Li, Shu-Shen; Long, Gui-Lu; Bai, Feng-Shan; Feng, Song-Lin; Zheng, Hou-Zhi
2001-01-01
Quantum computing is a quickly growing research field. This article introduces the basic concepts of quantum computing, recent developments in quantum searching, and decoherence in a possible quantum dot realization.
Jonathan Agbenyega
2004-01-01
This research paper gives an overview of quantum computers - description of their operation, differences between quantum and silicon computers, major construction problems of a quantum computer and many other basic aspects. No special scientific knowledge is necessary for the reader.
Kiili, Markus
2014-01-01
The aim of this thesis was to explain what quantum computing is. The information for the thesis was gathered from books, scientific publications, and news articles. The analysis of the information revealed that quantum computing can be broken down to three areas: theories behind quantum computing explaining the structure of a quantum computer, known quantum algorithms, and the actual physical realizations of a quantum computer. The thesis reveals that moving from classical memor...
Quantum Chaos & Quantum Computers
Shepelyansky, D. L.
2000-01-01
The standard generic quantum computer model is studied analytically and numerically and the border for emergence of quantum chaos, induced by imperfections and residual inter-qubit couplings, is determined. This phenomenon appears in an isolated quantum computer without any external decoherence. The onset of quantum chaos leads to quantum computer hardware melting, strong quantum entropy growth and destruction of computer operability. The time scales for development of quantum chaos and ergod...
1998-01-01
In the last few years, theoretical study of quantum systems serving as computational devices has achieved tremendous progress. We now have strong theoretical evidence that quantum computers, if built, might be used as a dramatically powerful computational tool. This review is about to tell the story of theoretical quantum computation. I left out the developing topic of experimental realizations of the model, and neglected other closely related topics which are quantum information and quantum ...
Quantum computers and quantum computations
Valiev, Kamil' A [Institute of Physics and Technology, Russian Academy of Sciences, Moscow (Russian Federation)
2005-01-31
This review outlines the principles of operation of quantum computers and their elements. The theory of ideal computers that do not interact with the environment and are immune to quantum decohering processes is presented. Decohering processes in quantum computers are investigated. The review considers methods for correcting quantum computing errors arising from the decoherence of the state of the quantum computer, as well as possible methods for the suppression of the decohering processes. A brief enumeration of proposed quantum computer realizations concludes the review. (reviews of topical problems)
Scarani, Valerio
1998-01-01
The main features of quantum computing are described in the framework of spin resonance methods. Stress is put on the fact that quantum computing is in itself nothing but a re-interpretation (fruitful indeed) of well-known concepts. The role of the two basic operations, one-spin rotation and controlled-NOT gates, is analyzed, and some exercises are proposed.
The subject of quantum computing brings together ideas from classical information theory, computer science, and quantum physics. This review aims to summarize not just quantum computing, but the whole subject of quantum information theory. Information can be identified as the most general thing which must propagate from a cause to an effect. It therefore has a fundamentally important role in the science of physics. However, the mathematical treatment of information, especially information processing, is quite recent, dating from the mid-20th century. This has meant that the full significance of information as a basic concept in physics is only now being discovered. This is especially true in quantum mechanics. The theory of quantum information and computing puts this significance on a firm footing, and has led to some profound and exciting new insights into the natural world. Among these are the use of quantum states to permit the secure transmission of classical information (quantum cryptography), the use of quantum entanglement to permit reliable transmission of quantum states (teleportation), the possibility of preserving quantum coherence in the presence of irreversible noise processes (quantum error correction), and the use of controlled quantum evolution for efficient computation (quantum computation). The common theme of all these insights is the use of quantum entanglement as a computational resource. It turns out that information theory and quantum mechanics fit together very well. In order to explain their relationship, this review begins with an introduction to classical information theory and computer science, including Shannon's theorem, error correcting codes, Turing machines and computational complexity. The principles of quantum mechanics are then outlined, and the Einstein, Podolsky and Rosen (EPR) experiment described. The EPR-Bell correlations, and quantum entanglement in general, form the essential new ingredient which distinguishes quantum from classical information theory and, arguably, quantum from classical physics. Basic quantum information ideas are next outlined, including qubits and data compression, quantum gates, the 'no cloning' property and teleportation. Quantum cryptography