Li, Shu-shen; Long, Gui-Lu; Bai, Feng-Shan; Feng, Song-Lin; Zheng, Hou-Zhi
2001-01-01
Quantum computing is a quickly growing research field. This article introduces the basic concepts of quantum computing, recent developments in quantum searching, and decoherence in a possible quantum dot realization.
Avaliani, Archil
2004-01-01
This research paper gives an overview of quantum computers - description of their operation, differences between quantum and silicon computers, major construction problems of a quantum computer and many other basic aspects. No special scientific knowledge is necessary for the reader.
Kiili, Markus
1998-01-01
The aim of this thesis was to explain what quantum computing is. The information for the thesis was gathered from books, scientific publications, and news articles. The analysis of the information revealed that quantum computing can be broken down to three areas: theories behind quantum computing explaining the structure of a quantum computer, known quantum algorithms, and the actual physical realizations of a quantum computer. The thesis reveals that moving from classical memor...
Quantum Chaos & Quantum Computers
Shepelyansky, D. L.
2000-01-01
The standard generic quantum computer model is studied analytically and numerically and the border for emergence of quantum chaos, induced by imperfections and residual inter-qubit couplings, is determined. This phenomenon appears in an isolated quantum computer without any external decoherence. The onset of quantum chaos leads to quantum computer hardware melting, strong quantum entropy growth and destruction of computer operability. The time scales for development of quant...
International Nuclear Information System (INIS)
As computers become ever more complex, they inevitably become smaller. This leads to a need for components which are fabricated and operate on increasingly smaller size scales. Quantum theory is already taken into account in microelectronics design. This article explores how quantum theory will need to be incorporated into computers in future in order to give them their components functionality. Computation tasks which depend on quantum effects will become possible. Physicists may have to reconsider their perspective on computation in the light of understanding developed in connection with universal quantum computers. (UK)
Quantum Computation and Quantum Information
Wang, Yazhen
2012-01-01
Quantum computation and quantum information are of great current interest in computer science, mathematics, physical sciences and engineering. They will likely lead to a new wave of technological innovations in communication, computation and cryptography. As the theory of quantum physics is fundamentally stochastic, randomness and uncertainty are deeply rooted in quantum computation, quantum simulation and quantum information. Consequently quantum algorithms are random in na...
Eisert, J.; Wolf, M. M.
2004-01-01
This article gives an elementary introduction to quantum computing. It is a draft for a book chapter of the "Handbook of Nature-Inspired and Innovative Computing", Eds. A. Zomaya, G.J. Milburn, J. Dongarra, D. Bader, R. Brent, M. Eshaghian-Wilner, F. Seredynski (Springer, Berlin Heidelberg New York, 2006).
Leske, Cavin.
Moore's Law is a famous rule of thumb that says transistor density, and hence microprocessor performance, doubles approximately every eighteen months. While this trend has stood the test of time, many experts believe it will eventually grind to a halt when physical limitations prevent further miniaturization. Although this will likely not happen for twenty years or more, researchers are already looking at a potential solution.The concept of quantum computing has been around since the 1970's, but the science is still in its infancy. To learn about its profound implications, Liquid Logic (1) is a solid article with some remarkable insights into the technology. One of the most comprehensive sources on the Web is at the Centre for Quantum Computation (2) (last mentioned in the June 24, 1998 Scout Report). This has lots of introductory materials and tutorials that explain many of the basic concepts of quantum computing. The Centre's research efforts are also detailed on the site. Another good site for people new to the subject is the home page of Magiq Technologies (3). A very informative section about quantum information processing looks at some of the history of its development and its applications for the future. The company addresses some key issues in the frequently asked questions section, such as why research in this area could be so important. The Quantum Logic and Coherent Control Project Web site (4) presents extensive advanced theory about several experiments conducted with an rf (Paul) ion trap. The discussions are replete with equations and graphs, probably most suited for post graduate research. The Institute for Quantum Information (5) offers over 30 of its publications online, most of which are very recent. Because it is located at the California Institute of Technology, there are links to course home pages with lecture notes and solutions to problems. Users of the popular Mathematica software can add a powerful library of quantum computation functions with the free QuCalc package (6). The download site has documentation for the software and a few examples that include Mathematica code. Quantum Leap: Seize the Light (7) is an insightful article that discusses two recently published papers that address two promising methods of harnessing qubits (the fundamental unit of storage for quantum computation). This is necessary for the advancement of the technology, because the current methods are quite limited. EE Times hosts another article (8) about one of the newest breakthroughs in quantum information processing. Researchers at Harvard University have successfully transferred quantum information from a laser beam into and out of the spin state of rubidium atoms. The article considers the accomplishment and looks at what the group is planning next.
Quantum interferometers as quantum computers
Ekert, A
1998-01-01
Quantum computers which use quantum interference of different computational paths to enhance correct outcomes and suppress erroneous outcomes of computations can be viewed as multiparticle interferometers. I discuss this approach to quantum computation and argue that it provides additional insights into the nature of quantum algorithms.
Unconventional Quantum Computing Devices
Lloyd, Seth
2000-01-01
This paper investigates a variety of unconventional quantum computation devices, including fermionic quantum computers and computers that exploit nonlinear quantum mechanics. It is shown that unconventional quantum computing devices can in principle compute some quantities more rapidly than `conventional' quantum computers.
Requirement for quantum computation
Bartlett, Stephen D.; Sanders, Barry C.
2003-01-01
We identify "proper quantum computation" with computational processes that cannot be efficiently simulated on a classical computer. For optical quantum computation, we establish "no-go" theorems for classes of quantum optical experiments that cannot yield proper quantum computation, and we identify requirements for optical proper quantum computation that correspond to violations of assumptions underpinning the no-go theorems.
International Nuclear Information System (INIS)
Quantum versions of random walks have diverse applications that are motivating experimental implementations as well as theoretical studies. Recent results showing quantum walks are “universal for quantum computation” relate to algorithms, to be run on quantum computers. We consider whether an experimental implementation of a quantum walk could provide useful computation before we have a universal quantum computer
Quantum information and computation
Bub, Jeffrey
2005-01-01
This article deals with theoretical developments in the subject of quantum information and quantum computation, and includes an overview of classical information and some relevant quantum mechanics. The discussion covers topics in quantum communication, quantum cryptography, and quantum computation, and concludes by considering whether a perspective in terms of quantum information sheds new light on the conceptual problems of quantum mechanics.
Quantum computation for quantum chemistry
Aspuru-Guzik, Alan
2010-03-01
Numerically exact simulation of quantum systems on classical computers is in general, an intractable computational problem. Computational chemists have made progress in the development of approximate methods to tackle complex chemical problems. The downside of these approximate methods is that their failure for certain important cases such as long-range charge transfer states in the case of traditional density functional theory. In 1982, Richard Feynman suggested that a quantum device should be able to simulate quantum systems (in our case, molecules) exactly using quantum computers in a tractable fashion. Our group has been working in the development of quantum chemistry algorithms for quantum devices. In this talk, I will describe how quantum computers can be employed to carry out numerically exact quantum chemistry and chemical reaction dynamics calculations, as well as molecular properties. Finally, I will describe our recent experimental quantum computation of the energy of the hydrogen molecule using an optical quantum computer.
Prashant Anil Patil; Kanchan Vishalkumar Wankhade; Seema Nathu Lokhande
2012-01-01
This paper gives the detailed information about Quantum computer, and difference between quantum computer and traditional computers, the basis of Quantum computers which are slightly similar but still different from traditional computer. Many research groups are working towards the highly technological goal of building a quantum computer, which would dramatically improve computational power for particular tasks. Quantum computer is very much use full for computation purpose in field of Scienc...
Quantum Computational Complexity
Watrous, John
2008-01-01
This article surveys quantum computational complexity, with a focus on three fundamental notions: polynomial-time quantum computations, the efficient verification of quantum proofs, and quantum interactive proof systems. Properties of quantum complexity classes based on these notions, such as BQP, QMA, and QIP, are presented. Other topics in quantum complexity, including quantum advice, space-bounded quantum computation, and bounded-depth quantum circuits, are also discussed.
Kendon, Vivien M; Nemoto, Kae; Munro, William J.
2010-01-01
We briefly review what a quantum computer is, what it promises to do for us, and why it is so hard to build one. Among the first applications anticipated to bear fruit is quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data is encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped dire...
Optimal Blind Quantum Computation
Mantri, Atul; Perez-Delgado, Carlos A.; Fitzsimons, Joseph F.
2013-01-01
Blind quantum computation allows a client with limited quantum capabilities to interact with a remote quantum computer to perform an arbitrary quantum computation, while keeping the description of that computation hidden from the remote quantum computer. While a number of protocols have been proposed in recent years, little is currently understood about the resources necessary to accomplish the task. Here we present general techniques for upper and lower bounding the quantum...
Automata and Quantum Computing
Ambainis, Andris; Yakaryilmaz, Abuzer
2015-01-01
Quantum computing is a new model of computation, based on quantum physics. Quantum computers can be exponentially faster than conventional computers for problems such as factoring. Besides full-scale quantum computers, more restricted models such as quantum versions of finite automata have been studied. In this paper, we survey various models of quantum finite automata and their properties. We also provide some open questions and new directions for researchers.
Quantum Robots and Quantum Computers
Benioff, Paul
1997-01-01
Validation of a presumably universal theory, such as quantum mechanics, requires a quantum mechanical description of systems that carry out theoretical calculations and experiments. The description of quantum computers is under active development. No description of systems to carry out experiments has been given. A small step in this direction is taken here by giving a description of quantum robots as mobile systems with on board quantum computers that interact with environm...
Physics of quantum computation
International Nuclear Information System (INIS)
In the paper, the modern status of the theory of quantum computation is considered. The fundamental principles of quantum computers and their basic notions such as quantum processors and computational basis states of the quantum Turing machine as well as the quantum Fourier transform are discussed. Some possible experimental realizations on the basis of NMR methods are given
Quantum Computing for Computer Architects
Metodi, Tzvetan
2011-01-01
Quantum computers can (in theory) solve certain problems far faster than a classical computer running any known classical algorithm. While existing technologies for building quantum computers are in their infancy, it is not too early to consider their scalability and reliability in the context of the design of large-scale quantum computers. To architect such systems, one must understand what it takes to design and model a balanced, fault-tolerant quantum computer architecture. The goal of this lecture is to provide architectural abstractions for the design of a quantum computer and to explore
Lloyd, Seth
2000-01-01
Necessary and sufficient conditions are given for the construction of a hybrid quantum computer that operates on both continuous and discrete quantum variables. Such hybrid computers are shown to be more efficient than conventional quantum computers for performing a variety of quantum algorithms, such as computing eigenvectors and eigenvalues.
De Raedt, Hans; Hams, Anthony; Michielsen, Kristel; De Raedt, Koen
1999-01-01
We describe a quantum computer emulator for a generic, general purpose quantum computer. This emulator consists of a simulator of the physical realization of the quantum computer and a graphical user interface to program and control the simulator. We illustrate the use of the quantum computer emulator through various implementations of the Deutsch-Jozsa and Grover's database search algorithm.
Directory of Open Access Journals (Sweden)
Prashant Anil Patil
2012-04-01
Full Text Available This paper gives the detailed information about Quantum computer, and difference between quantum computer and traditional computers, the basis of Quantum computers which are slightly similar but still different from traditional computer. Many research groups are working towards the highly technological goal of building a quantum computer, which would dramatically improve computational power for particular tasks. Quantum computer is very much use full for computation purpose in field of Science and Research. Large amount of data and information will be computed, processing, storing, retrieving, transmitting and displaying information in less time with that much of accuracy which is not provided by traditional computers.
Quantum Computer Games: Quantum Minesweeper
Gordon, Michal; Gordon, Goren
2010-01-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…
Quantum Computation via Paraconsistent Computation
Agudelo, Juan C.; Carnielli, Walter
2006-01-01
We present an original model of paraconsistent Turing machines (PTMs), a generalization of the classical Turing machines model of computation using a paraconsistent logic. Next, we briefl y describe the standard models of quantum computation: quantum Turing machines and quantum circuits, and revise quantum algorithms to solve the so-called Deutsch's problem and Deutsch-Jozsa problem. Then, we show the potentialities of the PTMs model of computation simulating the presented q...
Quantum Logic and Quantum Computation
Pavicic, Mladen; Megill, Norman D.
2008-01-01
We use classes of Hilbert lattice equations for an alternative representation of Hilbert lattices and Hilbert spaces of arbitrary quantum systems that might enable a direct introduction of the states of the systems into quantum computers. More specifically, we look for a way to feed a quantum computer with algebraic equations of n-th order underlying an infinite dimensional Hilbert space description of quantum systems. A number of new results on states defined on Hilbert lat...
Quantum robots and quantum computers
Energy Technology Data Exchange (ETDEWEB)
Benioff, P.
1998-07-01
Validation of a presumably universal theory, such as quantum mechanics, requires a quantum mechanical description of systems that carry out theoretical calculations and systems that carry out experiments. The description of quantum computers is under active development. No description of systems to carry out experiments has been given. A small step in this direction is taken here by giving a description of quantum robots as mobile systems with on board quantum computers that interact with different environments. Some properties of these systems are discussed. A specific model based on the literature descriptions of quantum Turing machines is presented.
Ground State Quantum Computation
Mizel, Ari; M.W. Mitchell; Cohen, Marvin L.
1999-01-01
We formulate a novel ground state quantum computation approach that requires no unitary evolution of qubits in time: the qubits are fixed in stationary states of the Hamiltonian. This formulation supplies a completely time-independent approach to realizing quantum computers. We give a concrete suggestion for a ground state quantum computer involving linked quantum dots.
Ladd, Thaddeus D; Laflamme, Raymond; Nakamura, Yasunobu; Monroe, Christopher; O'Brien, Jeremy L; 10.1038/nature08812
2010-01-01
Quantum mechanics---the theory describing the fundamental workings of nature---is famously counterintuitive: it predicts that a particle can be in two places at the same time, and that two remote particles can be inextricably and instantaneously linked. These predictions have been the topic of intense metaphysical debate ever since the theory's inception early last century. However, supreme predictive power combined with direct experimental observation of some of these unusual phenomena leave little doubt as to its fundamental correctness. In fact, without quantum mechanics we could not explain the workings of a laser, nor indeed how a fridge magnet operates. Over the last several decades quantum information science has emerged to seek answers to the question: can we gain some advantage by storing, transmitting and processing information encoded in systems that exhibit these unique quantum properties? Today it is understood that the answer is yes. Many research groups around the world are working towards one ...
Integrable Quantum Computation
Zhang, Yong,
2011-01-01
Integrable quantum computation is defined as quantum computing via the integrable condition, in which two-qubit gates are either nontrivial unitary solutions of the Yang--Baxter equation or the Swap gate (permutation). To make the definition clear, in this article, we explore the physics underlying the quantum circuit model, and then present a unified description on both quantum computing via the Bethe ansatz and quantum computing via the Yang--Baxter equation.
Optimal Blind Quantum Computation
Mantri, Atul; Pérez-Delgado, Carlos A.; Fitzsimons, Joseph F.
2013-12-01
Blind quantum computation allows a client with limited quantum capabilities to interact with a remote quantum computer to perform an arbitrary quantum computation, while keeping the description of that computation hidden from the remote quantum computer. While a number of protocols have been proposed in recent years, little is currently understood about the resources necessary to accomplish the task. Here, we present general techniques for upper and lower bounding the quantum communication necessary to perform blind quantum computation, and use these techniques to establish concrete bounds for common choices of the client’s quantum capabilities. Our results show that the universal blind quantum computation protocol of Broadbent, Fitzsimons, and Kashefi, comes within a factor of (8)/(3) of optimal when the client is restricted to preparing single qubits. However, we describe a generalization of this protocol which requires exponentially less quantum communication when the client has a more sophisticated device.
Quantum chaos and quantum computing
Benenti, Giuliano
2006-01-01
Quantum Information, Computation and Complexity * Programme at the Institut Henri Poincaré, January 4th – April 7th, 2006 * Organizers: Ph.Grangier, M.Santha and D.L.Shepelyansky * Lectures have been filmed by Peter Rapcan and Michal Sedlak from Bratislava with the support of the Marie Curie RTN "CONQUEST" A trimester at the Centre Emile Borel - Institut Henri Poincaré is devoted to modern developments in a rapidly growing field of quantum information and communication, quantum computers and ...
DiVincenzo, David P.
1996-01-01
I provide an introduction to quantum computers, describing how they might be realized using language accessible to a solid state physicist. A listing of the minimal requirements for creating a quantum computer is given. I also discuss several recent developments in the area of quantum error correction, a subject of importance not only to quantum computation, but also to some aspects of the foundations of quantum theory.
Quantum computing and spintronics
International Nuclear Information System (INIS)
Tentative to build a computer, which can operate according to the quantum laws, has leaded to concept of quantum computing algorithms and hardware. In this review we highlight recent developments which point the way to quantum computing on the basis solid state nanostructures after some general considerations concerning quantum information science and introducing a set of basic requirements for any quantum computer proposal. One of the major direction of research on the way to quantum computing is to exploit the spin (in addition to the orbital) degree of freedom of the electron, giving birth to the field of spintronics. We address some semiconductor approach based on spin orbit coupling in semiconductor nanostructures. (authors)
Searching with Quantum Computers
Grover, Lov K.
2000-01-01
This article introduces quantum computation by analogy with probabilistic computation. A basic description of the quantum search algorithm is given by representing the algorithm as a C program in a novel way.
Quantum information. Teleporation - cryptography - quantum computer
International Nuclear Information System (INIS)
The following topics are dealt with: Reality in the test house, quantum teleportation, 100 years of quantum theory, the reality of quanta, interactionless quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view into the future of quantum optics. (HSI)
Quantum Computation and Quantum Spin Dynamics
International Nuclear Information System (INIS)
We analyze the stability of quantum computations on physically realizable quantum computers by simulating quantum spin models representing quantum computer hardware. Examples of logically identical implementations of the controlled-NOT operation are used to demonstrate that the results of a quantum computation are unstable with respect to the physical realization of the quantum computer. We discuss the origin of these instabilities and discuss possibilities to overcome this, for practical purposes, fundamental limitation of quantum computers. (author)
Quantum Computation via Paraconsistent Computation
Agudelo, J C; Agudelo, Juan C.; Carnielli, Walter
2006-01-01
We present an original model of paraconsistent Turing machines (PTMs), a generalization of the classical Turing machines model of computation using a paraconsistent logic. Next, we briefl y describe the standard models of quantum computation: quantum Turing machines and quantum circuits, and revise quantum algorithms to solve the so-called Deutsch's problem and Deutsch-Jozsa problem. Then, we show the potentialities of the PTMs model of computation simulating the presented quantum algorithms via paraconsistent algorithms. This way, we show that PTMs can resolve some problems in exponentially less time than any classical deterministic Turing machine. Finally, We show that it is not possible to simulate all characteristics (in particular entangled states) of quantum computation by the particular model of PTMs here presented, therefore we open the possibility of constructing a new model of PTMs by which it is feasible to simulate such states.
Introduction to quantum computers
Berman, Gennady P; Mainieri, Ronnie; Tsifrinovich, Vladimir I
1998-01-01
Quantum computing promises to solve problems which are intractable on digital computers. Highly parallel quantum algorithms can decrease the computational time for some problems by many orders of magnitude. This important book explains how quantum computers can do these amazing things. Several algorithms are illustrated: the discrete Fourier transform, Shorâ€™s algorithm for prime factorization; algorithms for quantum logic gates; physical implementations of quantum logic gates in ion traps and in spin chains; the simplest schemes for quantum error correction; correction of errors caused by im
Scalable optical quantum computer
International Nuclear Information System (INIS)
A way of designing a scalable optical quantum computer based on the photon echo effect is proposed. Individual rare earth ions Pr3+, regularly located in the lattice of the orthosilicate (Y2SiO5) crystal, are suggested to be used as optical qubits. Operations with qubits are performed using coherent and incoherent laser pulses. The operation protocol includes both the method of measurement-based quantum computations and the technique of optical computations. Modern hybrid photon echo protocols, which provide a sufficient quantum efficiency when reading recorded states, are considered as most promising for quantum computations and communications. (quantum computer)
Computing quantum phase transitions
Vojta, Thomas
2007-01-01
This article first gives a concise introduction to quantum phase transitions, emphasizing similarities with and differences to classical thermal transitions. After pointing out the computational challenges posed by quantum phase transitions, a number of successful computational approaches is discussed. The focus is on classical and quantum Monte Carlo methods, with the former being based on the quantum-to classical mapping while the latter directly attack the quantum problem...
Algorithms for Quantum Computers
Smith, Jamie; Mosca, Michele
2010-01-01
This paper surveys the field of quantum computer algorithms. It gives a taste of both the breadth and the depth of the known algorithms for quantum computers, focusing on some of the more recent results. It begins with a brief review of quantum Fourier transform based algorithms, followed by quantum searching and some of its early generalizations. It continues with a more in-depth description of two more recent developments: algorithms developed in the quantum walk paradigm,...
Quantum information. Teleportation - cryptography - quantum computer
International Nuclear Information System (INIS)
The following topics are dealt with: Reality in the test facility, quantum teleportation, the reality of quanta, interaction-free quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view in the future of quantum optics. (HSI)
Volovich, I. V.
1999-01-01
The current proposals for the realization of quantum computer such as NMR, quantum dots and trapped ions are based on the using of an atom or an ion as one qubit. In these proposals a quantum computer consists from several atoms and the coupling between them provides the coupling between qubits necessary for a quantum gate. We discuss whether a {\\it single} atom can be used as a quantum computer. Internal states of the atom serve to hold the quantum information and the spin-...
Tripartite Blind Quantum Computation
Liang, Min
2013-01-01
This paper proposes a model of tripartite blind quantum computation (TBQC), in which three independent participants hold different resources and accomplish a computational task through cooperation. The three participants are called C,S,T separately, where C needs to compute on his private data, and T has the required quantum algorithm, and S provides sufficient quantum computational resources. Then two concrete TBQC protocols are constructed. The first protocol is designed b...
Universal blind quantum computation
Broadbent, Anne; Fitzsimons, Joseph; Kashefi, Elham
2008-01-01
We present a protocol which allows a client to have a server carry out a quantum computation for her such that the client's inputs, outputs and computation remain perfectly private, and where she does not require any quantum computational power or memory. The client only needs to be able to prepare single qubits randomly chosen from a finite set and send them to the server, who has the balance of the required quantum computational resources. Our protocol is interactive: afte...
Fujii, Toshiyuki; Matsuo, Shigemasa; Hatakenaka, Noriyuki
2009-01-01
We propose a fluxon-controlled quantum computer incorporated with three-qubit quantum error correction using special gate operations, i.e., joint-phase and SWAP gate operations, inherent in capacitively coupled superconducting flux qubits. The proposed quantum computer acts exactly like a knitting machine at home.
Adiabatic topological quantum computing
Cesare, Chris; Landahl, Andrew J.; Bacon, Dave; Flammia, Steven T.; Neels, Alice
2015-07-01
Topological quantum computing promises error-resistant quantum computation without active error correction. However, there is a worry that during the process of executing quantum gates by braiding anyons around each other, extra anyonic excitations will be created that will disorder the encoded quantum information. Here, we explore this question in detail by studying adiabatic code deformations on Hamiltonians based on topological codes, notably Kitaev's surface codes and the more recently discovered color codes. We develop protocols that enable universal quantum computing by adiabatic evolution in a way that keeps the energy gap of the system constant with respect to the computation size and introduces only simple local Hamiltonian interactions. This allows one to perform holonomic quantum computing with these topological quantum computing systems. The tools we develop allow one to go beyond numerical simulations and understand these processes analytically.
Quantum Computation as Geometry
Nielsen, Michael A.; Dowling, Mark R.; Gu, Mile; Doherty, Andrew C.
2006-01-01
Quantum computers hold great promise, but it remains a challenge to find efficient quantum circuits that solve interesting computational problems. We show that finding optimal quantum circuits is essentially equivalent to finding the shortest path between two points in a certain curved geometry. By recasting the problem of finding quantum circuits as a geometric problem, we open up the possibility of using the mathematical techniques of Riemannian geometry to suggest new qua...
Quantum Computers and Dissipation
Palma, GM; Suominen, KA; Ekert, AK
1997-01-01
We analyse dissipation in quantum computation and its destructive impact on efficiency of quantum algorithms. Using a general model of decoherence, we study the time evolution of a quantum register of arbitrary length coupled with an environment of arbitrary coherence length. We discuss relations between decoherence and computational complexity and show that the quantum factorization algorithm must be modified in order to be regarded as efficient and realistic.
Quantum Computing since Democritus
Aaronson, Scott
2013-03-01
1. Atoms and the void; 2. Sets; 3. Gödel, Turing, and friends; 4. Minds and machines; 5. Paleocomplexity; 6. P, NP, and friends; 7. Randomness; 8. Crypto; 9. Quantum; 10. Quantum computing; 11. Penrose; 12. Decoherence and hidden variables; 13. Proofs; 14. How big are quantum states?; 15. Skepticism of quantum computing; 16. Learning; 17. Interactive proofs and more; 18. Fun with the Anthropic Principle; 19. Free will; 20. Time travel; 21. Cosmology and complexity; 22. Ask me anything.
Quantum computing classical physics
Meyer, David A.
2001-01-01
In the past decade quantum algorithms have been found which outperform the best classical solutions known for certain classical problems as well as the best classical methods known for simulation of certain quantum systems. This suggests that they may also speed up the simulation of some classical systems. I describe one class of discrete quantum algorithms which do so--quantum lattice gas automata--and show how to implement them efficiently on standard quantum computers.
Probabilistic Cloning and Quantum Computation
Gao, Ting; Yan, Feng-Li; Wang, Zhi-Xi
2004-06-01
We discuss the usefulness of quantum cloning and present examples of quantum computation tasks for which the cloning offers an advantage which cannot be matched by any approach that does not resort to quantum cloning. In these quantum computations, we need to distribute quantum information contained in the states about which we have some partial information. To perform quantum computations, we use a state-dependent probabilistic quantum cloning procedure to distribute quantum information in the middle of a quantum computation.
'Photosynthetic' Quantum Computers?
Hitchcock, Scott M.
2001-01-01
Do quantum computers already exist in Nature? It is proposed that they do. Photosynthesis is one example in which a 'quantum computer' component may play a role in the 'classical' world of complex biological systems. A 'translation' of the standard metabolic description of the 'front-end' light harvesting complex in photosynthesis into the language of quantum computers is presented. Biological systems represent an untapped resource for thinking about the design and operation...
Quantum Computing Without Entanglement
Biham, Eli; Brassard, Gilles; Kenigsberg, Dan; Mor, Tal
2003-01-01
It is generally believed that entanglement is essential for quantum computing. We present here a few simple examples in which quantum computing without entanglement is better than anything classically achievable, in terms of the reliability of the outcome after a xed number of oracle calls. Using a separable (that is, unentangled) n-qubit state, we show that the Deutsch-Jozsa problem and the Simon problem can be solved more reliably by a quantum computer than by the best pos...
Lanzagorta, Marco
2009-01-01
In this text we present a technical overview of the emerging field of quantum computation along with new research results by the authors. What distinguishes our presentation from that of others is our focus on the relationship between quantum computation and computer science. Specifically, our emphasis is on the computational model of quantum computing rather than on the engineering issues associated with its physical implementation. We adopt this approach for the same reason that a book on computer programming doesn't cover the theory and physical realization of semiconductors. Another distin
Explorations in quantum computing
Williams, Colin P
2011-01-01
By the year 2020, the basic memory components of a computer will be the size of individual atoms. At such scales, the current theory of computation will become invalid. ""Quantum computing"" is reinventing the foundations of computer science and information theory in a way that is consistent with quantum physics - the most accurate model of reality currently known. Remarkably, this theory predicts that quantum computers can perform certain tasks breathtakingly faster than classical computers -- and, better yet, can accomplish mind-boggling feats such as teleporting information, breaking suppos
Universal blind quantum computation
Broadbent, Anne; Kashefi, Elham
2008-01-01
We present the first protocol which allows Alice to have Bob carry out a quantum computation for her such that Alice's inputs, outputs and computation remain perfectly private, and where Alice does not require any quantum computational power or memory. She only needs to be able to prepare single qubits from a finite set and send them to Bob, who has the balance of the required quantum computational resources. Our protocol is interactive: after the initial preparation of quantum states, Alice and Bob use two-way classical communication which enables Alice to drive the computation, giving single-qubit measurement instructions to Bob, depending on previous measurement outcomes. The interaction is polynomial in the size of Alice's underlying quantum circuit. Our protocol works for inputs and outputs that are either classical or quantum. We also discuss the use of authentication in order for Alice to detect an interfering Bob. Furthermore, our construction involves a new, regular universal resource for measurement...
Dissipative quantum computing with open quantum walks
International Nuclear Information System (INIS)
An open quantum walk approach to the implementation of a dissipative quantum computing scheme is presented. The formalism is demonstrated for the example of an open quantum walk implementation of a 3 qubit quantum circuit consisting of 10 gates
Probabilistically Cloning and Quantum Computation
Ting, G; Zhi-Xi, W; Ting, Gao; Feng-Li, Yan; Zhi-Xi, Wang
2004-01-01
We discuss the usefulness of quantum cloning and present examples of quantum computation tasks for which cloning offers an advantage which cannot be matched by any approach that does not resort to it. In these quantum computations, we need to distribute quantum information contained in states about which we have some partial information. To perform quantum computations, we use state-dependent probabilistic quantum cloning procedure to distribute quantum information in the middle of a quantum computation.
Zak, M.
1998-01-01
Quantum analog computing is based upon similarity between mathematical formalism of quantum mechanics and phenomena to be computed. It exploits a dynamical convergence of several competing phenomena to an attractor which can represent an externum of a function, an image, a solution to a system of ODE, or a stochastic process.
Chuang, I.L.; Yamamoto, Y.
1995-01-01
We propose an implementation of a quantum computer to solve Deutsch's problem, which requires exponential time on a classical computer but only linear time with quantum parallelism. By using a dual-rail qubit representation as a simple form of error correction, our machine can tolerate some amount of decoherence and still give the correct result with high probability. The design which we employ also demonstrates a signature for quantum parallelism which unambiguously delinea...
Probabilistic Instantaneous Quantum Computation
Brukner, C; Simon, C; Weihs, G; Zeilinger, Anton; Brukner, Caslav; Pan, Jian-Wei; Simon, Christoph; Weihs, Gregor; Zeilinger, Anton
2003-01-01
The principle of teleportation is used to perform a quantum computation even before its quantum input is defined. The basic idea is to perform the quantum computation at some earlier time with qubits which are part of an entangled state. At a later time a generalized Bell state measurement is performed jointly on the then defined actual input qubits and the rest of the entangled state. This projects with a certain probability the output state onto the correct one.
Quantum computing with trapped ions
Haeffner, H; Roos, C. F.; Blatt, R
2008-01-01
Quantum computers hold the promise to solve certain computational task much more efficiently than classical computers. We review the recent experimental advancements towards a quantum computer with trapped ions. In particular, various implementations of qubits, quantum gates and some key experiments are discussed. Furthermore, we review some implementations of quantum algorithms such as a deterministic teleportation of quantum information and an error correction scheme.
Quantum Computation and Quantum Error Prevention Wiki
Mark S. Byrd
2014-04-04
The Quantum Computation and Quantum Error Prevention Wiki is a collaborative and live document to compliment courses on quantum computing. All edits must be made by registered users in order to maintain accuracy and integrity for the document. It is produced by Qunet, a network for quantum physicists, particularly those working in the fields of quantum information and quantum computation. It was developed as a part of a NSF funded project led by Prof. M. S. Byrd at Southern Illinois University Carbondale.
Duality and Recycling Computing in Quantum Computers
Long, Gui Lu; Liu, Yang
2007-01-01
Quantum computer possesses quantum parallelism and offers great computing power over classical computer \\cite{er1,er2}. As is well-know, a moving quantum object passing through a double-slit exhibits particle wave duality. A quantum computer is static and lacks this duality property. The recently proposed duality computer has exploited this particle wave duality property, and it may offer additional computing power \\cite{r1}. Simply put it, a duality computer is a moving qua...
International Nuclear Information System (INIS)
Digital computers are machines that can be programmed to perform logical and arithmetical operations. Contemporary digital computers are ''universal,'' in the sense that a program that runs on one computer can, if properly compiled, run on any other computer that has access to enough memory space and time. Any one universal computer can simulate the operation of any other; and the set of tasks that any such machine can perform is common to all universal machines. Since Bennett's discovery that computation can be carried out in a non-dissipative fashion, a number of Hamiltonian quantum-mechanical systems have been proposed whose time-evolutions over discrete intervals are equivalent to those of specific universal computers. The first quantum-mechanical treatment of computers was given by Benioff, who exhibited a Hamiltonian system with a basis whose members corresponded to the logical states of a Turing machine. In order to make the Hamiltonian local, in the sense that its structure depended only on the part of the computation being performed at that time, Benioff found it necessary to make the Hamiltonian time-dependent. Feynman discovered a way to make the computational Hamiltonian both local and time-independent by incorporating the direction of computation in the initial condition. In Feynman's quantum computer, the program is a carefully prepared wave packet that propagates through different computational states. Deutsch presented a quantum computer that exploits the possibility of existing in a superposition of computational states to perform tasks that a classical computer cannot, such as generating purely random numbers, and carrying out superpositions of computations as a method of parallel processing. In this paper, we show that such computers, by virtue of their common function, possess a common form for their quantum dynamics
Quantum computation: Honesty test
Morimae, Tomoyuki
2013-11-01
Alice does not have a quantum computer so she delegates a computation to Bob, who does own one. But how can Alice check whether the computation that Bob performs for her is correct? An experiment with photonic qubits demonstrates such a verification protocol.
Computational Methods for Simulating Quantum Computers
Raedt, H. De; Michielsen, K.
2004-01-01
This review gives a survey of numerical algorithms and software to simulate quantum computers.It covers the basic concepts of quantum computation and quantum algorithms and includes a few examples that illustrate the use of simulation software for ideal and physical models of quantum computers.
Finkelstein, David Ritz
2012-01-01
Set theory reduces all processes to assembly and disassembly. A similar architecture is proposed for nature as quantum computer. It resolves the classical space-time underlying Feynman diagrams into a quantum network of creation and annihilation processes, reducing kinematics to quantum statistics, and regularizing the Lie algebra of the Einstein diffeomorphism group. The usually separate and singular Lie algebras of kinematics, statistics, and conserved currents merge into ...
Möttönen, M P; Bergholm, V; Salomaa, M M; Mottonen, Mikko; Vartiainen, Juha J.; Bergholm, Ville; Salomaa, Martti M.
2004-01-01
Quantum-circuit optimization is essential for any practical realization of quantum computation. We present a method for decomposing an arbitrary n-bit quantum gate, using the Cosine-Sine decomposition, into a sequence of 4^n - 2^(n+1) CNOT gates and 4^n one-qubit rotations. The decomposition is optimal in the number of one-qubit rotations and scales considerably better than the previously reported decompositions in the number of CNOT gates.
Using Quantum Computers for Quantum Simulation
Kendon, Vivien M; Brown, Katherine L.; Munro, William J.
2010-01-01
Numerical simulation of quantum systems is crucial to further our understanding of natural phenomena. Many systems of key interest and importance, in areas such as superconducting materials and quantum chemistry, are thought to be described by models which we cannot solve with sufficient accuracy, neither analytically nor numerically with classical computers. Using a quantum computer to simulate such quantum systems has been viewed as a key application of quantum computation...
Concurrent Quantum Computation
Yamaguchi, F; Yamamoto, Y
2000-01-01
A quantum computer is a multi-particle interferometer that comprises beam splitters at both ends and arms, where the n two-level particles undergo the interactions among them. The arms are designed so that relevant functions required to produce a computational result is stored in the phase shifts of the 2^n arms. They can be detected by interferometry that allows us to utilize quantum parallelism. Quantum algorithms are accountable for what interferometers to be constructed to compute particular problems. A standard formalism for constructing the arms has been developed by the extension of classical reversible gate arrays. By its nature of sequential applications of logic operations, the required number of gates increases exponentially as the problem size grows. This may cause a crucial obstacle to perform a quantum computation within a limited decoherence time. We propose a direct and concurrent construction of the interferometer arms by one-time evolution of a physical system with arbitrary multi-particle i...
International Nuclear Information System (INIS)
This paper reports that current conceptions of quantum mechanical computers inherit from conventional digital machines two apparently interacting features, machine imperfection and temporal development of the computational process. On account of machine imperfection, the process would become ideally reversible only in the limiting case of zero speed. Therefore the process is irreversible in practice and cannot be considered to be a fundamental quantum one. By giving up classical features and using a linear, reversible and non-sequential representation of the computational process - not realizable in classical machines - the process can be identified with the mathematical form of a quantum steady state. This form of steady quantum computation would seem to have an important bearing on the notion of cognition
An Introduction to Quantum Computers
Zalka, Christof
1998-01-01
This is a short introduction to quantum computers, quantum algorithms and quantum error correcting codes. Familiarity with the principles of quantum theory is assumed. Emphasis is put on a concise presentation of the principles avoiding lengthy discussions.
Probabilistically Cloning and Quantum Computation
Ting, Gao; Feng-Li, Yan; Zhi-xi, Wang
2004-01-01
We discuss the usefulness of quantum cloning and present examples of quantum computation tasks for which cloning offers an advantage which cannot be matched by any approach that does not resort to it. In these quantum computations, we need to distribute quantum information contained in states about which we have some partial information. To perform quantum computations, we use state-dependent probabilistic quantum cloning procedure to distribute quantum information in the mi...
Quantum Computing: a Quantum Group Approach
Wang, Zhenghan
2013-01-01
There is compelling theoretical evidence that quantum physics will change the face of information science. Exciting progress has been made during the last two decades towards the building of a large scale quantum computer. A quantum group approach stands out as a promising route to this holy grail, and provides hope that we may have quantum computers in our future.
Quantum Spin Dynamics and Quantum Computation
De Raedt, H.; Hams, A. H.; Michielsen, K.; MIYASHITA, S; Saito, K
1999-01-01
We describe a simulation method for a quantum spin model of a generic, general purpose quantum computer. The use of this quantum computer simulator is illustrated through several implementations of Grover's database search algorithm. Some preliminary results on the stability of quantum algorithms are presented.
Towards Quantum Computational Logics
Ledda, Antonio; Sergioli, Giuseppe
2010-12-01
Quantum computational logics have recently stirred increasing attention (Cattaneo et al. in Math. Slovaca 54:87-108, 2004; Ledda et al. in Stud. Log. 82(2):245-270, 2006; Giuntini et al. in Stud. Log. 87(1):99-128, 2007). In this paper we outline their motivations and report on the state of the art of the approach to the logic of quantum computation that has been recently taken up and developed by our research group.
