The Encoding of Quantum State Information Within Subparticles
Robert A. Herrmann
1999-01-01
A method is given by which the descriptive content of quantum state information can be encoded into subparticle coordinates. This method is consistent with the MA-model solution to the general grand unification problem. Subparticle mechanisms via affine or linear transformations are also discussed.
Secure quantum private information retrieval using phase-encoded queries
International Nuclear Information System (INIS)
We propose a quantum solution to the classical private information retrieval (PIR) problem, which allows one to query a database in a private manner. The protocol offers privacy thresholds and allows the user to obtain information from a database in a way that offers the potential adversary, in this model the database owner, no possibility of deterministically establishing the query contents. This protocol may also be viewed as a solution to the symmetrically private information retrieval problem in that it can offer database security (inability for a querying user to steal its contents). Compared to classical solutions, the protocol offers substantial improvement in terms of communication complexity. In comparison with the recent quantum private queries [Phys. Rev. Lett. 100, 230502 (2008)] protocol, it is more efficient in terms of communication complexity and the number of rounds, while offering a clear privacy parameter. We discuss the security of the protocol and analyze its strengths and conclude that using this technique makes it challenging to obtain the unconditional (in the information-theoretic sense) privacy degree; nevertheless, in addition to being simple, the protocol still offers a privacy level. The oracle used in the protocol is inspired both by the classical computational PIR solutions as well as the Deutsch-Jozsa oracle.
Secure quantum private information retrieval using phase-encoded queries
Energy Technology Data Exchange (ETDEWEB)
Olejnik, Lukasz [CERN, 1211 Geneva 23, Switzerland and Poznan Supercomputing and Networking Center, Noskowskiego 12/14, PL-61-704 Poznan (Poland)
2011-08-15
We propose a quantum solution to the classical private information retrieval (PIR) problem, which allows one to query a database in a private manner. The protocol offers privacy thresholds and allows the user to obtain information from a database in a way that offers the potential adversary, in this model the database owner, no possibility of deterministically establishing the query contents. This protocol may also be viewed as a solution to the symmetrically private information retrieval problem in that it can offer database security (inability for a querying user to steal its contents). Compared to classical solutions, the protocol offers substantial improvement in terms of communication complexity. In comparison with the recent quantum private queries [Phys. Rev. Lett. 100, 230502 (2008)] protocol, it is more efficient in terms of communication complexity and the number of rounds, while offering a clear privacy parameter. We discuss the security of the protocol and analyze its strengths and conclude that using this technique makes it challenging to obtain the unconditional (in the information-theoretic sense) privacy degree; nevertheless, in addition to being simple, the protocol still offers a privacy level. The oracle used in the protocol is inspired both by the classical computational PIR solutions as well as the Deutsch-Jozsa oracle.
Hybrid quantum repeater with encoding
Bernardes, Nadja K
2011-01-01
We present an encoded hybrid quantum repeater scheme using Calderbank-Shor-Steane codes. For the case of repetition codes, we propose an explicit implementation of the quantum error correction protocol. Moreover, we analyze the entangled-pair distribution rate for the hybrid quantum repeater with encoding and we clearly identify a triple trade-off between the efficiency of the codes, the memory decoherence time, and the local gate errors. Finally, we show that in the presence of reasonable imperfections our system can achieve rates of roughly 158 Hz per memory for 20 km repeater spacing, a final distance of 1280 km, and final fidelity of about 0.93.
Encoding information into precipitation structures
International Nuclear Information System (INIS)
Material design at submicron scales would be profoundly affected if the formation of precipitation patterns could be easily controlled. It would allow the direct building of bulk structures, in contrast to traditional techniques which consist of removing material in order to create patterns. Here, we discuss an extension of our recent proposal of using electrical currents to control precipitation bands which emerge in the wake of reaction fronts in A+ + B– ? C reaction–diffusion processes. Our main result, based on simulating the reaction–diffusion–precipitation equations, is that the dynamics of the charged agents can be guided by an appropriately designed time-dependent electric current so that, in addition to the control of the band spacing, the width of the precipitation bands can also be tuned. This makes straightforward the encoding of information into precipitation patterns and, as an amusing example, we demonstrate the feasibility by showing how to encode a musical rhythm
Quantum Computation and Quantum Information
Wang, Yazhen
2012-01-01
Quantum computation and quantum information are of great current interest in computer science, mathematics, physical sciences and engineering. They will likely lead to a new wave of technological innovations in communication, computation and cryptography. As the theory of quantum physics is fundamentally stochastic, randomness and uncertainty are deeply rooted in quantum computation, quantum simulation and quantum information. Consequently quantum algorithms are random in na...
Cavity quantum electrodynamics based quantum low-density parity-check encoders and decoders
Djordjevic, Ivan B.
2011-03-01
Quantum information processing (QIP) relies on delicate superposition states that are sensitive to interactions with environment. The quantum gates are imperfect and the use of quantum error correction coding (QECC) is essential to enable the fault-tolerant computing and to deal with quantum errors. The most critical gate, CNOT-gate, has been implemented as a probabilistic device by using integrated optics. CNOT-gates from linear optics provide only probabilistic outcomes and as such are not suitable for large-scale computation. In this paper, we show that arbitrary set of universal quantum gates and gates from Clifford group, needed in QECC, can be implemented based on cavity quantum electrodynamics (CQED). We further show that encoders/decoders for quantum LDPC codes can be implemented based on Hadamard and CNOT gates using CQED. Finally, we perform simulations and evaluate performance of several classes of quantum LDPC codes suitable for implementation in CQED technology.
Quantum information and computation
Bub, Jeffrey
2005-01-01
This article deals with theoretical developments in the subject of quantum information and quantum computation, and includes an overview of classical information and some relevant quantum mechanics. The discussion covers topics in quantum communication, quantum cryptography, and quantum computation, and concludes by considering whether a perspective in terms of quantum information sheds new light on the conceptual problems of quantum mechanics.
Controlling quantum information
Landahl, Andrew John
Quantum information science explores ways in which quantum physical laws can be harnessed to control the acquisition, transmission, protection, and processing of information. This field has seen explosive growth in the past several years from progress on both theoretical and experimental fronts. Essential to this endeavor are methods for controlling quantum information. In this thesis, I present three new approaches for controlling quantum information. First, I present a new protocol for continuously protecting unknown quantum states from noise. This protocol combines and expands ideas from the theories of quantum error correction and quantum feedback control. The result can outperform either approach by itself. I generalize this protocol to all known quantum stabilizer codes, and study its application to the three-qubit repetition code in detail via Monte Carlo simulations. Next, I present several new protocols for controlling quantum information that are fault-tolerant. These protocols require only local quantum processing due to the topological properties of the quantum error correcting codes upon which they are built. I show that each protocol's fault-dependence behavior exhibits an order-disorder phase transition when mapped onto an associated statistical-mechanical model. I review the critical error rates of these protocols found by numerical study of the associated models, and I present new analytic bounds for them using a self-avoiding random walk argument. Moreover, I discuss fault-tolerant procedures for encoding, error-correction, computing, and decoding quantum information using these protocols, and calculate the accuracy threshold of fault-tolerant quantum memory for protocols using them. I end by presenting a new class of quantum algorithms that solve combinatorial optimization problems solely by measurement. I compute the running times of these algorithms by establishing an explicit dynamical model for the measurement process. This model, the digitized version of von Neumann's measurement model, is recognized as Kitaev's phase estimation algorithm. I show that the running times of these algorithms are closely related to the running times of adiabatic quantum algorithms. Finally, I present a two-measurement algorithm that achieves a quadratic speedup for Grover's unstructured search problem.
Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons
Yan, Hui; Zhu, Shi-Liang; Du, Shengwang
2010-01-01
We propose an efficient phase-encoding quantum secret key generation scheme with heralded narrow-band single photons. The key information is carried by the phase modulation directly on the single-photon temporal waveform without using any passive beam splitters or optical switches. We show that, when the technique is applied to the conventional fiber-based phase-encoding BB84 and differential phase shift (DPS) quantum key distribution schemes, the key generation efficiencies...
Quantum algorithmic information theory
Svozil, Karl
1995-01-01
The agenda of quantum algorithmic information theory, ordered `top-down,' is the quantum halting amplitude, followed by the quantum algorithmic information content, which in turn requires the theory of quantum computation. The fundamental atoms processed by quantum computation are the quantum bits which are dealt with in quantum information theory. The theory of quantum computation will be based upon a model of universal quantum computer whose elementary unit is a two-port i...
Optimal Encoding Capacity of a Linear Optical Quantum Channel
Smith, Jake A; Uskov, Dmitry B.; Kaplan, Lev
2015-01-01
Here, we study the capacity of a quantum channel, assuming linear optical encoding, as a function of available photons and optical modes. First, we observe that substantial improvement is made possible by not restricting ourselves to a rail-encoded qubit basis. Then, we derive an analytic formula for general channel capacity and show that this capacity is achieved without requiring the use of entangling operations typically required for scalable universal quantum computation...
Quantum teleportation and quantum information
International Nuclear Information System (INIS)
The scheme of quantum teleportation is described in a mathematically rigorous way, including analysis of the role and importance of quantum entanglement. The experiments with quantum teleportation performed in Innsbruck and in Rome are described in detail, and some differences between the two approaches are discussed. The elements of quantum information theory are introduced and compared with Shannon's classical information theory. The phenomenon of quantum teleportation is placed into a wider context of the developing quantum information theory, which enables quantum teleportation to be described by using the particle physics language. (Z.J.)
Quantum holographic encoding in a two-dimensional electron gas
Energy Technology Data Exchange (ETDEWEB)
Moon, Christopher
2010-05-26
The advent of bottom-up atomic manipulation heralded a new horizon for attainable information density, as it allowed a bit of information to be represented by a single atom. The discrete spacing between atoms in condensed matter has thus set a rigid limit on the maximum possible information density. While modern technologies are still far from this scale, all theoretical downscaling of devices terminates at this spatial limit. Here, however, we break this barrier with electronic quantum encoding scaled to subatomic densities. We use atomic manipulation to first construct open nanostructures - 'molecular holograms' - which in turn concentrate information into a medium free of lattice constraints: the quantum states of a two-dimensional degenerate Fermi gas of electrons. The information embedded in the holograms is transcoded at even smaller length scales into an atomically uniform area of a copper surface, where it is densely projected into both two spatial degrees of freedom and a third holographic dimension mapped to energy. In analogy to optical volume holography, this requires precise amplitude and phase engineering of electron wavefunctions to assemble pages of information volumetrically. This data is read out by mapping the energy-resolved electron density of states with a scanning tunnelling microscope. As the projection and readout are both extremely near-field, and because we use native quantum states rather than an external beam, we are not limited by lensing or collimation and can create electronically projected objects with features as small as {approx}0.3 nm. These techniques reach unprecedented densities exceeding 20 bits/nm{sup 2} and place tens of bits into a single fermionic state.
Secret key rates for an encoded quantum repeater
Bratzik, Sylvia; Kampermann, Hermann; Bruß, Dagmar
2014-03-01
We investigate secret key rates for the quantum repeater using encoding [L. Jiang et al., Phys. Rev. A 79, 032325 (2009), 10.1103/PhysRevA.79.032325] and compare them to the standard repeater scheme by Briegel, Dür, Cirac, and Zoller. The former scheme has the advantage of a minimal consumption of classical communication. We analyze the trade-off in the secret key rate between the communication time and the required resources. For this purpose we introduce an error model for the repeater using encoding which allows for input Bell states with a fidelity smaller than one, in contrast to the model given by L. Jiang et al. [Phys. Rev. A 79, 032325 (2009), 10.1103/PhysRevA.79.032325]. We show that one can correct additional errors in the encoded connection procedure of this repeater and develop a suitable decoding algorithm. Furthermore, we derive the rate of producing entangled pairs for the quantum repeater using encoding and give the minimal parameter values (gate quality and initial fidelity) for establishing a nonzero secret key. We find that the generic quantum repeater is optimal regarding the secret key rate per memory per second and show that the encoded quantum repeater using the simple three-qubit repetition code can even have an advantage with respect to the resources compared to other recent quantum repeater schemes with encoding.
Quantum information with Rydberg atoms
DEFF Research Database (Denmark)
Saffman, Mark; Walker, T.G.
2010-01-01
Rydberg atoms with principal quantum number n»1 have exaggerated atomic properties including dipole-dipole interactions that scale as n4 and radiative lifetimes that scale as n3. It was proposed a decade ago to take advantage of these properties to implement quantum gates between neutral atom qubits. The availability of a strong long-range interaction that can be coherently turned on and off is an enabling resource for a wide range of quantum information tasks stretching far beyond the original gate proposal. Rydberg enabled capabilities include long-range two-qubit gates, collective encoding of multiqubit registers, implementation of robust light-atom quantum interfaces, and the potential for simulating quantum many-body physics. The advances of the last decade are reviewed, covering both theoretical and experimental aspects of Rydberg-mediated quantum information processing.
Continuous-variable quantum information processing
DEFF Research Database (Denmark)
Andersen, Ulrik Lund; Leuchs, G.
2010-01-01
Observables of quantum systems can possess either a discrete or a continuous spectrum. For example, upon measurements of the photon number of a light state, discrete outcomes will result whereas measurements of the light's quadrature amplitudes result in continuous outcomes. If one uses the continuous degree of freedom of a quantum system for encoding, processing or detecting information, one enters the field of continuous-variable (CV) quantum information processing. In this paper we review the basic principles of CV quantum information processing with main focus on recent developments in the field. We will be addressing the three main stages of a quantum information system; the preparation stage where quantum information is encoded into CVs of coherent states and single-photon states, the processing stage where CV information is manipulated to carry out a specified protocol and a detection stage where CV information is measured using homodyne detection or photon counting.
Quantum image encryption based on generalized Arnold transform and double random-phase encoding
Zhou, Nan Run; Hua, Tian Xiang; Gong, Li Hua; Pei, Dong Ju; Liao, Qing Hong
2015-04-01
A quantum realization of the generalized Arnold transform is designed. A novel quantum image encryption algorithm based on generalized Arnold transform and double random-phase encoding is proposed. The pixels are scrambled by the generalized Arnold transform, and the gray-level information of images is encoded by the double random-phase operations. The keys of the encryption algorithm include the independent parameters of coefficients matrix, iterative times and classical binary sequences, and thus, the key space is extremely large. Numerical simulations and theoretical analyses demonstrate that the proposed algorithm with good feasibility and effectiveness has lower computational complexity than its classical counterpart.
Topological quantum error correction with optimal encoding rate
International Nuclear Information System (INIS)
We prove the existence of topological quantum error correcting codes with encoding rates k/n asymptotically approaching the maximum possible value. Explicit constructions of these topological codes are presented using surfaces of arbitrary genus. We find a class of regular toric codes that are optimal. For physical implementations, we present planar topological codes
Source Coding With Distortion Side Information At The Encoder
Martinian, E; Zamir, R; Martinian, Emin; Wornell, Gregory W.; Zamir, Ram
2004-01-01
We consider lossy source coding when side information affecting the distortion measure may be available at the encoder, decoder, both, or neither. For example, such distortion side information can model reliabilities for noisy measurements, sensor calibration information, or perceptual effects like masking and sensitivity to context. When the distortion side information is statistically independent of the source, we show that in many cases (e.g, for additive or multiplicative distortion side information) there is no penalty for knowing the side information only at the encoder, and there is no advantage to knowing it at the decoder. Furthermore, for quadratic distortion measures scaled by the distortion side information, we evaluate the penalty for lack of encoder knowledge and show that it can be arbitrarily large. In this scenario, we also sketch transform based quantizers constructions which efficiently exploit encoder side information in the high-resolution limit.
Quantum information causality.
Pitalúa-García, Damián
2013-05-24
How much information can a transmitted physical system fundamentally communicate? We introduce the principle of quantum information causality, which states the maximum amount of quantum information that a quantum system can communicate as a function of its dimension, independently of any previously shared quantum physical resources. We present a new quantum information task, whose success probability is upper bounded by the new principle, and show that an optimal strategy to perform it combines the quantum teleportation and superdense coding protocols with a task that has classical inputs. PMID:23745844
Controlling Quantum Information
Landahl, A J
2002-01-01
Quantum information science explores ways in which quantum physical laws can be harnessed to control the acquisition, transmission, protection, and processing of information. This field has seen explosive growth in the past several years from progress on both theoretical and experimental fronts. Essential to this endeavor are methods for controlling quantum information. In this thesis, I present three new approaches for controlling quantum information. First, I present a new protocol for continuously protecting unknown quantum states from noise. This protocol combines and expands ideas from the theories of quantum error correction and quantum feedback control. The result can outperform either approach by itself. I generalize this protocol to all known quantum stabilizer codes, and study its application to the three-qubit repetition code in detail via Monte Carlo simulations. Next, I present several new protocols for controlling quantum information that are fault-tolerant. These protocols require only local qu...
Quantum Information An Introduction
Hayashi, Masahito
2006-01-01
Recently, quantum information theory has been developing through a fusion of results from various research fields. This requires that understanding of basic results on diverse topics, and derived from different disciplinary perspectives, is required for appreciating the overall picture. Intended to merge key topics from both the information-theoretic and quantum- mechanical viewpoints, this graduate-level textbook provides a unified viewpoint of quantum information theory and lucid explanations of those basic results, so that the reader fundamentally grasps advances and challenges. For example, advanced topics in quantum communication such as quantum teleportation, superdense coding, quantum state transmission (quantum error-correction), and quantum encryption especially benefit from this unified approach. Unlike earlier treatments, the text requires knowledge of only linear algebra, probability theory, and quantum mechanics, while it treats the topics of quantum hypothesis testing and the discrimination of q...
Hiding Quantum Information in the Perfect Code
Shaw, Bilal A
2010-01-01
We present and analyze a protocol for quantum steganography where the sender (Alice) encodes her steganographic information into the error syndromes of the perfect (five-qubit) quantum error-correcting code, and sends it to the receiver (Bob) over a depolarizing channel. Alice and Bob share a classical secret key, and hide quantum information in such a way that to an eavesdropper (Eve) without access to the secret key, the quantum message looks like an innocent codeword with a typical sequence of quantum errors. We calculate the average rate of key consumption, and show how the protocol improves in performance as information is spread over multiple codeword blocks. Alice and Bob utilize different encodings to optimize the average number of steganographic bits that they can send to each other while matching the error statistics of the depolarizing channel.
Photonic Quantum Information Processing
International Nuclear Information System (INIS)
The advantage of the photon's mobility makes optical quantum system ideally suited for delegated quantum computation. I will present results for the realization for a measurement-based quantum network in a client-server environment, where quantum information is securely communicated and computed. Related to measurement-based quantum computing I will discuss a recent experiment showing that quantum discord can be used as resource for the remote state preparation, which might shine new light on the requirements for quantum-enhanced information processing. Finally, I will briefly review recent photonic quantum simulation experiments of four frustrated Heisenberg-interactions spins and present an outlook of feasible simulation experiments with more complex interactions or random walk structures. As outlook I will discuss the current status of new quantum technology for improving the scalability of photonic quantum systems by using superconducting single-photon detectors and tailored light-matter interactions. (author)
Quantum information and coherence
Öhberg, Patrik
2014-01-01
This book offers an introduction to ten key topics in quantum information science and quantum coherent phenomena, aimed at graduate-student level. The chapters cover some of the most recent developments in this dynamic research field where theoretical and experimental physics, combined with computer science, provide a fascinating arena for groundbreaking new concepts in information processing. The book addresses both the theoretical and experimental aspects of the subject, and clearly demonstrates how progress in experimental techniques has stimulated a great deal of theoretical effort and vice versa. Experiments are shifting from simply preparing and measuring quantum states to controlling and manipulating them, and the book outlines how the first real applications, notably quantum key distribution for secure communication, are starting to emerge. The chapters cover quantum retrodiction, ultracold quantum gases in optical lattices, optomechanics, quantum algorithms, quantum key distribution, quantum cont...
Entanglement and non local correlations: quantum resources for information processing
Prettico, Giuseppe
2013-01-01
Quantum Information Theory (QIT) studies how information can be processed and transmitted when encoded on quantum states. Practically, it can be understood as the effort to generalize Classical Information Theory to the quantum world. Interestingly, the fact that very-small scale Physics differs considerably from that of macroscopic objects offers a richer structure to the new theory. Among other phenomena, entanglement is at the heart of many quantum information protocols. It is the most spe...
Quantum Information and Entropy
Kak, Subhash
2006-01-01
Thermodynamic entropy is not an entirely satisfactory measure of information of a quantum state. This entropy for an unknown pure state is zero, although repeated measurements on copies of such a pure state do communicate information. In view of this, we propose a new measure for the informational entropy of a quantum state that includes information in the pure states and the thermodynamic entropy. The origin of information is explained in terms of an interplay between unita...
Minimal memory requirements for pearl necklace encoders of quantum convolutional codes
Houshmand, Monireh; Wilde, Mark M
2010-01-01
One of the major goals in quantum computer science is to reduce the overhead associated with the implementation of quantum computers, and inevitably, routines for quantum error correction will account for most of this overhead. A particular technique for quantum error correction that may be useful in the outer layers of a concatenated scheme for fault tolerance is quantum convolutional coding. The encoder for a quantum convolutional code has a representation as a convolutional encoder or as a "pearl necklace" encoder. In the pearl necklace representation, it has not been particularly clear in the research literature how much quantum memory such an encoder would require for implementation. Here, we offer an algorithm that answers this question. The algorithm first constructs a weighted, directed acyclic graph where each vertex of the graph corresponds to a gate string in the pearl necklace encoder, and each path through the graph represents a non-commutative path through gates in the encoder. We show that the ...
Introduction to quantum information science
Hayashi, Masahito; Kawachi, Akinori; Kimura, Gen; Ogawa, Tomohiro
2015-01-01
This book presents the basics of quantum information, e.g., foundation of quantum theory, quantum algorithms, quantum entanglement, quantum entropies, quantum coding, quantum error correction and quantum cryptography. The required knowledge is only elementary calculus and linear algebra. This way the book can be understood by undergraduate students. In order to study quantum information, one usually has to study the foundation of quantum theory. This book describes it from more an operational viewpoint which is suitable for quantum information while traditional textbooks of quantum theory lack this viewpoint. The current book bases on Shor's algorithm, Grover's algorithm, Deutsch-Jozsa's algorithm as basic algorithms. To treat several topics in quantum information, this book covers several kinds of information quantities in quantum systems including von Neumann entropy. The limits of several kinds of quantum information processing are given. As important quantum protocols,this book contains quantum teleport...
Quantum information and communication
Bennett, Charles
2006-01-01
Quantum Information, Computation and Complexity * Programme at the Institut Henri Poincaré, January 4th – April 7th, 2006 * Organizers: Ph.Grangier, M.Santha and D.L.Shepelyansky * Lectures have been filmed by Peter Rapcan and Michal Sedlak from Bratislava with the support of the Marie Curie RTN "CONQUEST" A trimester at the Centre Emile Borel - Institut Henri Poincaré is devoted to modern developments in a rapidly growing field of quantum information and communication, quantum computers and ...
Hybrid quantum information processing
International Nuclear Information System (INIS)
I will briefly explain the definition and advantage of hybrid quantum information processing, which is hybridization of qubit and continuous-variable technologies. The final goal would be realization of universal gate sets both for qubit and continuous-variable quantum information processing with the hybrid technologies. For that purpose, qubit teleportation with a continuousvariable teleporter is one of the most important ingredients
Universal quantum computation using all-optical hybrid encoding
Guo, Qi; Cheng, Liu-Yong; Wang, Hong-Fu; Zhang, Shou
2015-04-01
By employing displacement operations, single-photon subtractions, and weak cross-Kerr nonlinearity, we propose an alternative way of implementing several universal quantum logical gates for all-optical hybrid qubits encoded in both single-photon polarization state and coherent state. Since these schemes can be straightforwardly implemented only using local operations without teleportation procedure, therefore, less physical resources and simpler operations are required than the existing schemes. With the help of displacement operations, a large phase shift of the coherent state can be obtained via currently available tiny cross-Kerr nonlinearity. Thus, all of these schemes are nearly deterministic and feasible under current technology conditions, which makes them suitable for large-scale quantum computing. Project supported by the National Natural Science Foundation of China (Grant Nos. 61465013, 11465020, and 11264042).
Source Coding With Distortion Side Information At The Encoder
Martinian, Emin; Wornell, Gregory W.; Zamir, Ram
2004-01-01
We consider lossy source coding when side information affecting the distortion measure may be available at the encoder, decoder, both, or neither. For example, such distortion side information can model reliabilities for noisy measurements, sensor calibration information, or perceptual effects like masking and sensitivity to context. When the distortion side information is statistically independent of the source, we show that in many cases (e.g, for additive or multiplicativ...
Lectures on quantum information
International Nuclear Information System (INIS)
Quantum Information Processing is a young and rapidly growing field of research at the intersection of physics, mathematics, and computer science. Its ultimate goal is to harness quantum physics to conceive - and ultimately build - 'quantum' computers that would dramatically overtake the capabilities of today's 'classical' computers. One example of the power of a quantum computer is its ability to efficiently find the prime factors of a large integer, thus shaking the supposedly secure foundations of standard encryption schemes. This comprehensive textbook on the rapidly advancing field introduces readers to the fundamental concepts of information theory and quantum entanglement, taking into account the current state of research and development. It thus covers all current concepts in quantum computing, both theoretical and experimental, before moving on to the latest implementations of quantum computing and communication protocols. With its series of exercises, this is ideal reading for students and lecturers in physics and informatics, as well as experimental and theoretical physicists, and physicists in industry. (orig.)
A Hybrid Quantum Encoding Algorithm of Vector Quantization for Image Compression
Pang, Chao-Yang; Zhou, Zheng-Wei; Guo, Guang-Can
2006-01-01
Many classical encoding algorithms of Vector Quantization (VQ) of image compression that can obtain global optimal solution have computational complexity O(N). A pure quantum VQ encoding algorithm with probability of success near 100% has been proposed, that performs operations 45sqrt(N) times approximately. In this paper, a hybrid quantum VQ encoding algorithm between classical method and quantum algorithm is presented. The number of its operations is less than sqrt(N) for ...
Encoded Universality of Quantum Computations on the Multi-Atomic Ensembles in the QED Cavity
Ablayev, Farid; Andrianov, Sergey; Moiseev, Sergey; Vasiliev, Alexander
2011-01-01
We propose an effective set of elementary quantum gates which provide an encoded universality and demonstrate the physical feasibility of these gates for the solid-state quantum computer based on the multi-atomic systems in the QED cavity. We use the two-qubit encoding and swapping-based operations to simplify a physical realization of universal quantum computing and add the immunity to a number of errors. This approach allows to implement any encoded single-qubit operation ...
Information quality measurement of medical encoding support based on usability.
Puentes, John; Montagner, Julien; Lecornu, Laurent; Cauvin, Jean-Michel
2013-12-01
Medical encoding support systems for diagnoses and medical procedures are an emerging technology that begins to play a key role in billing, reimbursement, and health policies decisions. A significant problem to exploit these systems is how to measure the appropriateness of any automatically generated list of codes, in terms of fitness for use, i.e. their quality. Until now, only information retrieval performance measurements have been applied to estimate the accuracy of codes lists as quality indicator. Such measurements do not give the value of codes lists for practical medical encoding, and cannot be used to globally compare the quality of multiple codes lists. This paper defines and validates a new encoding information quality measure that addresses the problem of measuring medical codes lists quality. It is based on a usability study of how expert coders and physicians apply computer-assisted medical encoding. The proposed measure, named ADN, evaluates codes Accuracy, Dispersion and Noise, and is adapted to the variable length and content of generated codes lists, coping with limitations of previous measures. According to the ADN measure, the information quality of a codes list is fully represented by a single point, within a suitably constrained feature space. Using one scheme, our approach is reliable to measure and compare the information quality of hundreds of codes lists, showing their practical value for medical encoding. Its pertinence is demonstrated by simulation and application to real data corresponding to 502 inpatient stays in four clinic departments. Results are compared to the consensus of three expert coders who also coded this anonymized database of discharge summaries, and to five information retrieval measures. Information quality assessment applying the ADN measure showed the degree of encoding-support system variability from one clinic department to another, providing a global evaluation of quality measurement trends. PMID:23958646
Quantum Information and Computing
Accardi, L.; Ohya, Masanori; Watanabe, N.
2006-03-01
Preface -- Coherent quantum control of [symbol]-atoms through the stochastic limit / L. Accardi, S. V. Kozyrev and A. N. Pechen -- Recent advances in quantum white noise calculus / L. Accardi and A. Boukas -- Control of quantum states by decoherence / L. Accardi and K. Imafuku -- Logical operations realized on the Ising chain of N qubits / M. Asano, N. Tateda and C. Ishii -- Joint extension of states of fermion subsystems / H. Araki -- Quantum filtering and optimal feedback control of a Gaussian quantum free particle / S. C. Edwards and V. P. Belavkin -- On existence of quantum zeno dynamics / P. Exner and T. Ichinose -- Invariant subspaces and control of decoherence / P. Facchi, V. L. Lepore and S. Pascazio -- Clauser-Horner inequality for electron counting statistics in multiterminal mesoscopic conductors / L. Faoro, F. Taddei and R. Fazio -- Fidelity of quantum teleportation model using beam splittings / K.-H. Fichtner, T. Miyadera and M. Ohya -- Quantum logical gates realized by beam splittings / W. Freudenberg ... [et al.] -- Information divergence for quantum channels / S. J. Hammersley and V. P. Belavkin -- On the uniqueness theorem in quantum information geometry / H. Hasegawa -- Noncanonical representations of a multi-dimensional Brownian motion / Y. Hibino -- Some of future directions of white noise theory / T. Hida -- Information, innovation and elemental random field / T. Hida -- Generalized quantum turing machine and its application to the SAT chaos algorithm / S. Iriyama, M. Ohya and I. Volovich -- A Stroboscopic approach to quantum tomography / A. Jamiolkowski -- Positive maps and separable states in matrix algebras / A. Kossakowski -- Simulating open quantum systems with trapped ions / S. Maniscalco -- A purification scheme and entanglement distillations / H. Nakazato, M. Unoki and K. Yuasa -- Generalized sectors and adjunctions to control micro-macro transitions / I. Ojima -- Saturation of an entropy bound and quantum Markov states / D. Petz -- An infinite dimensional Laplacian acting on some class of Lévy white noise functionals / K. Saitô -- Structure of linear processes / Si Si and Win Win Htay -- Group theory of dynamical maps / E. C. G. Sudarshan -- On quantum analysis, quantum transfer-matrix method, and effective information entropy / M. Suzuki -- Nonequilibrium steady states for a harmonic oscillator interacting with two bose fields-stochastic limit approach and C* algebraic approach / S. Tasaki and L. Accardi -- Control of decoherence with multipulse application / C. Uchiyama -- Quantum entanglement, purification, and linear-optics quantum gates with photonic qubits / P. Walther and A. Zeilinger -- On quantum mutual type measures and capacity / N. Watanabe.
Ke, Hanping; Cai, Honghao; Lin, Yanqin; Lin, Liangjie; Cai, Shuhui; Chen, Zhong
2015-02-01
A scheme based on Hadamard encoding and intermolecular double-quantum coherences is designed to obtain localized one-dimensional high-resolution NMR spectra in inhomogeneous fields. Brief theoretical derivation was performed to illuminate its principle. Experiments were carried out on phantom solution and biological tissues to verify its effectiveness in yielding useful spectral information and efficiency in suppressing solvent signal even when the field inhomogeneity is sufficiently severe to erase almost all spectral information. This sequence may provide a promising way for analyzing heterogeneous biological tissues and chemical systems.
International Nuclear Information System (INIS)
We propose efficient-phase-encoding protocols for continuous-variable quantum key distribution using coherent states and postselection. By these phase encodings, the probability of basis mismatch is reduced and total efficiency is increased. We also propose mixed-state protocols by omitting a part of classical communication steps in the efficient-phase-encoding protocols. The omission implies a reduction of information to an eavesdropper and possibly enhances the security of the protocols. We investigate the security of the protocols against individual beam splitting attack
Quantum information processing with trapped ions
International Nuclear Information System (INIS)
Single Ca+ ions and crystals of Ca+ ions are confined in a linear Paul trap and are investigated for quantum information processing. Here we report on recent experimental advancements towards a quantum computer with such a system. Laser-cooled trapped ions are ideally suited systems for the investigation and implementation of quantum information processing as one can gain almost complete control over their internal and external degrees of freedom. The combination of a Paul type ion trap with laser cooling leads to unique properties of trapped cold ions, such as control of the motional state down to the zero-point of the trapping potential, a high degree of isolation from the environment and thus a very long time available for manipulations and interactions at the quantum level. The very same properties make single trapped atoms and ions well suited for storing quantum information in long lived internal states, e.g. by encoding a quantum bit (qubit) of information within the coherent superposition of the S1/2 ground state and the metastable D5/2 excited state of Ca+. Recently we have achieved the implementation of simple algorithms with up to 3 qubits on an ion-trap quantum computer. We will report on methods to implement single qubit rotations, the realization of a two-qubit universal quantum gate (Cirac-Zoller CNOT-gate), the deterministic generation of multi-particle entangled states (GHZ- and W-states), their full tomographic reconstruction, the realization of deterministic quantum teleportation, its quantum process tomography and the encoding of quantum information in decoherence-free subspaces with coherence times exceeding 20 seconds. (author)
Clarke, Patrick J; Dunjko, Vedran; Andersson, Erika; Jeffers, John; Buller, Gerald S
2013-01-01
Digital signatures are frequently used in data transfer to prevent impersonation, repudiation and message tampering. Currently used classical digital signature schemes rely on public key encryption techniques, where the complexity of so-called "one-way" mathematical functions is used to provide security over sufficiently long timescales. No mathematical proofs are known for the long-term security of such techniques. Quantum digital signatures offer a means of sending a message which cannot be forged or repudiated, with security verified by information-theoretical limits and quantum mechanics. Here we demonstrate an experimental system which distributes quantum signatures from one sender to two receivers and enables message sending ensured against forging and repudiation. Additionally, we analyse the security of the system in some typical scenarios. The system is based on the interference of phase encoded coherent states of light and our implementation utilises polarisation maintaining optical fibre and photon...
MAC with Action-Dependent State Information at One Encoder
Dikstein, Lior; Permuter, Haim H.; Shamai, Shlomo
2012-01-01
Problems dealing with the ability to take an action that affects the states of state-dependent communication channels are of timely interest and importance. Therefore, we extend the study of action-dependent channels, which until now focused on point-to-point models, to multiple-access channels (MAC). In this paper, we consider a two-user, state-dependent MAC, in which one of the encoders, called the informed encoder, is allowed to take an action that affects the formation o...
Introduction to quantum information science
Energy Technology Data Exchange (ETDEWEB)
Hayashi, Masahito [Nagoya Univ. (Japan). Graduate School of Mathematics; Ishizaka, Satoshi [Hiroshima Univ., Higashi-Hiroshima (Japan). Graduate School of Integrated Arts and Sciences; Kawachi, Akinori [Tokyo Institute of Technology (Japan). Dept. of Mathematical and Computing Sciences; Kimura, Gen [Shibaura Institute of Technology, Saitama (Japan). College of Systems Engineering and Science; Ogawa, Tomohiro [Univ. of Electro-Communications, Tokyo (Japan). Graduate School of Information Systems
2015-04-01
Presents the mathematical foundation for quantum information in a very didactic way. Summarizes all required mathematical knowledge in linear algebra. Supports teaching and learning with more than 100 exercises with solutions. Includes brief descriptions to recent results with references. This book presents the basics of quantum information, e.g., foundation of quantum theory, quantum algorithms, quantum entanglement, quantum entropies, quantum coding, quantum error correction and quantum cryptography. The required knowledge is only elementary calculus and linear algebra. This way the book can be understood by undergraduate students. In order to study quantum information, one usually has to study the foundation of quantum theory. This book describes it from more an operational viewpoint which is suitable for quantum information while traditional textbooks of quantum theory lack this viewpoint. The current book bases on Shor's algorithm, Grover's algorithm, Deutsch-Jozsa's algorithm as basic algorithms. To treat several topics in quantum information, this book covers several kinds of information quantities in quantum systems including von Neumann entropy. The limits of several kinds of quantum information processing are given. As important quantum protocols,this book contains quantum teleportation, quantum dense coding, quantum data compression. In particular conversion theory of entanglement via local operation and classical communication are treated too. This theory provides the quantification of entanglement, which coincides with von Neumann entropy. The next part treats the quantum hypothesis testing. The decision problem of two candidates of the unknown state are given. The asymptotic performance of this problem is characterized by information quantities. Using this result, the optimal performance of classical information transmission via noisy quantum channel is derived. Quantum information transmission via noisy quantum channel by quantum error correction are discussed too. Based on this topic, the secure quantum communication is explained. In particular, the quantification of quantum security which has not been treated in existing book is explained. This book treats quantum cryptography from a more practical viewpoint.
Introduction to quantum information science
International Nuclear Information System (INIS)
Presents the mathematical foundation for quantum information in a very didactic way. Summarizes all required mathematical knowledge in linear algebra. Supports teaching and learning with more than 100 exercises with solutions. Includes brief descriptions to recent results with references. This book presents the basics of quantum information, e.g., foundation of quantum theory, quantum algorithms, quantum entanglement, quantum entropies, quantum coding, quantum error correction and quantum cryptography. The required knowledge is only elementary calculus and linear algebra. This way the book can be understood by undergraduate students. In order to study quantum information, one usually has to study the foundation of quantum theory. This book describes it from more an operational viewpoint which is suitable for quantum information while traditional textbooks of quantum theory lack this viewpoint. The current book bases on Shor's algorithm, Grover's algorithm, Deutsch-Jozsa's algorithm as basic algorithms. To treat several topics in quantum information, this book covers several kinds of information quantities in quantum systems including von Neumann entropy. The limits of several kinds of quantum information processing are given. As important quantum protocols,this book contains quantum teleportation, quantum dense coding, quantum data compression. In particular conversion theory of entanglement via local operation and classical communication are treated too. This theory provides the quantification of entanglement, which coincides with von Neumann entropy. The next part treats the quantum hypothesis testing. The decision problem of two candidates of the unknown state are given. The asymptotic performance of this problem is characterized by information quantities. Using this result, the optimal performance of classical information transmission via noisy quantum channel is derived. Quantum information transmission via noisy quantum channel by quantum error correction are discussed too. Based on this topic, the secure quantum communication is explained. In particular, the quantification of quantum security which has not been treated in existing book is explained. This book treats quantum cryptography from a more practical viewpoint.
Encoded Universality of Quantum Computations on the Multi-Atomic Ensembles in the QED Cavity
Ablayev, Farid; Moiseev, Sergey; Vasiliev, Alexander
2011-01-01
We propose an effective set of elementary quantum gates which provide an encoded universality and demonstrate the physical feasibility of these gates for the solid-state quantum computer based on the multi-atomic systems in the QED cavity. We use the two-qubit encoding and swapping-based operations to simplify a physical realization of universal quantum computing and add the immunity to a number of errors. This approach allows to implement any encoded single-qubit operation by three elementary gates and the encoded controlled- NOT operation can be performed in a single step. The considerable advantages are also shown for implementing some commonly used controlled gates.
Accessible Information and Quantum operations
Cai, Qing-Yu
2003-01-01
The accessible information decreases under quantum operations. We analyzed the connection between quantum operations and accessible information. We show that a general quantum process cannot be operated accurately. Futhermore, an unknown state of a closed quantum system can not be operated arbitrarily by a unitary quantum operation.
Minimal-memory realization of pearl-necklace encoders of general quantum convolutional codes
International Nuclear Information System (INIS)
Quantum convolutional codes, like their classical counterparts, promise to offer higher error correction performance than block codes of equivalent encoding complexity, and are expected to find important applications in reliable quantum communication where a continuous stream of qubits is transmitted. Grassl and Roetteler devised an algorithm to encode a quantum convolutional code with a ''pearl-necklace'' encoder. Despite their algorithm's theoretical significance as a neat way of representing quantum convolutional codes, it is not well suited to practical realization. In fact, there is no straightforward way to implement any given pearl-necklace structure. This paper closes the gap between theoretical representation and practical implementation. In our previous work, we presented an efficient algorithm to find a minimal-memory realization of a pearl-necklace encoder for Calderbank-Shor-Steane (CSS) convolutional codes. This work is an extension of our previous work and presents an algorithm for turning a pearl-necklace encoder for a general (non-CSS) quantum convolutional code into a realizable quantum convolutional encoder. We show that a minimal-memory realization depends on the commutativity relations between the gate strings in the pearl-necklace encoder. We find a realization by means of a weighted graph which details the noncommutative paths through the pearl necklace. The weight of the longest path in this graph is equal to the minimal amount of memory needed to implement the encoder. The algorithm has a polynomial-time complexity in the number of gate strings in the pearl-necklace encoder.
On the Automation of Encoding Processes in the Quantum IO Monad
Directory of Open Access Journals (Sweden)
James Barratt
2012-10-01
Full Text Available It is now clear that the use of resilient encoding schemes will be required for any quantum computing device to be realised. However, quantum programmers of the future will not wish to be tied up in the particulars of such encoding schemes. Quantum programming languages and libraries are already being developed, one of which is the Quantum IO Monad. QIO, as it is often abbreviated to, provides an interface to define and simulate quantum computations via a library of functions written in Haskell, a purely functional programming language. A solution is presented that takes an arbitrary QIO program and returns an equivalent program incorporating some specified quantum error correction techniques.
Identifying mechanisms in the control of quantum dynamics through Hamiltonian encoding
International Nuclear Information System (INIS)
A variety of means are now available to design control fields for manipulating the evolution of quantum systems. However, the underlying physical mechanisms often remain obscure, especially in the cases of strong fields and high quantum state congestion. This paper proposes a method to quantitatively determine the various pathways taken by a quantum system in going from the initial state to the final target. The mechanism is revealed by encoding a signal in the system Hamiltonian and decoding the resultant nonlinear distortion of the signal in the system time-evolution operator. The relevant interfering pathways determined by this analysis give insight into the physical mechanisms operative during the evolution of the quantum system. A hierarchy of mechanism identification algorithms with increasing ability to extract more detailed pathway information is presented. The mechanism identification concept is presented in the context of analyzing computer simulations of controlled dynamics. As illustrations of the concept, mechanisms are identified in the control of several simple, discrete-state quantum systems. The mechanism analysis tools reveal the roles of multiple interacting quantum pathways to maximally take advantage of constructive and destructive interference. Similar procedures may be applied directly in the laboratory to identify control mechanisms without resort to computer modeling, although this extension is not addressed in this paper
Encoding an Arbitrary State in a [7,1,3] Quantum Error Correction Code
Buchbinder, Sidney D; Weinstein, Yaakov S
2011-01-01
We calculate the fidelity with which an arbitrary state can be encoded into a [7,1,3] CSS quantum error correction code in a non-equiprobable Pauli operator error environment with the goal of determining whether this encoding can be used for practical implementations of quantum computation. This determination is accomplished by applying ideal error correction to the encoded state which demonstrates the correctability of errors that occurred during the encoding process. We then apply single-qubit Clifford gates to the encoded state and determine the accuracy with which these gates can be applied. Finally, fault tolerant noisy error correction is applied to the encoded states in the non-equiprobable Pauli operator error environment allowing us to compare noisy (realistic) and perfect error correction implementations. We note that this maintains the fidelity of the encoded state for certain error-probability values. These results have implications for when non-fault tolerant procedures may be used in practical q...
Quantum Information as Reduced Classical Information
Nikolov, B. A.
2003-01-01
It is shown on a simple classical model of a quantum particle at rest that information contained into the quantum state (quantum information) can be obtained by integrating the corresponding probability distribution on phase space, i.e. by reduction of the information contained into the classical state.
Minimal-memory realization of pearl-necklace encoders of general quantum convolutional codes
Houshmand, Monireh
2010-01-01
Quantum convolutional codes, like their classical counterparts, promise to offer higher error correction performance than block codes of equivalent encoding complexity, and are expected to find important applications in reliable quantum communication where a continuous stream of qubits is transmitted. Grassl and Roetteler devised an algorithm to encode a quantum convolutional code with a "pearl-necklace encoder." Despite their theoretical significance as a neat way of representing quantum convolutional codes, they are not well-suited to practical realization. In fact, there is no straightforward way to implement any given pearl-necklace structure. This paper closes the gap between theoretical representation and practical implementation. In our previous work, we presented an efficient algorithm for finding a minimal-memory realization of a pearl-necklace encoder for Calderbank-Shor-Steane (CSS) convolutional codes. This work extends our previous work and presents an algorithm for turning a pearl-necklace encod...
Quantum information. Unconditional quantum teleportation between distant solid-state quantum bits.
Pfaff, W; Hensen, B J; Bernien, H; van Dam, S B; Blok, M S; Taminiau, T H; Tiggelman, M J; Schouten, R N; Markham, M; Twitchen, D J; Hanson, R
2014-08-01
Realizing robust quantum information transfer between long-lived qubit registers is a key challenge for quantum information science and technology. Here we demonstrate unconditional teleportation of arbitrary quantum states between diamond spin qubits separated by 3 meters. We prepare the teleporter through photon-mediated heralded entanglement between two distant electron spins and subsequently encode the source qubit in a single nuclear spin. By realizing a fully deterministic Bell-state measurement combined with real-time feed-forward, quantum teleportation is achieved upon each attempt with an average state fidelity exceeding the classical limit. These results establish diamond spin qubits as a prime candidate for the realization of quantum networks for quantum communication and network-based quantum computing. PMID:25082696
Zhang, Jingfu; Laflamme, Raymond; Suter, Dieter
2012-09-01
Large-scale universal quantum computing requires the implementation of quantum error correction (QEC). While the implementation of QEC has already been demonstrated for quantum memories, reliable quantum computing requires also the application of nontrivial logical gate operations to the encoded qubits. Here, we present examples of such operations by implementing, in addition to the identity operation, the NOT and the Hadamard gate to a logical qubit encoded in a five qubit system that allows correction of arbitrary single-qubit errors. We perform quantum process tomography of the encoded gate operations, demonstrate the successful correction of all possible single-qubit errors, and measure the fidelity of the encoded logical gate operations. PMID:23005271
A simple encoding of a quantum circuit amplitude as a matrix permanent
Rudolph, Terry
2009-01-01
A simple construction is presented which allows computing the transition amplitude of a quantum circuit to be encoded as computing the permanent of a matrix which is of size proportional to the number of quantum gates in the circuit. This opens up some interesting classical monte-carlo algorithms for approximating quantum circuits.
Transduction and encoding sensory information by skin mechanoreceptors.
Hao, Jizhe; Bonnet, Caroline; Amsalem, Muriel; Ruel, Jérôme; Delmas, Patrick
2015-01-01
Physical contact with the external world occurs through specialized neural structures called mechanoreceptors. Cutaneous mechanoreceptors provide information to the central nervous system (CNS) about touch, pressure, vibration, and skin stretch. The physiological function of these mechanoreceptors is to convert physical forces into neuronal signals. Key questions concern the molecular identity of the mechanoelectric transducer channels and the mechanisms by which the physical parameters of the mechanical stimulus are encoded into patterns of action potentials (APs). Compelling data indicate that the biophysical traits of mechanosensitive channels combined with the collection of voltage-gated channels are essential to describe the nature of the stimulus. Recent research also points to a critical role of the auxiliary cell-nerve ending communication in encoding stimulus properties. This review describes the characteristics of ion channels responsible for translating mechanical stimuli into the neural codes that underlie touch perception and pain. PMID:25416542
Djordjevic, Ivan B
2010-04-12
The Bell states preparation circuit is a basic circuit required in quantum teleportation. We describe how to implement it in all-fiber technology. The basic building blocks for its implementation are directional couplers and highly nonlinear optical fiber (HNLF). Because the quantum information processing is based on delicate superposition states, it is sensitive to quantum errors. In order to enable fault-tolerant quantum computing the use of quantum error correction is unavoidable. We show how to implement in all-fiber technology encoders and decoders for sparse-graph quantum codes, and provide an illustrative example to demonstrate this implementation. We also show that arbitrary set of universal quantum gates can be implemented based on directional couplers and HNLFs. PMID:20588656
Quantum teleportation for continuous variables and related quantum information processing
International Nuclear Information System (INIS)
Quantum teleportation is one of the most important subjects in quantum information science. This is because quantum teleportation can be regarded as not only quantum information transfer but also a building block for universal quantum information processing. Furthermore, deterministic quantum information processing is very important for efficient processing and it can be realized with continuous-variable quantum information processing. In this review, quantum teleportation for continuous variables and related quantum information processing are reviewed from these points of view
Examples of minimal-memory, non-catastrophic quantum convolutional encoders
Wilde, Mark M; Hosseini-Khayat, Saied
2010-01-01
One of the most important open questions in the theory of quantum convolutional coding is to determine a minimal-memory, non-catastrophic, polynomial-depth convolutional encoder for an arbitrary quantum convolutional code. Here, we present a technique that finds quantum convolutional encoders with such desirable properties for several example quantum convolutional codes (an exposition of our technique in full generality will appear elsewhere). We first show how to encode the well-studied Forney-Grassl-Guha (FGG) code with an encoder that exploits just one memory qubit (the former Grassl-Roetteler encoder requires 15 memory qubits). We then show how our technique can find an online decoder corresponding to this encoder, and we also detail the operation of our technique on a different example of a quantum convolutional code. Finally, the reduction in memory for the FGG encoder makes it feasible to simulate the performance of a quantum turbo code employing it, and we present the results of such simulations.
Spin-based quantum-information processing with semiconductor quantum dots and cavity QED
Rossi, Fausto
2003-01-01
A quantum-information-processing scheme is proposed with semiconductor quantum dots located in a high-Q single-mode QED cavity. The spin degrees of freedom of one excess conduction electron of the quantum dots are employed as qubits. Excitonic states, which can be produced ultrafast with optical operation, are used as auxiliary states in the realization of quantum gates. We show how properly tailored ultrafast laser pulses and Pauli-blocking effects can be used to achieve a universal encoded ...
Quantum games of asymmetric information
Du, Jiangfeng; Li,Hui; Ju, Chenyong
2003-01-01
We investigate quantum games in which the information is asymmetrically distributed among the players, and find the possibility of the quantum game outperforming its classical counterpart depends strongly on not only the entanglement, but also the informational asymmetry. What is more interesting, when the information distribution is asymmetric, the contradictive impact of the quantum entanglement on the profits is observed, which is not reported in quantum games of symmetri...
