relocalize one of the two pieces of quantum information to its original Hilbert space by using only LOCC. We prove that this LOCC one-piece relocalization is possible if and only if the global unitary operation is local unitary equivalent to a controlled-unitary operation. The delocalization power and the entangling power characterize different non-local properties of global unitary operations.

Soeda, Akihito

2010-01-01

376

Quantum Bio-Informatics:From Quantum Information to Bio-Informatics

The purpose of this volume is examine bio-informatics and quantum information, which are growing rapidly at present, and to attempt to connect the two, with a view to enumerating and solving the many fundamental problems they entail. To this end, we look for interdisciplinary bridges in mathematics, physics, and information and life sciences. In particular, research into a new paradigm for information science and life science on the basis of quantum theory is emphasized. Sample Chapter(s). Markov Fields on Graphs (599 KB). Contents: Markov Fields on Graphs (L Accardi & H Ohno); Some Aspects of

Freudenberg, W; Ohya, M

2008-01-01

377

Cold Trapped Ions as Quantum Information Processors

In this tutorial we review physical implementation of quantum computing using a system of cold trapped ions. We discuss systematically all the aspects for making the implementation possible. Firstly, we go through the loading and confining of atomic ions in the linear Paul trap, then we describe the collective vibrational motion of trapped ions. Further, we discuss interactions of the ions with a laser beam. We treat the interactions in the travelling-wave and standing-wave configuration for dipole and quadrupole transitions. We review different types of laser cooling techniques associated with trapped ions. We address Doppler cooling, sideband cooling in and beyond the Lamb-Dicke limit, sympathetic cooling and laser cooling using electromagnetically induced transparency. After that we discuss the problem of state detection using the electron shelving method. Then quantum gates are described. We introduce single-qubit rotations, two-qubit controlled-NOT and multi-qubit controlled-NOT gates. We also comment on...

Sasura, M; Sasura, Marek; Buzek, Vladimir

2002-01-01

378

Byuons, Quantum Information Channel, Consciousness and Universe

The physics of consciousness and universal mind is shown on the base of theory of byuons, the theory of “life’ of special unobservable discrete objects—byuons from which the surrounding space and the world of elementary particles are formed. An essential distinction of that theory from the modern models in the classical and quantum field theories is that the potentials of physical fields (gravitational, electromagnetic, asf.) gain exactly fixable, measurable values. Basic axioms and som...

Baurov, Y. A.

2011-01-01

379

Achievable qubit rates for quantum-information wires

Suppose Alice and Bob have access to two separated regions, respectively, of a system of electrons moving in the presence of a regular one-dimensional lattice of binding atoms. We consider the problem of communicating as much quantum information, as measured by the qubit rate, through this quantum-information wire as possible. We describe a protocol whereby Alice and Bob can achieve a qubit rate for these systems which is proportional to N-(1)/(3) qubits per unit time, where N is the number of lattice sites. Our protocol also functions equally in the presence of interactions modeled via the t-J and Hubbard models.

Yadsan-Appleby, Hulya; Osborne, Tobias J.

2012-01-01

380

The classical capacity of a quantum dense coding system

International Nuclear Information System (INIS)

Quantum dense coding transmits classical information by sending a quantum system with the assistance of quantum entanglement. The classical information capacity of a quantum dense coding system is obtained, where a sender and receiver share a completely entangled state and a quantum system encoded by applying unitary operators is sent through an arbitrary quantum channel. The result is compared with that obtained in another setting. (letter to the editor)

381

Entangling Neutral Atoms for Quantum Information Processing

I present several scalable schemes for implementing two-qubit quantum gates with neutral atoms. First, I discuss the usage of cold controlled collisions between two atoms to achieve conditional dynamics and analyze this method in two particular set-ups: optical lattices and magnetic micro-traps. Furthermore, I show how to implement a fast two-qubit quantum gate by using strong dipole-dipole interactions of atoms excited to low-lying Rydberg states in constant electric fields. In this case the gate operation time is much faster than the time scales associated with the external motion of the atoms in the trapping potential. All of these schemes offer the possibility of performing certain multi-particle operations in parallel. Using this fact, I show how to implement efficient quantum error correction and schemes for fault-tolerant computing. I also give a detailed analysis of imperfections of the gate operations. In particular I discuss the temperature dependence of the gate fidelity and the effects of spontaneous emission.

Jaksch, Dieter

2002-03-01

382

Coherent control of diamond defects for quantum information science and quantum sensing

Quantum mechanics, arguably one of the greatest achievements of modern physics, has not only fundamentally changed our understanding of nature but is also taking an ever increasing role in engineering. Today, the control of quantum systems has already had a far-reaching impact on time and frequency metrology. By gaining further control over a large variety of different quantum systems, many potential applications are emerging. Those applications range from the development of quantum sensors and new quantum metrological approaches to the realization of quantum information processors and quantum networks. Unfortunately most quantum systems are very fragile objects that require tremendous experimental effort to avoid dephasing. Being able to control the interaction between a quantum system with its local environment embodies therefore an important aspect for application and hence is at the focus of this thesis. Nitrogen Vacancy (NV) color centers in diamond have recently attracted attention as a room temperature solid state spin system that expresses long coherence times. The electronic spin associated with NV centers can be efficiently manipulated, initialized and readout using microwave and optical techniques. Inspired by these extraordinary properties, much effort has been dedicated to use NV centers as a building block for scalable room temperature quantum information processing and quantum communication as well as a quantum sensing. In the first part of this thesis we demonstrate that by decoupling the spin from the local environment the coherence time of a NV quantum register can be extended by three order of magnitudes. Employing a novel dissipative mechanism in combination with dynamical decoupling, memory times exceeding one second are observed. The second part shows that, based on quantum control, NV centers in nano-diamonds provide a nanoscale temperature sensor with unprecedented accuracy enabling local temperature measurements in living biological cells. This opens the door for the engineering of nano-scaled chemical reactions to the study of temperature dependent biological processes. Finally, a novel technique is introduced that facilitates optical spin detection with nanoscale resolution based on an optical far-field technique; by combining this with a 'quantum Zeno' like effect coherent manipulation of nominally identical spins at a nanoscale is achieved.