is briefly sketched. The universal quantum computer (QC) is described, based on the Church-Turing principle and a network model of computation. Algorithms for such a computer are discussed, especially those for finding the period of a function, and searching a random list. Such algorithms prove that a QC of sufficiently precise construction is not only fundamentally different from any computer which can only manipulate classical information, but can compute a small class of functions with greater efficiency. This implies that some important computational tasks are impossible for any device apart from a QC. To build a universal QC is well beyond the abilities of current technology. However, the principles of quantum information physics can be tested on smaller devices. The current experimental situation is reviewed, with emphasis on the linear ion trap, high-Q optical cavities, and nuclear magnetic resonance methods. These allow coherent control in a Hilbert space of eight dimensions (three qubits) and should be extendable up to a thousand or more dimensions (10 qubits). Among other things, these systems will allow the feasibility of quantum computing to be assessed. In fact such experiments are so difficult that it seemed likely until recently that a practically useful QC (requiring, say, 1000 qubits) was actually ruled out by considerations of experimental imprecision and the unavoidable coupling between any system and its environment. However, a further fundamental part of quantum information physics provides a solution to this impasse. This is quantum error correction (QEC). An introduction to QEC is provided. The evolution of the QC is restricted to a carefully chosen subspace of its Hilbert space. Errors are almost certain to cause a departure from this subspace. QEC provides a means to detect and undo such departures without upsetting the quantum computation. This achieves the apparently impossible, since the computation preserves quantum coherence even though during its course all the qubits in the computer will have relaxed spontaneously many times. The review concludes with an outline of the main features of quantum information physics and avenues for future research. (author)
Eisert, J.; Wolf, M. M.
2004-01-01
This article gives an elementary introduction to quantum computing. It is a draft for a book chapter of the "Handbook of Nature-Inspired and Innovative Computing", Eds. A. Zomaya, G.J. Milburn, J. Dongarra, D. Bader, R. Brent, M. Eshaghian-Wilner, F. Seredynski (Springer, Berlin Heidelberg New York, 2006).
Quantum Computation and Quantum Information
Wang, Yazhen
2012-01-01
Quantum computation and quantum information are of great current interest in computer science, mathematics, physical sciences and engineering. They will likely lead to a new wave of technological innovations in communication, computation and cryptography. As the theory of quantum physics is fundamentally stochastic, randomness and uncertainty are deeply rooted in quantum computation, quantum simulation and quantum information. Consequently quantum algorithms are random in nature, and quantum ...
Unconventional Quantum Computing Devices
Lloyd, Seth
2000-01-01
This paper investigates a variety of unconventional quantum computation devices, including fermionic quantum computers and computers that exploit nonlinear quantum mechanics. It is shown that unconventional quantum computing devices can in principle compute some quantities more rapidly than `conventional' quantum computers.
Requirement for quantum computation
Bartlett, Stephen D.; Sanders, Barry C
2003-01-01
We identify "proper quantum computation" with computational processes that cannot be efficiently simulated on a classical computer. For optical quantum computation, we establish "no-go" theorems for classes of quantum optical experiments that cannot yield proper quantum computation, and we identify requirements for optical proper quantum computation that correspond to violations of assumptions underpinning the no-go theorems.
Quantum information and computation
Bub, Jeffrey
2005-01-01
This article deals with theoretical developments in the subject of quantum information and quantum computation, and includes an overview of classical information and some relevant quantum mechanics. The discussion covers topics in quantum communication, quantum cryptography, and quantum computation, and concludes by considering whether a perspective in terms of quantum information sheds new light on the conceptual problems of quantum mechanics.
Kendon, Viv [School of Physics and Astronomy, University of Leeds, LS2 9JT (United Kingdom)
2014-12-04
Quantum versions of random walks have diverse applications that are motivating experimental implementations as well as theoretical studies. Recent results showing quantum walks are universal for quantum computation relate to algorithms, to be run on quantum computers. We consider whether an experimental implementation of a quantum walk could provide useful computation before we have a universal quantum computer.
Quantum Computational Complexity
Watrous, John
2008-01-01
This article surveys quantum computational complexity, with a focus on three fundamental notions: polynomial-time quantum computations, the efficient verification of quantum proofs, and quantum interactive proof systems. Properties of quantum complexity classes based on these notions, such as BQP, QMA, and QIP, are presented. Other topics in quantum complexity, including quantum advice, space-bounded quantum computation, and bounded-depth quantum circuits, are also discussed.