Directory of Open Access Journals (Sweden)
H.R.Sumathi
2015-03-01
Full Text Available Transmission of information in the form of qubits much faster than the speed of light is the important aspects of quantum information theory. Quantum information processing exploits the quantum nature of information that needs to be stored, encoded, transmit, receive and decode the information in the form of qubits. Bosonic channels appear to be very attractive for the physical implementation of quantum communication. This paper does the study of quantum channels and how best it can be implemented with the existing infrastructure that is the classical communication. Multiple access to the quantum network is the requirement where multiple users want to transmit their quantum information simultaneously without interfering with each others.
Ablayev, F. M.; Andrianov, S. N.; Moiseev, S. A.; Vasiliev, A.V.
2013-01-01
We propose an effective realization of the universal set of elementary quantum gates in solid state quantum computer based on macroscopic (or mesoscopic) resonance systems - multi-atomic coherent ensembles, squids or quantum dots in quantum electrodynamic cavity. We exploit an encoding of logical qubits by the pairs of the macroscopic two- or three-level atoms that is working in a Hilbert subspace of all states inherent to these atomic systems. In this subspace, logical sing...
A study on information hiding technology in image encoding
Li, Li; Yao, Zhihai; Wu, Haitao; Dai, Qiang
2005-02-01
Information hiding is a new technology which integrates with theories and technologies of many academic and technical subjects. For information hiding, digital media are used as the carrier of the information to be hidden. The carrier conceals secret messages by covering the form of their existence. In this paper, we briefly introduce the definition, basic models and basic characters of information hiding. The application and research trends for information hiding system are concerned. The information hiding technology based on digital image processing is closely related to human vision system. When the messages are having been concealed, the human eyes are due to verify the existence of hiding messages. That is, the status of information coverage depends on the human vision system. It is obvious that the characteristics of human vision system is to be taken advantage. The added secrete information in the digital image should have no any effect onto human eyes. In our research work, an implementation of information hiding technology system which is based on digital image encoding is proposed. First by analyzing knowledge of digital image processing and the model of human vision system, we discussed the algorithm of time domain appending method and the algorithm of substitution of lease significant bit. Secondly, we analyzed theory and algorithms of 2-D discrete wavelet transform and frequency domain algorithm based on discrete wavelet transformation. Carefully design software for information hiding based on digital image using Microsoft Visual C++6.0 is implemented. The communication with hiding messages may use any format of images such as BMP. It is proved to be an effective application.
Quantum: information theory: technological challenge
International Nuclear Information System (INIS)
The new Quantum Information Theory augurs powerful machines that obey the entangled logic of the subatomic world. Parallelism, entanglement, teleportation, no-cloning and quantum cryptography are typical peculiarities of this novel way of understanding computation. (Author) 24 refs
Hadamard-encoded high-resolution NMR spectroscopy via intermolecular single-quantum coherences
Ke, Hanping; Cai, Honghao; Cai, Shuhui; Chen, Hao; Lin, Yanqin; Chen, Zhong
2014-11-01
NMR spectroscopy plays an important role in metabolite studies because it can provide atomic level information critical for understanding biological systems. Nevertheless, NMR investigations on biological tissues are hampered by the magnetic field inhomogeneities originating from variations in macroscopic magnetic susceptibility, which lead to broad spectral lines and subsequently obscure metabolite signals. A new pulse sequence based on intermolecular single-quantum coherences was proposed to obtain one-dimensional high-resolution NMR spectra in inhomogeneous magnetic fields via Hadamard encoding. The new method can provide resolution-improved spectra directly through one-dimensional acquisition within a relatively short acquisition time. Theoretical derivation was performed and the conclusion was tested by solution samples in purposely de-shimmed magnetic fields and pig brain tissue sample. The experimental results show that this sequence can yield useful structural information, even when the field inhomogeneity is sufficiently severe to erase almost all spectral information with conventional one-dimensional single-quantum coherence techniques. Moreover, good solvent suppression efficiency can be achieved by this sequence. This sequence may provide a promising way for high-resolution NMR spectroscopy of biological tissue.
Tools for Multimode Quantum Information: Modulation, Detection, and Spatial Quantum Correlations
DEFF Research Database (Denmark)
Lassen, Mikael Østergaard; Delaubert, Vincent
2007-01-01
We present here all the tools required for continuous variable parallel quantum information protocols based on spatial multi-mode quantum correlations and entanglement. We describe techniques for encoding and detecting this quantum information with high efficiency in the individual modes. We use the generation of spatial squeezing light in higher order transverse Hermite-Gauss modes as a demonstration of the quality of our scheme. The squeezing in selective modes is achieved by fine tuning of the phase matching condition of the nonlinear (2) material and the cavity resonance condition of the optical parametric amplifier. By combining these modes we can now build a practical multi-mode optical quantum information system.
Recoverability in quantum information theory
Wilde, Mark M
2015-01-01
The fact that the quantum relative entropy is non-increasing with respect to quantum physical evolutions lies at the core of many optimality theorems in quantum information theory and has applications in other areas of physics. In this work, we establish improvements of this entropy inequality in the form of physically meaningful remainder terms. One of the main results can be summarized informally as follows: if the decrease in quantum relative entropy between two quantum states after a quantum physical evolution is relatively small, then it is possible to perform a recovery operation, such that one can perfectly recover one state while approximately recovering the other. This can be interpreted as quantifying how well one can reverse a quantum physical evolution. Our proof method is elementary, relying on the method of complex interpolation, basic linear algebra, and the recently introduced Renyi generalization of a relative entropy difference. The theorem has a number of applications in quantum information...
Quantum Encoder and Decoder for Secret Key Distribution with Check Bits
Directory of Open Access Journals (Sweden)
T. Godhavari
2013-12-01
Full Text Available The focus of this study is to develop a novel method of encoding the qubits and use as secret key in public key cryptography. In BB 84 protocol, 50% of the random number (generated at source is used as secret key and the remaining bits are used as “check bits”. The check bits are used to detect the presence of eve as well as the nature of quantum channels. In this protocol, random qubits are encoded using different type of polarizations like horizontal, veritical and diagonal. In the proposed quantum encoder, basic quantum gates are used to encode the random secret key along with the check bits. Quantum key distribution, (a cryptographic mechanism relies on the inherent randomness of quantum mechanics and serves as an option to replace techniques made vulnerable by quantum computing. However, it is still subject to clever forms of eavesdropping and poses a significant challenge to implementation. To study the challenges, quantum circuits are first simulated using QCAD.
Using Patterns to Encode Color Information for Dichromats.
Sajadi, B; Majumder, A; Oliveira, M M; Schneider, R G; Raskar, R
2013-01-01
Color is one of the most common ways to convey information in visualization applications. Color vision deficiency (CVD) affects approximately 200 million individuals worldwide and considerably degrades their performance in understanding such contents by creating red-green or blue-yellow ambiguities. While several content-specific methods have been proposed to resolve these ambiguities, they cannot achieve this effectively in many situations for contents with a large variety of colors. More importantly, they cannot facilitate color identification. We propose a technique for using patterns to encode color information for individuals with CVD, in particular for dichromats. We present the first content-independent method to overlay patterns on colored visualization contents that not only minimizes ambiguities but also allows color identification. Further, since overlaying patterns does not compromise the underlying original colors, it does not hamper the perception of normal trichromats. We validated our method with two user studies: one including 11 subjects with CVD and 19 normal trichromats, and focused on images that use colors to represent multiple categories; and another one including 16 subjects with CVD and 22 normal trichromats, which considered a broader set of images. Our results show that overlaying patterns significantly improves the performance of dichromats in several color-based visualization tasks, making their performance almost similar to normal trichromats'. More interestingly, the patterns augment color information in a positive manner, allowing normal trichromats to perform with greater accuracy. PMID:22450823
Hsieh, Chang-Yu; Hawrylak, Pawel
2010-01-01
We present a theory of quantum circuits based on logical qubits encoded in chirality of electron spin complexes in lateral gated semiconductor triple quantum dot molecules with one electron spin in each dot. Using microscopic Hamiltonian we show how to initialize, coherently control and measure the quantum state of a chirality based coded qubit using static in-plane magnetic field and voltage tuning of individual dots. The microscopic model of two interacting coded qubits is...
Quantum Dot Cluster State Computing with Encoded Qubits
Weinstein, Yu S; Levy, J; Weinstein, Yaakov S.; Levy, Jeremy
2005-01-01
A class of architectures is advanced for cluster state quantum computation using quantum dots. These architectures include using single and multiple dots as logical qubits. Special attention is given to the supercoherent qubits introduced by Bacon, Brown, and Whaley [Phys. Rev. Lett. {\\bf 87}, 247902 (2001)] for which we discuss the effects of various errors, and present means of error protection.
Quantum-dot cluster-state computing with encoded qubits
International Nuclear Information System (INIS)
A class of architectures is advanced for cluster-state quantum computation using quantum dots. These architectures include using single and multiple dots as logical qubits. Special attention is given to supercoherent qubits introduced by Bacon et al. [Phys. Rev. Lett. 87, 247902 (2001)] for which we discuss the effects of various errors and present a means of error protection
Decoding of quantum dots encoded microbeads using a hyperspectral fluorescence imaging method.
Liu, Yixi; Liu, Le; He, Yonghong; Zhu, Liang; Ma, Hui
2015-05-19
We presented a decoding method of quantum dots encoded microbeads with its fluorescence spectra using line scan hyperspectral fluorescence imaging (HFI) method. A HFI method was developed to attain both the spectra of fluorescence signal and the spatial information of the encoded microbeads. A decoding scheme was adopted to decode the spectra of multicolor microbeads acquired by the HFI system. Comparison experiments between the HFI system and the flow cytometer were conducted. The results showed that the HFI system has higher spectrum resolution; thus, more channels in spectral dimension can be used. The HFI system detection and decoding experiment with the single-stranded DNA (ssDNA) immobilized multicolor beads was done, and the result showed the efficiency of the HFI system. Surface modification of the microbeads by use of the polydopamine was characterized by the scanning electron microscopy and ssDNA immobilization was characterized by the laser confocal microscope. These results indicate that the designed HFI system can be applied to practical biological and medical applications. PMID:25902043
Foundations of quantum theory and quantum information applications
Galvao, Ernesto F.
2002-01-01
This thesis establishes a number of connections between foundational issues in quantum theory, and some quantum information applications. It starts with a review of quantum contextuality and non-locality, multipartite entanglement characterisation, and of a few quantum information protocols. Quantum non-locality and contextuality are shown to be essential for different implementations of quantum information protocols known as quantum random access codes and quantum communi...
Quantum Discord and its Role in Quantum Information Theory
Streltsov, Alexander
2014-01-01
Quantum entanglement is the most popular kind of quantum correlations, and its fundamental role in several tasks in quantum information theory like quantum cryptography, quantum dense coding, and quantum teleportation is undeniable. However, recent results suggest that various applications in quantum information theory do not require entanglement, and that their performance can be captured by a new type of quantum correlations which goes beyond entanglement. Quantum discord,...
Quantum Information Science and Nanotechnology
Vlasov, Alexander Yu.
2009-01-01
In this note is touched upon an application of quantum information science (QIS) in nanotechnology area. The laws of quantum mechanics may be very important for nano-scale objects. A problem with simulating of quantum systems is well known and quantum computer was initially suggested by R. Feynman just as the way to overcome such difficulties. Mathematical methods developed in QIS also may be applied for description of nano-devices. Few illustrative examples are mentioned an...
Quantum information as complementary classical information
International Nuclear Information System (INIS)
Since the breakthrough by Calderbank, Shor, and Steane on the existence of quantum error-correcting codes, an oft-used notion in quantum information theory is that we can treat quantum information essentially as a strange combination of two types of classical information, pertaining to two complementary observables ''amplitude'' and ''phase''. Correcting errors afflicting either of these observables is sufficient to restore the quantum information to its original state. However, the central results of quantum information theory established recently, such as the achievable rate of quantum communication over a noisy channel, follow a different approach termed decoupling which has a natural origin in the study of quantum cryptography. We show that the decoupling-based results can be concretely established in the complementary classical information picture. By adopting an information-theoretic approach to complementarity, we are able to construct entanglement distillation protocols which straightforwardly seek to distill amplitude and phase correlations without venturing into decoupling. This gives new and intuitive proofs of both the noisy channel coding theorem and the asymptotic rates of both secret-key distillation and state merging
International Nuclear Information System (INIS)
A recently developed theory for eliminating decoherence and design constraints in quantum computers, 'encoded recoupling and decoupling', is shown to be fully compatible with a promising proposal for an architecture enabling scalable ion-trap quantum computation [D. Kielpinski et al., Nature (London) 417, 709 (2002)]. Logical qubits are encoded into pairs of ions. Logic gates are implemented using the Soerensen-Moelmer (SM) scheme applied to pairs of ions at a time. The encoding offers continuous protection against collective dephasing. Decoupling pulses, that are also implemented using the SM scheme directly to the encoded qubits, are capable of further reducing various other sources of qubit decoherence, such as due to differential dephasing and due to decohered vibrational modes. The feasibility of using the relatively slow SM pulses in a decoupling scheme quenching the latter source of decoherence follows from the observed 1/f spectrum of the vibrational bath
Basic Concepts in Quantum Information
Girvin, S. M.
2013-01-01
In the last 25 years a new understanding has evolved of the role of information in quantum mechanics. At the same time there has been tremendous progress in atomic/optical physics and condensed matter physics, and particularly at the interface between these two formerly distinct fields, in developing experimental systems whose quantum states are long-lived and which can be engineered to perform quantum information processing tasks. These lecture notes will present a brief in...
Step-by-step magic state encoding for efficient fault-tolerant quantum computation.
Goto, Hayato
2014-01-01
Quantum error correction allows one to make quantum computers fault-tolerant against unavoidable errors due to decoherence and imperfect physical gate operations. However, the fault-tolerant quantum computation requires impractically large computational resources for useful applications. This is a current major obstacle to the realization of a quantum computer. In particular, magic state distillation, which is a standard approach to universality, consumes the most resources in fault-tolerant quantum computation. For the resource problem, here we propose step-by-step magic state encoding for concatenated quantum codes, where magic states are encoded step by step from the physical level to the logical one. To manage errors during the encoding, we carefully use error detection. Since the sizes of intermediate codes are small, it is expected that the resource overheads will become lower than previous approaches based on the distillation at the logical level. Our simulation results suggest that the resource requirements for a logical magic state will become comparable to those for a single logical controlled-NOT gate. Thus, the present method opens a new possibility for efficient fault-tolerant quantum computation. PMID:25511387
Step-by-step magic state encoding for efficient fault-tolerant quantum computation
Goto, Hayato
2014-12-01
Quantum error correction allows one to make quantum computers fault-tolerant against unavoidable errors due to decoherence and imperfect physical gate operations. However, the fault-tolerant quantum computation requires impractically large computational resources for useful applications. This is a current major obstacle to the realization of a quantum computer. In particular, magic state distillation, which is a standard approach to universality, consumes the most resources in fault-tolerant quantum computation. For the resource problem, here we propose step-by-step magic state encoding for concatenated quantum codes, where magic states are encoded step by step from the physical level to the logical one. To manage errors during the encoding, we carefully use error detection. Since the sizes of intermediate codes are small, it is expected that the resource overheads will become lower than previous approaches based on the distillation at the logical level. Our simulation results suggest that the resource requirements for a logical magic state will become comparable to those for a single logical controlled-NOT gate. Thus, the present method opens a new possibility for efficient fault-tolerant quantum computation.
International Nuclear Information System (INIS)
Time, Quantum and Information, a paean to Professor Carl Friedrich von Weizsaecker, commemorates his 90th birthday. The range of Professor Weizsaecker's endeavours is an exhilarating example of what can be accomplished by one freely-soaring human spirit, who is at the same time a physicist, a philosopher, and a humanitarian. The editors, Lutz Castell and Otfried Ischebeck, have assembled an admirable collection of essays and articles written by Weizsaecker?s past students, collaborators, colleagues and acquaintances. Time, Quantum and Information offers the reader a panoply of unique insights into twentieth century science and history. Entangled with the stories about Weizsaecker?s influence on the lives of some of the contributors are discussions of the activities of German scientists during and following World War II, emphasizing their reluctance to work on atomic weapons following the war. By outlining Weizsaecker?s role in the early development of numerous tributaries of physical science, the book gives us a new glimpse into the origins of some of its disparate domains, such as nuclear physics, the physics of stellar nucleosynthesis, cosmic ray physics, fluid turbulence, and the formation of the solar system. We physicists have all studied Weizsaecker?s semi-empirical mass formula describing the binding energy of nuclei. We are aware too that both he and Hans Bethe independently discovered the nuclear cycles that provide stars with their enduring energy output. We have studied the Weizsaecker--Williams technique of calculating the bremsstrahlung of relativistic electrons. But how many of us know of Weizsaecker's work in fluid turbulence that he, like Werner Heisenberg under whom he had earned his doctorate, pursued while holed up in Farm Hall? And how many of us are aware of his introduction of turbulent viscosity to account for the origin of planetary orbits, involving the migration of mass inwards and angular momentum outwards? Moreover, before finally turning his attention to philosophy in 1957, Weizsaecker became interested in nuclear fusion research and educated a generation of postwar German physicists in both plasma physics and astrophysics. Michael Frayn's play 'Copenhagen' has ignited worldwide interest in the mysterious meeting of Niels Bohr with Werner Heisenberg in September 1941. However, an article by R Luest indicates that in 1951 Bohr enjoyed a friendly visit with Heisenberg in Goettingen. This 1941 meeting of Heisenberg and Bohr is discussed further in an article by Goetz Neuneck, who also details the World War II and post-war research and interests of the Uranium Club, a group of 70--100 German physicists and chemists. Neuneck also discusses the resistance of individual scientists, such as Hahn, Heisenberg, and Bothe, to the Nazi regime. We learn that, unlike Wernher von Braun, no member of the Uranium Club was ever granted an audience with Hitler. After the war, German scientists renounced any role for German development of nuclear weapons in various manifestos, such as the Mainau and Goettingen Declarations that were both influenced by Weizsaecker. Time, Quantum and Information contains much anecdotal material. Examples include a touching quotation in a letter from Edward Teller to Weizsaecker: 'If I could share your religious belief, I would wish that you will one day come from a higher heaven and visit me in purgatory.' Another example, less complimentary, is a comment from Pauli after hearing from Weisskopf that Weizsaecker had made numerous errors in his habilitation thesis and realizing that Weizsaecker had accepted an offer from Peter Debye at Berlin: 'The measure of sloppiness in Weizsaecker's work exceeds altogether and by far the tolerable measure, and my pain of not having had him as an assistant has been alleviated by this.' Two-thirds of this compendium also explores the philosophical interests of Weizsaecker. This portion discusses his attempt to reconstruct quantum mechanics and build up a 'theory of everything' based on his 'ur' hypothesis. As stated by the mathematician G G Emch in
Decoherence-Free Quantum Information Processing with Four-Photon Entangled States
Bourennane, Mohamed; Eibl, Manfred; Gaertner, Sascha; Kurtsiefer, Christian; Cabello, Adan; Weinfurter, Harald
2003-01-01
Decoherence-free states protect quantum information from collective noise, the predominant cause of decoherence in current implementations of quantum communication and computation. Here we demonstrate that spontaneous parametric down-conversion can be used to generate four-photon states which enable the encoding of one qubit in a decoherence-free subspace. The immunity against noise is verified by quantum state tomography of the encoded qubit. We show that particular states ...
Polarization states encoded by phase modulation for high bit rate quantum key distribution
International Nuclear Information System (INIS)
We present implementation of quantum cryptography with polarization code by wave-guide type phase modulator. At four different low input voltages of the phase modulator, coder encodes pulses into four different polarization states, 45o, 135o linearly polarized or right, left circle polarized, while the decoder serves as the complementary polarizers
Physics as Quantum Information Processing: Quantum Fields as Quantum Automata
D'Ariano, Giacomo Mauro
2011-01-01
Can we reduce Quantum Field Theory (QFT) to a quantum computation? Can physics be simulated by a quantum computer? Do we believe that a quantum field is ultimately made of a numerable set of quantum systems that are unitarily interacting? A positive answer to these questions corresponds to substituting QFT with a theory of quantum cellular automata (QCA), and the present work is examining this hypothesis. These investigations are part of a large research program on a "quantum-digitalization" of physics, with Quantum Theory as a special theory of information, and Physics as emergent from the same quantum-information processing. A QCA-based QFT has tremendous potential advantages compared to QFT, being quantum "ab-initio" and free from the problems plaguing QFT due to the continuum hypothesis. Here I will show how dynamics emerges from the quantum processing, how the QCA can reproduce the Dirac-field phenomenology at large scales, and the kind of departures from QFT that that should be expected at a Planck-scal...
International Nuclear Information System (INIS)
We study quantum compression and decompression of light pulses that carry quantum information using a photon-echo quantum memory technique with controllable inhomogeneous broadening of an isolated atomic absorption line. We investigate media with differently broadened absorption profiles, transverse and longitudinal, finding that the recall efficiency can be as large as unity and that the quantum information encoded into the photonic qubits can remain unperturbed. Our results provide insight into reversible light-atom interaction and are interesting in view of future quantum communication networks, where pulse compression and decompression may play an important role in increasing the qubit rate or in mapping quantum information from photonic carriers with large optical bandwidth into atomic memories with smaller bandwidth.
Manipulating quantum information via quantum cloning
International Nuclear Information System (INIS)
An extensive characterization of the information flux underlying the 1 ?2 universal cloning process is presented together with the realization of several cloning and measurement tasks. The restoration of both the quantum and classical information associated to the input qubit was theoretically analysed and experimentally accomplished. At the same time the extension of the 1 ?2 cloning to the 1 ?3 universal and covariant processes is reported with the first experimental optical realizations
Quantum information and convex optimization
International Nuclear Information System (INIS)
This thesis is concerned with convex optimization problems in quantum information theory. It features an iterative algorithm for optimal quantum error correcting codes, a postprocessing method for incomplete tomography data, a method to estimate the amount of entanglement in witness experiments, and it gives necessary and sufficient criteria for the existence of retrodiction strategies for a generalized mean king problem. (orig.)
Quantum information and convex optimization
Energy Technology Data Exchange (ETDEWEB)
Reimpell, Michael
2008-07-01
This thesis is concerned with convex optimization problems in quantum information theory. It features an iterative algorithm for optimal quantum error correcting codes, a postprocessing method for incomplete tomography data, a method to estimate the amount of entanglement in witness experiments, and it gives necessary and sufficient criteria for the existence of retrodiction strategies for a generalized mean king problem. (orig.)
Coordination Games with Quantum Information
Kargin, Vladislav
2004-01-01
The paper discusses coordination games with remote players that have access to an entangled quantum state. It shows that the entangled state cannot be used by players for communicating information, but that in certain games it can be used for improving coordination of actions. A necessary condition is provided that helps to determine when an entangled quantum state can be useful for improving coordination.
Energy Technology Data Exchange (ETDEWEB)
Turner, Leaf [Los Alamos, New Mexico (United States)
2004-04-09
Time, Quantum and Information, a paean to Professor Carl Friedrich von Weizsaecker, commemorates his 90th birthday. The range of Professor Weizsaecker's endeavours is an exhilarating example of what can be accomplished by one freely-soaring human spirit, who is at the same time a physicist, a philosopher, and a humanitarian. The editors, Lutz Castell and Otfried Ischebeck, have assembled an admirable collection of essays and articles written by Weizsaecker?s past students, collaborators, colleagues and acquaintances. Time, Quantum and Information offers the reader a panoply of unique insights into twentieth century science and history. Entangled with the stories about Weizsaecker?s influence on the lives of some of the contributors are discussions of the activities of German scientists during and following World War II, emphasizing their reluctance to work on atomic weapons following the war. By outlining Weizsaecker?s role in the early development of numerous tributaries of physical science, the book gives us a new glimpse into the origins of some of its disparate domains, such as nuclear physics, the physics of stellar nucleosynthesis, cosmic ray physics, fluid turbulence, and the formation of the solar system. We physicists have all studied Weizsaecker?s semi-empirical mass formula describing the binding energy of nuclei. We are aware too that both he and Hans Bethe independently discovered the nuclear cycles that provide stars with their enduring energy output. We have studied the Weizsaecker--Williams technique of calculating the bremsstrahlung of relativistic electrons. But how many of us know of Weizsaecker's work in fluid turbulence that he, like Werner Heisenberg under whom he had earned his doctorate, pursued while holed up in Farm Hall? And how many of us are aware of his introduction of turbulent viscosity to account for the origin of planetary orbits, involving the migration of mass inwards and angular momentum outwards? Moreover, before finally turning his attention to philosophy in 1957, Weizsaecker became interested in nuclear fusion research and educated a generation of postwar German physicists in both plasma physics and astrophysics. Michael Frayn's play 'Copenhagen' has ignited worldwide interest in the mysterious meeting of Niels Bohr with Werner Heisenberg in September 1941. However, an article by R Luest indicates that in 1951 Bohr enjoyed a friendly visit with Heisenberg in Goettingen. This 1941 meeting of Heisenberg and Bohr is discussed further in an article by Goetz Neuneck, who also details the World War II and post-war research and interests of the Uranium Club, a group of 70--100 German physicists and chemists. Neuneck also discusses the resistance of individual scientists, such as Hahn, Heisenberg, and Bothe, to the Nazi regime. We learn that, unlike Wernher von Braun, no member of the Uranium Club was ever granted an audience with Hitler. After the war, German scientists renounced any role for German development of nuclear weapons in various manifestos, such as the Mainau and Goettingen Declarations that were both influenced by Weizsaecker. Time, Quantum and Information contains much anecdotal material. Examples include a touching quotation in a letter from Edward Teller to Weizsaecker: 'If I could share your religious belief, I would wish that you will one day come from a higher heaven and visit me in purgatory.' Another example, less complimentary, is a comment from Pauli after hearing from Weisskopf that Weizsaecker had made numerous errors in his habilitation thesis and realizing that Weizsaecker had accepted an offer from Peter Debye at Berlin: 'The measure of sloppiness in Weizsaecker's work exceeds altogether and by far the tolerable measure, and my pain of not having had him as an assistant has been alleviated by this.' Two-thirds of this compendium also explores the philosophical interests of Weizsaecker. This portion discusses his attempt to reconstruct quantum mechanics and build up a 'theory of everything' based on his
Quantum information processing by weaving quantum Talbot carpets
Farías, Osvaldo Jiménez; de Melo, Fernando; Milman, Pérola; Walborn, Stephen P.
2015-06-01
Single-photon interference due to passage through a periodic grating is considered in a novel proposal for processing D -dimensional quantum systems (quDits) encoded in the spatial degrees of freedom of light. We show that free-space propagation naturally implements basic single-quDit gates by means of the Talbot effect: an intricate time-space carpet of light in the near-field diffraction regime. By adding a diagonal phase gate, we show that a complete set of single-quDit gates can be implemented. We then introduce a spatially dependent beam splitter that allows for projective measurements in the computational basis and can be used for the implementation of controlled operations between two quDits. Universal quantum information processing can then be implemented with linear optics and ancilla photons via postselection and feed-forward following the original proposal of Knill-Laflamme and Milburn. Although we consider photons, our scheme should be directly applicable to a number of other physical systems. Interpretation of the Talbot effect as a quantum logic operation provides a beautiful and interesting way to visualize quantum computation through wave propagation and interference.
Physics as quantum information processing
Mauro D'Ariano, Giacomo
2011-10-01
The experience from Quantum Information has lead us to look at Quantum Theory (QT) and the whole Physics from a different angle. The information-theoretical paradigm—It from Bit— prophesied by John Archibald Wheeler is relentlessly advancing. Recently it has been shown that QT is derivable from pure informational principles. The possibility that there is only QT at the foundations of Physics has been then considered, with space-time, Relativity, quantization rules and Quantum Field Theory (QFT) emerging from a quantum-information processing. The resulting theory is a discrete version of QFT with automatic relativistic invariance, and without fields, Hamiltonian, and quantization rules. In this paper I review some recent advances on these lines. In particular: i) How space-time and relativistic covariance emerge from the quantum computation; ii) The derivation of the Dirac equation as free information flow, without imposing Lorentz covariance; iii) the information-theoretical meaning of inertial mass and Planck constant; iv) An observable consequence of the theory: a mass-dependent refraction index of vacuum. I will then conclude with two possible routes to Quantum Gravity.
Isotope-based quantum information
G Plekhanov, Vladimir
2012-01-01
The present book provides to the main ideas and techniques of the rapid progressing field of quantum information and quantum computation using isotope - mixed materials. It starts with an introduction to the isotope physics and then describes of the isotope - based quantum information and quantum computation. The ability to manipulate and control electron and/or nucleus spin in semiconductor devices provides a new route to expand the capabilities of inorganic semiconductor-based electronics and to design innovative devices with potential application in quantum computing. One of the major challenges towards these objectives is to develop semiconductor-based systems and architectures in which the spatial distribution of spins and their properties can be controlled. For instance, to eliminate electron spin decoherence resulting from hyperfine interaction due to nuclear spin background, isotopically controlled devices are needed (i.e., nuclear spin-depleted). In other emerging concepts, the control of the spatial...
Quantum States as Ordinary Information
Directory of Open Access Journals (Sweden)
Ken Wharton
2014-03-01
Full Text Available Despite various parallels between quantum states and ordinary information, quantum no-go-theorems have convinced many that there is no realistic framework that might underly quantum theory, no reality that quantum states can represent knowledge about. This paper develops the case that there is a plausible underlying reality: one actual spacetime-based history, although with behavior that appears strange when analyzed dynamically (one time-slice at a time. By using a simple model with no dynamical laws, it becomes evident that this behavior is actually quite natural when analyzed “all-at-once” (as in classical action principles. From this perspective, traditional quantum states would represent incomplete information about possible spacetime histories, conditional on the future measurement geometry. Without dynamical laws imposing additional restrictions, those histories can have a classical probability distribution, where exactly one history can be said to represent an underlying reality.
Poplu, Gerald; Ripoll, Hubert; Mavromatis, Sebastien; Baratgin, Jean
2008-01-01
The aim of this study was to determine what visual information expert soccer players encode when they are asked to make a decision. We used a repetition-priming paradigm to test the hypothesis that experts encode a soccer pattern's structure independently of the players' physical characteristics (i.e., posture and morphology). The participants…
Unification of quantum information theory
Abeyesinghe, Anura
We present the unification of many previously disparate results in noisy quantum Shannon theory and the unification of all of noiseless quantum Shannon theory. More specifically we deal here with bipartite, unidirectional, and memoryless quantum Shannon theory. We find all the optimal protocols and quantify the relationship between the resources used, both for the one-shot and for the ensemble case, for what is arguably the most fundamental task in quantum information theory: sharing entangled states between a sender and a receiver. We find that all of these protocols are derived from our one-shot superdense coding protocol and relate nicely to each other. We then move on to noisy quantum information theory and give a simple, direct proof of the "mother" protocol, or rather her generalization to the Fully Quantum Slepian-Wolf protocol (FQSW). FQSW simultaneously accomplishes two goals: quantum communication-assisted entanglement distillation, and state transfer from the sender to the receiver. As a result, in addition to her other "children," the mother protocol generates the state merging primitive of Horodecki, Oppenheim, and Winter as well as a new class of distributed compression protocols for correlated quantum sources, which are optimal for sources described by separable density operators. Moreover, the mother protocol described here is easily transformed into the so-called "father" protocol, demonstrating that the division of single-sender/single-receiver protocols into two families was unnecessary: all protocols in the family are children of the mother.
Foundations of quantum theory and quantum information applications
Galvão, E F
2002-01-01
This thesis establishes a number of connections between foundational issues in quantum theory, and some quantum information applications. It starts with a review of quantum contextuality and non-locality, multipartite entanglement characterisation, and of a few quantum information protocols. Quantum non-locality and contextuality are shown to be essential for different implementations of quantum information protocols known as quantum random access codes and quantum communication complexity protocols. I derive sufficient experimental conditions for tests of these quantum properties. I also discuss how the distribution of quantum information through quantum cloning processes can be useful in quantum computing. Regarding entanglement characterisation, some results are obtained relating two problems, that of additivity of the relative entropy of entanglement, and that of identifying different types of tripartite entanglement in the asymptotic regime of manipulations of many copies of a given state. The thesis end...
Information transfer through quantum channels
International Nuclear Information System (INIS)
This PhD thesis represents work done between Aug. 2003 and Dec. 2006 in Reinhard F. Werner's quantum information theory group at Technische Universitaet Braunschweig, and Artur Ekert's Centre for Quantum Computation at the University of Cambridge. My thesis falls into the field of abstract quantum information theory. This work investigates both fundamental properties of quantum channels and their asymptotic capacities for classical as well as quantum information transfer. Stinespring's theorem is the basic structure theorem for quantum channels. It implies that every quantum channel can be represented as a unitary evolution on an enlarged system. In Ch. 3 we present a continuity theorem for Stinespring's representation: two quantum channels are similar if and only if it is possible to find unitary implementations that are likewise similar, with dimension-independent norm bounds. The continuity theorem allows to derive a formulation of the information-disturbance tradeoff in terms of quantum channels, and a continuity estimate for the no-broadcasting principle. In Ch. 4 we then apply the continuity theorem to give a strengthened no-go proof for quantum bit commitment, an important cryptographic primitive. This result also provides a natural characterization of those protocols that fall outside the standard setting of unconditional security, and thus may allow secure bit commitment. We present a new such protocol whose security relies on decoherence in the receiver's lab. Ch. 5 reviews the capacities of quantum channels for the transfer of both classical and quantum information, and investigates several variations in the notion of channel capacity. Memory effects are then investigated in detail in Ch. 6. We advertise a model which is sufficiently general to encompass all causal automata: every quantum process in which the outputs up to any given time t do not depend on the inputs at times t'>t can be represented as a concatenated memory channel. We then explain how all known coding theorems can be generalized from memoryless channels to forgetful memory channels. We also present examples for non-forgetful channels, and derive generic entropic upper bounds on their capacities for (private) classical and quantum information transfer. Ch. 7 provides a brief introduction to quantum information spectrum methods as a promising approach to coding theorems for completely general quantum sources and channels. We present a data compression theorem for general quantum sources and apply these results to ergodic as well as mixed sources. Finally we investigate the continuity of distillable entanglement - another key notion of the field, which characterizes the optimal asymptotic rate at which maximally entangled states can be generated from many copies of a less entangled state. We derive uniform norm bounds for all states with full support, and we extend some of these results to quantum channel capacities. (orig.)
Information transfer through quantum channels
Energy Technology Data Exchange (ETDEWEB)
Kretschmann, D.
2007-03-12
This PhD thesis represents work done between Aug. 2003 and Dec. 2006 in Reinhard F. Werner's quantum information theory group at Technische Universitaet Braunschweig, and Artur Ekert's Centre for Quantum Computation at the University of Cambridge. My thesis falls into the field of abstract quantum information theory. This work investigates both fundamental properties of quantum channels and their asymptotic capacities for classical as well as quantum information transfer. Stinespring's theorem is the basic structure theorem for quantum channels. It implies that every quantum channel can be represented as a unitary evolution on an enlarged system. In Ch. 3 we present a continuity theorem for Stinespring's representation: two quantum channels are similar if and only if it is possible to find unitary implementations that are likewise similar, with dimension-independent norm bounds. The continuity theorem allows to derive a formulation of the information-disturbance tradeoff in terms of quantum channels, and a continuity estimate for the no-broadcasting principle. In Ch. 4 we then apply the continuity theorem to give a strengthened no-go proof for quantum bit commitment, an important cryptographic primitive. This result also provides a natural characterization of those protocols that fall outside the standard setting of unconditional security, and thus may allow secure bit commitment. We present a new such protocol whose security relies on decoherence in the receiver's lab. Ch. 5 reviews the capacities of quantum channels for the transfer of both classical and quantum information, and investigates several variations in the notion of channel capacity. Memory effects are then investigated in detail in Ch. 6. We advertise a model which is sufficiently general to encompass all causal automata: every quantum process in which the outputs up to any given time t do not depend on the inputs at times t'>t can be represented as a concatenated memory channel. We then explain how all known coding theorems can be generalized from memoryless channels to forgetful memory channels. We also present examples for non-forgetful channels, and derive generic entropic upper bounds on their capacities for (private) classical and quantum information transfer. Ch. 7 provides a brief introduction to quantum information spectrum methods as a promising approach to coding theorems for completely general quantum sources and channels. We present a data compression theorem for general quantum sources and apply these results to ergodic as well as mixed sources. Finally we investigate the continuity of distillable entanglement - another key notion of the field, which characterizes the optimal asymptotic rate at which maximally entangled states can be generated from many copies of a less entangled state. We derive uniform norm bounds for all states with full support, and we extend some of these results to quantum channel capacities. (orig.)
Decoherence-Free Quantum Information Processing with Four-Photon Entangled States
Bourennane, M; Gaertner, S; Kurtsiefer, C; Cabello, A; Weinfurter, H; Bourennane, Mohamed; Eibl, Manfred; Gaertner, Sascha; Kurtsiefer, Christian; Cabello, Adan; Weinfurter, Harald
2004-01-01
Decoherence-free states protect quantum information from collective noise, the predominant cause of decoherence in current implementations of quantum communication and computation. Here we demonstrate that spontaneous parametric down-conversion can be used to generate four-photon states which enable the encoding of one qubit in a decoherence-free subspace. The immunity against noise is verified by quantum state tomography of the encoded qubit. We show that particular states of the encoded qubit can be distinguished by local measurements on the four photons only.
Data encoding efficiency in pixel detector readout with charge information
Garcia-Sciveres, Maurice
2015-01-01
The minimum number of bits needed for lossless readout of a pixel detector is calculated, in the regime of interest for particle physics where only a small fraction of pixels have a non-zero value per frame. This permits a systematic comparison of the readout efficiency of different encoding implementations. The calculation is compared to the bits used for by the FE-I4 pixel readout chip of the ATLAS experiment.
Interference Phenomena in Quantum Information
Stefanak, Martin
2010-01-01
One of the key features of quantum mechanics is the interference of probability amplitudes. The reason for the appearance of interference is mathematically very simple. It is the linear structure of the Hilbert space which is used for the description of quantum systems. In terms of physics we usually talk about the superposition principle valid for individual and composed quantum objects. So, while the source of interference is understandable it leads in fact to many counter-intuitive physical phenomena which puzzle physicists for almost hundred years. The present thesis studies interference in two seemingly disjoint fields of physics. However, both have strong links to quantum information processing and hence are related. In the first part we study the intriguing properties of quantum walks. In the second part we analyze a sophisticated application of wave packet dynamics in atoms and molecules for factorization of integers. The main body of the thesis is based on the original contributions listed separately...
Quantum information. Teleporation - cryptography - quantum computer
International Nuclear Information System (INIS)
The following topics are dealt with: Reality in the test house, quantum teleportation, 100 years of quantum theory, the reality of quanta, interactionless quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view into the future of quantum optics. (HSI)
Comparing quantum cloning: A Fisher-information perspective
Song, Hongting; Luo, Shunlong; Li, Nan; Chang, Lina
2013-10-01
Perfect cloning of an unknown quantum state is impossible. Approximate cloning, which is optimal in various senses, has been found in many cases. Paradigmatic examples are Wootters-Zurek cloning and universal cloning. These cloning machines aim at optimal cloning of the full quantum states. However, in practice, what is important and relevant may only involve partial information in quantum states, rather than quantum states themselves. For example, signals are often encoded as parameters in quantum states, whose information content is well synthesized by quantum Fisher information. This raises the basic issue of evaluating the information transferring capability (e.g., distributing quantum Fisher information) of quantum cloning. We assess and compare Wootters-Zurek cloning and universal cloning from this perspective and show that, on average, Wootters-Zurek cloning performs better than universal cloning for the phase (as well as amplitude) parameter, although they are incomparable individually, and universal cloning has many advantages over Wootters-Zurek cloning in other contexts. Physical insights and related issues are further discussed.
Some Quantum Information Inequalities from a Quantum Bayesian Networks Perspective
Tucci, Robert R.
2012-01-01
This is primarily a pedagogical paper. The paper re-visits some well-known quantum information theory inequalities. It does this from a quantum Bayesian networks perspective. The paper illustrates some of the benefits of using quantum Bayesian networks to discuss quantum SIT (Shannon Information Theory).
Quantum information. Teleportation - cryptography - quantum computer
International Nuclear Information System (INIS)
The following topics are dealt with: Reality in the test facility, quantum teleportation, the reality of quanta, interaction-free quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view in the future of quantum optics. (HSI)
A simple example of "Quantum Darwinism": Redundant information storage in many-spin environments
Blume-Kohout, R; Blume-Kohout, Robin; Zurek, Wojciech H.
2004-01-01
As quantum information science approaches the goal of constructing quantum computers, understanding loss of information through decoherence becomes increasingly important. The information about a system that can be obtained from its environment can facilitate quantum control and error correction. Moreover, observers gain most of their information indirectly, by monitoring (primarily photon) environments of the "objects of interest." Exactly how this information is inscribed in the environment is essential for the emergence of "the classical" from the quantum substrate. In this paper, we examine how many-qubit (or many-spin) environments can store information about a single system. The information lost to the environment can be stored redundantly, or it can be encoded in entangled modes of the environment. We go on to show that randomly chosen states of the environment almost always encode the information so that an observer must capture a majority of the environment to deduce the system's state. Conversely, i...
Quantum network teleportation for quantum information distribution and concentration
Zhang, Yong-Liang; Wang, Yi-Nan; Xiao, Xiang-Ru; Jing, Li; Mu, Liang-Zhu; Korepin, V. E.; Fan, Heng
2013-02-01
We investigate the schemes of quantum network teleportation for quantum information distribution and concentration, which are essential in quantum cloud computation and the quantum internet. In those schemes, with the prior shared entanglement in the quantum network, the cloud can send simultaneously identical unknown quantum states to clients located in different places. Additionally, with the same entanglement resource, these clients can concentrate their states to the cloud to reconstruct the original state. The number of clients can be beyond the number of identical quantum states intentionally being sent; this quantum network teleportation can make sure that the quantum states' distribution is optimal in the sense that the fidelity achieves the upper bound. These schemes facilitate the quantum information distribution and concentration in quantum networks in the framework of quantum cloud computation. Potential applications in time synchronization and the photonic implementation of those schemes are discussed.
Fractal states in quantum information processing
Jaeger, Gregg
2007-01-01
The fractal character of some quantum properties has been shown for systems described by continuous variables. Here, a definition of quantum fractal states is given that suits the discrete systems used in quantum information processing, including quantum coding and quantum computing. Several important examples are provided.
Generalized spin bases for quantum chemistry and quantum information
Kibler, M.
2008-01-01
Symmetry adapted bases in quantum chemistry and bases adapted to quantum information share a common characteristics: both of them are constructed from subspaces of the representation space of the group SO(3) or its double group (i.e., spinor group) SU(2). We exploit this fact for generating spin bases of relevance for quantum systems with cyclic symmetry and equally well for quantum information and quantum computation. Our approach is based on the use of generalized Pauli ma...
Practicality of quantum information processing
Lau, Hoi-Kwan
Quantum Information Processing (QIP) is expected to bring revolutionary enhancement to various technological areas. However, today's QIP applications are far from being practical. The problem involves both hardware issues, i.e., quantum devices are imperfect, and software issues, i.e., the functionality of some QIP applications is not fully understood. Aiming to improve the practicality of QIP, in my PhD research I have studied various topics in quantum cryptography and ion trap quantum computation. In quantum cryptography, I first studied the security of position-based quantum cryptography (PBQC). I discovered a wrong assumption in the previous literature that the cheaters are not allowed to share entangled resources. I proposed entanglement attacks that could cheat all known PBQC protocols. I also studied the practicality of continuous-variable (CV) quantum secret sharing (QSS). While the security of CV QSS was considered by the literature only in the limit of infinite squeezing, I found that finitely squeezed CV resources could also provide finite secret sharing rate. Our work relaxes the stringent resources requirement of implementing QSS. In ion trap quantum computation, I studied the phase error of quantum information induced by dc Stark effect during ion transportation. I found an optimized ion trajectory for which the phase error is the minimum. I also defined a threshold speed, above which ion transportation would induce significant error. In addition, I proposed a new application for ion trap systems as universal bosonic simulators (UBS). I introduced two architectures, and discussed their respective strength and weakness. I illustrated the implementations of bosonic state initialization, transformation, and measurement by applying radiation fields or by varying the trap potential. When comparing with conducting optical experiments, the ion trap UBS is advantageous in higher state initialization efficiency and higher measurement accuracy. Finally, I proposed a new method to re-cool ion qubits during quantum computation. The idea is to transfer the motional excitation of a qubit to another ion that is prepared in the motional ground state. I showed that my method could be ten times faster than current laser cooling techniques, and thus could improve the speed of ion trap quantum computation.
Channel simulation with quantum side information
Luo, Z; Devetak, Igor; Luo, Zhicheng
2006-01-01
We study and solve the problem of classical channel simulation with quantum side information at the receiver. This is a generalization of both the classical reverse Shannon theorem, and the classical-quantum Slepian-Wolf problem. The optimal noiseless communication rate is found to be reduced from the mutual information between the channel input and output by the Holevo information between the channel output and the quantum side information. Our main theorem has two important corollaries. The first is a quantum generalization of the Wyner-Ziv problem: rate-distortion theory with quantum side information. The second is an alternative proof of the trade-off between classical communication and common randomness distilled from a quantum state. The fully quantum generalization of the problem considered is quantum state redistribution. Here the sender and receiver share a mixed quantum state and the sender wants to transfer part of her state to the receiver using entanglement and quantum communication. We present o...
A flow cytometric assay technology based on quantum dots-encoded beads
Energy Technology Data Exchange (ETDEWEB)
Wang Haiqiao [Key Laboratory of Biomedical Photonics of Ministry of Education-Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Liu Tiancai [Key Laboratory of Biomedical Photonics of Ministry of Education-Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Cao Yuancheng [Key Laboratory of Biomedical Photonics of Ministry of Education-Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Huang Zhenli [Key Laboratory of Biomedical Photonics of Ministry of Education-Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wang Jianhao [Key Laboratory of Biomedical Photonics of Ministry of Education-Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Li Xiuqing [Key Laboratory of Biomedical Photonics of Ministry of Education-Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zhao Yuandi [Key Laboratory of Biomedical Photonics of Ministry of Education-Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)]. E-mail: zydi@mail.hust.edu.cn
2006-10-27
A flow cytometric detecting technology based on quantum dots (QDs)-encoded beads has been described. Using this technology, several QDs-encoded beads with different code were identified effectively, and the target molecule (DNA sequence) in solution was also detected accurately by coupling to its complementary sequence probed on QDs-encoded beads through DNA hybridization assay. The resolution of this technology for encoded beads is resulted from two longer wavelength fluorescence identification signals (yellow and red fluorescent signals of QDs), and the third shorter wavelength fluorescence signal (green reporting signal of fluorescein isothiocyanate (FITC)) for the determination of reaction between probe and target. In experiment, because of QDs' unique optical character, only one excitation light source was needed to excite the QDs and probe dye FITC synchronously comparing with other flow cytometric assay technology. The results show that this technology has present excellent repeatability and good accuracy. It will become a promising multiple assay platform in various application fields after further improvement.
Quantum information: Are we nearly there yet?
V. Vedral
2013-01-01
Living systems might be employing quantum information processing. If we can learn their secrets, personal quantum computers no longer seem so fanciful an idea. © 2013 Reed Business Information Ltd, England.
Lee, Yune-Sang; Janata, Petr; Frost, Carlton; Martinez, Zachary; Granger, Richard
2015-02-01
Melody recognition entails the encoding of pitch intervals between successive notes. While it has been shown that a whole melodic sequence is better encoded than the sum of its constituent intervals, the underlying reasons have remained opaque. Here, we compared listeners' accuracy in encoding the relative pitch distance between two notes (for example, C, E) of an interval to listeners accuracy under the following three modifications: (1) doubling the duration of each note (C - E -), (2) repetition of each note (C, C, E, E), and (3) adding a preceding note (G, C, E). Repeating (2) or adding an extra note (3) improved encoding of relative pitch distance when the melodic sequences were transposed to other keys, but lengthening the duration (1) did not improve encoding relative to the standard two-note interval sequences. Crucially, encoding accuracy was higher with the four-note sequences than with long two-note sequences despite the fact that sensory (pitch) information was held constant. We interpret the results to show that re-forming the Gestalts of two-note intervals into two-note "melodies" results in more accurate encoding of relational pitch information due to a richer structural context in which to embed the interval. PMID:24865280
Information and Computation: Classical and Quantum Aspects
Galindo, A.; Martin-Delgado, M. A.
2001-01-01
Quantum theory has found a new field of applications in the realm of information and computation during the recent years. This paper reviews how quantum physics allows information coding in classically unexpected and subtle nonlocal ways, as well as information processing with an efficiency largely surpassing that of the present and foreseeable classical computers. Some outstanding aspects of classical and quantum information theory will be addressed here. Quantum teleportat...
On the information completeness of quantum tomograms
Amosov, Grigori G.; Mancini, Stefano; Man'ko, Vladimir I.
2007-01-01
We address the problem of information completeness of quantum measuremets in connection to quantum state tomography and with particular concern to quantum symplectic tomography. We put forward some non-trivial situations where informationally incomplete set of tomograms allows as well the state reconstruction provided to have some a priori information on the state or its dynamics. We then introduce a measure of information completeness and apply it to symplectic quantum tomo...
Quantum Information Processing and Quantum Error Correction An Engineering Approach
Djordjevic, Ivan
2012-01-01
Quantum Information Processing and Quantum Error Correction is a self-contained, tutorial-based introduction to quantum information, quantum computation, and quantum error-correction. Assuming no knowledge of quantum mechanics and written at an intuitive level suitable for the engineer, the book gives all the essential principles needed to design and implement quantum electronic and photonic circuits. Numerous examples from a wide area of application are given to show how the principles can be implemented in practice. This book is ideal for the electronics, photonics and computer engineer
Problems and solutions in quantum computing and quantum information
Steeb, Willi-Hans
2012-01-01
Quantum computing and quantum information are two of the fastest growing and most exciting research fields in physics. Entanglement, teleportation and the possibility of using the non-local behavior of quantum mechanics to factor integers in random polynomial time have also added to this new interest. This book supplies a huge collection of problems in quantum computing and quantum information together with their detailed solutions, which will prove to be invaluable to students as well as researchers in these fields. All the important concepts and topics such as quantum gates and quantum circuits, product Hilbert spaces, entanglement and entanglement measures, deportation, Bell states, Bell inequality, Schmidt decomposition, quantum Fourier transform, magic gate, von Neumann entropy, quantum cryptography, quantum error corrections, number states and Bose operators, coherent states, squeezed states, Gaussian states, POVM measurement, quantum optics networks, beam splitter, phase shifter and Kerr Hamilton opera...
How much a quantum measurement is informative?