Maurer, Peter

383

Rényi generalizations of the conditional quantum mutual information

The conditional quantum mutual information I(A; B|C) of a tripartite state ?ABC is an information quantity which lies at the center of many problems in quantum information theory. Three of its main properties are that it is non-negative for any tripartite state, that it decreases under local operations applied to systems A and B, and that it obeys the duality relation I(A; B|C) = I(A; B|D) for a four-party pure state on systems ABCD. The conditional mutual information also underlies the squashed entanglement, an entanglement measure that satisfies all of the axioms desired for an entanglement measure. As such, it has been an open question to find Rényi generalizations of the conditional mutual information, that would allow for a deeper understanding of the original quantity and find applications beyond the traditional memoryless setting of quantum information theory. The present paper addresses this question, by defining different ?-Rényi generalizations I?(A; B|C) of the conditional mutual information, some of which we can prove converge to the conditional mutual information in the limit ? ? 1. Furthermore, we prove that many of these generalizations satisfy non-negativity, duality, and monotonicity with respect to local operations on one of the systems A or B (with it being left as an open question to prove that monotonicity holds with respect to local operations on both systems). The quantities defined here should find applications in quantum information theory and perhaps even in other areas of physics, but we leave this for future work. We also state a conjecture regarding the monotonicity of the Rényi conditional mutual informations defined here with respect to the Rényi parameter ?. We prove that this conjecture is true in some special cases and when ? is in a neighborhood of one.

Berta, Mario; Seshadreesan, Kaushik P.; Wilde, Mark M.

2015-02-01

384

Experimental determination of the properties of a quantum system is a difficult task. This stems from the laborious process of quantum state tomography, which requires a number of measurements which grows exponentially with the size of the system, and to the non-trivial process of state reconstruction, which relies on optimization algorithms. Here we present a new variational approach to estimate the expectation value of any observable which relies only on partial knowledge about the state of a quantum system. This estimate is optimal and reliable, in the sense that its absolute value is always smaller than the value that would be obtained if the quantum state was known completely. The approach also allows the reconstruction of the quantum state using incomplete information. The algorithm that implements our method is a linear convex problem, which has exact solution in terms of well known semi-definite programs.

Maciel, Thiago O; Vianna, Reinaldo O

2010-01-01

385

Quantum information processing with mesoscopic photonic states

DEFF Research Database (Denmark)

The thesis is built up around a versatile optical experimental setup based on a laser, two optical parametric ampliers, a few sets of modulators and two sets of homodyne detectors, which together with passive linear optics generate, process and characterize various types of Gaussian quantum states. Using this setup we have experimentally and theoretically investigated Gaussian quantum discord, continuous variable quantum key distribution and quantum polarization. The Gaussian discord broadens the definition of non-classical correlations from entanglement, to all types of correlations which cannot be extracted by local measurements due to the limitations dictated by the Heisenberg's uncertainty principle. We experimentally characterize the evolution of the discord of EPR states and mixtures of coherent states in an attenuating channel. We demonstrate that the discord can grow by local dissipation in the mixture of coherent states. Further we investigate the robustness of the discord of a broader range of states and suggest a toolbox of states which can be used to test if a protocol is discord based, before performing a rigid proof. Gaussian quantum key distribution can be implemented with current commercially available equipment. However the performance in terms of achievable distance is highly limited. We first experimentally demonstrate that the boundaries of coherent states can be surpassed using modulated entangled states. A simplied experiment is also presented where the modulation of a single-mode squeezed state gives a very reconciliation efficiency robust protocol. All of this is done to achieve higher key rates at the current limits of the coherent state protocols and to extend the boundaries for tolerable channel noise, loss and reconciliation efficiency. As any degree of squeezing improves the performance the extra effort of implementing squeezing in commercial devices is overshadowed by the extended range and increased security margin achieved. Still using the same experimental setup, but now in the context of polarization we have experimentally bridged the gab between the states with very low photon numbers and the states where one of Stokes parameters is highly excited. To describe the polarization of these state we introduce several new polarization measures which take into account the covariance of the polarization and resolve the polarization manifolds. We experimentally demonstrate states for which the polarization is hidden in the unresolved measures and as well a state which is unpolarized for both first order polarization measures. Finally we illustrate the polarization with SU2 Wigner functions to give a richer picture, not only of the degree of polarization but also its distribution among the manifolds.

Madsen, Lars Skovgaard

2012-01-01

386

Continuous-variable quantum computing in optical time-frequency modes using quantum memories.

We develop a scheme for time-frequency encoded continuous-variable cluster-state quantum computing using quantum memories. In particular, we propose a method to produce, manipulate, and measure two-dimensional cluster states in a single spatial mode by exploiting the intrinsic time-frequency selectivity of Raman quantum memories. Time-frequency encoding enables the scheme to be extremely compact, requiring a number of memories that are a linear function of only the number of different frequencies in which the computational state is encoded, independent of its temporal duration. We therefore show that quantum memories can be a powerful component for scalable photonic quantum information processing architectures. PMID:25302876

Humphreys, Peter C; Kolthammer, W Steven; Nunn, Joshua; Barbieri, Marco; Datta, Animesh; Walmsley, Ian A

2014-09-26

387

International Nuclear Information System (INIS)

Measurements transfer information about a system to the apparatus and then, further on, to observers and (often inadvertently) to the environment. I show that even imperfect copying essential in such situations restricts possible unperturbed outcomes to an orthogonal subset of all possible states of the system, thus breaking the unitary symmetry of its Hilbert space implied by the quantum superposition principle. Preferred outcome states emerge as a result. They provide a framework for 'wave-packet collapse', designating terminal points of quantum jumps and defining the measured observable by specifying its eigenstates. In quantum Darwinism, they are the progenitors of multiple copies spread throughout the environment - the fittest quantum states that not only survive decoherence, but subvert the environment into carrying information about them--into becoming a witness

388

Quantum-information processing with circuit quantum electrodynamics

International Nuclear Information System (INIS)

We theoretically study single and two-qubit dynamics in the circuit QED architecture. We focus on the current experimental design [Wallraff et al., Nature (London) 431, 162 (2004); Schuster et al., ibid. 445, 515 (2007)] in which superconducting charge qubits are capacitively coupled to a single high-Q superconducting coplanar resonator. In this system, logical gates are realized by driving the resonator with microwave fields. Advantages of this architecture are that it allows for multiqubit gates between non-nearest qubits and for the realization of gates in parallel, opening the possibility of fault-tolerant quantum computation with superconducting circuits. In this paper, we focus on one- and two-qubit gates that do not require moving away from the charge-degeneracy ''sweet spot'. This is advantageous as it helps to increase the qubit dephasing time and does not require modification of the original circuit QED. However, these gates can, in some cases, be slower than those that do not use this constraint. Five types of two-qubit gates are discussed, these include gates based on virtual photons, real excitation of the resonator, and a gate based on the geometric phase. We also point out the importance of selection rules when working at the charge degeneracy point

389

We introduce quantum information engines that extract work from quantum states and a single thermal reservoir. They may operate under three general conditions: i/ Unitarily Steered evolution (US); ii/ Irreversible Thermalization (IT) and iii/ Isothermal Relaxation (IR), and hence are called USITIR machines. They include novel engines without traditional feedback control mechanisms, as well as versions which also include them. Explicit constructions of USITIR engines are pres...