Quantum versions of random walks have diverse applications that are motivating experimental implementations as well as theoretical studies. Recent results showing quantum walks are “universal for quantum computation” relate to algorithms, to be run on quantum computers. We consider whether an experimental implementation of a quantum walk could provide useful computation before we have a universal quantum computer
Quantum Robots and Quantum Computers
Benioff, Paul
1997-01-01
Validation of a presumably universal theory, such as quantum mechanics, requires a quantum mechanical description of systems that carry out theoretical calculations and experiments. The description of quantum computers is under active development. No description of systems to carry out experiments has been given. A small step in this direction is taken here by giving a description of quantum robots as mobile systems with on board quantum computers that interact with environments. Some propert...
Kendon, Vivien M; Nemoto, Kae; Munro, William J.
2010-01-01
We briefly review what a quantum computer is, what it promises to do for us, and why it is so hard to build one. Among the first applications anticipated to bear fruit is quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data is encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilb...
Automata and Quantum Computing
Ambainis, Andris; Yakaryilmaz, Abuzer
2015-01-01
Quantum computing is a new model of computation, based on quantum physics. Quantum computers can be exponentially faster than conventional computers for problems such as factoring. Besides full-scale quantum computers, more restricted models such as quantum versions of finite automata have been studied. In this paper, we survey various models of quantum finite automata and their properties. We also provide some open questions and new directions for researchers.
Quantum Computer Games: Quantum Minesweeper
Gordon, Michal; Gordon, Goren
2010-01-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical
Quantum Computer Games: Quantum Minesweeper
Gordon, Michal; Gordon, Goren
2010-01-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…
Physics of quantum computation
In the paper, the modern status of the theory of quantum computation is considered. The fundamental principles of quantum computers and their basic notions such as quantum processors and computational basis states of the quantum Turing machine as well as the quantum Fourier transform are discussed. Some possible experimental realizations on the basis of NMR methods are given
Quantum Computing for Computer Architects
Metodi, Tzvetan
2011-01-01
Quantum computers can (in theory) solve certain problems far faster than a classical computer running any known classical algorithm. While existing technologies for building quantum computers are in their infancy, it is not too early to consider their scalability and reliability in the context of the design of large-scale quantum computers. To architect such systems, one must understand what it takes to design and model a balanced, fault-tolerant quantum computer architecture. The goal of this lecture is to provide architectural abstractions for the design of a quantum computer and to explore
Quantum Logic and Quantum Computation
Pavicic, Mladen; Megill, Norman D.
2008-01-01
We use classes of Hilbert lattice equations for an alternative representation of Hilbert lattices and Hilbert spaces of arbitrary quantum systems that might enable a direct introduction of the states of the systems into quantum computers. More specifically, we look for a way to feed a quantum computer with algebraic equations of n-th order underlying an infinite dimensional Hilbert space description of quantum systems. A number of new results on states defined on Hilbert lattices are presente...
De Raedt, Hans; Hams, Anthony; Michielsen, Kristel; De Raedt, Koen
1999-01-01
We describe a quantum computer emulator for a generic, general purpose quantum computer. This emulator consists of a simulator of the physical realization of the quantum computer and a graphical user interface to program and control the simulator. We illustrate the use of the quantum computer emulator through various implementations of the Deutsch-Jozsa and Grover's database search algorithm.
Lloyd, Seth
2000-01-01
Necessary and sufficient conditions are given for the construction of a hybrid quantum computer that operates on both continuous and discrete quantum variables. Such hybrid computers are shown to be more efficient than conventional quantum computers for performing a variety of quantum algorithms, such as computing eigenvectors and eigenvalues.
Quantum robots and quantum computers
Benioff, P.
1998-07-01
Validation of a presumably universal theory, such as quantum mechanics, requires a quantum mechanical description of systems that carry out theoretical calculations and systems that carry out experiments. The description of quantum computers is under active development. No description of systems to carry out experiments has been given. A small step in this direction is taken here by giving a description of quantum robots as mobile systems with on board quantum computers that interact with different environments. Some properties of these systems are discussed. A specific model based on the literature descriptions of quantum Turing machines is presented.