International Nuclear Information System (INIS)
The informational power of a quantum measurement is the maximum amount of classical information that the measurement can extract from any ensemble of quantum states. We discuss its main properties. Informational power is an additive quantity, being equivalent to the classical capacity of a quantum-classical channel. The informational power of a quantum measurement is the maximum of the accessible information of a quantum ensemble that depends on the measurement. We present some examples where the symmetry of the measurement allows to analytically derive its informational power
Quantum-like information processing using vector solitons
International Nuclear Information System (INIS)
The concept of simulating the quantum logic via collisions of vector solitons (Janutka 2006 J. Phys. A: Math. Gen. 39 12505, 2007 J. Phys. A: Math. Theor. 40 10813) is developed in the direction of designing a true quantum-information processor that is based on mesoscopic objects, solitons. In this concept, quantum-like information is encoded in the vector-soliton (polarization) parameters. An exponential increase of the logical-operating speed compared to that achievable in the earlier simulation schemes is found to be possible due to a coherent conversion of a 2n-component vector soliton that carries an n-cebit of information into an ensemble of 2n-1 two-component and 2n-2 four-component vector pulses. Two solid-state circuits (transmitting magnetic solitons or fluxons of long Josephson junctions) which enable such a pulse conversion are proposed
Quantum systems, channels, information. A mathematical introduction
International Nuclear Information System (INIS)
The subject of this book is theory of quantum system presented from information science perspective. The central role is played by the concept of quantum channel and its entropic and information characteristics. Quantum information theory gives a key to understanding elusive phenomena of quantum world and provides a background for development of experimental techniques that enable measuring and manipulation of individual quantum systems. This is important for the new efficient applications such as quantum computing, communication and cryptography. Research in the field of quantum informatics, including quantum information theory, is in progress in leading scientific centers throughout the world. This book gives an accessible, albeit mathematically rigorous and self-contained introduction to quantum information theory, starting from primary structures and leading to fundamental results and to exiting open problems.
Quantum Error Correcting Subsystem Codes From Two Classical Linear Codes
Bacon, Dave; Casaccino, Andrea
2006-01-01
The essential insight of quantum error correction was that quantum information can be protected by suitably encoding this quantum information across multiple independently erred quantum systems. Recently it was realized that, since the most general method for encoding quantum information is to encode it into a subsystem, there exists a novel form of quantum error correction beyond the traditional quantum error correcting subspace codes. These new quantum error correcting sub...
Wang, Xiaogang; Chen, Wen; Chen, Xudong
2015-03-01
In this paper, we develop a new optical information authentication system based on compressed double-random-phase-encoded images and quick-response (QR) codes, where the parameters of optical lightwave are used as keys for optical decryption and the QR code is a key for verification. An input image attached with QR code is first optically encoded in a simplified double random phase encoding (DRPE) scheme without using interferometric setup. From the single encoded intensity pattern recorded by a CCD camera, a compressed double-random-phase-encoded image, i.e., the sparse phase distribution used for optical decryption, is generated by using an iterative phase retrieval technique with QR code. We compare this technique to the other two methods proposed in literature, i.e., Fresnel domain information authentication based on the classical DRPE with holographic technique and information authentication based on DRPE and phase retrieval algorithm. Simulation results show that QR codes are effective on improving the security and data sparsity of optical information encryption and authentication system. PMID:25836845
Efficient Quantum Information Processing via Quantum Compressions
Deng, Y.; Luo, M. X.; Ma, S. Y.
2015-04-01
Our purpose is to improve the quantum transmission efficiency and reduce the resource cost by quantum compressions. The lossless quantum compression is accomplished using invertible quantum transformations and applied to the quantum teleportation and the simultaneous transmission over quantum butterfly networks. New schemes can greatly reduce the entanglement cost, and partially solve transmission conflictions over common links. Moreover, the local compression scheme is useful for approximate entanglement creations from pre-shared entanglements. This special task has not been addressed because of the quantum no-cloning theorem. Our scheme depends on the local quantum compression and the bipartite entanglement transfer. Simulations show the success probability is greatly dependent of the minimal entanglement coefficient. These results may be useful in general quantum network communication.
Quantum information with trapped ions at NIST
Leibfried, D.; DeMarco, B.; Meyer, V.; Rowe, M.; Ben-kish, A.; Barrett, M; Britton, J.; HUGHES, J.; Itano, WM; Jelenkovic, BM; Langer, C.; LUCAS, D; Rosenband, T.; Wineland, DJ
2003-01-01
We report experiments on coherent quantum-state synthesis and control of trapped atomic ions. This work has the overall goal of performing large-scale quantum information processing; however, such techniques can also be applied to fundamental tests and demonstrations of quantum mechanical principles, as well as to the improvement of quantum-limited measurements.
Manipulating quantum information on the controllable systems or subspaces
Zhang, Ming
2010-01-01
In this paper, we explore how to constructively manipulate quantum information on the controllable systems or subspaces. It is revealed that one can make full use of distinguished properties of Pauli operators to design control Hamiltonian based on the geometric parametrization of quantum states. It is demonstrated in this research that Bang-Bang controls, triangle-function controls and square-function control can be utilized to manipulate controllable qubits or encoded qubits on controllable subspace for both open quantum dynamical systems and uncontrollable closed quantum dynamical systems. Furthermore, we propose a new kind of time-energy performance index to trade-off time and energy resource cost, and comprehensively discuss how to design control magnitude to minimize a kind of time-energy performance. A comparison has been made among these three kind of optimal control. It is underlined in this research that the optimal time performance can be always expressed as J^{*} =\\lamda{\\cdot}t^{*}_{f} +E^{*} for...
Sending Quantum Information with Gaussian States
Holevo, Alexander S.
1998-01-01
Quantum information characteristics, such as quantum mutual information, loss, noise and coherent information are explicitly calculated for Bosonic attenuation/amplification channel with input Gaussian state. The coherent information is shown to be negative for the values of the attenuation coefficient $k
Quantum Parallelism in Quantum Information Processing
Dugic, Miroljub; Cirkovic, Milan M.
2002-01-01
We investigate distinguishability (measured by fidelity) of the initial and the final state of a qubit, which is an object of the so-called nonideal quantum measurement of the first kind. We show that the fidelity of a nonideal measurement can be greater than the fidelity of the corresponding ideal measurement. This result is somewhat counterintuitive, and can be traced back to the quantum parallelism in quantum operations, in analogy with the quantum parallelism manifested ...
Quantum Fisher information as the measure of Gaussian quantum correlation: Role in quantum metrology
Bera, Manabendra N.
2014-01-01
We have introduced a measure of Gaussian quantum correlations based on quantum Fisher information. For bipartite Gaussian states the minimum quantum Fisher information due to local unitary evolution on one of the parties reliably quantifies quantum correlation. In quantum metrology the proposed measure becomes the tool to investigate the role of quantum orrelation in setting metrological precision. In particular, a deeper insights can be gained on how quantum correlations ar...
Dutta, Amit; Chakrabarti, Bikas K; Divakaran, Uma; Rosenbaum, Thomas F; Sen, Diptiman
2015-01-01
Discusses the fundamental connections between the physics of quantum phase transitions and the technological promise of quantum information, non-equilibrium quantum dynamics and adiabatic quantum computations.
The Significance of Information in Quantum Theory
Grinbaum, Alexei
2004-01-01
We propose a system of information-theoretic axioms from which we derive the formalism of quantum theory. Part I is devoted to the conceptual foundations of the information-theoretic approach. We argue that this approach belongs to the epistemological framework depicted as a loop of existences. In Part II we derive the quantum formalism from information-theoretic axioms and we analyze the twofold role of observer as physical system and as informational agent. Quantum logical...
Recchia, Gabriel; Sahlgren, Magnus; Kanerva, Pentti; Jones, Michael N.
2015-01-01
Circular convolution and random permutation have each been proposed as neurally plausible binding operators capable of encoding sequential information in semantic memory. We perform several controlled comparisons of circular convolution and random permutation as means of encoding paired associates as well as encoding sequential information. Random permutations outperformed convolution with respect to the number of paired associates that can be reliably stored in a single memory trace. Performance was equal on semantic tasks when using a small corpus, but random permutations were ultimately capable of achieving superior performance due to their higher scalability to large corpora. Finally, “noisy” permutations in which units are mapped to other units arbitrarily (no one-to-one mapping) perform nearly as well as true permutations. These findings increase the neurological plausibility of random permutations and highlight their utility in vector space models of semantics. PMID:25954306
Three-dimensional information security combined fringe projection with double random phase encoding
Li, Sikun; Xiao, Yong-Liang; Wang, Xiangzhao
2013-06-01
Three-dimensional (3D) information security with optical fringe projection encoding is proposed. The 3D information about an object, which is encoded into two-dimensional (2D) deformed and reference fringes by optical fringe projection, are encrypted by use of double random phase encoding (DRPE). Deformed and reference fringes, regarded as phase and amplitude respectively, are simultaneously modulated by random phase keys. The key-space is enlarged, because the keys for decryption are not only the random phase masks, but also the calibration parameters of the fringe projection system. The proposed method is robust to noise. Experiment is performed to obtain the reference and deformed fringes. Numerical simulations are employed to verify the validity of the proposed method.
Quantum Information in Communication and Imaging
Simon, David S.; Jaeger, Gregg; Sergienko, Alexander V.
2015-10-01
A brief introduction to quantum information theory in the context of quantum optics is presented. After presenting the fundamental theoretical basis of the subject, experimental evaluation of entanglement measures are discussed, followed by applications to communication and imaging.
Phase Information in Quantum Oracle Computing
Machta, J.
1998-01-01
Computational devices may be supplied with external sources of information (oracles). Quantum oracles may transmit phase information which is available to a quantum computer but not a classical computer. One consequence of this observation is that there is an oracle which is of no assistance to a classical computer but which allows a quantum computer to solve undecidable problems. Thus useful relativized separations between quantum and classical complexity classes must exclu...
Integrated Information-Induced Quantum Collapse
Kremnizer, Kobi; Ranchin, André
2015-08-01
We present a novel spontaneous collapse model where size is no longer the property of a physical system which determines its rate of collapse. Instead, we argue that the rate of spontaneous localization should depend on a system's quantum Integrated Information (QII), a novel physical property which describes a system's capacity to act like a quantum observer. We introduce quantum Integrated Information, present our QII collapse model and briefly explain how it may be experimentally tested against quantum theory.
Neural Mechanisms of Encoding Social and Non-Social Context Information in Autism Spectrum Disorder
Greimel, Ellen; Nehrkorn, Barbara; Fink, Gereon R.; Kukolja, Juraj; Kohls, Gregor; Muller, Kristin; Piefke, Martina; Kamp-Becker, Inge; Remschmidt, Helmut; Herpertz-Dahlmann, Beate; Konrad, Kerstin; Schulte-Ruther, Martin
2012-01-01
Individuals with autism spectrum disorder (ASD) often fail to attach context to their memories and are specifically impaired in processing social aspects of contextual information. The aim of the present study was to investigate the modulatory influence of social vs. non-social context on neural mechanisms during encoding in ASD. Using…
Information and noise in quantum measurement
Hofmann, H F
2000-01-01
Even though measurement results obtained in the real world are generally both noisy and continuous, quantum measurement theory tends to emphazise the ideal limit of perfect precision and quantized measurement results. In this article, a more general concept of noisy measurements is applied to investigate the role of quantum noise in the measurement process. In particular, it is shown that the effects of quantum noise can be separated from the effects of information obtained in the measurement. However, quantum noise is required to ``cover up'' negative probabilities arising as the quantum limit is approached. These negative probabilities represent fundamental quantum mechanical correlations between the measured variable and the variables affected by quantum noise.
Introduction to quantum physics and information processing
Vathsan, Radhika
2015-01-01
An Elementary Guide to the State of the Art in the Quantum Information FieldIntroduction to Quantum Physics and Information Processing guides beginners in understanding the current state of research in the novel, interdisciplinary area of quantum information. Suitable for undergraduate and beginning graduate students in physics, mathematics, or engineering, the book goes deep into issues of quantum theory without raising the technical level too much.The text begins with the basics of quantum mechanics required to understand how two-level systems are used as qubits. It goes on to show how quant
Neural encoding of behaviourally relevant visual-motion information in the fly
Egelhaaf, Martin; Kern, Roland; Krapp, Holger G.; Kretzberg, Jutta; Kurtz, Rafael; Warzecha, Anne-Kathrin
2002-01-01
Information processing in visual systems is constrained by the spatial and temporal characteristics of the sensory input and by the biophysical properties of the neuronal circuits. Hence, to understand how visual systems encode behaviourally relevant information, we need to know about both the computational capabilities of the nervous system and the natural conditions under which animals normally operate. By combining behavioural, neurophysiological and computational approaches, it is now pos...
Encoding information structure in Yucatec Maya : on the Interplay of prosody and syntax
Kügler, Frank; Skopeteas, Stavros; Verhoeven, Elisabeth
2008-01-01
The aim of this paper is to outline the means for encoding information structure in Yucatec Maya. Yucatec Maya is a tone language, displaying a three-fold opposition in the tonal realization of syllables. From the morpho-syntactic point of view, the grammar of Yucatec Maya contains morphological (topic affixes, morphological marking of out-of-focus predicates) and syntactic (designated positions) means to uniquely specify syntactic constructions for their information structure. After a des...
Lest we remember a quantum: quantum information shredding
Buscemi, Francesco
2009-01-01
Given a bipartite quantum system, correlation between subsystems can be understood as information that each subsystem carries about the other. Here we introduce and analyze the task of quantum information shredding, corresponding to locally reducing correlations in a given bipartite state without transferring them to the environment. Such a constraint prevents adversaries from gaining information by accessing the environment left after the decoupling process. Remarkably, information carried by separable correlations is always perfectly shreddable.
Philosophy of quantum information and entanglement
Jaeger, Gregg
2010-01-01
Recent work in quantum information science has produced a revolution in our understanding of quantum entanglement. Scientists now view entanglement as a physical resource with many important applications. These range from quantum computers, which would be able to compute exponentially faster than classical computers, to quantum cryptographic techniques, which could provide unbreakable codes for the transfer of secret information over public channels. These important advances in the study of quantum entanglement and information touch on deep foundational issues in both physics and philosophy. This interdisciplinary volume brings together fourteen of the world's leading physicists and philosophers of physics to address the most important developments and debates in this exciting area of research. It offers a broad spectrum of approaches to resolving deep foundational challenges - philosophical, mathematical, and physical - raised by quantum information, quantum processing, and entanglement. This book is ideal f...
Quantum Gravity Sensor by Curvature Energy: their Encoding and Computational Models*
Directory of Open Access Journals (Sweden)
Francisco Bulnes
2014-11-01
Full Text Available Through of the concept of curvature energy encoded in non-harmonic signals due to the effect that characterizes the curvature as a deformation of field in the corresponding resonance space ( and an obstruction to the displacement to the corresponding shape operator is developed and designed a sensor of quantum gravity considering the quantized version of curvature as observable of gravitational field where the space is distorted by the strong interactions between particles, interpreting their observable in this case, as light fields deformations obtained on space-time background. To the application of this measurement we use a hypothetical particle graviton modeled as a magnetic dilaton which must be gauge graviton (gauge boson. Also are obtained several computational models of these photonic measurements, likewise their prototype photonic devices
Quantum Bertrand duopoly of incomplete information
International Nuclear Information System (INIS)
We study Bertrand's duopoly of incomplete information. It is found that the effect of quantum entanglement on the outcome of the game is dramatically changed by the uncertainty of information. In contrast with the case of complete information where the outcome increases with entanglement, when information is incomplete the outcome is maximized at some finite entanglement. As a consequence, information and entanglement are both crucial factors that determine the properties of a quantum oligopoly
Aspects of multistation quantum information broadcasting
International Nuclear Information System (INIS)
We study quantum information transmission over multiparty quantum channel. In particular, we show an equivalence of different capacity notions and provide a multiletter characterization of a capacity region for a general quantum channel with k senders and m receivers. We point out natural generalizations to the case of two-way classical communication capacity.
The Quantum Information of Cosmological Correlations
Lim, Eugene A
2014-01-01
It has been shown that the primordial perturbations sourced by inflation are driven to classicality by unitary evolution alone. However, their coupling with the environment such as photons and subsequent decoherence renders the cosmological correlations quantum, losing primordial information in the process. We argue that the quantumness of the resulting cosmological correlations is given by quantum discord, which captures non-classical behavior beyond quantum entanglement. By considering the environment as a quantum channel in which primordial information contained in the perturbations is transmitted to us, we can then ask how much of this information is inaccessible. We show that this amount of information is given by the discord of the joint primordial perturbations-environment system. To illustrate these points, we model the joint system as a mixed bi-modal Gaussian state, and show that quantum discord is dependent on the basis which decoherence occurs.
Quantum Stackelberg duopoly with incomplete information
International Nuclear Information System (INIS)
We investigate the quantum version of the Stackelberg duopoly with incomplete information, especially how the quantum entanglement affects the first-mover advantage in the classical form. It is found that while positive entanglement enhances the first-mover advantage beyond the classical limit, the advantage is dramatically suppressed by negative entanglement. Moreover, despite that positive quantum entanglement improves the first-mover's tolerance for the informational incompleteness, the quantum effect does not change the basic fact that Firm A's lack of complete information of Firm B's unit cost is eradicating the first-mover advantage
The Transactional Nature of Quantum Information
Kak, Subhash
2009-01-01
Information, in its communications sense, is a transactional property. If the received signals communicate choices made by the sender of the signals, then information has been transmitter by the sender to the receiver. Given this reality, the potential information in an unknown pure quantum state should be non-zero. We examine transactional quantum information, which unlike von Neumann entropy, depends on the mutuality of the relationship between the sender and the receiver,...
Information loss, made worse by quantum gravity?
Bojowald, Martin
2015-01-01
Quantum gravity is often expected to solve both the singularity problem and the information-loss problem of black holes. This article presents an example from loop quantum gravity in which the singularity problem is solved in such a way that the information-loss problem is made worse. Quantum effects in this scenario, in contrast to previous non-singular models, do not eliminate the event horizon and introduce a new Cauchy horizon where determinism breaks down. Although infi...
A Quantum Private Comparison Protocol with Splitting Information Carriers
Wang, Yu-kun; Zhang, Jie; Huang, Wei; Zhang, Jia-li; Sun, Ying
2015-01-01
Based on quantum information splitting and reconstruction, we present a quantum private comparison (QPC) protocol, enabling two distrustful parties (Alice and Bob) to compare the equality of their information without revealing the information content. In this protocol, the information carriers are split into two wave packets by a beam splitter (BS), which is owned by a semi-honest third party Trent, and then they are sent to Alice and Bob, respectively. Alice and Bob encodes their secret information on the received wave packets. Only the superimposition of the two wave packets in Trent's site can reveal the compared result. Compared with the QPC protocols using entangled states, the information carriers used in our protocol is single-photon pulse, which reduces the difficulty of realization in practical. In addition, our protocol is feasible with the present techniques since only linear optical components, BS, single-photon detector, phase shifter (PS) and switcher (SWT) are required. The security of the protocol is ensured by principles on the phenomenon of quantum interference. And through the security analysis it shows that the protocol is secure and resists against the well-known attacks.
Elimination of information leakage in quantum information channels
Jacobsen, Christian S.; Madsen, Lars S.; Usenko, Vladyslav C.; Filip}, Radim; Andersen, Ulrik L.
2014-01-01
In all lossy communication channels realized to date, information is inevitably leaked to a potential eavesdropper. Here we present a communication protocol that does not allow for any information leakage to a potential eavesdropper. By encoding information into a restricted Gaussian alphabet of squeezed states we show, both theoretically and experimentally, that the Holevo information between the eavesdropper and the intended recipient can be exactly zero in a purely lossy ...
Gisin, Nicolas; Thew, Rob
2007-01-01
Quantum communication, and indeed quantum information in general, has changed the way we think about quantum physics. In 1984 and 1991, the first protocol for quantum cryptography and the first application of quantum non-locality, respectively, attracted a diverse field of researchers in theoretical and experimental physics, mathematics and computer science. Since then we have seen a fundamental shift in how we understand information when it is encoded in quantum systems. We...
Holography, Quantum Geometry, and Quantum Information Theory
Directory of Open Access Journals (Sweden)
P. A. Zizzi
2000-03-01
Full Text Available Abstract: We interpret the Holographic Conjecture in terms of quantum bits (qubits. N-qubit states are associated with surfaces that are punctured in N points by spin networks' edges labelled by the spin-Ã‚Â½ representation of SU(2, which are in a superposed quantum state of spin "up" and spin "down". The formalism is applied in particular to de Sitter horizons, and leads to a picture of the early inflationary universe in terms of quantum computation. A discrete micro-causality emerges, where the time parameter is being defined by the discrete increase of entropy. Then, the model is analysed in the framework of the theory of presheaves (varying sets on a causal set and we get a quantum history. A (bosonic Fock space of the whole history is considered. The Fock space wavefunction, which resembles a Bose-Einstein condensate, undergoes decoherence at the end of inflation. This fact seems to be responsible for the rather low entropy of our universe.
Quantum information and computing in multilevel systems
Muthukrishnan, Ashok
We have studied the extension of the new field of quantum computing to the multilevel domain, where the information is stored in a coherent superposition of more than two levels. Interference and entanglement, the hallmarks of quantum mechanics, are more strikingly present in a multilevel system, in the form of wave packets and decoherence. This thesis explores new tools and applications for multilevel quantum information processing in Rydberg atoms. The quantum equivalent of a classical bit is a qubit, a two-level system. Quantum computational logic involves conditional unitary transforms on two qubits, which are the quantum analogs of logic gates in classical computer science. The multilevel extension of a qubit is a qudit, a d-level quantum system. We present several programs for universal quantum logic involving qudits, and physically motivate the formalism with examples from quantum control. Wave packets arise from multilevel quantum interference, and they give an interesting new perspective on quantum information stored in a multilevel system. We show that an alternative realization of a qudit in a quantum system is a set of d wave-packet states that are physically separated in time. The wave-packet basis is connected to the energy-level basis by a Fourier transform, a key ingredient of quantum algorithms. We apply these ideas to Rydberg atoms, and show that an appropriate coupling between such atoms enables a conceptually simpler implementation of the quantum version of the Fast Fourier transform algorithm. Lastly we explore atomic angular momentum as a computational observable. Most of the states in the hydrogen atom are degenerate in energy but differ by discrete units of angular momentum. We show that using Laguerre-Gaussian laser modes, which possess orbital field angular momentum, these internal angular-momentum states in the atom can be entangled with its quantized center-of-mass angular momentum. We propose this entanglement as the building block for multilevel quantum computing using angular-momentum states.
Quantum Causality, Stochastics, Trajectories and Information
Belavkin, V P
2002-01-01
A history of the discovery of quantum mechanics and paradoxes of its interpretation is reconsidered from the modern point of view of quantum stochastics and information. It is argued that in the orthodox quantum mechanics there is no place for quantum phenomenology such as events. The development of quantum measurement theory, initiated by von Neumann, and Bell's conceptual critics of hidden variable theories indicated a possibility for resolution of this crisis. This can be done by divorcing the algebra of the dynamical generators and an extended algebra of the potential (quantum) and the actual (classical) observables. The latter, called beables, form the center of the algebra of all observables, as the only visible (macroscopic) observables must be compatible with any hidden (microscopic) observable. It is shown that within this approach quantum causality can be rehabilitated within an extended quantum mechanics (eventum mechanics) in the form of a superselection rule for compatibility of the consistent hi...
A Quantum Information Retrieval Approach to Memory
Kitto, Kirsty; Bruza, Peter; Gabora, Liane
2013-01-01
As computers approach the physical limits of information storable in memory, new methods will be needed to further improve information storage and retrieval. We propose a quantum inspired vector based approach, which offers a contextually dependent mapping from the subsymbolic to the symbolic representations of information. If implemented computationally, this approach would provide exceptionally high density of information storage, without the traditionally required physica...
Novich, Scott D; Eagleman, David M
2015-10-01
Touch receptors in the skin can relay various forms of abstract information, such as words (Braille), haptic feedback (cell phones, game controllers, feedback for prosthetic control), and basic visual information such as edges and shape (sensory substitution devices). The skin can support such applications with ease: They are all low bandwidth and do not require a fine temporal acuity. But what of high-throughput applications? We use sound-to-touch conversion as a motivating example, though others abound (e.g., vision, stock market data). In the past, vibrotactile hearing aids have demonstrated improvement in speech perceptions in the deaf. However, a sound-to-touch sensory substitution device that works with high efficacy and without the aid of lipreading has yet to be developed. Is this because skin simply does not have the capacity to effectively relay high-throughput streams such as sound? Or is this because the spatial and temporal properties of skin have not been leveraged to full advantage? Here, we begin to address these questions with two experiments. First, we seek to determine the best method of relaying information through the skin using an identification task on the lower back. We find that vibrotactile patterns encoding information in both space and time yield the best overall information transfer estimate. Patterns encoded in space and time or "intensity" (the coupled coding of vibration frequency and force) both far exceed performance of only spatially encoded patterns. Next, we determine the vibrotactile two-tacton resolution on the lower back-the distance necessary for resolving two vibrotactile patterns. We find that our vibratory motors conservatively require at least 6 cm of separation to resolve two independent tactile patterns (>80 % correct), regardless of stimulus type (e.g., spatiotemporal "sweeps" versus single vibratory pulses). Six centimeter is a greater distance than the inter-motor distances used in Experiment 1 (2.5 cm), which explains the poor identification performance of spatially encoded patterns. Hence, when using an array of vibrational motors, spatiotemporal sweeps can overcome the limitations of vibrotactile two-tacton resolution. The results provide the first steps toward obtaining a realistic estimate of the skin's achievable throughput, illustrating the best ways to encode data to the skin (using as many dimensions as possible) and how far such interfaces would need to be separated if using multiple arrays in parallel. PMID:26080756
Chen, Jun-xin; Zhu, Zhi-liang; Fu, Chong; Yu, Hai; Zhang, Li-bo
2015-07-01
Optical information security systems have drawn long-term concerns. In this paper, an optical information authentication approach using gyrator transform based double random phase encoding with sparse representation is proposed. Different from traditional optical encryption schemes, only sparse version of the ciphertext is preserved, and hence the decrypted result is completely unrecognizable and shows no similarity to the plaintext. However, we demonstrate that the noise-like decipher result can be effectively authenticated by means of optical correlation approach. Simulations prove that the proposed method is feasible and effective, and can provide additional protection for optical security systems.
Cavity mode entanglement in relativistic quantum information
Friis, Nicolai
2013-01-01
A central aim of relativistic quantum information (RQI) is the investigation of quantum information tasks and resources taking into account the relativistic aspects of nature. More precisely, it is of fundamental interest to understand how the storage, manipulation, and transmission of information utilizing quantum systems are influenced by the fact that these processes take place in a relativistic spacetime. In particular, many studies in RQI have been focused on the effects of non-uniform motion on entanglement, the main resource of quantum information protocols. Early investigations in this direction were performed in highly idealized settings that prompted questions as to the practical accessibility of these results. To overcome these limitations it is necessary to consider quantum systems that are in principle accessible to localized observers. In this thesis we present such a model, the rigid relativistic cavity, and its extensions, focusing on the effects of motion on entanglement and applications such...
On the quantum information processing in nuclear magnetic resonance quantum computing experiments
International Nuclear Information System (INIS)
Full text: Nuclear Magnetic Resonance appeared in the late nineties to be the most promising candidate to run quantum computing algorithms. An impressive number of experiments demonstrating the implementation of all logic gates and quantum algorithms in systems with a small number of qubits stimulated the general excitement about the technique, and greatly promoted the field. Particularly important were those experiments where entanglement of particles were aimed at. Entanglement is the most fundamental (and weird !) aspect of quantum systems, and is at the basis of quantum teleportation and quantum cryptography, yet impossible to prove in NMR experiments. The hardcore of NMR quantum computing are the so-called pseudo-pure states, upon which radiofrequency (RF) pulses act to implement quantum mechanical unitary transformations, promoting changes in both, Zeeman level populations and coherences in the density matrix. Whereas pseudo-pure states are special non-equilibrium diagonal states, coherences encode information about superposition states. Now, one could safely say that the whole business of quantum computing goes about controlling relative ket phases. In spite of the impossibility to univocally associating a given quantum state to a NMR spectrum, it is possible to demonstrate the phase action of RF pulses over relative ket phases, even if no population changes take place. In this talk these issues will be addressed, and we will show experimental results of our own where this is done in the two-qubit quadrupole nuclei 23Na in C10H21NaO4S liquid crystal. We demonstrate the reversibility of the Hadamard gate, and of a quantum circuit which generates pseudo-Bell states. The success of the operation reaches almost 100% in the case of the state |01+|10, 80% in the cases of |00> + |01> and |10> + |11>, and 65% for the cat-state |00> + |11>. (author)
Quantum information processing through nuclear magnetic resonance
Scientific Electronic Library Online (English)
J. D., Bulnes; F. A., Bonk; R. S., Sarthour; E. R. de, Azevedo; J. C. C., Freitas; T. J., Bonagamba; I. S., Oliveira.
2005-09-01
Full Text Available We discuss the applications of Nuclear Magnetic Resonance (NMR) to quantum information processing, focusing on the use of quadrupole nuclei for quantum computing. Various examples of experimental implementation of logic gates are given and compared to calculated NMR spectra and their respective dens [...] ity matrices. The technique of Quantum State Tomography for quadrupole nuclei is briefly described, and examples of measured density matrices in a two-qubit I = 3/2 spin system are shown. Experimental results of density matrices representing pseudo-Bell states are given, and an analysis of the entropy of theses states is made. Considering an NMR experiment as a depolarization quantum channel we calculate the entanglement fidelity and discuss the criteria for entanglement in liquid state NMR quantum information. A brief discussion on the perspectives for NMR quantum computing is presented at the end.
Critique of Fault-Tolerant Quantum Information Processing
Alicki, Robert
2013-01-01
This is a chapter in a book \\emph{Quantum Error Correction} edited by D. A. Lidar and T. A. Brun, and published by Cambridge University Press (2013)\\\\ (http://www.cambridge.org/us/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-error-correction)\\\\ presenting the author's view on feasibility of fault-tolerant quantum information processing.
Black holes, quantum information, and unitary evolution
Giddings, Steven B.
2012-01-01
The unitary crisis for black holes indicates an apparent need to modify local quantum field theory. This paper explores the idea that quantum mechanics and in particular unitarity are fundamental principles, but at the price of familiar locality. Thus, one should seek to parameterize unitary evolution, extending the field theory description of black holes, such that their quantum information is transferred to the external state. This discussion is set in a broader framework ...
The Significance of Information in Quantum Theory
Grinbaum, A
2004-01-01
We propose a system of information-theoretic axioms from which we derive the formalism of quantum theory. Part I is devoted to the conceptual foundations of the information-theoretic approach. We argue that this approach belongs to the epistemological framework depicted as a loop of existences. In Part II we derive the quantum formalism from information-theoretic axioms and we analyze the twofold role of observer as physical system and as informational agent. Quantum logical techniques are then introduced, and we prove theorems reconstructing elements of the formalism. In Part III, we introduce the formalism of C*-algebras and give it an information theoretic interpretation. We analyze the conceptual underpinnings of the theory of modular automorphisms and we give an information-theoretic justification for the emergence of time in the algebraic approach. We conclude by giving a list of open questions, including topics in cognitive science, decision theory, and information technology.
Quantum Information Processing and Relativistic Quantum Fields
Benincasa, Dionigi M T; Buck, Michel; Dowker, Fay
2014-01-01
It is shown that an ideal measurement of a one-particle wave packet state of a relativistic quantum field in Minkowski spacetime enables superluminal signalling. The result holds for a measurement that takes place over an intervention region in spacetime whose extent in time in some frame is longer than the light-crossing time of the packet in that frame. Moreover, these results are shown to apply not only to ideal measurements but also to unitary transformations that rotate two orthogonal one-particle states into each other. In light of these observations, possible restrictions on the allowed types of intervention are considered. A more physical approach to such questions is to construct explicit models of the interventions as interactions between the field and other quantum systems such as detectors. The prototypical Unruh-DeWitt detector couples to the field operator itself and so most likely respects relativistic causality. On the other hand, detector models which couple to a finite set of frequencies of ...
Quantum causality, stochastics, trajectories and information
International Nuclear Information System (INIS)
A history of the discovery of 'new' quantum mechanics and the paradoxes of its probabilistic interpretation are briefly reviewed from the modern point of view of quantum probability and information. Modern quantum theory, which has been developed during the last 20 years for the treatment of quantum open systems including quantum noise, decoherence, quantum diffusions and spontaneous jumps occurring under continuous in time observation, is not yet a part of the standard curriculum of quantum physics. It is argued that the conventional formalism of quantum mechanics is insufficient for the description of quantum events, such as spontaneous decays say, and the new experimental phenomena related to individual quantum measurements, but they have all received an adequate mathematical treatment in quantum stochastics of open systems. Moreover, the only reasonable probabilistic interpretation of quantum mechanics put forward by Max Born was, in fact, in irreconcilable contradiction with traditional mechanical reality and causality. This led to numerous quantum paradoxes, some of them due to the great inventors of quantum theory such as Einstein and Schroedinger. They are reconsidered in this paper from the modern point of view of quantum stochastics and information. The development of quantum measurement theory, initiated by von Neumann, indicated a possibility for resolution of this interpretational crisis by divorcing the algebra of the dynamical generators and the algebra of the actual observables, or Bell's beables. It is shown that within this approach quantum causality can be rehabilitated in the form of a superselection rule for compatibility of the actual histories with the potential future. This rule, together with the self-compatibility of the measurements ensuring the consistency of the histories, is called the nondemolition, or causality principle in modern quantum theory. The application of this rule in the form of dynamical commutation relations leads to the derivation of the von Neumann projection postulate, and also to the more general reductions, instantaneous, spontaneous, and even continuous in time. This gives a dynamical solution, in the form of the quantum stochastic filtering equations, of the notorious measurement problem which was tackled unsuccessfully by many famous physicists starting with Schroedinger and Bohr. It has been recently proved that the quantum stochastic model for the continuous in time measurements is equivalent to a Dirac type boundary-value problem for the secondary quantized input 'offer waves from future' in one extra dimension, and to a reduction of the algebra of the consistent histories of past events to an Abelian subalgebra for the 'trajectories of the output particles'. This supports the corpuscular-wave duality in the form of the thesis that everything in the future are quantized waves, while everything in the past are trajectories of the recorded particles. (author)
The information interpretation of quantum mechanics
Svozil, Karl
2000-01-01
In the information interpretation of quantum mechanics, information is the most fundamental, basic entity. Every quantized system is associated with a definite discrete amount of information (cf. Zeilinger). This information content remains constant at all times and is permutated one-to-one throughout the system evolution. What is interpreted as measurement is a particular type of information transfer over a fictitious interface. The concept of a many-to-one state reduction ...
Quantum non-Markovianity based on the Fisher-information matrix
Song, Hongting; Luo, Shunlong; Hong, Yan
2015-04-01
With the development of quantum-information theory, there has been a flurry of investigations of quantum non-Markovian dynamics, and several significant measures for such dynamics have been proposed from various perspectives, such as the breakdown of dynamical divisibility, increase in the distinguishability between quantum states, increase in correlations between the system and an arbitrary ancillary, and so on. Motivated by the idea of exploiting the information content of parameters encoded in initial states, we propose a conceptually simple and physically intuitive characterization for non-Markovianity with the help of a quantum-Fisher-information matrix. The basic features are illustrated through several examples, and relations with other approaches are elucidated. A hierarchial aspect of quantum non-Markovianity is revealed.
Reconstruction of Quantum Mechanics with Information Operators
Takano, Ken'ichi
2008-01-01
We reconstruct quantum mechanics by introducing "information operators" and excluding the concept of wave functions. Multiple information operators simultaneously describe a single system and continuously develop in time even in the process of a measurement. We also introduce the concept of condensation for a system with many degrees of freedom in a rather general meaning. In terms of the multiplicity of description and the condensation, we explain quantum phenomena including measurements without the collapse of the wave function.
Data link system via Financial Information Exchange protocol using Simple Binary Encoding
Directory of Open Access Journals (Sweden)
Kashkynbek Islam
2015-04-01
Full Text Available The main goal of this project is to make transactions faster between stock exchange and traders. Financial Information Exchange (FIX is a dominant standard for data link between the participants of exchange trades in real time around the world, but binary protocols such as ProtocolBuffer, Simple Binary Encoding (SBE have takenrevolution among high-programmers. To get a faster trading platform and comply with the international standards of the stock market,this project combines FIX with a new binary protocol SBE.
Quantum information theory with Gaussian systems
International Nuclear Information System (INIS)
This thesis applies ideas and concepts from quantum information theory to systems of continuous-variables such as the quantum harmonic oscillator. The focus is on three topics: the cloning of coherent states, Gaussian quantum cellular automata and Gaussian private channels. Cloning was investigated both for finite-dimensional and for continuous-variable systems. We construct a private quantum channel for the sequential encryption of coherent states with a classical key, where the key elements have finite precision. For the case of independent one-mode input states, we explicitly estimate this precision, i.e. the number of key bits needed per input state, in terms of these parameters. (orig.)
Quantum information theory with Gaussian systems
Energy Technology Data Exchange (ETDEWEB)
Krueger, O.
2006-04-06
This thesis applies ideas and concepts from quantum information theory to systems of continuous-variables such as the quantum harmonic oscillator. The focus is on three topics: the cloning of coherent states, Gaussian quantum cellular automata and Gaussian private channels. Cloning was investigated both for finite-dimensional and for continuous-variable systems. We construct a private quantum channel for the sequential encryption of coherent states with a classical key, where the key elements have finite precision. For the case of independent one-mode input states, we explicitly estimate this precision, i.e. the number of key bits needed per input state, in terms of these parameters. (orig.)
Quantum information processing : science & technology.
Energy Technology Data Exchange (ETDEWEB)
Horton, Rebecca; Carroll, Malcolm S.; Tarman, Thomas David
2010-09-01
Qubits demonstrated using GaAs double quantum dots (DQD). The qubit basis states are the (1) singlet and (2) triplet stationary states. Long spin decoherence times in silicon spurs translation of GaAs qubit in to silicon. In the near term the goals are: (1) Develop surface gate enhancement mode double quantum dots (MOS & strained-Si/SiGe) to demonstrate few electrons and spin read-out and to examine impurity doped quantum-dots as an alternative architecture; (2) Use mobility, C-V, ESR, quantum dot performance & modeling to feedback and improve upon processing, this includes development of atomic precision fabrication at SNL; (3) Examine integrated electronics approaches to RF-SET; (4) Use combinations of numerical packages for multi-scale simulation of quantum dot systems (NEMO3D, EMT, TCAD, SPICE); and (5) Continue micro-architecture evaluation for different device and transport architectures.
Controlling the dynamics of classical and quantum information in spin systems
Dalal, Parin B.
The precise, human control of quantum systems, by its definition, must combine models of the classical and the quantum world into a calculus that supports both. Open, irreversible quantum systems must interact with closed, reversible quantum systems to predict evolutions that are partially open and closed. Inevitably, the problems of quantum measurement, the assumptions of scattering, and the role of spacetime comes under scrutiny. Such considerations have extraordinary practical value: the precise control of a quantum information is the cornerstone of scalable quantum computing. Traditionally, quantum control theory as well as a formalism of redundancy and partial measurements, known as quantum error correction, attempt to remedy systematic quantum-noise and random quantum-noise respectively, but have had mixed success. This dissertation examines how the imprecision of control in quantum and classical spin systems affects the flow of select information to a receiver and how such systems may be optimized against the imprecise scattering of control fields and spins. To this end, this dissertation intertwines the physics of state evolution with the physics of information control in classical and quantum systems. First in classical systems, a method for encoding and decoding classical spin-processing information provides an example of information flow. Then an analytic calculation of a semi-conductor spin channel's information capacity is performed. The results limit the rate of information processing and inform the design of materials for optimal spintronic information-processing in semiconductors. Next, noisy quantum interactions are described, so that the complexities of correcting small, random phase errors using traditional control theory and quantum error correction may be explained. How these noisy processes affect the relevant information flow of a quantum algorithm (derivatives of the Quantum Fourier Transform and Grover Search) is considered, several novel methods of source-coding for these quantum channels are presented and their efficacy calculated. These methods include Unitary-Fault Tolerance, Clifford operations of locally-variant basis, and an entropic controller. Together they show classical systems in the steady state can be used to control scalable, high-precision quantum-computing machines, and ultimately may eliminate all temporal control from quantum operations.
Black holes, quantum information, and unitary evolution
Giddings, Steven B
2012-01-01
The unitary crisis for black holes indicates an apparent need to modify local quantum field theory. This paper explores the idea that quantum mechanics and in particular unitarity are fundamental principles, but at the price of familiar locality. Thus, one should seek to parameterize unitary evolution, extending the field theory description of black holes, such that their quantum information is transferred to the external state. This discussion is set in a broader framework of unitary evolution acting on Hilbert spaces comprising subsystems. Here, various constraints can be placed on the dynamics, based on quantum information-theoretic and other general physical considerations, and one can seek to describe dynamics with "minimal" departure from field theory. While usual spacetime locality may not be a precise concept in quantum gravity, approximate locality seems an important ingredient in physics. In such a Hilbert space approach an apparently "coarser" form of localization can be described in terms of tenso...
A quantum information processor with trapped ions
International Nuclear Information System (INIS)
Quantum computers hold the promise to solve certain problems exponentially faster than their classical counterparts. Trapped atomic ions are among the physical systems in which building such a computing device seems viable. In this work we present a small-scale quantum information processor based on a string of 40Ca+ ions confined in a macroscopic linear Paul trap. We review our set of operations which includes non-coherent operations allowing us to realize arbitrary Markovian processes. In order to build a larger quantum information processor it is mandatory to reduce the error rate of the available operations which is only possible if the physics of the noise processes is well understood. We identify the dominant noise sources in our system and discuss their effects on different algorithms. Finally we demonstrate how our entire set of operations can be used to facilitate the implementation of algorithms by examples of the quantum Fourier transform and the quantum order finding algorithm. (paper)
Quantum information processing and nuclear magnetic resonance
Cummins, H K
2001-01-01
as spectrometer pulse sequence programs. Quantum computers are information processing devices which operate by and exploit the laws of quantum mechanics, potentially allowing them to solve problems which are intractable using classical computers. This dissertation considers the practical issues involved in one of the more successful implementations to date, nuclear magnetic resonance (NMR). Techniques for dealing with systematic errors are presented, and a quantum protocol is implemented. Chapter 1 is a brief introduction to quantum computation. The physical basis of its efficiency and issues involved in its implementation are discussed. NMR quantum information processing is reviewed in more detail in Chapter 2. Chapter 3 considers some of the errors that may be introduced in the process of implementing an algorithm, and high-level ways of reducing the impact of these errors by using composite rotations. Novel general expressions for stabilising composite rotations are presented in Chapter 4 and a new class o...
Principles of quantum computation and information
Benenti, Giuliano; Strini, Giuliano
2004-01-01
Quantum computation and information is a new, rapidly developing interdisciplinary field. Therefore, it is not easy to understand its fundamental concepts and central results without facing numerous technical details. This book provides the reader a useful and not-too-heavy guide. It offers a simple and self-contained introduction; no previous knowledge of quantum mechanics or classical computation is required. Volume I may be used as a textbook for a one-semester introductory course in quantum information and computation, both for upper-level undergraduate students and for graduate students.
Information-geometric reconstruction of quantum theory
Goyal, Philip
2008-11-01
In this paper, we show how the framework of information geometry, the natural geometry of discrete probability distributions, can be used to derive the quantum formalism. The derivation rests upon a few elementary features of quantum phenomena, such as complementarity and global gauge invariance. When appropriately formulated within an information-geometric framework, and combined with a novel information-theoretic principle, these features lead to the abstract quantum formalism for finite-dimensional quantum systems, and the result of Wigner’s theorem. By means of a correspondence principle, several correspondence rules of quantum theory, such as the canonical commutation relationships, are also systematically derived. The derivation suggests that information geometry is directly or indirectly responsible for many of the central structural features of the quantum formalism, such as the importance of square roots of probability and the occurrence of sinusoidal functions of phases in a pure quantum state. Global gauge invariance is shown to play a crucial role in the emergence of the formalism in its complex form.
Quenching Dynamics and Quantum Information
Nag, Tanay; Patra, Ayoti
2012-01-01
We review recent studies on the measures of zero temperature quantum correlations namely, the quantum entanglement (concurrence) and discord present in the final state of a transverse XY spin chain following a quench through quantum critical points; the aim of these studies is to explore the scaling of the above quantities as a function of the quench rate. A comparative study between the concurrence and the quantum discord shows that their behavior is qualitatively the same though there are quantitative differences. For the present model, the scaling of both the quantities are given by the scaling of the density of the defect present in the final state though one can not find a closed form expression for the discord. We also extend our study of quantum discord to a transverse Ising chain in the presence of a three spin interaction. Finally, we present a study of the dynamical evolution of quantum discord and concurrence when two central qubits, initially prepared in a Werner state, are coupled to the environm...
Huang, Ling-Yun; Ye, Tian-Yu
2015-08-01
In this paper, a kind of quantum dialogue (QD) protocols without information leakage assisted by quantum operation is proposed. The participant in charge of preparation can automatically know the collapsed states after quantum operation performed on the prepared quantum states. The other participant is able to know the collapsed states derived from the prepared quantum states through quantum measurement. The information leakage problem is avoided by means of imposing auxiliary quantum operation on the prepared quantum states.
Quantum information processing and nuclear magnetic resonance
International Nuclear Information System (INIS)
Quantum computers are information processing devices which operate by and exploit the laws of quantum mechanics, potentially allowing them to solve problems which are intractable using classical computers. This dissertation considers the practical issues involved in one of the more successful implementations to date, nuclear magnetic resonance (NMR). Techniques for dealing with systematic errors are presented, and a quantum protocol is implemented. Chapter 1 is a brief introduction to quantum computation. The physical basis of its efficiency and issues involved in its implementation are discussed. NMR quantum information processing is reviewed in more detail in Chapter 2. Chapter 3 considers some of the errors that may be introduced in the process of implementing an algorithm, and high-level ways of reducing the impact of these errors by using composite rotations. Novel general expressions for stabilising composite rotations are presented in Chapter 4 and a new class of composite rotations, tailored composite rotations, presented in Chapter 5. Chapter 6 describes some of the advantages and pitfalls of combining composite rotations. Experimental evaluations of the composite rotations are given in each case. An actual implementation of a quantum information protocol, approximate quantum cloning, is presented in Chapter 7. The dissertation ends with appendices which contain expansions of some equations and detailed calculations of certain composite rotation results, as well as spectrometer pulse sequence programs. (author)
Grating-dot two-dimensional barcode patterns with extra binary data for encoding secret information
Lih Yeh, Sheng; Lin, Shyh Tsong
2013-02-01
The usual two-dimensional (2D) barcode patterns do not encrypt secret information. However, secret information is sometimes needed to increase the security features of barcode patterns. Therefore, this paper proposes 2D barcode patterns created by two-beam writers to encrypt extra binary data for encoding secret information. The proposed 2D barcode patterns are composed of many grating dots and the fringes of the grating dots are classified into four types. The first type of fringe possesses a pitch of 1.1 ?m and an orientation of -45°, the second type of fringe possesses a pitch of 1.2 ?m and an orientation of -45°, the third type of fringe possesses a pitch of 1.1 ?m and an orientation of 45°and the fourth type of fringe possesses a pitch of 1.2 ?m and an orientation of 45°. All the fringes with a 1.1 ?m pitch can show a color and all the fringes with a 1.2 ?m pitch can show another color when a microscope is used to inspect them. Therefore, extra binary data for encoding secret information can be formed with the two pitches. On the other hand, all the fringes with a -45° orientation can become bright for a viewing direction and all the fringes with a 45° orientation can become bright for another viewing direction when one looks at them. Therefore, the grating dots with the -45° fringe orientation and the grating dots with the 45° fringe orientation can be used to show a positive barcode image and a negative barcode image, respectively. Both the positive and negative barcode images can be used to derive the barcode data. The experiment shows that the proposed barcode patterns can be used conveniently and correctly.
Theriot, Edward C; Ashworth, Matt P; Nakov, Teofil; Ruck, Elizabeth; Jansen, Robert K
2015-08-01
Previous analyses of single diatom chloroplast protein-encoded genes recovered results highly incongruent with both traditional phylogenies and phylogenies derived from the nuclear encoded small subunit (SSU) gene. Our analysis here of six individual chloroplast genes (atpB, psaA, psaB, psbA, psbC and rbcL) obtained similar anomalous results. However, phylogenetic noise in these genes did not appear to be correlated, and their concatenation appeared to effectively sum their collective signal. We empirically demonstrated the value of combining phylogenetic information profiling, partitioned Bremer support and entropy analysis in examining the utility of various partitions in phylogenetic analysis. Noise was low in the 1st and 2nd codon positions, but so was signal. Conversely, high noise levels in the 3rd codon position was accompanied by high signal. Perhaps counterintuitively, simple exclusion experiments demonstrated this was especially true at deeper nodes where the 3rd codon position contributed most to a result congruent with morphology and SSU (and the total evidence tree here). Correlated with our empirical findings, probability of correct signal (derived from information profiling) increased and the statistical significance of substitutional saturation decreased as data were aggregated. In this regard, the aggregated 3rd codon position performed as well or better than more slowly evolving sites. Simply put, direct methods of noise removal (elimination of fast-evolving sites) disproportionately removed signal. Information profiling and partitioned Bremer support suggest that addition of chloroplast data will rapidly improve our understanding of the diatom phylogeny, but conversely also illustrate that some parts of the diatom tree are likely to remain recalcitrant to addition of molecular data. The methods based on information profiling have been criticized for their numerous assumptions and parameter estimates and the fact that they are based on quartets of taxa. Our empirical results support theoretical arguments that the simplifying assumptions made in these methods are robust to "real-life" situations. PMID:25848969
Quantum information processing with graph states
International Nuclear Information System (INIS)
Graph states are multiparticle states which are associated with graphs. Each vertex of the graph corresponds to a single system or particle. The links describe quantum correlations (entanglement) between pairs of connected particles. Graph states were initiated independently by two research groups: On the one hand, graph states were introduced by Briegel and Raussendorf as a resource for a new model of one-way quantum computing, where algorithms are implemented by a sequence of measurements at single particles. On the other hand, graph states were developed by the author of this thesis and ReinhardWerner in Braunschweig, as a tool to build quantum error correcting codes, called graph codes. The connection between the two approaches was fully realized in close cooperation of both research groups. This habilitation thesis provides a survey of the theory of graph codes, focussing mainly, but not exclusively on the author's own research work. We present the theoretical and mathematical background for the analysis of graph codes. The concept of one-way quantum computing for general graph states is discussed. We explicitly show how to realize the encoding and decoding device of a graph code on a one-way quantum computer. This kind of implementation is to be seen as a mathematical description of a quantum memory device. In addition to that, we investigate interaction processes, which enable the creation of graph states on very large systems. Particular graph states can be created, for instance, by an Ising type interaction between next neighbor particles which sits at the points of an infinitely extended cubic lattice. Based on the theory of quantum cellular automata, we give a constructive characterization of general interactions which create a translationally invariant graph state. (orig.)