O'Brien, Jeremy L.
2008-01-01
In 2001 all-optical quantum computing became feasible with the discovery that scalable quantum computing is possible using only single photon sources, linear optical elements, and single photon detectors. Although it was in principle scalable, the massive resource overhead made the scheme practically daunting. However, several simplifications were followed by proof-of-principle demonstrations, and recent approaches based on cluster states or error encoding have dramatically ...
Using Quantum Computers for Quantum Simulation
Directory of Open Access Journals (Sweden)
Vivien M. Kendon
2010-11-01
Full Text Available Numerical simulation of quantum systems is crucial to further our understanding of natural phenomena. Many systems of key interest and importance, in areas such as superconducting materials and quantum chemistry, are thought to be described by models which we cannot solve with sufficient accuracy, neither analytically nor numerically with classical computers. Using a quantum computer to simulate such quantum systems has been viewed as a key application of quantum computation from the very beginning of the field in the 1980s. Moreover, useful results beyond the reach of classical computation are expected to be accessible with fewer than a hundred qubits, making quantum simulation potentially one of the earliest practical applications of quantum computers. In this paper we survey the theoretical and experimental development of quantum simulation using quantum computers, from the first ideas to the intense research efforts currently underway.
An Introduction to Quantum Computing
Yanofsky, Noson S.
2007-01-01
Quantum Computing is a new and exciting field at the intersection of mathematics, computer science and physics. It concerns a utilization of quantum mechanics to improve the efficiency of computation. Here we present a gentle introduction to some of the ideas in quantum computing. The paper begins by motivating the central ideas of quantum mechanics and quantum computation with simple toy models. From there we move on to a formal presentation of the small fraction of (finite...
Quantum Computation and Spin Electronics
DiVincenzo, David P.; Burkard, Guido; Loss, Daniel; Sukhorukov, Eugene V.
1999-01-01
In this chapter we explore the connection between mesoscopic physics and quantum computing. After giving a bibliography providing a general introduction to the subject of quantum information processing, we review the various approaches that are being considered for the experimental implementation of quantum computing and quantum communication in atomic physics, quantum optics, nuclear magnetic resonance, superconductivity, and, especially, normal-electron solid state physics...
Quantum Computation: A Computer Science Perspective
Bengtsson, Anders K. H.
2005-01-01
The theory of quantum computation is presented in a self contained way from a computer science perspective. The basics of classical computation and quantum mechanics is reviewed. The circuit model of quantum computation is presented in detail. Throughout there is an emphasis on the physical as well as the abstract aspects of computation and the interplay between them. This report is presented as a Master's thesis at the department of Computer Science and Engineering at G{\\...
Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C Language
Blaha, Stephen
2002-01-01
We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.
Teleportation as a quantum computation
Brassard, Gilles
1996-01-01
An explicit quantum circuit is given to implement quantum teleportation. This circuit makes teleportation straightforward to anyone who believes that quantum computation is a reasonable proposition. It could also be genuinely used inside a quantum computer if teleportation is needed to move quantum information around. An unusual feature of this circuit is that there are points in the computation at which the quantum information can be completely disrupted by a measurement (o...
Simulating chemistry using quantum computers
Kassal, Ivan; Whitfield, James D.; Perdomo-Ortiz, Alejandro; Yung, Man-Hong; Aspuru-Guzik, Alan
2010-01-01
The difficulty of simulating quantum systems, well-known to quantum chemists, prompted the idea of quantum computation. One can avoid the steep scaling associated with the exact simulation of increasingly large quantum systems on conventional computers, by mapping the quantum system to another, more controllable one. In this review, we discuss to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems. We describe al...
Simulating quantum mechanics on a quantum computer
Boghosian, Bruce M.; Taylor, Washington(Center for Theoretical Physics, Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, U.S.A.)
1997-01-01
Algorithms are described for efficiently simulating quantum mechanical systems on quantum computers. A class of algorithms for simulating the Schrodinger equation for interacting many-body systems are presented in some detail. These algorithms would make it possible to simulate nonrelativistic quantum systems on a quantum computer with an exponential speedup compared to simulations on classical computers. Issues involved in simulating relativistic systems of Dirac and gauge ...
Simulating quantum mechanics on a quantum computer
Boghosian, B M; Boghosian, Bruce M.; Taylor, Washington
1998-01-01
Algorithms are described for efficiently simulating quantum mechanical systems on quantum computers. A class of algorithms for simulating the Schrodinger equation for interacting many-body systems are presented in some detail. These algorithms would make it possible to simulate nonrelativistic quantum systems on a quantum computer with an exponential speedup compared to simulations on classical computers. Issues involved in simulating relativistic systems of Dirac and gauge particles are discussed.
Layered architecture for quantum computing
Jones, N. Cody; Van Meter, Rodney; Austin G. Fowler; McMahon, Peter L.; Kim, Jungsang.; Ladd, Thaddeus D.; Yamamoto, Yoshihisa
2010-01-01
We develop a layered quantum computer architecture, which is a systematic framework for tackling the individual challenges of developing a quantum computer while constructing a cohesive device design. We discuss many of the prominent techniques for implementing circuit-model quantum computing and introduce several new methods, with an emphasis on employing surface code quantum error correction. In doing so, we propose a new quantum computer architecture based on optical cont...
Spintronics and Quantum Computing with Quantum Dots
Recher, P.; Loss, D.; LEVY, J
2000-01-01
The creation, coherent manipulation, and measurement of spins in nanostructures open up completely new possibilities for electronics and information processing, among them quantum computing and quantum communication. We review our theoretical proposal for using electron spins in quantum dots as quantum bits. We present single- and two qubit gate mechanisms in laterally as well as vertically coupled quantum dots and discuss the possibility to couple spins in quantum dots via ...
I, Quantum Robot: Quantum Mind control on a Quantum Computer
Zizzi, Paola
2008-01-01
The logic which describes quantum robots is not orthodox quantum logic, but a deductive calculus which reproduces the quantum tasks (computational processes, and actions) taking into account quantum superposition and quantum entanglement. A way toward the realization of intelligent quantum robots is to adopt a quantum metalanguage to control quantum robots. A physical implementation of a quantum metalanguage might be the use of coherent states in brain signals.
Optical Holonomic Quantum Computer
Pachos, Jiannis; Chountasis, Spiros
1999-01-01
In this paper the idea of holonomic quantum computation is realized within quantum optics. In a non-linear Kerr medium the degenerate states of laser beams are interpreted as qubits. Displacing devices, squeezing devices and interferometers provide the classical control parameter space where the adiabatic loops are performed. This results into logical gates acting on the states of the combined degenerate subspaces of the lasers, producing any one qubit rotations and interact...
A Parallel Quantum Computer Simulator
Obenland, Kevin M.; Despain, Alvin M.
1998-01-01
A Quantum Computer is a new type of computer which can efficiently solve complex problems such as prime factorization. A quantum computer threatens the security of public key encryption systems because these systems rely on the fact that prime factorization is computationally difficult. Errors limit the effectiveness of quantum computers. Because of the exponential nature of quantum com puters, simulating the effect of errors on them requires a vast amount of processing and ...
Quantum Statistical Mechanics on a Quantum Computer
De Raedt, H.; Hams, A. H.; Michielsen, K.; MIYASHITA, S; Saito, K
1999-01-01
We describe a quantum algorithm to compute the density of states and thermal equilibrium properties of quantum many-body systems. We present results obtained by running this algorithm on a software implementation of a 21-qubit quantum computer for the case of an antiferromagnetic Heisenberg model on triangular lattices of different size.
Quantum++ - A C++11 quantum computing library
Gheorghiu, Vlad
2014-01-01
Quantum++ is a general-purpose multi-threaded quantum computing library written in C++11 and composed solely of header files. The library is not restricted to qubit systems or specific quantum information processing tasks, being capable of simulating arbitrary quantum processes. The main design factors taken in consideration were ease of use, portability, and performance.
Computational quantum chemistry website
International Nuclear Information System (INIS)
This report contains the contents of a web page related to research on the development of quantum chemistry methods for computational thermochemistry and the application of quantum chemistry methods to problems in material chemistry and chemical sciences. Research programs highlighted include: Gaussian-2 theory; Density functional theory; Molecular sieve materials; Diamond thin-film growth from buckyball precursors; Electronic structure calculations on lithium polymer electrolytes; Long-distance electronic coupling in donor/acceptor molecules; and Computational studies of NOx reactions in radioactive waste storage
Undergraduate computational physics projects on quantum computing
Candela, D.
2015-08-01
Computational projects on quantum computing suitable for students in a junior-level quantum mechanics course are described. In these projects students write their own programs to simulate quantum computers. Knowledge is assumed of introductory quantum mechanics through the properties of spin 1/2. Initial, more easily programmed projects treat the basics of quantum computation, quantum gates, and Grover's quantum search algorithm. These are followed by more advanced projects to increase the number of qubits and implement Shor's quantum factoring algorithm. The projects can be run on a typical laptop or desktop computer, using most programming languages. Supplementing resources available elsewhere, the projects are presented here in a self-contained format especially suitable for a short computational module for physics students.
Preskill, J
1997-01-01
I assess the potential of quantum computation. Broad and important applications must be found to justify construction of a quantum computer; I review some of the known quantum algorithms and consider the prospects for finding new ones. Quantum computers are notoriously susceptible to making errors; I discuss recently developed fault-tolerant procedures that enable a quantum computer with noisy gates to perform reliably. Quantum computing hardware is still in its infancy; I comment on the specifications that should be met by future hardware. Over the past few years, work on quantum computation has erected a new classification of computational complexity, has generated profound insights into the nature of decoherence, and has stimulated the formulation of new techniques in high-precision experimental physics. A broad interdisciplinary effort will be needed if quantum computers are to fulfill their destiny as the world's fastest computing devices. (This paper is an expanded version of remarks that were prepared ...
Quantum computation with abelian anyons
Lloyd, Seth
2000-01-01
A universal quantum computer can be constructed using abelian anyons. Two qubit quantum logic gates such as controlled-NOT operations are performed using topological effects. Single-anyon operations such as hopping from site to site on a lattice suffice to perform all quantum logic operations. Quantum computation using abelian anyons shares some but not all of the robustness of quantum computation using non-abelian anyons.
An optically driven quantum dot quantum computer
Sanders, G. D.; Kim, K.W.; Holton, W C
1999-01-01
We propose a quantum computer structure based on coupled asymmetric single-electron quantum dots. Adjacent dots are strongly coupled by means of electric dipole-dipole interactions enabling rapid computation rates. Further, the asymmetric structures can be tailored for a long coherence time. The result maximizes the number of computation cycles prior to loss of coherence.
Computational Distinguishability of Quantum Channels
Rosgen, Bill
2009-01-01
The computational problem of distinguishing two quantum channels is central to quantum computing. It is a generalization of the well-known satisfiability problem from classical to quantum computation. This problem is shown to be surprisingly hard: it is complete for the class QIP of problems that have quantum interactive proof systems, which implies that it is hard for the class PSPACE of problems solvable by a classical computation in polynomial space. Several restriction...
Quantum Computation and Spin Physics
DiVincenzo, David P.
1996-01-01
A brief review is given of the physical implementation of quantum computation within spin systems or other two-state quantum systems. The importance of the controlled-NOT or quantum XOR gate as the fundamental primitive operation of quantum logic is emphasized. Recent developments in the use of quantum entanglement to built error-robust quantum states, and the simplest protocol for quantum error correction, are discussed.
Quantum Chaos Border for Quantum Computing
Georgeot, B.; Shepelyansky, D. L.
1999-01-01
We study a generic model of quantum computer, composed of many qubits coupled by short-range interaction. Above a critical interqubit coupling strength, quantum chaos sets in, leading to quantum ergodicity of the computer eigenstates. In this regime the noninteracting qubit structure disappears, the eigenstates become complex and the operability of the computer is destroyed. Despite the fact that the spacing between multi-qubit states drops exponentially with the number of q...
Quantum Computations: Fundamentals And Algorithms
Duplij, Steven
2007-01-01
Basic concepts of quantum theory of information, principles of quantum calculations and the possibility of creation on this basis unique on calculation power and functioning principle device, named quantum computer, are briefly reviewed. The main blocks of quantum logic, schemes of implementation of quantum calculations, as well as some known today effective quantum algorithms, called to realize advantages of quantum calculations upon classical, are concerned. Among them special place is taken by Shor's algorithm of number factorization, Grover's algorithm of unsorted database search and, finally, the most promising in application methods of quantum phenomena simulation, particularly quantum chaos. The most perspective methods of experimental realization of quantum computer, namely nuclear-magnetic resonance and trapped ions realizations, are discussed. Phenomena of decoherence, its influence on quantum computer stability and methods of quantum error correction are described.
Relativistic quantum chemistry on quantum computers
DEFF Research Database (Denmark)
Veis, L.; Visnak, J.
2012-01-01
The past few years have witnessed a remarkable interest in the application of quantum computing for solving problems in quantum chemistry more efficiently than classical computers allow. Very recently, proof-of-principle experimental realizations have been reported. However, so far only the nonrelativistic regime (i.e., the Schrodinger equation) has been explored, while it is well known that relativistic effects can be very important in chemistry. We present a quantum algorithm for relativistic computations of molecular energies. We show how to efficiently solve the eigenproblem of the Dirac-Coulomb Hamiltonian on a quantum computer and demonstrate the functionality of the proposed procedure by numerical simulations of computations of the spin-orbit splitting in the SbH molecule. Finally, we propose quantum circuits with three qubits and nine or ten controlled-NOT (CNOT) gates, which implement a proof-of-principle relativistic quantum chemical calculation for this molecule and might be suitable for an experimental realization.
Sehrawat, Arun; Englert, Berthold-Georg
2010-01-01
We present a hybrid model of the unitary-evolution-based quantum computation model and the measurement-based quantum computation model. In the hybrid model part of a quantum circuit is simulated by unitary evolution and the rest by measurements on star graph states, thereby combining the advantages of the two standard quantum computation models. In the hybrid model, a complicated unitary gate under simulation is decomposed in terms of a sequence of single-qubit operations, the controlled-Z gates, and multi-qubit rotations around the z-axis. Every single-qubit- and the controlled-Z gate are realized by a respective unitary evolution, and every multi-qubit rotation is executed by a single measurement on a required star graph state. The classical information processing in our model only needs an information flow vector and propagation matrices. We provide the implementation of multi-control gates in the hybrid model. They are very useful for implementing Grover's search algorithm, which is studied as an illustra...
International Nuclear Information System (INIS)
We present a hybrid model of the unitary-evolution-based quantum computation model and the measurement-based quantum computation model. In the hybrid model, part of a quantum circuit is simulated by unitary evolution and the rest by measurements on star graph states, thereby combining the advantages of the two standard quantum computation models. In the hybrid model, a complicated unitary gate under simulation is decomposed in terms of a sequence of single-qubit operations, the controlled-z gates, and multiqubit rotations around the z axis. Every single-qubit and the controlled-z gate are realized by a respective unitary evolution, and every multiqubit rotation is executed by a single measurement on a required star graph state. The classical information processing in our model requires only an information flow vector and propagation matrices. We provide the implementation of multicontrol gates in the hybrid model. They are very useful for implementing Grover's search algorithm, which is studied as an illustrative example.
Experimental verification of quantum computations
Barz, Stefanie; Fitzsimons, Joseph F.; Kashefi, Elham; Walther, Philip
2013-01-01
Quantum computers are expected to offer substantial speedups over their classical counterparts and to solve problems that are intractable for classical computers. Beyond such practical significance, the concept of quantum computation opens up new fundamental questions, among them the issue whether or not quantum computations can be certified by entities that are inherently unable to compute the results themselves. Here we present the first experimental verification of quantu...
Quantum cellular automaton for universal quantum computation
International Nuclear Information System (INIS)
This paper describes a quantum cellular automaton capable of performing universal quantum computation. The automaton has an elementary transition function that acts on Margolus cells of 2x2 qubits, and both the 'quantum input' and the program are encoded in the initial state of the system
Quantum computing of semiclassical formulas
Georgeot, Bertrand; Giraud, Olivier
2008-01-01
We show that semiclassical formulas such as the Gutzwiller trace formula can be implemented on a quantum computer more efficiently than on a classical device. We give explicit quantum algorithms which yield quantum observables from classical trajectories, and which alternatively test the semiclassical approximation by computing classical actions from quantum evolution. The gain over classical computation is in general quadratic, and can be larger in some specific cases.
New Trends in Quantum Computing
Brassard, Gilles
1996-01-01
Classical and quantum information are very different. Together they can perform feats that neither could achieve alone, such as quantum computing, quantum cryptography and quantum teleportation. Some of the applications range from helping to preventing spies from reading private communications. Among the tools that will facilitate their implementation, we note quantum purification and quantum error correction. Although some of these ideas are still beyond the grasp of curren...
Quantum Computation vs. Firewalls
Harlow, Daniel
2013-01-01
In this paper we discuss quantum computational restrictions on the types of thought experiments recently used by Almheiri, Marolf, Polchinski, and Sully to argue against the smoothness of black hole horizons. We argue that the quantum computations required to do these experiments take a time which is exponential in the entropy of the black hole under study, and we show that for a wide variety of black holes this prevents the experiments from being done. We interpret our results as motivating a broader type of non-locality than is usually considered in the context of black hole thought experiments, and claim that once this type of non-locality is allowed there is no need for firewalls. Our results do not threaten the unitarity of of black hole evaporation or the ability of advanced civilizations to test it.
Quantum computer for dummies (in Russian)
Grozin, Andrey
2011-01-01
An introduction (in Russian) to quantum computers, quantum cryptography, and quantum teleportation for students who have no previous knowledge of these subjects, but know quantum mechanics. Several simple examples are considered in detail using the quantum computer emulator QCL.
Spin-Based Quantum Dot Quantum Computing
Hu, Xuedong
2004-01-01
We present a brief overview of the current theoretical and experimental progresses in the study of quantum dot-based quantum computing schemes, then focus on the spin-based varieties, which are generally regarded as the most scalable because of the relatively long coherence times of electron and nuclear spins. Reviewed topics include spin coherence, spin interaction, spin detection, and the current status of the experimental studies of spin-based quantum computing.
Decoherence in adiabatic quantum computation
Albash, Tameem; Lidar, Daniel A.
2015-06-01
Recent experiments with increasingly larger numbers of qubits have sparked renewed interest in adiabatic quantum computation, and in particular quantum annealing. A central question that is repeatedly asked is whether quantum features of the evolution can survive over the long time scales used for quantum annealing relative to standard measures of the decoherence time. We reconsider the role of decoherence in adiabatic quantum computation and quantum annealing using the adiabatic quantum master-equation formalism. We restrict ourselves to the weak-coupling and singular-coupling limits, which correspond to decoherence in the energy eigenbasis and in the computational basis, respectively. We demonstrate that decoherence in the instantaneous energy eigenbasis does not necessarily detrimentally affect adiabatic quantum computation, and in particular that a short single-qubit T2 time need not imply adverse consequences for the success of the quantum adiabatic algorithm. We further demonstrate that boundary cancellation methods, designed to improve the fidelity of adiabatic quantum computing in the closed-system setting, remain beneficial in the open-system setting. To address the high computational cost of master-equation simulations, we also demonstrate that a quantum Monte Carlo algorithm that explicitly accounts for a thermal bosonic bath can be used to interpolate between classical and quantum annealing. Our study highlights and clarifies the significantly different role played by decoherence in the adiabatic and circuit models of quantum computing.
Pulse controlled noise suppressed quantum computation
Duan, Lu-Ming; Guo, Guang-Can
1998-01-01
To make arbitrarily accurate quantum computation possible, practical realization of quantum computers will require suppressing noise in quantum memory and gate operations to make it below a threshold value. A scheme based on realistic quantum computer models is described for suppressing noise in quantum computation without the cost of stringent quantum computing resources.
Energy Dissipation in Quantum Computers
Granik, A.; Chapline, G.
2003-01-01
A method is described for calculating the heat generated in a quantum computer due to loss of quantum phase information. Amazingly enough, this heat generation can take place at zero temperature. and may explain why it is impossible to extract energy from vacuum fluctuations. Implications for optical computers and quantum cosmology are also briefly discussed.
Communication Capacity of Quantum Computation
Bose, S.; Rallan, L.; V. Vedral
2000-01-01
By considering quantum computation as a communication process, we relate its efficiency to a communication capacity. This formalism allows us to rederive lower bounds on the complexity of search algorithms. It also enables us to link the mixedness of a quantum computer to its efficiency. We discuss the implications of our results for quantum measurement.
Robust quantum computation by simulation
Lloyd, Seth; Rahn, Benjamin; Ahn, Charlene
1999-01-01
Simulation of quantum systems that provide intrinsically fault-tolerant quantum computation is shown to preserve fault tolerance. Errors committed in the course of simulation are eliminated by the natural error-correcting features of the systems simulated. Two examples are explored, toric codes and non-abelian anyons. The latter is shown to provide universal robust quantum computation via simulation.
Quantum computation and complexity theory
Svozil, K.
1994-01-01
The Hilbert space formalism of quantum mechanics is reviewed with emphasis on applications to quantum computing. Standard interferomeric techniques are used to construct a physical device capable of universal quantum computation. Some consequences for recursion theory and complexity theory are discussed.
THE APROACH OF CLASSICAL COMPUTER TO QUANTUM COMPUTER
SEYEDEH MOHADESEH ELTEJA
2013-01-01
The aim of this paper is to guide computer scientists through the barriers that separate quantum computing from conventional computing. We introduce basic principles of quantum mechanics to explain where the power of quantum computers comes from and why it is difficult to harness. We describe the diffrences between classical and quantum computers, bit and quantum bit and quantum key distribution.
THE APROACH OF CLASSICAL COMPUTER TO QUANTUM COMPUTER
Directory of Open Access Journals (Sweden)
SEYEDEH MOHADESEH ELTEJA
2013-09-01
Full Text Available The aim of this paper is to guide computer scientists through the barriers that separate quantum computing from conventional computing. We introduce basic principles of quantum mechanics to explain where the power of quantum computers comes from and why it is difficult to harness. We describe the diffrences between classical and quantum computers, bit and quantum bit and quantum key distribution.
Energy Technology Data Exchange (ETDEWEB)
Breuer, Reinhard (comp.)
2010-07-01
The following topics are dealt with: Reality in the test house, quantum teleportation, 100 years of quantum theory, the reality of quanta, interactionless quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view into the future of quantum optics. (HSI)
Quantum Computing's Classical Problem, Classical Computing's Quantum Problem
Van Meter, Rodney
2013-01-01
Tasked with the challenge to build better and better computers, quantum computing and classical computing face the same conundrum: the success of classical computing systems. Small quantum computing systems have been demonstrated, and intermediate-scale systems are on the horizon, capable of calculating numeric results or simulating physical systems far beyond what humans can do by hand. However, to be commercially viable, they must surpass what our wildly successful, highly...
Interfacing External Quantum Devices to a Universal Quantum Computer
Lagana, Antonio A.; Lohe, Max A.; von Smekal, Lorenz
2011-01-01
We present a scheme to use external quantum devices using the universal quantum computer previously constructed. We thereby show how the universal quantum computer can utilize networked quantum information resources to carry out local computations. Such information may come from specialized quantum devices or even from remote universal quantum computers. We show how to accomplish this by devising universal quantum computer programs that implement well known oracle based quantum algorithms, na...
Quantum computing with defects
Weber, J R; Varley, J B; Janotti, A; Buckley, B B; Van de Walle, C G; Awschalom, D D
2010-01-01
Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV-1) center stands out for its robustness - its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV-1 center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally-coor...
Quantum computing for pattern classification
Schuld, Maria; Sinayskiy, Ilya; Petruccione, Francesco
2014-01-01
It is well known that for certain tasks, quantum computing outperforms classical computing. A growing number of contributions try to use this advantage in order to improve or extend classical machine learning algorithms by methods of quantum information theory. This paper gives a brief introduction into quantum machine learning using the example of pattern classification. We introduce a quantum pattern classification algorithm that draws on Trugenberger's proposal for measur...
Vianna, Reinaldo O.; Rabelo, Wilson R. M.; Monken, C. H.
2003-01-01
We discuss the performance of the Search and Fourier Transform algorithms on a hybrid computer constituted of classical and quantum processors working together. We show that this semi-quantum computer would be an improvement over a pure classical architecture, no matter how few qubits are available and, therefore, it suggests an easier implementable technology than a pure quantum computer with arbitrary number of qubits.
Database Manipulation on Quantum Computers
Younes, Ahmed
2007-01-01
Manipulating a database system on a quantum computer is an essential aim to benefit from the promising speed-up of quantum computers over classical computers in areas that take a vast amount of storage and processing time such as in databases. In this paper, the basic operations for manipulating the data in a quantum database will be defined, e.g. INSERT, UPDATE, DELETE, SELECT, backing up and restoring a database file. This gives the ability to perform the data processing t...
Are Quantum Computing Models Realistic?
Kak, Subhash
2001-01-01
The commonly used circuit model of quantum computing leaves out the problems of imprecision in the initial state preparation, particle statistics (indistinguishability of particles belonging to the same quantum state), and error correction (current techniques cannot correct all small errors). The initial state in the circuit model computation is obtained by applying potentially imprecise Hadamard gate operations whereas useful quantum computation requires a state with no unc...
Communication capacity of quantum computation.
Bose, S.; Rallan, L.; V. Vedral
2000-01-01
By considering quantum computation as a communication process, we relate its efficiency to its classical communication capacity. This formalism allows us to derive lower bounds on the complexity of search algorithms in the most general context. It enables us to link the mixedness of a quantum computer to its efficiency and also allows us to derive the critical level of mixedness beyond which there is no quantum advantage in computation.
Algorithms on ensemble quantum computers
Boykin, P. Oscar; Mor, Tal; Roychowdhury, Vwani; Vatan, Farrokh
2009-01-01
In ensemble (or bulk) quantum computation, all computations are performed on an ensemble of computers rather than on a single computer. Measurements of qubits in an individual computer cannot be performed; instead, only expectation values (over the complete ensemble of computers) can be measured. As a result of this limitation on the model of computation, many algorithms cannot be processed directly on such computers, and must be modified, as the common strategy of delaying the measurements u...
Quantum computing with optical clusters
International Nuclear Information System (INIS)
Full text: The theoretical potential of quantum computers and the technical challenges in their construction have seen extensive efforts to build working prototypes of the basic technology. One promising proposal involves the encoding of quantum data in the spatial modes of a single photon, and recently a key component of such a computer has been demonstrated. Any quantum computer, however, will inevitably be subject to noise which will cause its basic components to occasionally malfunction. In this presentation we will discuss recent work on techniques for successfully operating an optical quantum computer in the presence of noise. Copyright (2005) Australian Institute of Physics
Energy Technology Data Exchange (ETDEWEB)
Koenneker, Carsten (comp.)
2012-11-01
The following topics are dealt with: Reality in the test facility, quantum teleportation, the reality of quanta, interaction-free quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view in the future of quantum optics. (HSI)
Algorithms on ensemble quantum computers.
Boykin, P Oscar; Mor, Tal; Roychowdhury, Vwani; Vatan, Farrokh
2010-06-01
In ensemble (or bulk) quantum computation, all computations are performed on an ensemble of computers rather than on a single computer. Measurements of qubits in an individual computer cannot be performed; instead, only expectation values (over the complete ensemble of computers) can be measured. As a result of this limitation on the model of computation, many algorithms cannot be processed directly on such computers, and must be modified, as the common strategy of delaying the measurements usually does not resolve this ensemble-measurement problem. Here we present several new strategies for resolving this problem. Based on these strategies we provide new versions of some of the most important quantum algorithms, versions that are suitable for implementing on ensemble quantum computers, e.g., on liquid NMR quantum computers. These algorithms are Shor's factorization algorithm, Grover's search algorithm (with several marked items), and an algorithm for quantum fault-tolerant computation. The first two algorithms are simply modified using a randomizing and a sorting strategies. For the last algorithm, we develop a classical-quantum hybrid strategy for removing measurements. We use it to present a novel quantum fault-tolerant scheme. More explicitly, we present schemes for fault-tolerant measurement-free implementation of Toffoli and ?(z)(¼) as these operations cannot be implemented "bitwise", and their standard fault-tolerant implementations require measurement. PMID:21475662
Quantum physics, simulation, and computation
International Nuclear Information System (INIS)
Full text: The ultimate scope and power of computers will be determined by the laws of physics. Quantum computers exploit the rules of quantum mechanics, using quantum coherence and entanglement for new ways of information processing. Up to date, the realization of these systems requires extremely precise control of matter on the atomic scale and a nearly perfect isolation from the environment. The question, to what extent quantum information processing can also be exploited in 'natural' and less controlled systems, including biological ones, is exciting but still open. In this talk, I will present some of our recent work on (quantum) physically and biologically motivated models of information processing. (author)
Algorithms on Ensemble Quantum Computers
Boykin, P O; Roychowdhury, V P; Vatan, F; Mor, Tal; Roychowdhury, Vwani; Vatan, Farrokh
1999-01-01
In ensemble (or bulk) quantum computation, measurements of qubits in an individual computer cannot be performed. Instead, only expectation values can be measured. As a result of this limitation on the model of computation, various important algorithms cannot be processed directly on such computers, and must be modified. We provide modifications of various existing protocols, including algorithms for universal fault--tolerant computation, Shor's factorization algorithm (which can be extended to any algorithm computing an NP function), and some search algorithms to enable processing them on ensemble quantum computers.
Robustness of adiabatic quantum computation
Childs, Andrew M.; Farhi, Edward; Preskill, John
2002-01-01
We study the fault tolerance of quantum computation by adiabatic evolution, a quantum algorithm for solving various combinatorial search problems. We describe an inherent robustness of adiabatic computation against two kinds of errors, unitary control errors and decoherence, and we study this robustness using numerical simulations of the algorithm.
The Physics of Quantum Computation
Falci, Giuseppe; Paladino, Elisabette
2015-10-01
Quantum Computation has emerged in the past decades as a consequence of down-scaling of electronic devices to the mesoscopic regime and of advances in the ability of controlling and measuring microscopic quantum systems. QC has many interdisciplinary aspects, ranging from physics and chemistry to mathematics and computer science. In these lecture notes we focus on physical hardware, present day challenges and future directions for design of quantum architectures.
Polynomial Simulations of Decohered Quantum Computers
Aharonov, Dorit; Ben-Or, Michael
1996-01-01
We define formally decohered quantum computers (using density matrices), and present a simulation of them by a probabalistic classical Turing Machine. We study the slowdown of the simulation for two cases: (1) sequential quantum computers, or quantum Turing machines(QTM), and (2) parallel quantum computers, or quantum circuits. This paper shows that the computational power of decohered quantum computers depends strongly on the amount of parallelism in the computation. T...
Quantum computing with defects
Varley, Joel
2011-03-01
The development of a quantum computer is contingent upon the identification and design of systems for use as qubits, the basic units of quantum information. One of the most promising candidates consists of a defect in diamond known as the nitrogen-vacancy (NV-1) center, since it is an individually-addressable quantum system that can be initialized, manipulated, and measured with high fidelity at room temperature. While the success of the NV-1 stems from its nature as a localized ``deep-center'' point defect, no systematic effort has been made to identify other defects that might behave in a similar way. We provide guidelines for identifying other defect centers with similar properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate systems. To elucidate these points, we compare electronic structure calculations of the NV-1 center in diamond with those of several deep centers in 4H silicon carbide (SiC). Using hybrid functionals, we report formation energies, configuration-coordinate diagrams, and defect-level diagrams to compare and contrast the properties of these defects. We find that the NC VSi - 1 center in SiC, a structural analog of the NV-1 center in diamond, may be a suitable center with very different optical transition energies. We also discuss how the proposed criteria can be translated into guidelines to discover NV analogs in other tetrahedrally coordinated materials. This work was performed in collaboration with J. R. Weber, W. F. Koehl, B. B. Buckley, A. Janotti, C. G. Van de Walle, and D. D. Awschalom. This work was supported by ARO, AFOSR, and NSF.
Massive Parallel Quantum Computer Simulator
De Raedt, K.; Michielsen, K.; Raedt, H. De; Trieu, B.; Arnold, G.; Richter, M; Lippert, Th.; Watanabe, H.; Ito, N.
2006-01-01
We describe portable software to simulate universal quantum computers on massive parallel computers. We illustrate the use of the simulation software by running various quantum algorithms on different computer architectures, such as a IBM BlueGene/L, a IBM Regatta p690+, a Hitachi SR11000/J1, a Cray X1E, a SGI Altix 3700 and clusters of PCs running Windows XP. We study the performance of the software by simulating quantum computers containing up to 36 qubits, using up to 409...
Cartoon computation: quantum-like computing without quantum mechanics
International Nuclear Information System (INIS)
We present a computational framework based on geometric structures. No quantum mechanics is involved, and yet the algorithms perform tasks analogous to quantum computation. Tensor products and entangled states are not needed-they are replaced by sets of basic shapes. To test the formalism we solve in geometric terms the Deutsch-Jozsa problem, historically the first example that demonstrated the potential power of quantum computation. Each step of the algorithm has a clear geometric interpretation and allows for a cartoon representation. (fast track communication)
Programming Pulse Driven Quantum Computers
Lloyd, Seth
1999-01-01
Arrays of weakly-coupled quantum systems can be made to compute by subjecting them to a sequence of electromagnetic pulses of well-defined frequency and length. Such pulsed arrays are true quantum computers: bits can be placed in superpositions of 0 and 1, logical operations take place coherently, and dissipation is required only for error correction. Programming such computers is accomplished by selecting the proper sequence of pulses.
Computing on Anonymous Quantum Network
Kobayashi, Hirotada; Matsumoto, Keiji; Tani, Seiichiro
2010-01-01
This paper considers distributed computing on an anonymous quantum network, a network in which no party has a unique identifier and quantum communication and computation are available. It is proved that the leader election problem can exactly (i.e., without error in bounded time) be solved with at most the same complexity up to a constant factor as that of exactly computing symmetric functions (without intermediate measurements for a distributed and superposed input), if the...
Focus on topological quantum computation
International Nuclear Information System (INIS)
Topological quantum computation started as a niche area of research aimed at employing particles with exotic statistics, called anyons, for performing quantum computation. Soon it evolved to include a wide variety of disciplines. Advances in the understanding of anyon properties inspired new quantum algorithms and helped in the characterization of topological phases of matter and their experimental realization. The conceptual appeal of topological systems as well as their promise for building fault-tolerant quantum technologies fuelled the fascination in this field. This ‘focus on’ collection brings together several of the latest developments in the field and facilitates the synergy between different approaches. (editorial)
Insecurity of quantum secure computations
Lo, Hoi-Kwong
1997-08-01
It had been widely claimed that quantum mechanics can protect private information during public decision in, for example, the so-called two-party secure computation. If this were the case, quantum smart-cards, storing confidential information accessible only to a proper reader, could prevent fake teller machines from learning the PIN (personal identification number) from the customers' input. Although such optimism has been challenged by the recent surprising discovery of the insecurity of the so-called quantum bit commitment, the security of quantum two-party computation itself remains unaddressed. Here I answer this question directly by showing that all one-sided two-party computations (which allow only one of the two parties to learn the result) are necessarily insecure. As corollaries to my results, quantum one-way oblivious password identification and the so-called quantum one-out-of-two oblivious transfer are impossible. I also construct a class of functions that cannot be computed securely in any two-sided two-party computation. Nevertheless, quantum cryptography remains useful in key distribution and can still provide partial security in ``quantum money'' proposed by Wiesner.
Duality quantum computer and the efficient quantum simulations
Wei, Shi-Jie; Long, Gui-Lu
2015-01-01
In this paper, we firstly briefly review the duality quantum computer. Distinctly, the generalized quantum gates, the basic evolution operators in a duality quantum computer are no longer unitary, and they can be expressed in terms of linear combinations of unitary operators. All linear bounded operators can be realized in a duality quantum computer, and unitary operators are just the extreme points of the set of generalized quantum gates. A d-slits duality quantum computer ...
Distinguishing Short Quantum Computations
Rosgen, Bill
2008-01-01
Distinguishing logarithmic depth quantum circuits on mixed states is shown to be complete for $QIP$, the class of problems having quantum interactive proof systems. Circuits in this model can represent arbitrary quantum processes, and thus this result has implications for the verification of implementations of quantum algorithms. The distinguishability problem is also complete for $QIP$ on constant depth circuits containing the unbounded fan-out gat...
Experimental Demonstration of Blind Quantum Computing
Barz, Stefanie; Kashefi, Elham; Broadbent, Anne; Fitzsimons, Joseph F.; Zeilinger, Anton; Walther, Philip
2011-01-01
Quantum computers, besides offering substantial computational speedups, are also expected to provide the possibility of preserving the privacy of a computation. Here we show the first such experimental demonstration of blind quantum computation where the input, computation, and output all remain unknown to the computer. We exploit the conceptual framework of measurement-based quantum computation that enables a client to delegate a computation to a quantum server. We demonstr...
Quantum Computing with Very Noisy Devices
Knill, E.
2004-01-01
In theory, quantum computers can efficiently simulate quantum physics, factor large numbers and estimate integrals, thus solving otherwise intractable computational problems. In practice, quantum computers must operate with noisy devices called ``gates'' that tend to destroy the fragile quantum states needed for computation. The goal of fault-tolerant quantum computing is to compute accurately even when gates have a high probability of error each time they are used. Here we ...
Quantum Computing Using Crossed Atomic Beams
Blythe, P.; Varcoe, B.
2006-01-01
A quantum computer is a hypothetical device in which the laws of quantum mechanics are used to introduce a degree of parallelism into computations and which could therefore significantly improve on the computational speed of a classical computer at certain tasks. Cluster state quantum computing (recently proposed by Raussendorf and Briegel) is a new paradigm in quantum information processing and is a departure from the conventional model of quantum computation. The cluster s...
Minimal ancilla mediated quantum computation
Energy Technology Data Exchange (ETDEWEB)
Proctor, Timothy J. [University of Leeds, School of Physics and Astronomy, Leeds (United Kingdom); Kendon, Viv [University of Leeds, School of Physics and Astronomy, Leeds (United Kingdom); Durham University, Department of Physics, Durham (United Kingdom)
2014-12-01
Schemes of universal quantum computation in which the interactions between the computational elements, in a computational register, are mediated by some ancillary system are of interest due to their relevance to the physical implementation of a quantum computer. Furthermore, reducing the level of control required over both the ancillary and register systems has the potential to simplify any experimental implementation. In this paper we consider how to minimise the control needed to implement universal quantum computation in an ancilla-mediated fashion. Considering computational schemes which require no measurements and hence evolve by unitary dynamics for the global system, we show that when employing an ancilla qubit there are certain fixed-time ancilla-register interactions which, along with ancilla initialisation in the computational basis, are universal for quantum computation with no additional control of either the ancilla or the register. We develop two distinct models based on locally inequivalent interactions and we then discuss the relationship between these unitary models and the measurement-based ancilla-mediated models known as ancilla-driven quantum computation. (orig.)