Diazdelacruz, J. M.; Martin-delgado, M. A.

2014-01-01

390

Entangled world. The fascination of quantum information and computation

International Nuclear Information System (INIS)

In the quantum world, a particle can behave like a wave and accordingly seems to be in two places at the same time. This of course is contradictory to our daily experiences with classical particles. How then should this be understood? What happens in the transitional area between the classical world and quantum mechanics? The present book answers exciting questions like these in a way that is easy to follow and to understand and it shows that the link between these two worlds will have concrete and applied effects on our daily life in the near future. It will, for example, improve and change the conventional methods of information processing. With the help of quantum cryptography, it will be possible to communicate tap-proof. Using quantum computers we will be able to solve highly complicated problems in a very short time. (orig.)

391

On two misconceptions in current relativistic quantum information

We describe two problems current relativistic quantum information suffers from. The first point is an explanation of an alleged ambiguity of entropic quantities detected in a number of publications and incorrectly resolved in [M. Montero and E. Mart{\\i}n-Mart{\\i}nez, Physical Review A 83, 062323 (2011)]. We found that the problem arises due to wrong algebraic manipulations with fermions and ignoring the superselection rule for bosons and fermions. This leads to a misinterpretation of certain entropic quantities when applied to fermion fields. The second discussed point is to alert to a conceptual misunderstanding of the role of entanglement (and quantum correlations in general) in some of the studied relativistic scenarios. Instead, we argue in favor of investigating capacities of quantum channels induced by the relevant physical processes as dictated by quantum Shannon theory.

Bradler, Kamil

2011-01-01

392

Method for modeling decoherence on a quantum-information processor

International Nuclear Information System (INIS)

We develop and implement a method for modeling decoherence processes on an N-dimensional quantum system that requires only an N2-dimensional quantum environment and random classical fields. This model offers the advantage that it may be implemented on small quantum-information processors in order to explore the intermediate regime between semiclassical and fully quantum models. We consider in particular ?z?z system-environment couplings which induce coherence (phase) damping, although the model is directly extendable to other coupling Hamiltonians. Effective, irreversible phase damping of the system is obtained by applying an additional stochastic Hamiltonian on the environment alone, periodically redressing it and thereby irreversibliy randomizing the system phase information that has leaked into the environment as a result of the coupling. This model is exactly solvable in the case of phase damping, and we use this solution to describe the model's behavior in some limiting cases. In the limit of small stochastic phase kicks the system's coherence decays exponentially at a rate that increases linearly with the kick frequency. In the case of strong kicks we observe an effective decoupling of the system from the environment. We present a detailed implementation of the method on a nuclear magnetic resonance quantum-information processor

393

Renyi generalizations of the conditional quantum mutual information

The conditional quantum mutual information $I(A;B|C)$ of a tripartite state $\\rho_{ABC}$ is an information quantity which lies at the center of many problems in quantum information theory. Three of its main properties are that it is non-negative for any tripartite state, that it decreases under local operations applied to systems $A$ and $B$, and that it obeys the duality relation $I(A;B|C)=I(A;B|D)$ for a four-party pure state on systems $ABCD$. It has been an open question to find Renyi generalizations of the conditional mutual information, that would allow for a deeper understanding of the original quantity and find applications beyond the traditional memoryless setting of quantum information theory. The present paper addresses this question, by defining different $\\alpha$-Renyi generalizations $I_{\\alpha}(A;B|C)$ of the conditional mutual information that all converge to the conditional mutual information in the limit $\\alpha \\to 1$. Furthermore, we prove that many of these generalizations satisfy the afo...

Berta, Mario; Wilde, Mark M

2014-01-01

394

Quantum information transfer between topological and spin qubit systems

In this talk I will introduce a method to coherently transfer quantum information, and to create entanglement, between topological qubits and conventional spin qubits. The transfer method uses gated control to transfer an electron (spin qubit) between a quantum dot and edge Majorana modes in adjacent topological superconductors. Because of the spin polarization of the Majorana modes, the electron transfer translates spin superposition states into superposition states of the Majorana system, and vice versa. Furthermore, I will discuss how a topological superconductor can be used to facilitate long-distance quantum information transfer and entanglement between spatially separated spin qubits. References: M. Leijnse, K. Flensberg, PRB 84, 140501(R) (2011) M. Leijnse, K. Flensberg, PRL, in print, arXiv:1107.5703

Leijnse, Martin; Flensberg, Karsten

2012-02-01

395

Expected behavior of quantum thermodynamic machines with prior information.

We estimate the expected behavior of the quantum model of a heat engine when we have incomplete information about external macroscopic parameters such as the magnetic field controlling the intrinsic energy scales of the working medium. We explicitly derive the prior probability distribution for these unknown parameters ai (i=1,2). Based on a few simple assumptions, the prior probability distribution is found to be of the form ?(ai)?1/ai. By calculating the expected values of various physical quantities related to this engine, we find that the expected behavior of the quantum model exhibits thermodynamiclike features. This leads us to a surprising proposal that incomplete information quantified as an appropriate prior distribution can lead us to expect classical thermodynamic behavior in quantum models. PMID:22680456

Thomas, George; Johal, Ramandeep S

2012-04-01

396

Continuous variable quantum information: Gaussian states and beyond

The study of Gaussian states has arisen to a privileged position in continuous variable quantum information in recent years. This is due to vehemently pursued experimental realisations and a magnificently elegant mathematical framework. In this article, we provide a brief, and hopefully didactic, exposition of Gaussian state quantum information and its contemporary uses, including sometimes omitted crucial details. After introducing the subject material and outlining the essential toolbox of continuous variable systems, we define the basic notions needed to understand Gaussian states and Gaussian operations. In particular, emphasis is placed on the mathematical structure combining notions of algebra and symplectic geometry fundamental to a complete understanding of Gaussian informatics. Furthermore, we discuss the quantification of different forms of correlations (including entanglement and quantum discord) for Gaussian states, paying special attention to recently developed measures. The manuscript is conclud...