Information properties of generalised quantum measurements
International Nuclear Information System (INIS)
The concept of generalised quantum measurement is introduced as a transformation establishing the correspondence between the initial state of an object and the final state of the object-instrument system with the help of a classical information index one-to-one related to a classically compatible set of the states of the object-instrument system. It is shown that this measurement includes all the types of measurements: standard projective, entangling, soft, and generalised measurements with a partial or complete dest-ruction of the initial information contained in the object. A special class of partially destructing measurements is considered which establish the correspondence between a continual set of states of finite-dimensional quantum systems and systems with an infinite-dimensional space of states. The information sense of these measurements is discussed and some information characteristics are calculated. (quantum measurements)
Operator Quantum Error Correcting Subsystems for Self-Correcting Quantum Memories
Bacon, Dave
2005-01-01
The most general method for encoding quantum information is not to encode the information into a subspace of a Hilbert space, but to encode information into a subsystem of a Hilbert space. Recently this notion has led to a more general notion of quantum error correction known as operator quantum error correction. In standard quantum error correcting codes, one requires the ability to apply a procedure which exactly reverses on the error correcting subspace any correctable er...
Quantum Spread Spectrum Communication
Energy Technology Data Exchange (ETDEWEB)
Humble, Travis S [ORNL
2010-01-01
We demonstrate that spectral teleportation can coherently dilate the spectral probability amplitude of a single photon. In preserving the encoded quantum information, this variant of teleportation subsequently enables a form of quantum spread spectrum communication.
Manipulating quantum information by propagation
Energy Technology Data Exchange (ETDEWEB)
Perales, Alvaro [Departmento de Automatica, Escuela Politecnica, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain); Plenio, Martin B [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Institute for Mathematical Sciences, Imperial College London, 53 Exhibition Road, London SW7 2AZ (United Kingdom)
2005-12-01
We study the creation of bipartite and multipartite continuous variable entanglement in structures of coupled quantum harmonic oscillators. By adjusting the interaction strengths between nearest neighbours we show how to maximize the entanglement production between the arms in a Y-shaped structure where an initial single mode squeezed state is created in the first oscillator of the input arm. We also consider the action of the same structure as an approximate quantum cloner. For a specific time in the system dynamics the last oscillators in the output arms can be considered as imperfect copies of the initial state. By increasing the number of arms in the structure, multipartite entanglement is obtained, as well as 1 {yields}M cloning. Finally, we consider configurations that implement the symmetric splitting of an initial entangled state. All calculations are carried out within the framework of the rotating wave approximation in quantum optics, and our predictions could be tested with current available experimental techniques.
Quantum Computation and Information From Theory to Experiment
Imai, Hiroshi
2006-01-01
Recently, the field of quantum computation and information has been developing through a fusion of results from various research fields in theoretical and practical areas. This book consists of the reviews of selected topics charterized by great progress and cover the field from theoretical areas to experimental ones. It contains fundamental areas, quantum query complexity, quantum statistical inference, quantum cloning, quantum entanglement, additivity. It treats three types of quantum security system, quantum public key cryptography, quantum key distribution, and quantum steganography. A photonic system is highlighted for the realization of quantum information processing.
Trapped Atomic Ions and Quantum Information Processing
International Nuclear Information System (INIS)
The basic requirements for quantum computing and quantum simulation (single- and multi-qubit gates, long memory times, etc.) have been demonstrated in separate experiments on trapped ions. Construction of a large-scale information processor will require synthesis of these elements and implementation of high-fidelity operations on a very large number of qubits. This is still well in the future. NIST and other groups are addressing part of the scaling issue by trying to fabricate multi-zone arrays of traps that would allow highly-parallel and scalable processing. In the near term, some simple quantum processing protocols are being used to aid in quantum metrology, such as in atomic clocks. As the number of qubits increases, Schroedinger's cat paradox and the measurement problem in quantum mechanics become more apparent; with luck, trapped ion systems might be able to shed light on these fundamental issues
Theory of solid state quantum information processing
Burkard, Guido
2004-01-01
Recent theoretical work on solid-state proposals for the implementation of quantum computation and quantum information processing is reviewed. The differences and similarities between microscopic and macroscopic qubits are highlighted and exemplified by the spin qubit proposal on one side and the superconducting qubits on the other. Before explaining the spin and supercondcuting qubits in detail, some general concepts that are relevant for both types of solid-state qubits ar...
Nuclear magnetic resonance quantum information processing
Serra, R. M.; Oliveira, I S
2012-01-01
For the past decade, nuclear magnetic resonance (NMR) has been established as a main experimental technique for testing quantum protocols in small systems. This Theme Issue presents recent advances and major challenges of NMR quantum information possessing (QIP), including contributions by researchers from 10 different countries. In this introduction, after a short comment on NMR-QIP basics, we briefly anticipate the contents of this issue.
Fisher information, nonclassicality and quantum revivals
Energy Technology Data Exchange (ETDEWEB)
Romera, Elvira [Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain); Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain); Santos, Francisco de los, E-mail: dlsantos@onsager.ugr.es [Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain); Departamento de Electromagnetismo y Física de la Materia, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain)
2013-11-08
Wave packet revivals and fractional revivals are studied by means of a measure of nonclassicality based on the Fisher information. In particular, we show that the spreading and the regeneration of initially Gaussian wave packets in a quantum bouncer and in the infinite square-well correspond, respectively, to high and low nonclassicality values. This result is in accordance with the physical expectations that at a quantum revival wave packets almost recover their initial shape and the classical motion revives temporarily afterward.
Multiparty hierarchical quantum-information splitting
Wang, Xin-Wen; Zhang, Deng-Yu; Tang, Shi-Qing; Xie, Li-Jun
2011-01-01
We propose a scheme for multiparty hierarchical quantum-information splitting (QIS) with a multipartite entangled state, where a boss distributes a secret quantum state to two grades of agents asymmetrically. The agents who belong to different grades have different authorities for recovering boss's secret. Except for boss's Bell-state measurement, no nonlocal operation is involved. The presented scheme is also shown to be secure against eavesdropping. Such a hierarchical QIS...
Multiparty hierarchical quantum-information splitting
International Nuclear Information System (INIS)
We propose a scheme for multiparty hierarchical quantum-information splitting (QIS) with a multipartite entangled state, where a boss distributes a secret quantum state to two grades of agents asymmetrically. The agents who belong to different grades have different authorities for recovering the boss's secret. Except for the boss's Bell-state measurement, no nonlocal operation is involved. The presented scheme is also shown to be secure against eavesdropping. Such a hierarchical QIS is expected to find useful applications in the field of modern multipartite quantum cryptography.
Information capacity of quantum observable
Holevo, A S
2011-01-01
In this paper we consider the classical capacities of quantum-classical channels corresponding to measurement of observables. Special attention is paid to the case of continuous observables. We give the formulas for unassisted and entanglement-assisted classical capacities $C,C_{ea}$ and consider some explicitly solvable cases which give new examples of entanglement-breaking channels with $C_{ea}>C.$
Remote one-qubit information concentration and decoding of operator quantum error-correction codes
International Nuclear Information System (INIS)
We propose the general scheme of remote one-qubit information concentration. To achieve the task, the Bell-correlated mixed states are exploited. In addition, the nonremote one-qubit information concentration is equivalent to the decoding of the quantum error-correction code. Here we propose how to decode the stabilizer codes. In particular, the proposed scheme can be used for the operator quantum error-correction codes. The encoded state can be recreated on the errorless qubit, regardless how many bit-flip errors and phase-flip errors have occurred
Quantum Information: an invitation for mathematicians
International Nuclear Information System (INIS)
Quantum Information is the science that aims to use the unusual behavior of the microscopic world, governed by the laws of Quantum Mechanics, in order to improve the way in which we compute or communicate information. Though the first ideas in this direction come from the early 80's, it is in the last decade when Quantum Information has suffered an spectacular development. It is impossible to resume in a paper like this one the importance and complexity of the field. Therefore, I will limit to briefly explain some of the initial ideas (considered classical by now), and to briefly suggest some of the modern lines of research. By the nature of this exposition, I have decided to avoid rigor and to concentrate more in ideas and intuitions. Anyhow, I have tried to provide with enough references, in such a way that an interested reader could find there proper theorems and proofs.
Teleportation of a two-mode entangled coherent state encoded with two-qubit information
Energy Technology Data Exchange (ETDEWEB)
Mishra, Manoj K; Prakash, Hari, E-mail: manoj.qit@gmail.co, E-mail: prakash_hari123@rediffmail.co [Department of physics, University of Allahabad, Allahabad (India)
2010-09-28
We propose a scheme to teleport a two-mode entangled coherent state encoded with two-qubit information, which is better than the two schemes recently proposed by Liao and Kuang (2007 J. Phys. B: At. Mol. Opt. Phys. 40 1183) and by Phien and Nguyen (2008 Phys. Lett. A 372 2825) in that our scheme gives higher value of minimum assured fidelity and minimum average fidelity without using any nonlinear interactions. For involved coherent states | {+-} {alpha}), minimum average fidelity in our case is {>=}0.99 for |{alpha}| {>=} 1.6 (i.e. |{alpha}|{sup 2} {>=} 2.6), while previously proposed schemes referred above report the same for |{alpha}| {>=} 5 (i.e. |{alpha}|{sup 2} {>=} 25). Since it is very challenging to produce superposed coherent states of high coherent amplitude (|{alpha}|), our teleportation scheme is at the reach of modern technology.
Laser information encoded in atomic asymmetrical ionization in few-cycle laser fields
International Nuclear Information System (INIS)
The pulse duration and carry-envelope phase (CEP) are two important parameters to characterize a few-cycle intense laser. We systematically study asymmetrical ionization of Ar in few-cycle laser fields with different pulse durations (3-7 fs) and laser intensities (1013-1014 W/cm2) by solving the time-dependent Schroedinger equation. Analyzing the CEP-dependent asymmetry of above-threshold ionization as a function of the photoelectron energy, we find that the qualitative global features of CEP-dependent asymmetry are insensitive to the pulse duration. But the fine structures of the asymmetry are sensitive to the laser pulse duration. Changing Ar to H atoms, we find that the information encoded in asymmetry is insensitive to target atoms at a moderate laser intensity.
Multi-user multiplexed scheme for decoding modulated-encoded sequential information
Mosso, Fabian; Tebaldi, Myrian; Barrera, John Fredy; Bolognini, Néstor; Torroba, Roberto
2011-08-01
Encrypting procedures with multiplexed operations exhibit an inherent noise. We presented options to avoid background noise arising from the non-decoded images. We have a coding mask corresponding to each single input object, thus resulting in a static decrypting mechanism. Besides, if we manage the spatial destination of each decoded output, then we avoid the noise superposition. In those schemes, the displaying output order was irrelevant. However, when we face a sequence of events including multi-users, we need to develop another strategy. We present a multi-user encrypting scheme with a single encoding mask that removes the background noise, also showing the decrypted data in a prescribed sequence. The multiplexing scheme is based on the 4f double random phase encryption architecture and a theta modulation method, which consists in superposing each encrypted information with a determined sinusoidal grating. Afterwards we proceed to the completely encoded data multiplexing. In a multi-user scheme, we employ different encrypting masks in the 4f optical setup for each user, and the same mask is employed for the user sequence. We store the encrypted data in the single medium. After a Fourier transform operation and an appropriate filtering procedure, we reach the sequence of isolated encrypted spots corresponding to the right user. With the aid of the pertaining decoding mask, the user can decrypt the sequence. We avoid the noise by the appropriate choice of the modulating gratings pitch as to elude the overlapping of spots at the Fourier plane, which is the cause of information degradation.
Quantum error correcting codes and one-way quantum computing: Towards a quantum memory
Schlingemann, Dirk
2003-01-01
For realizing a quantum memory we suggest to first encode quantum information via a quantum error correcting code and then concatenate combined decoding and re-encoding operations. This requires that the encoding and the decoding operation can be performed faster than the typical decoherence time of the underlying system. The computational model underlying the one-way quantum computer, which has been introduced by Hans Briegel and Robert Raussendorf, provides a suitable conc...
Quantum information and computation for chemistry
Kais, Sabre; Rice, Stuart A
2014-01-01
Examines the intersection of quantum information and chemical physics The Advances in Chemical Physics series is dedicated to reviewing new and emerging topics as well as the latest developments in traditional areas of study in the field of chemical physics. Each volume features detailed comprehensive analyses coupled with individual points of view that integrate the many disciplines of science that are needed for a full understanding of chemical physics. This volume of the series explores the latest research findings, applications, and new research paths from the quantum information science
Information-disturbance tradeoff in covariant quantum state estimation
Sacchi, Massimiliano F.
2007-01-01
We provide a general framework for quantifying the optimal tradeoff between the information retrieved by a quantum measurement and the disturbance on the quantum state in covariant quantum state estimation.
Li, Huibin
2011-10-01
This paper proposes a novel approach for 3D face recognition by learning weighted sparse representation of encoded facial normal information. To comprehensively describe 3D facial surface, three components, in X, Y, and Z-plane respectively, of normal vector are encoded locally to their corresponding normal pattern histograms. They are finally fed to a sparse representation classifier enhanced by learning based spatial weights. Experimental results achieved on the FRGC v2.0 database prove that the proposed encoded normal information is much more discriminative than original normal information. Moreover, the patch based weights learned using the FRGC v1.0 and Bosphorus datasets also demonstrate the importance of each facial physical component for 3D face recognition. © 2011 IEEE.
Quantum Information Processing with Modular Networks
Crocker, Clayton; Inlek, Ismail V.; Hucul, David; Sosnova, Ksenia; Vittorini, Grahame; Monroe, Chris
2015-05-01
Trapped atomic ions are qubit standards for the production of entangled states in quantum information science and metrology applications. Trapped ions can exhibit very long coherence times, external fields can drive strong local interactions via phonons, and remote qubits can be entangled via photons. Transferring quantum information across spatially separated ion trap modules for a scalable quantum network architecture relies on the juxtaposition of both phononic and photonic buses. We report the successful combination of these protocols within and between two ion trap modules on a unit structure of this architecture where the remote entanglement generation rate exceeds the experimentally measured decoherence rate. Additionally, we report an experimental implementation of a technique to maintain phase coherence between spatially and temporally distributed quantum gate operations, a crucial prerequisite for scalability. Finally, we discuss our progress towards addressing the issue of uncontrolled cross-talk between photonic qubits and memory qubits by implementing a second ion species, Barium, to generate the photonic link. This work is supported by the ARO with funding from the IARPA MQCO program, the DARPA Quiness Program, the ARO MURI on Hybrid Quantum Circuits, the AFOSR MURI on Quantum Transduction, and the NSF Physics Frontier Center at JQI.
On Grover's Search Algorithm from a Quantum Information Geometry Viewpoint
Cafaro, Carlo
2011-01-01
We present an information geometric characterization of Grover's quantum search algorithm. First, we quantify the notion of quantum distinguishability between parametric density operators by means of the Wigner-Yanase quantum information metric. We then show that the quantum searching problem can be recast in an information geometric framework where Grover's dynamics is characterized by a geodesic on the manifold of the parametric density operators of pure quantum states constructed from the continuous approximation of the parametric quantum output state in Grover's algorithm. We also discuss possible deviations from Grover's algorithm within this quantum information geometric setting.
Xavier, G B; da Silva, T Ferreira; Temporao, G P; von der Weid, J P
2009-01-01
We experimentally show a two-way transmission of polarization encoded pseudo-single photons between two remote parties separated by a single 23 km optical fiber spool. Two optical classical channels are wavelength multiplexed in the same fiber and used as feedback to an active polarization drift compensation scheme. One of the classical channels contains a 10 Gb/s data stream simulating real telecom traffic. The feasibility of quantum communication is demonstrated in the fiber's two opposite directions of propagation over 6 hours of continuous operation, as well as a classical error rate in the data channel better than 1.0 x 10-9. The results are extended to show the estimated maximum transmission distance for the quantum signals based on the noise generated through Raman spontaneous scattering by up to 16 classical channels present in the fiber.
Como, Giacomo; Yüksel, Serdar
2010-01-01
A single-letter characterization is provided for the capacity region of finite-state multiple-access channels, when the channel state process is an independent and identically distributed sequence, the transmitters have access to partial (quantized) state information, and complete channel state information is available at the receiver. The partial channel state information is assumed to be asymmetric at the encoders. As a main contribution, a tight converse coding theorem is...
Information Erasure and Recover in Quantum Memory
Cai, Qing-Yu
2004-01-01
We show that information in quantum memory can be erased and recovered perfectly if it is necessary. That the final states of environment are completely determined by the initial states of the system allows that an easure operation can be realized by a swap operation between system and an ancilla. Therefore, the erased information can be recoverd. When there is an irreversible process, e.g. an irreversible operation or a decoherence process, in the erasure process, the infor...
Gravity Dual of Quantum Information Metric
Miyaji, Masamichi; Shiba, Noburo; Takayanagi, Tadashi; Watanabe, Kento
2015-01-01
We study a quantum information metric (or fidelity susceptibility) in conformal field theories with respect to a small perturbation by a primary operator. We argue that its gravity dual is approximately given by a volume of maximal time slice in an AdS spacetime when the perturbation is exactly marginal. We confirm our claim in several examples.
New inequalities for quantum von Neumann and tomographic mutual information
Man'ko, V. I.; Markovich, L. A.
2014-01-01
Entropic inequalities related to the quantum mutual information for bipartite system and tomographic mutual information is studied for Werner state of two qubits. Quantum correlations corresponding to entanglement properties of the qubits in Werner state are discussed.
A New Approach to Encoding and Hiding Information in an Image
Directory of Open Access Journals (Sweden)
Fadhil Salman Abed
2011-09-01
Full Text Available The information age brings some unique challenges to society. New technology and new applications bring new threats and force us to invent new protection mechanisms. So every few years, computer security needs to reinvent itself. In this paper we propose a new image encoding system utilizing fractal theories; this approach exploits the main feature of fractals generated by IFS techniques. Two levels of encryption and decryption methods performed to enhance the security of the system, this is based on the fact that all fractal functions use real number to ensure satisfaction of contraction property. If the cryptosystem parameters are based on real numbers (a continuous infinite interval then the search space is massive. Hence, many well known attacks fail to solve the nonlinear systems and find the imprecise secret key parameter from the given public one. Even if it is theoretically possible, it is computationally not feasible. The encrypted date represents the attractor generated by the IFS transformation, Collage theorem is used to find the IFS for decrypting data. The proposed method gives the possibility to hide maximum amount of data in an image that represent the attractor of the IFS without degrading its quality. Also to make the hidden data robust enough to withstand known cryptographic attacks and image processing techniques which do not change the appearance of image. The security level is high because the jointly coded images cannot be correctly reconstructed without all the required information.
Quantum information processing architecture with endohedral fullerenes in a carbon nanotube
Yang, Wan Li; Xu, Zhen Yu; WEI, Hua; Feng, Mang; Suter, Dieter
2010-01-01
A potential quantum information processor is proposed using a fullerene peapod, i.e., an array of the endohedral fullerenes 15N@C60 or 31P@C60 contained in a single walled carbon nanotube (SWCNT). The qubits are encoded in the nuclear spins of the doped atoms, while the electronic spins are used for initialization and readout, as well as for two-qubit operations.
Retrieving and routing quantum information in a quantum network
Sazim, S.; Chiranjeevi, V.; Chakrabarty, I.; Srinathan, K.
2015-09-01
In extant quantum secret sharing protocols, once the secret is shared in a quantum network (uc(qnet)) it cannot be retrieved, even if the dealer wishes that his/her secret no longer be available in the network. For instance, if the dealer is part of the two uc(qnet)s, say {{Q}}_1 and {{Q}}_2 and he/she subsequently finds that {{Q}}_2 is more reliable than {{Q}}_1 , he/she may wish to transfer all her secrets from {{Q}}_1 to {{Q}}_2 . Known protocols are inadequate to address such a revocation. In this work we address this problem by designing a protocol that enables the source/dealer to bring back the information shared in the network, if desired. Unlike classical revocation, the no-cloning theorem automatically ensures that the secret is no longer shared in the network. The implications of our results are multi-fold. One interesting implication of our technique is the possibility of routing qubits in asynchronous uc(qnets). By asynchrony we mean that the requisite data/resources are intermittently available (but not necessarily simultaneously) in the uc(qnet). For example, we show that a source S can send quantum information to a destination R even though (a) S and R share no quantum resource, (b) R's identity is unknown to S at the time of sending the message, but is subsequently decided, (c) S herself can be R at a later date and/or in a different location to bequeath her information (`backed-up' in the uc(qnet)) and (d) importantly, the path chosen for routing the secret may hit a dead end due to resource constraints, congestion, etc., (therefore the information needs to be back-tracked and sent along an alternate path). Another implication of our technique is the possibility of using insecure resources. For instance, if the quantum memory within an organization is insufficient, it may safely store (using our protocol) its private information with a neighboring organization without (a) revealing critical data to the host and (b) losing control over retrieving the data. Putting the two implications together, namely routing and secure storage, it is possible to envision applications like quantum mail (qmail) as an outsourced service.
Khrennikov, Andrei
2011-09-01
We propose a model of quantum-like (QL) processing of mental information. This model is based on quantum information theory. However, in contrast to models of "quantum physical brain" reducing mental activity (at least at the highest level) to quantum physical phenomena in the brain, our model matches well with the basic neuronal paradigm of the cognitive science. QL information processing is based (surprisingly) on classical electromagnetic signals induced by joint activity of neurons. This novel approach to quantum information is based on representation of quantum mechanics as a version of classical signal theory which was recently elaborated by the author. The brain uses the QL representation (QLR) for working with abstract concepts; concrete images are described by classical information theory. Two processes, classical and QL, are performed parallely. Moreover, information is actively transmitted from one representation to another. A QL concept given in our model by a density operator can generate a variety of concrete images given by temporal realizations of the corresponding (Gaussian) random signal. This signal has the covariance operator coinciding with the density operator encoding the abstract concept under consideration. The presence of various temporal scales in the brain plays the crucial role in creation of QLR in the brain. Moreover, in our model electromagnetic noise produced by neurons is a source of superstrong QL correlations between processes in different spatial domains in the brain; the binding problem is solved on the QL level, but with the aid of the classical background fluctuations. PMID:21683119
Oggier, Frederique
2010-01-01
This paper proposes a generic approach for providing enhanced security to communication systems which encode their data for reliability before encrypting it through a stream cipher for security. We call this counter-intuitive technique the {\\em encoding-encryption} paradigm, and use as motivating example the standard for mobile telephony GSM. The enhanced security is based on a dedicated homophonic or wire-tap channel coding that introduces pure randomness, combined with the randomness of the noise occurring over the communication channel. Security evaluation regarding recovery of the secret key employed in the keystream generator is done through an information theoretical approach. We show that with the aid of a dedicated wire-tap encoder, the amount of uncertainty that the adversary must face about the secret key given all the information he could gather during different passive or active attacks he can mount, is a decreasing function of the sample available for cryptanalysis. This means that the wire-tap e...
Quantum information, oscillations and the psyche
Martin, F; Carminati, G Galli
2010-01-01
In this paper, taking the theory of quantum information as a model, we consider the human unconscious, pre-consciousness and consciousness as sets of quantum bits (qubits). We view how there can be communication between these various qubit sets. In doing this we are inspired by the theory of nuclear magnetic resonance. In this way we build a model of handling a mental qubit with the help of pulses of a mental field. Starting with an elementary interaction between two qubits we build two-qubit quantum logic gates that allow information to be transferred from one qubit to the other. In this manner we build a quantum process that permits consciousness to ``read{''} the unconscious and vice versa. The elementary interaction, e.g. between a pre-consciousness qubit and a consciousness one, allows us to predict the time evolution of the pre-consciousness + consciousness system in which pre-consciousness and consciousness are quantum entangled. This time evolution exhibits Rabi oscillations that we name mental Rabi o...
Nonparadoxical loss of information in black hole evaporation in a quantum collapse model
Modak, Sujoy K.; Ortíz, Leonardo; Peña, Igor; Sudarsky, Daniel
2015-06-01
We consider a novel approach to address the black hole information paradox. The idea is based on adapting, to the situation at hand, the modified versions of quantum theory involving spontaneous stochastic dynamical collapse of quantum states, which have been considered in attempts to deal with shortcomings of the standard Copenhagen interpretation of quantum mechanics, in particular, the issue known as "the measurement problem." The new basic hypothesis is that the modified quantum behavior is enhanced in the region of high curvature so that the information encoded in the initial quantum state of the matter fields is rapidly erased as the black hole singularity is approached. We show that in this manner the complete evaporation of the black hole via Hawking radiation can be understood as involving no paradox. Calculations are performed using a modified version of quantum theory known as "continuous spontaneous localization" (CSL), which was originally developed in the context of many-particle nonrelativistic quantum mechanics. We use a version of CSL tailored to quantum field theory and applied in the context of the two -dimensional Callan-Giddings-Harvey-Strominger model. Although the role of quantum gravity in this picture is restricted to the resolution of the singularity, related studies suggest that there might be further connections.
Quantum information processing with optical vortices
Energy Technology Data Exchange (ETDEWEB)
Khoury, Antonio Z. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)
2012-07-01
Full text: In this work we discuss several proposals for quantum information processing using the transverse structure of paraxial beams. Different techniques for production and manipulation of optical vortices have been employed and combined with polarization transformations in order to investigate fundamental properties of quantum entanglement as well as to propose new tools for quantum information processing. As an example, we have recently proposed and demonstrated a controlled NOT (CNOT) gate based on a Michelson interferometer in which the photon polarization is the control bit and the first order transverse mode is the target. The device is based on a single lens design for an astigmatic mode converter that transforms the transverse mode of paraxial optical beams. In analogy with Bell's inequality for two-qubit quantum states, we propose an inequality criterion for the non-separability of the spin-orbit degrees of freedom of a laser beam. A definition of separable and non-separable spin-orbit modes is used in consonance with the one presented in Phys. Rev. Lett. 99, 2007. As the usual Bell's inequality can be violated for entangled two-qubit quantum states, we show both theoretically and experimentally that the proposed spin-orbit inequality criterion can be violated for non-separable modes. The inequality is discussed both in the classical and quantum domains. We propose a polarization to orbital angular momentum teleportation scheme using entangled photon pairs generated by spontaneous parametric down conversion. By making a joint detection of the polarization and angular momentum parity of a single photon, we are able to detect all the Bell-states and perform, in principle, perfect teleportation from a discrete to a continuous system using minimal resources. The proposed protocol implementation demands experimental resources that are currently available in quantum optics laboratories. (author)
Quantum information erasure inside black holes
Lowe, David A
2015-01-01
An effective field theory for infalling observers in the vicinity of a quasi-static black hole is given in terms of a freely falling lattice discretization. The lattice model successfully reproduces the thermal spectrum of outgoing Hawking radiation, as was shown by Corley and Jacobson, but can also be used to model observations made by a typical low-energy observer who enters the black hole in free fall at a prescribed time. The explicit short distance cutoff ensures that, from the viewpoint of the infalling observer, any quantum information that entered the black hole more than a scrambling time earlier has been erased by the black hole singularity. This property, combined with the requirement that outside observers need at least of order the scrambling time to extract quantum information from the black hole, ensures that a typical infalling observer does not encounter drama upon crossing the black hole horizon in a theory where black hole information is preserved for asymptotic observers.
Energy Technology Data Exchange (ETDEWEB)
Breuer, Reinhard (comp.)
2010-07-01
The following topics are dealt with: Reality in the test house, quantum teleportation, 100 years of quantum theory, the reality of quanta, interactionless quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view into the future of quantum optics. (HSI)
Scientific Electronic Library Online (English)
Carlos, Aguilar-Ibáñez; Miguel S., Suárez-Castañón; Humberto, Sossa-Azuela; Ricardo, Barrón-Fernández.
2004-12-01
Full Text Available En este trabajo se propone el uso de sincronización entre mapas hipercaóticos para codificar y decodificar información. La información a ser codificada es introducida al transmisor como una perturbación externa. La señal transmitida es empleada tanto para la sincronización y como portadora de la inf [...] ormación codificada. Una vez que el receptor esta sincronizado con el transmisor, el primero decodifica la información mediante la reconstrucción de la perturbación externa. En términos generales, se diseñó un esquema sencillo para codificar y decodificar datos, enfocado como un problema inverso. El desempeño del esquema mostró ser muy satisfactorio, como se comprobó en la implantación numérica. Los resultados obtenidos se usaron para construir una aplicación para comunicación segura en línea sobre internet. Abstract in english In this work we propose to use hyperchaotic maps synchronization to encode and decode information. The information to be encode is input to the transmitter as an external perturbation. The transmitted signal is used for synchronization and as the encode information carrier. Once the receiver is sync [...] hronized with the transmitter, the former decode the information by reconstruct the external perturbation. Roughly speaking, we design a simple schema to encode and decode data, as a simple inverse problem approach. The schema performance shows to be quite satisfactory, as assess from the numerical implementation. We use the results to build an application to establish secure on-line communication over Internet.
Bibliographic guide to the foundations of quantum mechanics and quantum information
Cabello, Adan
2000-01-01
This is a collection of references (papers, books, preprints, book reviews, Ph. D. thesis, patents, web sites, etc.), sorted alphabetically and (some of them) classified by subject, on foundations of quantum mechanics and quantum information. Specifically, it covers hidden variables (``no-go'' theorems, experiments), interpretations of quantum mechanics, entanglement, quantum effects (quantum Zeno effect, quantum erasure, ``interaction-free'' measurements, quantum ``non-demo...
Cryptography from quantum uncertainty in the presence of quantum side information
Bouman, Niek Johannes
2012-01-01
The thesis starts with a high-level introduction into cryptography and quantum mechanics. Chapter 2 gives a theoretical foundation by introducing probability theory, information theory, functional analysis, quantum mechanics and quantum information theory. Chapter 3, 4 and 5 are editions of work published earlier. In Chapter 3, we present a quantum-information-theoretic tool to analyze random sampling in a quantum setting. In particular, we present two new rigorous security proofs that ma...
Cai, Honghao; Chen, Yushan; Cui, Xiaohong; Cai, Shuhui; Chen, Zhong
2014-01-01
Background and Purpose Nuclear magnetic resonance (NMR) spectroscopy has become an important technique for tissue studies. Since tissues are in semisolid-state, their high-resolution (HR) spectra cannot be obtained by conventional NMR spectroscopy. Because of this restriction, extraction and high-resolution magic angle spinning (HR MAS) are widely applied for HR NMR spectra of tissues. However, both of the methods are subject to limitations. In this study, the feasibility of HR 1H NMR spectroscopy based on intermolecular multiple-quantum coherence (iMQC) technique is explored using fish muscle, fish eggs, and a whole fish as examples. Materials and Methods Intact salmon muscle tissues, intact eggs from shishamo smelt and a whole fish (Siamese algae eater) are studied by using conventional 1D one-pulse sequence, Hadamard-encoded iMQC sequence, and HR MAS. Results When we use the conventional 1D one-pulse sequence, hardly any useful spectral information can be obtained due to the severe field inhomogeneity. By contrast, HR NMR spectra can be obtained in a short period of time by using the Hadamard-encoded iMQC method without shimming. Most signals from fatty acids and small metabolites can be observed. Compared to HR MAS, the iMQC method is non-invasive, but the resolution and the sensitivity of resulting spectra are not as high as those of HR MAS spectra. Conclusion Due to the immunity to field inhomogeneity, the iMQC technique can be a proper supplement to HR MAS, and it provides an alternative for the investigation in cases with field distortions and with samples unsuitable for spinning. The acquisition time of the proposed method is greatly reduced by introduction of the Hadamard-encoded technique, in comparison with that of conventional iMQC method. PMID:24466083
Quantum information processing with noisy cluster states
Tame, M S; Kim, M S; Vedral, V
2005-01-01
We provide an analysis of basic quantum information processing protocols under the effect of intrinsic non-idealities in cluster states. These non-idealities are based on the introduction of randomness in the entangling steps that create the cluster state and are motivated by the unavoidable imperfections faced in creating entanglement using condensed-matter systems. Aided by the use of an alternative and very efficient method to construct cluster state configurations, which relies on the concatenation of fundamental cluster structures, we address quantum state transfer and various fundamental gate simulations through noisy cluster states. We find that a winning strategy to limit the effects of noise, is the management of small clusters processed via just a few measurements. Our study also reinforces recent ideas related to the optical implementation of a one-way quantum computer.
Directory of Open Access Journals (Sweden)
Patrick Hennig
2012-03-01
Full Text Available We developed a model of the input circuitry of the FD1 cell, an identified motion-sensitive interneuron in the blowfly’s visual system. The model circuit successfully reproduces the FD1 cell’s most conspicuous property: Its larger responses to objects than to spatially extended patterns. The model circuit also mimics the time-dependent responses of FD1 to dynamically complex naturalistic stimuli, shaped by the blowfly’s saccadic flight and gaze strategy: The FD1 responses are enhanced when, as a consequence of self-motion, a nearby object crosses the receptive field during intersaccadic intervals. Moreover, the model predicts that these object-induced responses are superimposed by pronounced pattern-dependent fluctuations during movements on virtual test flights in a three-dimensional environment with systematic modifications of the environmental patterns. Hence, the FD1 cell is predicted to detect not unambiguously objects defined by the spatial layout of the environment, but to be also sensitive to objects distinguished by textural features. These ambiguous detection abilities suggest an encoding of information about objects - irrespective of the features by which the objects are defined - by a population of cells, with the FD1 cell presumably playing a prominent role in such an ensemble.
Quantum Computers: A New Paradigm in Information Technology
Raisinghani, Mahesh S
2001-01-01
The word 'quantum' comes from the Latin word quantus meaning 'how much'. Quantum computing is a fundamentally new mode of information processing that can be performed only by harnessing physical phenomena unique to quantum mechanics (especially quantum interference). Paul Benioff of the Argonne National Laboratory first applied quantum theory to computers in 1981 and David Deutsch of Oxford proposed quantum parallel computers in 1985, years before the realization of qubits in 1995. However, i...
Practical realization of a quantum cryptography protocol exploiting polarization encoding in qutrits
International Nuclear Information System (INIS)
We propose and discuss a specific scheme allowing realization of a quantum cryptography qutrit protocol. This protocol exploits the polarization properties of single-frequency and single-spatial-mode biphotons
Topics in quantum information and the theory of open quantum systems
Oreshkov, Ognyan
This thesis examines seven topics in quantum information and the theory of open quantum systems. The first one concerns weak measurements and their universality as a means of generating quantum measurements. It is shown that every generalized measurement can be decomposed into a sequence of weak measurements which allows us to think of measurements as resulting form continuous stochastic processes. The second topic concerns an application of the decomposition into weak measurements to the theory of entanglement. Necessary and sufficient differential conditions for entanglement monotones are derived, and are used to find a new entanglement monotone for three-qubit states. The third topic examines the performance of different master equations for the description of non-Markovian dynamics. The system studied is a qubit coupled to a spin bath via the Ising interaction. The fourth topic studies continuous quantum error-correction in the case of non-Markovian decoherence. It is shown that due to the existence of a Zeno regime in non-Markovian dynamics, the performance of continuous quantum error correction may exhibit a quadratic improvement if the time resolution of the error-correcting operations is sufficiently high. The fifth topic concerns conditions for correctability of subsystem codes in the case of continuous decoherence. The obtained conditions on the Lindbladian and the system-environment Hamiltonian can be thought of as generalizations of the previously known conditions for noiseless subsystems to the case where the subsystem is time-dependent. The sixth topic examines the robustness of quantum error-correcting codes against initialization errors. It is shown that operator codes are robust against imperfect initialization without the need for restriction of the standard error-correction conditions. For this purpose, a new measure of fidelity for encoded information is introduced and its properties are discussed. The last topic concerns holonomic quantum computation and stabilizer codes. A fault-tolerant scheme for holonomic computations is presented, demonstrating the scalability of the holonomic method. The scheme opens the possibility for combining the benefits of error correction with the inherent resilience of the holonomic approach.
Quantum mechanics and quantum information a guide through the quantum world
Fayngold, Moses
2013-01-01
Alongside a thorough definition of the basic concepts and their interrelations, backed by numerous examples, this textbook features a rare discussion of the quantum information theory. It also deals with other important topics hardly found in the literature, including the Robertson-Schrodinger-relation, angle and angular momentum uncertainties, interaction-free measurements, and the limitations of the no-cloning theorem With its interpretations of quantum mechanics and its discussions of quantum computing, this book is poised to become the standard textbook for advanced undergraduate and beginning graduate quantum mechanics courses and as an essential reference for physics students and physics professionals.
Synchronicity, Quantum Information and the Psyche
Martin, Francois; Galli Carminati, Giuliana
2009-01-01
In this paper we describe synchronicity phenomena. As an explanation of these phenomena we propose quantum entanglement between the psychic realm known as the "unconscious" and also the classical illusion of the collapse of the wave-function. Then, taking the theory of quantum information as a model we consider the human unconscious, pre-consciousness and consciousness as sets of quantum bits (qu-bits). We analyze how there can be communication between these various qu-bit sets. In doing this we are inspired by the theory of nuclear magnetic resonance. In this manner we build quantum processes that permit consciousness to "read" the unconscious and vice-versa. The most elementary interaction, e.g. between a pre-consciousness qu-bit and a consciousness one, allows us to predict the time evolution of the pre-consciousness + consciousness system in which pre-consciousness and consciousness are quantum entangled. This time evolution exhibits Rabi oscillations that we name mental Rabi oscillations. This time evolu...
Precisely timing dissipative quantum information processing
International Nuclear Information System (INIS)
Dissipative engineering constitutes a framework within which quantum information processing protocols are powered by system-environment interaction rather than by unitary dynamics alone. This framework embraces noise as a resource, and consequently, offers a number of advantages compared to one based on unitary dynamics alone, e.g., that the protocols are typically independent of the initial state of the system. However, the time independent nature of this scheme makes it difficult to imagine precisely timed sequential operations, conditional measurements or error correction. In this work, we provide a path around these challenges, by introducing basic dissipative gadgets which allow us to precisely initiate, trigger and time dissipative operations, while keeping the system Liouvillian time-independent. These gadgets open up novel perspectives for thinking of timed dissipative quantum information processing. As an example, we sketch how measurement based computation can be simulated in the dissipative setting.
Efficient error characterization in Quantum Information Processing
L'evi, B; Emerson, J; Cory, D G; L\\'evi, Benjamin; L\\'opez, Cecilia C.; Emerson, Joseph
2006-01-01
We describe how to use the fidelity decay as a tool to characterize the errors affecting a quantum information processor through a noise generator $G_{\\tau}$. For weak noise, the initial decay rate of the fidelity proves to be a simple way to measure the magnitude of the different terms in $G_{\\tau}$. When the generator has only terms associated with few-body couplings, our proposal is scalable. We present the explicit protocol for estimating the magnitude of the noise generators when the noise consists of only one and two-body terms, and describe a method for measuring the parameters of more general noise models. The protocol focuses on obtaining the magnitude with which these terms affect the system during a time step of length $\\tau$; measurement of this information has critical implications for assesing the scalability of fault-tolerant quantum computation in any physical setup.
Energy Technology Data Exchange (ETDEWEB)
Koenneker, Carsten (comp.)
2012-11-01
The following topics are dealt with: Reality in the test facility, quantum teleportation, the reality of quanta, interaction-free quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view in the future of quantum optics. (HSI)
Processing Information in Quantum Decision Theory
Yukalov, Vyacheslav I.; Didier Sornette
2008-01-01
A survey is given summarizing the state of the art of describing information processing in Quantum Decision Theory, which has been recently advanced as a novel variant of decision making, based on the mathematical theory of separable Hilbert spaces. This mathematical structure captures the effect of superposition of composite prospects, including many incorporated intended actions. The theory characterizes entangled decision making, non-commutativity of subsequent decisions,...
Multiparty data hiding of quantum information
Hayden, Patrick; Leung, Debbie; Smith, Graeme
2004-01-01
We present protocols for multiparty data hiding of quantum information that implement all possible threshold access structures. Closely related to secret sharing, data hiding has a more demanding security requirement: that the data remain secure against unrestricted LOCC attacks. In the limit of hiding a large amount of data, our protocols achieve an asymptotic rate of one hidden qubit per local physical qubit. That is, each party holds a share that is the same size as the h...
Spintronics: Semiconductors, Molecules, and Quantum Information Processing
Awschalom, David D.
2005-03-01
There is a growing interest in exploiting electronic and nuclear spins in semiconductor nanostructures for the manipulation and storage of information in emergent technologies based upon spintronics and quantum logic. Such schemes offer qualitatively new scientific and technological opportunities by combining elements of standard electronics with spin-dependent interactions between electrons, nuclei, electric and magnetic fields. Here we provide an overview of recent developments in the field through a discussion of temporally- and spatially-resolved magneto-optical measurements, initially designed for probing local moment dynamics in magnetically doped semiconductor nanostructures. We demonstrate new electrical schemes for the local generation and manipulation of spins in conventional semiconductor heterostructures, thereby providing a compelling proof-of-concept that quantum spin information can be controlled within high-speed electrical circuits. Furthermore, we discuss a different experimental approach that enables the molecular wiring and assembly of colloidal semiconductor nanostructures to engineer hybrid systems for room temperature coherent spin transport. These experiments explore electronic, photonic, and magnetic control of spin in a variety of nanostructures, and show significant steps towards spin-based quantum information processing in the solid state.
Quantum information processing with nanomechanical qubits
Energy Technology Data Exchange (ETDEWEB)
Rips, Simon; Hartmann, Michael [Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching (Germany)
2013-07-01
We introduce an approach to quantum information processing where the information is stored in the motional degrees of freedom of nanomechanical devices. The qubits of our approach are formed by the two lowest energy levels of mechanical resonators which are tuned to be strongly anharmonic by suitable electrostatic fields. Single qubit rotations are conducted by radio frequency voltage pulses that are applied to individual resonators. Two qubit entangling gates in turn are implemented via a coupling to a common optical resonance of a high finesse cavity. We explain the working principle of local and entangling operations and show that high gate fidelities can be obtained with realistic experimental parameters.
PREFACE: Quantum Information, Communication, Computation and Cryptography
Benatti, F.; Fannes, M.; Floreanini, R.; Petritis, D.
2007-07-01
The application of quantum mechanics to information related fields such as communication, computation and cryptography is a fast growing line of research that has been witnessing an outburst of theoretical and experimental results, with possible practical applications. On the one hand, quantum cryptography with its impact on secrecy of transmission is having its first important actual implementations; on the other hand, the recent advances in quantum optics, ion trapping, BEC manipulation, spin and quantum dot technologies allow us to put to direct test a great deal of theoretical ideas and results. These achievements have stimulated a reborn interest in various aspects of quantum mechanics, creating a unique interplay between physics, both theoretical and experimental, mathematics, information theory and computer science. In view of all these developments, it appeared timely to organize a meeting where graduate students and young researchers could be exposed to the fundamentals of the theory, while senior experts could exchange their latest results. The activity was structured as a school followed by a workshop, and took place at The Abdus Salam International Center for Theoretical Physics (ICTP) and The International School for Advanced Studies (SISSA) in Trieste, Italy, from 12-23 June 2006. The meeting was part of the activity of the Joint European Master Curriculum Development Programme in Quantum Information, Communication, Cryptography and Computation, involving the Universities of Cergy-Pontoise (France), Chania (Greece), Leuven (Belgium), Rennes1 (France) and Trieste (Italy). This special issue of Journal of Physics A: Mathematical and Theoretical collects 22 contributions from well known experts who took part in the workshop. They summarize the present day status of the research in the manifold aspects of quantum information. The issue is opened by two review articles, the first by G Adesso and F Illuminati discussing entanglement in continuous variable systems, the second by T Prosen, discussing chaos and complexity in quantum systems. Both topics have theoretical as well as experimental relevance and are likely to witness a fast growing development in the near future. The remaining contributions present more specific and very recent results. They involve the study of the structure of quantum states and their estimation (B Baumgartner et al, C King et al, S Olivares et al, D Petz et al and W van Dam et al), of entanglement generation and its quantification (G Brida et al, F Ciccarello et al, G Costantini et al, O Romero-Isart et al, D Rossini et al, A Serafini et al and D Vitali et al), of randomness related effects on entanglement behaviour (I Akhalwaya et al, O Dahlsten et al and L Viola et al), and of abstract and applied aspects of quantum computation and communication (K Audenart, G M D'Ariano et al, N Datta et al, L C Kwek et al and M Nathanson et al). We would like to express our gratitude to the European Commission, the Abdus Salam ICTP, SISSA and Eurotech SpA (Amaro, Udine, Italy) for financial and/or logistic support. Special thanks also go to the workshop secretary Marina De Comelli, and the secretaries of the Department of Theoretical Physics, University of Trieste, Sabrina Gaspardis and Rosita Glavina for their precious help and assistance.
Classical Enhancement of Quantum Error-Correcting Codes
Kremsky, Isaac; Hsieh, Min-Hsiu; Todd A. Brun
2008-01-01
We present a general formalism for quantum error-correcting codes that encode both classical and quantum information (the EACQ formalism). This formalism unifies the entanglement-assisted formalism and classical error correction, and includes encoding, error correction, and decoding steps such that the encoded quantum and classical information can be correctly recovered by the receiver. We formally define this kind of quantum code using both stabilizer and symplectic languag...
Reduced randomness in quantum cryptography with sequences of qubits encoded in the same basis
International Nuclear Information System (INIS)
We consider the cloning of sequences of qubits prepared in the states used in the BB84 or six-state quantum cryptography protocol, and show that the single-qubit fidelity is unaffected even if entire sequences of qubits are prepared in the same basis. This result is only valid provided that the sequences are much shorter than the total key. It is of great importance for practical quantum cryptosystems because it reduces the need for high-speed random number generation without impairing on the security against finite-size cloning attacks
Suthana, Nanthia; Ekstrom, Arne; Moshirvaziri, Saba; Knowlton, Barbara; Bookheimer, Susan
2010-01-01
Although the hippocampus is critical for the formation and retrieval of spatial memories, it is unclear how subregions are differentially involved in these processes. Previous high-resolution functional magnetic resonance imaging (fMRI) studies have shown that CA2, CA3, and dentate gyrus (CA23DG) regions support the encoding of novel associations, while the subicular cortices support the retrieval of these learned associations. Whether these subregions are employed in humans during encoding a...
A quantum information approach to ultrafast spectroscopy
Yuen-Zhou, Joel
In the first part of the dissertation, we develop a theoretical approach to analyze nonlinear spectroscopy experiments based on the formalism of quantum state (QST) and process tomography (QPT). In it, a quantum system is regarded as a black box which can be systematically tested in its performance, very much like an electric circuit is tested by sending a series of inputs and measuring the corresponding outputs, but in the quantum sense. We show how to collect a series of pump-probe or photon-echo experiments, and by varying polarizations and frequency components of the perturbations, reconstruct the quantum state (density matrix) of the probed system for a set of different initial conditions, hence simultaneously achieving QST and QPT. Furthermore, we establish the conditions under which a set of two-dimensional optical spectra also yield the desired results. Simulations of noisy experiments with inhomogeneous broadening show the feasibility of the protocol. A spin-off of this work is our suggestion of a "witness" that distinguishes between spectroscopic time-oscillations corresponding to vibronic only coherences against their electronic counterparts. We conclude by noting that the QST/QPT approach to nonlinear spectroscopy sheds light on the amount of quantum information contained in the output of an experiment, and hence, is a convenient theoretical and experimental paradigm even when the goal is not to perform a full QPT. In the second part of the thesis, we discuss a methodology to study the electronic dynamics of complex molecular systems, such as photosynthetic units, in the framework of time-dependent density functional theory (TD-DFT). By treating the electronic degrees of freedom as the system and the nuclear ones as the bath, we develop an open quantum systems (OQS) approach to TD-DFT. We formally extend the theoretical backbone of TD-DFT to OQS, and suggest a Markovian bath functional which can be readily included in electronic structure codes.
PREFACE: International Conference on Quantum Optics and Quantum Information (icQoQi) 2013
2014-11-01
Quantum Information can be understood as being naturally derived from a new understanding of information theory when quantum systems become information carriers and quantum effects become non negligible. Experiments and the realization of various interesting phenomena in quantum information within the established field of quantum optics have been reported, which has provided a very convenient framework for the former. Together, quantum optics and quantum information are among the most exciting areas of interdisciplinary research in modern day science which cover a broad spectrum of topics, from the foundations of quantum mechanics and quantum information science to the introduction of new types of quantum technologies and metrology. The International Conference on Quantum Optics and Quantum Information (icQoQi) 2013 was organized by the Faculty of Science, International Islamic University Malaysia with the objective of bringing together leading academic scientists, researchers and scholars in the domain of interest from around the world to share their experiences and research results about all aspects of quantum optics and quantum information. While the event was organized on a somewhat modest scale, it was in fact a rather fruitful meeting for established researchers and students as well, especially for the local scene where the field is relatively new. We would therefore, like to thank the organizing committee, our advisors and all parties for having made this event successful and last but not least would extend our sincerest gratitude to IOP for publishing these selected papers from icQoQi2013 in Journal of Physics: Conference Series.
Information Nano-Technologies: Transition from Classical to Quantum
Vlasov, Alexander Yu.
2009-01-01
In this presentation are discussed some problems, relevant with application of information technologies in nano-scale systems and devices. Some methods already developed in quantum information technologies may be very useful here. Here are considered two illustrative models: representation of data by quantum bits and transfer of signals in quantum wires.
Multiparty secret sharing of quantum information based on entanglement swapping
International Nuclear Information System (INIS)
A protocol of multiparty secret sharing of quantum information based on entanglement swapping is analyzed. In this protocol, Bell states are needed in order to realize the quantum information secret sharing and it is convenient to realize the quantum secret sharing among the members of any subset of users
Directory of Open Access Journals (Sweden)
Devaux Yvan
2011-07-01
Full Text Available Abstract Background Inflammation plays an important role in cardiac repair after myocardial infarction (MI. Nevertheless, the systems-level characterization of inflammation proteins in MI remains incomplete. There is a need to demonstrate the potential value of molecular network-based approaches to translational research. We investigated the interplay of inflammation proteins and assessed network-derived knowledge to support clinical decisions after MI. The main focus is the prediction of clinical outcome after MI. Methods We assembled My-Inflamome, a network of protein interactions related to inflammation and prognosis in MI. We established associations between network properties, disease biology and capacity to distinguish between prognostic categories. The latter was tested with classification models built on blood-derived microarray data from post-MI patients with different outcomes. This was followed by experimental verification of significant associations. Results My-Inflamome is organized into modules highly specialized in different biological processes relevant to heart repair. Highly connected proteins also tend to be high-traffic components. Such bottlenecks together with genes extracted from the modules provided the basis for novel prognostic models, which could not have been uncovered by standard analyses. Modules with significant involvement in transcriptional regulation are targeted by a small set of microRNAs. We suggest a new panel of gene expression biomarkers (TRAF2, SHKBP1 and UBC with high discriminatory capability. Follow-up validations reported promising outcomes and motivate future research. Conclusion This study enhances understanding of the interaction network that executes inflammatory responses in human MI. Network-encoded information can be translated into knowledge with potential prognostic application. Independent evaluations are required to further estimate the clinical relevance of the new prognostic genes.