Minimal ancilla mediated quantum computation
International Nuclear Information System (INIS)
Schemes of universal quantum computation in which the interactions between the computational elements, in a computational register, are mediated by some ancillary system are of interest due to their relevance to the physical implementation of a quantum computer. Furthermore, reducing the level of control required over both the ancillary and register systems has the potential to simplify any experimental implementation. In this paper we consider how to minimise the control needed to implement universal quantum computation in an ancilla-mediated fashion. Considering computational schemes which require no measurements and hence evolve by unitary dynamics for the global system, we show that when employing an ancilla qubit there are certain fixed-time ancilla-register interactions which, along with ancilla initialisation in the computational basis, are universal for quantum computation with no additional control of either the ancilla or the register. We develop two distinct models based on locally inequivalent interactions and we then discuss the relationship between these unitary models and the measurement-based ancilla-mediated models known as ancilla-driven quantum computation. (orig.)
Computing quantum eigenvalues made easy
International Nuclear Information System (INIS)
An extremely simple and convenient method is presented for computing eigenvalues in quantum mechanics by representing position and momentum operators in matrix form. The simplicity and success of the method is illustrated by numerical results concerning eigenvalues of bound systems and resonances for Hermitian and non-Hermitian Hamiltonians as well as driven quantum systems. Various MATLAB program codes are listed. (author)
Suggestion on Quantum Computer Circuits
Fagundes, Helio V.
2012-01-01
For quantum computer circuits, it is proposed that they have, besides the presently used compact graphs, an expanded system of subgraphs, in line with the quantum mechanics superposition axiom. The representation of each process by these suggested graphs is equivalent to the algebraic notation of the process.
Quantum Information and Computing
Accardi, L.; Ohya, Masanori; Watanabe, N.
2006-03-01
Preface -- Coherent quantum control of [symbol]-atoms through the stochastic limit / L. Accardi, S. V. Kozyrev and A. N. Pechen -- Recent advances in quantum white noise calculus / L. Accardi and A. Boukas -- Control of quantum states by decoherence / L. Accardi and K. Imafuku -- Logical operations realized on the Ising chain of N qubits / M. Asano, N. Tateda and C. Ishii -- Joint extension of states of fermion subsystems / H. Araki -- Quantum filtering and optimal feedback control of a Gaussian quantum free particle / S. C. Edwards and V. P. Belavkin -- On existence of quantum zeno dynamics / P. Exner and T. Ichinose -- Invariant subspaces and control of decoherence / P. Facchi, V. L. Lepore and S. Pascazio -- Clauser-Horner inequality for electron counting statistics in multiterminal mesoscopic conductors / L. Faoro, F. Taddei and R. Fazio -- Fidelity of quantum teleportation model using beam splittings / K.-H. Fichtner, T. Miyadera and M. Ohya -- Quantum logical gates realized by beam splittings / W. Freudenberg ... [et al.] -- Information divergence for quantum channels / S. J. Hammersley and V. P. Belavkin -- On the uniqueness theorem in quantum information geometry / H. Hasegawa -- Noncanonical representations of a multi-dimensional Brownian motion / Y. Hibino -- Some of future directions of white noise theory / T. Hida -- Information, innovation and elemental random field / T. Hida -- Generalized quantum turing machine and its application to the SAT chaos algorithm / S. Iriyama, M. Ohya and I. Volovich -- A Stroboscopic approach to quantum tomography / A. Jamiolkowski -- Positive maps and separable states in matrix algebras / A. Kossakowski -- Simulating open quantum systems with trapped ions / S. Maniscalco -- A purification scheme and entanglement distillations / H. Nakazato, M. Unoki and K. Yuasa -- Generalized sectors and adjunctions to control micro-macro transitions / I. Ojima -- Saturation of an entropy bound and quantum Markov states / D. Petz -- An infinite dimensional Laplacian acting on some class of Lévy white noise functionals / K. Saitô -- Structure of linear processes / Si Si and Win Win Htay -- Group theory of dynamical maps / E. C. G. Sudarshan -- On quantum analysis, quantum transfer-matrix method, and effective information entropy / M. Suzuki -- Nonequilibrium steady states for a harmonic oscillator interacting with two bose fields-stochastic limit approach and C* algebraic approach / S. Tasaki and L. Accardi -- Control of decoherence with multipulse application / C. Uchiyama -- Quantum entanglement, purification, and linear-optics quantum gates with photonic qubits / P. Walther and A. Zeilinger -- On quantum mutual type measures and capacity / N. Watanabe.
Computation and Dynamics: Classical and Quantum
Kisil, Vladimir V.
2009-01-01
We discuss classical and quantum computations in terms of corresponding Hamiltonian dynamics. This allows us to introduce quantum computations which involve parallel processing of both: the data and programme instructions. Using mixed quantum-classical dynamics we look for a full cost of computations on quantum computers with classical terminals.
Towards Quantum Chemistry on a Quantum Computer
Lanyon, BP; Whitfield, JD; Gillett, GG; Goggin, ME; Almeida, MP; Kassal, I.; Biamonte, JD; Mohseni, M; Powell, BJ; Barbieri, M; Aspuru-Guzik, A.; White, AG
2010-01-01
The fundamental problem faced in quantum chemistry is the calculation of molecular properties, which are of practical importance in fields ranging from materials science to biochemistry. Within chemical precision, the total energy of a molecule as well as most other properties, can be calculated by solving the Schrodinger equation. However, the computational resources required to obtain exact solutions on a conventional computer generally increase exponentially with the numb...
Unitary transformations for quantum computing
Vartiainen, Juha J.
2005-01-01
The last two decades have seen an enormous increase in the computational power of digital computers. This was due to the rapid technical development in manufacturing processes and controlling semiconducting structures on submicron scale. Concurrently, the electric circuits have encountered the first signs of the realm of quantum mechanics. Those effects may induce noise and thus they are typically considered harmful. However, the manipulation of the coherent quantum states might turn out be t...
Quantum Computing via The Bethe Ansatz
Zhang, Yong,
2011-01-01
We recognize quantum circuit model of computation as factorisable scattering model and propose that a quantum computer is associated with a quantum many-body system solved by the Bethe ansatz. As an typical example to support our perspectives on quantum computation, we study quantum computing in one-dimensional nonrelativistic system with delta-function interaction, where the two-body scattering matrix satisfies the factorisation equation (the quantum Yang--Baxter equation) ...
An Algebra of Reversible Quantum Computing
Wang, Yong
2015-01-01
Based on the axiomatization of reversible computing RACP, we generalize it to quantum reversible computing which is called qRACP. By use of the framework of quantum configuration, we show that structural reversibility and quantum state reversibility must be satisfied simultaneously in quantum reversible computation. RACP and qRACP has the same axiomatization modulo the so-called quantum forward-reverse bisimularity, that is, classical reversible computing and quantum reversi...
Robust Quantum Computation with Quantum Dots
Hellberg, C S
2003-01-01
Quantum computation in solid state quantum dots faces two significant challenges: Decoherence from interactions with the environment and the difficulty of generating local magnetic fields for the single qubit rotations. This paper presents a design of composite qubits to overcome both challenges. Each qubit is encoded in the degenerate ground-state of four (or six) electrons in a system of five quantum dots arranged in a two-dimensional pattern. This decoherence-free subspace is immune to both collective and local decoherence, and resists other forms of decoherence, which must raise the energy. The gate operations for universal computation are simple and physically intuitive, and are controlled by modifying the tunneling barriers between the dots--Control of local magnetic fields is not required. A controlled-phase gate can be implemented in a single pulse.
Computing on Anonymous Quantum Network
Kobayashi, Hirotada; Tani, Seiichiro
2010-01-01
This paper considers distributed computing on an anonymous quantum network, a network in which no party has a unique identifier and quantum communication and computation are available. It is proved that the leader election problem can exactly (i.e., without error in bounded time) be solved with at most the same complexity up to a constant factor as that of exactly computing symmetric functions (without intermediate measurements for a distributed and superposed input), if the number of parties is given to every party. A corollary of this result is a more efficient quantum leader election algorithm than existing ones: the new quantum algorithm runs in O(n) rounds with bit complexity O(mn^2), on an anonymous quantum network with n parties and m communication links. Another corollary is the first quantum algorithm that exactly computes any computable Boolean function with round complexity O(n) and with smaller bit complexity than that of existing classical algorithms in the worst case over all (computable) Boolea...
Prospective Algorithms for Quantum Evolutionary Computation
Sofge, Donald A.
2008-01-01
This effort examines the intersection of the emerging field of quantum computing and the more established field of evolutionary computation. The goal is to understand what benefits quantum computing might offer to computational intelligence and how computational intelligence paradigms might be implemented as quantum programs to be run on a future quantum computer. We critically examine proposed algorithms and methods for implementing computational intelligence paradigms, pri...
Distinguishing Short Quantum Computations
Rosgen, Bill
2007-01-01
Distinguishing logarithmic depth quantum circuits on mixed states is shown to be complete for QIP, the class of problems having quantum interactive proof systems. Circuits in this model can represent arbitrary quantum processes, and thus this result has implications for the verification of implementations of quantum algorithms. The distinguishability problem is also complete for QIP on constant depth circuits containing the unbounded fan-out gate. These results are shown by reducing a QIP-complete problem to a logarithmic depth version of itself using a parallelization technique.
Spintronics and Quantum Dots for Quantum Computing and Quantum Communication
Burkard, G; Loss, D; Burkard, Guido; Engel, Hans-Andreas; Loss, Daniel
2000-01-01
Control over electron-spin states, such as coherent manipulation, filtering and measurement promises access to new technologies in conventional as well as in quantum computation and quantum communication. We review our proposal of using electron spins in quantum confined structures as qubits and discuss the requirements for implementing a quantum computer. We describe several realizations of one- and two-qubit gates and of the read-in and read-out tasks. We discuss recently proposed schemes for using a single quantum dot as spin-filter and spin-memory device. Considering electronic EPR pairs needed for quantum communication we show that their spin entanglement can be detected in mesoscopic transport measurements using metallic as well as superconducting leads attached to the dots.
Physical Realizations of Quantum Computing
Kanemitsu, Shigeru; Salomaa, Martti; Takagi, Shin; Are the DiVincenzo Criteria Fulfilled in 2004 ?
2006-01-01
The contributors of this volume are working at the forefront of various realizations of quantum computers. They survey the recent developments in each realization, in the context of the DiVincenzo criteria, including nuclear magnetic resonance, Josephson junctions, quantum dots, and trapped ions. There are also some theoretical contributions which have relevance in the physical realizations of a quantum computer. This book fills the gap between elementary introductions to the subject and highly specialized research papers to allow beginning graduate students to understand the cutting-edge of r
Faster Quantum Chemistry Simulation on Fault-Tolerant Quantum Computers
Jones, N. Cody; Whitfield, James D.; McMahon, Peter L.; Yung, Man-Hong; Van Meter, Rodney; Aspuru-Guzik, Alan; Yamamoto, Yoshihisa
2012-01-01
Quantum computers can in principle simulate quantum physics exponentially faster than their classical counterparts, but some technical hurdles remain. We propose methods which substantially improve the performance of a particular form of simulation, ab initio quantum chemistry, on fault-tolerant quantum computers; these methods generalize readily to other quantum simulation problems. Quantum teleportation plays a key role in these improvements and is used extensively as a computing resource...
Warp-Drive Quantum Computation
Nakahara, M; Kondo, Y; Tanimura, S; Hata, K; Nakahara, Mikio; Vartiainen, Juha J.; Kondo, Yasushi; Tanimura, Shogo; Hata, Kazuya
2004-01-01
Recently it has been shown that time-optimal quantum computation is attained by using the Cartan decomposition of a unitary matrix. We extend this approach by noting that the unitary group is compact. This allows us to reduce the execution time of a quantum algorithm $U_{\\rm alg}$ further by adding an extra gate $W$ to it. This gate $W$ sends $U_{\\rm alg}$ to another algorithm $WU_{\\rm alg}$ which is executable in a shorter time than $U_{\\rm alg}$. We call this technique warp-drive. Here we show both theoretically and experimentally that the execution time of Grover's algorithm is reduced in two-qubit NMR quantum computer. Warp-drive is potentially a powerful tool in accelerating algorithms and reducing the errors in any realization. of a quantum computer
On the Problem of Programming Quantum Computers
RAEDT, Hans De; Hams, Anthony; MICHIELSEN, Kristel; Miyashita, Seiji; Saito, Keiji
2000-01-01
We study effects of the physical realization of quantum computers on their logical operation. Through simulation of physical models of quantum computer hardware, we analyse the difficulties that are encountered in programming physical implementations of quantum computers. We discuss the origin of the instabilities of quantum algorithms and explore physical mechanisms to enlarge the region(s) of stable operation.
A Short Survey on Quantum Computers
Energy Technology Data Exchange (ETDEWEB)
Kanamori, Yoshito [University of Alabama, Huntsville; Yoo, Seong-Moo [University of Alabama, Huntsville; Pan, W. D. [University of Alabama, Huntsville; Sheldon, Frederick T [ORNL
2006-01-01
Quantum computing is an emerging technology. The clock frequency of current computer processor systems may reach about 40 GHz within the next 10 years. By then, one atom may represent one bit. Electrons under such conditions are no longer described by classical physics and a new model of the computer may be necessary by then. The quantum computer is one proposal that may have merit in dealing with the problems associated with the fact that certain important computationally intense problems present that current (classical) computers cannot solve because they require too much processing time. For example, Shor's algorithm performs factoring a large integer in polynomial time while classical factoring algorithms can do it in exponential time. In this paper we briefly survey the current status of quantum computers, quantum computer systems, and quantum simulators. Keywords Classical computers, quantum computers, quantum computer systems, quantum simulators, Shor's algorithm.
Quantum Computation--The Ultimate Frontier
Adami, Chris; Dowling, Jonathan P
2002-01-01
The discovery of an algorithm for factoring which runs in polynomial time on a quantum computer has given rise to a concerted effort to understand the principles, advantages, and limitations of quantum computing. At the same time, many different quantum systems are being explored for their suitability to serve as a physical substrate for the quantum computer of the future. I discuss some of the theoretical foundations of quantum computer science, including algorithms and err...
Quantum computing measurement and intelligence
Ezziane, Zoheir
One of the grand challenges in the nanoscopic computing era is guarantees of robustness. Robust computing system design is confronted with quantum physical, probabilistic, and even biological phenomena, and guaranteeing high-reliability is much more difficult than ever before. Scaling devices down to the level of single electron operation will bring forth new challenges due to probabilistic effects and uncertainty in guaranteeing "zero-one" based computing. Minuscule devices imply billions of devices on a single chip, which may help mitigate the challenge of uncertainty by replication and redundancy. However, such device densities will create a design and validation nightmare with the sheer scale. The questions that confront computer engineers regarding the current status of nanocomputing material and the reliability of systems built from such minuscule devices are difficult to articulate and answer. This article illustrates and discusses two types of quantum algorithms as follows: (1) a simple quantum algorithm and (2) a quantum search algorithm. This article also presents a review of recent advances in quantum computing and intelligence and presents major achievements and obstacles for researchers in the near future.
Computational model underlying the one-way quantum computer
Raussendorf, Robert; Briegel, Hans
2001-01-01
In this paper we present the computational model underlying the one-way quantum computer which we introduced recently [Phys. Rev. Lett. 86, 5188 (2001)]. The one-way quantum computer has the property that any quantum logic network can be simulated on it. Conversely, not all ways of quantum information processing that are possible with the one-way quantum computer can be understood properly in network model terms. We show that the logical depth is, for certain algorithms, low...
Reversible computing fundamentals, quantum computing, and applications
De Vos, Alexis
2010-01-01
Written by one of the few top internationally recognized experts in the field, this book concentrates on those topics that will remain fundamental, such as low power computing, reversible programming languages, and applications in thermodynamics. It describes reversible computing from various points of view: Boolean algebra, group theory, logic circuits, low-power electronics, communication, software, quantum computing. It is this multidisciplinary approach that makes it unique.Backed by numerous examples, this is useful for all levels of the scientific and academic community, from undergr
Universal quantum computer from a quantum magnet
Cai J.; Miyake A.; Dur W.; Briegel H.J.
2010-01-01
We show that a local Hamiltonian of spin-3/2 particles with only two-body nearest-neighbor Affleck-Kennedy-Lieb-Tasaki and exchange-type interactions has an unique ground state, which can be used to implement universal quantum computation merely with single-spin measurements. We prove that the Hamiltonian is gapped, independent of the system size. Our result provides a further step towards utilizing systems with condensed matter-type interactions for measurement-based quantu...
Handbook of computational quantum chemistry
Cook, David B
2005-01-01
Quantum chemistry forms the basis of molecular modeling, a tool widely used to obtain important chemical information and visual images of molecular systems. Recent advances in computing have resulted in considerable developments in molecular modeling, and these developments have led to significant achievements in the design and synthesis of drugs and catalysts. This comprehensive text provides upper-level undergraduates and graduate students with an introduction to the implementation of quantum ideas in molecular modeling, exploring practical applications alongside theoretical explanations.Wri
Geometrical perspective on quantum states and quantum computation
Chen, Zeqian
2013-01-01
We interpret quantum computing as a geometric evolution process by reformulating finite quantum systems via Connes' noncommutative geometry. In this formulation, quantum states are represented as noncommutative connections, while gauge transformations on the connections play a role of unitary quantum operations. Thereby, a geometrical model for quantum computation is presented, which is equivalent to the quantum circuit model. This result shows a geometric way of realizing q...
Theoretical issues in spin-based quantum dot quantum computation
Hu, Xuedong; Sarma, S. Das
2001-01-01
We review our recent work addressing various theoretical issues in spin-based quantum dot quantum computation and quantum information processing. In particular, we summarize our calculation of electron exchange interaction in two-electron double quantum dots and multi-electron double dots, and discuss the physical implication of our results. We also discuss possible errors and how they can be corrected in spin-based quantum dot quantum computation. We critically assess the c...
On optimising quantum communication in verifiable quantum computing
Kapourniotis, Theodoros; Dunjko, Vedran; Kashefi, Elham
2015-01-01
In the absence of any efficient classical schemes for verifying a universal quantum computer, the importance of limiting the required quantum resources for this task has been highlighted recently. Currently, most of efficient quantum verification protocols are based on cryptographic techniques where an almost classical verifier executes her desired encrypted quantum computation remotely on an untrusted quantum prover. In this work we present a new protocol for quantum verifi...
Spin-based quantum computation in multielectron quantum dots
Hu, Xuedong; Sarma, S. Das
2001-01-01
In a quantum computer the hardware and software are intrinsically connected because the quantum Hamiltonian (or more precisely its time development) is the code that runs the computer. We demonstrate this subtle and crucial relationship by considering the example of electron-spin-based solid state quantum computer in semiconductor quantum dots. We show that multielectron quantum dots with one valence electron in the outermost shell do not behave simply as an effective single...
Adiabatic quantum computation along quasienergies
Tanaka, Atushi
2009-01-01
The parametric deformations of quasienergies and eigenvectors of unitary operators are applied to the design of quantum adiabatic algorithms. The conventional, standard adiabatic quantum computation proceeds along eigenenergies of parameter-dependent Hamiltonians. By contrast, discrete adiabatic computation utilizes adiabatic passage along the quasienergies of parameter-dependent unitary operators. For example, such computation can be realized by a concatenation of parameterized quantum circuits, with an adiabatic though inevitably discrete change of the parameter. A design principle of adiabatic passage along quasienergy is recently proposed: Cheon's quasienergy and eigenspace anholonomies on unitary operators is available to realize anholonomic adiabatic algorithms [Tanaka and Miyamoto, Phys. Rev. Lett. 98, 160407 (2007)], which compose a nontrivial family of discrete adiabatic algorithms. It is straightforward to port a standard adiabatic algorithm to an anholonomic adiabatic one, except an introduction of...
Decoherence and programmable quantum computation
Barnes, Jeff P.; Warren, Warren S.
1999-12-01
When coherent states of the electromagnetic field are used to drive the evolution of a quantum computer, a decoherence results due to the back reaction from the qubits onto the fields. We show how to calculate this effect. No assumptions about the environment are necessary, so this represents a useful model to test the fidelity of quantum error correcting codes. We examine two cases of interest. First, the decoherence from the Walsh-Hadamard transformations in Grover's search algorithm is found [Phys. Rev. Lett. 79, 325 (1997)]. Interference effects, and decoherence-dependent phases, are present that could be useful in reducing the decoherence. Second, Shor's fault-tolerant controlled-NOT gate is examined, utilizing frequency-selective pulses [Proceedings, 35th Annual Symposium on Foundations of Computer Science (IEEE Press, New York, 1994), pp. 56-65]. This implementation is found not to be optimal in regards to fault-tolerant quantum computation.
Pfaffian States: Quantum Computation
International Nuclear Information System (INIS)
The Pfaffian determinant is sometimes used to multiply the Laughlin's wave function at the half filled Landau level. The square of the Pfaffian gives the ordinary determinant. We find that the Pfaffian wave function leads to four times larger energies and two times faster time. By the same logic, the Pfaffian breaks the supersymmetry of the Dirac equation. By using the spin properties and the Landau levels, we correctly interpret the state with 5/2 filling. The quantum numbers which represent the state vectors are now products of n (Landau level quantum number), l(orbital angular momentum quantum number and the spin, s |n, l, s>. In a circuit, the noise measures the resistivity and hence the charge. The Pfaffian velocity is different from that of the single-particle states and hence it has important consequences in the measurement of the charge of the quasiparticles.
Miao, Xijia
2011-01-01
It is shown in the paper that the unitary quantum dynamics in quantum mechanics is the universal quantum driving force to speed up a quantum computation. This assertion supports strongly in theory that the unitary quantum dynamics is the fundamental and universal principle in nature. On the other hand, the symmetric structure of Hilbert space of a composite quantum system is the quantum-computing resource that is not owned by classical computation. A new quantum-computing sp...
Phase Information in Quantum Oracle Computing
Machta, J.
1998-01-01
Computational devices may be supplied with external sources of information (oracles). Quantum oracles may transmit phase information which is available to a quantum computer but not a classical computer. One consequence of this observation is that there is an oracle which is of no assistance to a classical computer but which allows a quantum computer to solve undecidable problems. Thus useful relativized separations between quantum and classical complexity classes must exclu...
Realizing the quantum baker's map on an NMR quantum computer
Todd A. Brun; Schack, Ruediger
1998-01-01
By numerically simulating an implementation of the quantum baker's map on a 3-qubit NMR quantum computer based on the molecule trichloroethylene, we demonstrate the feasibility of quantum chaos experiments on present-day quantum computers. We give detailed descriptions of proposed experiments that investigate (a) the rate of entropy increase due to decoherence and (b) the phenomenon of hypersensitivity to perturbation.
Quantum Walks for Computer Scientists
Venegas-Andraca, Salvador
2008-01-01
Quantum computation, one of the latest joint ventures between physics and the theory of computation, is a scientific field whose main goals include the development of hardware and algorithms based on the quantum mechanical properties of those physical systems used to implement such algorithms. Solving difficult tasks (for example, the Satisfiability Problem and other NP-complete problems) requires the development of sophisticated algorithms, many of which employ stochastic processes as their mathematical basis. Discrete random walks are a popular choice among those stochastic processes. Inspir
Quantum computing of quantum chaos and imperfection effects
Song, Pil Hun; Shepelyansky, Dima L.
2000-01-01
We study numerically the imperfection effects in the quantum computing of the kicked rotator model in the regime of quantum chaos. It is shown that there are two types of physical characteristics: for one of them the quantum computation errors grow exponentially with the number of qubits in the computer while for the other the growth is polynomial. Certain similarity between classical and quantum computing errors is also discussed.
Using a quantum computer to investigate quantum chaos
Schack, Ruediger
1997-01-01
We show that the quantum baker's map, a prototypical map invented for theoretical studies of quantum chaos, has a very simple realization in terms of quantum gates. Chaos in the quantum baker's map could be investigated experimentally on a quantum computer based on only 3 qubits.
ASCR Workshop on Quantum Computing for Science
Energy Technology Data Exchange (ETDEWEB)
Aspuru-Guzik, Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Van Dam, Wim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Farhi, Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gaitan, Frank [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Humble, Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jordan, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Landahl, Andrew J [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Love, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lucas, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Preskill, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Muller, Richard P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Svore, Krysta [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wiebe, Nathan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Williams, Carl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-06-01
This report details the findings of the DOE ASCR Workshop on Quantum Computing for Science that was organized to assess the viability of quantum computing technologies to meet the computational requirements of the DOE’s science and energy mission, and to identify the potential impact of quantum technologies. The workshop was held on February 17-18, 2015, in Bethesda, MD, to solicit input from members of the quantum computing community. The workshop considered models of quantum computation and programming environments, physical science applications relevant to DOE's science mission as well as quantum simulation, and applied mathematics topics including potential quantum algorithms for linear algebra, graph theory, and machine learning. This report summarizes these perspectives into an outlook on the opportunities for quantum computing to impact problems relevant to the DOE’s mission as well as the additional research required to bring quantum computing to the point where it can have such impact.
QCE: A Simulator for Quantum Computer Hardware
Michielsen, Kristel; De Raedt, Hans
2003-01-01
The Quantum Computer Emulator (QCE) described in this paper consists of a simulator of a generic, general purpose quantum computer and a graphical user interface. The latter is used to control the simulator, to define the hardware of the quantum computer and to debug and execute quantum algorithms. QCE runs in a Windows 98/NT/2000/ME/XP environment. It can be used to validate designs of physically realizable quantum processors and as an interactive educational tool to learn about qu...
Geometric phases and quantum computation
International Nuclear Information System (INIS)
Full text: In my lectures I will talk about the notion of the geometric phase and explain its relevance for both fundamental quantum mechanics as well as quantum computation. The phase will be at first introduced via the idea of Pancharatnam which involves interference of three or more light beams. This notion will then be generalized to the evolving quantum systems. I will discuss both pure and mixed states as well as unitary and non-unitary evolutions. I will also show how the concept of the vacuum induced geometric phase arises in quantum optics. A simple measurement scheme involving a Mach Zehnder interferometer will be presented and will be used to illustrate all the concepts in the lecture. Finally, I will expose a simple generalization of the geometric phase to evolving degenerate states. This will be seen to lead to the possibility of universal quantum computation using geometric effects only. Moreover, this contains a promise of intrinsically fault tolerant quantum information processing, whose prospects will be outlined at the end of the lecture. (author)
Computations in Quantum Tensor Networks
Huckle T.; Waldherr K.; Schulte-Herbruggen T.
2012-01-01
The computation of the ground state (i.e. the eigenvector related to the smallest eigenvalue) is an important task in the simulation of quantum many-body systems. As the dimension of the underlying vector space grows exponentially in the number of particles, one has to consider appropriate subsets promising both convenient approximation properties and efficient computations. The variational ansatz for this numerical approach leads to the minimization of the Rayleigh quotient...
Introduction to Grassmann Manifolds and Quantum Computation
Fujii, Kazuyuki
2001-01-01
Geometrical aspects of quantum computing are reviewed elementarily for non-experts and/or graduate students who are interested in both Geometry and Quantum Computation. In the first half we show how to treat Grassmann manifolds which are very important examples of manifolds in Mathematics and Physics. Some of their applications to Quantum Computation and its efficiency problems are shown in the second half. An interesting current topic of Holonomic Quantum Computation i...
Programming physical realizations of quantum computers
RAEDT, Hans De; MICHIELSEN, Kristel; Hams, Anthony; Miyashita, Seiji; Saito, Keiji
2001-01-01
We study effects of the physical realization of quantum computers on their logical operation. Through simulation of physical models of quantum computer hardware, we analyze the difficulties that are encountered in programming physical realizations of quantum computers. Examples of logically identical implementations of the controlled-NOT operation and Grover's database search algorithm are used to demonstrate that the results of a quantum computation are unstable with respec...
Using Quantum Computers to Learn Physics
Wiebe, Nathan
2014-01-01
Since its inception at the beginning of the twentieth century, quantum mechanics has challenged our conceptions of how the universe ought to work; however, the equations of quantum mechanics can be too computationally difficult to solve using existing computers for even modestly large systems. Here I will show that quantum computers can sometimes be used to address such problems and that quantum computer science can assign formal complexities to learning facts about nature. ...
AN INTRODUCTION TO QUANTUM NEURAL COMPUTING
Shaktikanta Nayak
2011-01-01
The goal of the artificial neural network is to create powerful artificial problem solving systems. The field of quantum computation applies ideas from quantum mechanics to the study of computation and has made interesting progress. Quantum Neural Network (QNN) is one of the new paradigms built upon the combination of classical neural computation and quantum computation. It is argued that the study of QNN may explain the brain functionality in a better way and create new systems for informati...
Universal Quantum Computation with Shutter Logic
Garcia-Escartin, Juan Carlos; Chamorro-Posada, Pedro
2005-01-01
We show that universal quantum logic can be achieved using only linear optics and a quantum shutter device. With these elements, we design a quantum memory for any number of qubits and a CNOT gate which are the basis of a universal quantum computer. An interaction-free model for a quantum shutter is given.
Fault tolerance for holonomic quantum computation
Oreshkov, Ognyan; Todd A. Brun; Lidar, Daniel A.
2013-01-01
Comment: 16 pages, this is a chapter in the book "Quantum Error Correction", edited by Daniel A. Lidar and Todd A. Brun, (Cambridge University Press, 2013), at http://www.cambridge.org/us/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-error-correction
Experimental Demonstration of Blind Quantum Computing
Barz, Stefanie; Broadbent, Anne; Fitzsimons, Joseph F; Zeilinger, Anton; Walther, Philip
2011-01-01
Quantum computers, besides offering substantial computational speedups, are also expected to provide the possibility of preserving the privacy of a computation. Here we show the first such experimental demonstration of blind quantum computation where the input, computation, and output all remain unknown to the computer. We exploit the conceptual framework of measurement-based quantum computation that enables a client to delegate a computation to a quantum server. We demonstrate various blind delegated computations, including one- and two-qubit gates and the Deutsch and Grover algorithms. Remarkably, the client only needs to be able to prepare and transmit individual photonic qubits. Our demonstration is crucial for future unconditionally secure quantum cloud computing and might become a key ingredient for real-life applications, especially when considering the challenges of making powerful quantum computers widely available.
General Quantum Interference Principle and Duality Computer
International Nuclear Information System (INIS)
In this article, we propose a general principle of quantum interference for quantum system, and based on this we propose a new type of computing machine, the duality computer, that may outperform in principle both classical computer and the quantum computer. According to the general principle of quantum interference, the very essence of quantum interference is the interference of the sub-waves of the quantum system itself. A quantum system considered here can be any quantum system: a single microscopic particle, a composite quantum system such as an atom or a molecule, or a loose collection of a few quantum objects such as two independent photons. In the duality computer, the wave of the duality computer is split into several sub-waves and they pass through different routes, where different computing gate operations are performed. These sub-waves are then re-combined to interfere to give the computational results. The quantum computer, however, has only used the particle nature of quantum object. In a duality computer, it may be possible to find a marked item from an unsorted database using only a single query, and all NP-complete problems may have polynomial algorithms. Two proof-of-the-principle designs of the duality computer are presented: the giant molecule scheme and the nonlinear quantum optics scheme. We also propose thought experiment to check the related fundamental issues, the measurement efficiency of a partial wave function.
The Next Generation Computing Brainwave-Quantum Computing
T. Venkat Narayana Rao; Shirish Pathania
2010-01-01
This paper is written to explicate the working of Quantum Computing and its mechanics. Quantum Computing is basically a minute field from Nanotechnology. The main purpose of this paper is to explain an inexperienced user about the technology and principles used while designing the architect of a quantum computer. Operational quantum computers would be a reality in forth coming years by the virtue of new mechanisms to explore and implementations. This paper is sectioned into 7 parts. Part 1 is...
Quantum computing from the ground up
Perry, Riley Tipton
2012-01-01
Quantum computing - the application of quantum mechanics to information - represents a fundamental break from classical information and promises to dramatically increase a computer's power. Many difficult problems, such as the factorization of large numbers, have so far resisted attack by classical computers yet are easily solved with quantum computers. If they become feasible, quantum computers will end standard practices such as RSA encryption. Most of the books or papers on quantum computing require (or assume) prior knowledge of certain areas such as linear algebra or quantum mechanics. The majority of the currently-available literature is hard to understand for the average computer enthusiast or interested layman. This text attempts to teach quantum computing from the ground up in an easily readable way, providing a comprehensive tutorial that includes all the necessary mathematics, computer science and physics.
Quantum ballistic evolution in quantum mechanics: Application to quantum computers
International Nuclear Information System (INIS)
Quantum computers are important examples of processes whose evolution can be described in terms of iterations of single-step operators or their adjoints. Based on this, Hamiltonian evolution of processes with associated step operators T is investigated here. The main limitation of this paper is to processes which evolve quantum ballistically, i.e., motion restricted to a collection of nonintersecting or distinct paths on an arbitrary basis. The main goal of this paper is proof of a theorem which gives necessary and sufficient conditions that T must satisfy so that there exists a Hamiltonian description of quantum ballistic evolution for the process, namely, that T is a partial isometry and is orthogonality preserving and stable on some basis. Simple examples of quantum ballistic evolution for quantum Turing machines with one and with more than one type of elementary step are discussed. It is seen that for nondeterministic machines the basis set can be quite complex with much entanglement present. It is also proven that, given a step operator T for an arbitrary deterministic quantum Turing machine, it is decidable if T is stable and orthogonality preserving, and if quantum ballistic evolution is possible. The proof fails if T is a step operator for a nondeterministic machine. It is an open question if such a decision procedure exists for nondeterministic machines. This problem does not occur in classical mechanics. Also the definition of quantum Turing machines used here is compared with that used by other authors. copyright 1996 The American Physical Society
Simulation of applications in quantum computing
Meyers, Ronald E.; Deacon, Keith
2004-10-01
This paper discusses simulation of quantum computing applications solving important physics and engineering problems. Methodologies are developed for quantum computing solutions of the Navier Stokes Equation, Dirac's Equation, and Schrodinger's Equation in complex domains. Turbulent Navier Stokes solutions were generated in complex geometries including urban domains. A quantum computing algorithm is also developed for the processing of sound which has a greater than classical efficiency in compression when run on a quantum computer. The algorithm also has interesting and useful properties on a classical computer, but without the superior speed and storage properties realized on a quantum computer.
Universal quantum computing with nanowire double quantum dots
P. Xue
2011-01-01
We show a method for implementing universal quantum computing using of a singlet and triplets of nanowire double quantum dots coupled to a one-dimensional transmission line resonator. This method is attractive for both quantum computing and quantum control with inhibition of spontaneous emission, enhanced spin qubit lifetime, strong coupling and quantum nondemolition measurements of spin qubits. We analyze the performance and stability of all required operations and emphasiz...
Strange attractor simulated on a quantum computer
Terraneo, M.; Georgeot, B.; Shepelyansky, D. L.
2002-01-01
We show that dissipative classical dynamics converging to a strange attractor can be simulated on a quantum computer. Such quantum computations allow to investigate efficiently the small scale structure of strange attractors, yielding new information inaccessible to classical computers. This opens new possibilities for quantum simulations of various dissipative processes in nature.
Exploiting locality in quantum computation for quantum chemistry
McClean, Jarrod R.; Babbush, Ryan; Love, Peter J.; Aspuru-Guzik, Alán
2014-01-01
Accurate prediction of chemical and material properties from first principles quantum chemistry is a challenging task on traditional computers. Recent developments in quantum computation offer a route towards highly accurate solutions with polynomial cost, however this solution still carries a large overhead. In this perspective, we aim to bring together known results about the locality of physical interactions from quantum chemistry with ideas from quantum computation. We s...
Computable measure of quantum correlation
Akhtarshenas, S. Javad; Mohammadi, Hamidreza; Karimi, Saman; Azmi, Zahra
2015-01-01
A general state of an system is a classical-quantum state if and only if its associated -correlation matrix (a matrix constructed from the coherence vector of the party , the correlation matrix of the state, and a function of the local coherence vector of the subsystem ), has rank no larger than . Using the general Schatten -norms, we quantify quantum correlation by measuring any violation of this condition. The required minimization can be carried out for the general -norms and any function of the local coherence vector of the unmeasured subsystem, leading to a class of computable quantities which can be used to capture the quantumness of correlations due to the subsystem . We introduce two special members of these quantifiers: The first one coincides with the tight lower bound on the geometric measure of discord, so that such lower bound fully captures the quantum correlation of a bipartite system. Accordingly, a vanishing tight lower bound on the geometric discord is a necessary and sufficient condition for a state to be zero-discord. The second quantifier has the property that it is invariant under a local and reversible operation performed on the unmeasured subsystem, so that it can be regarded as a computable well-defined measure of the quantum correlations. The approach presented in this paper provides a way to circumvent the problem with the geometric discord. We provide some examples to exemplify this measure.
Scalable cavity quantum electrodynamics system for quantum computing
Aram, Mohammad Hasan; Khorasani, Sina
2015-01-01
We introduce a new scalable cavity quantum electrodynamics platform which can be used for quantum computing. This system is composed of coupled photonic crystal (PC) cavities which their modes lie on a Dirac cone in the whole super crystal band structure. Quantum information is stored in quantum dots that are positioned inside the cavities. We show if there is just one quantum dot in the system, energy as photon is exchanged between the quantum dot and the Dirac modes sinuso...
The scalable quantum computation based on quantum dot systems
Zhang, Jian-Qi; Yu, Ya-Fei; Feng, Xun-li; Zhang, Zhi-Ming
2011-01-01
We propose a scheme for realizing the scalable quantum computation based on nonidentical quantum dots trapped in a single-mode waveguide. In this system, the quantum dots simultaneously interact with a large detuned waveguide and classical light fields. During the process, neither the waveguide mode nor the quantum dots are excited, while the sub-system composed of any two quantum dots can acquire phases conditional upon the states of these two quantum dots and the certain d...
Models of quantum computation and quantum programming languages
Miszczak, J. A.