Adesso, Gerardo; Lee, Antony R

2014-01-01

397

Working memory (WM) involves three cognitive events: information encoding, maintenance, and retrieval; these are supported by brain activity in a network of frontal, parietal and temporal regions. Manipulation of WM load and duration of the maintenance period can modulate this activity. Although such modulations have been widely studied using the event-related potentials (ERP) technique, a precise description of the time course of brain activity during encoding and retrieval is still required...

Diego Pinal

2014-01-01

398

Quantum Private Information Retrieval has linear communication complexity

In Private Information Retrieval (PIR), a client queries an n-bit database in order to retrieve an entry of her choice, while maintaining privacy of her query value. Chor, Goldreich, Kushilevitz, and Sudan showed that, in the information-theoretical setting, a linear amount of communication is required for classical PIR protocols (and thus that the trivial protocol is optimal). This linear lower bound was shown by Nayak to hold also in the quantum setting. Here, we extend Na...

Baumeler, A?min; Broadbent, Anne

2013-01-01

399

Quantum simulation and quantum information processing with molecular dipolar crystals

International Nuclear Information System (INIS)

In this thesis interactions between dipolar crystals and neutral atoms or separated molecules have been investigated. They were motivated to realize new kinds of lattice models in mixtures of atoms and polar molecules where an MDC functions as an underlying periodic lattice structure for the second species. Such models bring out the peculiar features of MDC's, that include a controllable, potentially sub-optical wavelength periodicity and strong particle phonon interactions. Only stable collisional configurations have been investigated, excluding chemical reactions between the substituents, and crystal distortions beyond the scope of perturbation theory. The system was treated in the polaron picture where particles of the second species are dressed by surrounding crystal phonons. To describe the competition between coherent and incoherent dynamics of the polarons, a master equation in the Brownian motion limit was used with phonons treated as a thermal heat bath. It was shown analytically that in a wide range of realistic parameters the corrections to the coherent time evolution are small, and that the dynamics of the dressed particles can be described by an effective extended Hubbard model with controllable system parameters. The last chapter of this thesis contains a proposal for QIP with cold polar molecules that, in contrast to previous works, uses an MDC as a quantum register. It was motivated by the unique features of dipolar molecules and to exploit the peculiapolar molecules and to exploit the peculiar physical conditions in dipolar crystals. In this proposal the molecular dipole moments were tailored by non-local fields to include a small, switchable, state-dependent dipole moment in addition to the large internal state independent moment that stabilizes the crystal. It was shown analytically that a controllable, non-trivial phonon-mediated interaction can be generated that exceeds non-trivial, direct dipole-dipole couplings. The addressability problem due to high crystal densities was overcome by the use of marker qubits that locally manipulate the phononic structure. This enabled the implementation of qubit operations in the crystal at pre-specified lattice site using otherwise global addressing only with negligible decoherence. Finally a specific two-layer setup is outlined that can be scaled to arbitrary sizes by including multi-layer structures realized under optical trapping conditions with multiple marker molecules. (author)

400

Information-Theoretic Analyses of Two-Level Quantum Systems

We observe that the 3 x 3 quantum (Helstrom) information matrix (H) for thethree-dimensional convex set of two-level quantum systems is equal to 1/4 ofthe classical (Fisher) information matrix for a certain family of multinomial(in particular, quadrinomial) probability distributions. Implications for stateestimation and universal coding (data compression) of this quantum-classicalrelation are examined. We also compute the Fisher information matrices based onthe optimal sets of measurements recently devised by Vidal et al(quant-ph/9812068) for N = 2,...,7 copies of the two-level systems. We findthat these matrices are bounded above by (N-1) H, while N H is the theoreticalbound provided by the quantum Cramer-Rao theorem. Additionally, the slightlysmaller matrices (N-1.01) H are not dominating near the pure states, so the bounds (N-1) H areclearly quite tight there. We find for N = 2,...,6 that the trace of theproduct of the inverse of H and the Fisher information matrix for optimalminimal measurements of N copi...

Slater, P B

2000-01-01

401

Mathematical Modeling of Physical and Engineering Systems in Quantum Information

Several concrete examples in quantum information are discussed to demonstrate the importance of proper modeling that relates the mathematical description to real-world applications. In particular, it is shown that some commonly accepted conclusions are not adequately supported by their purported justifications in the logical manner required.

Yuen, Horace P.

2007-01-01

402

Engineering QND measurements for continuous variable quantum information processing

A novel scheme to realize the whole class of quantum nondemolition (QND) measurements of a field quadrature is suggested. The setup requires linear optical components and squeezers, and allows optimal QND measurements of quadratures, which minimize the information gain versus state disturbance trade-off.

Paris, Matteo G. A.

2002-01-01

403

PRINCIPLES AND APPLICATIONS OF AMORPHICITY, STRUCTURAL CHANGE, AND OPTICAL INFORMATION ENCODING

Information and energy are areas of greatest importance to our highly technological society. Restrictions of crystalline synimetry and depletion of natural material resources have made both these subjects materials limited. Amorphous materials are the common media for the expression of the transformational processes of energy and information. The ability to synthesize materials in which many elements of the periodic table are combined in ways previously forbidden to them by crystalline constr...

Ovshinsky, S.

1981-01-01

404

This monograph provides a mathematical foundation to the theory of quantum information and computation, with applications to various open systems including nano and bio systems. It includes introductory material on algorithm, functional analysis, probability theory, information theory, quantum mechanics and quantum field theory. Apart from standard material on quantum information like quantum algorithm and teleportation, the authors discuss findings on the theory of entropy in C*-dynamical systems, space-time dependence of quantum entangled states, entangling operators, adaptive dynamics, relativistic quantum information, and a new paradigm for quantum computation beyond the usual quantum Turing machine. Also, some important applications of information theory to genetics and life sciences, as well as recent experimental and theoretical discoveries in quantum photosynthesis are described.