Tuning entanglement in quantum computation and information
Huang, Zhen
This thesis studies four related projects: tuning entanglement for spin systems, de-coherence and dynamics of entanglement, entanglement as measure of electron correlation in chemical systems and quantum algorithms to search for global minima. Chapter 1 presents a general introduction and the motivation for these research areas. It is composed of a brief review of the history and the future of modern computers and the state-of-art areas in quantum computation and information. Chapter 2 will be dedicated to introducing the concept of entanglement, its importance, quantification and applications. Then in Chapter 3, the properties of a set of localized spins, which are coupled to an external magnetic field through exchange interaction, are investigated. It is shown that entanglement can be controlled and tuned by varying the anisotropy parameter in the Hamiltonian, and by introducing impurities into the systems. Furthermore, the scheme for amplifying the internal entanglement by external interaction is also studied. In Chapter 4, the applications of the entanglement concept for de-coherence and dynamics is considered. In particular, the dynamics of entanglement for one-dimensional spin systems, which are coupled through nearest neighbor exchange interaction and subject to an external time-dependent magnetic field, is investigated. Using the two-site density matrix, the time-dependent entanglement of formation between nearest neighbor qubits is calculated. It is found that the entanglement can be localized between nearest neighbor qubits for certain values of the external time-dependent magnetic field. In quantum chemistry calculations, the correlation energy is defined as the difference between the Hartree-Fock limit energy and the exact solution of the non-relativistic Schrodinger equation. In Chapter 5, the application of entanglement as an alternative measure of the electron correlation in quantum chemistry calculations is proposed. Entanglement is directly observable and it is one of the most striking properties of quantum mechanics. Finally, Chapter 6 presents the latest research results in developing quantum algorithms for searching the global minima. In this Chapter, the modified Grover's quantum algorithm using modest numbers of quantum bits to find a global minimum for real problems is demonstrated.
Generalized mutual information of quantum critical chains
Alcaraz, F. C.; Rajabpour, M. A.
2015-04-01
We study the generalized mutual information I˜n of the ground state of different critical quantum chains. The generalized mutual information definition that we use is based on the well established concept of the Rényi divergence. We calculate this quantity numerically for several distinct quantum chains having either discrete Z (Q ) symmetries (Q -state Potts model with Q =2 ,3 ,4 and Z (Q ) parafermionic models with Q =5 ,6 ,7 ,8 and also Ashkin-Teller model with different anisotropies) or the U (1 ) continuous symmetries (Klein-Gordon field theory, X X Z and spin-1 Fateev-Zamolodchikov quantum chains with different anisotropies). For the spin chains these calculations were done by expressing the ground-state wave functions in two special bases. Our results indicate some general behavior for particular ranges of values of the parameter n that defines I˜n. For a system, with total size L and subsystem sizes ? and L -? , the I˜n has a logarithmic leading behavior given by c/˜n4 log[L/? sin(?/? L ) ] where the coefficient c˜n is linearly dependent on the central charge c of the underlying conformal field theory describing the system's critical properties.
Generalized mutual informations of quantum critical chains
Alcaraz, F C
2015-01-01
We study the R\\'enyi mutual information $\\tilde{I}_n$ of the ground state of different critical quantum chains. The R\\'enyi mutual information definition that we use is based on the well established concept of the R\\'enyi divergence. We calculate this quantity numerically for several distinct quantum chains having either discrete $Z(Q)$ symmetries (Q-state Potts model with $Q=2,3,4$ and $Z(Q)$ parafermionic models with $Q=5,6,7,8$ and also Ashkin-Teller model with different anisotropies) or the $U(1)$ continuous symmetries(Klein-Gordon field theory, XXZ and spin-1 Fateev-Zamolodchikov quantum chains with different anisotropies). For the spin chains these calculations were done by expressing the ground-state wavefunctions in two special basis. Our results indicate some general behavior for particular ranges of values of the parameter $n$ that defines $\\tilde{I}_n$. For a system, with total size $L$ and subsystem sizes $\\ell$ and $L-\\ell$, the$\\tilde{I}_n$ has a logarithmic leading behavior given by $\\frac{\\til...
Storing Quantum Information via Atomic Dark Resonances
Caruso, Filippo
2010-01-01
In this thesis, after a brief review of some concepts of Quantum Optics, we analyze a three-level atomic system in the conditions of electromagnetically induced transparency (EIT), and we investigate the propagation of a gaussian pulse along a cigar-shaped cloud of both cold and hot atoms in EIT regime. In particular, we show that it is possible to amplify a slow propagating pulse without population inversion. We also analyze the regime of anomalous light propagation showing that it is possible to observe superluminal energy propagation. In these conditions, it is possible to imprint reversibly ('write') the information carried by the photons onto the atoms, specifically as a coherent pattern of atomic spins, and later the information stored in the atomic spins can be transferred back ('read') to the light field, implementing in this way a quantum memory. Besides, we analyze the propagation of a quantum field in an EIT medium sustaining dark state polaritons (DSP) in a quasi-particle picture. Here, the decohe...
Relativistic Quantum Information in Detectors-Field Interactions
Hu, B L; Louko, Jorma
2012-01-01
We explore the use of moving Unruh-DeWitt detectors and other models of detector-field interaction in probing some key issues in relativistic quantum information science, from entanglement dynamics to quantum teleportation.
Controlling the flow of information in quantum cloners: Asymmetric cloning
Buzek, V; Hillery, M.; Bednik, R.
1998-01-01
We show that the distribution of information at the output of the quantum cloner can be efficiently controlled via preparation of the quantum cloner. We present a universal cloning network with the help of which asymmetric cloning can be performed.
A dynamical point of view of Quantum Information: Wigner measures
Baraviera, A.; Lardizabal, C. F.; Lopes, A. O.; Cunha, M. Terra
2011-01-01
We analyze a known version of the discrete Wigner function and some connections with Quantum Iterated Funcion Systems. This paper is a follow up of "A dynamical point of view of Quantum Information: entropy and pressure" by the same authors.
Quantum: information theory: technological challenge; Computacion Cuantica: un reto tecnologico
Energy Technology Data Exchange (ETDEWEB)
Calixto, M.
2001-07-01
The new Quantum Information Theory augurs powerful machines that obey the entangled logic of the subatomic world. Parallelism, entanglement, teleportation, no-cloning and quantum cryptography are typical peculiarities of this novel way of understanding computation. (Author) 24 refs.
Quantum Mutual Information Along Unitary Orbits
Jevtic, Sania; Rudolph, Terry
2011-01-01
Motivated by thermodynamic considerations, we analyse the variation of the quantum mutual information on a unitary orbit of a bipartite system state, with and without global constraints such as energy conservation. We solve the full optimisation problem for the smallest system of two qubits, and explore thoroughly the effect of unitary operations on the space of reduced-state spectra. We then provide applications of these ideas to physical processes within closed quantum systems, such as a generalized collision model approach to thermal equilibrium and a global Maxwell demon playing tricks on local observers. For higher dimensions, the maximization of correlations is relatively straightforward, however the minimisation of correlations displays non-trivial structures. We characterise a set of separable states in which the minimally correlated state resides, and find a collection of classically correlated states admitting a particular "Young tableau" form. Furthermore, a partial order exists on this set with re...
Quantum information storage using tunable flux qubits
International Nuclear Information System (INIS)
We present details and results for a superconducting quantum bit (qubit) design in which a tunable flux qubit is coupled strongly to a transmission line. Quantum information storage in the transmission line is demonstrated with a dephasing time of T2?2.5 ?s. However, energy lifetimes of the qubit are found to be short (?10 ns) and not consistent with predictions. Several design and material changes do not affect qubit coherence times. In order to determine the cause of these short coherence times, we fabricated standard flux qubits based on a design which was previously successfully used by others. Initial results show significantly improved coherence times, possibly implicating losses associated with the large size of our qubit. (topical review)
Can non-private channels transmit quantum information?
Smith, Graeme; Smolin, John
2008-01-01
We study the power of quantum channels with little or no capacity for private communication. Because privacy is a necessary condition for quantum communication, one might expect that such channels would be of little use for transmitting quantum states. Nevertheless, we find strong evidence that there are pairs of such channels that, when used together, can transmit far more quantum information than the sum of their individual private capacities. Because quantum transmissions...
Hybrid ququart-encoded quantum cryptography protected by Kochen-Specker contextuality
International Nuclear Information System (INIS)
Quantum cryptographic protocols based on complementarity are not secure against attacks in which complementarity is imitated with classical resources. The Kochen-Specker (KS) theorem provides protection against these attacks, without requiring entanglement or spatially separated composite systems. We analyze the maximum tolerated noise to guarantee the security of a KS-protected cryptographic scheme against these attacks and describe a photonic realization of this scheme using hybrid ququarts defined by the polarization and orbital angular momentum of single photons.
Exploring molecular equilibria using quantum information measures
International Nuclear Information System (INIS)
The quantum information-theoretic description of electron probabilities and currents in molecules is extended. The Harriman-Zumbach-Maschke framework of equidensity orbitals is reexamined and the nonclassical Fisher information contribution it generates is used to determine the system equilibrium states for the fixed (ground-state) electron density/energy. The lowest of such variational ''thermodynamic'' states can in general exhibit the space-dependent phase and hence also nonvanishing probability current. The phase/current feature of electronic states in Harriman's representation is emphasized throughout, the probability interpretation of its key constructs is given, and the phase shifts accompanying interactions between the equidensity orbitals are examined. The phase-''temperature'' concept is introduced as the information-theoretic descriptor of probability currents in molecules and their fragments. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Bounds on Information and the Security of Quantum Cryptography
Biahm, E.; Mor, T
1996-01-01
Strong attacks against quantum key distribution use quantum memories and quantum gates to attack directly the final key. In this paper we extend a novel security result recently obtained, to demonstrate proofs of security against a wide class of such attacks. To reach this goal we calculate information-dependent reduced density matrices, we study the geometry of quantum mixed states, and we find bounds on the information leaked to an eavesdropper. Our result suggests that qu...
Information leakage resistant quantum dialogue against collective noise
Ye, TianYu
2014-12-01
In this paper, two information leakage resistant quantum dialogue (QD) protocols over a collective-noise channel are proposed. Decoherence-free subspace (DFS) is used to erase the influence from two kinds of collective noise, i.e., collective-dephasing noise and collective-rotation noise, where each logical qubit is composed of two physical qubits and free from noise. In each of the two proposed protocols, the secret messages are encoded on the initial logical qubits via two composite unitary operations. Moreover, the single-photon measurements rather than the Bell-state measurements or the more complicated measurements are needed for decoding, making the two proposed protocols easier to implement. The initial state of each logical qubit is privately shared between the two authenticated users through the direct transmission of its auxiliary counterpart. Consequently, the information leakage problem is avoided in the two proposed protocols. Moreover, the detailed security analysis also shows that Eve's several famous active attacks can be effectively overcome, such as the Trojan horse attack, the intercept-resend attack, the measure-resend attack, the entangle-measure attack and the correlation-elicitation (CE) attack.
Vicary, Jamie
2012-01-01
We propose a 2-categorical formalism for describing classical information, quantum systems, and their interactions, based on the principle that classical information can be encoded as correlations between quantum systems. Applying this in the 2-category of 2-Hilbert spaces recovers ordinary quantum theory. The formalism gives a simple, graphical way to describe the specification and implementation of certain quantum procedures, which we use to investigate quantum teleportati...
Quantum Stochastics and Information Statistics, Filtering and Control
Belavkin, V. P.; Gut?, M.
2008-08-01
pt. A. Quantum probability and analysis. Approximation via toy Fock space - the vacuum-adapted viewpoint / A. C. R. Belton. Regular solutions of quantum stochastic differential equations / F. Fagnola. From algebraic to analytic double product integrals / R. Hudson. Product systems; a survey with commutants in view / M. Skeide. Clifford algebras, random graphs, and quantum random variables / R. Schott & G. S. Staples. The set of density operators modelled on an Orlicz space / R. F. Streater. Quantum extensions of the classical domination principle / V. Umanità. Analysis in operator spaces / B. Zegarli?ski -- pt. B. Quantum statistics, filtering and control. Quantum filtering and optimal control / V. P. Belavkin & S. Edwards. On the separation principle in quantum control / L. Bouten & R. van Handel. Conciliation of Bayes and pointwise quantum state estimation / R. D. Gill. Optimal quantum feedback for canonical observables / J. Gough. Feedback control of quantum systems / M. James. Local asymptotic normality and optimal estimation for d-dimensional quantum systems / J. Kahn & M. Guza -- pt. C. Quantum measurements and information. Information gain in quantum continual measurements / A. Barchielli & G. Lupieri. Noisy qutrit channel / A. Chici?ska & K. W?dkiewicz. Additivity of entangled channel capacity given quantum input states / V. P. Belavkin & X. Dai. Classical coding and the Cauchy-Schwarz inequality / B. Janssens. Note on information transmission in quantum systems / N. Watanabe.
Decoding reality the universe as quantum information
Vedral, Vlatko
2010-01-01
In Decoding Reality, Vlatko Vedral offers a mind-stretching look at the deepest questions about the universe--where everything comes from, why things are as they are, what everything is. The most fundamental definition of reality is not matter or energy, he writes, but information--and it is the processing of information that lies at the root of all physical, biological, economic, and social phenomena. This view allows Vedral to address a host of seemingly unrelated questions: Why does DNA bind like it does? What is the ideal diet for longevity? How do you make your first million dollars? We can unify all through the understanding that everything consists of bits of information, he writes, though that raises the question of where these bits come from. To find the answer, he takes us on a guided tour through the bizarre realm of quantum physics. At this sub-sub-subatomic level, we find such things as the interaction of separated quantum particles--what Einstein called "spooky action at a distance." In fact, V...
Jaiswal, N; Ray, W.; Slobounov, S.
2010-01-01
Visual-spatial working memory tasks can be decomposed into encoding, and retrieval phases. It was hypothesized that encoding of visual-spatial information is cognitively more challenging than retrieval. This was tested by combining Electroencephalography with a Virtual Reality paradigm to observe the modulation in EEG activity. EEG power analysis results demonstrated an increase in theta activity during encoding in comparison to retrieval whereas alpha activity was significantly higher for re...
Serafini, A; Plenio, M B
2008-01-01
We present a detailed study on the possibility of manipulating quantum information encoded in the "radial" modes of arrays of trapped ions (i.e., in the ions' oscillations orthogonal to the trap's main axis). In such systems, because of the tightness of transverse confinement, the radial modes pertaining to different ions can be addressed individually. In the first part of the paper we show that, if local control of the radial trapping frequencies is available, any linear optical and squeezing operation on the locally defined modes - on single as well as on many modes - can be reproduced by manipulating the frequencies. Then, we proceed to describe schemes apt to generate unprecedented degrees of bipartite and multipartite continuous variable entanglement under realistic noisy working conditions, and even restricting only to a global control of the trapping frequencies. Furthermore, we consider the transmission of the quantum information encoded in the radial modes along the array of ions, and show it to be p...
Information measures and classicality in quantum mechanics
Anastopoulos, C
1999-01-01
We study information measures in quantu mechanics, with particular emphasis on providing a quantification of the notions of classicality and predictability. Our primary tool is the Shannon - Wehrl entropy I. We give a precise criterion for phase space classicality and argue that in view of this a) I provides a measure of the degree of deviation from classicality for closed system b) I - S (S the von Neumann entropy) plays the same role in open systems We examine particular examples in non-relativistic quantum mechanics. Finally, (this being one of our main motivations) we comment on field classicalisation on early universe cosmology.
Completely Reducible maps in Quantum Information Theory
Cariello, Daniel
2014-01-01
In order to compute the Schmidt decomposition of $A\\in M_k\\otimes M_m$, we must consider an associated self-adjoint map. Here, we show that if $A$ is positive under partial transposition (PPT) or symmetric with positive coefficients (SPC) or invariant under realignment then its associated self-adjoint map is completely reducible. We give applications of this fact in Quantum Information Theory. We recover some theorems recently proved for PPT and SPC matrices and we prove the...
Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; YAMATO, ICHIRO
2015-01-01
We discuss foundational issues of quantum information biology (QIB) -- one of the most successful applications of the quantum formalism outside of physics. QIB provides a multi-scale model of information processing in bio-systems: from proteins and cells to cognitive and social systems. This theory has to be sharply distinguished from "traditional quantum biophysics". The latter is about quantum bio-physical processes, e.g., in cells or brains. QIB models the dynamics of inf...
Quantum Information Paradox: Real or Fictitious?
Mitra, Abhas
2009-01-01
One of the outstanding puzzles of theoretical physics is whether quantum information indeed gets lost in the case of Black Hole (BH) evaporation or accretion. Let us recall that Quantum Mechanics (QM) demands an upper limit on the acceleration of a test particle. On the other hand, it is pointed out here that, if a Schwarzschild BH would exist, the acceleration of the test particle would blow up at the event horizon in violation of QM. Thus the concept of an exact BH is in contradiction of QM and quantum gravity (QG). It is also reminded that the mass of a BH actually appears as an INTEGRATION CONSTANT of Einstein equations. And it has been shown that the value of this integration constant is actually zero. Thus even classically, there cannot be finite mass BHs though zero mass BH is allowed. It has been further shown that during continued gravitational collapse, radiation emanating from the contracting object gets trapped within it by the runaway gravitational field. As a consequence, the contracting body at...
Continuous-Variable Quantum Information Distributor: Reversible Telecloning
Zhang, Jing; Xie, Changde; Peng, Kunchi
2005-01-01
We propose a scheme of continuous-variable reversible telecloning, which broadcast the information of an unknown state without loss from a sender to several spatially separated receivers exploiting multipartite entanglement as quantum channels. In this scheme, quantum information of an unknown state is distributed into $M$ optimal clones and $M-1$ anticlones using $2M$% -partite entanglement. For the perfect quantum information distribution that is optimal cloning, $2M$-part...
Quantum Fisher information for moving three-level atom
Abdel-Khalek, S.
2013-12-01
Quantum information technology largely relies on a precious and fragile resource, call quantum entanglement, which exhibits a highly nontrivial manifestation of the coherent superposition of states of composite quantum systems. In this article, we discuss the correlation between the quantum entanglement measured by the von Neumann entropy and atomic quantum Fisher information by taking account the case of moving three-level atom. Our results show that there is a monotonic relation between the atomic quantum Fisher information and entanglement in the case of non-moving atom. On the other hand, we find that the atomic quantum Fisher information and entanglement exhibit an opposite changement behavior during the time evolution in the presence of atomic motion.
Quantum information processing: The case of vanishing interaction energy
Dugic, M.; Cirkovic, M. M.
2002-01-01
We investigate the rate of operation of quantum "black boxes" ("oracles") and point out the possibility of performing an operation by a quantum "oracle" whose average energy equals zero. This counterintuitive result not only presents a generalization of the recent results of Margolus and Levitin, but might also sharpen the conceptual distinction between the "classical" and the "quantum" information.
Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro
2015-07-01
We discuss foundational issues of quantum information biology (QIB)—one of the most successful applications of the quantum formalism outside of physics. QIB provides a multi-scale model of information processing in bio-systems: from proteins and cells to cognitive and social systems. This theory has to be sharply distinguished from "traditional quantum biophysics". The latter is about quantum bio-physical processes, e.g., in cells or brains. QIB models the dynamics of information states of bio-systems. We argue that the information interpretation of quantum mechanics (its various forms were elaborated by Zeilinger and Brukner, Fuchs and Mermin, and D' Ariano) is the most natural interpretation of QIB. Biologically QIB is based on two principles: (a) adaptivity; (b) openness (bio-systems are fundamentally open). These principles are mathematically represented in the framework of a novel formalism— quantum adaptive dynamics which, in particular, contains the standard theory of open quantum systems.
Quantum Computers: A New Paradigm in Information Technology
Directory of Open Access Journals (Sweden)
Mahesh S. Raisinghani
2001-01-01
Full Text Available The word 'quantum' comes from the Latin word quantus meaning 'how much'. Quantum computing is a fundamentally new mode of information processing that can be performed only by harnessing physical phenomena unique to quantum mechanics (especially quantum interference. Paul Benioff of the Argonne National Laboratory first applied quantum theory to computers in 1981 and David Deutsch of Oxford proposed quantum parallel computers in 1985, years before the realization of qubits in 1995. However, it may be well into the 21st century before we see quantum computing used at a commercial level for a variety of reasons discussed in this paper. The subject of quantum computing brings together ideas from classical information theory, computer science, and quantum physics. This paper discusses some of the current advances, applications, and chal-lenges of quantum computing as well as its impact on corporate computing and implications for management. It shows how quantum computing can be utilized to process and store information, as well as impact cryptography for perfectly secure communication, algorithmic searching, factorizing large numbers very rapidly, and simulating quantum-mechanical systems efficiently. A broad interdisciplinary effort will be needed if quantum com-puters are to fulfill their destiny as the world's fastest computing devices.
Canonical Energy is Quantum Fisher Information
Lashkari, Nima
2015-01-01
In quantum information theory, Fisher Information is a natural metric on the space of perturbations to a density matrix, defined by calculating the relative entropy with the unperturbed state at quadratic order in perturbations. In gravitational physics, Canonical Energy defines a natural metric on the space of perturbations to spacetimes with a Killing horizon. In this paper, we show that the Fisher information metric for perturbations to the vacuum density matrix of a ball-shaped region B in a holographic CFT is dual to the canonical energy metric for perturbations to a corresponding Rindler wedge R_B of Anti-de-Sitter space. Positivity of relative entropy at second order implies that the Fisher information metric is positive definite. Thus, for physical perturbations to anti-de-Sitter spacetime, the canonical energy associated to any Rindler wedge must be positive. This second-order constraint on the metric extends the first order result from relative entropy positivity that physical perturbations must sat...
Entanglement, Information, and the Interpretation of Quantum Mechanics
Jaeger, Gregg
2009-01-01
This book explores the nature of quantum entanglement and quantum information and their role in the quantum world. Their relations to a number of key experiments and thought experiments in the history of quantum physics are considered, as is a range of interpretations of quantum mechanics that have been put forward as a means of understanding the fundamental nature of microphysics - the traditionally accepted domain of quantum mechanics - and in some cases, the universe as a whole. In this way, the book reveals the deep significance of entanglement and quantum information for our understanding of the physical world. This book is a major accomplishment and invaluable contribution -- Arkady Plotnitsky An encyclopedic treatment of conceptual quantum mechanics as seen from a very up-to-date point of view --Tom Toffoli A mine of ideas for physicists, philosophers, and all intellectuals interested in this scientific revolution -- Giacomo Mauro D'Ariano
Cole, Charles
2000-01-01
Discusses how to increase user satisfaction by designing information retrieval systems that inform the user while the user is interacting online. Models the information processing operations of a user who has received an information message from the system and is stimulated into grasping at a higher understanding of the information need. (Contains…
A neural-network-like quantum information processing system
Perus, Mitja; Bischof, Horst
2003-01-01
The Hopfield neural networks and the holographic neural networks are models which were successfully simulated on conventional computers. Starting with these models, an analogous fundamental quantum information processing system is developed in this article. Neuro-quantum interaction can regulate the "collapse"-readout of quantum computation results. This paper is a comprehensive introduction into associative processing and memory-storage in quantum-physical framework.
Quantum-Classical Hybrid for Information Processing
Zak, Michail
2011-01-01
Based upon quantum-inspired entanglement in quantum-classical hybrids, a simple algorithm for instantaneous transmissions of non-intentional messages (chosen at random) to remote distances is proposed. The idea is to implement instantaneous transmission of conditional information on remote distances via a quantum-classical hybrid that preserves superposition of random solutions, while allowing one to measure its state variables using classical methods. Such a hybrid system reinforces the advantages, and minimizes the limitations, of both quantum and classical characteristics. Consider n observers, and assume that each of them gets a copy of the system and runs it separately. Although they run identical systems, the outcomes of even synchronized runs may be different because the solutions of these systems are random. However, the global constrain must be satisfied. Therefore, if the observer #1 (the sender) made a measurement of the acceleration v(sub 1) at t =T, then the receiver, by measuring the corresponding acceleration v(sub 1) at t =T, may get a wrong value because the accelerations are random, and only their ratios are deterministic. Obviously, the transmission of this knowledge is instantaneous as soon as the measurements have been performed. In addition to that, the distance between the observers is irrelevant because the x-coordinate does not enter the governing equations. However, the Shannon information transmitted is zero. None of the senders can control the outcomes of their measurements because they are random. The senders cannot transmit intentional messages. Nevertheless, based on the transmitted knowledge, they can coordinate their actions based on conditional information. If the observer #1 knows his own measurements, the measurements of the others can be fully determined. It is important to emphasize that the origin of entanglement of all the observers is the joint probability density that couples their actions. There is no centralized source, or a sender of the signal, because each receiver can become a sender as well. An observer receives a signal by performing certain measurements synchronized with the measurements of the others. This means that the signal is uniformly and simultaneously distributed over the observers in a decentralized way. The signals transmit no intentional information that would favor one agent over another. All the sequence of signals received by different observers are not only statistically equivalent, but are also point-by-point identical. It is important to assume that each agent knows that the other agent simultaneously receives the identical signals. The sequences of the signals are true random, so that no agent could predict the next step with the probability different from those described by the density. Under these quite general assumptions, the entangled observers-agents can perform non-trivial tasks that include transmission of conditional information from one agent to another, simple paradigm of cooperation, etc. The problem of behavior of intelligent agents correlated by identical random messages in a decentralized way has its own significance: it simulates evolutionary behavior of biological and social systems correlated only via simultaneous sensoring sequences of unexpected events.
Quantum information processing in collective-rotating decoherence-free subspace
Su, Shi-Lei; Wang, Hong-Fu; Zhang, Shou
2015-06-01
Using the atomic state encoded in the collective-rotating decoherence-free subspace (CRDFS), two methods to construct the hybrid-controlled-phase-flip gate between photon and the single logic qubit are presented assisted by the cavity input-output process. Then, ways to realize the common single-qubit operations in CRDFS are given out. Based on the former gate and single-qubit operations, methods to construct the parity gate and controlled-phase gate in CRDFS are discussed. Next, two ways to realize the Bell-state measurement and the approach to realize quantum information transfer in CRDFS are proposed. Final discussion and numerical simulation reveal that our work is feasible and useful for quantum information processing tasks in CRDFS.
Informational approach to the quantum symmetrization postulate
International Nuclear Information System (INIS)
A remarkable feature of quantum theory is that particles with identical intrinsic properties must be treated as indistinguishable if the theory is to give valid predictions in all cases. In the quantum formalism, indistinguishability is expressed via the symmetrization postulate (Dirac P 1926 Proc. R. Soc. A 112 661, Heisenberg W 1926 Z. Phys. 38 411), which restricts a system of identical particles to the set of symmetric states (‘bosons’) or the set of antisymmetric states (‘fermions’). However, the physical basis and range of validity of the symmetrization postulate has not been established. A well-known topological derivation of the postulate implies that its validity depends on the dimensionality of the space in which the particles move (Laidlaw M and DeWitt C 1971 Phys. Rev. D 3 1375–8, Leinaas J M and Myrheim J 1977 Il Nuovo Cimento B 37 1–23). Here we show that the symmetrization postulate can be derived by strictly adhering to the informational requirement that particles which cannot be experimentally distinguished from one another are not labelled. Our key novel postulate is the operational indistinguishability postulate, which posits that the amplitude of a process involving several indistinguishable particles is determined by the amplitudes of all possible transitions of these particles when treated as distinguishable. The symmetrization postulate follows by requiring consistency with the rest of the quantum formalism. The derivation implies that the symmetrization postulate admits no natural variants. In particular, the possibility that identical particles generically exhibit anyonic behavior in two dimensions is excluded. (paper)
H1 photonic crystal cavitites for hybrid quantum information protocols
Hagemeier, Jenna; Bonato, Cristian; Truong, Tuan-Anh; Kim, Hyochul; Beirne, Gareth J.; Bakker, Morten; van Exter, Martin P.; Luo, Yunqiu; Petroff, Pierre; Bouwmeester, Dirk
2012-01-01
Hybrid quantum information protocols are based on local qubits, such as trapped atoms, NV centers, and quantum dots, coupled to photons. The coupling is achieved through optical cavities. Here we demonstrate far-field optimized H1 photonic crystal membrane cavities combined with an additional back reflection mirror below the membrane that meet the optical requirements for implementing hybrid quantum information protocols. Using numerical optimization we find that 80% of the ...
Quantum side information, uncertainty relations, extractors, channel simulations
Berta, Mario Andrea
2013-01-01
In the first part of this thesis, we discuss the algebraic approach to classical and quantum physics and develop information theoretic concepts within this setup. In the second part, we discuss the uncertainty principle in quantum mechanics. The principle states that even if we have full classical information about the state of a quantum system, it is impossible to deterministically predict the outcomes of all possible measurements. In comparison, the perspective of a q...
Quantum Conditional Mutual Information, Reconstructed States, and State Redistribution
Brandao, Fernando G. S. L.; Harrow, Aram W.; Oppenheim, Jonathan; Strelchuk, Sergii
2014-01-01
We give two strengthenings of an inequality for the quantum conditional mutual information of a tripartite quantum state recently proved by Fawzi and Renner, connecting it with the ability to reconstruct the state from its bipartite reductions. Namely we show that the conditional mutual information is an upper bound on the regularised relative entropy distance between the quantum state and its reconstructed version. It is also an upper bound for the measured relative entropy...
Protecting Information Against Computational Errors and Quantum Erasures via Concatenation
Santos, Gilson O. dos; de Assis, Francisco M.
2013-01-01
In this work, we introduce a new concatenation scheme which aims at protecting information against the occurrence of both computational errors and quantum erasures. According to our scheme, the internal code must be a quantum loss-correcting code that does not perform measurements, while the external code must be a quantum error-correcting code. We illustrate the concatenation proposed with an example in which one qubit of information is protected against the occurrence of t...
Information criteria for efficient quantum state estimation
Yin, J O S
2011-01-01
Recently several more efficient versions of quantum state tomography have been proposed, with the purpose of making tomography feasible even for many-qubit states. The number of state parameters to be estimated is reduced by tentatively introducing certain simplifying assumptions on the form of the quantum state, and subsequently using the data to rigorously verify these assumptions. The simplifying assumptions considered so far were (i) the state can be well approximated to be of low rank, or (ii) the state can be well approximated as a matrix product state. We add one more method in that same spirit: we allow in principle any model for the state, using any (small) number of parameters (which can, e.g., be chosen to have a clear physical meaning), and the data are used to verify the model. The proof that this method is valid cannot be as strict as in above-mentioned cases, but is based on well-established statistical methods that go under the name of "information criteria." We exploit here, in particular, th...
Information-Disturbance Tradeoff in Quantum State Discrimination
Buscemi, Francesco; Sacchi, Massimiliano F.
2006-01-01
When discriminating between two pure quantum states, there exists a quantitative tradeoff between the information retrieved by the measurement and the disturbance caused on the unknown state. We derive the optimal tradeoff and provide the corresponding quantum measurement. Such an optimal measurement smoothly interpolates between the two limiting cases of maximal information extraction and no measurement at all.
Introduction to Physical Implementations of Quantum Information Processing
Dürr, Stephan
2013-01-01
This was a contribution to the lecture notes on the 44th IFF Spring School held at Forschungszentrum J\\"ulich in 2013 on "Quantum Information Processing". The school as a whole had a strong focus on solid state systems. It was the purpose of this contribution to give a brief pedagogical introduction into quantum information processing with atoms and ions.
Secure sequential transmission of quantum information
Jeong, Kabgyun; Kim, Jaewan
2015-06-01
We propose a quantum communication protocol that can be used to transmit any quantum state, one party to another via several intermediate nodes, securely on quantum communication network. The scheme makes use of the sequentially chained and approximate version of private quantum channels satisfying certain commutation relation of n-qubit Pauli operations. In this paper, we study the sequential structure, security analysis, and efficiency of the quantum sequential transmission protocol in depth.
Secure sequential transmission of quantum information
Jeong, Kabgyun; Kim, Jaewan
2015-09-01
We propose a quantum communication protocol that can be used to transmit any quantum state, one party to another via several intermediate nodes, securely on quantum communication network. The scheme makes use of the sequentially chained and approximate version of private quantum channels satisfying certain commutation relation of n-qubit Pauli operations. In this paper, we study the sequential structure, security analysis, and efficiency of the quantum sequential transmission protocol in depth.
Secure sequential transmission of quantum information
Jeong, Kabgyun; Kim, Jaewan
2015-01-01
We propose a quantum communication protocol that can be used to transmit any quantum state, one party to another via several intermediate nodes, securely on quantum communication network. The scheme makes use of the sequentially chained and approximate version of private quantum channels satisfying certain commutation relation of $n$-qubit Pauli operations. In this paper, we study the sequential structure, security analysis, and efficiency of the quantum sequential transmiss...
Andreas G. Andreou; Pouliquen, Philippe O.; Thomas S. Murray
2013-01-01
We discuss the architecture and design of parallel sampling front ends for analog to information (A2I) converters. As a way of example, we detail the design of a custom 0.5 µm CMOS implementation of a mixed signal parallel sampling encoder architecture. The system consists of configurable parallel analog processing channels, whose output is sampled by traditional analog-to-digital converters (ADCs). The analog front-end modulates the signal of interest with a high-speed digital chipping seque...
Directory of Open Access Journals (Sweden)
Andreas G. Andreou
2013-03-01
Full Text Available We discuss the architecture and design of parallel sampling front ends for analog to information (A2I converters. As a way of example, we detail the design of a custom 0.5 µm CMOS implementation of a mixed signal parallel sampling encoder architecture. The system consists of configurable parallel analog processing channels, whose output is sampled by traditional analog-to-digital converters (ADCs. The analog front-end modulates the signal of interest with a high-speed digital chipping sequence and integrates the result prior to sampling at a low rate. An FPGA is employed to generate the chipping sequences and process the digitized samples.
Realism and Antirealism in Informational Foundations of Quantum Theory
Directory of Open Access Journals (Sweden)
Tina Bilban
2014-08-01
Full Text Available Zeilinger-Brukner's informational foundations of quantum theory, a theory based on Zeilinger's foundational principle for quantum mechanics that an elementary system carried one bit of information, explains seemingly unintuitive quantum behavior with simple theoretical framework. It is based on the notion that distinction between reality and information cannot be made, therefore they are the same. As the critics of informational foundations of quantum theory show, this antirealistic move captures the theory in tautology, where information only refers to itself, while the relationships outside the information with the help of which the nature of information would be defined are lost and the questions "Whose information? Information about what?" cannot be answered. The critic's solution is a return to realism, where the observer's effects on the information are neglected. We show that radical antirealism of informational foundations of quantum theory is not necessary and that the return to realism is not the only way forward. A comprehensive approach that exceeds mere realism and antirealism is also possible: we can consider both sources of the constraints on the information, those coming from the observer and those coming from the observed system/nature/reality. The information is always the observer's information about the observed. Such a comprehensive philosophical approach can still support the theoretical framework of informational foundations of quantum theory: If we take that one bit is the smallest amount of information in the form of which the observed reality can be grasped by the observer, we can say that an elementary system (grasped and defined as such by the observer correlates to one bit of information. Our approach thus explains all the features of the quantum behavior explained by informational foundations of quantum theory: the wave function and its collapse, entanglement, complementarity and quantum randomness. However, it does so in a more comprehensive and intuitive way. The presented approach is close to Husserl's explanation of the relationship between reality and the knowledge we have about it, and to Bohr's personal explanation of quantum mechanics, the complexity of which has often been missed and simplified to mere antirealism. Our approach thus reconnects phenomenology with contemporary philosophy of science and introduces the comprehensive approach that exceeds mere realism and antirealism to the field of quantum theories with informational foundations, where such an approach has not been taken before.Quanta 2014; 3: 32–42.
Adaptive Measurements in the Optical Quantum Information Laboratory
Wiseman, H M; Bartlett, S D; Higgins, B L; Pryde, G J
2009-01-01
Adaptive techniques make practical many quantum measurements that would otherwise be beyond current laboratory capabilities. For example: they allow discrimination of nonorthogonal states with a probability of error equal to the Helstrom bound; they allow measurement of the phase of a quantum oscillator with accuracy approaching (or in some cases attaining) the Heisenberg limit; and they allow estimation of phase in interferometry with a variance scaling at the Heisenberg limit, using only single qubit measurement and control. Each of these examples has close links with quantum information, in particular experimental optical quantum information: the first is a basic quantum communication protocol; the second has potential application in linear optical quantum computing; the third uses an adaptive protocol inspired by the quantum phase estimation algorithm. We discuss each of these examples, and their implementation in the laboratory, but concentrate upon the last, which was published most recently [Higgins {\\...
Symmetrically private information retrieval based on blind quantum computing
Sun, Zhiwei; Yu, Jianping; Wang, Ping; Xu, Lingling
2015-05-01
Universal blind quantum computation (UBQC) is a new secure quantum computing protocol which allows a user Alice who does not have any sophisticated quantum technology to delegate her computing to a server Bob without leaking any privacy. Using the features of UBQC, we propose a protocol to achieve symmetrically private information retrieval, which allows a quantum limited Alice to query an item from Bob with a fully fledged quantum computer; meanwhile, the privacy of both parties is preserved. The security of our protocol is based on the assumption that malicious Alice has no quantum computer, which avoids the impossibility proof of Lo. For the honest Alice, she is almost classical and only requires minimal quantum resources to carry out the proposed protocol. Therefore, she does not need any expensive laboratory which can maintain the coherence of complicated quantum experimental setups.
Quantum Logic circuits for solid-state quantum information processing
Del Duce, A.
2010-01-01
This thesis describes research on the design of quantum logic circuits suitable for the experimental demonstration of a three-qubit quantum computation prototype. The design is based on a proposal for optically controlled, solid-state quantum logic gates. In this proposal, typically referred to as SFG model, the qubits are stored in the electron spin of donors in a solid-state substrate while the interactions between them are mediated through the optical excitation of control particles placed...
Brain Networks Subserving the Extraction of Sentence Information and Its Encoding to Memory
Hasson, Uri; NUSBAUM, HOWARD C.; Small, Steven L
2007-01-01
Sentences are the primary means by which people communicate information. The information conveyed by a sentence depends on how that sentence relates to what is already known. We conducted an fMRI study to determine how the brain establishes and retains this information. We embedded sentences in contexts that rendered them more or less informative and assessed which functional networks were associated with comprehension of these sentences and with memory for their content. We identified two su...
Classical and quantum Fisher information in the geometrical formulation of quantum mechanics
International Nuclear Information System (INIS)
The tomographic picture of quantum mechanics has brought the description of quantum states closer to that of classical probability and statistics. On the other hand, the geometrical formulation of quantum mechanics introduces a metric tensor and a symplectic tensor (Hermitian tensor) on the space of pure states. By putting these two aspects together, we show that the Fisher information metric, both classical and quantum, can be described by means of the Hermitian tensor on the manifold of pure states.
Classical and quantum Fisher information in the geometrical formulation of quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Facchi, Paolo [Dipartimento di Matematica, Universita di Bari, I-70125 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); MECENAS, Universita Federico II di Napoli and Universita di Bari (Italy); Kulkarni, Ravi [Vivekananda Yoga Research Foundation, Bangalore 560 080 (India); Man' ko, V.I., E-mail: manko@na.infn.i [P.N. Lebedev Physical Institute, Leninskii Prospect 53, Moscow 119991 (Russian Federation); Marmo, Giuseppe [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , I-80126 Napoli (Italy); INFN, Sezione di Napoli, I-80126 Napoli (Italy); MECENAS, Universita Federico II di Napoli and Universita di Bari (Italy); Sudarshan, E.C.G. [Department of Physics, University of Texas, Austin, TX 78712 (United States); Ventriglia, Franco [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , I-80126 Napoli (Italy); INFN, Sezione di Napoli, I-80126 Napoli (Italy); MECENAS, Universita Federico II di Napoli and Universita di Bari (Italy)
2010-11-01
The tomographic picture of quantum mechanics has brought the description of quantum states closer to that of classical probability and statistics. On the other hand, the geometrical formulation of quantum mechanics introduces a metric tensor and a symplectic tensor (Hermitian tensor) on the space of pure states. By putting these two aspects together, we show that the Fisher information metric, both classical and quantum, can be described by means of the Hermitian tensor on the manifold of pure states.
Spin-based quantum information processing with semiconductor quantum dots and cavity QED
Feng, Mang; D'Amico, Irene; Zanardi, Paolo; Rossi, Fausto
2002-01-01
A quantum information processing scheme is proposed with semiconductor quantum dots located in a high-Q single mode QED cavity. The spin degrees of freedom of one excess conduction electron of the quantum dots are employed as qubits. Excitonic states, which can be produced ultrafastly with optical operation, are used as auxiliary states in the realization of quantum gates. We show how properly tailored ultrafast laser pulses and Pauli-blocking effects, can be used to achieve...
Information Gain in Tomography-A Quantum Signature of Chaos
Madhok, Vaibhav; Riofrío, Carlos A.; Ghose, Shohini; Deutsch, Ivan H.
2014-01-01
We find quantum signatures of chaos in various metrics of information gain in quantum tomography. We employ a quantum state estimator based on weak collective measurements of an ensemble of identically prepared systems. The tomographic measurement record consists of a sequence of expectation values of a Hermitian operator that evolves under repeated application of the Floquet map of the quantum kicked top. We find an increase in information gain and, hence, higher fidelities in the reconstruction algorithm when the chaoticity parameter map increases. The results are well predicted by random matrix theory.
The information capacity of a single photon
Rohde, Peter P.; Fitzsimons, Joseph F.; Gilchrist, Alexei
2012-01-01
Quantum states of light are the obvious choice for communicating quantum information. To date, encoding information into the polarisation states of single photons has been widely used as these states form an natural closed two state qubit. However, photons are able to encode much more -- in principle infinite -- information via the continuous spatio-temporal degrees of freedom. Here we consider the information capacity of an optical quantum channel, such as an optical fibre,...
Entropy Transfer of Quantum Gravity Information Processing
Gyongyosi, Laszlo; Imre, Sandor
2015-05-01
We introduce the term smooth entanglement entropy transfer, a phenomenon that is a consequence of the causality-cancellation property of the quantum gravity environment. The causality-cancellation of the quantum gravity space removes the causal dependencies of the local systems. We study the physical effects of the causality-cancellation and show that it stimulates entropy transfer between the quantum gravity environment and the independent local systems of the quantum gravity space. The entropy transfer reduces the entropies of the contributing local systems and increases the entropy of the quantum gravity environment. We discuss the space-time geometry structure of the quantum gravity environment and the local quantum systems. We propose the space-time geometry model of the smooth entropy transfer. We reveal on a smooth Cauchy slice that the space-time geometry of the quantum gravity environment dynamically adapts to the vanishing causality. We prove that the Cauchy area expansion, along with the dilation of the Rindler horizon area of the quantum gravity environment, is a corollary of the causality-cancellation of the quantum gravity environment. This work was partially supported by the GOP-1.1.1-11-2012-0092 (Secure quantum key distribution between two units on optical fiber network) project sponsored by the EU and European Structural Fund, and by the COST Action MP1006.
Quantum secret sharing based on quantum error-correcting codes
International Nuclear Information System (INIS)
Quantum secret sharing(QSS) is a procedure of sharing classical information or quantum information by using quantum states. This paper presents how to use a [2k ? 1, 1, k] quantum error-correcting code (QECC) to implement a quantum (k, 2k ? 1) threshold scheme. It also takes advantage of classical enhancement of the [2k ? 1, 1, k] QECC to establish a QSS scheme which can share classical information and quantum information simultaneously. Because information is encoded into QECC, these schemes can prevent intercept-resend attacks and be implemented on some noisy channels. (general)
Multiplexed CV quantum teleportation for high rates in quantum communication
Christ, Andreas; Silberhorn, Christine
2012-01-01
A major challenge of today's quantum communication systems lies in the transmission of quantum information with high rates over long distances in the presence of unavoidable losses. Thereby the achievable quantum communication rate is fundamentally limited by the amount of energy that can be transmitted per use of the channel. It is hence vital to develop quantum communication protocols which encode quantum information as energy efficiently as possible. To this aim we investigate continuous-variable quantum teleportation as a method of distributing quantum information. We explore the possibility to encode information on multiple optical modes and derive upper and lower bounds on the achievable quantum channel capacities. This analysis enables us to benchmark single-mode vs. multi-mode entanglement resources. Our research reveals that multiplexing does not only feature an enhanced energy efficiency, significantly increasing the achievable quantum communication rates in comparison to single-mode coding, but als...
Physics Colloquium: The optical route to quantum information processing
Université de Genève
2011-01-01
Geneva University Physics Department 24, Quai Ernest Ansermet CH-1211 Geneva 4 Monday 11 April 2011 17h00 - Ecole de Physique, Auditoire Stückelberg The optical route to quantum information processing Prof. Terry Rudolph/Imperial College, London Photons are attractive as carriers of quantum information both because they travel, and can thus transmit information, but also because of their good coherence properties and ease in undergoing single-qubit manipulations. The main obstacle to their use in information processing is inducing an effective interaction between them in order to produce entanglement. The most promising approach in photon-based information processing architectures is so-called measurement-based quantum computing. This relies on creating upfront a multi-qubit highly entangled state (the cluster state) which has the remarkable property that, once prepared, it can be used to perform quantum computation by making only single qubit measurements. In this talk I will discuss generically the...
School on Advances in Quantum Information: Theory and Applications
2014-01-01
The Abdus Salam International Centre for Theoretical Physics (ICTP) in collaboration with the University Mohamed V Agdal in Rabat and the COST Action MP1006, is organizing a "School in Advances in Quantum Information: Theory and Applications" from 15 to 19 September 2014, followed by the "3rd Quantum Africa Conference: Advances in Quantum Sciences", from 22 to 26 Sep 2014, both events to be held at University Mohamed V Agdal in Rabat, Morocco. The last years have witnessed fast growing developments in the use of quantum mechanics in technology-oriented and information-related fields, including metrology, nano-devices development, biophysics together with computation, communication and cryptography. Topics as quantum entanglement, quantum coherence and decohering phenomena both in microscopic and mesoscopic systems have been attracting the interest of a growing number of researchers, especially young ones from developing countries. A School on these themes would provide an invaluable focus on the interdiscipl...
Decoherence, Control, and Symmetry in Quantum Computers
Bacon, D J
2003-01-01
In this thesis we describe methods for avoiding the detrimental effects of decoherence while at the same time still allowing for computation of the quantum information. The philosophy of the method discussed in the first part of this thesis is to use a symmetry of the decoherence mechanism to find robust encodings of the quantum information. Stability, control, and methods for using decoherence-free information in a quantum computer are presented with a specific emphasis on decoherence due to a collective coupling between the system and its environment. Universal quantum computation on such collective decoherence decoherence-free encodings is demonstrated. Rigorous definitions of control and the use of encoded universality in quantum computers are addressed. Explicit gate constructions for encoded universality on ion trap and exchange based quantum computers are given. In the second part of the thesis we examine physical systems with error correcting properties. We examine systems that can store quantum infor...
Quantum Gravity and Recovery of Information in Black Hole Evaporation
Nozari, Kourosh; Mehdipour, S. Hamid
2008-01-01
The Generalized Uncertainty Principle (GUP), motivated by current alternatives of quantum gravity, produces significant modifications to the Hawking radiation and the final stage of black hole evaporation. We show that incorporation of the GUP into the quantum tunneling process (based on the null-geodesic method) causes correlations between the tunneling probability of different modes in the black hole radiation spectrum. In this manner, the quantum information becomes encry...
Decoherence, Entanglement and Information Protection in Complex Quantum Systems
Akulin, V.M; Kurizki, G; Pellegrin, S
2005-01-01
This book is a collection of articles on the contemporary status of quantum mechanics, dedicated to the fundamental issues of entanglement, decoherence, irreversibility, information processing, and control of quantum evolution, with a view of possible applications. It has multidisciplinary character and is addressed at a broad readership in physics, computer science, chemistry, and electrical engineering. It is written by the world-leading experts in pertinent fields such as quantum computing, atomic, molecular and optical physics, condensed matter physics, and statistical physics.
Quantum Information Processing with Delocalized Qubits under Global Control
Fitzsimons, Joseph; Li XIAO; Benjamin, Simon C; Jones, Jonathan A.
2006-01-01
Any technology for quantum information processing (QIP) must embody within it quantum bits (qubits) and maintain control of their key quantum properties of superposition and entanglement. Typical QIP schemes envisage an array of physical systems, such as electrons or nuclei, with each system representing a given qubit. For adequate control, systems must be distinguishable either by physical separation or unique frequencies, and their mutual interactions must be individually ...
Some applications of uncertainty relations in quantum information
Majumdar, Archan S; Pramanik, Tanumoy
2014-01-01
We discuss some applications of various versions of uncertainty relations for both discrete and continuous variables in the context of quantum information theory. The Heisenberg uncertainty relation enables demonstration of the EPR paradox. Entropic uncertainty relations are used to reveal quantum steering for non-Gaussian continuous variable states. Entropic uncertainty relations for discrete variables are studied in the context of quantum memory where fine-graining yields ...
An informationally-complete unification of quantum spacetime and matter
Chen, Zeng-Bing
2014-01-01
It was known long ago that quantum theory and general relativity, two pillars of modern physics, are in sharp conflict in their foundations. Their fundamental inconsistencies render a consistent theory of quantum gravity the most challenging problem in physics. Here we propose an informationally-complete quantum field theory (ICQFT), which describes elementary particles, their gauge fields and gravity as a trinity without the Hilbert-space inconsistency of Einstein's equatio...