2010-01-01
The goal of the presented paper is to provide an introduction to the basic computational models used in quantum information theory. We review various models of quantum Turing machine, quantum circuits and quantum random access machine (QRAM) along with their classical counterparts. We also provide an introduction to quantum programming languages, which are developed using the QRAM model. We review the syntax of several existing quantum programming languages and discuss their...
Warp-Drive Quantum Computation
Nakahara, Mikio; Vartiainen, Juha J.; Kondo, Yasushi; Tanimura, Shogo; Hata, Kazuya
2004-01-01
Recently it has been shown that time-optimal quantum computation is attained by using the Cartan decomposition of a unitary matrix. We extend this approach by noting that the unitary group is compact. This allows us to reduce the execution time of a quantum algorithm $U_{\\rm alg}$ further by adding an extra gate $W$ to it. This gate $W$ sends $U_{\\rm alg}$ to another algorithm $WU_{\\rm alg}$ which is executable in a shorter time than $U_{\\rm alg}$. We call this technique war...
EXPLORATIONS IN QUANTUM COMPUTING FOR FINANCIAL APPLICATIONS
Gare, Jesse
2010-01-01
Quantum computers have the potential to increase the solution speed for many computational problems. This paper is a first step into possible applications for quantum computing in the context of computational finance. The fundamental ideas of quantum computing are introduced, followed by an exposition of the algorithms of Deutsch and Grover. Improved mean and median estimation are shown as results of Grover?s generalized framework. The algorithm for mean estimation is refined to an improved M...
Simulating Quantum Dynamics On A Quantum Computer
Wiebe, Nathan; Berry, Dominic; Hoyer, Peter; Sanders, Barry
2011-03-01
We develop an efficient quantum algorithm for simulating time-dependent Hamiltonian evolution of general input states on a quantum computer. Given conditions on the smoothness of the Hamiltonian, the complexity of the algorithm is close to linear in the evolution time, and therefore is comparable to algorithms for time-independent Hamiltonians. In addition, we show how the complexity can be reduced by optimizing the time steps. The complexity of the algorithm is quantified by calls to an oracle, which yields information about the Hamiltonian, and accounts for all computational resources. In contrast to previous work, which allowed an oracle query to yield an arbitrary number of bits or qubits, we assign a cost for each bit or qubit accessed. This per-bit or per-qubit costing of oracle calls reveals hitherto unnoticed simulation costs. We also account for discretization errors in the time and the representation of the Hamiltonian. We generalize the requirement of sparse Hamiltonians to being a sum of sparse Hamiltonians in various bases for which the transformation to a sparse Hamiltonian may be performed efficiently.
Simulating Quantum Dynamics On A Quantum Computer
Wiebe, Nathan; Hoyer, Peter; Sanders, Barry C
2010-01-01
We develop an efficient quantum algorithm for simulating time-dependent Hamiltonian evolution of general input states on a quantum computer. Given conditions on the smoothness of the Hamiltonian, the complexity of the algorithm is close to linear in the evolution time, and therefore is comparable to algorithms for time-independent Hamiltonians. In addition, we show how the complexity can be reduced by optimizing the time steps. The complexity of the algorithm is quantified by calls to an oracle, which yields information about the Hamiltonian, and accounts for all computational resources. In contrast to previous work, which allowed an oracle query to yield an arbitrary number of bits or qubits, we assign a cost for each bit or qubit accessed. This per-bit or per-qubit costing of oracle calls reveals hitherto unnoticed simulation costs. We also account for discretization errors in the time and the representation of the Hamiltonian. We generalize the requirement of sparse Hamiltonians to being a sum of sparse Ha...
Quantum computing and the entanglement frontier
Preskill, John
2012-01-01
Quantum information science explores the frontier of highly complex quantum states, the "entanglement frontier." This study is motivated by the observation (widely believed but unproven) that classical systems cannot simulate highly entangled quantum systems efficiently, and we hope to hasten the day when well controlled quantum systems can perform tasks surpassing what can be done in the classical world. One way to achieve such "quantum supremacy" would be to run an algorithm on a quantum computer which solves a problem with a super-polynomial speedup relative to classical computers, but there may be other ways that can be achieved sooner, such as simulating exotic quantum states of strongly correlated matter. To operate a large scale quantum computer reliably we will need to overcome the debilitating effects of decoherence, which might be done using "standard" quantum hardware protected by quantum error-correcting codes, or by exploiting the nonabelian quantum statistics of anyons realized in solid state sy...
Geometry of quantum computation with qutrits.
Li, Bin; Yu, Zu-Huan; Fei, Shao-Ming
2013-01-01
Determining the quantum circuit complexity of a unitary operation is an important problem in quantum computation. By using the mathematical techniques of Riemannian geometry, we investigate the efficient quantum circuits in quantum computation with n qutrits. We show that the optimal quantum circuits are essentially equivalent to the shortest path between two points in a certain curved geometry of SU(3(n)). As an example, three-qutrit systems are investigated in detail. PMID:24005379
Exponential Gain in Quantum Computing of Quantum Chaos and Localization
Georgeot, B.; Shepelyansky, D. L.
2000-01-01
We present a quantum algorithm which simulates the quantum kicked rotator model exponentially faster than classical algorithms. This shows that important physical problems of quantum chaos, localization and Anderson transition can be modelled efficiently on a quantum computer. We also show that a similar algorithm simulates efficiently classical chaos in certain area-preserving maps.
Problems and solutions in quantum computing and quantum information
Steeb, Willi-Hans
2012-01-01
Quantum computing and quantum information are two of the fastest growing and most exciting research fields in physics. Entanglement, teleportation and the possibility of using the non-local behavior of quantum mechanics to factor integers in random polynomial time have also added to this new interest. This book supplies a huge collection of problems in quantum computing and quantum information together with their detailed solutions, which will prove to be invaluable to students as well as researchers in these fields. All the important concepts and topics such as quantum gates and quantum circuits, product Hilbert spaces, entanglement and entanglement measures, deportation, Bell states, Bell inequality, Schmidt decomposition, quantum Fourier transform, magic gate, von Neumann entropy, quantum cryptography, quantum error corrections, number states and Bose operators, coherent states, squeezed states, Gaussian states, POVM measurement, quantum optics networks, beam splitter, phase shifter and Kerr Hamilton opera...
Transparallel mind: Classical computing with quantum power
van der Helm, Peter A.
2014-01-01
Inspired by the extraordinary computing power promised by quantum computers, the quantum mind hypothesis postulated that quantum mechanical phenomena are the source of neuronal synchronization, which, in turn, might underlie consciousness. Here, I present an alternative inspired by a classical computing method with quantum power. This method relies on special distributed representations called hyperstrings. Hyperstrings are superpositions of up to an exponential number of st...
A Quantum Computer Architecture using Nonlocal Interactions
Brennen, Gavin K.; Song, Daegene; Williams, Carl J.
2003-01-01
Several authors have described the basic requirements essential to build a scalable quantum computer. Because many physical implementation schemes for quantum computing rely on nearest neighbor interactions, there is a hidden quantum communication overhead to connect distant nodes of the computer. In this paper we propose a physical solution to this problem which, together with the key building blocks, provides a pathway to a scalable quantum architecture using nonlocal inte...
Quantum computing with itinerant microwave photons
Kokkala, Janne
2013-01-01
Microwave photons in superconducting circuits is a promising approach for quantum computing due to long coherence times and the easy controllability of superconducting devices. However, as the search of the ultimate design of a quantum computer is still ongoing, various suggestions for the realization of a quantum bit, qubit, exist even in the area of superconducting circuits. In this thesis, we study theoretically quantum computing using itinerant microwave photons as qubits. Basic tools ...
Fault Tolerant Quantum Computation with Constant Error
Aharonov, Dorit; Ben-Or, Michael
1996-01-01
Recently Shor showed how to perform fault tolerant quantum computation when the error probability is logarithmically small. We improve this bound and describe fault tolerant quantum computation when the error probability is smaller than some constant threshold. The cost is polylogarithmic in time and space, and no measurements are used during the quantum computation. The result holds also for quantum circuits which operate on nearest neighbors only. To achieve this noise res...
RISQ - reduced instruction set quantum computers
Molmer, Klaus; Sorensen, Anders,
2000-01-01
Candidates for quantum computing which offer only restricted control, e.g., due to lack of access to individual qubits, are not useful for general purpose quantum computing. We present concrete proposals for the use of systems with such limitations as RISQ - reduced instruction set quantum computers and devices - for simulation of quantum dynamics, for multi-particle entanglement and squeezing of collective spin variables. These tasks are useful in their own right, and they ...
From Monte Carlo to Quantum Computation
Heinrich, Stefan
2001-01-01
Quantum computing was so far mainly concerned with discrete problems. Recently, E. Novak and the author studied quantum algorithms for high dimensional integration and dealt with the question, which advantages quantum computing can bring over classical deterministic or randomized methods for this type of problem. In this paper we give a short introduction to the basic ideas of quantum computing and survey recent results on high dimensional integration. We discuss conne...
The Next Generation Computing Brainwave-Quantum Computing
Directory of Open Access Journals (Sweden)
T. Venkat Narayana Rao
2010-12-01
Full Text Available This paper is written to explicate the working of Quantum Computing and its mechanics. Quantum Computing is basically a minute field from Nanotechnology. The main purpose of this paper is to explain an inexperienced user about the technology and principles used while designing the architect of a quantum computer. Operational quantum computers would be a reality in forth coming years by the virtue of new mechanisms to explore and implementations. This paper is sectioned into 7 parts. Part 1 is a brief introduction to Quantum Computing i.e. basic working principle of a Qubit. Part 2 covers Qubit and the architect of the whole system. It also enlightens us about the Qubit in more detail like how data is represented, principles like superposition and state of composite system. Part 3 narrates how quantum Computing can be built using Qubits and applies the above mentioned principles. Part 4 deals with the basic introduction to Quantum Mechanics and some principles like dual nature of light and Uncertainty Principle. Part 5 depicts about the advantages of Quantum Computer over present computing systems. Part 6 discusses the overheads of Quantum Computing. Part 7 describes about implementation of Quantum Computing in today’s world. Finally this paper offers an insight about how and by when we would be able to design a full time Quantum Computer and what are the probable considerations to be taken in to account.
Classical computing, quantum computing, and Shor's factoring algorithm
Manin, Yuri I.
1999-01-01
This is an expository talk written for the Bourbaki Seminar. After a brief introduction, Section 1 discusses in the categorical language the structure of the classical deterministic computations. Basic notions of complexity icluding the P/NP problem are reviewed. Section 2 introduces the notion of quantum parallelism and explains the main issues of quantum computing. Section 3 is devoted to four quantum subroutines: initialization, quantum computing of classical Boolean func...
The Quantum Human Computer (QHC) Hypothesis
Salmani-Nodoushan, Mohammad Ali
2008-01-01
This article attempts to suggest the existence of a human computer called Quantum Human Computer (QHC) on the basis of an analogy between human beings and computers. To date, there are two types of computers: Binary and Quantum. The former operates on the basis of binary logic where an object is said to exist in either of the two states of 1 and…
Quantum chemistry simulation on quantum computers: theories and experiments.
Lu, Dawei; Xu, Boruo; Xu, Nanyang; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng
2012-07-14
It has been claimed that quantum computers can mimic quantum systems efficiently in the polynomial scale. Traditionally, those simulations are carried out numerically on classical computers, which are inevitably confronted with the exponential growth of required resources, with the increasing size of quantum systems. Quantum computers avoid this problem, and thus provide a possible solution for large quantum systems. In this paper, we first discuss the ideas of quantum simulation, the background of quantum simulators, their categories, and the development in both theories and experiments. We then present a brief introduction to quantum chemistry evaluated via classical computers followed by typical procedures of quantum simulation towards quantum chemistry. Reviewed are not only theoretical proposals but also proof-of-principle experimental implementations, via a small quantum computer, which include the evaluation of the static molecular eigenenergy and the simulation of chemical reaction dynamics. Although the experimental development is still behind the theory, we give prospects and suggestions for future experiments. We anticipate that in the near future quantum simulation will become a powerful tool for quantum chemistry over classical computations. PMID:22652702
How Quantum Computers Can Fail
Kalai, Gil
2006-01-01
We propose and discuss two postulates on the nature of errors in highly correlated noisy physical stochastic systems. The first postulate asserts that errors for a pair of substantially correlated elements are themselves substantially correlated. The second postulate asserts that in a noisy system with many highly correlated elements there will be a strong effect of error synchronization. These postulates appear to be damaging for quantum computers.
Holonomic quantum computation in subsystems
Oreshkov, Ognyan
2009-01-01
We introduce a generalized method of holonomic quantum computation (HQC) based on encoding in subsystems. As an application, we propose a scheme for applying holonomic gates to unencoded qubits by the use of a noisy ancillary qubit. This scheme does not require initialization in a subspace since all dynamical effects factor out as a transformation on the ancilla. We use the scheme to show how fault-tolerant HQC can be realized via 2-local Hamiltonians by the use of perturbative gadgets.
Holonomic quantum computation in subsystems
Oreshkov, Ognyan
2009-01-01
We introduce a generalized method of holonomic quantum computation (HQC) based on encoding in subsystems. As an application, we propose a scheme for applying holonomic gates to unencoded qubits by the use of a noisy ancillary qubit. This scheme does not require initialization in a subspace since all dynamical effects factor out as a transformation on the ancilla. We use this approach to show how fault-tolerant HQC can be realized via 2-local Hamiltonians with perturbative ga...
Holonomic Quantum Computation in Subsystems
Oreshkov, Ognyan
2009-08-01
We introduce a generalized method of holonomic quantum computation (HQC) based on encoding in subsystems. As an application, we propose a scheme for applying holonomic gates to unencoded qubits by the use of a noisy ancillary qubit. This scheme does not require initialization in a subspace since all dynamical effects factor out as a transformation on the ancilla. We use this approach to show how fault-tolerant HQC can be realized via 2-local Hamiltonians with perturbative gadgets.
A Layered Architecture for Quantum Computing Using Quantum Dots
Jones, N Cody; Fowler, Austin G; McMahon, Peter L; Kim, Jungsang; Ladd, Thaddeus D; Yamamoto, Yoshihisa
2010-01-01
We address the challenge of designing a quantum computer architecture with a layered framework that is modular and facilitates fault-tolerance. The framework is flexible and could be used for analysis and comparison of differing quantum computer designs. Using this framework, we develop a complete, layered architecture for quantum computing with optically controlled quantum dots, showing how a myriad of technologies must operate synchronously to achieve fault-tolerance. Our design deliberately takes advantage of the large possibilities for integration afforded by semiconductor fabrication. Quantum information is stored in the electron spin states of a charged quantum dot controlled by ultrafast optical pulses. Optical control makes this system very fast, scalable to large problem sizes, and extensible to quantum communication or distributed architectures. The design of this quantum computer centers on error correction in the form of a topological surface code, which requires only local and nearest-neighbor ga...
Exploiting locality in quantum computation for quantum chemistry
McClean, Jarrod R; Love, Peter J; Aspuru-Guzik, Alán
2014-01-01
Accurate prediction of chemical and material properties from first principles quantum chemistry is a challenging task on traditional computers. Recent developments in quantum computation offer a route towards highly accurate solutions with polynomial cost, however this solution still carries a large overhead. In this perspective, we aim to bring together known results about the locality of physical interactions from quantum chemistry with ideas from quantum computation. We show that the utilization of spatial locality combined with the Bravyi-Kitaev transformation offers an improvement in the scaling of known quantum algorithms for quantum chemistry and provide numerical examples to help illustrate this point. We combine these developments to improve the outlook for the future of quantum chemistry on quantum computers.
Fault Tolerant Quantum Computation with Constant Error
Aharonov, D; Aharonov, Dorit; Ben-Or, Michael
1996-01-01
Recently Shor showed how to perform fault tolerant quantum computation when the error probability is logarithmically small. We improve this bound and describe fault tolerant quantum computation when the error probability is smaller than some constant threshold. The cost is polylogarithmic in time and space, and no measurements are used during the quantum computation. The result holds also for quantum circuits which operate on nearest neighbors only. To achieve this noise resistance, we use concatenated quantum error correcting codes. The scheme presented is general, and works with all quantum codes that satisfy some restrictions, namely that the code is ``proper''. We present two explicit classes of proper quantum codes. The first example of proper quantum codes generalizes classical secret sharing with polynomials. The second uses a known class of quantum codes and converts it to a proper code. This class is defined over a field with p elements, so the elementary quantum particle is not a qubit but a ``qupit...
Suppression of quantum chaos in a quantum computer hardware
Lages, J.; Shepelyansky, D. L.
2005-01-01
We present numerical and analytical studies of a quantum computer proposed by the Yamamoto group in Phys. Rev. Lett. 89, 017901 (2002). The stable and quantum chaos regimes in the quantum computer hardware are identified as a function of magnetic field gradient and dipole-dipole couplings between qubits on a square lattice. It is shown that a strong magnetic field gradient leads to suppression of quantum chaos.
Suppression of quantum chaos in a quantum computer hardware.
Lages, J; Shepelyansky, D L
2006-08-01
We present numerical and analytical studies of a quantum computer proposed by the Yamamoto group in Phys. Rev. Lett. 89, 017901 (2002). The stable and quantum chaos regimes in the quantum computer hardware are identified as a function of magnetic field gradient and dipole-dipole couplings between qubits on a square lattice. It is shown that a strong magnetic field gradient leads to suppression of quantum chaos. PMID:17025526
Efficient one-way quantum computations for quantum error correction
International Nuclear Information System (INIS)
We show how to explicitly construct an O(nd) size and constant quantum depth circuit which encodes any given n-qubit stabilizer code with d generators. Our construction is derived using the graphic description for stabilizer codes and the one-way quantum computation model. Our result demonstrates how to use cluster states as scalable resources for many multi-qubit entangled states and how to use the one-way quantum computation model to improve the design of quantum algorithms.
Cove: A Practical Quantum Computer Programming Framework
Purkeypile, Matt
2009-01-01
While not yet in commercial existence, quantum computers have the ability to solve certain classes of problems that are not efficiently solvable on existing Turing Machine based (classical) computers. For quantum computers to be of use, methods of programming them must exist. Proposals exist for programming quantum computers, but all of the existing ones suffer from flaws that make them impractical in commercial software development environments. Cove is a framework for prog...
The Heisenberg Representation of Quantum Computers
Gottesman, Daniel
1998-01-01
Since Shor's discovery of an algorithm to factor numbers on a quantum computer in polynomial time, quantum computation has become a subject of immense interest. Unfortunately, one of the key features of quantum computers - the difficulty of describing them on classical computers - also makes it difficult to describe and understand precisely what can be done with them. A formalism describing the evolution of operators rather than states has proven extremely fruitful in unders...
Composite pulses in NMR quantum computation
Jones, Jonathan A.
2009-01-01
I describe the use of techniques based on composite rotations to combat systematic errors in quantum logic gates. Although developed and described within the context of Nuclear Magnetic Resonance (NMR) quantum computing these sequences should be applicable to other implementations of quantum computation.
Quantum machine learning what quantum computing means to data mining
Wittek, Peter
2014-01-01
Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research. Quantum Machine L
Probability Analysis of a Quantum Computer
Einarsson, Göran
2003-01-01
The quantum computer algorithm by Peter Shor for factorization of integers is studied. The quantum nature of a QC makes its outcome random. The output probability distribution is investigated and the chances of a successful operation is determined
Non-unitary probabilistic quantum computing
Gingrich, Robert M.; Williams, Colin P.
2004-01-01
We present a method for designing quantum circuits that perform non-unitary quantum computations on n-qubit states probabilistically, and give analytic expressions for the success probability and fidelity.
Quantum computing with superconductors I: Architectures
Geller, Michael R.; Pritchett, Emily J.; Sornborger, Andrew T.; Wilhelm, F.K.
2006-01-01
Josephson junctions have demonstrated enormous potential as qubits for scalable quantum computing architectures. Here we discuss the current approaches for making multi-qubit circuits and performing quantum information processing with them.
Quantum ballistic evolution in quantum mechanics application to quantum computers
Benioff, P
1996-01-01
Quantum computers are important examples of processes whose evolution can be described in terms of iterations of single step operators or their adjoints. Based on this, Hamiltonian evolution of processes with associated step operators T is investigated here. The main limitation of this paper is to processes which evolve quantum ballistically, i.e. motion restricted to a collection of nonintersecting or distinct paths on an arbitrary basis. The main goal of this paper is proof of a theorem which gives necessary and sufficient conditions that T must satisfy so that there exists a Hamiltonian description of quantum ballistic evolution for the process, namely, that T is a partial isometry and is orthogonality preserving and stable on some basis. Simple examples of quantum ballistic evolution for quantum Turing machines with one and with more than one type of elementary step are discussed. It is seen that for nondeterministic machines the basis set can be quite complex with much entanglement present. It is also pr...
Universal quantum computation with qudits
Luo, MingXing; Wang, XiaoJun
2014-09-01
Quantum circuit model has been widely explored for various quantum applications such as Shors algorithm and Grovers searching algorithm. Most of previous algorithms are based on the qubit systems. Herein a proposal for a universal circuit is given based on the qudit system, which is larger and can store more information. In order to prove its universality for quantum applications, an explicit set of one-qudit and two-qudit gates is provided for the universal qudit computation. The one-qudit gates are general rotation for each two-dimensional subspace while the two-qudit gates are their controlled extensions. In comparison to previous quantum qudit logical gates, each primitive qudit gate is only dependent on two free parameters and may be easily implemented. In experimental implementation, multilevel ions with the linear ion trap model are used to build the qudit systems and use the coupling of neighbored levels for qudit gates. The controlled qudit gates may be realized with the interactions of internal and external coordinates of the ion.
Physics and computer science: quantum computation and other approaches
Venegas-Andraca, Salvador E.
2011-01-01
This is a position paper written as an introduction to the special volume on quantum algorithms I edited for the journal Mathematical Structures in Computer Science (Volume 20 - Special Issue 06 (Quantum Algorithms), 2010).
Decoherence, Control, and Symmetry in Quantum Computers
Bacon, D J
2003-01-01
In this thesis we describe methods for avoiding the detrimental effects of decoherence while at the same time still allowing for computation of the quantum information. The philosophy of the method discussed in the first part of this thesis is to use a symmetry of the decoherence mechanism to find robust encodings of the quantum information. Stability, control, and methods for using decoherence-free information in a quantum computer are presented with a specific emphasis on decoherence due to a collective coupling between the system and its environment. Universal quantum computation on such collective decoherence decoherence-free encodings is demonstrated. Rigorous definitions of control and the use of encoded universality in quantum computers are addressed. Explicit gate constructions for encoded universality on ion trap and exchange based quantum computers are given. In the second part of the thesis we examine physical systems with error correcting properties. We examine systems that can store quantum infor...
The Essence of Quantum Theory for Computers
Parke, W. C.
2014-01-01
Quantum computers take advantage of interfering quantum alternatives in order to handle problems that might be too time consuming with algorithms based on classical logic. Developing quantum computers requires new ways of thinking beyond those in the familiar classical world. To help in this thinking, we give a description of the foundational ideas that hold in all of our successful physical models, including quantum theory. Our emphasis will be on the proper interpretation ...
Information and Computation: Classical and Quantum Aspects
Galindo, A.; Martin-Delgado, M. A.
2001-01-01
Quantum theory has found a new field of applications in the realm of information and computation during the recent years. This paper reviews how quantum physics allows information coding in classically unexpected and subtle nonlocal ways, as well as information processing with an efficiency largely surpassing that of the present and foreseeable classical computers. Some outstanding aspects of classical and quantum information theory will be addressed here. Quantum teleportat...
Models of Quantum Computers and Decoherence Problem
I. V. Volovich
1999-01-01
Mathematical models of quantum computers such as a multidimensional quantum Turing machine and quantum circuits are described and its relations with lattice spin models are discussed. One of the main open problems one has to solve if one wants to build a quantum computer is the decoherence due to the coupling with the environment. We propose a possible solution of this problem by using a control of parameters of the system. This proposal is based on the analysis of the spin-...
The Halting Problem for Quantum Computers
Linden, Noah; Popescu, Sandu
1998-01-01
We argue that the halting problem for quantum computers which was first raised by Myers, is by no means solved, as has been claimed recently. We explicitly demonstrate the difficulties that arise in a quantum computer when different branches of the computation halt at different, unknown, times.
Contextuality supplies the 'magic' for quantum computation.
Howard, Mark; Wallman, Joel; Veitch, Victor; Emerson, Joseph
2014-06-19
Quantum computers promise dramatic advantages over their classical counterparts, but the source of the power in quantum computing has remained elusive. Here we prove a remarkable equivalence between the onset of contextuality and the possibility of universal quantum computation via 'magic state' distillation, which is the leading model for experimentally realizing a fault-tolerant quantum computer. This is a conceptually satisfying link, because contextuality, which precludes a simple 'hidden variable' model of quantum mechanics, provides one of the fundamental characterizations of uniquely quantum phenomena. Furthermore, this connection suggests a unifying paradigm for the resources of quantum information: the non-locality of quantum theory is a particular kind of contextuality, and non-locality is already known to be a critical resource for achieving advantages with quantum communication. In addition to clarifying these fundamental issues, this work advances the resource framework for quantum computation, which has a number of practical applications, such as characterizing the efficiency and trade-offs between distinct theoretical and experimental schemes for achieving robust quantum computation, and putting bounds on the overhead cost for the classical simulation of quantum algorithms. PMID:24919152
Disciplines, models, and computers: the path to computational quantum chemistry.
Lenhard, Johannes
2014-12-01
Many disciplines and scientific fields have undergone a computational turn in the past several decades. This paper analyzes this sort of turn by investigating the case of computational quantum chemistry. The main claim is that the transformation from quantum to computational quantum chemistry involved changes in three dimensions. First, on the side of instrumentation, small computers and a networked infrastructure took over the lead from centralized mainframe architecture. Second, a new conception of computational modeling became feasible and assumed a crucial role. And third, the field of computa- tional quantum chemistry became organized in a market-like fashion and this market is much bigger than the number of quantum theory experts. These claims will be substantiated by an investigation of the so-called density functional theory (DFT), the arguably pivotal theory in the turn to computational quantum chemistry around 1990. PMID:25571750
Ultrafast Pulse Shaping Approaches to Quantum Computing
Goswami, Debabrata
2003-01-01
Quantum computing exploits the quantum-mechanical nature of matter to exist in multiple possible states simultaneously. This new approach promises to revolutionize the present form of computing. As an approach to quantum computing, we discuss ultrafast laser pulse shaping, in particular, the acousto-optic modulator based Fourier-Transform pulse-shaper, which has the ability to modulate tunable high power ultrafast laser pulses. We show that optical pulse shaping is an attrac...
Centre for Quantum Computation & Communication Technology
This is the homepage of "an Australian multi-university collaboration undertaking research on the fundamental physics and technology of building, at the atomic level, a solid state quantum computer in silicon together with other high potential implementations." Although attempts to develop a quantum computer have met with limited success, the centre has substantial resources invested in advancing toward practical uses of quantum computing technology. The site provides a very good introduction to the principles and implications of quantum computing, as well as details about various research projects underway at the Australian universities. Links to conference and journal papers produced by members of the centre, many from 2003, are also provided.
Quantum Computing in Solid State Systems
Ruggiero, B; Granata, C
2006-01-01
The aim of Quantum Computation in Solid State Systems is to report on recent theoretical and experimental results on the macroscopic quantum coherence of mesoscopic systems, as well as on solid state realization of qubits and quantum gates. Particular attention has been given to coherence effects in Josephson devices. Other solid state systems, including quantum dots, optical, ion, and spin devices which exhibit macroscopic quantum coherence are also discussed. Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing and information processing devices, and in particular observations of quantum behavior in several solid state systems. On the theoretical side, the complementary expertise of the contributors provides models of the various structures in connection with the problem of minimizing decoherence.
Quantum Computational Logics and Possible Applications
Chiara, Maria Luisa Dalla; Giuntini, Roberto; Leporini, Roberto; di Francia, Giuliano Toraldo
2008-01-01
In quantum computational logics meanings of formulas are identified with quantum information quantities: systems of qubits or, more generally, mixtures of systems of qubits. We consider two kinds of quantum computational semantics: (1) a compositional semantics, where the meaning of a compound formula is determined by the meanings of its parts; (2) a holistic semantics, which makes essential use of the characteristic “holistic” features of the quantum-theoretic formalism. The compositional and the holistic semantics turn out to characterize the same logic. In this framework, one can introduce the notion of quantum-classical truth table, which corresponds to the most natural way for a quantum computer to calculate classical tautologies. Quantum computational logics can be applied to investigate different kinds of semantic phenomena where holistic, contextual and gestaltic patterns play an essential role (from natural languages to musical compositions).
Brokered Graph State Quantum Computing
Benjamin, S C; Fitzsimons, J; Morton, J J L; Benjamin, Simon C.; Browne, Dan E.; Fitzsimons, Joe; Morton, John J. L.
2005-01-01
We describe a procedure for graph state quantum computing that is tailored to fully exploit the physics of optically active multi-level systems. Leveraging ideas from the literature on distributed computation together with the recent work on probabilistic cluster state synthesis, our model assigns to each physical system two logical qubits: the broker and the client. Groups of brokers negotiate new graph state fragments via a probabilistic optical protocol. Completed fragments are mapped from broker to clients via a simple state transition and measurement. The clients, whose role is to store the nascent graph state long term, remain entirely insulated from failures during the brokerage. We describe an implementation in terms of NV-centres in diamond, where brokers and clients are very naturally embodied as electron and nuclear spins.
Quantum computation speedup limits from quantum metrological precision bounds
Demkowicz-Dobrza?ski, Rafa?; Markiewicz, Marcin
2015-06-01
We propose a scheme for translating metrological precision bounds into lower bounds on query complexity of quantum search algorithms. Within the scheme the link between quadratic performance enhancement in idealized quantum metrological and quantum computing schemes becomes clear. More importantly, we utilize results from the field of quantum metrology on a generic loss of quadratic quantum precision enhancement in the presence of decoherence to infer an analogous generic loss of quadratic speedup in oracle based quantum computing. While most of our reasoning is rigorous, at one of the final steps, we need to make use of an unproven technical conjecture. We hope that we will be able to amend this deficiency in the near future, but we are convinced that even without the conjecture proven our results provide a deep insight into the relationship between quantum algorithms and quantum metrology protocols.
Computing quantum discord is NP-complete
International Nuclear Information System (INIS)
We study the computational complexity of quantum discord (a measure of quantum correlation beyond entanglement), and prove that computing quantum discord is NP-complete. Therefore, quantum discord is computationally intractable: the running time of any algorithm for computing quantum discord is believed to grow exponentially with the dimension of the Hilbert space so that computing quantum discord in a quantum system of moderate size is not possible in practice. As by-products, some entanglement measures (namely entanglement cost, entanglement of formation, relative entropy of entanglement, squashed entanglement, classical squashed entanglement, conditional entanglement of mutual information, and broadcast regularization of mutual information) and constrained Holevo capacity are NP-hard/NP-complete to compute. These complexity-theoretic results are directly applicable in common randomness distillation, quantum state merging, entanglement distillation, superdense coding, and quantum teleportation; they may offer significant insights into quantum information processing. Moreover, we prove the NP-completeness of two typical problems: linear optimization over classical states and detecting classical states in a convex set, providing evidence that working with classical states is generically computationally intractable. (paper)
The Heisenberg representation of quantum computers
Energy Technology Data Exchange (ETDEWEB)
Gottesman, D.
1998-06-24
Since Shor`s discovery of an algorithm to factor numbers on a quantum computer in polynomial time, quantum computation has become a subject of immense interest. Unfortunately, one of the key features of quantum computers--the difficulty of describing them on classical computers--also makes it difficult to describe and understand precisely what can be done with them. A formalism describing the evolution of operators rather than states has proven extremely fruitful in understanding an important class of quantum operations. States used in error correction and certain communication protocols can be described by their stabilizer, a group of tensor products of Pauli matrices. Even this simple group structure is sufficient to allow a rich range of quantum effects, although it falls short of the full power of quantum computation.
Efficient Simulation of Quantum Systems by Quantum Computers
Zalka, Christof
1996-01-01
We show that the time evolution of the wave function of a quantum mechanical many particle system can be implemented very efficiently on a quantum computer. The computational cost of such a simulation is comparable to the cost of a conventional simulation of the corresponding classical system. We then sketch how results of interest, like the energy spectrum of a system, can be obtained. We also indicate that ultimately the simulation of quantum field theory might be possible...
Quantum computing and quantum measurement with mesoscopic Josephson junctions
Averin, D.V.
2000-01-01
Recent experimental demonstrations of quantum coherence of the charge and flux states of Josephson junctions show that the quantum Josephson dynamics can be used to develop scalable quantum logic circuits. In this work, I review the basic concepts of Josephson tunneling and Josephson-junction qubits, and discuss two problems of this tunneling motivated by quantum computing applications. One is the theory of photon-assisted resonant flux tunneling in SQUID systems used to dem...
The one-way quantum computer - a non-network model of quantum computation
Raussendorf, R; Briegel, H J; Raussendorf, Robert; Browne, Daniel E.; Briegel, Hans J.
2001-01-01
A one-way quantum computer works by only performing a sequence of one-qubit measurements on a particular entangled multi-qubit state, the cluster state. No non-local operations are required in the process of computation. Any quantum logic network can be simulated on the one-way quantum computer. On the other hand, the network model of quantum computation cannot explain all ways of processing quantum information possible with the one-way quantum computer. In this paper, two examples of the non-network character of the one-way quantum computer are given. First, circuits in the Clifford group can be performed in a single time step. Second, the realisation of a particular circuit --the bit-reversal gate-- on the one-way quantum computer has no network interpretation. (Submitted to J. Mod. Opt, Gdansk ESF QIT conference issue.)
Schrodinger cat animated on a quantum computer
Chepelianskii, A. D.; Shepelyansky, D. L.
2002-01-01
We present a quantum algorithm which allows to simulate chaos-assisted tunneling in deep semiclassical regime on existing quantum computers. This opens new possibilities for investigation of macroscopic quantum tunneling and realization of semiclassical Schr\\"odinger cat oscillations. Our numerical studies determine the decoherence rate induced by noisy gates for these oscillations and propose a suitable parameter regime for their experimental implementation.
Quantum Computer Games: Schrodinger Cat and Hounds
Gordon, Michal; Gordon, Goren
2012-01-01
The quantum computer game "Schrodinger cat and hounds" is the quantum extension of the well-known classical game fox and hounds. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. "Schrodinger cat and hounds" demonstrates the effects of superposition, destructive and constructive interference, measurements and…
Quantum Teleportation is a Universal Computational Primitive
Gottesman, Daniel; Chuang, Isaac L.
1999-01-01
We present a method to create a variety of interesting gates by teleporting quantum bits through special entangled states. This allows, for instance, the construction of a quantum computer based on just single qubit operations, Bell measurements, and GHZ states. We also present straightforward constructions of a wide variety of fault-tolerant quantum gates.
Pattern recognition on a quantum computer
International Nuclear Information System (INIS)
By means of a simple example, it is demonstrated that the task of finding and identifying certain patterns in an otherwise (macroscopically) unstructured picture (dataset) can be accomplished efficiently by a quantum computer. Employing the powerful tool of the quantum Fourier transform, the proposed quantum algorithm exhibits an exponential speedup in comparison with its classical counterpart
The potential of the quantum computer
2006-01-01
The Physics Section of the University of Geneva is continuing its series of lectures, open to the general public, on the most recent developments in the field of physics. The next lecture, given by Professor Michel Devoret of Yale University in the United States, will be on the potential of the quantum computer. The quantum computer is, as yet, a hypothetical machine which would operate on the basic principles of quantum mechanics. Compared to standard computers, it represents a significant gain in computing power for certain complex calculations. Quantum operations can simultaneously explore a very large number of possibilities. The correction of quantum errors, which until recently had been deemed impossible, has now become a well-established technique. Several prototypes for, as yet, very simple quantum processors have been developed. The lecture will begin with a demonstration in the auditorium of the detection of cosmic rays and, in collaboration with Professor E. Ellberger of the Conservatoire de M...
AN INTRODUCTION TO QUANTUM NEURAL COMPUTING
Directory of Open Access Journals (Sweden)
Shaktikanta Nayak
2011-09-01
Full Text Available The goal of the artificial neural network is to create powerful artificial problem solving systems. The field of quantum computation applies ideas from quantum mechanics to the study of computation and has made interesting progress. Quantum Neural Network (QNN is one of the new paradigms built upon the combination of classical neural computation and quantum computation. It is argued that the study of QNN may explain the brain functionality in a better way and create new systems for information processing including solving some classically intractable problems. In this paper we have given an introductory representation of quantum artificial neural network to show how it can be modelled on the basis of double-slit experiment. Also an attempt is made to show the quantum mechanical representation of a classical neuron to implement Hadamard transformation.
Quantum computing in a piece of glass
Miller, Warner A; Tison, Christopher; Alsing, Paul M; McDonald, Jonathan R
2011-01-01
Quantum gates and simple quantum algorithms can be designed utilizing the diffraction phenomena of a photon within a multiplexed holographic element. The quantum eigenstates we use are the photon's linear momentum (LM) as measured by the number of waves of tilt across the aperture. Two properties of quantum computing within the circuit model make this approach attractive. First, any conditional measurement can be commuted in time with any unitary quantum gate - the timeless nature of quantum computing. Second, photon entanglement can be encoded as a superposition state of a single photon in a higher-dimensional state space afforded by LM. Our theoretical and numerical results indicate that OptiGrate's photo-thermal refractive (PTR) glass is an enabling technology. We will review our previous design of a quantum projection operator and give credence to this approach on a representative quantum gate grounded on coupled-mode theory and numerical simulations, all with parameters consistent with PTR glass. We disc...
Fault-tolerant quantum computation by anyons
International Nuclear Information System (INIS)
A two-dimensional quantum system with anyonic excitations can be considered as a quantum computer. Unitary transformations can be performed by moving the excitations around each other. Measurements can be performed by joining excitations in pairs and observing the result of fusion. Such computation is fault-tolerant by its physical nature
Wavelets and Wavelet Packets on Quantum Computers
Klappenecker, Andreas
1999-01-01
We show how periodized wavelet packet transforms and periodized wavelet transforms can be implemented on a quantum computer. Surprisingly, we find that the implementation of wavelet packet transforms is less costly than the implementation of wavelet transforms on a quantum computer.
Selecting ensembles for rare earth quantum computation
Sellars, J. J. Longdell M. J.
2003-01-01
We discuss the issues surrounding the implementation of quantum computation in rare-earth-ion doped solids. We describe a practical scheme for two qubit gate operations which utilise experimentally available interactions between the qubits. Possibilities for a scalable quantum computer are discussed.