Ohya, Masanori

2011-01-01

405

Many animal species, including some social hymenoptera, use the visual system for navigation. Although the insect compound eyes have been well studied, less is known about the second visual system in some insects, the ocelli. Here we demonstrate navigational functions of the ocelli in the visually guided Australian desert ant Melophorus bagoti. These ants are known to rely on both visual landmark learning and path integration. We conducted experiments to reveal the role of ocelli in the perception and use of celestial compass information and landmark guidance. Ants with directional information from their path integration system were tested with covered compound eyes and open ocelli on an unfamiliar test field where only celestial compass cues were available for homing. These full-vector ants, using only their ocelli for visual information, oriented significantly towards the fictive nest on the test field, indicating the use of celestial compass information that is presumably based on polarised skylight, the sun's position or the colour gradient of the sky. Ants without any directional information from their path-integration system (zero-vector) were tested, also with covered compound eyes and open ocelli, on a familiar training field where they have to use the surrounding panorama to home. These ants failed to orient significantly in the homeward direction. Together, our results demonstrated that M. bagoti could perceive and process celestial compass information for directional orientation with their ocelli. In contrast, the ocelli do not seem to contribute to terrestrial landmark-based navigation in M. bagoti. PMID:21346116

Schwarz, Sebastian; Albert, Laurence; Wystrach, Antoine; Cheng, Ken

2011-03-15

406

There is considerable debate over whether the brain codes information using neural firing rate or the fine-grained structure of spike timing. We investigated this issue in spike discharge recorded from single units in the sensorimotor cortex, deep cerebellar nuclei, and dorsal root ganglia in macaque monkeys trained to perform a finger flexion task. The task required flexion to four different displacements against two opposing torques; the eight possible conditions were randomly interleaved. We used information theory to assess coding of task condition in spike rate, discharge irregularity, and spectral power in the 15- to 25-Hz band during the period of steady holding. All three measures coded task information in all areas tested. Information coding was most often independent between irregularity and 15-25 Hz power (60% of units), moderately redundant between spike rate and irregularity (56% of units redundant), and highly redundant between spike rate and power (93%). Most simultaneously recorded unit pairs coded using the same measure independently (86%). Knowledge of two measures often provided extra information about task, compared with knowledge of only one alone. We conclude that sensorimotor systems use both rate and temporal codes to represent information about a finger movement task. As well as offering insights into neural coding, this work suggests that incorporating spike irregularity into algorithms used for brain-machine interfaces could improve decoding accuracy. PMID:25298385

Witham, Claire L; Baker, Stuart N

2015-01-01

407

Information theoretic treatment of tripartite systems and quantum channels

We use a Holevo measure to study quantum information in a tripartite quantum system, including the case in which part $a$ is the input, and $b$ and $c$ the outputs of a quantum channel and its complementary channel. Specifically, we consider how the presence in $b$ of a particular type of information associated with an orthonormal basis $w$ of $a$ is linked to or constrains the presence in $c$ of a different type of information about $a$. Our first main result: For a pure tripartite state the difference between the $w$ type of information contained in $b$ and $c$ is independent of $w$. The second: a general inequality, also applying to POVMs, extending the idea that if the $w$ type of information is perfectly present in $b$, a mutually-unbiased type $u$ must be absent from $c$. The extension provides quantitative bounds when the $w$ information is not perfectly present, and the $u$ is not perfectly mutually unbiased. We also generalize other all-or-nothing theorems. As applied to complementary channels $\\EC$ ...

Coles, Patrick J; Gheorghiu, Vlad; Griffiths, Robert B

2010-01-01

408

Solution to Information Leakage in a Quantum Network System of QSS-QDC Using ?-Type Entangled States

Recently, Hong et al. (Chin. Phys. Lett. 29:050303, 2012) put forward two quantum secret sharing (QSS) protocols of quantum direct communication (QDC) by using ?-type entangled states. Later, some studies (Gao et al. in Chin. Phys. Lett. 29:110305, 2012; Chin. Phys. Lett. 30:079904, 2013; Liu et al. in Chin. Phys. Lett. 30:039901, 2013; Hong and Yang in Chin. Phys. Lett. 30:069901, 2013; Liu and Chen in Chin. Phys. Lett. 30:079903, 2013) made up for the drawbacks of Hong et al.'s two protocols to some extent. However, the information leakage weakness is still not thoroughly solved. In this Letter, the author analyzes the inner reason of information leakage weakness in detail at first. And then he suggests an effective encoding rule to avoid this weakness.

Ye, Tian-Yu

2014-05-01

409

Trapped-ion antennae for the transmission of quantum information.

More than 100 years ago, Hertz succeeded in transmitting signals over a few metres to a receiving antenna using an electromagnetic oscillator, thus proving the electromagnetic theory developed by Maxwell. Since this seminal work, technology has developed, and various oscillators are now available at the quantum mechanical level. For quantized electromagnetic oscillations, atoms in cavities can be used to couple electric fields. However, a quantum mechanical link between two mechanical oscillators (such as cantilevers or the vibrational modes of trapped atoms or ions) has been rarely demonstrated and has been achieved only indirectly. Examples include the mechanical transport of atoms carrying quantum information or the use of spontaneously emitted photons. Here we achieve direct coupling between the motional dipoles of separately trapped ions over a distance of 54 micrometres, using the dipole-dipole interaction as a quantum mechanical transmission line. This interaction is small between single trapped ions, but the coupling is amplified by using additional trapped ions as antennae. With three ions in each well, the interaction is increased by a factor of seven compared to the single-ion case. This enhancement facilitates bridging of larger distances and relaxes the constraints on the miniaturization of trap electrodes. The system provides a building block for quantum computers and opportunities for coupling different types of quantum systems. PMID:21346764

Harlander, M; Lechner, R; Brownnutt, M; Blatt, R; Hänsel, W

2011-03-10

410

The FEYNMAN tools for quantum information processing: Design and implementation

The FEYNMAN tools have been re-designed with the goal to establish and implement a high-level (computer) language that is capable to deal with the physics of finite, n-qubit systems, from frequently required computations to mathematically advanced tasks in quantum information processing. In particular, emphasis has been placed to introduce a small but powerful set of keystring-driven commands in order to support both, symbolic and numerical computations. Though the current design is implemented again within the framework of MAPLE, it is general and flexible enough to be utilized and combined with other languages and computational environments. The present implementation facilitates a large number of computational tasks, including the definition, manipulation and parametrization of quantum states, the evaluation of quantum measures and quantum operations, the evolution of quantum noise in discrete models, quantum measurements and state estimation, and several others. The design is based on a few high-level commands, with a syntax close to the mathematical notation and its use in the literature, and which can be generalized quite readily in order to solve computational tasks at even higher degree of complexity. In this work, I present and discuss the (re-design of the) FEYNMAN tools and make major parts of the code available for public use. Moreover, a few selected examples are shown and demonstrate possible application of this toolbox. The FEYNMAN tools are provided as MAPLE library and can hence be used on all platforms on which this computer-algebra system is accessible.

Fritzsche, S.