Quantum Stackelberg Duopoly with Continuous Distributed Incomplete Information
International Nuclear Information System (INIS)
A general model of the quantum Stackelberg duopoly is constructed by introducing the 'minimal' quantum structure into the Stackelberg duopoly with continuous distributed incomplete information, where both players only know the continuous distribution of the competitor's unit cost. In this model, the cases with complete information, discrete distributed incomplete information, and continuous distributed asymmetric information are all involved. Because of different roles played by the total information uncertainty and the information asymmetry, the game exhibits some new interesting features, such as the total information uncertainty can counteract or improve the first-mover advantage according to the value of the quantum entanglement. What's more, this general model will be helpful for the government to reduce the abuses of oligopolistic competition and to improve the economic efficiency
A quantum information theoretic analysis of three flavor neutrino oscillations
Banerjee, Subhashish; Srikanth, R; Hiesmayr, Beatrix C
2015-01-01
Correlations exhibited by neutrino oscillations are studied via quantum information theoretic quantities. We show that the strongest type of entanglement, genuine multipartite entanglement, is persistent in the flavour changing states. We prove the existence of Bell-type nonlocal features, in both its absolute and genuine avatars. Finally, we show that a measure of nonclassicality, dissension, which is a generalization of quantum discord to the tripartite case, is nonzero for almost the entire range of time in the evolution of an initial electron-neutrino. Via these quantum information theoretic quantities capturing different aspects of quantum correlations, we elucidate the differences between the flavour types, shedding light on the quantum-information theoretic aspects of the weak force.
On Dispersions of Discrete Memoryless Channels with Noncausal State Information at the Encoder
Tan, Vincent Y F
2012-01-01
In this paper, we study the finite blocklength limits of state-dependent discrete memoryless channels where the discrete memoryless state is known noncausally at the encoder. For the point-to-point case, this is known as the Gel'fand-Pinsker channel model. We define the (n,\\epsilon)-capacity of the Gel'fand-Pinsker channel as the maximal rate of transmission of a message subject to the condition that the length of the block-code is n and the average error probability is no larger than \\epsilon. This paper provides a lower bound for the (n,\\epsilon)-capacity of the Gel'fand-Pinsker channel model, and hence an upper bound on the dispersion, a fundamental second-order quantity in the study of the performance limits of discrete memoryless channels. In addition, we extend the work of Y. Steinberg (2005), in which the (degraded) broadcast channel extension of the Gel'fand-Pinsker model was studied. We provide and inner bound to the (n,\\epsilon)-capacity region for this broadcast channel model using a combination of...
A Matter of Principle: The Principles of Quantum Theory, Dirac's Equation, and Quantum Information
Plotnitsky, Arkady
2015-01-01
This article is concerned with the role of fundamental principles in theoretical physics, especially quantum theory. The fundamental principles of relativity will be be addressed as well in view of their role in quantum electrodynamics and quantum field theory, specifically Dirac's work, which, in particular Dirac's derivation of his relativistic equation for the electron from the principles of relativity and quantum theory, is the main focus of this article. I shall, however, also consider Heisenberg's derivation of quantum mechanics, which inspired Dirac. I argue that Heisenberg's and Dirac's work alike was guided by their adherence to and confidence in the fundamental principles of quantum theory. The final section of the article discusses the recent work by G. M. D' Ariano and his coworkers on the principles of quantum information theory, which extends quantum theory and its principles in a new direction. This extension enabled them to offer a new derivation of Dirac's equation from these principles alone...
PREFACE Quantum Groups, Quantum Foundations and Quantum Information: a Festschrift for Tony Sudbery
Weigert, Stefan
2010-11-01
On 29 July 2008, Professor Anthony Thomas Sudbery - known as Tony to his friends and colleagues - celebrated his 65th birthday. To mark this occasion and to honour Tony's scientific achievements, a 2-day Symposion was held at the University of York on 29-30 September 2008 under the sponsorship of the Institute of Physics and the London Mathematical Society. The breadth of Tony's research interests was reflected in the twelve invited lectures by A Beige, I Bengtsson, K Brown, N Cerf, E Corrigan, J Ladyman, A J Macfarlane, S Majid, C Manogue, S Popescu, J Ryan and R W Tucker. This Festschrift, also made possible by the generosity of the IOP and the LMS, reproduces the majority of these contributions together with other invited papers. Tony obtained his PhD from the University of Cambridge in 1970. His thesis, written under the guidance of Alan Macfarlane, is entitled Some aspects of chiral su(3) × su(3) symmetry in hadron dynamics. He arrived in York in 1971 with his wife Rodie, two young daughters, a lively mind and a very contemporary shock of hair. He was at that stage interested in mathematical physics and so was classed as an applied mathematician in the departmental division in place at that time. But luckily Tony did not fit into this category. His curiosity is combined with a good nose for problems and his capacity for knocking off conjectures impressed us all. Within a short time of his arrival he was writing papers on group theory, complex analysis and combinatorics, while continuing to work on quantum mechanics. His important paper on quaternionic analysis is an example of the imagination and elegance of his ideas. By developing a derivative, he replaced the relatively obscure analytical theory of quaternions by one informed by modern complex analysis. Other interests emerged, centred round the quantum: quantum mechanics and its foundations, quantum groups and quantum information. He didn't just dabble in these areas but mastered them, gaining a national and international reputation; for instance he joined Roger Penrose in a discussion on 'The Physics of Reality' in Melvyn Bragg's radio series 'In our time'. He was much in demand for contributions to the 'News and Views' section in Nature and has written numerous book reviews in scientific and semi-popular journals as well as newspaper commentaries on important scientific developments. Quantum foundations and quantum information have remained Tony's main professional preoccupations. As a contribution to the conceptual problems surrounding quantum measurement, he undertook a detailed analysis of the observation of decay, introducing the crucial distinction between continuous measurement and continual observation. A red thread through his work in quantum mechanics has been the critical scrutiny of different interpretations of quantum mechanics and the question of their experimental testability. As a result he has become an eloquent proponent of a version of what is commonly known as the 'many-worlds' interpretation in his most recent paper (arXiv:1009.3914), Tony explains why he considers the name 'Everett-Wheeler interpretation' as most appropriate and 'many worlds' unnecessary. Tony started directing his research effort to quantum information theory in the late 1990s. He quickly established himself in the quantum information community, putting York on the map in this field. He was among the first people to investigate entanglement properties of multipartite states, particularly the 3-qubit states. While studying the pure 4-qubit states he mysteriously came up with what could rightly be called the 'Sudbery state': equation (where ? is a primitive root of 1), which is the most entangled 4-qubit state in natural measures of entanglement. He continues to work in quantum information theory, particularly on quantum entanglement. Not least there is also Tony the philosopher who wrote articles with such intriguing titles as 'The necessity of not doing otherwise' or 'Why am I me? and why is my world so classical?'. Tony was a teacher of the old school. His lectures wer
Scientific Electronic Library Online (English)
Cristian, López; Olimpia, Lombardi.
2015-03-01
Full Text Available El presente artículo busca ofrecer un análisis conceptual de la noción de información, a partir del modo en que es definida por las teorías formales de Claude Shannon y de Benjamin Schumacher. Contra la postura según la cual existen dos tipos de información de naturalezas diferentes, una información [...] clásica y una información cuántica (definidas por las teorías de Shannon y de Schumacher respectivamente), aquí argumentamos que no hay razones suficientes para sostener la existencia de la información cuántica como un nuevo tipo sustancialmente distinto de información. Afirmamos así que existe un único tipo de información que puede ser codificado de diversas maneras, en particular, mediante sistemas clásicos o sistemas cuánticos. Esta posición nos conducirá a concebir un concepto unificado y abstracto de información, en un contexto donde (1) la teoría de Shannon resulta neutral e independiente de las teorías físicas utilizadas para describir las partes involucradas en el proceso de transmitir información, y (2) la teoría de Schumacher no define un nuevo tipo de entidad informacional, sino una manera alternativa de codificar la información mediante estados cuánticos. Abstract in english The aim of this article is to offer a conceptual analysis of the notion of information, on the basis of the way in which it is defined by the theories of Claude Shannon and of Benjamin Schumacher. Against the position according to which there are two kinds of information of different natures, a clas [...] sical information and a quantum information (defined by the theories of Shannon and Schumacher respectively), here we argue that there are not sufficient reasons to maintain the existence of quantum information as a new and substantially different kind of information. So we claim that there is only one kind of information, which can be encoded in different ways, in particular, by means of classical or quantum systems. This position will lead us to conceive an unified and abstract concept of information in a context where (a) Shannon's theory is neutral and independent from the physical theories used to describe the stages involved in the process of transmitting information, and (b) Schumacher's theory does not define a new kind of informational entity, but a alternative way of coding information by means of quantum states.
Information flow and quantum cryptography using statistical fluctuations
International Nuclear Information System (INIS)
A procedure is formulated, using the quantum teleportation arrangement, that communicates knowledge of an apparatus setting between the wings of the experiment, using statistical fluctuations in a sequence of measurement results. It requires an entangled state, and transmission of classical information totally unrelated to the apparatus setting actually communicated. Our procedure has conceptual interest, and has applications to quantum cryptography
Fisher information and quantum potential well model for finance
Nastasiuk, V. A.
2015-09-01
The probability distribution function (PDF) for prices on financial markets is derived by extremization of Fisher information. It is shown how on that basis the quantum-like description for financial markets arises and different financial market models are mapped by quantum mechanical ones.
Quantum Oblivious Transfer Based on a Quantum Symmetrically Private Information Retrieval Protocol
Yang, Yu-Guang; Sun, Si-Jia; Wang, Yan
2015-03-01
Private information retrieval implies oblivious transfer in classical cryptography. Following this clue, we present a novel quantum one-out-of-two OT protocol based on a practical quantum symmetrically private information retrieval protocol Jakobi et al. (Phys. Rev. A 83, 022301 2011), with changes only in the classical postprocessing of the key. While unconditionally secure oblivious transfer is known to be impossible, we argue that an interesting degree of security can be achieved by means of quantum physical principles instead of unproven security assumptions in order to protect both the sender and the receiver. The proposed OT protocol is loss tolerant, practical and robust against quantum memory attack.
Restrictions on Information Transfer in Quantum Measurements and State Collapse
Mayburov, S.
2006-01-01
Information-theoretical restrictions on the information transfer in quantum measurements are studied. They are derived for the measurement of system S by detector D, registrated and processed by information system O. The formalism of inference maps in Hilbert space is used for it; it permit to calculate O restricted state which contains available for O information on S parameters. It's shown that the principal information losses, inevitable in this formalism and induced by H...
BOOK REVIEW: Time, Quantum and Information
Turner, Leaf
2004-04-01
Time, Quantum and Information, a paean to Professor Carl Friedrich von Weizsäcker, commemorates his 90th birthday. The range of Professor Weizsäcker’s endeavours is an exhilarating example of what can be accomplished by one freely-soaring human spirit, who is at the same time a physicist, a philosopher, and a humanitarian. The editors, Lutz Castell and Otfried Ischebeck, have assembled an admirable collection of essays and articles written by Weizsäcker’s past students, collaborators, colleagues and acquaintances. Time, Quantum and Information offers the reader a panoply of unique insights into twentieth century science and history. Entangled with the stories about Weizsäcker’s influence on the lives of some of the contributors are discussions of the activities of German scientists during and following World War II, emphasizing their reluctance to work on atomic weapons following the war. By outlining Weizsäcker’s role in the early development of numerous tributaries of physical science, the book gives us a new glimpse into the origins of some of its disparate domains, such as nuclear physics, the physics of stellar nucleosynthesis, cosmic ray physics, fluid turbulence, and the formation of the solar system. We physicists have all studied Weizsäcker’s semi-empirical mass formula describing the binding energy of nuclei. We are aware too that both he and Hans Bethe independently discovered the nuclear cycles that provide stars with their enduring energy output. We have studied the Weizsäcker--Williams technique of calculating the bremsstrahlung of relativistic electrons. But how many of us know of Weizsäcker’s work in fluid turbulence that he, like Werner Heisenberg under whom he had earned his doctorate, pursued while holed up in Farm Hall? And how many of us are aware of his introduction of turbulent viscosity to account for the origin of planetary orbits, involving the migration of mass inwards and angular momentum outwards? Moreover, before finally turning his attention to philosophy in 1957, Weizsäcker became interested in nuclear fusion research and educated a generation of postwar German physicists in both plasma physics and astrophysics. Michael Frayn’s play `Copenhagen' has ignited worldwide interest in the mysterious meeting of Niels Bohr with Werner Heisenberg in September 1941. However, an article by R Lüst indicates that in 1951 Bohr enjoyed a friendly visit with Heisenberg in Göttingen. This 1941 meeting of Heisenberg and Bohr is discussed further in an article by Götz Neuneck, who also details the World War II and post-war research and interests of the Uranium Club, a group of 70--100 German physicists and chemists. Neuneck also discusses the resistance of individual scientists, such as Hahn, Heisenberg, and Bothe, to the Nazi regime. We learn that, unlike Wernher von Braun, no member of the Uranium Club was ever granted an audience with Hitler. After the war, German scientists renounced any role for German development of nuclear weapons in various manifestos, such as the Mainau and G\\"ottingen Declarations that were both influenced by Weizsäcker. Time, Quantum and Information contains much anecdotal material. Examples include a touching quotation in a letter from Edward Teller to Weizsäcker: `If I could share your religious belief, I would wish that you will one day come from a higher heaven and visit me in purgatory.' Another example, less complimentary, is a comment from Pauli after hearing from Weisskopf that Weizsäcker had made numerous errors in his habilitation thesis and realizing that Weizsäcker had accepted an offer from Peter Debye at Berlin: `The measure of sloppiness in Weizsäcker’s work exceeds altogether and by far the tolerable measure, and my pain of not having had him as an assistant has been alleviated by this.' Two-thirds of this compendium also explores the philosophical interests of Weizsäcker. This portion discusses his attempt to reconstruct quantum mechanics and build up a `theory of everything' based on his `ur' hypothesis. As stated by the mat
Information theory of quantum systems with some hydrogenic applications
Dehesa, J. S.; Manzano, D.; Sánchez-Moreno, P. S.; Yáñez, R. J.
2010-01-01
The information-theoretic representation of quantum systems, which complements the familiar energy description of the density-functional and wave-function-based theories, is here discussed. According to it, the internal disorder of the quantum-mechanical non-relativistic systems can be quantified by various single (Fisher information, Shannon entropy) and composite (e.g. Cramer-Rao, LMC shape and Fisher-Shannon complexity) functionals of the Schr\\"odinger probability density...
Limitations on information theoretically secure quantum homomorphic encryption
Yu, Li; Perez-Delgado, Carlos A.; Fitzsimons, Joseph F.
2014-01-01
Homomorphic encryption is a form of encryption which allows computation to be carried out on the encrypted data without the need for decryption. The success of quantum approaches to related tasks in a delegated computation setting has raised the question of whether quantum mechanics may be used to achieve information theoretically secure fully homomorphic encryption. Here we show, via an information localisation argument, that deterministic fully homomorphic encryption neces...
Quantum information splitting using multi-partite cluster states
Muralidharan, Sreraman; Panigrahi, Prasanta K
2008-01-01
We provide various schemes for the splitting up of Quantum information into parts using the four and five partite cluster states. Explicit protocols for the Quantum information splitting (QIS) of single and two qubit states are illustrated. It is found that the four partite cluster state can be used for the QIS of an entangled state and the five partite cluster state can be used for QIS of an arbitrary two qubit state. The schemes considered here are also secure against cert...
Designing robust gate implementations for quantum information processing
Wesenberg, Janus H.
2003-01-01
Quantum information processing systems are often operated through time dependent controls; choosing these controls in a way that makes the resulting operation insensitive to variations in unknown or uncontrollable system parameters is an important prerequisite for obtaining high-fidelity gate operations. In this article we present a numerical method for constructing such robust control sequences for a quite general class of quantum information processing systems. As an appli...
Witt, Arnaud; Vinter, Annie
2013-01-01
Children with intellectual disabilities (ID) and controls were exposed to an incidental learning phase, where half of the participants received highly implicit instructions at test while the other half received explicit instructions. When learning was assessed for simple chunks of information, children with ID performed better with implicit…
A Quantum Rosetta Stone for the Information Paradox
Zayas, Leopoldo A Pando
2014-01-01
The black hole information loss paradox epitomizes the contradictions between general relativity and quantum field theory. The AdS/CFT correspondence provides an implicit answer for the information loss paradox in black hole physics by equating a gravity theory with an explicitly unitary field theory. Gravitational collapse in asymptotically AdS spacetimes is generically turbulent. Given that the mechanism to read out the information about correlations functions in the field theory side is plagued by deterministic classical chaos, we argue that quantum chaos might provide the true Rosetta Stone for answering the information paradox in the context of the AdS/CFT correspondence.
A quantum Rosetta Stone for the information paradox
Pando Zayas, Leopoldo A.
2014-11-01
The black hole information loss paradox epitomizes the contradictions between general relativity and quantum field theory. The AdS/conformal field theory (CFT) correspondence provides an implicit answer for the information loss paradox in black hole physics by equating a gravity theory with an explicitly unitary field theory. Gravitational collapse in asymptotically AdS spacetimes is generically turbulent. Given that the mechanism to read out the information about correlations functions in the field theory side is plagued by deterministic classical chaos, we argue that quantum chaos might provide the true Rosetta Stone for answering the information paradox in the context of the AdS/CFT correspondence.
Designing robust gate implementations for quantum-information processing
International Nuclear Information System (INIS)
Quantum-information processing systems are often operated through time-dependent controls; choosing these controls in a way that makes the resulting operation insensitive to variations in unknown or uncontrollable system parameters is an important prerequisite for obtaining high-fidelity gate operations. In this article we present a numerical method for constructing such robust control sequences for a quite general class of quantum-information processing systems. As an application of the method we have designed a robust implementation of a phase-shift operation central to rare-earth-metal quantum computing, an ensemble quantum computing system proposed by Ohlsson et al. [Opt. Commun. 201, 71 (2002)]. In this case the method has been used to obtain a high degree of insensitivity with respect to differences between ensemble members, but it is equally well suited for quantum computing with a single physical system
Designing robust gate implementations for quantum information processing
Wesenberg, J H
2003-01-01
Quantum information processing systems are often operated through time dependent controls; choosing these controls in a way that makes the resulting operation insensitive to variations in unknown or uncontrollable system parameters is an important prerequisite for obtaining high-fidelity gate operations. In this article we present a numerical method for constructing such robust control sequences for a quite general class of quantum information processing systems. As an application of the method we have designed a robust implementation of a phase-shift operation central to rare earth quantum computing, an ensemble quantum computing system proposed by Ohlsson et. al. [Opt. Comm. 201, 71 (2002)]. In this case the method has been used to obtain a high degree of insensitivity with respect to differences between ensemble members, but it is equally well suited for quantum computing with a single physical system.
Quantum Gravity and Recovery of Information in Black Hole Evaporation
Nozari, Kourosh
2008-01-01
The Generalized Uncertainty Principle (GUP), motivated by current alternatives of quantum gravity, produces a significant modifications of the Hawking radiation and the final stage of black hole evaporation. We show that for quantum tunneling process (based on null-geodesic method) incorporation of the GUP corrections leads to appearance of correlations between the tunneling probability of different modes in the black hole radiation spectrum. In this manner, the quantum information will be encrypted in the Hawking radiation and information actually will be recovered as the GUP non-thermal correlations between tunneling probabilities of different modes.
Probabilistic Teleportation via Quantum Channel with Partial Information
Directory of Open Access Journals (Sweden)
Desheng Liu
2015-06-01
Full Text Available Two novel schemes are proposed to teleport an unknown two-level quantum state probabilistically when the sender and the receiver only have partial information about the quantum channel, respectively. This is distinct from the fact that either the sender or the receiver has entire information about the quantum channel in previous schemes for probabilistic teleportation. Theoretical analysis proves that these schemes are straightforward, efficient and cost-saving. The concrete realization procedures of our schemes are presented in detail, and the result shows that our proposals could extend the application range of probabilistic teleportation.
Complete methods set for scalable ion trap quantum information processing
Home, J P; Jost, J D; Amini, J M; Leibfried, D; Wineland, D J
2009-01-01
Large-scale quantum information processors must be able to transport and maintain quantum information, and repeatedly perform logical operations. Here we demonstrate a combination of all the fundamental elements required to perform scalable quantum computing using qubits stored in the internal states of trapped atomic ions. We quantify the repeatability of a multi-qubit operation, observing no loss of performance despite qubit transport over macroscopic distances. Key to these results is the use of different pairs of beryllium ion hyperfine states for robust qubit storage, readout and gates, and simultaneous trapping of magnesium re-cooling ions along with the qubit ions.
Retrieving and Routing Quantum Information in a Quantum Network
Sazim, Sk.; Chakrabarty, Indranil; Vanarasa, Chiranjeevi; Srinathan, Kannan
2013-01-01
In extant quantum secret sharing protocols, once the secret is shared in a quantum network (\\textsc{qnet}) it can not be retrieved back, even if the dealer wishes that her secret no longer be available in the network. For instance, if the dealer is part of two \\textsc{qnet}s, say $\\mathcal{Q}_1$ and $\\mathcal{Q}_2$ and subsequently finds that $\\mathcal{Q}_2$ is more reliable than $\\mathcal{Q}_1$, the dealer may wish to transfer all her secrets from $\\mathcal{Q}_1$ to $\\mathc...
Quantum Key Distribution in Large Scale Quantum Network Assisted by Classical Routing Information
Wu, Diance; Yu, Wanrong; Zhao, Baokang; Wu, Chunqing
2014-10-01
Recently, small-scale Quantum Key Distribution (QKD) networks have been demonstrated and continuously operated in field environment. However, nodes of these QKD networks are less than 10 nodes. When the scale and structure of these networks becomes large and complex, such networks will subject to problem of intractable routing selection and limited transmission distance. We present a novel quantum network model and the corresponding protocol to solve these problems. The proposed quantum network model integrates classical communication network with quantum key distribution layer. Nodes in this quantum network model are divided into communication nodes for classical communication and quantum nodes for quantum key distribution. We use atomic ensembles to create entangled photons inside quantum nodes. Quantum repeaters are used to establish entanglement between remote quantum nodes so the maximum distribution distance of entangled photons can be extended. The main idea is to establish an appropriate key distribution path in the quantum key distribution layer based on the routing information obtained by the upper classical communication network. After the entanglement has been established between remote quantum nodes, these nodes will use the Ekert91 or BBM92 protocol to generate secret keys shared between each other. Then, these keys can be used to ensure the security of communication in the classical communication network.
Manipulation of Entangled States for Quantum Information Processing
Bose, S.; Huelga, S. F.; Jonathan, D.; Knight, P. L.; Murao, M.; Plenio, M. B.; Vedral, V.
Entanglement manipulation, and especially Entanglement Swapping is at the heart of current work on quantum information processing, purification and quantum teleportation. We will discuss how it may be generalized to multiparticle systems and how this enables multi-user quantum cryptographic protocols to be developed. Our scheme allows us to establish multiparticle entanglement between particles which belong to distant users in a communication network through a prior distribution of Bell state singlets followed by local measurements. We compare our method for generating entanglement with existing schemes using simple quantum networks, and highlight the advantages and applications in cryptographic conferencing and in reading messages from more than one source through a single quantum measurement. We also discuss how entanglement leads to the idea of `telecloning', in which a teleportation-like protocol can be found which reproduces the output of an optimal quantum cloning machine.
Quantum teleportation and entanglement. A hybrid approach to optical quantum information procesing
Energy Technology Data Exchange (ETDEWEB)
Furusawa, Akira [Tokyo Univ. (Japan). Dept. of Applied Physics; Loock, Peter van [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer Optik
2011-07-01
Unique in that it is jointly written by an experimentalist and a theorist, this monograph presents universal quantum computation based on quantum teleportation as an elementary subroutine and multi-party entanglement as a universal resource. Optical approaches to measurement-based quantum computation are also described, including schemes for quantum error correction, with most of the experiments carried out by the authors themselves. Ranging from the theoretical background to the details of the experimental realization, the book describes results and advances in the field, backed by numerous illustrations of the authors' experimental setups. Aimed at researchers, physicists, and graduate and PhD students in physics, theoretical quantum optics, quantum mechanics, and quantum information. (orig.)
Santaló, Josep; Barrios, Lleonard; Ibañez, Elena; Nogués Sanmiquel, María del Carmen; Esteve i Tintó, Jaume; Plaza Plaza, José Antonio
2009-01-01
The present invention relates to an encoded microparticle for labeling an isolated cell or an isolated embryo characterized in that it is made of a biocompatible material and its external shape comprises a code by which it can be identified. The use of an encoded microparticle for labeling and/or tracking isolated biological material. A method of tracking an encoded microparticle in or attached to an isolated cell or embryo using an optical microscope, preferably an inverted optical ...
Toolbox for reconstructing quantum theory from rules on information acquisition
Hoehn, Philipp A
2015-01-01
We develop a novel operational approach for reconstructing (qubit) quantum theory from elementary rules on information acquisition. The focus lies on an observer O interrogating a system S with binary questions and S's state is taken as O's `catalogue of knowledge' about S. The mathematical tools of the framework are simple and we attempt to highlight all underlying assumptions to provide a handle for future generalizations. Five principles are imposed, asserting (1) a limit on the amount of information available to O; (2) the mere existence of complementary information; (3) the possibility for O's information to be `in superposition'; (4) O's information to be preserved in between interrogations; and, (5) continuity of time evolution. This approach permits a constructive derivation of quantum theory, elucidating how the ensuing independence, complementarity and compatibility structure of O's questions matches that of projective measurements in quantum theory, how entanglement and monogamy of entanglement and...
Maximum Fisher information in mixed state quantum systems
Luati, A
2004-01-01
We deal with the maximization of classical Fisher information in a quantum system depending on an unknown parameter. This problem has been raised by physicists, who defined [Helstrom (1967) Phys. Lett. A 25 101-102] a quantum counterpart of classical Fisher information, which has been found to constitute an upper bound for classical information itself [Braunstein and Caves (1994) Phys. Rev. Lett. 72 3439-3443]. It has then become of relevant interest among statisticians, who investigated the relations between classical and quantum information and derived a condition for equality in the particular case of two-dimensional pure state systems [Barndorff-Nielsen and Gill (2000) J. Phys. A 33 4481-4490]. In this paper we show that this condition holds even in the more general setting of two-dimensional mixed state systems. We also derive the expression of the maximum Fisher information achievable and its relation with that attainable in pure states.
Preparation information and optimal decompositions for mixed quantum states
Soklakov, Andrei N; Schack, Ruediger
2000-01-01
Consider a joint quantum state of a system and its environment. A measurement on the environment induces a decomposition of the system state. Using algorithmic information theory, we define the preparation information of a pure or mixed state in a given decomposition. We then define an optimal decomposition as a decomposition for which the average preparation information is minimal. The average preparation information for an optimal decomposition characterizes the system-env...
Quantum engineering of continuous variable quantum states
International Nuclear Information System (INIS)
Quantum information with continuous variables is a field attracting increasing attention recently. In continuous variable quantum information one makes use of the continuous information encoded into the quadrature of a quantized light field instead of binary quantities such as the polarization state of a single photon. This brand new research area is witnessing exciting theoretical and experimental achievements such as teleportation, quantum computation and quantum error correction. The rapid development of the field is mainly due higher optical data rates and the availability of simple and efficient manipulation tools in continuous-variable quantum information processing. We in this thesis extend the work in continuous variable quantum information processing and report on novel experiments on amplification, cloning, minimal disturbance and noise erasure protocols. The promising results we obtain in these pioneering experiments indicate that the future of continuous variable quantum information is bright and many advances can be foreseen. (orig.)
Quantum engineering of continuous variable quantum states
Energy Technology Data Exchange (ETDEWEB)
Sabuncu, Metin
2009-10-29
Quantum information with continuous variables is a field attracting increasing attention recently. In continuous variable quantum information one makes use of the continuous information encoded into the quadrature of a quantized light field instead of binary quantities such as the polarization state of a single photon. This brand new research area is witnessing exciting theoretical and experimental achievements such as teleportation, quantum computation and quantum error correction. The rapid development of the field is mainly due higher optical data rates and the availability of simple and efficient manipulation tools in continuous-variable quantum information processing. We in this thesis extend the work in continuous variable quantum information processing and report on novel experiments on amplification, cloning, minimal disturbance and noise erasure protocols. The promising results we obtain in these pioneering experiments indicate that the future of continuous variable quantum information is bright and many advances can be foreseen. (orig.)
Quantum Key Distribution without sending a Quantum Signal
Ralph, T. C.; Walk, N.
2014-01-01
Quantum Key Distribution is a quantum communication technique in which random numbers are encoded on quantum systems, usually photons, and sent from one party, Alice, to another, Bob. Using the data sent via the quantum signals, supplemented by classical communication, it is possible for Alice and Bob to share an unconditionally secure secret key. This is not possible if only classical signals are sent. Whilst this last statement is a long standing result from quantum inform...
Toward an Information-based Interpretation of Quantum Mechanics and the Quantum-Classical Transition
Roederer, Juan G
2011-01-01
I will show how an objective definition of the concept of information and the consideration of recent results about information-processing in the human brain help clarify some fundamental and often counter-intuitive aspects of quantum mechanics. In particular, I will discuss entanglement, teleportation, non-interaction measurements and decoherence in the light of the fact that pragmatic information, the one our brain handles, can only be defined in the classical macroscopic domain; it does not operate in the quantum domain. This justifies viewing quantum mechanics as a discipline dealing with mathematical models and procedures aimed exclusively at predicting possible macroscopic changes and their likelihood that a given quantum system may cause when it interacts with its environment, including man-made devices such as measurement instruments. I will discuss the informational and neurobiological reasons of why counter-intuitive aspects arise whenever we attempt to construct mental images of the "inner workings...
International Nuclear Information System (INIS)
Aiming the construction of quantum computers and quantum communication systems based on optical devices, in this work we present possible implementations of quantum and classical CNOTs gates, as well an optical setup for generation and distribution of bipartite entangled states, using linear optical devices and photon number quantum non-demolition measurement
Distribution of quantum information between an atom and two photons
International Nuclear Information System (INIS)
The construction of networks consisting of optically interconnected processing units is a promising way to scale up quantum information processing systems. To store quantum information, single trapped atoms are among the most proven candidates. By placing them in high finesse optical resonators, a bidirectional information exchange between the atoms and photons becomes possible with, in principle, unit efficiency. Such an interface between stationary and ying qubits constitutes a possible node of a future quantum network. The results presented in this thesis demonstrate the prospects of a quantum interface consisting of a single atom trapped within the mode of a high-finesse optical cavity. In a two-step process, we distribute entanglement between the stored atom and two subsequently emitted single photons. The long atom trapping times achieved in the system together with the high photon collection efficiency of the cavity make the applied protocol in principle deterministic, allowing for the creation of an entangled state at the push of a button. Running the protocol on this quasi-stationary quantum interface, the internal state of the atom is entangled with the polarization state of a single emitted photon. The entanglement is generated by driving a vacuum-stimulated Raman adiabatic passage between states of the coupled atom-cavity system. In a second process, the atomic part of the entangled state is mapped onto a second emitted photon using a similar technique and resulting in a polarization-entangled two-photon state. To verify and characterize the photon-photon entanglement, we measured a violation of a Bell inequality and performed a full quantum state tomography. The results prove the prior atom-photon entanglement and demonstrate a quantum information transfer between the atom and the two emitted photons. This reflects the advantages of a high-finesse cavity as a quantum interface in future quantum networks. (orig.)
Distribution of quantum information between an atom and two photons
Energy Technology Data Exchange (ETDEWEB)
Weber, Bernhard
2008-11-03
The construction of networks consisting of optically interconnected processing units is a promising way to scale up quantum information processing systems. To store quantum information, single trapped atoms are among the most proven candidates. By placing them in high finesse optical resonators, a bidirectional information exchange between the atoms and photons becomes possible with, in principle, unit efficiency. Such an interface between stationary and ying qubits constitutes a possible node of a future quantum network. The results presented in this thesis demonstrate the prospects of a quantum interface consisting of a single atom trapped within the mode of a high-finesse optical cavity. In a two-step process, we distribute entanglement between the stored atom and two subsequently emitted single photons. The long atom trapping times achieved in the system together with the high photon collection efficiency of the cavity make the applied protocol in principle deterministic, allowing for the creation of an entangled state at the push of a button. Running the protocol on this quasi-stationary quantum interface, the internal state of the atom is entangled with the polarization state of a single emitted photon. The entanglement is generated by driving a vacuum-stimulated Raman adiabatic passage between states of the coupled atom-cavity system. In a second process, the atomic part of the entangled state is mapped onto a second emitted photon using a similar technique and resulting in a polarization-entangled two-photon state. To verify and characterize the photon-photon entanglement, we measured a violation of a Bell inequality and performed a full quantum state tomography. The results prove the prior atom-photon entanglement and demonstrate a quantum information transfer between the atom and the two emitted photons. This reflects the advantages of a high-finesse cavity as a quantum interface in future quantum networks. (orig.)
Pure sources and efficient detectors for optical quantum information processing
Zielnicki, Kevin
Over the last sixty years, classical information theory has revolutionized the understanding of the nature of information, and how it can be quantified and manipulated. Quantum information processing extends these lessons to quantum systems, where the properties of intrinsic uncertainty and entanglement fundamentally defy classical explanation. This growing field has many potential applications, including computing, cryptography, communication, and metrology. As inherently mobile quantum particles, photons are likely to play an important role in any mature large-scale quantum information processing system. However, the available methods for producing and detecting complex multi-photon states place practical limits on the feasibility of sophisticated optical quantum information processing experiments. In a typical quantum information protocol, a source first produces an interesting or useful quantum state (or set of states), perhaps involving superposition or entanglement. Then, some manipulations are performed on this state, perhaps involving quantum logic gates which further manipulate or entangle the intial state. Finally, the state must be detected, obtaining some desired measurement result, e.g., for secure communication or computationally efficient factoring. The work presented here concerns the first and last stages of this process as they relate to photons: sources and detectors. Our work on sources is based on the need for optimized non-classical states of light delivered at high rates, particularly of single photons in a pure quantum state. We seek to better understand the properties of spontaneous parameteric downconversion (SPDC) sources of photon pairs, and in doing so, produce such an optimized source. We report an SPDC source which produces pure heralded single photons with little or no spectral filtering, allowing a significant rate enhancement. Our work on detectors is based on the need to reliably measure single-photon states. We have focused on optimizing the detection efficiency of visible light photon counters (VLPCs), a single-photon detection technology that is also capable of resolving photon number states. We report a record-breaking quantum efficiency of 91 +/- 3% observed with our detection system. Both sources and detectors are independently interesting physical systems worthy of study, but together they promise to enable entire new classes and applications of information based on quantum mechanics.
Quantum Private Information Retrieval with Sublinear Communication Complexity
Gall, François Le
2011-01-01
This note presents a quantum protocol for private information retrieval, in the single-server case and with information-theoretical privacy, that has O(\\sqrt{n})-qubit communication complexity, where n denotes the size of the database. In comparison, it is known that any classical protocol must use \\Omega(n) bits of communication in this setting.
Transfer of Gravitational Information through a Quantum Channel
Zhang, Baocheng; Zhan, Ming-sheng
2013-01-01
Gravitational information is incorporated into an atomic state by correlation of the internal and external degrees of freedom of the atom, in the present study of the atomic interferometer. Thus it is difficult to transfer information by using a standard teleportation scheme. In this paper, we propose a novel scheme for the transfer of gravitational information through a quantum channel provided by the entangled atomic state. Significantly, the existence of a quantum channel suppresses phase noise, improving the sensitivity of the atomic interferometer. Thus our proposal provides novel readout mechanism for the interferometer with an improved signal-to-noise ratio.
Quantum information splitting using multi-partite cluster states
Muralidharan, Sreraman
2008-01-01
We provide various schemes for the splitting up of Quantum information into parts using the four and five partite cluster states. Explicit protocols for the Quantum information splitting (QIS) of single and two qubit states are illustrated. It is found that the four partite cluster state can be used for the QIS of an entangled state and the five partite cluster state can be used for QIS of an arbitrary two qubit state. We propose a conjecture about the maximum number of protocols that can be constructed for the information splitting of an arbitrary $n$ qubit state among two parties using an $N$ qubit entangled channel.
Quantum mechanics, common sense and the black hole information paradox
Danielsson, U H; Danielsson, Ulf H.; Schiffer, Marcelo
1993-01-01
The purpose of this paper is to analyse, in the light of information theory and with the arsenal of (elementary) quantum mechanics (EPR correlations, copying machines, teleportation, mixing produced in sub-systems owing to a trace operation, etc.) the scenarios available on the market to resolve the so-called black-hole information paradox. We shall conclude that the only plausible ones are those where either the unitary evolution of quantum mechanics is given up, in which information leaks continuously in the course of black-hole evaporation through non-local processes, or those in which the world is polluted by an infinite number of meta-stable remnants.
Classical information transmission capacity of quantum black holes
International Nuclear Information System (INIS)
The fate of classical information incident on a quantum black hole has been the subject of an ongoing controversy in theoretical physics, because a calculation within the framework of semi-classical curved-space quantum field theory appears to show that the incident information is irretrievably lost, in contradiction to time-honored principles such as time-reversibility and unitarity. Here, we show within this framework embedded in quantum communication theory that signaling from past to future null infinity in the presence of a Schwarzschild black hole can occur with arbitrary accuracy, and thus that classical information is not lost in black hole dynamics. The calculation relies on a treatment that is manifestly unitary from the outset, where probability conservation is guaranteed because black holes stimulate the emission of radiation in response to infalling matter. This stimulated radiation is non-thermal and contains all of the information about the infalling matter, while Hawking radiation contains none of it. (paper)
Controllable quantum information network with a superconducting system
Energy Technology Data Exchange (ETDEWEB)
Zhang, Feng-yang, E-mail: zhangfy@mail.dlut.edu.cn [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Liu, Bao [Beijing Computational Science Research Center (CSRC), Beijing 100084 (China); Chen, Zi-hong [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Wu, Song-lin [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Song, He-shan [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)
2014-07-15
We propose a controllable and scalable architecture for quantum information processing using a superconducting system network, which is composed of current-biased Josephson junctions (CBJJs) as tunable couplers between the two superconducting transmission line resonators (TLRs), each coupling to multiple superconducting qubits (SQs). We explicitly demonstrate that the entangled state, the phase gate, and the information transfer between any two selected SQs can be implemented, respectively. Lastly, numerical simulation shows that our scheme is robust against the decoherence of the system. -- Highlights: •An architecture for quantum information processing is proposed. •The quantum information transfer between any two selected SQs is implemented. •This proposal is robust against the decoherence of the system. •This architecture can be fabricated on a chip down to the micrometer scale.
Claeson, Tord; Delsing, Per; Wendin, Göran
2009-12-01
Quantum mechanics is the most ground-breaking and fascinating theoretical concept developed in physics during the past century. Much of our present understanding of the microscopic world and its extension into the macroscopic world, including modern technical applications, is based upon quantum mechanics. We have experienced a remarkable development of information and communication technology during the past two decades, to a large extent depending upon successful fabrication of smaller and smaller components and circuits. However, we are finally approaching the physical limits of component miniaturization as we enter a microscopic world ruled by quantum mechanics. Present technology is mainly based upon classical physics such as mechanics and electromagnetism. We now face a similar paradigm shift as was experienced two hundred years ago, at the time of the industrial revolution. Engineered construction of systems is currently increasingly based on quantum physics instead of classical physics, and quantum information is replacing much of classical communication. Quantum computing is one of the most exciting sub-fields of this revolution. Individual quantum systems can be used to store and process information. They are called quantum bits, or qubits for short. A quantum computer could eventually be constructed by combining a number of qubits that act coherently. Important computations can be performed much more quickly than by classical computers. However, while we control and measure a qubit, it must be sufficiently isolated from its environment to avoid noise that causes decoherence at the same time. Currently, low temperature is generally needed to obtain sufficiently long decoherence times. Single qubits of many different kinds can be built and manipulated; some research groups have managed to successfully couple qubits and perform rudimentary logic operations. However, the fundamental problems, such as decoherence, entanglement, quantum measurements and error correction, have yet to be solved. It has been predicted that quantum computers will be able to perform certain complicated computations or simulations in minutes or hours instead of years as with present computers. So far there exist very few useful quantum algorithms; however there is hope that the development of these will be stimulated once there is a breakthrough in hardware. Remarkable progress has been made in quantum engineering and quantum measurements, but a large scale quantum computer is still far off. Quantum communication and cryptography are much closer to the market than a quantum computer. The development of quantum information has meant a large push in the field of quantum physics, that previously could only be studied in the microscopic world. Artificial atoms, realized by circuit technology and mimicking the properties of 'natural' atoms, are one example of the new possibilities opened up by quantum engineering. Several different types of qubits have been suggested. Some are based upon microscopic entities, like atoms and ions in traps, or nuclear spins in molecules. They can have long coherence times (i.e. a long period allowing many operations, of the order of 10 000, to be performed before the state needs to be refreshed) but they are difficult to integrate into large systems. Other qubits are based upon solid state components that facilitate integration and coupling between qubits, but they suffer from interactions with the environment and their coherent states have a limited lifetime. Advanced experiments have been performed with superconducting Josephson junctions and many breakthroughs have been reported in the last few years. They have an advantage in the inherent coherence of superconducting Cooper pairs over macroscopic distances. We chose to focus the Nobel Symposium on Qubits for Future Quantum Information on superconducting qubits to allow for depth in discussions, but at the same time to allow comparison with other types of qubits that may prevail in the long run. The purpose of the symposium was to bring together leading resear
Frames, designs, and spherical codes in quantum information theory
Renes, Joseph M.
Frame theory offers a lens through which to view a large portion of quantum information theory, providing an organizational principle to those topics in its purview. In this thesis, I cut a trail from foundational questions to practical applications, from the origin of the quantum probability rule to quantum cryptography, by way of a standard quantum measurement helpful in quantum tomography and representation of quantum theory. Before embarking, preparations are undertaken by outlining the relevant aspects of frame theory, particularly the characterization of generalized orthonormal bases in terms of physical quantum measurements, as well as several aesthetically appealing families of measurements, each possessing a high degree of symmetry. Much more than just elegant, though, these quantum measurements are found to be useful in many aspects of quantum information theory. I first consider the foundational question of justifying the quantum probability rule, showing that putting a probability valuation on generalized quantum measurements leads directly to the Born rule. Moreover, for qubits, the case neglected in the traditional formulation of Gleason's theorem, a symmetric three-outcome measurement called the trine is sufficient to impel the desired form. Keeping with foundational questions, I then turn to the problem of establishing a symmetric measurement capable of effortlessly rendering quantum theory in terms of classical probability theory. Numerical results provide an almost utterly convincing amount of evidence for this, justifying the subsequent study of its use in quantum tomography and detailed account of the properties of the reduction to probabilistic terms. Saving perhaps the most exciting topic for last, I make use of these aesthetic ensembles in the applied field of quantum cryptography. A large class of streamlined key distribution protocols may be cut from the cloth of these ensembles, and their symmetry affords them improved tolerance to eavesdropping over the traditionally-studied schemes. Because the ability to put quantum key distribution protocols into practice is essentially right around the corner, I conclude by examining the prospects for implementing the new protocols in free space and their ability to boost the operating signal intensity, currently a major obstacle in the development of practical schemes.
Selecting Operations for Assembler Encoding
Tomasz Praczyk
2010-01-01
Assembler Encoding is a neuro-evolutionary method in which a neural network is represented in the form of a simple program called Assembler Encoding Program. The task of the program is to create the so-called Network Definition Matrix which maintains all the information necessary to construct the network. To generate Assembler Encoding Programs and the subsequent neural networks evolutionary techniques are used.
The performance of Assembler Encoding strongly depends on operations u...
Theoretical foundations of quantum information processing and communication. Selected topics
International Nuclear Information System (INIS)
Based on eight extensive lectures selected from those given at the renowned Chris Engelbrecht Summer School in Theoretical Physics in South Africa, this text on the theoretical foundations of quantum information processing and communication covers an array of topics, including quantum probabilities, open systems, and non-Markovian dynamics and decoherence. It also addresses quantum information and relativity as well as testing quantum mechanics in high energy physics. Because these self-contained lectures discuss topics not typically covered in advanced undergraduate courses, they are ideal for post-graduate students entering this field of research. Some of the lectures are written at a more introductory level while others are presented as tutorials that survey recent developments and results in various subfields. (orig.)
Quantum mechanics with applications to nanotechnology and information science
Band, Yehuda B
2013-01-01
Quantum mechanics transcends and supplants classical mechanics at the atomic and subatomic levels. It provides the underlying framework for many subfields of physics, chemistry and materials science, including condensed matter physics, atomic physics, molecular physics, quantum chemistry, particle physics, and nuclear physics. It is the only way we can understand the structure of materials, from the semiconductors in our computers to the metal in our automobiles. It is also the scaffolding supporting much of nanoscience and nanotechnology. The purpose of this book is to present the fundamentals of quantum theory within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology. As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today. Hence, the emphasis on new topics that are not included in older reference texts, such as quantum information th...
Smooth composite pulses for high-fidelity quantum information processing
International Nuclear Information System (INIS)
We present a systematic SU(2) approach for construction of composite sequences of pulses with smooth temporal shapes that produce high-fidelity two-state excitation profiles. This makes possible the application of composite pulses to quantum control and quantum information processing with short and ultrashort laser pulses. We present an exact analytic formula for the composite phases for arbitrarily accurate broadband pulses and examples of narrowband, passband, and fractional-? pulses as well as composite pulses with detuning compensation.
Insights into classical irreversible computation using quantum information concepts
Groisman, Berry
2008-01-01
The method of using concepts and insight from quantum information theory in order to solve problems in reversible classical computing (introduced in Ref. [1]) have been generalized to irreversible classical computing. The method have been successfully tested on two computational tasks. Several basic logic gates have been analyzed and the nonlocal content of the associate quantum transformations have been calculated. The results provide us with new interesting insight into th...
Insights into classical irreversible computation using quantum information concepts
Groisman, Berry
2008-01-01
The method of using concepts and insight from quantum information theory in order to solve problems in reversible classical computing (introduced in Ref. [1]) have been generalized to irreversible classical computing. The method have been successfully tested on two computational tasks. Several basic logic gates have been analyzed and the nonlocal content of the associate quantum transformations have been calculated. The results provide us with new interesting insight into the notion of complexity of logic operations.
Distribution of quantum Fisher information in asymmetric cloning machines
Xiao, Xing; Yao, Yao; Zhou, Lei-Ming; Wang, XiaoGuang
2014-01-01
An unknown quantum state cannot be copied on demand and broadcast freely due to the famous no-cloning theorem. Approximate cloning schemes have been proposed to achieve the optimal cloning characterized by the maximal fidelity between the original and its copies. Here, from the perspective of quantum Fisher information (QFI), we investigate the distribution of QFI in asymmetric cloning machines which produce two nonidentical copies. As one might expect, improving the QFI of ...
Information and fundamental elements of the structure of quantum theory
Brukner, Caslav; Zeilinger, Anton
2002-01-01
Niels Bohr wrote: "There is no quantum world. There is only an abstract quantum physical description. It is wrong to think that the task of physics is to find out how Nature is. Physics concerns what we can say about Nature." In an analogous way, von Weizsaecker suggested that the notion of the elementary alternative, the "Ur", should play a pivotal role when constructing physics. Both approaches suggest that the concept of information should play an essential role in the fo...
Context translation and quantum information via state partitions
Svozil, K
2004-01-01
A context translation principle is introduced relating the origin of quantum randomness to the uncontrollable degrees of freedom of the quasi-classical measurement interface, thereby translating a mismatch between the state prepared and the state measured. For many-particle systems, quantum information in arbitrary base $n$ is defined by partitioning the set of states according to the outcomes of $n$-ary joined multi-particle observables.
Quantum information via state partitions and the context translation principle
Svozil, Karl
2003-01-01
For many-particle systems, quantum information in base n can be defined by partitioning the set of states according to the outcomes of n-ary (joint) observables. Thereby, k particles can carry k nits. With regards to the randomness of single outcomes, a context translation principle is proposed. Quantum randomness is related to the uncontrollable degrees of freedom of the measurement interface, thereby translating a mismatch between the state prepared and the state measured.
EDITORIAL: Focus on Quantum Information and Many-Body Theory
Eisert, Jens; Plenio, Martin B.
2010-02-01
Quantum many-body models describing natural systems or materials and physical systems assembled piece by piece in the laboratory for the purpose of realizing quantum information processing share an important feature: intricate correlations that originate from the coherent interaction between a large number of constituents. In recent years it has become manifest that the cross-fertilization between research devoted to quantum information science and to quantum many-body physics leads to new ideas, methods, tools, and insights in both fields. Issues of criticality, quantum phase transitions, quantum order and magnetism that play a role in one field find relations to the classical simulation of quantum systems, to error correction and fault tolerance thresholds, to channel capacities and to topological quantum computation, to name but a few. The structural similarities of typical problems in both fields and the potential for pooling of ideas then become manifest. Notably, methods and ideas from quantum information have provided fresh approaches to long-standing problems in strongly correlated systems in the condensed matter context, including both numerical methods and conceptual insights. Focus on quantum information and many-body theory Contents TENSOR NETWORKS Homogeneous multiscale entanglement renormalization ansatz tensor networks for quantum critical systems M Rizzi, S Montangero, P Silvi, V Giovannetti and Rosario Fazio Concatenated tensor network states R Hübener, V Nebendahl and W Dür Entanglement renormalization in free bosonic systems: real-space versus momentum-space renormalization group transforms G Evenbly and G Vidal Finite-size geometric entanglement from tensor network algorithms Qian-Qian Shi, Román Orús, John Ove Fjærestad and Huan-Qiang Zhou Characterizing symmetries in a projected entangled pair state D Pérez-García, M Sanz, C E González-Guillén, M M Wolf and J I Cirac Matrix product operator representations B Pirvu, V Murg, J I Cirac and F Verstraete SIMULATION AND DYNAMICS A quantum differentiation of k-SAT instances B Tamir and G Ortiz Classical Ising model test for quantum circuits Joseph Geraci and Daniel A Lidar Exact matrix product solutions in the Heisenberg picture of an open quantum spin chain S R Clark, J Prior, M J Hartmann, D Jaksch and M B Plenio Exact solution of Markovian master equations for quadratic Fermi systems: thermal baths, open XY spin chains and non-equilibrium phase transition Tomaž Prosen and Bojan Žunkovi? Quantum kinetic Ising models R Augusiak, F M Cucchietti, F Haake and M Lewenstein ENTANGLEMENT AND SPECTRAL PROPERTIES Ground states of unfrustrated spin Hamiltonians satisfy an area law Niel de Beaudrap, Tobias J Osborne and Jens Eisert Correlation density matrices for one-dimensional quantum chains based on the density matrix renormalization group W Münder, A Weichselbaum, A Holzner, Jan von Delft and C L Henley The invariant-comb approach and its relation to the balancedness of multipartite entangled states Andreas Osterloh and Jens Siewert Entanglement scaling of fractional quantum Hall states through geometric deformations Andreas M Läuchli, Emil J Bergholtz and Masudul Haque Entanglement versus gap for one-dimensional spin systems Daniel Gottesman and M B Hastings Entanglement spectra of critical and near-critical systems in one dimension F Pollmann and J E Moore Macroscopic bound entanglement in thermal graph states D Cavalcanti, L Aolita, A Ferraro, A García-Saez and A Acín Entanglement at the quantum phase transition in a harmonic lattice Elisabeth Rieper, Janet Anders and Vlatko Vedral Multipartite entanglement and frustration P Facchi, G Florio, U Marzolino, G Parisi and S Pascazio Entropic uncertainty relations—a survey Stephanie Wehner and Andreas Winter Entanglement in a spin system with inverse square statistical interaction D Giuliano, A Sindona, G Falcone, F Plastina and L Amico APPLICATIONS Time-dependent currents of one-dimensional bosons in an optical lattice J Schachenmayer, G Pupillo and A J Daley Implementing quantum gates using t
PT -symmetric Hamiltonians and their application in quantum information
Croke, Sarah
2015-05-01
We discuss the prospect of PT -symmetric Hamiltonians finding applications in quantum information science, and conclude that such evolution is unlikely to provide any benefit over existing techniques. Although it has been known for some time that PT -symmetric quantum theory, when viewed as a unitary theory, is exactly equivalent to standard quantum mechanics, proposals continue to be put forward for schemes in which PT -symmetric quantum theory can outperform standard quantum theory. The most recent of these is the suggestion to use PT -symmetric Hamiltonians to perform an exponentially fast database search, a task known to be impossible with a quantum computer. Further, such a scheme has been shown to apparently produce effects in conflict with fundamental information-theoretic principles, such as the impossibility of superluminal information transfer, and the invariance of entanglement under local operations. In this paper we propose three inequivalent experimental implementations of PT -symmetric Hamiltonians, with careful attention to the resources required to realize each such evolution. Such an operational approach allows us to resolve these apparent conflicts, and evaluate fully schemes proposed in the literature for faster time evolution and state discrimination.