Fault-tolerant holonomic quantum computation
Oreshkov, Ognyan; Lidar, Daniel A
2008-01-01
We explain how to combine holonomic quantum computation (HQC) with fault tolerant quantum error correction. This establishes the scalability of HQC, putting it on equal footing with other models of computation, while retaining the inherent robustness the method derives from its geometric nature.
Fault-Tolerant Holonomic Quantum Computation
Oreshkov, Ognyan; Brun, Todd A.; Lidar, Daniel A.
2009-02-01
We explain how to combine holonomic quantum computation (HQC) with fault-tolerant quantum error correction. This establishes the scalability of HQC, putting it on equal footing with other models of computation, while retaining the inherent robustness the method derives from its geometric nature.
Quantum information and computing in multilevel systems
Muthukrishnan, Ashok
We have studied the extension of the new field of quantum computing to the multilevel domain, where the information is stored in a coherent superposition of more than two levels. Interference and entanglement, the hallmarks of quantum mechanics, are more strikingly present in a multilevel system, in the form of wave packets and decoherence. This thesis explores new tools and applications for multilevel quantum information processing in Rydberg atoms. The quantum equivalent of a classical bit is a qubit, a two-level system. Quantum computational logic involves conditional unitary transforms on two qubits, which are the quantum analogs of logic gates in classical computer science. The multilevel extension of a qubit is a qudit, a d-level quantum system. We present several programs for universal quantum logic involving qudits, and physically motivate the formalism with examples from quantum control. Wave packets arise from multilevel quantum interference, and they give an interesting new perspective on quantum information stored in a multilevel system. We show that an alternative realization of a qudit in a quantum system is a set of d wave-packet states that are physically separated in time. The wave-packet basis is connected to the energy-level basis by a Fourier transform, a key ingredient of quantum algorithms. We apply these ideas to Rydberg atoms, and show that an appropriate coupling between such atoms enables a conceptually simpler implementation of the quantum version of the Fast Fourier transform algorithm. Lastly we explore atomic angular momentum as a computational observable. Most of the states in the hydrogen atom are degenerate in energy but differ by discrete units of angular momentum. We show that using Laguerre-Gaussian laser modes, which possess orbital field angular momentum, these internal angular-momentum states in the atom can be entangled with its quantized center-of-mass angular momentum. We propose this entanglement as the building block for multilevel quantum computing using angular-momentum states.
Quantum Simulations on a Quantum Computer
Somaroo, S. S.; Tseng, C. H.; Havel, T. F.; R. Laflamme; Cory, D. G.
1999-01-01
We present a general scheme for performing a simulation of the dynamics of one quantum system using another. This scheme is used to experimentally simulate the dynamics of truncated quantum harmonic and anharmonic oscillators using nuclear magnetic resonance. We believe this to be the first explicit physical realization of such a simulation.
Monte Carlo Simulation of Quantum Computation
Cerf, N. J.; Koonin, S. E.
1997-01-01
The many-body dynamics of a quantum computer can be reduced to the time evolution of non-interacting quantum bits in auxiliary fields by use of the Hubbard-Stratonovich representation of two-bit quantum gates in terms of one-bit gates. This makes it possible to perform the stochastic simulation of a quantum algorithm, based on the Monte Carlo evaluation of an integral of dimension polynomial in the number of quantum bits. As an example, the simulation of the quantum circuit ...
At the intersection of quantum computing and quantum chemistry
Whitfield, James Daniel
Quantum chemistry is concerned with solving the Schrodinger equation for chemically relevant systems. This is typically done by making useful and systematic approximations which form the basis for model chemistries. A primary contribution of this dissertation, is taking concrete steps toward establishing a new model chemistry based on quantum computation. Electronic energies of the system can be efficiently obtained to fixed accuracy using quantum algorithms exploiting the ability of quantum computers to efficiently simulate the time evolution of quantum systems. The quantum circuits for simulation of arbitrary electronic Hamiltonians are given using quantum bits associated with single particle basis functions. This model chemistry is applied to hydrogen molecule as a case study where all necessary quantum circuits are clearly laid out. Furthermore, our collaboration to experimentally realize a simplified version of the hydrogen molecule quantum circuit is also included in this thesis. Finally, alternatives to the gate model of quantum computation are pursued by exploring models based on the quantum adiabatic theorem and on the generalization of random walks.
Decoherence, Control, and Symmetry in Quantum Computers
Bacon, D.
2003-01-01
In this thesis we describe methods for avoiding the detrimental effects of decoherence while at the same time still allowing for computation of the quantum information. The philosophy of the method discussed in the first part of this thesis is to use a symmetry of the decoherence mechanism to find robust encodings of the quantum information. Stability, control, and methods for using decoherence-free information in a quantum computer are presented with a specific emphasis on ...
How fast can a quantum computer search?
Grover, Lov K.
1998-01-01
This paper gives a simple proof of why a quantum computer, despite being in all possible states simultaneously, needs at least 0.707 sqrt(N) queries to retrieve a desired item from an unsorted list of items. The proof is refined to show that a quantum computer would need at least 0.785 sqrt(N) queries. The quantum search algorithm needs precisely this many queries.
The Initialization Problem in Quantum Computing
Kak, Subhash
1998-01-01
The problem of initializing phase in a quantum computing system is considered. The initialization of phases is a problem when the system is initially present in an entangled state and also in the application of the quantum gate transformations since each gate will introduce phase uncertainty. The accumulation of these random phases will reduce the effectiveness of the recently proposed quantum computing schemes. The paper also presents general observations on the nonlocal na...
Quantum Computing and the Jones Polynomial
Kauffman, Louis H
2001-01-01
This paper is an exploration of relationships between the Jones polynomial and quantum computing. We discuss the structure of the Jones polynomial in relation to representations of the Temperley Lieb algebra, and give an example of a unitary representation of the braid group. We discuss the evaluation of the polynomial as a generalized quantum amplitude and show how the braiding part of the evaluation can be construed as a quantum computation when the braiding representation...
Quantum Neural Computation for Option Price Modelling
Ivancevic, Vladimir G.
2009-01-01
We propose a new cognitive framework for option price modelling, using quantum neural computation formalism. Briefly, when we apply a classical nonlinear neural-network learning to a linear quantum Schr\\"odinger equation, as a result we get a nonlinear Schr\\"odinger equation (NLS), performing as a quantum stochastic filter. In this paper, we present a bidirectional quantum associative memory model for the Black--Scholes--like option price evolution, consisting of a pair of c...
Quantum computer: an appliance for playing market games
Piotrowski, Edward W.; Sladkowski, Jan
2003-01-01
Recent development in quantum computation and quantum information theory allows to extend the scope of game theory for the quantum world. The authors have recently proposed a quantum description of financial market in terms of quantum game theory. The paper contain an analysis of such markets that shows that there would be advantage in using quantum computers and quantum strategies.
Quantum Computing and the Limits of the Efficiently Computable
CERN. Geneva
2015-01-01
I'll discuss how computational complexity---the study of what can and can't be feasibly computed---has been interacting with physics in interesting and unexpected ways. I'll first give a crash course about computer science's P vs. NP problem, as well as about the capabilities and limits of quantum computers. I'll then touch on speculative models of computation that would go even beyond quantum computers, using (for example) hypothetical nonlinearities in the Schrodinger equation. Finally, I'll discuss BosonSampling ---a proposal for a simple form of quantum computing, which nevertheless seems intractable to simulate using a classical computer---as well as the role of computational complexity in the black hole information puzzle.
Parallel Environment for Quantum Computing
Tabakin, Frank; Diaz, Bruno Julia
2009-03-01
To facilitate numerical study of noise and decoherence in QC algorithms,and of the efficacy of error correction schemes, we have developed a Fortran 90 quantum computer simulator with parallel processing capabilities. It permits rapid evaluation of quantum algorithms for a large number of qubits and for various ``noise'' scenarios. State vectors are distributed over many processors, to employ a large number of qubits. Parallel processing is implemented by the Message-Passing Interface protocol. A description of how to spread the wave function components over many processors, along with how to efficiently describe the action of general one- and two-qubit operators on these state vectors will be delineated.Grover's search and Shor's factoring algorithms with noise will be discussed as examples. A major feature of this work is that concurrent versions of the algorithms can be evaluated with each version subject to diverse noise effects, corresponding to solving a stochastic Schrodinger equation. The density matrix for the ensemble of such noise cases is constructed using parallel distribution methods to evaluate its associated entropy. Applications of this powerful tool is made to delineate the stability and correction of QC processes using Hamiltonian based dynamics.
Quantum Fuzzy Sets: Blending Fuzzy Set Theory and Quantum Computation
Mannucci, M A
2006-01-01
In this article we investigate a way in which quantum computing can be used to extend the class of fuzzy sets. The core idea is to see states of a quantum register as characteristic functions of quantum fuzzy subsets of a given set. As the real unit interval is embedded in the Bloch sphere, every fuzzy set is automatically a quantum fuzzy set. However, a generic quantum fuzzy set can be seen as a (possibly entangled) superposition of many fuzzy sets at once, offering new opportunities for modeling uncertainty. After introducing the main framework of quantum fuzzy set theory, we analyze the standard operations of fuzzification and defuzzification from our viewpoint. We conclude this preliminary paper with a list of possible applications of quantum fuzzy sets to pattern recognition, as well as future directions of pure research in quantum fuzzy set theory.
Embedding quantum simulators for quantum computation of entanglement.
Di Candia, R; Mejia, B; Castillo, H; Pedernales, J S; Casanova, J; Solano, E
2013-12-13
We introduce the concept of embedding quantum simulators, a paradigm allowing the efficient quantum computation of a class of bipartite and multipartite entanglement monotones. It consists in the suitable encoding of a simulated quantum dynamics in the enlarged Hilbert space of an embedding quantum simulator. In this manner, entanglement monotones are conveniently mapped onto physical observables, overcoming the necessity of full tomography and reducing drastically the experimental requirements. Furthermore, this method is directly applicable to pure states and, assisted by classical algorithms, to the mixed-state case. Finally, we expect that the proposed embedding framework paves the way for a general theory of enhanced one-to-one quantum simulators. PMID:24483635
Quantum Fuzzy Sets: Blending Fuzzy Set Theory and Quantum Computation
Mannucci, Mirco A.
2006-01-01
In this article we investigate a way in which quantum computing can be used to extend the class of fuzzy sets. The core idea is to see states of a quantum register as characteristic functions of quantum fuzzy subsets of a given set. As the real unit interval is embedded in the Bloch sphere, every fuzzy set is automatically a quantum fuzzy set. However, a generic quantum fuzzy set can be seen as a (possibly entangled) superposition of many fuzzy sets at once, offering new opp...
Recent Results in Photonic Quantum Computations, Simulations and Quantum Networks
Walther, Philip
2012-02-01
The applications of photonic entanglement manifold and reach from quantum communication [1] to quantum metrology [2] and optical quantum computing [3]. The advantage of the photon's mobility makes optical quantum computing unprecedented in speed, including feed-forward operations with high fidelity [4]. During the last few years the degree of control over photonic multi-particle entanglement has improved substantially and allows for not only overcoming the random nature of spontaneous emission sources [5], but also for the quantum simulation of other quantum systems. Here, I will also present the simulation of four spin-1/2 particles interacting via any Heisenberg-type Hamiltonian [6]. Moreover, recent experimental and theoretical progress, using the concepts of measurement-based quantum computation, indicates that photons are best suited for quantum networks. I will also present present results for the realization for such a client-server environment, where quantum information is communicated and computed using the same physical system [7]. References: [1] PRL 103, 020503 (2009); [2] Nature 429, 158 (2004); [3] Nature 434, 169 (2005); [4] Nature 445, 65 (2007); [5] Nature Photon 4, 553 (2010); [6] Nature Physics 7, 399 (2011); [7] in press.
Non-Mechanism in Quantum Oracle Computing
Castagnoli, Giuseppe
1999-01-01
A typical oracle problem is finding which software program is installed on a computer, by running the computer and testing its input-output behaviour. The program is randomly chosen from a set of programs known to the problem solver. As well known, some oracle problems are solved more efficiently by using quantum algorithms; this naturally implies changing the computer to quantum, while the choice of the software program remains sharp. In order to highlight the non-mechanist...
Quantum stochasticity and neuronal computations
Jedlicka, Peter
2010-01-01
Presented at: Quantum Mind Conference 2007, Salzburg, Austria, 17 July 2007 The nervous system probably cannot display macroscopic quantum (i.e. classically impossible) behaviours such as quantum entanglement, superposition or tunnelling (Koch and Hepp, Nature 440:611, 2006). However, in contrast to this quantum ‘mysticism’ there is an alternative way in which quantum events might influence the brain activity. The nervous system is a nonlinear system with many feedback loops at every level of...
The case for biological quantum computer elements
Baer, Wolfgang; Pizzi, Rita
2009-05-01
An extension to vonNeumann's analysis of quantum theory suggests self-measurement is a fundamental process of Nature. By mapping the quantum computer to the brain architecture we will argue that the cognitive experience results from a measurement of a quantum memory maintained by biological entities. The insight provided by this mapping suggests quantum effects are not restricted to small atomic and nuclear phenomena but are an integral part of our own cognitive experience and further that the architecture of a quantum computer system parallels that of a conscious brain. We will then review the suggestions for biological quantum elements in basic neural structures and address the de-coherence objection by arguing for a self- measurement event model of Nature. We will argue that to first order approximation the universe is composed of isolated self-measurement events which guaranties coherence. Controlled de-coherence is treated as the input/output interactions between quantum elements of a quantum computer and the quantum memory maintained by biological entities cognizant of the quantum calculation results. Lastly we will present stem-cell based neuron experiments conducted by one of us with the aim of demonstrating the occurrence of quantum effects in living neural networks and discuss future research projects intended to reach this objective.
Quantum error correction and fault-tolerant quantum computation
Lai, Ching-Yi
Quantum computers need to be protected by quantum error-correcting codes against decoherence. One of the most interesting and useful classes of quantum codes is the class of quantum stabilizer codes. Entanglement-assisted (EA) quantum codes are a class of stabilizer codes that make use of preshared entanglement between the sender and the receiver. We provide several code constructions for entanglement-assisted quantum codes. The MacWilliams identity for quantum codes leads to linear programming bounds on the minimum distance. We find new constraints on the simplified stabilizer group and the logical group, which help improve the linear programming bounds on entanglement-assisted quantum codes. The results also can be applied to standard stabilizer codes. In the real world, quantum gates are faulty. To implement quantum computation fault-tolerantly, quantum codes with certain properties are needed. We first analyze Knill's postselection scheme in a two-dimensional architecture. The error performance of this scheme is better than other known concatenated codes. Then we propose several methods to protect syndrome extraction against measurement errors.
Universal quantum computation with weakly integral anyons
Cui, Shawn X.; Hong, Seung-Moon; Wang, Zhenghan
2015-08-01
Harnessing non-abelian statistics of anyons to perform quantum computational tasks is getting closer to reality. While the existence of universal anyons by braiding alone such as the Fibonacci anyon is theoretically a possibility, accessible anyons with current technology all belong to a class that is called weakly integral—anyons whose squared quantum dimensions are integers. We analyze the computational power of the first non-abelian anyon system with only integral quantum dimensions—, the quantum double of . Since all anyons in have finite images of braid group representations, they cannot be universal for quantum computation by braiding alone. Based on our knowledge of the images of the braid group representations, we set up three qutrit computational models. Supplementing braidings with some measurements and ancillary states, we find a universal gate set for each model.
The General Quantum Interference Principle and the Duality Computer
Long, Gui Lu
2005-01-01
In this article, we propose a general principle of quantum interference for quantum system, and based on this we propose a new type of computing machine, the duality computer, that may outperform in principle both classical computer and the quantum computer. According to the general principle of quantum interference, the very essence of quantum interference is the interference of the sub-waves of the quantum system itself. A quantum system considered here can be any quantu...
Quantum computing with incoherent resources and quantum jumps
Santos M.F.; Terra Cunha M.; Chaves R.; Carvalho A.R.R.
2011-01-01
Spontaneous emission and the inelastic scattering of photons are two natural processes usually associated with decoherence and the reduction in the capacity to process quantum information. Here we show that when suitably detected, these photons are sufficient to build all the fundamental blocks needed to perform quantum computation in the emitting qubits while protecting them from deleterious dissipative effects. We exemplify by showing how to teleport an unknown quantum sta...
Quantum computer elements based on coupled quantum waveguides
International Nuclear Information System (INIS)
Possible applications of two weakly coupled quantum waveguides for quantum computation are considered. The approach is based on the resonance phenomena in the system. Two different qubits interpretations are described. Some single-qubit and two-qubits operations are realized in the framework of these interpretations
Video Encryption and Decryption on Quantum Computers
Yan, Fei; Iliyasu, Abdullah M.; Venegas-Andraca, Salvador E.; Yang, Huamin
2015-08-01
A method for video encryption and decryption on quantum computers is proposed based on color information transformations on each frame encoding the content of the encoding the content of the video. The proposed method provides a flexible operation to encrypt quantum video by means of the quantum measurement in order to enhance the security of the video. To validate the proposed approach, a tetris tile-matching puzzle game video is utilized in the experimental simulations. The results obtained suggest that the proposed method enhances the security and speed of quantum video encryption and decryption, both properties required for secure transmission and sharing of video content in quantum communication.
A Paraconsistent Approach to Quantum Computing
Agudelo, Juan C
2008-01-01
We propose a method to define axiomatic theories for deterministic Turing machine computations. This method, when applied to axiomatizing computations in non-deterministic Turing machines, produces (in some cases) contradictory theories, therefore trivial theories (considering classical logic as the underlying logic). Substituting in such theories the underlying logic by the paraconsistent logic LFI1* permits us to define a new model of computation which we call paraconsistent Turing machine. We show that this initial model of computation allows the simulation of important quantum computing features. In particular, it allows to simulate the quantum solution of the well-known Deutsch's and Deutsch-Jozsa problems. However, we show that this initial model of computation does not adequately represent the notion of entangled states, a key feature in quantum computing. In this way, the construction is refined by defining a paraconsistent logic with a connective expressing entangled states in a logical fashion, and ...
Effective pure states for bulk quantum computation
Energy Technology Data Exchange (ETDEWEB)
Knill, E.; Chuang, I.; Laflamme, R.
1997-11-01
In bulk quantum computation one can manipulate a large number of indistinguishable quantum computers by parallel unitary operations and measure expectation values of certain observables with limited sensitivity. The initial state of each computer in the ensemble is known but not pure. Methods for obtaining effective pure input states by a series of manipulations have been described by Gershenfeld and Chuang (logical labeling) and Corey et al. (spatial averaging) for the case of quantum computation with nuclear magnetic resonance. We give a different technique called temporal averaging. This method is based on classical randomization, requires no ancilla qubits and can be implemented in nuclear magnetic resonance without using gradient fields. We introduce several temporal averaging algorithms suitable for both high temperature and low temperature bulk quantum computing and analyze the signal to noise behavior of each.
Quantum Computation Using Optically Coupled Quantum Dot Arrays
Pradhan, Prabhakar; Anantram, M. P.; Wang, K. L.; Roychowhury, V. P.; Saini, Subhash (Technical Monitor)
1998-01-01
A solid state model for quantum computation has potential advantages in terms of the ease of fabrication, characterization, and integration. The fundamental requirements for a quantum computer involve the realization of basic processing units (qubits), and a scheme for controlled switching and coupling among the qubits, which enables one to perform controlled operations on qubits. We propose a model for quantum computation based on optically coupled quantum dot arrays, which is computationally similar to the atomic model proposed by Cirac and Zoller. In this model, individual qubits are comprised of two coupled quantum dots, and an array of these basic units is placed in an optical cavity. Switching among the states of the individual units is done by controlled laser pulses via near field interaction using the NSOM technology. Controlled rotations involving two or more qubits are performed via common cavity mode photon. We have calculated critical times, including the spontaneous emission and switching times, and show that they are comparable to the best times projected for other proposed models of quantum computation. We have also shown the feasibility of accessing individual quantum dots using the NSOM technology by calculating the photon density at the tip, and estimating the power necessary to perform the basic controlled operations. We are currently in the process of estimating the decoherence times for this system; however, we have formulated initial arguments which seem to indicate that the decoherence times will be comparable, if not longer, than many other proposed models.
Composable security of delegated quantum computation
Dunjko, Vedran; Fitzsimons, Joseph F.; Portmann, Christopher; Renner, Renato
2013-01-01
Delegating difficult computations to remote large computation facilities, with appropriate security guarantees, is a possible solution for the ever-growing needs of personal computing power. For delegated computation protocols to be usable in a larger context---or simply to securely run two protocols in parallel---the security definitions need to be composable. Here, we define composable security for delegated quantum computation. We distinguish between protocols which provi...
Measurement Based Quantum Computation on Fractal Lattices
Directory of Open Access Journals (Sweden)
Michal Hajdušek
2010-06-01
Full Text Available In this article we extend on work which establishes an analology between one-way quantum computation and thermodynamics to see how the former can be performed on fractal lattices. We find fractals lattices of arbitrary dimension greater than one which do all act as good resources for one-way quantum computation, and sets of fractal lattices with dimension greater than one all of which do not. The difference is put down to other topological factors such as ramification and connectivity. This work adds confidence to the analogy and highlights new features to what we require for universal resources for one-way quantum computation.
Principles of quantum computation and information
Benenti, Giuliano; Strini, Giuliano
2004-01-01
Quantum computation and information is a new, rapidly developing interdisciplinary field. Therefore, it is not easy to understand its fundamental concepts and central results without facing numerous technical details. This book provides the reader a useful and not-too-heavy guide. It offers a simple and self-contained introduction; no previous knowledge of quantum mechanics or classical computation is required. Volume I may be used as a textbook for a one-semester introductory course in quantum information and computation, both for upper-level undergraduate students and for graduate students.
Why now is the right time to study quantum computing
Harrow, Aram W.
2014-01-01
Quantum computing is a good way to justify difficult physics experiments. But until quantum computers are built, do computer scientists need to know anything about quantum information? In fact, quantum computing is not merely a recipe for new computing devices, but a new way of looking at the world that has been astonishingly intellectually productive. In this article, I'll talk about where quantum computing came from, what it is, and what we can learn from it.
Practicality of fault-tolerant quantum computation
International Nuclear Information System (INIS)
Full text: The theoretical power of large scale quantum algorithms has driven the race to build a practical quantum computer. However, large scale algorithms such as Shor algorithm have been shown to be quite sensitive to error effects within quantum computers. Quantum error correction (QEC) and Fault-tolerant quantum computation (FTQC) provide a platform for correcting errors to arbitrary accuracy, however suitable Fault-tolerant circuits are generally far more complex than their non-Fault-tolerant versions. We will provide a brief introductory analysis to the stability of preparing a logical O state using the 7-qubit Steane code both Fault-tolerantly and non-Fault-tolerantly for linear nearest neighbour (LNN) circuits and circuits employing arbitrary coupling between qubits. We will show that the increased complexity of fault-tolerant circuits cause them to be unreliable compared with their non-fault-tolerant counterparts at all but extremely low error rates. Copyright (2005) Australian Institute of Physics
Materials Frontiers to Empower Quantum Computing
Energy Technology Data Exchange (ETDEWEB)
Taylor, Antoinette Jane [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sarrao, John Louis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Richardson, Christopher [Laboratory for Physical Sciences, College Park, MD (United States)
2015-06-11
This is an exciting time at the nexus of quantum computing and materials research. The materials frontiers described in this report represent a significant advance in electronic materials and our understanding of the interactions between the local material and a manufactured quantum state. Simultaneously, directed efforts to solve materials issues related to quantum computing provide an opportunity to control and probe the fundamental arrangement of matter that will impact all electronic materials. An opportunity exists to extend our understanding of materials functionality from electronic-grade to quantum-grade by achieving a predictive understanding of noise and decoherence in qubits and their origins in materials defects and environmental coupling. Realizing this vision systematically and predictively will be transformative for quantum computing and will represent a qualitative step forward in materials prediction and control.
Elements of quantum computing history, theories and engineering applications
Akama, Seiki
2015-01-01
A quantum computer is a computer based on a computational model which uses quantum mechanics, which is a subfield of physics to study phenomena at the micro level. There has been a growing interest on quantum computing in the 1990's, and some quantum computers at the experimental level were recently implemented. Quantum computers enable super-speed computation, and can solve some important problems whose solutions were regarded impossible or intractable with traditional computers. This book provides a quick introduction to quantum computing for readers who have no backgrounds of both theory of computation and quantum mechanics. “Elements of Quantum Computing” presents the history, theories, and engineering applications of quantum computing. The book is suitable to computer scientists, physicist, and software engineers.
An introduction to quantum computing algorithms
Pittenger, Arthur O
2000-01-01
In 1994 Peter Shor [65] published a factoring algorithm for a quantum computer that finds the prime factors of a composite integer N more efficiently than is possible with the known algorithms for a classical com puter. Since the difficulty of the factoring problem is crucial for the se curity of a public key encryption system, interest (and funding) in quan tum computing and quantum computation suddenly blossomed. Quan tum computing had arrived. The study of the role of quantum mechanics in the theory of computa tion seems to have begun in the early 1980s with the publications of Paul Benioff [6]' [7] who considered a quantum mechanical model of computers and the computation process. A related question was discussed shortly thereafter by Richard Feynman [35] who began from a different perspec tive by asking what kind of computer should be used to simulate physics. His analysis led him to the belief that with a suitable class of "quantum machines" one could imitate any quantum system.
Simulating a perceptron on a quantum computer
Schuld, Maria; Sinayskiy, Ilya; Petruccione, Francesco
2014-01-01
Perceptrons are the basic computational unit of artificial neural networks, as they model the activation mechanism of an output neuron due to incoming signals from its neighbours. As linear classifiers, they play an important role in the foundations of machine learning. In the context of the emerging field of quantum machine learning, several attempts have been made to develop a corresponding unit using quantum information theory. Based on the quantum phase estimation algori...
Space-Efficient Simulation of Quantum Computers
Frank, Michael P.; Meyer-Baese, Uwe H.; Chiorescu, Irinel; Oniciuc, Liviu; van Engelen, Robert A.
2008-01-01
Traditional algorithms for simulating quantum computers on classical ones require an exponentially large amount of memory, and so typically cannot simulate general quantum circuits with more than about 30 or so qubits on a typical PC-scale platform with only a few gigabytes of main memory. However, more memory-efficient simulations are possible, requiring only polynomial or even linear space in the size of the quantum circuit being simulated. In this paper, we describe one s...
The search for biological quantum computer elements
PIZZI, RITA MARIA ROSA
2008-01-01
The difficulties encountered in explaining the capacities of the human brain to generate conscious experiences with a neuron switching model has lead researchers to speculate that quantum phenomena may be involved in the human thinking process. This speculation goes beyond acknowledgement of the quantum mechanical basis for bio-molecular chemistry but suggests the architecture of brain functioning parallels the architecture of quantum computers. In this model classically observed neural compo...
Iterated Gate Teleportation and Blind Quantum Computation
Pérez-Delgado, Carlos A.; Fitzsimons, Joseph F.
2015-06-01
Blind quantum computation allows a user to delegate a computation to an untrusted server while keeping the computation hidden. A number of recent works have sought to establish bounds on the communication requirements necessary to implement blind computation, and a bound based on the no-programming theorem of Nielsen and Chuang has emerged as a natural limiting factor. Here we show that this constraint only holds in limited scenarios, and show how to overcome it using a novel method of iterated gate teleportations. This technique enables drastic reductions in the communication required for distributed quantum protocols, extending beyond the blind computation setting. Applied to blind quantum computation, this technique offers significant efficiency improvements, and in some scenarios offers an exponential reduction in communication requirements.
Iterated Gate Teleportation and Blind Quantum Computation.
Pérez-Delgado, Carlos A; Fitzsimons, Joseph F
2015-06-01
Blind quantum computation allows a user to delegate a computation to an untrusted server while keeping the computation hidden. A number of recent works have sought to establish bounds on the communication requirements necessary to implement blind computation, and a bound based on the no-programming theorem of Nielsen and Chuang has emerged as a natural limiting factor. Here we show that this constraint only holds in limited scenarios, and show how to overcome it using a novel method of iterated gate teleportations. This technique enables drastic reductions in the communication required for distributed quantum protocols, extending beyond the blind computation setting. Applied to blind quantum computation, this technique offers significant efficiency improvements, and in some scenarios offers an exponential reduction in communication requirements. PMID:26196609
Hyper-parallel photonic quantum computation with coupled quantum dots.
Ren, Bao-Cang; Deng, Fu-Guo
2014-01-01
It is well known that a parallel quantum computer is more powerful than a classical one. So far, there are some important works about the construction of universal quantum logic gates, the key elements in quantum computation. However, they are focused on operating on one degree of freedom (DOF) of quantum systems. Here, we investigate the possibility of achieving scalable hyper-parallel quantum computation based on two DOFs of photon systems. We construct a deterministic hyper-controlled-not (hyper-CNOT) gate operating on both the spatial-mode and the polarization DOFs of a two-photon system simultaneously, by exploiting the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics (QED). This hyper-CNOT gate is implemented by manipulating the four qubits in the two DOFs of a two-photon system without auxiliary spatial modes or polarization modes. It reduces the operation time and the resources consumed in quantum information processing, and it is more robust against the photonic dissipation noise, compared with the integration of several cascaded CNOT gates in one DOF. PMID:24721781
Faster quantum chemistry simulation on fault-tolerant quantum computers
International Nuclear Information System (INIS)
Quantum computers can in principle simulate quantum physics exponentially faster than their classical counterparts, but some technical hurdles remain. We propose methods which substantially improve the performance of a particular form of simulation, ab initio quantum chemistry, on fault-tolerant quantum computers; these methods generalize readily to other quantum simulation problems. Quantum teleportation plays a key role in these improvements and is used extensively as a computing resource. To improve execution time, we examine techniques for constructing arbitrary gates which perform substantially faster than circuits based on the conventional Solovay–Kitaev algorithm (Dawson and Nielsen 2006 Quantum Inform. Comput. 6 81). For a given approximation error ?, arbitrary single-qubit gates can be produced fault-tolerantly and using a restricted set of gates in time which is O(log??) or O(log?log??); with sufficient parallel preparation of ancillas, constant average depth is possible using a method we call programmable ancilla rotations. Moreover, we construct and analyze efficient implementations of first- and second-quantized simulation algorithms using the fault-tolerant arbitrary gates and other techniques, such as implementing various subroutines in constant time. A specific example we analyze is the ground-state energy calculation for lithium hydride. (paper)
Quantum Computing and Shor`s Factoring Algorithm
Volovich, Igor V.
2001-01-01
Lectures on quantum computing. Contents: Algorithms. Quantum circuits. Quantum Fourier transform. Elements of number theory. Modular exponentiation. Shor`s algorithm for finding the order. Computational complexity of Schor`s algorithm. Factoring integers. NP-complete problems.
Is the Brain a Quantum Computer?
Litt, Abninder; Eliasmith, Chris; Kroon, Frederick W.; Weinstein, Steven; Thagard, Paul
2006-01-01
We argue that computation via quantum mechanical processes is irrelevant to explaining how brains produce thought, contrary to the ongoing speculations of many theorists. First, quantum effects do not have the temporal properties required for neural information processing. Second, there are substantial physical obstacles to any organic…
Directional Coupling for Quantum Computing and Communication
Nikolopoulos, Georgios M
2008-01-01
We introduce the concept of directional coupling, i.e., the selective transfer of a state between adjacent quantum wires, in the context of quantum computing and short-distance communication. Our analysis rests upon a mathematical analogy between a dual-channel directional coupler and a composite spin system.
Image segmentation on a quantum computer
Caraiman, Simona; Manta, Vasile I.
2015-05-01
In this paper, we address the field of quantum information processing and analyze the prospects of applying quantum computation concepts to image processing tasks. Specifically, we discuss the development of a quantum version for the image segmentation operation. This is an important technique that comes up in many image processing applications. We consider the threshold-based segmentation and show that a quantum circuit to achieve this operation can be built using a quantum oracle that implements the thresholding function. We discuss the circuit implementation of the oracle operator and provide examples of segmenting synthetic and real images. The main advantage of the quantum version for image segmentation over the classical approach is its speedup and is provided by the special properties of quantum information processing: superposition of states and inherent parallelism.
Weighing matrices and optical quantum computing
Energy Technology Data Exchange (ETDEWEB)
Flammia, Steven T [Perimeter Institute for Theoretical Physics, 31 Caroline St. N, Waterloo, Ontario, N2L 2Y5 (Canada); Severini, Simone [Institute for Quantum Computing and Department of Combinatorics and Optimization, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, N2 L 3G1 (Canada)], E-mail: sflammia@perimeterinstitute.ca, E-mail: simoseve@gmail.com
2009-02-13
Quantum computation in the one-way model requires the preparation of certain resource states known as cluster states. We describe how the construction of continuous-variable cluster states for optical quantum computing relate to the existence of certain families of matrices. The relevant matrices are known as weighing matrices, with a few additional constraints. We prove some results regarding the structure of these matrices, and their associated graphs.
Delayed commutation in quantum computer networks
Garcia-Escartin, Juan Carlos; Chamorro-Posada, Pedro
2005-01-01
In the same way that classical computer networks connect and enhance the capabilities of classical computers, quantum networks can combine the advantages of quantum information and communications. We propose a non-classical network element, a delayed commutation switch, that can solve the problem of switching time in packet switching networks. With the help of some local ancillary qubits and superdense codes we can route the information after part of it has left the network ...
Methodological testing: Are fast quantum computers illusions?
International Nuclear Information System (INIS)
Popularity of the idea for computers constructed from the principles of QM started with Feynman's 'Lectures On Computation', but he called the idea crazy and dependent on statistical mechanics. In 1987, Feynman published a paper in 'Quantum Implications - Essays in Honor of David Bohm' on negative probabilities which he said gave him cultural shock. The problem with imagined fast quantum computers (QC) is that speed requires both statistical behavior and truth of the mathematical formalism. The Swedish Royal Academy 2012 Nobel Prize in physics press release touted the discovery of methods to control ''individual quantum systems'', to ''measure and control very fragile quantum states'' which enables ''first steps towards building a new type of super fast computer based on quantum physics.'' A number of examples where widely accepted mathematical descriptions have turned out to be problematic are examined: Problems with the use of Oracles in P=NP computational complexity, Paul Finsler's proof of the continuum hypothesis, and Turing's Enigma code breaking versus William tutte's Colossus. I view QC research as faith in computational oracles with wished for properties. Arther Fine's interpretation in 'The Shaky Game' of Einstein's skepticism toward QM is discussed. If Einstein's reality as space-time curvature is correct, then space-time computers will be the next type of super fast computer.
Overcoming efficiency constraints on blind quantum computation
Pérez-Delgado, Carlos A.; Fitzsimons, Joseph F.
2014-01-01
Blind quantum computation allows a user to delegate a computation to an untrusted server while keeping the computation hidden. A number of recent works have sought to establish bounds on the communication requirements necessary to implement blind computation, and a bound based on the no-programming theorem of Nielsen and Chuang has emerged as a natural limiting factor. Here we show that this constraints only hold in limited scenarios and show how to overcome it using a metho...
Quantum algorithms for computational nuclear physics
Directory of Open Access Journals (Sweden)
Viš?ák Jakub
2015-01-01
Full Text Available While quantum algorithms have been studied as an efficient tool for the stationary state energy determination in the case of molecular quantum systems, no similar study for analogical problems in computational nuclear physics (computation of energy levels of nuclei from empirical nucleon-nucleon or quark-quark potentials have been realized yet. Although the difference between the above mentioned studies might seem negligible, it will be examined. First steps towards a particular simulation (on classical computer of the Iterative Phase Estimation Algorithm for deuterium and tritium nuclei energy level computation will be carried out with the aim to prove algorithm feasibility (and extensibility to heavier nuclei for its possible practical realization on a real quantum computer.
Quantum algorithms for computational nuclear physics
Viš?ák, Jakub
2015-07-01
While quantum algorithms have been studied as an efficient tool for the stationary state energy determination in the case of molecular quantum systems, no similar study for analogical problems in computational nuclear physics (computation of energy levels of nuclei from empirical nucleon-nucleon or quark-quark potentials) have been realized yet. Although the difference between the above mentioned studies might seem negligible, it will be examined. First steps towards a particular simulation (on classical computer) of the Iterative Phase Estimation Algorithm for deuterium and tritium nuclei energy level computation will be carried out with the aim to prove algorithm feasibility (and extensibility to heavier nuclei) for its possible practical realization on a real quantum computer.
Fundamental gravitational limitations to quantum computing
International Nuclear Information System (INIS)
Lloyd has considered the ultimate limitations the fundamental laws of physics place on quantum computers. He concludes in particular that for an 'ultimate laptop' (a computer of one liter of volume and one kilogram of mass) the maximum number of operations per second is bounded by 1051. The limit is derived considering ordinary quantum mechanics. Here we consider additional limits that are placed by quantum gravity ideas, namely the use of a relational notion of time and fundamental gravitational limits that exist on time measurements. We then particularize for the case of an ultimate laptop and show that the maximum number of operations is further constrained to 1047 per second. (authors)
Trading classical and quantum computational resources
Bravyi, Sergey; Smith, Graeme; Smolin, John
2015-01-01
We propose examples of a hybrid quantum-classical simulation where a classical computer assisted by a small quantum processor can efficiently simulate a larger quantum system. First we consider sparse quantum circuits such that each qubit participates in O(1) two-qubit gates. It is shown that any sparse circuit on n+k qubits can be simulated by sparse circuits on n qubits and a classical processing that takes time $2^{O(k)} poly(n)$. Secondly, we study Pauli-based computatio...
Composable security of measuring-Alice blind quantum computation
Morimae, Tomoyuki; Koshiba, Takeshi
2013-01-01
Blind quantum computing [A. Broadbent, J. Fitzsimons, and E. Kashefi, Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science 517 (2009)] is a secure cloud quantum computing protocol which enables a client (who does not have enough quantum technology at her disposal) to delegate her quantum computation to a server (who has a universal quantum computer) without leaking any relevant information to the server. In [T. Morimae and K. Fujii, Phys. Rev. A {...