2014-06-01

411

The application of the quantum mechanical properties of physical systems to realize novel computational schemes and innovative device functions have been topics of recent interest. Proposals for associated devices are to be found in diverse branches of physics. Here, we are concerned with the experimental realization of some elements needed for quantum information processing using nuclear spin immersed in a confined electronic system in the quantum Hall regime. Thus, we follow a spin-handling approach that (a) uses the Overhauser effect in the quantum Hall regime to realize a large nuclear polarization at relatively high temperatures, (b) detects the nuclear spin state by measuring the influence of the associated magnetic field on Electron Spin Resonance, and (c) seeks to apply the electronic spin exciton as the spin transfer mechanism. Some measurements examining the viability of this approach are shown, and the utility of the approach for initializing a nuclear spin system at a relatively high temperature i...

Mani, R G; Narayanamurti, V

2003-01-01

412

Recent studies in the field of intonational phonology have shown that information-seeking questions can be distinguished from confirmation-seeking questions by prosodic means in a variety of languages (Armstrong, 2010, for Puerto Rican Spanish; Grice & Savino, 1997, for Bari Italian; Kugler, 2003, for Leipzig German; Mata & Santos, 2010, for…

Vanrell, Maria del Mar; Mascaro, Ignasi; Torres-Tamarit, Francesc; Prieto, Pilar

2013-01-01

413

Some applications of hypercontractive inequalities in quantum information theory

Hypercontractive inequalities have become important tools in theoretical computer science and have recently found applications in quantum computation. In this note we discuss how hypercontractive inequalities, in various settings, can be used to obtain (fairly) concise proofs of several results in quantum information theory: a recent lower bound of Lancien and Winter on the bias achievable by local measurements which are 4-designs; spectral concentration bounds for k-local Hamiltonians; and a recent result of Pellegrino and Seoane-Sepúlveda giving general lower bounds on the classical bias obtainable in multiplayer XOR games.

Montanaro, Ashley

2012-12-01

414

Information Geometry of Entanglement Renormalization for free Quantum Fields

We provide an explicit connection between the differential generation of entanglement entropy in a tensor network representation of the ground states of two field theories, and a geometric description of these states based on the Fisher information metric. We show how the geometrical description remains invariant despite there is an irreducible gauge freedom in the definition of the tensor network. The results might help to understand how spacetimes may emerge from distributions of quantum states, or more concretely, from the structure of the quantum entanglement concomitant to those distributions.

Molina-Vilaplana, Javier

2015-01-01

415

Algebraic geometry informs perturbative quantum field theory

Single-scale Feynman diagrams yield integrals that are periods, namely projective integrals of rational functions of Schwinger parameters. Algebraic geometry may therefore inform us of the types of number to which these integrals evaluate. We give examples at 3, 4 and 6 loops of massive Feynman diagrams that evaluate to Dirichlet $L$-series of modular forms and examples at 6, 7 and 8 loops of counterterms that evaluate to multiple zeta values or polylogarithms of the sixth root of unity. At 8 loops and beyond, algebraic geometry informs us that polylogs are insufficient for the evaluation of terms in the beta-function of $\\phi^4$ theory. Here, modular forms appear as obstructions to polylogarithmic evaluation.

Broadhurst, David

2014-01-01

416

Entanglement boosts quantum turbo codes

One of the unexpected breakdowns in the existing theory of quantum serial turbo coding is that a quantum convolutional encoder cannot simultaneously be recursive and non-catastrophic. These properties are essential for a quantum turbo code to have an unbounded minimum distance and for its iterative decoding algorithm to converge, respectively. Here, we show that the entanglement-assisted paradigm gives a theoretical and practical "turbo boost" to these codes, in the sense that an entanglement-assisted quantum (EAQ) convolutional encoder can possess both of the aforementioned desirable properties, and simulation results indicate that entanglement-assisted turbo codes can operate reliably in a noise regime 5.5 dB beyond that of standard quantum turbo codes. Entanglement is the resource that enables a convolutional encoder to satisfy both properties because an encoder acting on only information qubits, classical bits, gauge qubits, and ancilla qubits cannot simultaneously satisfy them. We give several examples o...

Wilde, Mark M

2010-01-01

417

Information-theoretic treatment of tripartite systems and quantum channels

International Nuclear Information System (INIS)

A Holevo measure is used to discuss how much information about a given positive operator valued measure (POVM) on system a is present in another system b, and how this influences the presence or absence of information about a different POVM on a in a third system c. The main goal is to extend information theorems for mutually unbiased bases or general bases to arbitrary POVMs, and especially to generalize ''all-or-nothing'' theorems about information located in tripartite systems to the case of partial information, in the form of quantitative inequalities. Some of the inequalities can be viewed as entropic uncertainty relations that apply in the presence of quantum side information, as in recent work by Berta et al. [Nature Physics 6, 659 (2010)]. All of the results also apply to quantum channels: For example, if E accurately transmits certain POVMs, the complementary channel F will necessarily be noisy for certain other POVMs. While the inequalities are valid for mixed states of tripartite systems, restricting to pure states leads to the basis invariance of the difference between the information about a contained in b and c.

418

Quantum-information processing with noisy cluster states

International Nuclear Information System (INIS)

We provide an analysis of basic quantum-information processing protocols under the effect of intrinsic nonidealities in cluster states. These nonidealities are based on the introduction of randomness in the entangling steps that create the cluster state and are motivated by the unavoidable imperfections faced in creating entanglement using condensed-matter systems. Aided by the use of an alternative and very efficient method to construct cluster-state configurations, which relies on the concatenation of fundamental cluster structures, we address quantum-state transfer and various fundamental gate simulations through noisy cluster states. We find that a winning strategy to limit the effects of noise is the management of small clusters processed via just a few measurements. Our study also reinforces recent ideas related to the optical implementation of a one-way quantum computer

419

An informationally-complete unification of quantum spacetime and matter

It was known long ago that quantum theory and general relativity, two pillars of modern physics, are in sharp conflict in their foundations. Their fundamental inconsistencies render a consistent theory of quantum gravity the most challenging problem in physics. Here we propose an informationally-complete quantum field theory (ICQFT), which describes elementary particles, their gauge fields and gravity as a trinity without the Hilbert-space inconsistency of Einstein's equation. We then argue that the ICQFT provide a coherent picture and conceptual framework of unifying matter and spacetime. The trinary field is characterized by dual entanglement and dual dynamics. Spacetime-matter entanglement allows us to give a natural explanation of the holographic principle, as well as two conjectures on black-hole states and on a possible candidate to dark matter/energy.