Statistical properties of quantum entanglement and information entropy
International Nuclear Information System (INIS)
Key words: entropy, entanglement, atom-field interaction, trapped ions, cold atoms, information entropy. Objects of research: Pure state entanglement, entropy squeezing mazer. The aim of the work: Study of the new entanglement features and new measures for both pure-state and mixed state of particle-field interaction. Also, the impact of the information entropy on the quantum information theory. Method of investigation: Methods of theoretical physics and applied mathematics (statistical physics, quantum optics) are used. Results obtained and their novelty are: All the results of the dissertation are new and many new features have been discovered. Particularly: the most general case of the pure state entanglement has been introduced. Although various special aspects of the quantum entropy have been investigated previously, the general features of the dynamics, when a multi-level system and a common environment are considered, have not been treated before and our work therefore, field a gap in the literature. Specifically: 1) A new entanglement measure due to quantum mutual entropy (mixed-state entanglement) we called it DEM, has been introduced, 2) A new treatment of the atomic information entropy in higher level systems has been presented. The problem has been completely solved in the case of three-level system, 3) A new solution of the interaction between the ultra cold atoms and cavity field has been discovered, 4) Some new models of the atom-field interaction have been adopted. Practical value: The subject carries out theoretic character. Application region: Results can be used in quantum computer developments. Also, the presented results can be used for further developments of the quantum information and quantum communications. (author)
Quantum Theory as Efficient Representation of Probabilistic Information
Summhammer, J
2007-01-01
Quantum experiments yield random data. We show that the most efficient way to store this empirical information by a finite number of bits is by means of the vector of square roots of observed relative frequencies. This vector has the unique property that its dispersion becomes invariant of the underlying probabilities, and therefore invariant of the physical parameters. This also extends to the complex square roots, and it remains true under a unitary transformation. This reveals quantum theory as a theory for making predictions which are as accurate as the input information, without any statistical loss. Our analysis also suggests that from the point of view of information a slightly more accurate theory than quantum theory should be possible.
Information–theoretic implications of quantum causal structures
DEFF Research Database (Denmark)
Chaves, Rafael; Majenz, Christian
2014-01-01
It is a relatively new insight of classical statistics that empirical data can contain information about causation rather than mere correlation. First algorithms have been proposed that are capable of testing whether a presumed causal relationship is compatible with an observed distribution. However, no systematic method is known for treating such problems in a way that generalizes to quantum systems. Here, we describe a general algorithm for computing information–theoretic constraints on the correlations that can arise from a given causal structure, where we allow for quantum systems as well as classical random variables. The general technique is applied to two relevant cases: first, we show that the principle of information causality appears naturally in our framework and go on to generalize and strengthen it. Second, we derive bounds on the correlations that can occur in a networked architecture, where a set of few-body quantum systems is distributed among some parties.
Virtual photonic couplings of quantum nanostructures for quantum information technology
DEFF Research Database (Denmark)
Matsueda, H.; Hvam, JØrn Märcher
2008-01-01
The effectiveness of virtual photons (VPHs) that need neither to conserve energy nor to follow temporal sequences because of the time-energy uncertainty principle, in the electric interactions between detuned non-identical two level atoms having different size and shape is demonstrated in terms of a model of resonance dynamic multipolemultipole interaction (RDMMI), on the basis of microphotoluminescence (?-PL) experiment of a single asymmetric pair of GaAs/AlGaAs quantum dots (QDs). The ranges of the mediating photons in various RDMMI are estimated, proving the significance of RDMMI in the nanometer regime. Furthermore, prospective device concepts based on the RDMMI assistedby the VPHs, having possibility of autonomic routing of signals like a fallingdominoes effect not only throughout spatial extent but also over temporal differences are deiscussed.
Long-range Fermi sea correlations as the resource for encoding quantum information
Moskalets, Michael
2014-01-01
An extra constant phase can be added to the wave function of a finite-length portion of a chiral Fermi sea. This phase can be read-out with the help of an imbalanced interferometer, where such a phase carrier interferes with the reference Fermi sea. As a result of such interference, the same in value but opposite in sign charge is appeared at interferometer's outputs. A phase carrier consists of electron-hole pairs residing on the surface of the Fermi sea. Importantly, these...
Channel representation of quantum error-correcting codes
International Nuclear Information System (INIS)
Quantum error-correcting codes (qeccs) are essential for most of the proposed realizations of quantum computation to correct errors due to decoherence. Quantum convolutional codes (qccs) are a promising candidate for on line encoding and decoding of a flow of quantum information thus enabling the sending party to begin with the transmission of quantum information before the end of the flow (or a block) is reached. Analogously the decoding process can begin before the end of the transmission. Until now, only the noise and interaction with the environment were described in the channel formalism. We investigate qeccs and describe their encoders as channels. Block encoders are represented by memoryless channels, whereas convolutional encoders are described by memory channels. Convolutional encoders need to be ''non-catastrophic'', meaning an error on a single source qubit should only affect a finite number of target qubits. We investigate the relation between this condition and the ''forgetfulness''-property of quantum memory channels
A few experiments of quantum information processing.
Czech Academy of Sciences Publication Activity Database
?ernoch, Antonín; Soubusta, Jan; Dušek, M.
Košice : Slovak Physical Society, 2006 - (Ková?, J.; Reiffers, M.), s. 35-36 ISBN 80-969124-2-9. [Conference of Slovak and Czech Physicists /15./. Košice (SK), 05.09.2005-08.09.2005] Grant ostatní: EU(XE) IST-2002-506813 Institutional research plan: CEZ:AV0Z10100522 Keywords : quantum multimeter * interference * down-conversion Subject RIV: BH - Optics, Masers, Lasers
Rényi generalizations of the conditional quantum mutual information
Berta, Mario; Seshadreesan, Kaushik P.; Wilde, Mark M.
2015-02-01
The conditional quantum mutual information I(A; B|C) of a tripartite state ?ABC is an information quantity which lies at the center of many problems in quantum information theory. Three of its main properties are that it is non-negative for any tripartite state, that it decreases under local operations applied to systems A and B, and that it obeys the duality relation I(A; B|C) = I(A; B|D) for a four-party pure state on systems ABCD. The conditional mutual information also underlies the squashed entanglement, an entanglement measure that satisfies all of the axioms desired for an entanglement measure. As such, it has been an open question to find Rényi generalizations of the conditional mutual information, that would allow for a deeper understanding of the original quantity and find applications beyond the traditional memoryless setting of quantum information theory. The present paper addresses this question, by defining different ?-Rényi generalizations I?(A; B|C) of the conditional mutual information, some of which we can prove converge to the conditional mutual information in the limit ? ? 1. Furthermore, we prove that many of these generalizations satisfy non-negativity, duality, and monotonicity with respect to local operations on one of the systems A or B (with it being left as an open question to prove that monotonicity holds with respect to local operations on both systems). The quantities defined here should find applications in quantum information theory and perhaps even in other areas of physics, but we leave this for future work. We also state a conjecture regarding the monotonicity of the Rényi conditional mutual informations defined here with respect to the Rényi parameter ?. We prove that this conjecture is true in some special cases and when ? is in a neighborhood of one.
Rényi generalizations of the conditional quantum mutual information
International Nuclear Information System (INIS)
The conditional quantum mutual information I(A; B|C) of a tripartite state ?ABC is an information quantity which lies at the center of many problems in quantum information theory. Three of its main properties are that it is non-negative for any tripartite state, that it decreases under local operations applied to systems A and B, and that it obeys the duality relation I(A; B|C) = I(A; B|D) for a four-party pure state on systems ABCD. The conditional mutual information also underlies the squashed entanglement, an entanglement measure that satisfies all of the axioms desired for an entanglement measure. As such, it has been an open question to find Rényi generalizations of the conditional mutual information, that would allow for a deeper understanding of the original quantity and find applications beyond the traditional memoryless setting of quantum information theory. The present paper addresses this question, by defining different ?-Rényi generalizations I?(A; B|C) of the conditional mutual information, some of which we can prove converge to the conditional mutual information in the limit ? ? 1. Furthermore, we prove that many of these generalizations satisfy non-negativity, duality, and monotonicity with respect to local operations on one of the systems A or B (with it being left as an open question to prove that monotonicity holds with respect to local operations on both systems). The quantities defined here should find applications in quantum information theory and perhaps even in other areas of physics, but we leave this for future work. We also state a conjecture regarding the monotonicity of the Rényi conditional mutual informations defined here with respect to the Rényi parameter ?. We prove that this conjecture is true in some special cases and when ? is in a neighborhood of one
Quantum information processing with mesoscopic photonic states
DEFF Research Database (Denmark)
Madsen, Lars Skovgaard
2012-01-01
The thesis is built up around a versatile optical experimental setup based on a laser, two optical parametric ampliers, a few sets of modulators and two sets of homodyne detectors, which together with passive linear optics generate, process and characterize various types of Gaussian quantum states. Using this setup we have experimentally and theoretically investigated Gaussian quantum discord, continuous variable quantum key distribution and quantum polarization. The Gaussian discord broadens the definition of non-classical correlations from entanglement, to all types of correlations which cannot be extracted by local measurements due to the limitations dictated by the Heisenberg's uncertainty principle. We experimentally characterize the evolution of the discord of EPR states and mixtures of coherent states in an attenuating channel. We demonstrate that the discord can grow by local dissipation in the mixture of coherent states. Further we investigate the robustness of the discord of a broader range of states and suggest a toolbox of states which can be used to test if a protocol is discord based, before performing a rigid proof. Gaussian quantum key distribution can be implemented with current commercially available equipment. However the performance in terms of achievable distance is highly limited. We first experimentally demonstrate that the boundaries of coherent states can be surpassed using modulated entangled states. A simplied experiment is also presented where the modulation of a single-mode squeezed state gives a very reconciliation efficiency robust protocol. All of this is done to achieve higher key rates at the current limits of the coherent state protocols and to extend the boundaries for tolerable channel noise, loss and reconciliation efficiency. As any degree of squeezing improves the performance the extra effort of implementing squeezing in commercial devices is overshadowed by the extended range and increased security margin achieved. Still using the same experimental setup, but now in the context of polarization we have experimentally bridged the gab between the states with very low photon numbers and the states where one of Stokes parameters is highly excited. To describe the polarization of these state we introduce several new polarization measures which take into account the covariance of the polarization and resolve the polarization manifolds. We experimentally demonstrate states for which the polarization is hidden in the unresolved measures and as well a state which is unpolarized for both first order polarization measures. Finally we illustrate the polarization with SU2 Wigner functions to give a richer picture, not only of the degree of polarization but also its distribution among the manifolds.
Babbush, Ryan Joseph; Perdomo-Ortiz, Alejandro; O'Gorman, Bryan Andrew; Macready, William; Aspuru-Guzik, Alan
2013-01-01
Optimization problems associated with the interaction of linked particles are at the heart of polymer science, protein folding and other important problems in the physical sciences. In this review we explain how to recast these problems as constraint satisfaction problems such as linear programming, maximum satisfiability, and pseudo-boolean optimization. By encoding problems this way, one can leverage substantial insight and powerful solvers from the computer science community which studies ...
Quantum Information and Wave function Collapse
Mayburov, S.
2008-01-01
Inofrmation-theoretical restrictions on information transferred in the measurement of object S by information system O are studied. It is shown that such constraints, induced by Heisenberg commutation relations, result in the loss of information about the purity of S state. Consequently, it becomes impossible for O to discriminate pure and mixed S states. In individual events this effect is manifested by the stochastic outcomes of pure S state measurement, i.e. the collapse ...
Energy Technology Data Exchange (ETDEWEB)
Kent, Adrian; Munro, William J.; Spiller, Timothy P. [Centre for Quantum Information and Foundations, DAMTP, University of Cambridge, Cambridge, United Kingdom and Perimeter Institute for Theoretical Physics, Waterloo, Ontario (Canada); NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi-shi, Kanagawa 243-0198 (Japan); Quantum Information Science, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom)
2011-07-15
We define the task of quantum tagging, that is, authenticating the classical location of a classical tagging device by sending and receiving quantum signals from suitably located distant sites, in an environment controlled by an adversary whose quantum information processing and transmitting power is unbounded. We define simple security models for this task and briefly discuss alternatives. We illustrate the pitfalls of naive quantum cryptographic reasoning in this context by describing several protocols which at first sight appear unconditionally secure but which, as we show, can in fact be broken by teleportation-based attacks. We also describe some protocols which cannot be broken by these specific attacks, but do not prove they are unconditionally secure. We review the history of quantum tagging protocols, and show that protocols previously proposed by Malaney and Chandran et al. are provably insecure.
Kent, Adrian; Spiller, Tim
2010-01-01
We define the task of {\\it quantum tagging}, that is, authenticating the classical location of a classical tagging device by sending and receiving quantum signals from suitably located distant sites, in an environment controlled by an adversary whose quantum information processing and transmitting power is unbounded. We define simple security models for this task and briefly discuss alternatives. We illustrate the pitfalls of naive quantum cryptographic reasoning in this context by describing several protocols which at first sight appear unconditionally secure but which, as we show, can in fact be broken by teleportation-based attacks. We also describe some protocols which cannot be broken by these specific attacks, but do not prove they are unconditionally secure. We review the history of quantum tagging protocols, which we first discussed in 2002 and described in a 2006 patent (for an insecure protocol). The possibility has recently been reconsidered by other authors. All the more recently discussed protoco...
International Nuclear Information System (INIS)
In order to avoid the risk of information leakage during the information mutual transmission between two authorized participants, i.e. Alice and Bob, a quantum dialogue protocol based on the entanglement swapping between any two Bell states and the shared secret Bell state is proposed. The proposed protocol integrates the ideas of block transmission, two-step transmission and unitary operation encoding together using the Bell states as the information carriers. Besides the entanglement swapping between any two Bell states, a shared secret Bell state is also used to overcome the information leakage problem, which not only makes Bob aware of the prepared initial state but also is used for Bob's encoding and entanglement swapping. Security analysis shows that the proposed protocol can resist the general active attacks from an outside eavesdropper Eve. Moreover, the relation between the maximal amount of information Eve can gain and the detection probability is derived. (paper)
Detecting arbitrary quantum errors via stabilizer measurements on a sublattice of the surface code
Córcoles, A.D.; Magesan, Easwar; Srinivasan, Srikanth J.; Cross, Andrew W.; Steffen, M.; Gambetta, Jay M.; Chow, Jerry M.
2014-01-01
To build a fault-tolerant quantum computer, it is necessary to implement a quantum error correcting code. Such codes rely on the ability to extract information about the quantum error syndrome while not destroying the quantum information encoded in the system. Stabilizer codes are attractive solutions to this problem, as they are analogous to classical linear codes, have simple and easily computed encoding networks, and allow efficient syndrome extraction. In these codes, sy...
Quantum Fisher information in the XXZ model with Dzyaloshinskii-Moriya interaction
Liu, X. M.; Du, Z. Z.; Cheng, W. W.; Liu, J.-M.
2015-07-01
We have studied the quantum Fisher information of the XXZ spin chain model with Dzyaloshinskii-Moriya interaction, using the quantum renormalization-group method. The results show that the evolution behavior of quantum Fisher information with increasing lattice size can clearly illustrate the quantum transitions of this spin model. Moreover, it is demonstrated that the scaling property of quantum Fisher information at the critical point can be used to explain the spin correlation length of this model. The present work evidences the capability of the quantum Fisher information in characterizing quantum phase transitions in condensed matters.
Renyi generalizations of the conditional quantum mutual information
Berta, Mario; Wilde, Mark M
2014-01-01
The conditional quantum mutual information $I(A;B|C)$ of a tripartite state $\\rho_{ABC}$ is an information quantity which lies at the center of many problems in quantum information theory. Three of its main properties are that it is non-negative for any tripartite state, that it decreases under local operations applied to systems $A$ and $B$, and that it obeys the duality relation $I(A;B|C)=I(A;B|D)$ for a four-party pure state on systems $ABCD$. It has been an open question to find Renyi generalizations of the conditional mutual information, that would allow for a deeper understanding of the original quantity and find applications beyond the traditional memoryless setting of quantum information theory. The present paper addresses this question, by defining different $\\alpha$-Renyi generalizations $I_{\\alpha}(A;B|C)$ of the conditional mutual information that all converge to the conditional mutual information in the limit $\\alpha \\to 1$. Furthermore, we prove that many of these generalizations satisfy the afo...
Coherent ultrafast measurement of time-bin encoded photons
Donohue, John M.; Agnew, Megan; Lavoie, Jonathan; Resch, Kevin J.
2013-01-01
Time-bin encoding is a robust form of optical quantum information, especially for transmission in optical fibers. To read out the information, the separation of the time bins must be larger than the detector time resolution, typically on the order of nanoseconds for photon counters. In the present work, we demonstrate a technique using a nonlinear interaction between chirped entangled time-bin photons and shaped laser pulses to perform projective measurements on arbitrary ti...
Quantum Information Processing with Delocalized Qubits under Global Control
Fitzsimons, J; Benjamin, S C; Jones, J A; Fitzsimons, Joseph; Xiao, Li; Benjamin, Simon C.; Jones, Jonathan A.
2006-01-01
Any technology for quantum information processing (QIP) must embody within it quantum bits (qubits) and maintain control of their key quantum properties of superposition and entanglement. Typical QIP schemes envisage an array of physical systems, such as electrons or nuclei, with each system representing a given qubit. For adequate control, systems must be distinguishable either by physical separation or unique frequencies, and their mutual interactions must be individually manipulable. These difficult requirements exclude many nanoscale technologies where systems are densely packed and continuously interacting. Here we demonstrate a new paradigm: restricting ourselves to global control pulses we permit systems to interact freely and continuously, with the consequence that qubits can become delocalized over the entire device. We realize this using NMR studies of three carbon-13 nuclei in alanine, demonstrating all the key aspects including a quantum mirror, one- and two-qubit gates, permutation of densely pac...
Principles of quantum computation and information volume II
International Nuclear Information System (INIS)
Any new textbook in quantum information has some pretty strong competition to contend with. Not only is there the classic text by Nielsen and Chuang from 2000, but also John Preskill's lecture notes, available for free online. Nevertheless, a proper textbook seems more enduring than online notes, and the field has progressed considerably in the seven years since Nielsen and Chuang was published. A new textbook is a great opportunity to give a snapshot of our current state of knowledge in quantum information. Therein also lies a problem: The field has expanded so much that it is impossible to cover everything at the undergraduate level. Quantum information theory is relevant to an extremely large portion of physics, from solid state and condensed matter physics to particle physics. Every discipline that has some relation to quantum mechanics is affected by our understanding of quantum information theory. Those who wish to write a book on quantum information therefore have to make some profound choices: Do you keep the ultimate aim of a quantum computer in mind, or do you focus on quantum communication and precision measurements as well? Do you describe how to build a quantum computer with all possible physical systems or do you present only the underlying principles? Do you include only the tried and tested ideas, or will you also explore more speculative directions? You don't have to take a black-or-white stance on these questions, but how you approach them will profoundly determine the character of your book. The authors of 'Principles of Quantum Computation and Information (Volume II: Basic Tools and Special Topics)' have chosen to focus on the construction of quantum computers, but restrict themselves mainly to general techniques. Only in the last chapter do they explicitly address the issues that arise in the different implementations. The book is the second volume in a series, and consists of four chapters (labelled 5 to 8) called 'Quantum Information Theory', 'Decoherence', 'Quantum Error Correction', and 'First Experimental Implementations'. The first volume covers the basics of classical computation, quantum mechanics, quantum computation, and quantum communication. Chapter five starts with the density matrix formalism, and proceeds with the development of the Kraus representation, POVMs, von Neuman entropy, quantum data compression, the Holevo bound, the partial transpose criterion, and it ends with a very nice section on the various entropies that play a role in modern physics. This includes not only the thermodynamical and statistical entropy, but also the dynamical Kolmogorov-Sinai entropy, which is used in quantum chaos in chapter 6. On the whole, I think that this is a really clear and well-presented chapter. A minor drawback is that the concept of CP maps is not explained as well as it could have been, for example by relating it to the partial transpose criterion. Chapter six continues with the high standard set in chapter five, and presents a very thorough exposition of decoherence in general. It introduces the different decoherence channels, and gives truly excellent explanations of the master equation (tied in with the Kraus representation), quantum jumps, and the quantum trajectory formalism. It also has an elegant explanation for the sensitivity of Schroedinger cats to decoherence. The chapter ends with two sections on quantum chaos. Since the authors are experts in this fascinating area, this is a welcome addition to the canon of topics typically covered in quantum information. Unfortunately, the section is quite hard to follow, and as a result it is a bit of a missed opportunity. There is a section on chaos in the first volume of this series, and this may provide the required background. Chapter seven on quantum error correction is disappointing, and I have the feeling that the authors went through the motions without a real passion for the subject matter. The chapter describes various error correction codes, including Hamming codes and CSS codes, but it is virtually silent on fault tolerance; it do
Toward an Information-based Interpretation of Quantum Mechanics and the Quantum-Classical Transition
Juan G. Roederer
2011-01-01
I will show how an objective definition of the concept of information and the consideration of recent results about information-processing in the human brain help clarify some fundamental and often counter-intuitive aspects of quantum mechanics. In particular, I will discuss entanglement, teleportation, non-interaction measurements and decoherence in the light of the fact that pragmatic information, the one our brain handles, can only be defined in the classical macroscopic ...
Experimental demonstration of a flexible time-domain quantum channel.
Xing, Xingxing; Feizpour, Amir; Hayat, Alex; Steinberg, Aephraim M
2014-10-20
We present an experimental realization of a flexible quantum channel where the Hilbert space dimensionality can be controlled electronically. Using electro-optical modulators (EOM) and narrow-band optical filters, quantum information is encoded and decoded in the temporal degrees of freedom of photons from a long-coherence-time single-photon source. Our results demonstrate the feasibility of a generic scheme for encoding and transmitting multidimensional quantum information over the existing fiber-optical telecommunications infrastructure. PMID:25401545
Deriving general relativity from considerations on quantum information
Görnitz, Thomas
2010-01-01
From a theory of an abstract quantum information the theory of general relativity can be deduced by means of few and physically good founded reasons. "Abstract" quantum information means that primarily no special meaning is connected with it. Therefore it is named with a new denotation: Protyposis. From the Protyposis and by using group-theoretical methods follows a cosmological model, which has an isotropic and homogeneous metric and solves the so-called cosmological problems. The Protyposis is subject to an equation of states for energy density and pressure that fulfils all the energy conditions and that also gives an explanation for the "dark energy". If it is demanded that the relations between spacetime structure and the material content should remain valid for variations from this ideal cosmology, then general relativity results from this quantum theoretical considerations as a description for local inhomogenities.
Information theory of quantum systems with some hydrogenic applications
Dehesa, J S; Sánchez-Moreno, P S; Yáñez, R J
2010-01-01
The information-theoretic representation of quantum systems, which complements the familiar energy description of the density-functional and wave-function-based theories, is here discussed. According to it, the internal disorder of the quantum-mechanical non-relativistic systems can be quantified by various single (Fisher information, Shannon entropy) and composite (e.g. Cramer-Rao, LMC shape and Fisher-Shannon complexity) functionals of the Schr\\"odinger probability density. First, we examine these concepts and its application to quantum systems with central potentials. Then, we calculate these measures for hydrogenic systems, emphasizing their predictive power for various physical phenomena. Finally, some recent open problems are pointed out.
Introduction to Dynamic Unary Encoding
Berg, Ernst D.
2014-01-01
Dynamic unary encoding takes unary encoding to the next level. Every n-bit binary string is an encoding of dynamic unary and every n-bit binary string is encodable by dynamic unary. By utilizing both forms of unary code and a single bit of parity information dynamic unary encoding partitions 2^n non-negative integers into n sets of disjoint cycles of n-bit elements. These cycles have been employed as virtual data sets, binary transforms and as a mathematical object. Characte...
Oggier, Frederique; Mihaljevic, Miodrag J.
2010-01-01
This paper proposes a generic approach for providing enhanced security to communication systems which encode their data for reliability before encrypting it through a stream cipher for security. We call this counter-intuitive technique the {\\em encoding-encryption} paradigm, and use as motivating example the standard for mobile telephony GSM. The enhanced security is based on a dedicated homophonic or wire-tap channel coding that introduces pure randomness, combined with the...
How can an autonomous quantum Maxwell demon harness correlated information?
Chapman, Adrian; Miyake, Akimasa
2015-01-01
We study an autonomous quantum system, which exhibits refrigeration under an information-work tradeoff like a Maxwell demon. The system becomes correlated as a single "demon" qubit interacts sequentially with memory qubits while in contact with two heat reservoirs of different temperatures. Using strong subadditivity of the von Neumann entropy, we derive a global Clausius inequality to show thermodynamical advantages from access to correlated information. It is demonstrated,...
Quantum Fisher Information for Density Matrices with Arbitrary Ranks
International Nuclear Information System (INIS)
We provide a new expression of the quantum Fisher information (QFI) for a general system. Utilizing this expression, the QFI for a non-full rank density matrix is only determined by its support. This expression can bring convenience for an infinite-dimensional density matrix with a finite support. Besides, a matrix representation of the QFI is also given. (general)
The Data Compression Theorem for Ergodic Quantum Information Sources
Bjelakovic, Igor; Szkola, Arleta
2003-01-01
We extend the data compression theorem to the case of ergodic quantum information sources. Moreover, we provide an asymptotically optimal compression scheme which is based on the concept of high probability subspaces. The rate of this compression scheme is equal to the von Neumann entropy rate.
Information-Theoretic Analyses of Two-Level Quantum Systems
Slater, P B
2000-01-01
We observe that the 3 x 3 quantum (Helstrom) information matrix (H) for thethree-dimensional convex set of two-level quantum systems is equal to 1/4 ofthe classical (Fisher) information matrix for a certain family of multinomial(in particular, quadrinomial) probability distributions. Implications for stateestimation and universal coding (data compression) of this quantum-classicalrelation are examined. We also compute the Fisher information matrices based onthe optimal sets of measurements recently devised by Vidal et al(quant-ph/9812068) for N = 2,...,7 copies of the two-level systems. We findthat these matrices are bounded above by (N-1) H, while N H is the theoreticalbound provided by the quantum Cramer-Rao theorem. Additionally, the slightlysmaller matrices (N-1.01) H are not dominating near the pure states, so the bounds (N-1) H areclearly quite tight there. We find for N = 2,...,6 that the trace of theproduct of the inverse of H and the Fisher information matrix for optimalminimal measurements of N copi...
Quantum simulation and quantum information processing with molecular dipolar crystals
International Nuclear Information System (INIS)
In this thesis interactions between dipolar crystals and neutral atoms or separated molecules have been investigated. They were motivated to realize new kinds of lattice models in mixtures of atoms and polar molecules where an MDC functions as an underlying periodic lattice structure for the second species. Such models bring out the peculiar features of MDC's, that include a controllable, potentially sub-optical wavelength periodicity and strong particle phonon interactions. Only stable collisional configurations have been investigated, excluding chemical reactions between the substituents, and crystal distortions beyond the scope of perturbation theory. The system was treated in the polaron picture where particles of the second species are dressed by surrounding crystal phonons. To describe the competition between coherent and incoherent dynamics of the polarons, a master equation in the Brownian motion limit was used with phonons treated as a thermal heat bath. It was shown analytically that in a wide range of realistic parameters the corrections to the coherent time evolution are small, and that the dynamics of the dressed particles can be described by an effective extended Hubbard model with controllable system parameters. The last chapter of this thesis contains a proposal for QIP with cold polar molecules that, in contrast to previous works, uses an MDC as a quantum register. It was motivated by the unique features of dipolar molecules and to exploit the peculiar physical conditions in dipolar crystals. In this proposal the molecular dipole moments were tailored by non-local fields to include a small, switchable, state-dependent dipole moment in addition to the large internal state independent moment that stabilizes the crystal. It was shown analytically that a controllable, non-trivial phonon-mediated interaction can be generated that exceeds non-trivial, direct dipole-dipole couplings. The addressability problem due to high crystal densities was overcome by the use of marker qubits that locally manipulate the phononic structure. This enabled the implementation of qubit operations in the crystal at pre-specified lattice site using otherwise global addressing only with negligible decoherence. Finally a specific two-layer setup is outlined that can be scaled to arbitrary sizes by including multi-layer structures realized under optical trapping conditions with multiple marker molecules. (author)
Quantum Mechanical Model for Information Transfer from DNA to Protein
Karafyllidis, Ioannis G
2008-01-01
A model for the information transfer from DNA to protein using quantum information and computation techniques is presented. DNA is modeled as the sender and proteins are modeled as the receiver of this information. On the DNA side, a 64-dimensional Hilbert space is used to describe the information stored in DNA triplets (codons). A Hamiltonian matrix is constructed for this space, using the 64 possible codons as base states. The eigenvalues of this matrix are not degenerate. The genetic code is degenerate and proteins comprise only 20 different amino acids. Since information is conserved, the information on the protein side is also described by a 64-dimensional Hilbert space, but the eigenvalues of the corresponding Hamiltonian matrix are degenerate. Each amino acid is described by a Hilbert subspace. This change in Hilbert space structure reflects the nature of the processes involved in information transfer from DNA to protein.
Perfect Quantum Error Correcting Code
International Nuclear Information System (INIS)
We present a quantum error correction code which protects a qubit of information against general one qubit errors. To accomplish this, we encode the original state by distributing quantum information over five qubits, the minimal number required for this task. We describe a circuit which takes the initial state with four extra qubits in the state |0 right-angle to the encoded state. It can also be converted into a decoder by running it backward. The original state of the encoded qubit can then be restored by a simple unitary transformation. copyright 1996 The American Physical Society
Quantum fidelity in the thermodynamic limit
Rams, Marek M.; Damski, Bogdan
2010-01-01
We study quantum fidelity, the overlap between two ground states of a many-body system, focusing on the thermodynamic regime. We show how drop of fidelity near a critical point encodes universal information about a quantum phase transition. Our general scaling results are illustrated in the quantum Ising chain for which a remarkably simple expression for fidelity is found.
Semiclassical gravity from the perspective of quantum information theory
International Nuclear Information System (INIS)
Full text: Quantum field theory in curved spacetimes makes remarkable predictions about the behavior of quantum fields in the presence of strong gravitational fields. Nevertheless, these striking discoveries raises several issues. The development of a theory at the interface between relativity, quantum mechanics, and information theory could not only shed new light on such questions as well as allowing to uncover new low-energy quantum gravity effects. In this talk I will review several results in this new field. In particular it will be shown that the Bell inequalities can be satisfied rather than violated by quantum mechanics if the detectors making the measurements are set in relativistic motion. It will also be shown that the entanglement between a pair of quits can suffer a sudden death when one of the quits accelerates uniformly for a finite proper time. This result will be used to analyze the behavior of entanglement in the vicinity of a nonrotating chargeless black hole. I will end with a discussion about the prospects of the field, emphasizing the so called 'black hole information paradox' and the question of what is the microscopic origin of the black hole entropy. (author)
Testing Information Causality for General Quantum Communication Protocols
Yu, I-Ching
2015-01-01
Information causality was proposed as a physical principle to put upper bound on the accessible information gain in a physical bi-partite communication scheme. Intuitively, the information gain cannot be larger than the amount of classical communication to avoid violation of causality. Moreover, it was shown that this bound is consistent with the Tsirelson bound for the binary quantum systems. In this paper, we test the information causality for the more general (non-binary) quantum communication schemes. In order to apply the semi-definite programming method to find the maximal information gain, we only consider the schemes in which the information gain is monotonically related to the Bell-type functions, i.e., the generalization of CHSH functions for Bell inequalities in a binary schemes. We determine these Bell-type functions by using the signal decay theorem. Our results support the proposal of information causality. We also find the maximal information gain by numerical brute-force method for the most ge...
Nambu-Goldstone Effective Theory of Information at Quantum Criticality
Dvali, Gia; Gomez, Cesar; Wintergerst, Nico
2015-01-01
We establish a fundamental connection between quantum criticality of a many-body system, such as Bose-Einstein condensates, and its capacity of information-storage and processing. For deriving the effective theory of modes in the vicinity of the quantum critical point we develop a new method by mapping a Bose-Einstein condensate of $N$-particles onto a sigma model with a continuous global (pseudo)symmetry that mixes bosons of different momenta. The Bogolyubov modes of the condensate are mapped onto the Goldstone modes of the sigma model, which become gapless at the critical point. These gapless Goldstone modes are the quantum carriers of information and entropy. Analyzing their effective theory, we observe the information-processing properties strikingly similar to the ones predicted by the black hole portrait. The energy cost per qubit of information-storage vanishes in the large-$N$ limit and the total information-storage capacity increases with $N$ either exponentially or as a power law. The longevity of i...
Continuous-variable quantum-state sharing via quantum disentanglement
International Nuclear Information System (INIS)
Quantum-state sharing is a protocol where perfect reconstruction of quantum states is achieved with incomplete or partial information in a multipartite quantum network. Quantum-state sharing allows for secure communication in a quantum network where partial information is lost or acquired by malicious parties. This protocol utilizes entanglement for the secret-state distribution and a class of 'quantum disentangling' protocols for the state reconstruction. We demonstrate a quantum-state sharing protocol in which a tripartite entangled state is used to encode and distribute a secret state to three players. Any two of these players can collaborate to reconstruct the secret state, while individual players obtain no information. We investigate a number of quantum disentangling processes and experimentally demonstrate quantum-state reconstruction using two of these protocols. We experimentally measure a fidelity, averaged over all reconstruction permutations, of F=0.73±0.02. A result achievable only by using quantum resources
Some applications of hypercontractive inequalities in quantum information theory
Montanaro, Ashley
2012-12-01
Hypercontractive inequalities have become important tools in theoretical computer science and have recently found applications in quantum computation. In this note we discuss how hypercontractive inequalities, in various settings, can be used to obtain (fairly) concise proofs of several results in quantum information theory: a recent lower bound of Lancien and Winter on the bias achievable by local measurements which are 4-designs; spectral concentration bounds for k-local Hamiltonians; and a recent result of Pellegrino and Seoane-Sepúlveda giving general lower bounds on the classical bias obtainable in multiplayer XOR games.
Information Geometry of Entanglement Renormalization for free Quantum Fields
Molina-Vilaplana, Javier
2015-01-01
We provide an explicit connection between the differential generation of entanglement entropy in a tensor network representation of the ground states of two field theories, and a geometric description of these states based on the Fisher information metric. We show how the geometrical description remains invariant despite there is an irreducible gauge freedom in the definition of the tensor network. The results might help to understand how spacetimes may emerge from distributions of quantum states, or more concretely, from the structure of the quantum entanglement concomitant to those distributions.
Cascading Quantum Light-Matter Interfaces
Namazi, Mehdi; Mittiga, Thomas; Kupchak, Connor; Figueroa, Eden
2015-01-01
The ability to interface multiple optical quantum devices is a key milestone towards the development of future quantum networks that are capable of sharing and processing quantum information encoded in light. One of the requirements for any node of these quantum networks will be cascadability, i.e. the ability to drive the input of a node using the output of another node. Here, we report the cascading of quantum light-matter interfaces by storing few-photon level pulses of l...
Algebraic geometry informs perturbative quantum field theory
Broadhurst, David
2014-01-01
Single-scale Feynman diagrams yield integrals that are periods, namely projective integrals of rational functions of Schwinger parameters. Algebraic geometry may therefore inform us of the types of number to which these integrals evaluate. We give examples at 3, 4 and 6 loops of massive Feynman diagrams that evaluate to Dirichlet $L$-series of modular forms and examples at 6, 7 and 8 loops of counterterms that evaluate to multiple zeta values or polylogarithms of the sixth root of unity. At 8 loops and beyond, algebraic geometry informs us that polylogs are insufficient for the evaluation of terms in the beta-function of $\\phi^4$ theory. Here, modular forms appear as obstructions to polylogarithmic evaluation.
Babbush, Ryan; O'Gorman, Bryan; Macready, William; Aspuru-Guzik, Alán
2012-01-01
Optimization problems associated with the interaction of linked particles are at the heart of polymer science, protein folding and other important problems in the physical sciences. In this review we explain how to recast these problems as constraint satisfaction problems such as linear programming, maximum satisfiability, and pseudo-boolean optimization. By encoding problems this way, one can leverage substantial insight and powerful solvers from the computer science community which studies constraint programming for diverse applications such as logistics, scheduling, artificial intelligence, and circuit design. We demonstrate how to constrain and embed lattice heteropolymer problems using several strategies. Each strikes a unique balance between number of constraints, complexity of constraints, and number of variables. In addition, each strategy has distinct advantages and disadvantages depending on problem size and available resources. Finally, we show how to reduce the locality of couplings in these energ...
Discord as a quantum resource for bi-partite communication
International Nuclear Information System (INIS)
Coherent interactions that generate negligible entanglement can still exhibit unique quantum behaviour. This observation has motivated a search beyond entanglement for a complete description of all quantum correlations. Quantum discord is a promising candidate. Here, we experimentally demonstrate that under certain measurement constraints, discord between bipartite systems can be consumed to encode information that can only be accessed by coherent quantum interactions. The inability to access this information by any other means allows us to use discord to directly quantify this ‘quantum advantage’
Barz, Stefanie
2015-04-01
Quantum physics has revolutionized our understanding of information processing and enables computational speed-ups that are unattainable using classical computers. This tutorial reviews the fundamental tools of photonic quantum information processing. The basics of theoretical quantum computing are presented and the quantum circuit model as well as measurement-based models of quantum computing are introduced. Furthermore, it is shown how these concepts can be implemented experimentally using photonic qubits, where information is encoded in the photons’ polarization.
Quantum-information processing with noisy cluster states
International Nuclear Information System (INIS)
We provide an analysis of basic quantum-information processing protocols under the effect of intrinsic nonidealities in cluster states. These nonidealities are based on the introduction of randomness in the entangling steps that create the cluster state and are motivated by the unavoidable imperfections faced in creating entanglement using condensed-matter systems. Aided by the use of an alternative and very efficient method to construct cluster-state configurations, which relies on the concatenation of fundamental cluster structures, we address quantum-state transfer and various fundamental gate simulations through noisy cluster states. We find that a winning strategy to limit the effects of noise is the management of small clusters processed via just a few measurements. Our study also reinforces recent ideas related to the optical implementation of a one-way quantum computer
Algebraic and information-theoretic conditions for operator quantum error-correction
Nielsen, Michael A.; Poulin, David
2005-01-01
Operator quantum error-correction is a technique for robustly storing quantum information in the presence of noise. It generalizes the standard theory of quantum error-correction, and provides a unified framework for topics such as quantum error-correction, decoherence-free subspaces, and noiseless subsystems. This paper develops (a) easily applied algebraic and information-theoretic conditions which characterize when operator quantum error-correction is feasible; (b) a repr...
How not to R\\'enyi generalize the Quantum Conditional Mutual Information
Erker, Paul
2014-01-01
We study the relation between the quantum conditional mutual information and the quantum $\\alpha$-R\\'enyi divergences. Considering the totally antisymmetric state we show that it is not possible to attain a proper generalization of the quantum conditional mutual information by optimizing the distance in terms of quantum $\\alpha$-R\\'enyi divergences over the set of all Markov states. The failure of the approach considered arises from the observation that a small quantum condi...
Distribution of quantum Fisher information in asymmetric cloning machines
Xiao, Xing; Yao, Yao; Zhou, Lei-Ming; Wang, Xiaoguang
2014-12-01
An unknown quantum state cannot be copied and broadcast freely due to the no-cloning theorem. Approximate cloning schemes have been proposed to achieve the optimal cloning characterized by the maximal fidelity between the original and its copies. Here, from the perspective of quantum Fisher information (QFI), we investigate the distribution of QFI in asymmetric cloning machines which produce two nonidentical copies. As one might expect, improving the QFI of one copy results in decreasing the QFI of the other copy. It is perhaps also unsurprising that asymmetric phase-covariant cloning outperforms universal cloning in distributing QFI since a priori information of the input state has been utilized. However, interesting results appear when we compare the distributabilities of fidelity (which quantifies the full information of quantum states), and QFI (which only captures the information of relevant parameters) in asymmetric cloning machines. Unlike the results of fidelity, where the distributability of symmetric cloning is always optimal for any d-dimensional cloning, we find that any asymmetric cloning outperforms symmetric cloning on the distribution of QFI for d cloning strategies could be worse than symmetric ones when d > 18.
A quantum limit on the information retrievable from an image
Levitin, Lev B
2014-01-01
We consider the physical limitations imposed on the information content of an image by the wave and quantum nature of light, when the image is obtained by illuminating a reflecting or transmitting planar object by natural---i.e., fully thermalized---light, or by observation of an object emitting incoherent (thermal) radiation. The discreteness of the degrees of freedom and the statistical properties of thermal radiation are taken into account. We derive the maximum amount of information that can be retrieved from the object. This amount is always finite and is proportional to the area of the object, the solid angle under which the entrance pupil of the receiver is seen from the object, and the time of observation. An explicit expression for the information in the case where the information recorded by the receiver obeys Planck's spectral distribution is obtained. The amount of information per photon of recorded radiation is a universal numerical constant, independent of the parameters of observation.
Coherent versus Measurement Feedback: Linear Systems Theory for Quantum Information
Yamamoto, Naoki
2014-10-01
To control a quantum system via feedback, we generally have two options in choosing a control scheme. One is the coherent feedback, which feeds the output field of the system, through a fully quantum device, back to manipulate the system without involving any measurement process. The other one is measurement-based feedback, which measures the output field and performs a real-time manipulation on the system based on the measurement results. Both schemes have advantages and disadvantages, depending on the system and the control goal; hence, their comparison in several situations is important. This paper considers a general open linear quantum system with the following specific control goals: backaction evasion, generation of a quantum nondemolished variable, and generation of a decoherence-free subsystem, all of which have important roles in quantum information science. Some no-go theorems are proven, clarifying that those goals cannot be achieved by any measurement-based feedback control. On the other hand, it is shown that, for each control goal there exists a coherent feedback controller accomplishing the task. The key idea to obtain all the results is system theoretic characterizations of the above three notions in terms of controllability and observability properties or transfer functions of linear systems, which are consistent with their standard definitions.
Khrennikov, Andrei
2010-01-01
We propose a model of quantum-like (QL) processing of mental information. This model is based on quantum information theory. However, in contrast to models of "quantum physical brain" reducing mental activity (at least at the highest level) to quantum physical phenomena in the brain, our model matches well with the basic neuronal paradigm of the cognitive science. QL information processing is based (surprisingly) on classical electromagnetic signals induced by joint activity...
Adaptive Controller Design for Faulty UAVs via Quantum Information Technology
Directory of Open Access Journals (Sweden)
Fuyang Chen
2012-12-01
Full Text Available In this paper, an adaptive controller is designed for a UAV flight control system against faults and parametric uncertainties based on quantum information technology and the Popov hyperstability theory. First, considering the bounded control input, the state feedback controller is designed to make the system stable. The model of adaptive control is introduced to eliminate the impact by the uncertainties of system parameters via quantum information technology. Then, according to the model reference adaptive principle, an adaptive control law based on the Popov hyperstability theory is designed. This law enable better robustness of the flight control system and tracking control performances. The closed?loop system’s stability is guaranteed by the Popov hyperstability theory. The simulation results demonstrate that a better dynamic performance of the UAV flight control system with faults and parametric uncertainties can be maintained with the proposed method.
Quantum Fisher information as a signature of the superradiant quantum phase transition
International Nuclear Information System (INIS)
The single-mode Dicke model is well known to undergo a quantum phase transition from the so-called normal phase to the superradiant phase (hereinafter called the ‘superradiant quantum phase transition’). Normally, quantum phase transitions can be identified by the critical behavior of quantities such as entanglement, quantum fluctuations, and fidelity. In this paper, we study the role of the quantum Fisher information (QFI) of both the field mode and the atoms in the ground state of the Dicke Hamiltonian. For a finite but large number of atoms, our numerical results show that near the critical atom-field coupling, the QFI of the atomic and the field subsystems can surpass their classical limits, due to the appearance of nonclassical quadrature squeezing. As the coupling increases far beyond the critical point, each subsystem becomes a highly mixed state, which degrades the QFI and hence the ultimate phase sensitivity. In the thermodynamic limit, we present the analytical results of the QFI and their relationship with the reduced variances of the field mode and the atoms. For each subsystem, we find that there is a singularity in the derivative of the QFI at the critical point, a clear signature of the quantum criticality in the Dicke model. (paper)
Tomita-Takesaki Modular Theory vs. Quantum Information Theory
ZHANG, LIN; Wu, Junde
2013-01-01
Comment: 29 pages, LaTeX, this review article is not completed and to be continued. The first goal of writing this topic is just to understand the notion of cyclic and separating vector in von Neumann algebra. The second goal is to apply Tomita-Takesaki modular theory in Quantum Information Theory. All comments are welcome!. arXiv admin note: text overlap with arXiv:0906.3980, arXiv:1012.1417 by other authors
The Quantum-Classical Transition as an Information Flow
Directory of Open Access Journals (Sweden)
Angelo Plastino
2010-01-01
Full Text Available We investigate the classical limit of the semiclassical evolution with reference to a well-known model that represents the interaction between matter and a given field. This is done by recourse to a special statistical quantifier called the “symbolic transfer entropy”. We encounter that the quantum-classical transition gets thereby described as the sign-reversal of the dominating direction of the information flow between classical and quantal variables.
Black holes, information, and Hilbert space for quantum gravity
Nomura, Yasunori(Center for Theoretical Physics, Laboratory for Nuclear Science, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA); Varela, Jaime(Center for Theoretical Physics, Laboratory for Nuclear Science, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA); Weinberg, Sean J.
2012-01-01
A coarse-grained description for the formation and evaporation of a black hole is given within the framework of a unitary theory of quantum gravity preserving locality, without dropping the information that manifests as macroscopic properties of the state at late times. The resulting picture depends strongly on the reference frame one chooses to describe the process. In one description based on a reference frame in which the reference point stays outside the black hole horiz...
Video Encryption and Decryption on Quantum Computers
Yan, Fei; Iliyasu, Abdullah M.; Venegas-Andraca, Salvador E.; Yang, Huamin
2015-08-01
A method for video encryption and decryption on quantum computers is proposed based on color information transformations on each frame encoding the content of the encoding the content of the video. The proposed method provides a flexible operation to encrypt quantum video by means of the quantum measurement in order to enhance the security of the video. To validate the proposed approach, a tetris tile-matching puzzle game video is utilized in the experimental simulations. The results obtained suggest that the proposed method enhances the security and speed of quantum video encryption and decryption, both properties required for secure transmission and sharing of video content in quantum communication.
Scheme for Quantum Cloning and Quantum Information Processing with Trapped Ions
Zhan, Zhi-Ming
In this paper, a scheme is presented to implement the 1?2 universal quantum cloning machine (UQCM) with trapped ions. In this way, we also show that quantum information can be directly transferred from one ion to another. The distinct advantage of the scheme lies in the fact that it does not use the vibrational mode as the data bus. The vibrational mode is only virtually excited, which makes our scheme insensitive to heating, provided the system remains in the Lamb-Dicke regime.
Quantum Discord and Information Deficit in Spin Chains
Directory of Open Access Journals (Sweden)
Norma Canosa
2015-03-01
Full Text Available We examine the behavior of quantum correlations of spin pairs in a finite anisotropic XY spin chain immersed in a transverse magnetic field, through the analysis of the quantum discord and the conventional and quadratic one-way information deficits. We first provide a brief review of these measures, showing that the last ones can be obtained as particular cases of a generalized information deficit based on general entropic forms. All of these measures coincide with an entanglement entropy in the case of pure states, but can be non-zero in separable mixed states, vanishing just for classically correlated states. It is then shown that their behavior in the exact ground state of the chain exhibits similar features, deviating significantly from that of the pair entanglement below the critical field. In contrast with entanglement, they reach full range in this region, becoming independent of the pair separation and coupling range in the immediate vicinity of the factorizing field. It is also shown, however, that significant differences between the quantum discord and the information deficits arise in the local minimizing measurement that defines them. Both analytical and numerical results are provided.
Concept of chemical bond and aromaticity based on quantum information theory
Szilvási, T; Legeza, Ö
2015-01-01
Quantum information theory (QIT) emerged in physics as standard technique to extract relevant information from quantum systems. It has already contributed to the development of novel fields like quantum computing, quantum cryptography, and quantum complexity. This arises the question what information is stored according to QIT in molecules which are inherently quantum systems as well. Rigorous analysis of the central quantities of QIT on systematic series of molecules offered the introduction of the concept of chemical bond and aromaticity directly from physical principles and notions. We identify covalent bond, donor-acceptor dative bond, multiple bond, charge-shift bond, and aromaticity indicating unified picture of fundamental chemical models from ab initio.