Simulating Grover's Quantum Search in a Classical Computer
Ningtyas, D K
2010-01-01
The rapid progress of computer science has been accompanied by a corresponding evolution of computation, from classical computation to quantum computation. As quantum computing is on its way to becoming an established discipline of computing science, much effort is being put into the development of new quantum algorithms. One of quantum algorithms is Grover algorithm, which is used for searching an element in an unstructured list of N elements with quadratic speed-up over classical algorithms. In this work, Quantum Computer Language (QCL) is used to make a Grover's quantum search simulation in a classical computer
Brain-Computer Interfaces and Quantum Robots
Pessa, Eliano
2009-01-01
The actual (classical) Brain-Computer Interface attempts to use brain signals to drive suitable actuators performing the actions corresponding to subject's intention. However this goal is not fully reached, and when BCI works, it does only in particular situations. The reason of this unsatisfactory result is that intention cannot be conceived simply as a set of classical input-output relationships. It is therefore necessary to resort to quantum theory, allowing the occurrence of stable coherence phenomena, in turn underlying high-level mental processes such as intentions and strategies. More precisely, within the context of a dissipative Quantum Field Theory of brain operation it is possible to introduce generalized coherent states associated, within the framework of logic, to the assertions of a quantum metalanguage. The latter controls the quantum-mechanical computing corresponding to standard mental operation. It thus become possible to conceive a Quantum Cyborg in which a human mind controls, through a qu...
Quantum error correcting codes and one-way quantum computing: Towards a quantum memory
Schlingemann, Dirk
2003-01-01
For realizing a quantum memory we suggest to first encode quantum information via a quantum error correcting code and then concatenate combined decoding and re-encoding operations. This requires that the encoding and the decoding operation can be performed faster than the typical decoherence time of the underlying system. The computational model underlying the one-way quantum computer, which has been introduced by Hans Briegel and Robert Raussendorf, provides a suitable conc...
Quantum computing in a piece of glass
Miller, Warner A.; Alsing, Paul M.; Kreymerman, Grigoriy; McDonald, Jonathan R.; Tison, Christopher
2011-05-01
Quantum gates and simple quantum algorithms can be designed utilizing the diffraction phenomena of a photon within a multiplexed holographic element. The quantum eigenstates we use are the photon's linear momentum (LM) as measured by the number of waves of tilt across the aperture. Two properties of quantum computing within the circuit model make this approach attractive. First, any conditional measurement can be commuted in time with any unitary quantum gate - the timeless nature of quantum computing. Second, photon entanglement can be encoded as a superposition state of a single photon in a higher-dimensional state space afforded by LM. Our theoretical and numerical results indicate that OptiGrate's photo-thermal refractive (PTR) glass is an enabling technology. We will review our previous design of a quantum projection operator and give credence to this approach on a representative quantum gate grounded on coupled-mode theory and numerical simulations, all with parameters consistent with PTR glass. We discuss the strengths (high efficiencies, robustness to environment) and limitations (scalability, crosstalk) of this technology. While not scalable, the utility and robustness of such optical elements for broader quantum information processing applications can be substantial.
Consequences and Limitations of Conventional Computers and their Solutions through Quantum Computers
Sanjaykumar DALVI; Pranav BARDAPURKAR; Nilesh BARDE; Deepak THAKUR
2011-01-01
Quantum computer is the current topic of research in the field of computational science, which uses principles of quantum mechanics. Quantum computers will be much more powerful than the classical computer due to its enormous computational speed. Recent developments in quantum computers which are based on the laws of quantum mechanics, shows different ways of performing efficient calculations along with the various results which are not possible on the classical computers in an efficient peri...
Relativistic quantum chemistry on quantum computers.
Czech Academy of Sciences Publication Activity Database
Veis, Libor; Viš?ák, Jakub; Fleig, T.; Knecht, S.; Saue, T.; Visscher, L.; Pittner, Ji?í
2012-01-01
Ro?. 85, ?. 3 (2012), 030304. ISSN 1050-2947 R&D Projects: GA ?R GA203/08/0626 Institutional support: RVO:61388955 Keywords : simulation * algorithm * computation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.042, year: 2012
Computer science approach to quantum control
Janzing, Dominik
2006-01-01
This work considers several hypothetical control processes on the nanoscopic level and show their analogy to computation processes. It shows that measuring certain types of quantum observables is such a complex task that every instrument that is able to perform it would necessarily be an extremely powerful computer.
Quantum Computer with Fixed Interaction is Universal
Ozhigov, Yuri; Fedichkin, Leonid
2002-01-01
It is proved that a quantum computer with fixed and permanent interaction of diagonal type between qubits proposed in the work quant-ph/0201132 is universal. Such computer is controlled only by one-qubit quick transformations, and this makes it feasible.
Qubus ancilla-driven quantum computation
International Nuclear Information System (INIS)
Hybrid matter-optical systems offer a robust, scalable path to quantum computation. Such systems have an ancilla which acts as a bus connecting the qubits. We demonstrate how using a continuous variable qubus as the ancilla provides savings in the total number of operations required when computing with many qubits
Quantum-State-Engineering for Spin-Quantum-Computing
Heidebrecht, Andreas
2006-01-01
The subject of this thesis are experimental procedures for preparation, manipulation, and detection of specific quantum states of spin systems in the context of quantum computing. Nuclear magnetic resonance (NMR) and electron spin resonance (ESR) methods were used. The systems studied were small molecules in liquid state, small molecules embedded in a liquid crystal matrix, and paramagnetic centers in single crystals. The nuclear 19F spins of 2,3,4-Trifluoroaniline were u...
Noise-assisted quantum transport and computation
International Nuclear Information System (INIS)
The transmission of an excitation along a spin chain can be hindered by the presence of small fixed imperfections that create trapping regions where the excitation may get caught (Anderson localization). A certain degree of noise, ensuing from the interaction with a thermal bath, allows us to overcome localization (noise-assisted transport). In this paper, we investigate the relation between the noise-assisted transport and (quantum) computation. In particular, we prove that noise does assist classical computation on a quantum computing device, but hinders the possibility of creating entanglement. (paper)
Universal quantum computation with little entanglement.
Van den Nest, Maarten
2013-02-01
We show that universal quantum computation can be achieved in the standard pure-state circuit model while the entanglement entropy of every bipartition is small in each step of the computation. The entanglement entropy required for large-scale quantum computation even tends to zero. Moreover we show that the same conclusion applies to many entanglement measures commonly used in the literature. This includes e.g., the geometric measure, localizable entanglement, multipartite concurrence, squashed entanglement, witness-based measures, and more generally any entanglement measure which is continuous in a certain natural sense. These results demonstrate that many entanglement measures are unsuitable tools to assess the power of quantum computers. PMID:23432229
Quantum-cellular-automata quantum computing with endohedral fullerenes
International Nuclear Information System (INIS)
We present a scheme to perform universal quantum computation using global addressing techniques as applied to a physical system of endohedrally doped fullerenes. The system consists of an ABAB linear array of group-V endohedrally doped fullerenes. Each molecule spin site consists of a nuclear spin coupled via a hyperfine interaction to an electron spin. The electron spin of each molecule is in a quartet ground state S=3/2. Neighboring molecular electron spins are coupled via a magnetic dipole interaction. We find that an all-electron construction of a quantum cellular automaton is frustrated due to the degeneracy of the electronic transitions. However, we can construct a quantum-cellular-automata quantum computing architecture using these molecules by encoding the quantum information on the nuclear spins while using the electron spins as a local bus. We deduce the NMR and ESR pulses required to execute the basic cellular automaton operation and obtain a rough figure of merit for the number of gate operations per decoherence time. We find that this figure of merit compares well with other physical quantum computer proposals. We argue that the proposed architecture meets well the first four DiVincenzo criteria and we outline various routes toward meeting the fifth criterion: qubit readout
Quantum Computers: A New Paradigm in Information Technology
Raisinghani, Mahesh S
2001-01-01
The word 'quantum' comes from the Latin word quantus meaning 'how much'. Quantum computing is a fundamentally new mode of information processing that can be performed only by harnessing physical phenomena unique to quantum mechanics (especially quantum interference). Paul Benioff of the Argonne National Laboratory first applied quantum theory to computers in 1981 and David Deutsch of Oxford proposed quantum parallel computers in 1985, years before the realization of qubits in 1995. However, i...
Analogue Quantum Computers for Data Analysis
Vlasov, Alexander Yu.
1998-01-01
Analogue computers use continuous properties of physical system for modeling. In the paper is described possibility of modeling by analogue quantum computers for some model of data analysis. It is analogue associative memory and a formal neural network. A particularity of the models is combination of continuous internal processes with discrete set of output states. The modeling of the system by classical analogue computers was offered long times ago, but now it is not very e...
Fault-Tolerant Postselected Quantum Computation: Threshold Analysis
Knill, E.
2004-01-01
The schemes for fault-tolerant postselected quantum computation given in [Knill, Fault-Tolerant Postselected Quantum Computation: Schemes, http://arxiv.org/abs/quant-ph/0402171] are analyzed to determine their error-tolerance. The analysis is based on computer-assisted heuristics. It indicates that if classical and quantum communication delays are negligible, then scalable qubit-based quantum computation is possible with errors above 1% per elementary quantum gate.
Verification for measurement-only blind quantum computing
Morimae, Tomoyuki
2012-01-01
Blind quantum computing is a new secure quantum computing protocol where a client who does not have any sophisticated quantum technlogy can delegate her quantum computing to a server without leaking any privacy. It is known that a client who has only a measurement device can perform blind quantum computing [T. Morimae and K. Fujii, Phys. Rev. A {\\bf87}, 050301(R) (2013)]. It has been an open problem whether the protocol can enjoy the verification, i.e., the ability of client...
Recipes for spin-based quantum computing
Cerletti, V; Gywat, O; Loss, D; Cerletti, Veronica; Gywat, Oliver; Loss, Daniel
2005-01-01
Technological growth in the electronics industry has historically been measured by the number of transistors that can be crammed onto a single microchip. Unfortunately, all good things must come to an end; spectacular growth in the number of transistors on a chip requires spectacular reduction of the transistor size. For electrons in semiconductors, the laws of quantum mechanics take over at the nanometre scale, and the conventional wisdom for progress (transistor cramming) must be abandoned. This realization has stimulated extensive research on ways to exploit the spin (in addition to the orbital) degree of freedom of the electron, giving birth to the field of spintronics. Perhaps the most ambitious goal of spintronics is to realize complete control over the quantum mechanical nature of the relevant spins. This prospect has motivated a race to design and build a spintronic device capable of complete control over its quantum mechanical state, and ultimately, performing computations: a quantum computer. In thi...
Computational Studies of Quantum Spin Systems
Sandvik, Anders W
2011-01-01
These lecture notes introduce quantum spin systems and several computational methods for studying their ground-state and finite-temperature properties. Symmetry-breaking and critical phenomena are first discussed in the simpler setting of Monte Carlo studies of classical spin systems, to illustrate finite-size scaling at continuous and first-order phase transitions. Exact diagonalization and quantum Monte Carlo (stochastic series expansion) algorithms and their computer implementations are then discussed in detail. Applications of the methods are illustrated by results for some of the most essential models in quantum magnetism, such as the S=1/2 Heisenberg antiferromagnet in one and two dimensions, as well as extended models useful for studying quantum phase transitions between antiferromagnetic and magnetically disordered states.
Biologically inspired path to quantum computer
Ogryzko, Vasily; Ozhigov, Yuri
2014-12-01
We describe an approach to quantum computer inspired by the information processing at the molecular level in living cells. It is based on the separation of a small ensemble of qubits inside the living system (e.g., a bacterial cell), such that coherent quantum states of this ensemble remain practically unchanged for a long time. We use the notion of a quantum kernel to describe such an ensemble. Quantum kernel is not strictly connected with certain particles; it permanently exchanges atoms and molecules with the environment, which makes quantum kernel a virtual notion. There are many reasons to expect that the state of quantum kernel of a living system can be treated as the stationary state of some Hamiltonian. While the quantum kernel is responsible for the stability of dynamics at the time scale of cellular life, at the longer inter-generation time scale it can change, varying smoothly in the course of biological evolution. To the first level of approximation, quantum kernel can be described in the framework of qubit modification of Jaynes-Cummings-Hubbard model, in which the relaxation corresponds to the exchange of matter between quantum kernel and the rest of the cell and is represented as Lindblad super-operators.
Device-Independent Verifiable Blind Quantum Computation
Hajdušek, Michal; Pérez-Delgado, Carlos A.; Fitzsimons, Joseph F.
2015-01-01
As progress on experimental quantum processors continues to advance, the problem of verifying the correct operation of such devices is becoming a pressing concern. Although recent progress has resulted in several protocols which can verify the output of a quantum computation performed by entangled but non-communicating processors, the overhead for such schemes is prohibitive, scaling at least as the 22nd power of the number of gates. We present a new approach based on a comb...
Local Search Methods for Quantum Computers
Hogg, Tad; YANIK, Mehmet
1998-01-01
Local search algorithms use the neighborhood relations among search states and often perform well for a variety of NP-hard combinatorial search problems. This paper shows how quantum computers can also use these neighborhood relations. An example of such a local quantum search is evaluated empirically for the satisfiability (SAT) problem and shown to be particularly effective for highly constrained instances. For problems with an intermediate number of constraints, it is som...
Another Look at Quantum Neural Computing
Kak, Subhash
2009-01-01
The term quantum neural computing indicates a unity in the functioning of the brain. It assumes that the neural structures perform classical processing and that the virtual particles associated with the dynamical states of the structures define the underlying quantum state. We revisit the concept and also summarize new arguments related to the learning modes of the brain in response to sensory input that may be aggregated in three types: associative, reorganizational, and qu...
Neuromorphic quantum computation with energy dissipation
International Nuclear Information System (INIS)
Real parallel computing with a quantum computer attracts vast interest due to its extreme high potential. We propose a neuromorphic quantum computation algorithm based on an adiabatic Hamiltonian evolution with energy dissipation. This algorithm can be applied to problems if a cost function can be expressed in a quadratic form. This requirement results from the fact that our Hamiltonian is designed by following a method similar to an artificial neural network (ANN). The state of an ANN is often trapped at local minima, and the network outputs an error. Since the state of a quantum system with the proposed algorithm is always in the ground state according to the adiabatic theorem, it is not necessary to be concerned that the quantum state is trapped at local minima. However, there is no guarantee that a quantum algorithm based on an adiabatic Hamiltonian evolution with degeneration or level crossing is successfully executed. We show successful numerical simulation results with the proposed algorithm by introducing energy dissipation to keep the quantum state staying in the ground state, and then we show an application to the n-queen problem, which is one of the combinatorial optimization problems
Quantum adiabatic computation and adiabatic conditions
International Nuclear Information System (INIS)
Recently, quantum adiabatic computation has attracted more and more attention in the literature. It is a novel quantum computation model based on adiabatic approximation, and the analysis of a quantum adiabatic algorithm depends highly on the adiabatic conditions. However, it has been pointed out that the traditional adiabatic conditions are problematic. Thus, results obtained previously should be checked and sufficient adiabatic conditions applicable to adiabatic computation should be proposed. Based on a result of Tong et al. [Phys. Rev. Lett. 98, 150402 (2007)], we propose a modified adiabatic criterion which is more applicable to the analysis of adiabatic algorithms. As an example, we prove the validity of the local adiabatic search algorithm by employing our criterion
Methodological testing: Are fast quantum computers illusions?
Energy Technology Data Exchange (ETDEWEB)
Meyer, Steven [Tachyon Design Automation, San Francisco, CA (United States)
2013-07-01
Popularity of the idea for computers constructed from the principles of QM started with Feynman's 'Lectures On Computation', but he called the idea crazy and dependent on statistical mechanics. In 1987, Feynman published a paper in 'Quantum Implications - Essays in Honor of David Bohm' on negative probabilities which he said gave him cultural shock. The problem with imagined fast quantum computers (QC) is that speed requires both statistical behavior and truth of the mathematical formalism. The Swedish Royal Academy 2012 Nobel Prize in physics press release touted the discovery of methods to control ''individual quantum systems'', to ''measure and control very fragile quantum states'' which enables ''first steps towards building a new type of super fast computer based on quantum physics.'' A number of examples where widely accepted mathematical descriptions have turned out to be problematic are examined: Problems with the use of Oracles in P=NP computational complexity, Paul Finsler's proof of the continuum hypothesis, and Turing's Enigma code breaking versus William tutte's Colossus. I view QC research as faith in computational oracles with wished for properties. Arther Fine's interpretation in 'The Shaky Game' of Einstein's skepticism toward QM is discussed. If Einstein's reality as space-time curvature is correct, then space-time computers will be the next type of super fast computer.
Statistical mechanics of classical and quantum computational complexity
Laumann, C. R.; Moessner, R.; Scardicchio, A.; Sondhi, S. L.
2010-01-01
The quest for quantum computers is motivated by their potential for solving problems that defy existing, classical, computers. The theory of computational complexity, one of the crown jewels of computer science, provides a rigorous framework for classifying the hardness of problems according to the computational resources, most notably time, needed to solve them. Its extension to quantum computers allows the relative power of quantum computers to be analyzed. This framework ...
Unordered Tuples in Quantum Computation
Furber, Robert; Westerbaan, Bas
2014-01-01
It is well known that the C*-algebra of an ordered pair of qubits is M_2 (x) M_2. What about unordered pairs? We show in detail that M_3 (+) \\C is the C*-algebra of an unordered pair of qubits. Then we use Schur-Weyl duality to characterize the C*-algebra of an unordered n-tuple of d-level quantum systems. Using some further elementary representation theory and number theory, we characterize the quantum cycles. We finish with a characterization of the von Neumann algebra for...
The quantum computer game: citizen science
Damgaard, Sidse; Mølmer, Klaus; Sherson, Jacob
2013-05-01
Progress in the field of quantum computation is hampered by daunting technical challenges. Here we present an alternative approach to solving these by enlisting the aid of computer players around the world. We have previously examined a quantum computation architecture involving ultracold atoms in optical lattices and strongly focused tweezers of light. In The Quantum Computer Game (see http://www.scienceathome.org/), we have encapsulated the time-dependent Schrödinger equation for the problem in a graphical user interface allowing for easy user input. Players can then search the parameter space with real-time graphical feedback in a game context with a global high-score that rewards short gate times and robustness to experimental errors. The game which is still in a demo version has so far been tried by several hundred players. Extensions of the approach to other models such as Gross-Pitaevskii and Bose-Hubbard are currently under development. The game has also been incorporated into science education at high-school and university level as an alternative method for teaching quantum mechanics. Initial quantitative evaluation results are very positive. Progress in the field of quantum computation is hampered by daunting technical challenges. Here we present an alternative approach to solving these by enlisting the aid of computer players around the world. We have previously examined a quantum computation architecture involving ultracold atoms in optical lattices and strongly focused tweezers of light. In The Quantum Computer Game (see http://www.scienceathome.org/), we have encapsulated the time-dependent Schrödinger equation for the problem in a graphical user interface allowing for easy user input. Players can then search the parameter space with real-time graphical feedback in a game context with a global high-score that rewards short gate times and robustness to experimental errors. The game which is still in a demo version has so far been tried by several hundred players. Extensions of the approach to other models such as Gross-Pitaevskii and Bose-Hubbard are currently under development. The game has also been incorporated into science education at high-school and university level as an alternative method for teaching quantum mechanics. Initial quantitative evaluation results are very positive. AU Ideas Center for Community Driven Research, CODER.
Quantum learning for a quantum lattice gas computer
Behrman, Elizabeth; Steck, James
2015-03-01
Quantum lattice gas is the logical generalization of quantum cellular automata. In low energy the dynamics are well described by the Gross-Pitaevskii equation in the mean field limit, which is an effective nonlinear interaction model of a Bose-Einstein condensate. In previous work, we have shown in simulation that both spatial and temporal models of quantum learning computers can be used to ``design'' non-trivial quantum algorithms. The advantages of quantum learning over the usual practice of using quantum gate building blocks are, first, the rapidity with which the problem can be solved, without having to decompose the problem; second, the fact that our technique can be used readily even when the problem, or the operator, is not well understood; and, third, that because the interactions are a natural part of the physical system, connectivity is automatic. The advantage to quantum learning obviously grows with the size and the complexity of the problem. We develop and present our learning algorithm as applied to the mean field lattice gas equation, and present a few preliminary results.
Quantum learning in a quantum lattice gas computer
Behrman, Elizabeth; Steck, James
2015-04-01
Quantum lattice gas is the logical generalization of quantum cellular automata. At low energy the dynamics are well described by the Gross-Pitaevskii equation in the mean field limit, which is an effective nonlinear interaction model of a Bose-Einstein condensate. In previous work, we have shown in simulation that both spatial and temporal models of quantum learning computers can be used to ``design'' non-trivial quantum algorithms. The advantages of quantum learning over the usual practice of using quantum gate building blocks are, first, the rapidity with which the problem can be solved, without having to decompose the problem; second, the fact that our technique can be used readily even when the problem, or the operator, is not well understood; and, third, that because the interactions are a natural part of the physical system, connectivity is automatic. The advantage to quantum learning obviously grows with the size and the complexity of the problem. We develop and present our learning algorithm as applied to the mean field lattice gas equation, and present a few preliminary results.
Mizel, Ari
2003-01-01
Ground-state quantum computers mimic quantum mechanical time evolution within the amplitudes of a time-independent quantum state. We explore the principles that constrain this mimicking. A no-cloning argument is found to impose strong restrictions. It is shown, however, that there is flexibility that can be exploited using quantum teleportation methods to improve ground-state quantum computer design.
Adiabatic graph-state quantum computation
International Nuclear Information System (INIS)
Measurement-based quantum computation (MBQC) and holonomic quantum computation (HQC) are two very different computational methods. The computation in MBQC is driven by adaptive measurements executed in a particular order on a large entangled state. In contrast in HQC the system starts in the ground subspace of a Hamiltonian which is slowly changed such that a transformation occurs within the subspace. Following the approach of Bacon and Flammia, we show that any MBQC on a graph state with generalized flow (gflow) can be converted into an adiabatically driven holonomic computation, which we call adiabatic graph-state quantum computation (AGQC). We then investigate how properties of AGQC relate to the properties of MBQC, such as computational depth. We identify a trade-off that can be made between the number of adiabatic steps in AGQC and the norm of H-dot as well as the degree of H, in analogy to the trade-off between the number of measurements and classical post-processing seen in MBQC. Finally the effects of performing AGQC with orderings that differ from standard MBQC are investigated. (paper)
Random Numbers and Quantum Computers
McCartney, Mark; Glass, David
2002-01-01
The topic of random numbers is investigated in such a way as to illustrate links between mathematics, physics and computer science. First, the generation of random numbers by a classical computer using the linear congruential generator and logistic map is considered. It is noted that these procedures yield only pseudo-random numbers since…
Robustness and device independence of verifiable blind quantum computing
Gheorghiu, Alexandru; Kashefi, Elham; Wallden, Petros
2015-01-01
Recent advances in theoretical and experimental quantum computing bring us closer to scalable quantum computing devices. This makes the need for protocols that verify the correct functionality of quantum operations timely and has led to the field of quantum verification. In this paper we address key challenges to make quantum verification protocols applicable to experimental implementations. We prove the robustness of the single server verifiable universal blind quantum comp...
Simulation of chemical reaction dynamics on an NMR quantum computer
Lu, Dawei; Xu, Nanyang; Xu, Ruixue; Chen, Hongwei; Gong, Jiangbin; Peng, Xinhua; Du, Jiangfeng
2011-01-01
Quantum simulation can beat current classical computers with minimally a few tens of qubits and will likely become the first practical use of a quantum computer. One promising application of quantum simulation is to attack challenging quantum chemistry problems. Here we report an experimental demonstration that a small nuclear-magnetic-resonance (NMR) quantum computer is already able to simulate the dynamics of a prototype chemical reaction. The experimental results agree we...
The resource theory of stabilizer quantum computation
International Nuclear Information System (INIS)
Recent results on the non-universality of fault-tolerant gate sets underline the critical role of resource states, such as magic states, to power scalable, universal quantum computation. Here we develop a resource theory, analogous to the theory of entanglement, that is relevant for fault-tolerant stabilizer computation. We introduce two quantitative measures—monotones—for the amount of non-stabilizer resource. As an application we give absolute bounds on the efficiency of magic state distillation. One of these monotones is the sum of the negative entries of the discrete Wigner representation of a quantum state, thereby resolving a long-standing open question of whether the degree of negativity in a quasi-probability representation is an operationally meaningful indicator of quantum behavior. (paper)
Quantum Computer as an Inference Engine
Tucci, R R
2000-01-01
We propose a new family of quantum computing algorithms which generalize the Deutsch-Jozsa, Simon and Shor ones. The goal of our algorithms is to estimate conditional probability distributions. Such estimates are useful in applications of Decision Theory and Artificial Intelligence, where inferences are made based on uncertain knowledge. The family of algorithms that we propose is based on a construction method that generalizes a Fredkin-Toffoli (FT) construction method used in the field of classical reversible computing. FT showed how, given any binary deterministic circuit, one can construct another binary deterministic circuit which does the same calculations in a reversible manner. We show how, given any classical stochastic network (classical Bayesian net), one can construct a quantum network (quantum Bayesian net) which can perform the same calculations as the classical one, but in a (piecewise) reversible manner. Thus, we extend the FT construction method so that it can be applied to any stochastic cir...
Quantum computer games: Schrödinger cat and hounds
Gordon, Michal; Gordon, Goren
2012-05-01
The quantum computer game 'Schrödinger cat and hounds' is the quantum extension of the well-known classical game fox and hounds. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. 'Schrödinger cat and hounds' demonstrates the effects of superposition, destructive and constructive interference, measurements and entanglement. More advanced concepts, like particle-wave duality and decoherence, can also be taught using the game as a model. The game that has an optimal solution in the classical version, can have many different solutions and a new balance of powers in the quantum world. Game-aided lectures were given to high-school students which showed that it is a valid and entertaining teaching platform.
Temporal resources for global quantum computing architectures
Scientific Electronic Library Online (English)
Juan D., Jaramillo; John H., Reina.
2008-12-01
Full Text Available Using the methods for optimal simulation of quantum logic gates, we perform a quantitative estimation of the time resources involved in the execution of universal gate sets for the case of three representative models of quantum computation based on global control. The importance of such models stems [...] from the solution to the problem of experimentally addressing and locally manipulating the qubits in a given quantum register. The numerical estimation of the temporal efficiency for each model is performed by assuming that the qubits in the register can be coupled to each other via the Ising and the Förster interactions. Finally, we discuss the feasibility of the physical realization of such architectures under quantum error correction conditions.
Quantum computing implementations with neutral particles
DEFF Research Database (Denmark)
Negretti, Antonio; Treutlein, Philipp
2011-01-01
We review quantum information processing with cold neutral particles, that is, atoms or polar molecules. First, we analyze the best suited degrees of freedom of these particles for storing quantum information, and then we discuss both single- and two-qubit gate implementations. We focus our discussion mainly on collisional quantum gates, which are best suited for atom-chip-like devices, as well as on gate proposals conceived for optical lattices. Additionally, we analyze schemes both for cold atoms confined in optical cavities and hybrid approaches to entanglement generation, and we show how optimal control theory might be a powerful tool to enhance the speed up of the gate operations as well as to achieve high fidelities required for fault tolerant quantum computation.
Another Look at Quantum Neural Computing
Kak, Subhash
2009-01-01
The term quantum neural computing was coined to indicate a unity in the functioning of the brain. We revisit the concept and also summarize new arguments related to the learning modes of the brain in response to sensory input that may be aggregated in three types: associative, reorganizational, and quantum. The associative and reorganizational types are quite apparent based on experimental findings; it is much harder to establish that the brain as an entity exhibits quantum properties. We argue that the reorganizational behavior of the brain may be viewed as inner adjustment corresponding to its quantum behavior at the system level. Not only neural structures but their higher abstractions also may be seen as whole entities. We consider the dualities associated with the behavior of the brain and how these dualities are bridged.
Blind Quantum Computing with Weak Coherent Pulses
Dunjko, Vedran; Kashefi, Elham; Leverrier, Anthony
2012-05-01
The universal blind quantum computation (UBQC) protocol [A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual IEEE Symposiumon Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, USA, 2009), pp. 517-526.] allows a client to perform quantum computation on a remote server. In an ideal setting, perfect privacy is guaranteed if the client is capable of producing specific, randomly chosen single qubit states. While from a theoretical point of view, this may constitute the lowest possible quantum requirement, from a pragmatic point of view, generation of such states to be sent along long distances can never be achieved perfectly. We introduce the concept of ? blindness for UBQC, in analogy to the concept of ? security developed for other cryptographic protocols, allowing us to characterize the robustness and security properties of the protocol under possible imperfections. We also present a remote blind single qubit preparation protocol with weak coherent pulses for the client to prepare, in a delegated fashion, quantum states arbitrarily close to perfect random single qubit states. This allows us to efficiently achieve ?-blind UBQC for any ?>0, even if the channel between the client and the server is arbitrarily lossy.
Simulations of Probabilities for Quantum Computing
Zak, M.
1996-01-01
It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-LIpschitz dynamics, without utilization of any man-made devices (such as random number generators). Self-organizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed.
Quantum computation with Turaev-Viro codes
Koenig, Robert; Kuperberg, Greg; Reichardt, Ben W.
2010-12-01
For a 3-manifold with triangulated boundary, the Turaev-Viro topological invariant can be interpreted as a quantum error-correcting code. The code has local stabilizers, identified by Levin and Wen, on a qudit lattice. Kitaev's toric code arises as a special case. The toric code corresponds to an abelian anyon model, and therefore requires out-of-code operations to obtain universal quantum computation. In contrast, for many categories, such as the Fibonacci category, the Turaev-Viro code realizes a non-abelian anyon model. A universal set of fault-tolerant operations can be implemented by deforming the code with local gates, in order to implement anyon braiding. We identify the anyons in the code space, and present schemes for initialization, computation and measurement. This provides a family of constructions for fault-tolerant quantum computation that are closely related to topological quantum computation, but for which the fault tolerance is implemented in software rather than coming from a physical medium.
Quantum computation with Turaev-Viro codes
International Nuclear Information System (INIS)
For a 3-manifold with triangulated boundary, the Turaev-Viro topological invariant can be interpreted as a quantum error-correcting code. The code has local stabilizers, identified by Levin and Wen, on a qudit lattice. Kitaev's toric code arises as a special case. The toric code corresponds to an abelian anyon model, and therefore requires out-of-code operations to obtain universal quantum computation. In contrast, for many categories, such as the Fibonacci category, the Turaev-Viro code realizes a non-abelian anyon model. A universal set of fault-tolerant operations can be implemented by deforming the code with local gates, in order to implement anyon braiding. We identify the anyons in the code space, and present schemes for initialization, computation and measurement. This provides a family of constructions for fault-tolerant quantum computation that are closely related to topological quantum computation, but for which the fault tolerance is implemented in software rather than coming from a physical medium.
Adiabatic Quantum Computation and Deutsch's Algorithm
Das, Saurya; Kobes, Randy; Kunstatter, Gabor
2001-01-01
We show that by a suitable choice of a time dependent Hamiltonian, Deutsch's algorithm can be implemented by an adiabatic quantum computer. We extend our analysis to the Deutsch-Jozsa problem and estimate the required running time for both global and local adiabatic evolutions.
Can quantum computing solve classically unsolvable problems?
Hodges, A
2005-01-01
T. D. Kieu has claimed that a quantum computing procedure can solve a classically unsolvable problem. Recent work of W. D. Smith has shown that Kieu's central mathematical claim cannot be sustained. Here, a more general critique is given of Kieu's proposal and some suggestions are made regarding the Church-Turing thesis.
A repeat-until-success quantum computing scheme
Energy Technology Data Exchange (ETDEWEB)
Beige, A [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Lim, Y L [DSO National Laboratories, 20 Science Park Drive, Singapore 118230, Singapore (Singapore); Kwek, L C [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore (Singapore)
2007-06-15
Recently we proposed a hybrid architecture for quantum computing based on stationary and flying qubits: the repeat-until-success (RUS) quantum computing scheme. The scheme is largely implementation independent. Despite the incompleteness theorem for optical Bell-state measurements in any linear optics set-up, it allows for the implementation of a deterministic entangling gate between distant qubits. Here we review this distributed quantum computation scheme, which is ideally suited for integrated quantum computation and communication purposes.
Quantum Annealing and Computation: A Brief Documentary Note
Ghosh, Asim; Mukherjee, Sudip
2013-01-01
Major breakthrough in quantum computation has recently been achieved using quantum annealing to develop analog quantum computers instead of gate based computers. After a short introduction to quantum computation, we retrace very briefly the history of these developments and discuss the Indian researches in this connection and provide some interesting documents (in the Figs.) obtained from a chosen set of high impact papers (and also some recent news etc. blogs appearing in t...
Blueprint for a microwave ion trap quantum computer
Lekitsch, B.; Weidt, S.; Fowler, A. G.; Mølmer, K; Devitt, S. J.; Wunderlich, C.; Hensinger, W. K.
2015-01-01
A universal quantum computer will have fundamental impact on a vast number of research fields and technologies. Therefore an increasingly large scientific and industrial community is working towards the realization of such a device. A large scale quantum computer is best constructed using a modular approach. We present the blueprint for an ion trap based scalable quantum computer module which makes it possible to create an arbitrarily large quantum computer architecture powe...
Quantum Computers: A New Paradigm in Information Technology
Directory of Open Access Journals (Sweden)
Mahesh S. Raisinghani
2001-01-01
Full Text Available The word 'quantum' comes from the Latin word quantus meaning 'how much'. Quantum computing is a fundamentally new mode of information processing that can be performed only by harnessing physical phenomena unique to quantum mechanics (especially quantum interference. Paul Benioff of the Argonne National Laboratory first applied quantum theory to computers in 1981 and David Deutsch of Oxford proposed quantum parallel computers in 1985, years before the realization of qubits in 1995. However, it may be well into the 21st century before we see quantum computing used at a commercial level for a variety of reasons discussed in this paper. The subject of quantum computing brings together ideas from classical information theory, computer science, and quantum physics. This paper discusses some of the current advances, applications, and chal-lenges of quantum computing as well as its impact on corporate computing and implications for management. It shows how quantum computing can be utilized to process and store information, as well as impact cryptography for perfectly secure communication, algorithmic searching, factorizing large numbers very rapidly, and simulating quantum-mechanical systems efficiently. A broad interdisciplinary effort will be needed if quantum com-puters are to fulfill their destiny as the world's fastest computing devices.
Quantum Computation and Information From Theory to Experiment
Imai, Hiroshi
2006-01-01
Recently, the field of quantum computation and information has been developing through a fusion of results from various research fields in theoretical and practical areas. This book consists of the reviews of selected topics charterized by great progress and cover the field from theoretical areas to experimental ones. It contains fundamental areas, quantum query complexity, quantum statistical inference, quantum cloning, quantum entanglement, additivity. It treats three types of quantum security system, quantum public key cryptography, quantum key distribution, and quantum steganography. A photonic system is highlighted for the realization of quantum information processing.
Interactive Quantum Mechanics Quantum Experiments on the Computer
Brandt, S; Dahmen, H.D
2011-01-01
Extra Materials available on extras.springer.com INTERACTIVE QUANTUM MECHANICS allows students to perform their own quantum-physics experiments on their computer, in vivid 3D color graphics. Topics covered include: • harmonic waves and wave packets, • free particles as well as bound states and scattering in various potentials in one and three dimensions (both stationary and time dependent), • two-particle systems, coupled harmonic oscillators, • distinguishable and indistinguishable particles, • coherent and squeezed states in time-dependent motion, • quantized angular momentum, • spin and magnetic resonance, • hybridization. For the present edition the physics scope has been widened appreciably. Moreover, INTERQUANTA can now produce user-defined movies of quantum-mechanical situations. Movies can be viewed directly and also be saved to be shown later in any browser. Sections on spec...
Measurement-Based Interference in Quantum Computation
International Nuclear Information System (INIS)
The interference has been measured by the visibility in two-level systems, which, however, does not work for multi-level systems. We generalize a measure of the interference based on decoherence process, consistent with the visibility in qubit systems. By taking cluster states as examples, we show in the one-way quantum computation that the gate fidelity is proportional to the interference of the measured qubit and is inversely proportional to the interference of all register qubits. We also find that the interference increases with the number of the computing steps. So we conjecture that the interference may be the source of the speedup of the one-way quantum computation. (general)
QCWAVE, a Mathematica quantum computer simulation update
Tabakin, Frank
2011-01-01
This Mathematica 7.0/8.0 package upgrades and extends the quantum computer simulation code called QDENSITY. Use of the density matrix was emphasized in QDENSITY, although that code was also applicable to a quantum state description. In the present version, the quantum state version is stressed and made amenable to future extensions to parallel computer simulations. The add-on QCWAVE extends QDENSITY in several ways. The first way is to describe the action of one, two and three- qubit quantum gates as a set of small ($2 \\times 2, 4\\times 4$ or $8\\times 8$) matrices acting on the $2^{n_q}$ amplitudes for a system of $n_q$ qubits. This procedure was described in our parallel computer simulation QCMPI and is reviewed here. The advantage is that smaller storage demands are made, without loss of speed, and that the procedure can take advantage of message passing interface (MPI) techniques, which will hopefully be generally available in future Mathematica versions. Another extension of QDENSITY provided here is a mu...
Belaga, Edward G.; Grucker, Daniel
2003-01-01
We briefly summarize here the history, conceptual base, as well as challenges and implications of quantum computing. Then, we present the theoretical requirements for viable quantum computation, as well as thestate-of-the-art experimental approach and a project of solid 129Xe NMR-based quantum computer.
Scheme for Quantum Computing Immune to Decoherence
Williams, Colin; Vatan, Farrokh
2008-01-01
A constructive scheme has been devised to enable mapping of any quantum computation into a spintronic circuit in which the computation is encoded in a basis that is, in principle, immune to quantum decoherence. The scheme is implemented by an algorithm that utilizes multiple physical spins to encode each logical bit in such a way that collective errors affecting all the physical spins do not disturb the logical bit. The scheme is expected to be of use to experimenters working on spintronic implementations of quantum logic. Spintronic computing devices use quantum-mechanical spins (typically, electron spins) to encode logical bits. Bits thus encoded (denoted qubits) are potentially susceptible to errors caused by noise and decoherence. The traditional model of quantum computation is based partly on the assumption that each qubit is implemented by use of a single two-state quantum system, such as an electron or other spin-1.2 particle. It can be surprisingly difficult to achieve certain gate operations . most notably, those of arbitrary 1-qubit gates . in spintronic hardware according to this model. However, ironically, certain 2-qubit interactions (in particular, spin-spin exchange interactions) can be achieved relatively easily in spintronic hardware. Therefore, it would be fortunate if it were possible to implement any 1-qubit gate by use of a spin-spin exchange interaction. While such a direct representation is not possible, it is possible to achieve an arbitrary 1-qubit gate indirectly by means of a sequence of four spin-spin exchange interactions, which could be implemented by use of four exchange gates. Accordingly, the present scheme provides for mapping any 1-qubit gate in the logical basis into an equivalent sequence of at most four spin-spin exchange interactions in the physical (encoded) basis. The complexity of the mathematical derivation of the scheme from basic quantum principles precludes a description within this article; it must suffice to report that the derivation provides explicit constructions for finding the exchange couplings in the physical basis needed to implement any arbitrary 1-qubit gate. These constructions lead to spintronic encodings of quantum logic that are more efficient than those of a previously published scheme that utilizes a universal but fixed set of gates.