Chen, Zeng-Bing

2014-01-01

420

High Efficiency Photon Number Detection for Quantum Information Processing

The Visible Light Photon Counter (VLPC) features high quantum efficiency and low pulse height dispersion. These properties make it ideal for efficient photon number state detection. The ability to perform efficient photon number state detection is important in many quantum information processing applications, including recent proposals for performing quantum computation with linear optical elements. In this paper we investigate the unique capabilities of the VLPC. The efficiency of the detector and cryogenic system is measured at 543nm wavelengths to be 85%. A picosecond pulsed laser is then used to excite the detector with pulses having average photon numbers ranging from 3-5. The output of the VLPC is used to discriminate photon numbers in a pulse. The error probability for number state discrimination is an increasing function of the number of photons, due to buildup of multiplication noise. This puts an ultimate limit on the ability of the VLPC to do number state detection. For many applications, it is suf...

Waks, E; Diamanti, E; Yamamoto, Y; Waks, Edo; Inoue, Kyo; Diamanti, Eleni; Yamamoto, Yoshihisa

2003-01-01

421

Quantum information processing and metrology with color centers in diamonds

The Nitrogen-Vacancy (NV) center is becoming a promising qubit for quantum information processing. The defect has a long coherence time at room temperature and it allows spin state initialized and read out by laser and manipulated by microwave pulses. It has been utilized as a ultra sensitive probe for magnetic fields and remote spins as well. Here, we review the recent progresses in experimental demonstrations based on NV centers. We first introduce our work on implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond. Then the quantum nature of the bath around the center spin is revealed and continuous wave dynamical decoupling has been demonstrated. By applying dynamical decoupling, a multi-pass quantum metrology protocol is realized to enhance phase estimation. In the final, we demonstrated NV center can be regarded as a ultra-sensitive sensor spin to implement nuclear magnetic resonance (NMR) imaging at nanoscale.

Zhou, Jing-Wei; Wang, Peng-Fei; Shi, Fa-Zhan; Huang, Pu; Kong, Xi; Xu, Xiang-Kun; Zhang, Qi; Wang, Zi-Xiang; Rong, Xing; Du, Jiang-Feng

2014-10-01

422

Distribution of quantum Fisher information in asymmetric cloning machines

An unknown quantum state cannot be copied and broadcast freely due to the no-cloning theorem. Approximate cloning schemes have been proposed to achieve the optimal cloning characterized by the maximal fidelity between the original and its copies. Here, from the perspective of quantum Fisher information (QFI), we investigate the distribution of QFI in asymmetric cloning machines which produce two nonidentical copies. As one might expect, improving the QFI of one copy results in decreasing the QFI of the other copy. It is perhaps also unsurprising that asymmetric phase-covariant cloning outperforms universal cloning in distributing QFI since a priori information of the input state has been utilized. However, interesting results appear when we compare the distributabilities of fidelity (which quantifies the full information of quantum states), and QFI (which only captures the information of relevant parameters) in asymmetric cloning machines. Unlike the results of fidelity, where the distributability of symmetric cloning is always optimal for any d-dimensional cloning, we find that any asymmetric cloning outperforms symmetric cloning on the distribution of QFI for d cloning strategies could be worse than symmetric ones when d > 18.

Xiao, Xing; Yao, Yao; Zhou, Lei-Ming; Wang, Xiaoguang

2014-12-01

423

Quantum state fusion in photons

Photons are the ideal carriers of quantum information for communication. Each photon can have a single qubit or even multiple qubits encoded in its internal quantum state, as defined by optical degrees of freedom such as polarization, wavelength, transverse modes, etc. Here, we propose and experimentally demonstrate a physical process, named "quantum state fusion", in which the two-dimensional quantum states (qubits) of two input photons are combined into a single output pho...

Vitelli, Chiara; Spagnolo, Nicolo?; Aparo, Lorenzo; Sciarrino, Fabio; Santamato, Enrico; Marrucci, Lorenzo

2012-01-01

424

Quantum String Seal Is Insecure

A quantum string seal encodes the value of a (bit) string as a quantum state in such a way that everyone can extract a non-negligible amount of information on the string by a suitable measurement. Moreover, such measurement must disturb the quantum state and is likely to be detected by an authorized verifier. In this way, the intactness of the encoded quantum state plays the role of a wax seal in the digital world. Here I analyze the security of quantum string seal by studying the information disturbance tradeoff of a measurement. This information disturbance tradeoff analysis extends the earlier results of Bechmann-Pasquinucci et al. and Chau by concluding that all quantum string seals are insecure. Specifically, I find a way to obtain non-trivial information on the string that escapes the verifier's detection with probability at least one half.

Chau, H F

2006-01-01

425

Information-disturbance tradeoff in sending direction information via antiparallel quantum spin

International Nuclear Information System (INIS)

When sending unknown direction information, antiparallel spins contain more direction information than parallel spins (Gisin and Popescu 1999 Phys. Rev. Lett. 83 432). In this paper, the optimal information-disturbance tradeoff bound for antiparallel spins is derived. The quantum measurements which attain the optimal tradeoff bound are obtained. This result can be of practical relevance for posing some general limits on Eve's eavesdropping process. Finally, we also present a comparison between the bound for antiparallel spins and the bound for parallel spins.

426

Coherent versus Measurement Feedback: Linear Systems Theory for Quantum Information

To control a quantum system via feedback, we generally have two options in choosing a control scheme. One is the coherent feedback, which feeds the output field of the system, through a fully quantum device, back to manipulate the system without involving any measurement process. The other one is measurement-based feedback, which measures the output field and performs a real-time manipulation on the system based on the measurement results. Both schemes have advantages and disadvantages, depending on the system and the control goal; hence, their comparison in several situations is important. This paper considers a general open linear quantum system with the following specific control goals: backaction evasion, generation of a quantum nondemolished variable, and generation of a decoherence-free subsystem, all of which have important roles in quantum information science. Some no-go theorems are proven, clarifying that those goals cannot be achieved by any measurement-based feedback control. On the other hand, it is shown that, for each control goal there exists a coherent feedback controller accomplishing the task. The key idea to obtain all the results is system theoretic characterizations of the above three notions in terms of controllability and observability properties or transfer functions of linear systems, which are consistent with their standard definitions.

Yamamoto, Naoki

2014-10-01

427

A quantum analog of Huffman coding

We analyze a generalization of Huffman coding to the quantum case. In particular, we notice various difficulties in using instantaneous codes for quantum communication. Nevertheless, for the storage of quantum information, we have succeeded in constructing a Huffman-coding inspired quantum scheme. The number of computational steps in the encoding and decoding processes of N quantum signals can be made to be of polylogarithmic depth by a massively parallel implementation of a...