Decoherence, Control, and Symmetry in Quantum Computers
Bacon, D.
2003-01-01
In this thesis we describe methods for avoiding the detrimental effects of decoherence while at the same time still allowing for computation of the quantum information. The philosophy of the method discussed in the first part of this thesis is to use a symmetry of the decoherence mechanism to find robust encodings of the quantum information. Stability, control, and methods for using decoherence-free information in a quantum computer are presented with a specific emphasis on ...
Hayashi, Masahito
2012-01-01
We treat secret key extraction when the eavesdropper has correlated quantum states. We propose quantum privacy amplification theorems different from Renner's, which are based on quantum conditional R\\'{e}nyi entropy of order 1+s. Using those theorems, we derive an exponential decreasing rate for leaked information and the asymptotic equivocation rate, which have not been derived hitherto in the quantum setting.
Gravity and Information: Putting a Bit of Quantum into GR
Spaans, M
2009-01-01
It is shown that quantum aspects of the energy-momentum tensor reveal dark matter like behavior for general relativity. In this, special meaning is assigned to the operator X^2d^2/dX^2+2Xd/dX, for any field X that is part of the energy-momentum tensor, and to the distinction between information on gravitational and non-gravitational effects. Changes in such information cause the Sun-Earth distance to increase by ~11 cm/yr.
Gravity and Information: Putting a Bit of Quantum into GR
Spaans, M.
2009-01-01
It is shown that quantum aspects of the energy-momentum tensor reveal dark matter and dark energy behavior for general relativity. Special meaning is assigned to the operator X^2d^2/dX^2 +2Xd/dX, for any field X that is part of the energy-momentum tensor, and to the distinction between information on gravitational and non-gravitational effects. Changes in such information cause the Sun-Earth distance to increase by 11 cm/yr.
Viola, Lorenza; Tannor, David
2011-08-01
Precisely characterizing and controlling the dynamics of realistic open quantum systems has emerged in recent years as a key challenge across contemporary quantum sciences and technologies, with implications ranging from physics, chemistry and applied mathematics to quantum information processing (QIP) and quantum engineering. Quantum control theory aims to provide both a general dynamical-system framework and a constructive toolbox to meet this challenge. The purpose of this special issue of Journal of Physics B: Atomic, Molecular and Optical Physics is to present a state-of-the-art account of recent advances and current trends in the field, as reflected in two international meetings that were held on the subject over the last summer and which motivated in part the compilation of this volume—the Topical Group: Frontiers in Open Quantum Systems and Quantum Control Theory, held at the Institute for Theoretical Atomic, Molecular and Optical Physics (ITAMP) in Cambridge, Massachusetts (USA), from 1-14 August 2010, and the Safed Workshop on Quantum Decoherence and Thermodynamics Control, held in Safed (Israel), from 22-27 August 2010. Initial developments in quantum control theory date back to (at least) the early 1980s, and have been largely inspired by the well-established mathematical framework for classical dynamical systems. As the above-mentioned meetings made clear, and as the burgeoning body of literature on the subject testifies, quantum control has grown since then well beyond its original boundaries, and has by now evolved into a highly cross-disciplinary field which, while still fast-moving, is also entering a new phase of maturity, sophistication, and integration. Two trends deserve special attention: on the one hand, a growing emphasis on control tasks and methodologies that are specifically motivated by QIP, in addition and in parallel to applications in more traditional areas where quantum coherence is nevertheless vital (such as, for instance, quantum control of chemical reactions or high-resolution magnetic resonance spectroscopy); on the other hand, an unprecedented demand for close coupling between theory and experiment, with theoretical developments becoming more and more attuned to and driven by experimental advances as different quantum technologies continue to evolve at an impressive pace in the laboratory. Altogether, these two trends account for several of the recurrent themes in this volume, as well as in the current quantum control literature as a whole: namely, the quest for control strategies that can attain the highest degree of precision and robustness possible, while striving for efficiency and, ultimately, optimality in achieving the intended control task under realistic operational constraints. From a theory standpoint, this makes it imperative to take into account increasingly more realistic control settings; to assess the quantitative impact of limited control resources and/or system knowledge; and to provide a rigorous and general foundation for existing experimental approaches in order to further enhance applicability and performance. From an experimental standpoint, renewed emphasis is in turn placed on validating theoretical predictions and benchmarking performance, so that the limiting constraints can be singled out for additional theoretical analysis and guidance. This ongoing cross-talk is clearly reflected in this collection, which brings together theoreticians and experimentalists, with a significant fraction of the papers reporting on combined quantum control theory-experiment efforts. While a precise categorization would neither be possible nor desirable, contributions to this volume have been loosely grouped into five broad sections. This grouping has been made in the hope that connections between different problems and/or technical approaches will become more transparent, facilitating the transfer of concepts and methods. The special issue opens with a section devoted to open-loop control methods, with special emphasis on dynamical decoupling (DD), which is becoming an incr
Khrennikov, Andrei
2000-01-01
We use the system of p-adic numbers for the description of information processes. Basic objects of our models are so called transformers of information, basic processes are information processes, the statistics are information statistics (thus we present a model of information reality). The classical and quantum mechanical formalisms on information p-adic spaces are developed. It seems that classical and quantum mechanical models on p-adic information spaces can be applied f...
Quantum information transmission in the quantum wireless multihop network based on Werner state
Shi, Li-Hui; Yu, Xu-Tao; Cai, Xiao-Fei; Gong, Yan-Xiao; Zhang, Zai-Chen
2015-05-01
Many previous studies about teleportation are based on pure state. Study of quantum channel as mixed state is more realistic but complicated as pure states degenerate into mixed states by interaction with environment, and the Werner state plays an important role in the study of the mixed state. In this paper, the quantum wireless multihop network is proposed and the information is transmitted hop by hop through teleportation. We deduce a specific expression of the recovered state not only after one-hop teleportation but also across multiple intermediate nodes based on Werner state in a quantum wireless multihop network. We also obtain the fidelity of multihop teleportation. Project supported by the Prospective Future Network Project of Jiangsu Province, China (Grant No. BY2013095-1-18) and the Independent Project of State Key Laboratory of Millimeter Waves (Grant No. Z201504).
Hall effect encoding of brushless dc motors
Berard, C. A.; Furia, T. J.; Goldberg, E. A.; Greene, R. C.
1970-01-01
Encoding mechanism integral to the motor and using the permanent magnets embedded in the rotor eliminates the need for external devices to encode information relating the position and velocity of the rotating member.
Informação e teoria quântica / Information and quantum theory
Scientific Electronic Library Online (English)
Olival, Freire Junior; Ileana Maria, Greca.
2013-03-01
Full Text Available A pesquisa em informação quântica sugere uma íntima conexão entre o conceito de informação e a teoria quântica, mas essa conexão envolve nuances cuja análise é o objeto deste trabalho. A sabedoria comum nesse campo divide-se em duas grandes áreas, não excludentes entre si. Há os que são movidos pela [...] possibilidade de uso da teoria quântica em um novo campo, o da computação, independentemente do esclarecimento de seus fundamentos, aqui incluído o conceito de "informação". Alguns consideram que estamos diante de um grande problema conceitual sem resposta satisfatória no momento, enquanto que outros, dentre os que reconhecem a magnitude do problema, têm proposto formulações com a pretensão de solução do problema. Este artigo tem pretensões modestas. Não pretendemos aportar novas soluções ao problema, nem apoiar uma das soluções existentes. Temos a expectativa de através da análise histórico-conceitual do problema mapear as diversas possibilidades, apontando o que nos parecem ser aspectos fortes e fracos nessas possibilidades. Abstract in english Research in quantum information suggests a close connection between information and quantum theory. The aim of this article is to analyze nuances involved in this connection. Scientists in this field are divided into two overlapping camps. Some are motivated only by the use of quantum features to im [...] prove information processing, in spite of concerns about the foundations of the quantum theory, while others recognize deep conceptual problems of this theory, and attempt to solve them. This article has modest ambitions. It aims only to chart, by way of historical and conceptual analysis, the diverse possibilities available, indicating the strengths and weaknesses of each of them.
Multi-photon entanglement and applications in quantum information
Energy Technology Data Exchange (ETDEWEB)
Schmid, Christian I.T.
2008-05-30
In this thesis, two new linear optics networks are introduced and their application for several quantum information tasks is presented. Spontaneous parametric down conversion, is used in different configurations to provide the input states for the networks. The first network is a new design of a controlled phase gate which is particularly interesting for applications in multi-photon experiments as it constitutes an improvement of former realizations with respect to stability and reliability. This is explicitly demonstrated by employing the gate in four-photon experiments. In this context, a teleportation and entanglement swapping protocol is performed in which all four Bell states are distinguished by means of the phase gate. A similar type of measurement applied to the subsystem parts of two copies of a quantum state, allows further the direct estimation of the state's entanglement in terms of its concurrence. Finally, starting from two Bell states, the controlled phase gate is applied for the observation of a four photon cluster state. The analysis of the results focuses on measurement based quantum computation, the main usage of cluster states. The second network, fed with the second order emission of non-collinear type ii spontaneous parametric down conversion, constitutes a tunable source of a whole family of states. Up to now the observation of one particular state required one individually tailored setup. With the network introduced here many different states can be obtained within the same arrangement by tuning a single, easily accessible experimental parameter. These states exhibit many useful properties and play a central role in several applications of quantum information. Here, they are used for the solution of a four-player quantum Minority game. It is shown that, by employing four-qubit entanglement, the quantum version of the game clearly outperforms its classical counterpart. Experimental data obtained with both networks are utilized to demonstrate a new method for the experimental discrimination of different multi-partite entangled states. The new tool presented here is based on operators which are formed by the correlations between local measurement settings that are typical for the respective quantum state. (orig.)
Multi-photon entanglement and applications in quantum information
International Nuclear Information System (INIS)
In this thesis, two new linear optics networks are introduced and their application for several quantum information tasks is presented. Spontaneous parametric down conversion, is used in different configurations to provide the input states for the networks. The first network is a new design of a controlled phase gate which is particularly interesting for applications in multi-photon experiments as it constitutes an improvement of former realizations with respect to stability and reliability. This is explicitly demonstrated by employing the gate in four-photon experiments. In this context, a teleportation and entanglement swapping protocol is performed in which all four Bell states are distinguished by means of the phase gate. A similar type of measurement applied to the subsystem parts of two copies of a quantum state, allows further the direct estimation of the state's entanglement in terms of its concurrence. Finally, starting from two Bell states, the controlled phase gate is applied for the observation of a four photon cluster state. The analysis of the results focuses on measurement based quantum computation, the main usage of cluster states. The second network, fed with the second order emission of non-collinear type ii spontaneous parametric down conversion, constitutes a tunable source of a whole family of states. Up to now the observation of one particular state required one individually tailored setup. With the network introduced here many different states can be obtained within the same arrangement by tuning a single, easily accessible experimental parameter. These states exhibit many useful properties and play a central role in several applications of quantum information. Here, they are used for the solution of a four-player quantum Minority game. It is shown that, by employing four-qubit entanglement, the quantum version of the game clearly outperforms its classical counterpart. Experimental data obtained with both networks are utilized to demonstrate a new method for the experimental discrimination of different multi-partite entangled states. The new tool presented here is based on operators which are formed by the correlations between local measurement settings that are typical for the respective quantum state. (orig.)
Selecting Operations for Assembler Encoding
Directory of Open Access Journals (Sweden)
Tomasz Praczyk
2010-04-01
Full Text Available Assembler Encoding is a neuro-evolutionary method in which a neural network is represented in the form of a simple program called Assembler Encoding Program. The task of the program is to create the so-called Network Definition Matrix which maintains all the information necessary to construct the network. To generate Assembler Encoding Programs and the subsequent neural networks evolutionary techniques are used.
The performance of Assembler Encoding strongly depends on operations used in Assembler Encoding Programs. To select the most effective operations, experiments in the optimization and the predator-prey problem were carried out. In the experiments, Assembler Encoding Programs equipped with different types of operations were tested. The results of the tests are presented at the end of the paper.
Encoding field theories into gravities
Aoki, Sinya; Onogi, Tetsuya
2015-01-01
We propose a method, which encodes the information of a $d$ dimensional quantum field theory into a $d+1$ dimensional gravity in the $1/N$ expansion. We first construct a $d+1$ dimensional field theory from the $d$ dimensional one via the gradient flow equation, whose flow time $t$ represents the energy scale of the system such that $t\\rightarrow 0$ corresponds to the ultra-violet (UV) while $t\\rightarrow\\infty$ to the infra-red (IR). We then define the induced metric from $d+1$ dimensional field operators. We show that the metric defined in this way becomes classical in the large $N$ limit, in a sense that quantum fluctuations of the metric are suppressed as $1/N$ due to the large $N$ factorization property. As a concrete example, we apply our method to the O(N) non-linear $\\sigma$ model in two dimensions. We calculate the induced metric in three dimensions, which is shown to describe De Sitter (dS) or Anti De Sitter (AdS) space in the massless limit, where the mass is dynamically generated in the O(N) non-l...
Fidelity of an encoded [7,1,3] logical zero
International Nuclear Information System (INIS)
I calculate the fidelity of a [7,1,3] Calderbank-Shor-Steane quantum error correction code logical zero state constructed in a nonequiprobable Pauli operator error environment for two methods of encoding. The first method is to apply fault-tolerant error correction to an arbitrary state of seven qubits utilizing Shor states for syndrome measurement. The Shor states are themselves constructed in the nonequiprobable Pauli operator error environment, and their fidelity depends on the number of verifications done to ensure multiple errors will not propagate into the encoded quantum information. Surprisingly, performing these verifications may lower the fidelity of the constructed Shor states. The second encoding method is to simply implement the [7,1,3] encoding gate sequence also in the nonequiprobable Pauli operator error environment. Perfect error correction is applied after both methods to determine the correctability of the implemented errors. I find that which method attains higher fidelity depends on which of the Pauli operators errors is dominant. Nevertheless, perfect error correction applied after the encoding suppresses errors to at least first order for both methods.
Limits Of Quantum Information In Weak Interaction Processes Of Hyperons
Hiesmayr, B. C.
2015-01-01
We analyze the achievable limits of the quantum information processing of the weak interaction revealed by hyperons with spin. We find that the weak decay process corresponds to an interferometric device with a fixed visibility and fixed phase difference for each hyperon. Nature chooses rather low visibilities expressing a preference to parity conserving or violating processes (except for the decay ?+? p?0). The decay process can be considered as an open quantum channel that carries the information of the hyperon spin to the angular distribution of the momentum of the daughter particles. We find a simple geometrical information theoretic interpretation of this process: two quantization axes are chosen spontaneously with probabilities where ? is proportional to the visibility times the real part of the phase shift. Differently stated, the weak interaction process corresponds to spin measurements with an imperfect Stern-Gerlach apparatus. Equipped with this information theoretic insight we show how entanglement can be measured in these systems and why Bell’s nonlocality (in contradiction to common misconception in literature) cannot be revealed in hyperon decays. Last but not least we study under which circumstances contextuality can be revealed. PMID:26144247
Limits Of Quantum Information In Weak Interaction Processes Of Hyperons.
Hiesmayr, B C
2015-01-01
We analyze the achievable limits of the quantum information processing of the weak interaction revealed by hyperons with spin. We find that the weak decay process corresponds to an interferometric device with a fixed visibility and fixed phase difference for each hyperon. Nature chooses rather low visibilities expressing a preference to parity conserving or violating processes (except for the decay ?(+)? p?(0)). The decay process can be considered as an open quantum channel that carries the information of the hyperon spin to the angular distribution of the momentum of the daughter particles. We find a simple geometrical information theoretic interpretation of this process: two quantization axes are chosen spontaneously with probabilities where ? is proportional to the visibility times the real part of the phase shift. Differently stated, the weak interaction process corresponds to spin measurements with an imperfect Stern-Gerlach apparatus. Equipped with this information theoretic insight we show how entanglement can be measured in these systems and why Bell's nonlocality (in contradiction to common misconception in literature) cannot be revealed in hyperon decays. Last but not least we study under which circumstances contextuality can be revealed. PMID:26144247
International Nuclear Information System (INIS)
We have combined the idea of renormalization group and quantum-information theory. We have shown how the entanglement or concurrence evolve as the size of the system becomes large, i.e., the finite size scaling is obtained. Moreover, we introduce how the renormalization-group approach can be implemented to obtain the quantum-information properties of a many-body system. We have obtained the concurrence as a measure of entanglement, its derivatives and their scaling behavior versus the size of system for the one-dimensional Ising model in transverse field. We have found that the derivative of concurrence between two blocks each containing half of the system size diverges at the critical point with the exponent, which is directly associated with the divergence of the correlation length
A quantum informational approach for dissecting chemical reactions
Duperrouzel, Corinne; Boguslawski, Katharina; Barcza, Gergerly; Legeza, Örs; Ayers, Paul W
2014-01-01
We present a conceptionally different approach to dissect bond-formation processes in metal-driven catalysis using concepts from quantum information theory. Our method uses the entanglement and correlation among molecular orbitals to analyze changes in electronic structure that accompany chemical processes. As a proof-of-principle example, the evolution of nickel-ethene bond-formation is dissected which allows us to monitor the interplay of back-bonding and $\\pi$-donation along the reaction coordinate. Furthermore, the reaction pathway of nickel-ethene complexation is analyzed using quantum chemistry methods revealing the presence of a transition state. Our study supports the crucial role of metal-to-ligand back-donation in the bond-forming process of nickel-ethene.
A quantum theory with possible leakage of information
International Nuclear Information System (INIS)
A model of quantum theory is presented where the evolution of pure states into mixed states is possible, so that information on the system states is not conserved. The theory is based upon an evolution equation for the density operator, which is an extension of the Landau-von Neumann equation. The equation contains the system hamiltonian and a single parameter characterizing the deviation from the standard theory. The model does not break usual conservation laws. The general solution is represented as an average over the solutions of conventional theory; this is an effect of the uncertainty in time. Predictions of the model are discussed in brief. Spectrometry and scattering do not experience the modification, it manifests itself only in processes with an observable time dependence. Neutral kaon decays are considered. The model is proposed in view of Hawking's suggestion that quantum gravity may be a reason for an additional unpredictability in elementary particle physics. (orig.)
Quadrature uncertainty and information entropy of quantum elliptical vortex states
International Nuclear Information System (INIS)
We study the quadrature uncertainty of the quantum elliptical vortex state using the associated Wigner function. Deviations from the minimum uncertainty states were observed due to the absence of Gaussianity. We further observed that there exists an optimum value of ellipticity which gives rise to the maximum entanglement of the two modes of the quantum elliptical vortex states. In our study of entropy, we noticed that with increasing vorticity, entropy increases for both the modes. A further increase in ellipticity reduces the entropy thereby resulting in a loss of information carrying capacity. We check the validity of the entropic inequality relations, namely the subaddivity and the Araki–Lieb inequality. The latter was satisfied only for a very small range of the ellipticity of the vortex, while the former seemed to be valid at all values. (paper)
Microfabrication techniques for trapped ion quantum information processing
Britton, Joe
2010-01-01
Quantum-mechanical principles can be used to process information (QIP). In one approach, linear arrays of trapped, laser cooled ion qubits (two-level quantum systems) are confined in segmented multi-zone electrode structures. The ion trap approach to QIP requires trapping and control of numerous ions in electrode structures with many trapping zones. I investigated microfabrication of structures to trap, transport and couple large numbers of ions. Using 24Mg+ I demonstrated loading and transport between zones in microtraps made of boron doped silicon. This thesis describes the fundamentals of ion trapping, the characteristics of silicon-based traps amenable to QIP work and apparatus to trap ions and characterize traps. Microfabrication instructions appropriate for nonexperts are included. Ion motional heating was measured. Using MEMs techniques I built a Si micro-mechanical oscillator and demonstrated a method to reduce the kinetic energy of its lowest order mechanical mode via capacitive coupling to a driven...
Few-Qubit Magnetic Resonance Quantum Information Processors: Simulating Chemistry and Physics
Criger, Ben; Park, Daniel K; Baugh, Jonathan
2012-01-01
We review recent progress made in quantum information processing (QIP) which can be applied in the simulation of quantum systems and chemical phenomena. The review is focused on quantum algorithms which are useful for quantum simulation of chemistry and advances in nuclear magnetic resonance (NMR) and electron spin resonance (ESR) QIP. Discussions also include a number of recent experiments demonstrating the current capabilities of the NMR QIP for quantum simulation and pros...
Information dynamics and open systems classical and quantum approach
Ingarden, R S; Ohya, M
1997-01-01
This book aims to present an information-theoretical approach to thermodynamics and its generalisations On the one hand, it generalises the concept of `information thermodynamics' to that of `information dynamics' in order to stress applications outside thermal phenomena On the other hand, it is a synthesis of the dynamics of state change and the theory of complexity, which provide a common framework to treat both physical and nonphysical systems together Both classical and quantum systems are discussed, and two appendices are included to explain principal definitions and some important aspects of the theory of Hilbert spaces and operator algebras The concept of higher-order temperatures is explained and applied to biological and linguistic systems The theory of open systems is presented in a new, much more general form Audience This volume is intended mainly for theoretical and mathematical physicists, but also for mathematicians, experimental physicists, physical chemists, theoretical biologists, communicat...
Role of information theoretic uncertainty relations in quantum theory
Jizba, Petr; Dunningham, Jacob A.; Joo, Jaewoo
2015-04-01
Uncertainty relations based on information theory for both discrete and continuous distribution functions are briefly reviewed. We extend these results to account for (differential) Rényi entropy and its related entropy power. This allows us to find a new class of information-theoretic uncertainty relations (ITURs). The potency of such uncertainty relations in quantum mechanics is illustrated with a simple two-energy-level model where they outperform both the usual Robertson-Schrödinger uncertainty relation and Shannon entropy based uncertainty relation. In the continuous case the ensuing entropy power uncertainty relations are discussed in the context of heavy tailed wave functions and Schrödinger cat states. Again, improvement over both the Robertson-Schrödinger uncertainty principle and Shannon ITUR is demonstrated in these cases. Further salient issues such as the proof of a generalized entropy power inequality and a geometric picture of information-theoretic uncertainty relations are also discussed.
Does Considering Quantum Correlations Resolve the Information Paradox?
Roy, Avik; Alvi, Mishkat Al; Matin, Md Abdul
2013-01-01
The absence of consideration of subtle correlations in radiation process is the reason why Hawking's semiclassical analysis is often criticized. There has been speculations that accounting for such quantum correlations would eventually invalidate Hawking's result that black hole evolution is non-unitary. However, it has been recently showed that considering small deviations from Hawking's analysis does not help significantly to bypass the information paradox-- the irreversible loss of information in the evolution of a black hole. This paper generalizes the above result by parametrization of the amount of deviation from Hawking's analysis that is required to resolve the paradox. With a more rigorous and non-trivial bound than that appeared in literature before, it is confirmed that information retrieval indeed requires `not-so-small' deviation from the Hawking state. In connection to this result, a previously proposed toy model of black hole evaporation is generalized in this paper, and it is showed that allow...
Tripartite Splitting Arbitrary 2-Qubit Quantum Information by Using Two Asymmetric W States
International Nuclear Information System (INIS)
In this paper we propose a tripartite scheme for splitting an arbitrary 2-qubit quantum information by using two asymmetric W states as the quantum channel. In the schemem if the two recipients collaborate together, they can deterministically recover the quantum information by performing first a 4-qubit collective unitary operation and then two single-qubit unitary operations. In addition, since the asymmetric W states are employed as the quantum channel, the scheme is robust against decoherence.
Model checking quantum Markov chains
Feng, Yuan; Ying, Mingsheng
2012-01-01
Although the security of quantum cryptography is provable based on the principles of quantum mechanics, it can be compromised by the flaws in the design of quantum protocols and the noise in their physical implementations. So, it is indispensable to develop techniques of verifying and debugging quantum cryptographic systems. Model-checking has proved to be effective in the verification of classical cryptographic protocols, but an essential difficulty arises when it is applied to quantum systems: the state space of a quantum system is always a continuum even when its dimension is finite. To overcome this difficulty, we introduce a novel notion of quantum Markov chain, specially suited to model quantum cryptographic protocols, in which quantum effects are entirely encoded into super-operators labelling transitions, leaving the location information (nodes) being classical. Then we define a quantum extension of probabilistic computation tree logic (PCTL) and develop a model-checking algorithm for quantum Markov c...
Realization of quantum error correction.
Chiaverini, J; Leibfried, D; Schaetz, T; Barrett, M D; Blakestad, R B; Britton, J; Itano, W M; Jost, J D; Knill, E; Langer, C; Ozeri, R; Wineland, D J
2004-12-01
Scalable quantum computation and communication require error control to protect quantum information against unavoidable noise. Quantum error correction protects information stored in two-level quantum systems (qubits) by rectifying errors with operations conditioned on the measurement outcomes. Error-correction protocols have been implemented in nuclear magnetic resonance experiments, but the inherent limitations of this technique prevent its application to quantum information processing. Here we experimentally demonstrate quantum error correction using three beryllium atomic-ion qubits confined to a linear, multi-zone trap. An encoded one-qubit state is protected against spin-flip errors by means of a three-qubit quantum error-correcting code. A primary ion qubit is prepared in an initial state, which is then encoded into an entangled state of three physical qubits (the primary and two ancilla qubits). Errors are induced simultaneously in all qubits at various rates. The encoded state is decoded back to the primary ion one-qubit state, making error information available on the ancilla ions, which are separated from the primary ion and measured. Finally, the primary qubit state is corrected on the basis of the ancillae measurement outcome. We verify error correction by comparing the corrected final state to the uncorrected state and to the initial state. In principle, the approach enables a quantum state to be maintained by means of repeated error correction, an important step towards scalable fault-tolerant quantum computation using trapped ions. PMID:15577904
Stabilizer Formalism for Operator Quantum Error Correction
Poulin, David
2005-01-01
Operator quantum error correction is a recently developed theory that provides a generalized framework for active error correction and passive error avoiding schemes. In this paper, we describe these codes in the stabilizer formalism of standard quantum error correction theory. This is achieved by adding a "gauge" group to the standard stabilizer definition of a code that defines an equivalence class between encoded states. Gauge transformations leave the encoded information...
Ladd, Thaddeus D; Laflamme, Raymond; Nakamura, Yasunobu; Monroe, Christopher; O'Brien, Jeremy L; 10.1038/nature08812
2010-01-01
Quantum mechanics---the theory describing the fundamental workings of nature---is famously counterintuitive: it predicts that a particle can be in two places at the same time, and that two remote particles can be inextricably and instantaneously linked. These predictions have been the topic of intense metaphysical debate ever since the theory's inception early last century. However, supreme predictive power combined with direct experimental observation of some of these unusual phenomena leave little doubt as to its fundamental correctness. In fact, without quantum mechanics we could not explain the workings of a laser, nor indeed how a fridge magnet operates. Over the last several decades quantum information science has emerged to seek answers to the question: can we gain some advantage by storing, transmitting and processing information encoded in systems that exhibit these unique quantum properties? Today it is understood that the answer is yes. Many research groups around the world are working towards one ...
Counterfactual quantum-information transfer without transmitting any physical particles
Guo, Qi; Cheng, Liu-Yong; Chen, Li; Wang, Hong-Fu; Zhang, Shou
2015-02-01
We demonstrate quantum information can be transferred between two distant participants without any physical particles traveling between them. The key procedure of the counterfactual scheme is to entangle two nonlocal qubits with each other without interaction, so the scheme can also be used to generate nonlocal entanglement counterfactually. We here illustrate the scheme by using flying photon qubits and Rydberg atom qubits assisted by a mesoscopic atomic ensemble. Unlike the typical teleportation, the present scheme can transport an unknown qubit in a nondeterministic manner without prior entanglement sharing or classical communication between the two distant participants.
Counterfactual quantum-information transfer without transmitting any physical particles.
Guo, Qi; Cheng, Liu-Yong; Chen, Li; Wang, Hong-Fu; Zhang, Shou
2015-01-01
We demonstrate quantum information can be transferred between two distant participants without any physical particles traveling between them. The key procedure of the counterfactual scheme is to entangle two nonlocal qubits with each other without interaction, so the scheme can also be used to generate nonlocal entanglement counterfactually. We here illustrate the scheme by using flying photon qubits and Rydberg atom qubits assisted by a mesoscopic atomic ensemble. Unlike the typical teleportation, the present scheme can transport an unknown qubit in a nondeterministic manner without prior entanglement sharing or classical communication between the two distant participants. PMID:25672936
A quantum uncertainty relation based on Fisher's information
International Nuclear Information System (INIS)
We explore quantum uncertainty relations involving the Fisher information functionals Ix and Ip evaluated, respectively, on a wavefunction ?(x) defined on a D-dimensional configuration space and the concomitant wavefunction ?-tilde(p) on the conjugate momentum space. We prove that the associated Fisher functionals obey the uncertainty relation IxIp ? 4D2 when either ?(x) or ?-tilde(p) is real. On the other hand, there is no lower bound to the above product for arbitrary complex wavefunctions. We give explicit examples of complex wavefunctions not obeying the above bound. In particular, we provide a parametrized wavefunction for which the product IxIp can be made arbitrarily small.
Information flow during the quantum-classical transition
International Nuclear Information System (INIS)
We have exhaustively investigated the classical limit of the semi-classical evolution with reference to a well-known model that represents the interaction between matter and a given field. In this Letter we approach this issue by recourse to a new statistical quantifier called the 'symbolic transfer entropy' [T. Schreiber, Phys. Rev. Lett. 85 (2000) 461; M. Staniek, K. Lehnertz, Phys. Rev. Lett. 100 (2008) 158101]. We encounter that the quantum-classical transition gets thereby described as the sign reversal of the dominating direction of the information flow between classical and quantal variables. This can be considered as an evidence of the physical useful of this new statistical quantifier.
Khrennikov, Andrei
2010-01-01
We propose a model of quantum-like (QL) processing of mental information. This model is based on quantum information theory. However, in contrast to models of ``quantum physical brain'' reducing mental activity (at least at the highest level) to quantum physical phenomena in the brain, our model matches well with the basic neuronal paradigm of the cognitive science. QL information processing is based (surprisingly) on classical electromagnetic signals induced by joint activity of neurons. This novel approach to quantum information is based on representation of quantum mechanics as a version of classical signal theory which was recently elaborated by the author. The brain uses the QL representation (QLR) for working with abstract concepts; concrete images are described by classical information theory. Two processes, classical and QL, are performed parallely. Moreover, information is actively transmitted from one representation to another. A QL concept given in our model by a density operator can generate a var...
Control of quantum information flow and quantum correlations in the two-atom Tavis–Cummings model
International Nuclear Information System (INIS)
We investigate the quantum information of the two non-interacting two-level atoms coupled to a single mode of the cavity field via selective measurements. It is found that the information of the two atoms can be protected by intensive measurements and can be enhanced by a single measurement which is demonstrated by the growth of the trace distance between two marginal states of the two atoms, as well as the positive information flow in the first instance. We also show that the single measurement is effective for enhancing the quantum information flow, which leads to the increase of quantum correlations including concurrence and quantum discord. Moreover, we explore the behaviour of total information measured by the trace distance when the total system is initially in its thermal equilibrium state and how the atom–cavity coupling and the temperature affect the total correlation for the thermal state of the entire system. (paper)
Arbitrary Waveform Generator for Quantum Information Processing with Trapped Ions
Bowler, R; Britton, J W; Sawyer, B C; Amini, J
2013-01-01
Atomic ions confined in multi-electrode traps have been proposed as a basis for scalable quantum information processing. This scheme involves transporting ions between spatially distinct locations by use of time-varying electric potentials combined with laser or microwave pulses for quantum logic in specific locations. We report the development of a fast multi-channel arbitrary waveform generator for applying the time-varying electric potentials used for transport and for shaping quantum logic pulses. The generator is based on a field-programmable gate array controlled ensemble of 16-bit digital-to-analog converters with an update frequency of 50 MHz and an output range of $\\pm$10 V. The update rate of the waveform generator is much faster than relevant motional frequencies of the confined ions in our experiments, allowing diabatic control of the ion motion. Numerous pre-loaded sets of time-varying voltages can be selected with 40 ns latency conditioned on real-time signals. Here we describe the device and de...
State preparation for quantum information science and metrology
Energy Technology Data Exchange (ETDEWEB)
Samblowski, Aiko
2012-06-08
The precise preparation of non-classical states of light is a basic requirement for performing quantum information tasks and quantum metrology. Depending on the assignment, the range of required states varies from preparing and modifying squeezed states to generating bipartite entanglement and establishing multimode entanglement networks. Every state needs special preparation techniques and hence it is important to develop the experimental expertise to generate all states with the desired degree of accuracy. In this thesis, the experimental preparation of different kinds of non-classical states of light is demonstrated. Starting with a multimode entangled state, the preparation of an unconditionally generated bound entangled state of light of unprecedented accuracy is shown. Its existence is of fundamental interest, since it certifies an intrinsic irreversibility of entanglement and suggests a connection with thermodynamics. The state is created in a network of linear optics, utilizing optical parametric amplifiers, operated below threshold, beam splitters and phase gates. The experimental platform developed here afforded the precise and stable control of all experimental parameters. Focusing on the aspect of quantum information networks, the generation of suitable bipartite entangled states of light is desirable. The optical connection between atomic transitions and light that can be transmitted via telecommunications fibers opens the possibility to employ quantum memories within fiber networks. For this purpose, a non-degenerate optical parametric oscillator is operated above threshold and the generation of bright bipartite entanglement between its twin beams at the wavelengths of 810 nm and 1550 nm is demonstrated. In the field of metrology, quantum states are used to enhance the measurement precision of interferometric gravitational wave (GW) detectors. Recently, the sensitivity of a GW detector operated at a wavelength of 1064 nm was increased using squeezed vacuum states. In order to enhance the sensitivity of future GW detectors operating at a wavelength of 532 nm, squeezed vacuum states at this wavelength are required. With this intention, a highly efficient up-conversion of coherent states from 1550 nm to 532 nm is demonstrated. The presented setup is suitable to convert squeezed states in frequency. The preparation of squeezed vacuum states at 1550 nm can be realized with a standard approach using parametric down-conversion, while the transition to 532 nm is achievable by the presented sum-frequency generation process. (orig.)
What Density Functional Theory could do for Quantum Information
Mattsson, Ann
2015-03-01
The Hohenberg-Kohn theorem of Density Functional Theory (DFT), and extensions thereof, tells us that all properties of a system of electrons can be determined through their density, which uniquely determines the many-body wave-function. Given access to the appropriate, universal, functionals of the density we would, in theory, be able to determine all observables of any electronic system, without explicit reference to the wave-function. On the other hand, the wave-function is at the core of Quantum Information (QI), with the wave-function of a set of qubits being the central computational resource in a quantum computer. While there is seemingly little overlap between DFT and QI, reliance upon observables form a key connection. Though the time-evolution of the wave-function and associated phase information is fundamental to quantum computation, the initial and final states of a quantum computer are characterized by observables of the system. While observables can be extracted directly from a system's wave-function, DFT tells us that we may be able to intuit a method for extracting them from its density. In this talk, I will review the fundamentals of DFT and how these principles connect to the world of QI. This will range from DFT's utility in the engineering of physical qubits, to the possibility of using it to efficiently (but approximately) simulate Hamiltonians at the logical level. The apparent paradox of describing algorithms based on the quantum mechanical many-body wave-function with a DFT-like theory based on observables will remain a focus throughout. The ultimate goal of this talk is to initiate a dialog about what DFT could do for QI, in theory and in practice. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Scientific Electronic Library Online (English)
Jeanny Joana Rodrigues Alves de, Santana; Juliana Pardo Moura Campos, Godoy; Hugo César Palhares, Ferreira; Karla Lima de, Farias; César, Galera.
2013-12-01
Full Text Available O objetivo deste estudo foi comparar os efeitos do Ruído Visual Dinâmico (RVD) na memória visual quando apresentado em uma tarefa de reconhecimento de item durante a codificação da informação, no intervalo de retenção ou durante toda a prova. O ruído ocasionou maior interferência na memória quando a [...] presentado durante a codificação do estímulo. Os dados sugerem que a memória visual é acessada via percepção, por isto, sofre interferência externa como a causada pelo RVD. Sugere-se que o efeito ocorreu enquanto a informação era mantida na consciência por um subsistema de armazenamento de curto prazo. Estes resultados contribuem para a compreensão da arquitetura da memória de trabalho e mostram que o RVD é uma técnica apropriada para estudar a memória visual. Abstract in english We aimed to compare the effects of the Dynamic Visual Noise (DVN) on visual memory when presented at different times in an item recognition task either during information encoding, retention interval or throughout the trial. Noise had general effect on participants' performance with stronger impairm [...] ent on stimuli encoding. The data suggest that visual memory is accessed through perception and, therefore, it suffers external interference, as the one caused by the DVN. We consider that the effect occurred while the information was being kept in consciousness by a specific short-term storage subsystem. These results contribute to the understanding of the architecture used by the visual working memory and show that the DVN is an appropriate technique to study the visual memory.
Quantum Strongly Secure Ramp Secret Sharing
Zhang, Paul; Matsumoto, Ryutaroh
2014-01-01
Quantum secret sharing is a scheme for encoding a quantum state (the secret) into multiple shares and distributing them among several participants. If a sufficient number of shares are put together, then the secret can be fully reconstructed. If an insufficient number of shares are put together however, no information about the secret can be revealed. In quantum ramp secret sharing, partial information about the secret is allowed to leak to a set of participants, called an u...
Storing quantum information for 30 seconds in a nanoelectronic device.
Muhonen, Juha T; Dehollain, Juan P; Laucht, Arne; Hudson, Fay E; Kalra, Rachpon; Sekiguchi, Takeharu; Itoh, Kohei M; Jamieson, David N; McCallum, Jeffrey C; Dzurak, Andrew S; Morello, Andrea
2014-12-01
The spin of an electron or a nucleus in a semiconductor naturally implements the unit of quantum information--the qubit. In addition, because semiconductors are currently used in the electronics industry, developing qubits in semiconductors would be a promising route to realize scalable quantum information devices. The solid-state environment, however, may provide deleterious interactions between the qubit and the nuclear spins of surrounding atoms, or charge and spin fluctuations arising from defects in oxides and interfaces. For materials such as silicon, enrichment of the spin-zero (28)Si isotope drastically reduces spin-bath decoherence. Experiments on bulk spin ensembles in (28)Si crystals have indeed demonstrated extraordinary coherence times. However, it remained unclear whether these would persist at the single-spin level, in gated nanostructures near amorphous interfaces. Here, we present the coherent operation of individual (31)P electron and nuclear spin qubits in a top-gated nanostructure, fabricated on an isotopically engineered (28)Si substrate. The (31)P nuclear spin sets the new benchmark coherence time (>30?s with Carr-Purcell-Meiboom-Gill (CPMG) sequence) of any single qubit in the solid state and reaches >99.99% control fidelity. The electron spin CPMG coherence time exceeds 0.5?s, and detailed noise spectroscopy indicates that--contrary to widespread belief--it is not limited by the proximity to an interface. Instead, decoherence is probably dominated by thermal and magnetic noise external to the device, and is thus amenable to further improvement. PMID:25305745
International Nuclear Information System (INIS)
The phenomenon of quantum teleportation is discussed with emphasis on its physical aspects. A brief introduction into the Einstein-Podolsky-Rosen (EPR) paradox is followed by Bohm's reformulation of the EPR paradox for the case of a physical system of two spins in the singlet state. A description of Bell's entangled spin states of two-particle systems of standard fermions as well as polarized photons is also given. In view of the fact that quantum teleportation has been realized experimentally mainly on photons, the next part of the paper is devoted to problems of generation and detection of two-photon Bell's entangled states. A detailed description of the process of quantum teleportation exploiting quantum entangled states follows. A classical formulation of the EPR paradox is given in the Appendix. (Z.J.)
A quantum information perspective of fermionic quantum many-body systems
Energy Technology Data Exchange (ETDEWEB)
Kraus, Christina V.
2009-11-02
In this Thesis fermionic quantum many-body system are theoretically investigated from a quantum information perspective. Quantum correlations in fermionic many-body systems, though central to many of the most fascinating effects of condensed matter physics, are poorly understood from a theoretical perspective. Even the notion of ''paired'' fermions which is widely used in the theory of superconductivity and has a clear physical meaning there, is not a concept of a systematic and mathematical theory so far. Applying concepts and tools from entanglement theory, we close this gap, developing a pairing theory allowing to unambiguously characterize paired states. We develop methods for the detection and quantification of pairing according to our definition which are applicable to current experimental setups. Pairing is shown to be a quantum correlation distinct from any notion of entanglement proposed for fermionic systems, giving further understanding of the structure of highly correlated quantum states. In addition, we show the resource character of paired states for precision metrology, proving that BCS-states allow phase measurements at the Heisenberg limit. Next, the power of fermionic systems is considered in the context of quantum simulations, where we study the possibility to simulate Hamiltonian time evolutions on a cubic lattice under the constraint of translational invariance. Given a set of translationally invariant local Hamiltonians and short range interactions we determine time evolutions which can and those which can not be simulated. Bosonic and finite-dimensional quantum systems (''spins'') are included in our investigations. Furthermore, we develop new techniques for the classical simulation of fermionic many-body systems. First, we introduce a new family of states, the fermionic Projected Entangled Pair States (fPEPS) on lattices in arbitrary spatial dimension. These are the natural generalization of the PEPS known for spin systems, and they approximate efficiently ground and thermal states of systems with short-range interaction. We give an explicit mapping between fPEPS and PEPS, allowing to extend previous simulation methods to fermions. In addition, we show that fPEPS naturally arise as exact ground states of certain fermionic Hamiltonians, and give an example that exhibits criticality while fulfilling the area law. Finally, we derive methods for the determination of ground and thermal states, as well as the time evolution, of interacting fermionic systems using generalized Hartree-Fock theory (gHFT). With the computational complexity scaling polynomially with the number of particles, this method can deal with large systems. As a benchmark we apply our methods to the translationally invariant Hubbard model with attractive interaction and find excellent agreement with known results. (orig.)
A quantum information perspective of fermionic quantum many-body systems
International Nuclear Information System (INIS)
In this Thesis fermionic quantum many-body system are theoretically investigated from a quantum information perspective. Quantum correlations in fermionic many-body systems, though central to many of the most fascinating effects of condensed matter physics, are poorly understood from a theoretical perspective. Even the notion of ''paired'' fermions which is widely used in the theory of superconductivity and has a clear physical meaning there, is not a concept of a systematic and mathematical theory so far. Applying concepts and tools from entanglement theory, we close this gap, developing a pairing theory allowing to unambiguously characterize paired states. We develop methods for the detection and quantification of pairing according to our definition which are applicable to current experimental setups. Pairing is shown to be a quantum correlation distinct from any notion of entanglement proposed for fermionic systems, giving further understanding of the structure of highly correlated quantum states. In addition, we show the resource character of paired states for precision metrology, proving that BCS-states allow phase measurements at the Heisenberg limit. Next, the power of fermionic systems is considered in the context of quantum simulations, where we study the possibility to simulate Hamiltonian time evolutions on a cubic lattice under the constraint of translational invariance. Given a set of translationally invariant local Hamiltonians and short range interactions we determine time evolutions which can and those which can not be simulated. Bosonic and finite-dimensional quantum systems (''spins'') are included in our investigations. Furthermore, we develop new techniques for the classical simulation of fermionic many-body systems. First, we introduce a new family of states, the fermionic Projected Entangled Pair States (fPEPS) on lattices in arbitrary spatial dimension. These are the natural generalization of the PEPS known for spin systems, and they approximate efficiently ground and thermal states of systems with short-range interaction. We give an explicit mapping between fPEPS and PEPS, allowing to extend previous simulation methods to fermions. In addition, we show that fPEPS naturally arise as exact ground states of certain fermionic Hamiltonians, and give an example that exhibits criticality while fulfilling the area law. Finally, we derive methods for the determination of ground and thermal states, as well as the time evolution, of interacting fermionic systems using generalized Hartree-Fock theory (gHFT). With the computational complexity scaling polynomially with the number of particles, this method can deal with large systems. As a benchmark we apply our methods to the translationally invariant Hubbard model with attractive interaction and find excellent agreement with known results. (orig.)
Scientific Electronic Library Online (English)
Agustín, Cruz Contreras; Edgar A., Portilla Flores; Ramón, Silva Ortigoza.
2008-12-01
Full Text Available Se presenta el diseño y simulación de un multiplicador electrónico para encoders incrementales, el sistema consiste en un decodificador que extrae el total de la información contenida en la señal de cuadratura, esta información da referencia para resoluciones en 1x, 2x y 4x. Este multiplicador tiene [...] como propósito elevar la resolución de la señal de retroalimentación, empleando el mismo encoder. Se diseña totalmente con circuitos digitales para su implementación en lógica reconfigurable. Abstract in english We present design and experiments on simulation of the electronic multiplicator for incremental encoders. The system consists in a decoder that extracts the total information contained in the quadrature signal. This information is used as reference for 1x, 2x and 4x resolutions. The purpose of the m [...] ultiplicator is to increment the resolution of the feed back signal using the same encoder. It is designed completely in digital circuits for its implementation in the reconfigurable devices.
Communicating through Probabilities: Does Quantum Theory Optimize the Transfer of Information?
Directory of Open Access Journals (Sweden)
William K. Wootters
2013-08-01
Full Text Available A quantum measurement can be regarded as a communication channel, in which the parameters of the state are expressed only in the probabilities of the outcomes of the measurement. We begin this paper by considering, in a non-quantum-mechanical setting, the problem of communicating through probabilities. For example, a sender, Alice, wants to convey to a receiver, Bob, the value of a continuous variable, ?, but her only means of conveying this value is by sending Bob a coin in which the value of ? is encoded in the probability of heads. We ask what the optimal encoding is when Bob will be allowed to flip the coin only a finite number of times. As the number of tosses goes to infinity, we find that the optimal encoding is the same as what nature would do if we lived in a world governed by real-vector-space quantum theory. We then ask whether the problem might be modified, so that the optimal communication strategy would be consistent with standard, complex-vector-space quantum theory.
DEFF Research Database (Denmark)
Shtyrov, Yury; Hauk, O.
2004-01-01
Mismatch negativity (MMN), an index of experience-dependent memory traces, was used to investigate the processing of action-related words in the human brain. Responses to auditorily presented movement-related English words were recorded in a non-attend odd-ball protocol using a high-density electroencephalographic (EEG) set-up. MMN was calculated using responses to the same words presented as standard and deviant stimuli in different sessions to avoid contamination from phonetic-acoustic differences. The topography of the mismatch negativity to action words revealed an unusual centro-posterior distribution of the responses, suggesting that activity was at least in part generated posterior to usually observed frontal MMNs. Moreover, responses to hand-related word stimulus (pick) had a more widespread lateral distribution, whereas leg-related stimulus (kick) elicited a more focal dorsal negativity. These differences, remarkably reminiscent of sensorimotor cortex topography, were further assessed using distributed source analysis of the EEG signal (L2 minimum-norm current estimates). The source analysis also confirmed differentially distributed activation for the two stimuli. We suggest that these results indicate activation of distributed neuronal assemblies that function as category-specific memory traces for words and may involve sensorimotor cortical structures for encoding action words.
Two digital video encoder circuits
Eldon, John A.
1992-11-01
Central to `multimedia' image processing is the desire to encode computer graphics data into a standard television signal, complete with line, field, and color subcarrier synchronizing information. The numerous incompatibilities between television and computer display standards render this operation far less trivial than it sounds to anyone who hasn't worked with both types of signals. To simplify the task of encoding computer graphics signals into standard NTSC (North America and Japan) or PAL (most of Europe) television format for display, broadcast, or recording, TRW LSI Products Inc. has introduced the two newest members of it multimedia integrated circuit family, the TMC22090 and TMC22190 digital video encoders.
Quantum Teleportation of Single Qubit Mixed Information State with Werner-Like State as Resource
Prakash, Hari; Verma, Vikram
2013-01-01
In this paper we extend our recent results for quantum teleportation of single qubit pure information state using non-maximally entangled pure state resource [Quantum Inf Process, 11 (2012) 1251] to the case of a general mixed information state and mixed Werner states resource. Fidelity is found dependent on information state in general. We minimize it over all possible information states and maximize it over possible unitary transformations which can be done by the receiver...
Hybrid Quantum-Classical Protocol for Storage and Retrieval of Discrete-Valued Information
Abdullah M. Iliyasu; Venegas-Andraca, Salvador E.; Fei Yan; Ahmed Sayed
2014-01-01
In this paper we present a hybrid (i.e., quantum-classical) adaptive protocol for the storage and retrieval of discrete-valued information. The purpose of this paper is to introduce a procedure that exhibits how to store and retrieve unanticipated information values by using a quantum property, that of using different vector space bases for preparation and measurement of quantum states. This simple idea leads to an interesting old wish in Artificial Intelligence: the development of computer s...
On a Loss of Information in a Transition from Quantum to a Quasi-Classical Regime
Directory of Open Access Journals (Sweden)
Alex Granik
2004-01-01
Full Text Available By defining information entropy in terms of the probability density |??|2 (Ï? is a wave function in the coordinate representation it is explicitly shown how a loss of quantum information occurs in a transition from a quantum to a quasi-classical regime.
Myoelectric Control of Artificial Limb by Quantum Information Processing
Siomau, Michael
2013-01-01
Precise and elegant coordination of a prosthesis across many degrees of freedom is highly desired for rehabilitation of people with limb deficiency. Processing the electrical neural signals, collected from the surface of the remnant muscles of the stump, is a common way to activate certain function of the artificial limb. Based on the assumption that there are distinguishable and repeatable signal patterns among different types of muscular activation, the problem of the prosthesis control reduces to the pattern recognition. Widely accepted classical methods for pattern recognition, however, can not provide simultaneous and proportional control of the artificial limb. Here we show that quantum information processing of the neural signals allows us to overcome above difficulties suggesting a very simple scheme for myoelectric control of artificial limb with advanced functionalities.
Dynamical entanglement transfer for quantum-information networks
International Nuclear Information System (INIS)
A key element in the architecture of a quantum-information processing network is a reliable physical interface between fields and qubits. We study a process of entanglement transfer engineering, where two remote qubits respectively interact with an entangled two-mode continuous-variable (CV) field. We quantify the entanglement induced in the qubit state at the expenses of the loss of entanglement in the CV system. We discuss the range of mixed entangled states which can be obtained with this setup. Furthermore, we suggest a protocol to determine the residual entangling power of the light fields inferring, thus, the entanglement left in the field modes which, after the interaction, are no longer in a Gaussian state. Two different setups are proposed: a cavity-QED system and an interface between superconducting qubits and field modes. We address in detail the practical difficulties inherent in these two proposals, showing that the latter is promising in many aspects