Mathematical optics classical, quantum, and computational methods
Lakshminarayanan, Vasudevan
2012-01-01
Going beyond standard introductory texts, Mathematical Optics: Classical, Quantum, and Computational Methods brings together many new mathematical techniques from optical science and engineering research. Profusely illustrated, the book makes the material accessible to students and newcomers to the field. Divided into six parts, the text presents state-of-the-art mathematical methods and applications in classical optics, quantum optics, and image processing. Part I describes the use of phase space concepts to characterize optical beams and the application of dynamic programming in optical wave
Efficiency of open quantum walk implementation of dissipative quantum computing algorithms
Sinayskiy, I.; Petruccione, F.
2014-01-01
An open quantum walk formalism for dissipative quantum computing is presented. The approach is illustrated with the examples of the Toffoli gate and the Quantum Fourier Transform for 3 and 4 qubits. It is shown that the algorithms based on the open quantum walk formalism are more efficient than the canonical dissipative quantum computing approach. In particular, the open quantum walks can be designed to converge faster to the desired steady state and to increase the probabil...
Quantum computation with nuclear spins in quantum dots
International Nuclear Information System (INIS)
The role of nuclear spins for quantum information processing in quantum dots is theoretically investigated in this thesis. Building on the established fact that the most strongly coupled environment for the potential electron spin quantum bit are the surrounding lattice nuclear spins interacting via the hyperfine interaction, we turn this vice into a virtue by designing schemes for harnessing this strong coupling. In this perspective, the ensemble of nuclear spins can be considered an asset, suitable for an active role in quantum information processing due to its intrinsic long coherence times. We present experimentally feasible protocols for the polarization, i.e. initialization, of the nuclear spins and a quantitative solution to our derived master equation. The polarization limiting destructive interference effects, caused by the collective nature of the nuclear coupling to the electron spin, are studied in detail. Efficient ways of mitigating these constraints are presented, demonstrating that highly polarized nuclear ensembles in quantum dots are feasible. At high, but not perfect, polarization of the nuclei the evolution of an electron spin in contact with the spin bath can be efficiently studied by means of a truncation of the Hilbert space. It is shown that the electron spin can function as a mediator of universal quantum gates for collective nuclear spin qubits, yielding a promising architecture for quantum information processing. Furthermore, we show that at high polarization the hyperfine interaction of electron and nuclear spins resembles the celebrated Jaynes-Cummings model of quantum optics. This result opens the door for transfer of knowledge from the mature field of quantum computation with atoms and photons. Additionally, tailored specifically for the quantum dot environment, we propose a novel scheme for the generation of highly squeezed collective nuclear states. Finally we demonstrate that even an unprepared completely mixed nuclear spin ensemble can be utilized for the important task of sequentially generating entanglement between electrons. This is true despite the fact that electrons and nuclei become only very weakly entangled through the hyperfine interaction. Straightforward experimentally feasible protocols for the generation of multipartite entangled (GHZ- and W-)states are presented. (orig.)
Quantum computation with nuclear spins in quantum dots
Energy Technology Data Exchange (ETDEWEB)
Christ, H.
2008-01-24
The role of nuclear spins for quantum information processing in quantum dots is theoretically investigated in this thesis. Building on the established fact that the most strongly coupled environment for the potential electron spin quantum bit are the surrounding lattice nuclear spins interacting via the hyperfine interaction, we turn this vice into a virtue by designing schemes for harnessing this strong coupling. In this perspective, the ensemble of nuclear spins can be considered an asset, suitable for an active role in quantum information processing due to its intrinsic long coherence times. We present experimentally feasible protocols for the polarization, i.e. initialization, of the nuclear spins and a quantitative solution to our derived master equation. The polarization limiting destructive interference effects, caused by the collective nature of the nuclear coupling to the electron spin, are studied in detail. Efficient ways of mitigating these constraints are presented, demonstrating that highly polarized nuclear ensembles in quantum dots are feasible. At high, but not perfect, polarization of the nuclei the evolution of an electron spin in contact with the spin bath can be efficiently studied by means of a truncation of the Hilbert space. It is shown that the electron spin can function as a mediator of universal quantum gates for collective nuclear spin qubits, yielding a promising architecture for quantum information processing. Furthermore, we show that at high polarization the hyperfine interaction of electron and nuclear spins resembles the celebrated Jaynes-Cummings model of quantum optics. This result opens the door for transfer of knowledge from the mature field of quantum computation with atoms and photons. Additionally, tailored specifically for the quantum dot environment, we propose a novel scheme for the generation of highly squeezed collective nuclear states. Finally we demonstrate that even an unprepared completely mixed nuclear spin ensemble can be utilized for the important task of sequentially generating entanglement between electrons. This is true despite the fact that electrons and nuclei become only very weakly entangled through the hyperfine interaction. Straightforward experimentally feasible protocols for the generation of multipartite entangled (GHZ- and W-)states are presented. (orig.)
Non-unitary probabilistic quantum computing circuit and method
Williams, Colin P. (Inventor); Gingrich, Robert M. (Inventor)
2009-01-01
A quantum circuit performing quantum computation in a quantum computer. A chosen transformation of an initial n-qubit state is probabilistically obtained. The circuit comprises a unitary quantum operator obtained from a non-unitary quantum operator, operating on an n-qubit state and an ancilla state. When operation on the ancilla state provides a success condition, computation is stopped. When operation on the ancilla state provides a failure condition, computation is performed again on the ancilla state and the n-qubit state obtained in the previous computation, until a success condition is obtained.
Universal quantum gates for Single Cooper Pair Box based quantum computing
Echternach, P.; Williams, C. P.; Dultz, S. C.; Braunstein, S.; Dowling, J. P.
2000-01-01
We describe a method for achieving arbitrary 1-qubit gates and controlled-NOT gates within the context of the Single Cooper Pair Box (SCB) approach to quantum computing. Such gates are sufficient to support universal quantum computation.
An Introduction to Quantum Computing for Non-Physicists
Rieffel, Eleanor G.; Polak, Wolfgang
1998-01-01
Richard Feynman's observation that quantum mechanical effects could not be simulated efficiently on a computer led to speculation that computation in general could be done more efficiently if it used quantum effects. This speculation appeared justified when Peter Shor described a polynomial time quantum algorithm for factoring integers. In quantum systems, the computational space increases exponentially with the size of the system which enables exponential parallelism. Thi...
Artificial Decoherence and its Suppression in NMR Quantum Computer
Kondo, Yasushi; Nakahara, Mikio; Tanimura, Shogo
2006-01-01
Liquid-state NMR quantum computer has demonstrated the possibility of quantum computation and supported its development. Using NMR quantum computer techniques, we observed phase decoherence under two kinds of artificial noise fields; one a noise with a long period, and the other with shorter random period. The first one models decoherence in a quantum channel while the second one models transverse relaxation. We demonstrated that the bang-bang control suppresses decoherence ...
Gate count estimates for performing quantum chemistry on small quantum computers
Wecker, Dave; Bauer, Bela; Clark, Bryan K.; Hastings, Matthew B.; Troyer, Matthias
2013-01-01
As quantum computing technology improves and quantum computers with a small but non-trivial number of N > 100 qubits appear feasible in the near future the question of possible applications of small quantum computers gains importance. One frequently mentioned application is Feynman's original proposal of simulating quantum systems, and in particular the electronic structure of molecules and materials. In this paper, we analyze the computational requirements for one of the st...
Adiabatic Quantum Computation with Neutral Atoms
Biedermann, Grant
2013-03-01
We are implementing a new platform for adiabatic quantum computation (AQC)[2] based on trapped neutral atoms whose coupling is mediated by the dipole-dipole interactions of Rydberg states. Ground state cesium atoms are dressed by laser fields in a manner conditional on the Rydberg blockade mechanism,[3,4] thereby providing the requisite entangling interactions. As a benchmark we study a Quadratic Unconstrained Binary Optimization (QUBO) problem whose solution is found in the ground state spin configuration of an Ising-like model. In collaboration with Lambert Parazzoli, Sandia National Laboratories; Aaron Hankin, Center for Quantum Information and Control (CQuIC), University of New Mexico; James Chin-Wen Chou, Yuan-Yu Jau, Peter Schwindt, Cort Johnson, and George Burns, Sandia National Laboratories; Tyler Keating, Krittika Goyal, and Ivan Deutsch, Center for Quantum Information and Control (CQuIC), University of New Mexico; and Andrew Landahl, Sandia National Laboratories. We are implementing a new platform for adiabatic quantum computation (AQC)[2] based on trapped neutral atoms whose coupling is mediated by the dipole-dipole interactions of Rydberg states. Ground state cesium atoms are dressed by laser fields in a manner conditional on the Rydberg blockade mechanism,[3,4] thereby providing the requisite entangling interactions. As a benchmark we study a Quadratic Unconstrained Binary Optimization (QUBO) problem whose solution is found in the ground state spin configuration of an Ising-like model. In collaboration with Lambert Parazzoli, Sandia National Laboratories; Aaron Hankin, Center for Quantum Information and Control (CQuIC), University of New Mexico; James Chin-Wen Chou, Yuan-Yu Jau, Peter Schwindt, Cort Johnson, and George Burns, Sandia National Laboratories; Tyler Keating, Krittika Goyal, and Ivan Deutsch, Center for Quantum Information and Control (CQuIC), University of New Mexico; and Andrew Landahl, Sandia National Laboratories. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories
A Rosetta Stone for Quantum Mechanics with an Introduction to Quantum Computation
Lomonaco, S J
2000-01-01
The purpose of these lecture notes is to provide readers, who have some mathematical background but little or no exposure to quantum mechanics and quantum computation, with enough material to begin reading the research literature in quantum computation and quantum information theory. This paper is a written version of the first of eight one hour lectures given in the American Mathematical Society (AMS) Short Course on Quantum Computation held in conjunction with the Annual Meeting of the AMS in Washington, DC, USA in January 2000, and will appear in the AMS PSAPM volume entitled "Quantum Computation." Part 1 of the paper is an introduction the to the concept of the qubit. Part 2 gives an introduction to quantum mechanics covering such topics as Dirac notation, quantum measurement, Heisenberg uncertainty, Schrodinger's equation, density operators, partial trace, multipartite quantum systems, the Heisenberg versus the Schrodinger picture, quantum entanglement, EPR paradox, quantum entropy. Part 3 gives a brief ...
Photonic Quantum Computation with Waveguide-Linked Optical Cavities and Quantum Dots
Yamaguchi, Makoto; Asano, Takashi; Sato, Yoshiya; Noda, Susumu
2011-01-01
We propose a new scheme for solid-state photonic quantum computation in which trapped photons in optical cavities are taken as a quantum bit. Quantum gates can be realized by coupling the cavities with quantum dots through waveguides. The proposed scheme allows programmable and deterministic gate operations and the system can be scaled up to many quantum bits.
Dual-code quantum computation model
Choi, Byung-Soo
2015-08-01
In this work, we propose the dual-code quantum computation model—a fault-tolerant quantum computation scheme which alternates between two different quantum error-correction codes. Since the chosen two codes have different sets of transversal gates, we can implement a universal set of gates transversally, thereby reducing the overall cost. We use code teleportation to convert between quantum states in different codes. The overall cost is decreased if code teleportation requires fewer resources than the fault-tolerant implementation of the non-transversal gate in a specific code. To analyze the cost reduction, we investigate two cases with different base codes, namely the Steane and Bacon-Shor codes. For the Steane code, neither the proposed dual-code model nor another variation of it achieves any cost reduction since the conventional approach is simple. For the Bacon-Shor code, the three proposed variations of the dual-code model reduce the overall cost. However, as the encoding level increases, the cost reduction decreases and becomes negative. Therefore, the proposed dual-code model is advantageous only when the encoding level is low and the cost of the non-transversal gate is relatively high.
Strange attractor simulated on a quantum computer
Terraneo, M; Shepelyansky, D L
2003-01-01
Starting from the work of Lorenz, it has been realized that the dynamics of many various dissipative systems converges to so-called strange attractors. These objects are characterized by fractal dimensions and chaotic unstable dynamics of individual trajectories. They appear in nature in very different contexts, including applications to turbulence and weather forecast, molecular dynamics, chaotic chemical reactions, multimode solid state lasers and complex dynamics in ecological systems and physiology. The efficient numerical simulation of such dissipative systems can therefore lead to many important practical applications. Here we study a simple deterministic model where dynamics converges to a strange attractor, and show that it can be efficiently simulated on a quantum computer. Even if the dynamics on the attractor is unstable, dissipative and irreversible, a realistic quantum computer can simulate it in a reversible way, and, already with 70 qubits, will provide access to new informations unaccessible f...
Quantum computation architecture using optical tweezers
DEFF Research Database (Denmark)
Weitenberg, Christof; Kuhr, Stefan
2011-01-01
We present a complete architecture for scalable quantum computation with ultracold atoms in optical lattices using optical tweezers focused to the size of a lattice spacing. We discuss three different two-qubit gates based on local collisional interactions. The gates between arbitrary qubits require the transport of atoms to neighboring sites. We numerically optimize the nonadiabatic transport of the atoms through the lattice and the intensity ramps of the optical tweezer in order to maximize the gate fidelities. We find overall gate times of a few 100 ?s, while keeping the error probability due to vibrational excitations and spontaneous scattering below 10?3. The requirements on the positioning error and intensity noise of the optical tweezer and the magnetic field stability are analyzed and we show that atoms in optical lattices could meet the requirements for fault-tolerant scalable quantum computing.
A quantum computation architecture using optical tweezers
Weitenberg, Christof; Mølmer, Klaus; Sherson, Jacob F
2011-01-01
We present a complete architecture for scalable quantum computation with ultracold atoms in optical lattices using optical tweezers focused to the size of a lattice spacing. We discuss three different two-qubit gates based on local collisional interactions. The gates between arbitrary qubits require the transport of atoms to neighboring sites. We numerically optimize the non-adiabatic transport of the atoms through the lattice and the intensity ramps of the optical tweezer in order to maximize the gate fidelities. We find overall gate times of a few 100 us, while keeping the error probability due to vibrational excitations and spontaneous scattering below 10^3. The requirements on the positioning error and intensity noise of the optical tweezer and the magnetic field stability are analyzed and we show that atoms in optical lattices could meet the requirements for fault-tolerant scalable quantum computing.
Scalable quantum computer architecture with coupled donor-quantum dot qubits
Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey
2014-08-26
A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.
Data Structures in Classical and Quantum Computing
Fillinger, Maximilian
2013-01-01
This survey summarizes several results about quantum computing related to (mostly static) data structures. First, we describe classical data structures for the set membership and the predecessor search problems: Perfect Hash tables for set membership by Fredman, Koml\\'{o}s and Szemer\\'{e}di and a data structure by Beame and Fich for predecessor search. We also prove results about their space complexity (how many bits are required) and time complexity (how many bits have to b...
Quantum Computer as a Probabilistic Inference Engine
Tucci, Robert R.
2000-01-01
We propose a new class of quantum computing algorithms which generalize many standard ones. The goal of our algorithms is to estimate probability distributions. Such estimates are useful in, for example, applications of Decision Theory and Artificial Intelligence, where inferences are made based on uncertain knowledge. The class of algorithms that we propose is based on a construction method that generalizes a Fredkin-Toffoli (F-T) construction method used in the field of cl...
Brain-Computer Interfaces and Quantum Robots
Pessa, Eliano; zizzi, Paola
2009-01-01
The actual (classical) Brain-Computer Interface attempts to use brain signals to drive suitable actuators performing the actions corresponding to subject's intention. However this goal is not fully reached, and when BCI works, it does only in particular situations. The reason of this unsatisfactory result is that intention cannot be conceived simply as a set of classical input-output relationships. It is therefore necessary to resort to quantum theory, allowing the occurrenc...
Quantum computation: algorithms and implementation in quantum dot devices
Gamble, John King
In this thesis, we explore several aspects of both the software and hardware of quantum computation. First, we examine the computational power of multi-particle quantum random walks in terms of distinguishing mathematical graphs. We study both interacting and non-interacting multi-particle walks on strongly regular graphs, proving some limitations on distinguishing powers and presenting extensive numerical evidence indicative of interactions providing more distinguishing power. We then study the recently proposed adiabatic quantum algorithm for Google PageRank, and show that it exhibits power-law scaling for realistic WWW-like graphs. Turning to hardware, we next analyze the thermal physics of two nearby 2D electron gas (2DEG), and show that an analogue of the Coulomb drag effect exists for heat transfer. In some distance and temperature, this heat transfer is more significant than phonon dissipation channels. After that, we study the dephasing of two-electron states in a single silicon quantum dot. Specifically, we consider dephasing due to the electron-phonon coupling and charge noise, separately treating orbital and valley excitations. In an ideal system, dephasing due to charge noise is strongly suppressed due to a vanishing dipole moment. However, introduction of disorder or anharmonicity leads to large effective dipole moments, and hence possibly strong dephasing. Building on this work, we next consider more realistic systems, including structural disorder systems. We present experiment and theory, which demonstrate energy levels that vary with quantum dot translation, implying a structurally disordered system. Finally, we turn to the issues of valley mixing and valley-orbit hybridization, which occurs due to atomic-scale disorder at quantum well interfaces. We develop a new theoretical approach to study these effects, which we name the disorder-expansion technique. We demonstrate that this method successfully reproduces atomistic tight-binding techniques, while using a fraction of the computational resources and providing considerably more physical insight. Using this technique, we demonstrate that large dipole moments can exist between valley states in disordered systems, and calculate corrections to intervalley tunnel rates..
Universal quantum computation with metaplectic anyons
International Nuclear Information System (INIS)
We show that braidings of the metaplectic anyons X? in SO(3)2 = SU(2)4 with their total charge equal to the metaplectic mode Y supplemented with projective measurements of the total charge of two metaplectic anyons are universal for quantum computation. We conjecture that similar universal anyonic computing models can be constructed for all metaplectic anyon systems SO(p)2 for any odd prime p ? 5. In order to prove universality, we find new conceptually appealing universal gate sets for qutrits and qupits
How detrimental is decoherence in adiabatic quantum computation?
Albash, Tameem
2015-01-01
Recent experiments with increasingly larger numbers of qubits have sparked renewed interest in adiabatic quantum computation, and in particular quantum annealing. A central question that is repeatedly asked is whether quantum features of the evolution can survive over the long time-scales used for quantum annealing relative to standard measures of the decoherence time. We reconsider the role of decoherence in adiabatic quantum computation and quantum annealing using the adiabatic quantum master equation formalism. We restrict ourselves to the weak-coupling and singular-coupling limits, which correspond to decoherence in the energy eigenbasis and in the computational basis, respectively. We demonstrate that decoherence in the instantaneous energy eigenbasis does not necessarily detrimentally affect adiabatic quantum computation, and in particular that a short single-qubit $T_2$ time need not imply adverse consequences for the success of the quantum adiabatic algorithm. We further demonstrate that boundary canc...
The clock of a quantum computer
International Nuclear Information System (INIS)
If the physical agent (the 'pointer', or 'cursor', or 'clocking mechanism') that sequentially scans the T lines of a long computer program is a microscopic system, two quantum phenomena become relevant: spreading of the probability distribution of the pointer along the program lines, and scattering of the probability amplitude at the two endpoints of the physical space allowed for its motion. We show that the first effect determines an upper bound O(T-2/3) on the probability of finding the pointer exactly at the END line. By adding an adequate number ? of further empty lines ('telomers'), one can store the result of the computation up to the moment in which the pointer is scattered back into the active region. This leads to a less severe upper bound O(??/T) on the probability of finding the pointer either at the END line or within the additional empty lines. Our analysis is performed in the context of Feynman's model of quantum computation, the only model, to our knowledge, that explicitly includes a physically plausible quantum clocking mechanism in its considerations
Analog analogue of a digital quantum computation
International Nuclear Information System (INIS)
We solve a problem, which while not fitting into the usual paradigm, can be viewed as a quantum computation. Suppose we are given a quantum system with a Hamiltonian of the form Evertical strokew> is an unknown (normalized) state. The problem is to produce vertical strokew> by adding a Hamiltonian (independent of vertical strokew>) and evolving the system. If vertical strokew> is chosen uniformly at random we can (with high probability) produce vertical strokew> in a time proportional to N1/2/E. If vertical strokew> is instead chosen from a fixed, known orthonormal basis we can also produce vertical strokew> in a time proportional to N1/2/E and we show that this time is optimally short. This restricted problem is an analog analogue to Grover's algorithm, a computation on a conventional (exclamation) quantum computer that locates a marked item from an unsorted list of N items in a number of steps proportional to N1/2. copyright 1998 The American Physical Society
Symmetrically private information retrieval based on blind quantum computing
Sun, Zhiwei; Yu, Jianping; Wang, Ping; Xu, Lingling
2015-05-01
Universal blind quantum computation (UBQC) is a new secure quantum computing protocol which allows a user Alice who does not have any sophisticated quantum technology to delegate her computing to a server Bob without leaking any privacy. Using the features of UBQC, we propose a protocol to achieve symmetrically private information retrieval, which allows a quantum limited Alice to query an item from Bob with a fully fledged quantum computer; meanwhile, the privacy of both parties is preserved. The security of our protocol is based on the assumption that malicious Alice has no quantum computer, which avoids the impossibility proof of Lo. For the honest Alice, she is almost classical and only requires minimal quantum resources to carry out the proposed protocol. Therefore, she does not need any expensive laboratory which can maintain the coherence of complicated quantum experimental setups.
Applications of computational quantum mechanics
Temel, Burcin
This original research dissertation is composed of a new numerical technique based on Chebyshev polynomials that is applied on scattering problems, a phenomenological kinetics study for CO oxidation on RuO2 surface, and an experimental study on methanol coupling with doped metal oxide catalysts. Minimum Error Method (MEM), a least-squares minimization method, provides an efficient and accurate alternative to solve systems of ordinary differential equations. Existing methods usually utilize matrix methods which are computationally costful. MEM, which is based on the Chebyshev polynomials as a basis set, uses the recursion relationships and fast Chebyshev transforms which scale as O(N). For large basis set calculations this provides an enormous computational efficiency in the calculations. Chebyshev polynomials are also able to represent non-periodic problems very accurately. We applied MEM on elastic and inelastic scattering problems: it is more efficient and accurate than traditionally used Kohn variational principle, and it also provides the wave function in the interaction region. Phenomenological kinetics (PK) is widely used in industry to predict the optimum conditions for a chemical reaction. PK neglects the fluctuations, assumes no lateral interactions, and considers an ideal mix of reactants. The rate equations are tested by fitting the rate constants to the results of the experiments. Unfortunately, there are numerous examples where a fitted mechanism was later shown to be erroneous. We have undertaken a thorough comparison between the phenomenological equations and the results of kinetic Monte Carlo (KMC) simulations performed on the same system. The PK equations are qualitatively consistent with the KMC results but are quantitatively erroneous as a result of interplays between the adsorption and desorption events. The experimental study on methanol coupling with doped metal oxide catalysts demonstrates the doped metal oxides as a new class of catalysts with novel properties. Doping a metal oxide may alter its intrinsic properties drastically. A catalytically non-active material can be activated by doping. In this study, we showed that pure zirconia (ZrO2) has almost no activity in methanol coupling reaction, whereas when it is doped with aluminum, the doped catalyst produces dimethyl ether (DME), which is valuable as an alternative future energy source.
Computational costs of data definition at the quantum - classical interface
Fields, Chris
2010-01-01
Model-independent semantic requirements for user specification and interpretation of data before and after quantum computations are characterized. Classical computational costs of assigning classical data values to quantum registers and to run-time parameters passed across a classical-to-quantum application programming interface are derived. It is shown that the classical computational costs of data definition equal or exceed the classical computational cost of solving the p...
Solving Satisfiability Problems by the Ground-State Quantum Computer
Mao, Wenjin
2005-01-01
A quantum algorithm is proposed to solve the Satisfiability problems by the ground-state quantum computer. The scale of the energy gap of the ground-state quantum computer is analyzed for the 3-bit Exact Cover problem. The time cost of this algorithm on the general SAT problems is discussed.
A 2 rebit gate universal for quantum computing
Rudolph, Terry; Grover, Lov
2002-01-01
We show, within the circuit model, how any quantum computation can be efficiently performed using states with only real amplitudes (a result known within the Quantum Turing Machine model). This allows us to identify a 2-qubit (in fact 2-rebit) gate which is universal for quantum computing, although it cannot be used to perform arbitrary unitary transformations.
An Introduction to Quantum Computing using Cavity QED concepts
Burell, Zachary
2012-01-01
We present a concise but complete conceptual treatment of quantum computing implemented with Cavity Quantum Electrodynamics (CQED. The paper is intended as a brief overview for professionals who are coming over to the field from other areas and who may have not discussed the concepts behind quantum computing during their technical training.
Shortening Grover's search algorithm for an expectation value quantum computer
Collins, David
2002-01-01
Quantum algorithms are conventionally formulated for implementation on a single system of qubits amenable to projective measurements. However, in expectation value quantum computation, such as nuclear magnetic resonance realizations, the computer consists of an ensemble of identical qubit-systems amenable only to expectation value measurements. The prevalent strategy in such expectation value implementations of quantum algorithms has been to retain the conventional formulati...
Tuning entanglement in quantum computation and information
Huang, Zhen
This thesis studies four related projects: tuning entanglement for spin systems, de-coherence and dynamics of entanglement, entanglement as measure of electron correlation in chemical systems and quantum algorithms to search for global minima. Chapter 1 presents a general introduction and the motivation for these research areas. It is composed of a brief review of the history and the future of modern computers and the state-of-art areas in quantum computation and information. Chapter 2 will be dedicated to introducing the concept of entanglement, its importance, quantification and applications. Then in Chapter 3, the properties of a set of localized spins, which are coupled to an external magnetic field through exchange interaction, are investigated. It is shown that entanglement can be controlled and tuned by varying the anisotropy parameter in the Hamiltonian, and by introducing impurities into the systems. Furthermore, the scheme for amplifying the internal entanglement by external interaction is also studied. In Chapter 4, the applications of the entanglement concept for de-coherence and dynamics is considered. In particular, the dynamics of entanglement for one-dimensional spin systems, which are coupled through nearest neighbor exchange interaction and subject to an external time-dependent magnetic field, is investigated. Using the two-site density matrix, the time-dependent entanglement of formation between nearest neighbor qubits is calculated. It is found that the entanglement can be localized between nearest neighbor qubits for certain values of the external time-dependent magnetic field. In quantum chemistry calculations, the correlation energy is defined as the difference between the Hartree-Fock limit energy and the exact solution of the non-relativistic Schrodinger equation. In Chapter 5, the application of entanglement as an alternative measure of the electron correlation in quantum chemistry calculations is proposed. Entanglement is directly observable and it is one of the most striking properties of quantum mechanics. Finally, Chapter 6 presents the latest research results in developing quantum algorithms for searching the global minima. In this Chapter, the modified Grover's quantum algorithm using modest numbers of quantum bits to find a global minimum for real problems is demonstrated.
PREFACE: Quantum Information, Communication, Computation and Cryptography
Benatti, F.; Fannes, M.; Floreanini, R.; Petritis, D.
2007-07-01
The application of quantum mechanics to information related fields such as communication, computation and cryptography is a fast growing line of research that has been witnessing an outburst of theoretical and experimental results, with possible practical applications. On the one hand, quantum cryptography with its impact on secrecy of transmission is having its first important actual implementations; on the other hand, the recent advances in quantum optics, ion trapping, BEC manipulation, spin and quantum dot technologies allow us to put to direct test a great deal of theoretical ideas and results. These achievements have stimulated a reborn interest in various aspects of quantum mechanics, creating a unique interplay between physics, both theoretical and experimental, mathematics, information theory and computer science. In view of all these developments, it appeared timely to organize a meeting where graduate students and young researchers could be exposed to the fundamentals of the theory, while senior experts could exchange their latest results. The activity was structured as a school followed by a workshop, and took place at The Abdus Salam International Center for Theoretical Physics (ICTP) and The International School for Advanced Studies (SISSA) in Trieste, Italy, from 12-23 June 2006. The meeting was part of the activity of the Joint European Master Curriculum Development Programme in Quantum Information, Communication, Cryptography and Computation, involving the Universities of Cergy-Pontoise (France), Chania (Greece), Leuven (Belgium), Rennes1 (France) and Trieste (Italy). This special issue of Journal of Physics A: Mathematical and Theoretical collects 22 contributions from well known experts who took part in the workshop. They summarize the present day status of the research in the manifold aspects of quantum information. The issue is opened by two review articles, the first by G Adesso and F Illuminati discussing entanglement in continuous variable systems, the second by T Prosen, discussing chaos and complexity in quantum systems. Both topics have theoretical as well as experimental relevance and are likely to witness a fast growing development in the near future. The remaining contributions present more specific and very recent results. They involve the study of the structure of quantum states and their estimation (B Baumgartner et al, C King et al, S Olivares et al, D Petz et al and W van Dam et al), of entanglement generation and its quantification (G Brida et al, F Ciccarello et al, G Costantini et al, O Romero-Isart et al, D Rossini et al, A Serafini et al and D Vitali et al), of randomness related effects on entanglement behaviour (I Akhalwaya et al, O Dahlsten et al and L Viola et al), and of abstract and applied aspects of quantum computation and communication (K Audenart, G M D'Ariano et al, N Datta et al, L C Kwek et al and M Nathanson et al). We would like to express our gratitude to the European Commission, the Abdus Salam ICTP, SISSA and Eurotech SpA (Amaro, Udine, Italy) for financial and/or logistic support. Special thanks also go to the workshop secretary Marina De Comelli, and the secretaries of the Department of Theoretical Physics, University of Trieste, Sabrina Gaspardis and Rosita Glavina for their precious help and assistance.
Computing the Exit Complexity of Knowledge in Distributed Quantum Computers
Directory of Open Access Journals (Sweden)
M.A.Abbas
2013-01-01
Full Text Available Distributed Quantum computers abide from the exit complexity of the knowledge. The exit complexity is the accrue of the nodal information needed to clarify the total egress system with deference to a distinguished exit node. The core objective of this paper is to compile an arrogant methodology for assessing the exit complexity of the knowledge in distributed quantum computers. The proposed methodology is based on contouring the knowledge using the unlabeled binary trees, hence building an benchmarked and a computer based model. The proposed methodology dramatizes knowledge autocratically calculates the exit complexity. The methodology consists of several amphitheaters, starting with detecting the baron aspect of the tree of others entitled express knowledge and then measure the volume of information and the complexity of behavior destining from the bargain of information. Then calculate egress resulting from episodes that do not lead to the withdrawal of the information. In the end is calculated total egress complexity and then appraised total exit complexity of the system. Given the complexity of the operations within the Distributed Computing Quantity, this research addresses effective transactions that could affect the three-dimensional behavior of knowledge. The results materialized that the best affair where total exit complexity as minimal as possible is a picture of a binary tree is entitled at the rate of positive and negative cardinal points medium value. It could be argued that these cardinal points should not amass the upper bound apex or minimum.
Quantum Computation In The Neuronal Microtubules Quantum Gates, Ordered Water And Superradiance
Georgiev, D D
2002-01-01
Stuart Hameroff and Roger Penrose have widely discussed possible quantum effects in the brain microtubules assuming that computation occurs. However, for now there is no special publication dealing exactly with the problems of quantum gate appliance in the microtubule network, nor the problems of quantum computation are taken into consideration while studying the quantum computation in the neuronal microtubules. It is the essence of the present paper.
Novel systems and methods for quantum communication, quantum computation, and quantum simulation
Gorshkov, Alexey Vyacheslavovich
Precise control over quantum systems can enable the realization of fascinating applications such as powerful computers, secure communication devices, and simulators that can elucidate the physics of complex condensed matter systems. However, the fragility of quantum effects makes it very difficult to harness the power of quantum mechanics. In this thesis, we present novel systems and tools for gaining fundamental insights into the complex quantum world and for bringing practical applications of quantum mechanics closer to reality. We first optimize and show equivalence between a wide range of techniques for storage of photons in atomic ensembles. We describe experiments demonstrating the potential of our optimization algorithms for quantum communication and computation applications. Next, we combine the technique of photon storage with strong atom-atom interactions to propose a robust protocol for implementing the two-qubit photonic phase gate, which is an important ingredient in many quantum computation and communication tasks. In contrast to photon storage, many quantum computation and simulation applications require individual addressing of closely-spaced atoms, ions, quantum dots, or solid state defects. To meet this requirement, we propose a method for coherent optical far-field manipulation of quantum systems with a resolution that is not limited by the wavelength of radiation. While alkali atoms are currently the system of choice for photon storage and many other applications, we develop new methods for quantum information processing and quantum simulation with ultracold alkaline-earth atoms in optical lattices. We show how multiple qubits can be encoded in individual alkaline-earth atoms and harnessed for quantum computing and precision measurements applications. We also demonstrate that alkaline-earth atoms can be used to simulate highly symmetric systems exhibiting spin-orbital interactions and capable of providing valuable insights into strongly correlated physics of transition metal oxides, heavy fermion materials, and spin liquid phases. While ultracold atoms typically exhibit only short-range interactions, numerous exotic phenomena and practical applications require long-range interactions, which can be achieved with ultracold polar molecules. We demonstrate the possibility to engineer a repulsive interaction between polar molecules, which allows for the suppression of inelastic collisions, efficient evaporative cooling, and the creation of novel phases of polar molecules.
Quantum Computation: Particle and Wave Aspects of Algorithms
Patel, Apoorva
2011-01-01
The driving force in the pursuit for quantum computation is the exciting possibility that quantum algorithms can be more efficient than their classical analogues. Research on the subject has unraveled several aspects of how that can happen. Clever quantum algorithms have been discovered in recent years, although not systematically, and the field remains under active investigation. Richard Feynman was one of the pioneers who foresaw the power of quantum computers. In this iss...
Realization of Topological Quantum Computation with surface codes
Kou, Su-Peng
2009-01-01
In this paper, the degenerate ground states of Z2 topological order on a plane with holes (the so-called surface codes) are used as the protected code subspace to build a topological quantum computer by tuning their quantum tunneling effect. Using a designer Hamiltonian - the Kitaev toric-code model as an example, we study quantum tunneling effects of the surface codes and obtain its effective theory. Finally, we show how to do topological quantum computation including the i...
One-Way Quantum Computing in the Optical Frequency Comb
Flammia, Steven T; Pfister, Olivier
2008-01-01
One-way quantum computing allows any quantum algorithm to be implemented easily using just measurements. The difficult part is creating the universal resource, a cluster state, on which the measurements are made. We propose a radically new approach: a scalable method that uses a single, multimode optical parametric oscillator (OPO). The method is very efficient and generates a continuous-variable cluster state, universal for quantum computation, with quantum information encoded in the quadratures of the optical frequency comb of the OPO.
An Overview of Quantum Computing for Technology Managers
Rieffel, Eleanor G.
2008-01-01
Faster algorithms, novel cryptographic mechanisms, and alternative methods of communication become possible when the model underlying information and computation changes from a classical mechanical model to a quantum mechanical one. Quantum algorithms perform a select set of tasks vastly more efficiently than any classical algorithm, but for many tasks it has been proved that quantum algorithms provide no advantage. The breadth of quantum computing applications is still bein...
Automatic quantum computer programming a genetic programming approach
Spector, Lee
2006-01-01
This is an introduction both to quantum computing for non-physicists and to genetic programming for non-computer-scientists. The book explores ways in which genetic programming can support automatic quantum computer programming, offering specific techniques in detail, with examples of their human-competitive performance on real-world problems..
Qcmpi: A Parallel Environment for Quantum Computing
Tabakin, F
2009-01-01
QCMPI is a quantum computer (QC) simulation package written in Fortran 90 with parallel processing capabilities. It is an accessible research tool that permits rapid evaluation of quantum algorithms for a large number of qubits and for various "noise" scenarios. The prime motivation for developing QCMPI is to facilitate numerical examination of not only how QC algorithms work, but also to include noise, decoherence, and attenuation effects and to evaluate the efficacy of error correction schemes. The present work builds on an earlier Mathematica code QDENSITY, which is mainly a pedagogic tool. In QCMPI, the stress is on state vectors, in order to employ a large number of qubits. The parallel processing feature is implemented by using the Message-Passing Interface (MPI) protocol. Codes for Grover's search and Shor's factoring algorithms are provided as examples. A major feature of this work is that concurrent versions of the algorithms can be evaluated with each version subject to alternate noise effects, whic...
Computational intelligence applied to the growth of quantum dots
Singulani, Anderson P.; Vilela Neto, Omar P.; Aurélio Pacheco, Marco C.; Vellasco, Marley B. R.; Pires, Maurício P.; Souza, Patrícia L.
2008-11-01
We apply two computational intelligence techniques, namely, artificial neural network and genetic algorithm to the growth of self-assembled quantum dots. The method relies on an existing database of growth parameters with a resulting quantum dot characteristic to be able to later obtain the growth parameters needed to reach a specific value for such a quantum dot characteristic. The computational techniques were used to associate the growth input parameters with the mean height of the deposited quantum dots. Trends of the quantum dot mean height behavior as a function of growth parameters were correctly predicted and the growth parameters required to minimize the quantum dot mean height were provided.
Computational Role of Collective Tunneling in a Quantum Annealer
Boixo, Sergio; Smelyanskiy, Vadim N.; Shabani, Alireza; Isakov, Sergei V.; Dykman, Mark; Denchev, Vasil S.; Amin, Mohammad; Smirnov, Anatoly; Mohseni, Masoud; Neven, Hartmut
2014-01-01
Quantum tunneling is a phenomenon in which a quantum state traverses energy barriers above the energy of the state itself. Tunneling has been hypothesized as an advantageous physical resource for optimization. Here we present the first experimental evidence of a computational role of multiqubit quantum tunneling in the evolution of a programmable quantum annealer. We develop a theoretical model based on a NIBA Quantum Master Equation to describe the multiqubit dissipative tu...
Quantum Computation: Particle and Wave Aspects of Algorithms
Patel, Apoorva
2011-01-01
The driving force in the pursuit for quantum computation is the exciting possibility that quantum algorithms can be more efficient than their classical analogues. Research on the subject has unraveled several aspects of how that can happen. Clever quantum algorithms have been discovered in recent years, although not systematically, and the field remains under active investigation. Richard Feynman was one of the pioneers who foresaw the power of quantum computers. In this issue dedicated to him, I give an introduction to how particle and wave aspects contribute to the power of quantum computers. Shor's and Grover's algorithms are analysed as examples.