Braunstein, Samuel L.; Fuchs, Christopher A.; Gottesman, Daniel; Lo, Hoi-kwong

1998-01-01

428

Local hidden variable theoretic measure of quantumness of mutual information

International Nuclear Information System (INIS)

Entanglement, a manifestation of quantumness of correlations between the observables of the subsystems of a composite system, and the quantumness of their mutual information are widely studied characteristics of a system of spin-1/2 particles. The concept of quantumness of correlations between the observables of a system is based on incommensurability of the correlations with the predictions of some local hidden variable (LHV) theory. However, the concept of quantumness of mutual information does not invoke the LHV theory explicitly. In this paper, the concept of quantumness of mutual information for a system of two spin-1/2 particles, named A and B, in the state described by the density matrix ?-hat AB is formulated by invoking explicitly the LHV theory. To that end, the classical mutual information I(a, b) of the spins is assumed to correspond to the joint probability p(?aA;?bB) (?aA,?bB=±1) for the spin A to have the component ?aA/2 in the direction a and the spin B to have the component ?bB/2 in the direction b, constructed by invoking the LHV theory. The quantumness of mutual information is then defined as QLHV=IQ( ?-hat AB)?ILHV where IQ( ?-hat AB) is the quantum theoretic information content in the state ?-hat AB and the LHV theoretic classical information ILHV is defined in terms of I(a, b) by choosing the directions a, b as follows. The choice of the directions a, b is made by finding the Bloch vectors ? S-hat A? and ? S-hat B? of the spins A and B where S-hat A ( S-hat B) is the spin vector of spin A (spin B) and ? P-hat ?=Tr( P-hat ?-hat AB). The directions a and b are taken to be along the Bloch vector of A and B respectively if those Bloch vectors are non-zero. In that case ILHV = I(a, b) and QLHV turns out to be identical with the measurement induced disturbance. If ? S-hat A?=? S-hat B?=0, then ILHV is defined to be the maximum of I(a, b) over a and b. The said optimization in this case can be performed analytically exactly and QLHV is then found to be the same as the symmetric discord. If ? S-hat A?=0, ? S-hat B??0, then ILHV is defined to be the maximum of I(a, b) over a with b= SB-hat /| SB-hat |. The QLHV is then the same as the quantum discord for measurement on A if the eigenstates of SB-hat ?b are also the eigenstates of the operator ?±,am| ?-hat AB|±,am? on B where am is the direction of optimization of spin A for evaluation of the quantum discord and | ±, am? are the eigenstates of SA-hat ?am. (paper)

429

Arbitrary waveform generator for quantum information processing with trapped ions

Atomic ions confined in multi-electrode traps have been proposed as a basis for scalable quantum information processing. This scheme involves transporting ions between spatially distinct locations by use of time-varying electric potentials combined with laser or microwave pulses for quantum logic in specific locations. We report the development of a fast multi-channel arbitrary waveform generator for applying the time-varying electric potentials used for transport and for shaping quantum logic pulses. The generator is based on a field-programmable gate array controlled ensemble of 16-bit digital-to-analog converters with an update frequency of 50 MHz and an output range of ±10 V. The update rate of the waveform generator is much faster than relevant motional frequencies of the confined ions in our experiments, allowing diabatic control of the ion motion. Numerous pre-loaded sets of time-varying voltages can be selected with 40 ns latency conditioned on real-time signals. Here we describe the device and demonstrate some of its uses in ion-based quantum information experiments, including speed-up of ion transport and the shaping of laser and microwave pulses.

Bowler, R.; Warring, U.; Britton, J. W.; Sawyer, B. C.; Amini, J.

2013-03-01

430

A quantum limit on the information retrievable from an image

We consider the physical limitations imposed on the information content of an image by the wave and quantum nature of light, when the image is obtained by illuminating a reflecting or transmitting planar object by natural---i.e., fully thermalized---light, or by observation of an object emitting incoherent (thermal) radiation. The discreteness of the degrees of freedom and the statistical properties of thermal radiation are taken into account. We derive the maximum amount of information that can be retrieved from the object. This amount is always finite and is proportional to the area of the object, the solid angle under which the entrance pupil of the receiver is seen from the object, and the time of observation. An explicit expression for the information in the case where the information recorded by the receiver obeys Planck's spectral distribution is obtained. The amount of information per photon of recorded radiation is a universal numerical constant, independent of the parameters of observation.

Levitin, Lev B

2014-01-01

431

Directory of Open Access Journals (Sweden)

Full Text Available Working memory (WM involves three cognitive events: information encoding, maintenance and retrieval; these are supported by brain activity in a network of frontal, parietal and temporal regions. Manipulation of WM load and duration of the maintenance period can modulate this activity. Although such modulations have been widely studied using the ERP technique, a precise description of the time course of brain activity during encoding and retrieval is still required. Here, we used this technique and principal component analysis to assess the time course of brain activity during encoding and retrieval in a delayed match to sample task. We also investigated the effects of memory load and duration of the maintenance period on ERP activity. Brain activity was similar during information encoding and retrieval and comprised six temporal factors, which closely matched the latency and scalp distribution of some ERP components: P1, N1, P2, N2, P300 and a slow wave. Changes in memory load modulated task performance and yielded variations in frontal lobe activation. Moreover, the P300 amplitude was smaller in the high than in the low load condition during encoding and retrieval. Conversely, the slow wave amplitude was higher in the high than in the low load condition during encoding, and the same was true for the N2 amplitude during retrieval. Thus, during encoding, memory load appears to modulate the processing resources for context updating and post-categorization processes, and during retrieval it modulates resources for stimulus classification and context updating. Besides, despite the lack of differences in task performance related to duration of the maintenance period, larger N2 amplitude and stronger activation of the left temporal lobe after long than after short maintenance periods were found during information retrieval. Thus, results regarding the duration of maintenance period were complex, and future work is required to test the time-based decay theory predictions.

Diego Pinal

2014-04-01

432

Adaptive Controller Design for Faulty UAVs via Quantum Information Technology

Directory of Open Access Journals (Sweden)

Full Text Available In this paper, an adaptive controller is designed for a UAV flight control system against faults and parametric uncertainties based on quantum information technology and the Popov hyperstability theory. First, considering the bounded control input, the state feedback controller is designed to make the system stable. The model of adaptive control is introduced to eliminate the impact by the uncertainties of system parameters via quantum information technology. Then, according to the model reference adaptive principle, an adaptive control law based on the Popov hyperstability theory is designed. This law enable better robustness of the flight control system and tracking control performances. The closed?loop system’s stability is guaranteed by the Popov hyperstability th