Transitions in the computational power of thermal states for measurement-based quantum computation
Barrett, Sean D; Doherty, Andrew C; Jennings, David; Rudolph, Terry
2008-01-01
The quantum state of a many-body system can serve as a resource for a method of quantum computing based solely on adaptive local measurements. We show that the usefulness of the thermal state of a specific spin-lattice model for measurement-based quantum computing exhibits a transition between two distinct "phases" - one in which every state is a universal resource for quantum computation, and another in which any local measurement sequence can be simulated efficiently on a classical computer. Remarkably, this transition in computational power does not coincide with any phase transition in the underlying model; indeed this model does not possess any phase transitions, classical or quantum.
Spacetime Foam, Holographic Principle, and Black Hole Quantum Computers
Ng, Y. Jack; Dam, H.
2004-01-01
Spacetime foam, also known as quantum foam, has its origin in quantum fluctuations of spacetime. Arguably it is the source of the holographic principle, which severely limits how densely information can be packed in space. Its physics is also intimately linked to that of black holes and computation. In particular, the same underlying physics is shown to govern the computational power of black hole quantum computers.
A graphical approach to measurement-based quantum computing
Duncan, Ross
2012-01-01
Quantum computations are easily represented in the graphical notation known as the ZX-calculus, a.k.a. the red-green calculus. We demonstrate its use in reasoning about measurement-based quantum computing, where the graphical syntax directly captures the structure of the entangled states used to represent computations, and show that the notion of information flow within the entangled states gives rise to rewriting strategies for proving the correctness of quantum programs.
Quantum Computing with an 'Always On' Heisenberg Interaction
Benjamin, SC; Bose, S.(University of Nebraska-Lincoln, Lincoln, U.S.A.)
2002-01-01
Many promising ideas for quantum computing demand the experimental ability to directly switch 'on' and 'off' a physical coupling between the component qubits. This is typically the key difficulty in implementation, and precludes quantum computation in generic solid state systems, where interactions between the constituents are 'always on'. Here we show that quantum computation is possible in strongly coupled (Heisenberg) systems even when the interaction cannot be controlled...
Globally controlled artificial semiconducting molecules as quantum computers
Tribollet, Jerome
2005-01-01
Quantum computers are expected to be considerably more efficient than classical computers for the execution of some specific tasks. The difficulty in the practical implementation of thoose computers is to build a microscopic quantum system that can be controlled at a larger mesoscopic scale. Here I show that vertical lines of donor atoms embedded in an appropriate Zinc Oxide semiconductor structure can constitute artificial molecules that are as many copy of the same quantum...
Simulating chemistry efficiently on fault-tolerant quantum computers
Jones, N. Cody; Whitfield, James D.; McMahon, Peter L.; Yung, Man-Hong; Van Meter, Rodney; Aspuru-Guzik, Alán; Yamamoto, Yoshihisa
2012-01-01
Quantum computers can in principle simulate quantum physics exponentially faster than their classical counterparts, but some technical hurdles remain. Here we consider methods to make proposed chemical simulation algorithms computationally fast on fault-tolerant quantum computers in the circuit model. Fault tolerance constrains the choice of available gates, so that arbitrary gates required for a simulation algorithm must be constructed from sequences of fundamental operatio...
Epistemic quantum computational structures in a Hilbert-space environment
BELTRAMETTI, ENRICO; DALLA CHIARA, MARIA LUISA; GIUNTINI, ROBERTO; LEPORINI, ROBERTO; SERGIOLI, GIUSEPPE
2012-01-01
Quantum computation and quantum computational logics are intrinsically connected with some puzzling epistemic problems. In the framework of a quantum computational approach to epistemic logic we investigate the following question: is it possible to interpret the basic epistemic operations (having information, knowing) as special kinds of Hilbert-space operations? We show that non-trivial knowledge operations cannot be represented by unitary operators. We introduce the notions of strong episte...
Quantum computing accelerator I/O : LDRD 52750 final report.
Energy Technology Data Exchange (ETDEWEB)
Schroeppel, Richard Crabtree; Modine, Normand Arthur; Ganti, Anand; Pierson, Lyndon George; Tigges, Christopher P.
2003-12-01
In a superposition of quantum states, a bit can be in both the states '0' and '1' at the same time. This feature of the quantum bit or qubit has no parallel in classical systems. Currently, quantum computers consisting of 4 to 7 qubits in a 'quantum computing register' have been built. Innovative algorithms suited to quantum computing are now beginning to emerge, applicable to sorting and cryptanalysis, and other applications. A framework for overcoming slightly inaccurate quantum gate interactions and for causing quantum states to survive interactions with surrounding environment is emerging, called quantum error correction. Thus there is the potential for rapid advances in this field. Although quantum information processing can be applied to secure communication links (quantum cryptography) and to crack conventional cryptosystems, the first few computing applications will likely involve a 'quantum computing accelerator' similar to a 'floating point arithmetic accelerator' interfaced to a conventional Von Neumann computer architecture. This research is to develop a roadmap for applying Sandia's capabilities to the solution of some of the problems associated with maintaining quantum information, and with getting data into and out of such a 'quantum computing accelerator'. We propose to focus this work on 'quantum I/O technologies' by applying quantum optics on semiconductor nanostructures to leverage Sandia's expertise in semiconductor microelectronic/photonic fabrication techniques, as well as its expertise in information theory, processing, and algorithms. The work will be guided by understanding of practical requirements of computing and communication architectures. This effort will incorporate ongoing collaboration between 9000, 6000 and 1000 and between junior and senior personnel. Follow-on work to fabricate and evaluate appropriate experimental nano/microstructures will be proposed as a result of this work.
Van Schenk Brill, Kees
2010-01-01
This thesis consists of two parts. I describe an approach for a physical realization of a quantum computer by Nuclear Magnetic Resonance (NMR). I propose a new framework for NMR that gives such a physical realization. I construct a quantum mechanical description of NMR from which I can build the fundamental elementary operators for quantum computation. I describe the experiments that build these operators. I give a polynomial time quantum algorithm to solve simultaneous Pell equations as an e...
Consequences and Limitations of Conventional Computers and their Solutions through Quantum Computers
Directory of Open Access Journals (Sweden)
Nilesh BARDE
2012-08-01
Full Text Available Quantum computer is the current topic of research in the field of computational science, which uses principles of quantum mechanics. Quantum computers will be much more powerful than the classical computer due to its enormous computational speed. Recent developments in quantum computers which are based on the laws of quantum mechanics, shows different ways of performing efficient calculations along with the various results which are not possible on the classical computers in an efficient period of time. One of the most striking results that have obtained on the quantum computers is the prime factorization of the large integer in a polynomial time. The idea of involvement of the quantum mechanics for the computational purpose is outlined briefly in the present work that reflects the importance and advantages of the next generation of the 21st century classical computers, named as quantum computers, in terms of the cost as well as time period required for the computation purpose. Present paper presents a quantum computer simulator for executing the limitations of classical computer with respect to time and the number of digits of a composite integer used for calculating its prime factors.
Control aspects of quantum computing using pure and mixed states.
Schulte-Herbrüggen, Thomas; Marx, Raimund; Fahmy, Amr; Kauffman, Louis; Lomonaco, Samuel; Khaneja, Navin; Glaser, Steffen J
2012-10-13
Steering quantum dynamics such that the target states solve classically hard problems is paramount to quantum simulation and computation. And beyond, quantum control is also essential to pave the way to quantum technologies. Here, important control techniques are reviewed and presented in a unified frame covering quantum computational gate synthesis and spectroscopic state transfer alike. We emphasize that it does not matter whether the quantum states of interest are pure or not. While pure states underly the design of quantum circuits, ensemble mixtures of quantum states can be exploited in a more recent class of algorithms: it is illustrated by characterizing the Jones polynomial in order to distinguish between different (classes of) knots. Further applications include Josephson elements, cavity grids, ion traps and nitrogen vacancy centres in scenarios of closed as well as open quantum systems. PMID:22946034
A Blueprint for a Topologically Fault-tolerant Quantum Computer
Bonderson, Parsa; Freedman, Michael; Nayak, Chetan
2010-01-01
The advancement of information processing into the realm of quantum mechanics promises a transcendence in computational power that will enable problems to be solved which are completely beyond the known abilities of any "classical" computer, including any potential non-quantum technologies the future may bring. However, the fragility of quantum states poses a challenging obstacle for realization of a fault-tolerant quantum computer. The topological approach to quantum computation proposes to surmount this obstacle by using special physical systems -- non-Abelian topologically ordered phases of matter -- that would provide intrinsic fault-tolerance at the hardware level. The so-called "Ising-type" non-Abelian topological order is likely to be physically realized in a number of systems, but it can only provide a universal gate set (a requisite for quantum computation) if one has the ability to perform certain dynamical topology-changing operations on the system. Until now, practical methods of implementing thes...
Computer science approach to quantum control
Energy Technology Data Exchange (ETDEWEB)
Janzing, D.
2006-07-01
Whereas it is obvious that every computation process is a physical process it has hardly been recognized that many complex physical processes bear similarities to computation processes. This is in particular true for the control of physical systems on the nanoscopic level: usually the system can only be accessed via a rather limited set of elementary control operations and for many purposes only a concatenation of a large number of these basic operations will implement the desired process. This concatenation is in many cases quite similar to building complex programs from elementary steps and principles for designing algorithm may thus be a paradigm for designing control processes. For instance, one can decrease the temperature of one part of a molecule by transferring its heat to the remaining part where it is then dissipated to the environment. But the implementation of such a process involves a complex sequence of electromagnetic pulses. This work considers several hypothetical control processes on the nanoscopic level and show their analogy to computation processes. We show that measuring certain types of quantum observables is such a complex task that every instrument that is able to perform it would necessarily be an extremely powerful computer. Likewise, the implementation of a heat engine on the nanoscale requires to process the heat in a way that is similar to information processing and it can be shown that heat engines with maximal efficiency would be powerful computers, too. In the same way as problems in computer science can be classified by complexity classes we can also classify control problems according to their complexity. Moreover, we directly relate these complexity classes for control problems to the classes in computer science. Unifying notions of complexity in computer science and physics has therefore two aspects: on the one hand, computer science methods help to analyze the complexity of physical processes. On the other hand, reasonable definitions of complexity in computer science must be based upon a notion of elementary computation steps that correspond to not too complex real physical processes. This book tries to shed light on both aspects of this unification. (orig.)
Computer science approach to quantum control
International Nuclear Information System (INIS)
Whereas it is obvious that every computation process is a physical process it has hardly been recognized that many complex physical processes bear similarities to computation processes. This is in particular true for the control of physical systems on the nanoscopic level: usually the system can only be accessed via a rather limited set of elementary control operations and for many purposes only a concatenation of a large number of these basic operations will implement the desired process. This concatenation is in many cases quite similar to building complex programs from elementary steps and principles for designing algorithm may thus be a paradigm for designing control processes. For instance, one can decrease the temperature of one part of a molecule by transferring its heat to the remaining part where it is then dissipated to the environment. But the implementation of such a process involves a complex sequence of electromagnetic pulses. This work considers several hypothetical control processes on the nanoscopic level and show their analogy to computation processes. We show that measuring certain types of quantum observables is such a complex task that every instrument that is able to perform it would necessarily be an extremely powerful computer. Likewise, the implementation of a heat engine on the nanoscale requires to process the heat in a way that is similar to information processing and it can be shown that heat engines with maximal efficiency would be powerful computers, too. In the same way as problems in computer science can be classified by complexity classes we can also classify control problems according to their complexity. Moreover, we directly relate these complexity classes for control problems to the classes in computer science. Unifying notions of complexity in computer science and physics has therefore two aspects: on the one hand, computer science methods help to analyze the complexity of physical processes. On the other hand, reasonable definitions of complexity in computer science must be based upon a notion of elementary computation steps that correspond to not too complex real physical processes. This book tries to shed light on both aspects of this unification. (orig.)
Multiple network alignment on quantum computers
Daskin, Anmer; Grama, Ananth; Kais, Sabre
2014-12-01
Comparative analyses of graph-structured datasets underly diverse problems. Examples of these problems include identification of conserved functional components (biochemical interactions) across species, structural similarity of large biomolecules, and recurring patterns of interactions in social networks. A large class of such analyses methods quantify the topological similarity of nodes across networks. The resulting correspondence of nodes across networks, also called node alignment, can be used to identify invariant subgraphs across the input graphs. Given graphs as input, alignment algorithms use topological information to assign a similarity score to each -tuple of nodes, with elements (nodes) drawn from each of the input graphs. Nodes are considered similar if their neighbors are also similar. An alternate, equivalent view of these network alignment algorithms is to consider the Kronecker product of the input graphs and to identify high-ranked nodes in the Kronecker product graph. Conventional methods such as PageRank and HITS (Hypertext-Induced Topic Selection) can be used for this purpose. These methods typically require computation of the principal eigenvector of a suitably modified Kronecker product matrix of the input graphs. We adopt this alternate view of the problem to address the problem of multiple network alignment. Using the phase estimation algorithm, we show that the multiple network alignment problem can be efficiently solved on quantum computers. We characterize the accuracy and performance of our method and show that it can deliver exponential speedups over conventional (non-quantum) methods.
Simulation of Quantum Computation: A deterministic event-based approach
K. Michielsen; De Raedt, K.; Raedt, H. De
2005-01-01
We demonstrate that locally connected networks of machines that have primitive learning capabilities can be used to perform a deterministic, event-based simulation of quantum computation. We present simulation results for basic quantum operations such as the Hadamard and the controlled-NOT gate, and for seven-qubit quantum networks that implement Shor's numbering factoring algorithm.
Preparing projected entangled pair states on a quantum computer
Schwarz, Martin; Temme, Kristan; Verstraete, Frank
2011-01-01
We present a quantum algorithm to prepare injective PEPS on a quantum computer, a class of open tensor networks representing quantum states. The run-time of our algorithm scales polynomially with the inverse of the minimum condition number of the PEPS projectors and, essentially, with the inverse of the spectral gap of the PEPS' parent Hamiltonian.
The sum-over-histories formulation of quantum computing
Rudiak-Gould, Ben
2006-01-01
Since Deutsch (1985), quantum computers have been modeled exclusively in the language of state vectors and the Schroedinger equation. We present a complementary view of quantum circuits inspired by the path integral formalism of quantum mechanics, and examine its application to some simple textbook problems.
Simulation of Electronic Structure Hamiltonians Using Quantum Computers
Whitfield, James D.; Biamonte, Jacob; Aspuru-Guzik, Alán
2010-01-01
Over the last century, a large number of physical and mathematical developments paired with rapidly advancing technology have allowed the field of quantum chemistry to advance dramatically. However, the lack of computationally efficient methods for the exact simulation of quantum systems on classical computers presents a limitation of current computational approaches. We report, in detail, how a set of pre-computed molecular integrals can be used to explicitly create a quant...
Baianu,I C
2004-01-01
The concepts of quantum automata and quantum computation are studied in the context of quantum genetics and genetic networks with nonlinear dynamics. In previous publications (Baianu,1971a, b) the formal concept of quantum automaton and quantum computation, respectively, were introduced and their possible implications for genetic processes and metabolic activities in living cells and organisms were considered. This was followed by a report on quantum and abstract, symbolic computation based on the theory of categories, functors and natural transformations (Baianu,1971b; 1977; 1987; 2004; Baianu et al, 2004). The notions of topological semigroup, quantum automaton, or quantum computer, were then suggested with a view to their potential applications to the analogous simulation of biological systems, and especially genetic activities and nonlinear dynamics in genetic networks. Further, detailed studies of nonlinear dynamics in genetic networks were carried out in categories of n-valued, Lukasiewicz Logic Algebra...
Quantum computing based on space states without charge transfer
Energy Technology Data Exchange (ETDEWEB)
Vyurkov, V., E-mail: vyurkov@ftian.r [Institute of Physics and Technology, Russian Academy of Sciences, Moscow (Russian Federation); Filippov, S., E-mail: sergey.filippov@phystech.ed [Institute of Physics and Technology, Russian Academy of Sciences, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Moscow Region (Russian Federation); Gorelik, L., E-mail: gorelik@chalmers.s [Chalmers University of Technology and Goteborg University, Goteborg (Sweden)
2010-07-19
An implementation of a quantum computer based on space states in double quantum dots is discussed. There is no charge transfer in qubits during a calculation, therefore, uncontrolled entanglement between qubits due to long-range Coulomb interaction is suppressed. Encoding and processing of quantum information is merely performed on symmetric and antisymmetric states of the electron in double quantum dots. Other plausible sources of decoherence caused by interaction with phonons and gates could be substantially suppressed in the structure as well. We also demonstrate how all necessary quantum logic operations, initialization, writing, and read-out could be carried out in the computer.
Surface code quantum computing by lattice surgery
International Nuclear Information System (INIS)
In recent years, surface codes have become a leading method for quantum error correction in theoretical large-scale computational and communications architecture designs. Their comparatively high fault-tolerant thresholds and their natural two-dimensional nearest-neighbour (2DNN) structure make them an obvious choice for large scale designs in experimentally realistic systems. While fundamentally based on the toric code of Kitaev, there are many variants, two of which are the planar- and defect-based codes. Planar codes require fewer qubits to implement (for the same strength of error correction), but are restricted to encoding a single qubit of information. Interactions between encoded qubits are achieved via transversal operations, thus destroying the inherent 2DNN nature of the code. In this paper we introduce a new technique enabling the coupling of two planar codes without transversal operations, maintaining the 2DNN of the encoded computer. Our lattice surgery technique comprises splitting and merging planar code surfaces, and enables us to perform universal quantum computation (including magic state injection) while removing the need for braided logic in a strictly 2DNN design, and hence reduces the overall qubit resources for logic operations. Those resources are further reduced by the use of a rotated lattice for the planar encoding. We show how lattice surgery allows us to distribute encoded GHZ states in a more direct (and overhead friendly) manner, and how a demonstration of an encoded CNOT between two distance-3 logical states is possible with 53 physical qubits, half of that required in any other known construction in 2D. (paper)
Topological quantum computation--from basic concepts to first experiments.
Stern, Ady; Lindner, Netanel H
2013-03-01
Quantum computation requires controlled engineering of quantum states to perform tasks that go beyond those possible with classical computers. Topological quantum computation aims to achieve this goal by using non-Abelian quantum phases of matter. Such phases allow for quantum information to be stored and manipulated in a nonlocal manner, which protects it from imperfections in the implemented protocols and from interactions with the environment. Recently, substantial progress in this field has been made on both theoretical and experimental fronts. We review the basic concepts of non-Abelian phases and their topologically protected use in quantum information processing tasks. We discuss different possible realizations of these concepts in experimentally available solid-state systems, including systems hosting Majorana fermions, their recently proposed fractional counterparts, and non-Abelian quantum Hall states. PMID:23471401
An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation
Gottesman, Daniel
2009-01-01
Quantum states are very delicate, so it is likely some sort of quantum error correction will be necessary to build reliable quantum computers. The theory of quantum error-correcting codes has some close ties to and some striking differences from the theory of classical error-correcting codes. Many quantum codes can be described in terms of the stabilizer of the codewords. The stabilizer is a finite Abelian group, and allows a straightforward characterization of the error-cor...
Enhanced Fault-Tolerant Quantum Computing in d -Level Systems
Campbell, Earl T.
2014-12-01
Error-correcting codes protect quantum information and form the basis of fault-tolerant quantum computing. Leading proposals for fault-tolerant quantum computation require codes with an exceedingly rare property, a transversal non-Clifford gate. Codes with the desired property are presented for d -level qudit systems with prime d . The codes use n =d -1 qudits and can detect up to ˜d /3 errors. We quantify the performance of these codes for one approach to quantum computation known as magic-state distillation. Unlike prior work, we find performance is always enhanced by increasing d .
A Quantum Computer Foundation for the Standard Model and SuperString Theories
Blaha, Stephen
2002-01-01
We show the Standard Model and SuperString Theories can be naturally based on a Quantum Computer foundation. The Standard Model of elementary particles can be viewed as defining a Quantum Computer Grammar and language. A Quantum Computer in a certain limit naturally forms a Superspace upon which Supersymmetry rotations can be defined - a Continuum Quantum Computer. Quantum high-level computer languages such as Quantum C and Quantum Assembly language are also discussed. In th...
The Brain Is both Neurocomputer and Quantum Computer
Hameroff, Stuart R.
2007-01-01
In their article, "Is the Brain a Quantum Computer,?" Litt, Eliasmith, Kroon, Weinstein, and Thagard (2006) criticize the Penrose-Hameroff "Orch OR" quantum computational model of consciousness, arguing instead for neurocomputation as an explanation for mental phenomena. Here I clarify and defend Orch OR, show how Orch OR and neurocomputation are…
Quantum computation of multifractal exponents through the quantum wavelet transform
Garcia-Mata, I.; Giraud, O.; Georgeot, B.
2008-01-01
We study the use of the quantum wavelet transform to extract efficiently information about the multifractal exponents for multifractal quantum states. We show that, combined with quantum simulation algorithms, it enables to build quantum algorithms for multifractal exponents with a polynomial gain compared to classical simulations. Numerical results indicate that a rough estimate of fractality could be obtained exponentially fast. Our findings are relevant e.g. for quantum s...
Measurement-Based Quantum Computing with Valence-Bond-Solids
Kwek, Leong Chuan; Wei, Zhaohui; Zeng, Bei
2011-01-01
Measurement-based quantum computing (MBQC) is a model of quantum computing that proceeds by sequential measurements of individual spins in an entangled resource state. However, it remains a challenge to produce efficiently such resource states. Would it be possible to generate these states by simply cooling a quantum many-body system to its ground state? Cluster states, the canonical resource states for MBQC, do not occur naturally as unique ground states of physical systems...
A Review of Freely Available Quantum Computer Simulation Software
Brandhorst-Satzkorn, Johan
2012-01-01
A study has been made of a few different freely available Quantum Computer simulators. All the simulators tested are available online on their respective websites. A number of tests have been performed to compare the different simulators against each other. Some untested simulators of various programming languages are included to show the diversity of the quantum computer simulator applications. The conclusion of the review is that LibQuantum is the best of the simulators tested because of ea...
Effective Fault-Tolerant Quantum Computation with Slow Measurements
International Nuclear Information System (INIS)
How important is fast measurement for fault-tolerant quantum computation? Using a combination of existing and new ideas, we argue that measurement times as long as even 1000 gate times or more have a very minimal effect on the quantum accuracy threshold. This shows that slow measurement, which appears to be unavoidable in many implementations of quantum computing, poses no essential obstacle to scalability
Finding Matches between Two Databases on a Quantum Computer
Heiligman, M
2000-01-01
Given two unsorted lists each of length N that have a single common entry, a quantum computer can find that matching element with a work factor of $O(N^{3/4}\\log N)$ (measured in quantum memory accesses and accesses to each list). The amount of quantum memory required is $O(N^{1/2})$. The quantum algorithm that accomplishes this consists of an inner Grover search combined with a partial sort all sitting inside of an outer Grover search.
The lambda-q calculus can efficiently simulate quantum computers
Maymin, Philip
1997-01-01
We show that the lambda-q calculus can efficiently simulate quantum Turing machines by showing how the lambda-q calculus can efficiently simulate a class of quantum cellular automaton that are equivalent to quantum Turing machines. We conclude by noting that the lambda-q calculus may be strictly stronger than quantum computers because NP-complete problems such as satisfiability are efficiently solvable in the lambda-q calculus but there is a widespread doubt that they are ef...
QCMPI: A parallel environment for quantum computing
Tabakin, Frank; Juliá-Díaz, Bruno
2009-06-01
QCMPI is a quantum computer (QC) simulation package written in Fortran 90 with parallel processing capabilities. It is an accessible research tool that permits rapid evaluation of quantum algorithms for a large number of qubits and for various "noise" scenarios. The prime motivation for developing QCMPI is to facilitate numerical examination of not only how QC algorithms work, but also to include noise, decoherence, and attenuation effects and to evaluate the efficacy of error correction schemes. The present work builds on an earlier Mathematica code QDENSITY, which is mainly a pedagogic tool. In that earlier work, although the density matrix formulation was featured, the description using state vectors was also provided. In QCMPI, the stress is on state vectors, in order to employ a large number of qubits. The parallel processing feature is implemented by using the Message-Passing Interface (MPI) protocol. A description of how to spread the wave function components over many processors is provided, along with how to efficiently describe the action of general one- and two-qubit operators on these state vectors. These operators include the standard Pauli, Hadamard, CNOT and CPHASE gates and also Quantum Fourier transformation. These operators make up the actions needed in QC. Codes for Grover's search and Shor's factoring algorithms are provided as examples. A major feature of this work is that concurrent versions of the algorithms can be evaluated with each version subject to alternate noise effects, which corresponds to the idea of solving a stochastic Schrödinger equation. The density matrix for the ensemble of such noise cases is constructed using parallel distribution methods to evaluate its eigenvalues and associated entropy. Potential applications of this powerful tool include studies of the stability and correction of QC processes using Hamiltonian based dynamics. Program summaryProgram title: QCMPI Catalogue identifier: AECS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 4866 No. of bytes in distributed program, including test data, etc.: 42 114 Distribution format: tar.gz Programming language: Fortran 90 and MPI Computer: Any system that supports Fortran 90 and MPI Operating system: developed and tested at the Pittsburgh Supercomputer Center, at the Barcelona Supercomputer (BSC/CNS) and on multi-processor Macs and PCs. For cases where distributed density matrix evaluation is invoked, the BLACS and SCALAPACK packages are needed. Has the code been vectorized or parallelized?: Yes Classification: 4.15 External routines: LAPACK, SCALAPACK, BLACS Nature of problem: Analysis of quantum computation algorithms and the effects of noise. Solution method: A Fortran 90/MPI package is provided that contains modular commands to create and analyze quantum circuits. Shor's factorization and Grover's search algorithms are explained in detail. Procedures for distributing state vector amplitudes over processors and for solving concurrent (multiverse) cases with noise effects are implemented. Density matrix and entropy evaluations are provided in both single and parallel versions. Running time: Test run takes less than 1 minute using 2 processors.
The Universe as a Quantum Computer
Gudder, Stan
2014-01-01
This article presents a sequential growth model for the universe that acts like a quantum computer. The basic constituents of the model are a special type of causal set (causet) called a $c$-causet. A $c$-causet is defined to be a causet that is independent of its labeling. We characterize $c$-causets as those causets that form a multipartite graph or equivalently those causets whose elements are comparable whenever their heights are different. We show that a $c$-causet has precisely two $c$-causet offspring. It follows that there are $2^n$ $c$-causets of cardinality $n+1$. This enables us to classify $c$-causets of cardinality $n+1$ in terms of $n$-bits. We then quantize the model by introducing a quantum sequential growth process. This is accomplished by replacing the $n$-bits by $n$-qubits and defining transition amplitudes for the growth transitions. We mainly consider two types of processes called stationary and completely stationary. We show that for stationary processes, the probability operators are t...
Multivariable optimization: Quantum annealing and computation
Mukherjee, S.; Chakrabarti, B. K.
2015-02-01
Recent developments in quantum annealing techniques have been indicating potential advantage of quantum annealing for solving NP-hard optimization problems. In this article we briefly indicate and discuss the beneficial features of quantum annealing techniques and compare them with those of simulated annealing techniques. We then briefly discuss the quantum annealing studies of some model spin glass and kinetically constrained systems.
The 2004 Latsis Symposium: Quantum optics for Communication and Computing
2004-01-01
1-3 March 2004 Ecole Polytechnique Fédérale de Lausanne Auditoire SG1 The field of Quantum Optics covers topics that extend from basic physical concepts, regarding the quantum description of light, matter, and light-matter interaction, to the applications of these concepts in future information and communication technologies. This field is of primary importance for science and society for two reasons. Firstly, it brings a deeper physical understanding of the fundamental aspects of modern quantum physics. Secondly, it offers perspectives for the invention and implementation of new devices and systems in the fields of communications, information management and computing. The themes that will be addressed in the Latsis Symposium on Quantum Optics are quantum communications, quantum computation, and quantum photonic devices. The objective of the symposium is to give an overview of this fascinating and rapidly evolving field. The different talks will establish links between new fundamental ...
The 2004 Latsis Symposium: Quantum optics for Communication and Computing
2004-01-01
1-3 March 2004 Ecole Polytechnique Fédérale de Lausanne Auditoire SG1 The field of Quantum Optics covers topics that extend from basic physical concepts, regarding the quantum description of light, matter, and light-matter interaction, to the applications of these concepts in future information and communication technologies. This field is of primary importance for science and society for two reasons. Firstly, it brings a deeper physical understanding of the fundamental aspects of modern quantum physics. Secondly, it offers perspectives for the invention and implementation of new devices and systems in the fields of communications, information management and computing. The themes that will be addressed in the Latsis Symposium on Quantum Optics are quantum communications, quantum computation, and quantum photonic devices. The objective of the symposium is to give an overview of this fascinating and rapidly evolving field. The different talks will establish links between new fundamental c...
The 2004 Latsis Symposium: Quantum optics for Communication and Computing
2004-01-01
1-3 March 2004 Ecole Polytechnique Fédérale de Lausanne Auditoire SG1 The field of Quantum Optics covers topics that extend from basic physical concepts, regarding the quantum description of light, matter, and light-matter interaction, to the applications of these concepts in future information and communication technologies. This field is of primary importance for science and society for two reasons. Firstly, it brings a deeper physical understanding of the fundamental aspects of modern quantum physics. Secondly, it offers perspectives for the invention and implementation of new devices and systems in the fields of communications, information management and computing. The themes that will be addressed in the Latsis Symposium on Quantum Optics are quantum communications, quantum computation, and quantum photonic devices. The objective of the symposium is to give an overview of this fascinating and rapidly evolving field. The different talks will establish links between new fundamental...
Experimental magic state distillation for fault-tolerant quantum computing.
Souza, Alexandre M; Zhang, Jingfu; Ryan, Colm A; Laflamme, Raymond
2011-01-25
Any physical quantum device for quantum information processing (QIP) is subject to errors in implementation. In order to be reliable and efficient, quantum computers will need error-correcting or error-avoiding methods. Fault-tolerance achieved through quantum error correction will be an integral part of quantum computers. Of the many methods that have been discovered to implement it, a highly successful approach has been to use transversal gates and specific initial states. A critical element for its implementation is the availability of high-fidelity initial states, such as |0? and the 'magic state'. Here, we report an experiment, performed in a nuclear magnetic resonance (NMR) quantum processor, showing sufficient quantum control to improve the fidelity of imperfect initial magic states by distilling five of them into one with higher fidelity. PMID:21266968
Insights into classical irreversible computation using quantum information concepts
Groisman, Berry
2008-01-01
The method of using concepts and insight from quantum information theory in order to solve problems in reversible classical computing (introduced in Ref. [1]) have been generalized to irreversible classical computing. The method have been successfully tested on two computational tasks. Several basic logic gates have been analyzed and the nonlocal content of the associate quantum transformations have been calculated. The results provide us with new interesting insight into th...
Insights into classical irreversible computation using quantum information concepts
Groisman, Berry
2008-01-01
The method of using concepts and insight from quantum information theory in order to solve problems in reversible classical computing (introduced in Ref. [1]) have been generalized to irreversible classical computing. The method have been successfully tested on two computational tasks. Several basic logic gates have been analyzed and the nonlocal content of the associate quantum transformations have been calculated. The results provide us with new interesting insight into the notion of complexity of logic operations.
The Signals and Systems Approach to Quantum Computation
Gadiyar, H G; Padma, R; Sharatchandra, H S
2003-01-01
In this note we point out the fact that the proper conceptual setting of quantum computation is the theory of Linear Time Invariant systems. To convince readers of the utility of the approach, we introduce a new model of computation based on the orthogonal group. This makes the link to traditional electronics engineering clear. We conjecture that the speed up achieved in quantum computation is at the cost of increased circuit complexity.
From transistor to trapped-ion computers for quantum chemistry
M.-H. Yung; J. Casanova; Mezzacapo, A.; J. McClean; Lamata, L.; A. Aspuru-Guzik; Solano, E
2014-01-01
Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for ...
Impossibility of secure cloud quantum computing for classical client
Morimae, Tomoyuki; Koshiba, Takeshi
2014-01-01
The first generation quantum computer will be implemented in the cloud style, since only few groups will be able to access such an expensive and high-maintenance machine. How the privacy of the client can be protected in such a cloud quantum computing? It was theoretically shown [A. Broadbent, J. F. Fitzsimons, and E. Kashefi, Proceedings of the 50th Annual IEEE Symposium on Foundation of Computer Science, 517 (2009)], and experimentally demonstrated [S. Barz, E. Kashefi, A....
Is Quantum Mechanics Falsifiable? A computational perspective on the foundations of Quantum Mechanic
Dorit Aharonov; Umesh Vazirani
2013-01-01
Quantum computation teaches us that quantum mechanics exhibits exponential complexity. We argue that the standard scientific paradigm of "predict and verify" cannot be applied to testing quantum mechanics in this limit of high complexity. We describe how QM can be tested in this regime by extending the usual scientific paradigm to include {\\it interactive experiments}.
A Quantum Full Adder for a Scalable Nuclear Spin Quantum Computer
Berman, G. P.; Doolen, G. D.; Lopez, G. V.; Tsifrinovich, V. I.
2001-01-01
We demonstrate a strategy for implementation a quantum full adder in a spin chain quantum computer. As an example, we simulate a quantum full adder in a chain containing 201 spins. Our simulations also demonstrate how one can minimize errors generated by non-resonant effects.
Using quantum computing algorithms in future satellite communication
Bacsardi, Laszlo
2005-07-01
Since the beginning of long-distance communication, there has been a need to connect telecommunications networks of a country to another. Quantum computing offers revolutionary solutions in the field of computer science, applying the opportunities of quantum physics which are incomparably richer than those of classical physics. Although quantum computers are going to be the tools of the distant future, there already exist algorithms to solve problems which are very difficult to handle with traditional computers. Satellite communication has been used for many years, and nowadays we know its limits. In contrast, quantum computing is a fascinating new and fast improving technology. Therefore, it is indeed fascinating and well worthwhile to examine the relationship of satellite communication and quantum computing. At first, we briefly introduce some important elements of quantum information theory, including the free-space quantum key distribution. The aim is to trace some adoptable algorithms in the communication between the Earth and the satellite and also between satellites. For this reason we try to build a new model for the free-space quantum channel. This is the first report of our simulation project.
On Computational Power of Quantum Read-Once Branching Programs
Directory of Open Access Journals (Sweden)
Farid Ablayev
2011-03-01
Full Text Available In this paper we review our current results concerning the computational power of quantum read-once branching programs. First of all, based on the circuit presentation of quantum branching programs and our variant of quantum fingerprinting technique, we show that any Boolean function with linear polynomial presentation can be computed by a quantum read-once branching program using a relatively small (usually logarithmic in the size of input number of qubits. Then we show that the described class of Boolean functions is closed under the polynomial projections.
Quantum Computer with Mixed States and Four-Valued Logic
Tarasov, Vasily E.
2003-01-01
In this paper we discuss a model of quantum computer in which a state is an operator of density matrix and gates are general quantum operations, not necessarily unitary. A mixed state (operator of density matrix) of n two-level quantum systems is considered as an element of 4^n-dimensional operator Hilbert space (Liouville space). It allows to use a quantum computer model with four-valued logic. The gates of this model are general superoperators which act on n-ququat state. ...
Quantum Computing on Multi-atomic Ensembles in Quantum Electrodynamics Cavity
Ablayev, Farid; Vasiliev, Alexander; Moiseev, Sergey A
2011-01-01
We propose an effective realization of a complete set of elementary quantum gates in the solid-state quantum computer based on the multi-atomic coherent (MAC-) ensembles in the QED cavity. Here, we use the two-ensemble qubit encoding and swapping-based operations that together provide implementation of any encoded single-qubit operation by three elementary gates and the encoded controlled-NOT operation is performed in a single step. This approach simplifies a physical realization of universal quantum computing and adds the immunity to a number of errors. We also demonstrate that the proposed architecture of quantum computer satisfies DiVincenzo criteria.
Logical Interpretation of a Reversible Measurement in Quantum Computing
Battilotti, G; Battilotti, Giulia; Zizzi, Paola
2004-01-01
We give the logical description of a new kind of quantum measurement that is a reversible operation performed by an hypothetical insider observer, or, which is the same, a quantum measurement made in a quantum space background, like the fuzzy sphere. The result is that the non-contradiction and the excluded middle principles are both invalidated, leading to a paraconsistent, symmetric logic. Our conjecture is that, in this setting, one can develop the adequate logic of quantum computing. The role of standard quantum logic is then confined to describe the projective measurement scheme.
Architectural design for a topological cluster state quantum computer
International Nuclear Information System (INIS)
The development of a large scale quantum computer is a highly sought after goal of fundamental research and consequently a highly non-trivial problem. Scalability in quantum information processing is not just a problem of qubit manufacturing and control but it crucially depends on the ability to adapt advanced techniques in quantum information theory, such as error correction, to the experimental restrictions of assembling qubit arrays into the millions. In this paper, we introduce a feasible architectural design for large scale quantum computation in optical systems. We combine the recent developments in topological cluster state computation with the photonic module, a simple chip-based device that can be used as a fundamental building block for a large-scale computer. The integration of the topological cluster model with this comparatively simple operational element addresses many significant issues in scalable computing and leads to a promising modular architecture with complete integration of active error correction, exhibiting high fault-tolerant thresholds.
Barz, Stefanie
2015-04-01
Quantum physics has revolutionized our understanding of information processing and enables computational speed-ups that are unattainable using classical computers. This tutorial reviews the fundamental tools of photonic quantum information processing. The basics of theoretical quantum computing are presented and the quantum circuit model as well as measurement-based models of quantum computing are introduced. Furthermore, it is shown how these concepts can be implemented experimentally using photonic qubits, where information is encoded in the photons’ polarization.
Integrated photonic qubit quantum computing on a superconducting chip
Du, Lianghui; Zhou, Zheng-Wei; Guo, Guang-Can; Zhou, Xingxiang
2009-01-01
We study a quantum computing system using microwave photons in transmission line resonators on a superconducting chip as qubits. We show that all control necessary for quantum computing can be implemented by coupling to Josephson devices on the same chip, and take advantage of their strong inherent nonlinearities to realize qubit interactions. We analyze the gate error rate to demonstrate that our scheme is realistic even for Josephson devices with limited decoherence times. A conceptually innovative solution based on existing technologies, our scheme provides an integrated and scalable approach to the next key milestone for photonic qubit quantum computing.