Prashant Anil Patil
2012-04-01
Full Text Available This paper gives the detailed information about Quantum computer, and difference between quantum computer and traditional computers, the basis of Quantum computers which are slightly similar but still different from traditional computer. Many research groups are working towards the highly technological goal of building a quantum computer, which would dramatically improve computational power for particular tasks. Quantum computer is very much use full for computation purpose in field of Science and Research. Large amount of data and information will be computed, processing, storing, retrieving, transmitting and displaying information in less time with that much of accuracy which is not provided by traditional computers.
Quantum Computing:. AN Overview
Nakahara, Mikio
2008-04-01
Elements of quantum computing and quantum infromation processing are introduced for nonspecialists. Subjects inclulde quantum physics, qubits, quantum gates, quantum algorithms, decoherece, quantum error correcting codes and physical realizations. Presentations of these subjects are as pedagogical as possible. Some sections are meant to be brief introductions to contributions by other lecturers.
Kendon, Vivien M; Munro, William J
2010-01-01
We briefly review what a quantum computer is, what it promises to do for us, and why it is so hard to build one. Among the first applications anticipated to bear fruit is quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data is encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data is encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue compute...
Integrable Quantum Computation
Zhang, Yong
2011-01-01
Integrable quantum computation is defined as quantum computing via the integrable condition, in which two-qubit gates are either nontrivial unitary solutions of the Yang--Baxter equation or the Swap gate (permutation). To make the definition clear, in this article, we explore the physics underlying the quantum circuit model, and then present a unified description on both quantum computing via the Bethe ansatz and quantum computing via the Yang--Baxter equation.
Quantum Computers and Quantum Coherence
DiVincenzo, D. P.; Loss, D.
1999-01-01
If the states of spins in solids can be created, manipulated, and measured at the single-quantum level, an entirely new form of information processing, quantum computing, will be possible. We first give an overview of quantum information processing, showing that the famous Shor speedup of integer factoring is just one of a host of important applications for qubits, including cryptography, counterfeit protection, channel capacity enhancement, distributed computing, and others. We review our pr...
DiVincenzo, David P.
1996-01-01
I provide an introduction to quantum computers, describing how they might be realized using language accessible to a solid state physicist. A listing of the minimal requirements for creating a quantum computer is given. I also discuss several recent developments in the area of quantum error correction, a subject of importance not only to quantum computation, but also to some aspects of the foundations of quantum theory.
Quantum computing and spintronics
Tentative to build a computer, which can operate according to the quantum laws, has leaded to concept of quantum computing algorithms and hardware. In this review we highlight recent developments which point the way to quantum computing on the basis solid state nanostructures after some general considerations concerning quantum information science and introducing a set of basic requirements for any quantum computer proposal. One of the major direction of research on the way to quantum computing is to exploit the spin (in addition to the orbital) degree of freedom of the electron, giving birth to the field of spintronics. We address some semiconductor approach based on spin orbit coupling in semiconductor nanostructures. (authors)
Searching with Quantum Computers
Grover, Lov K.
2000-01-01
This article introduces quantum computation by analogy with probabilistic computation. A basic description of the quantum search algorithm is given by representing the algorithm as a C program in a novel way.
Quantum information. Teleporation - cryptography - quantum computer
The following topics are dealt with: Reality in the test house, quantum teleportation, 100 years of quantum theory, the reality of quanta, interactionless quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view into the future of quantum optics. (HSI)
Introduction to Quantum Computation
Ekert, A.
A computation is a physical process. It may be performed by a piece of electronics or on an abacus, or in your brain, but it is a process that takes place in nature and as such it is subject to the laws of physics. Quantum computers are machines that rely on characteristically quantum phenomena, such as quantum interference and quantum entanglement in order to perform computation. In this series of lectures I want to elaborate on the computational power of such machines.
Uncertainty In Quantum Computation
Kak, Subhash
2002-01-01
We examine the effect of previous history on starting a computation on a quantum computer. Specifically, we assume that the quantum register has some unknown state on it, and it is required that this state be cleared and replaced by a specific superposition state without any phase uncertainty, as needed by quantum algorithms. We show that, in general, this task is computationally impossible.
Kendon, Vivien M; Nemoto, Kae; Munro, William J
2010-08-13
We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future. PMID:20603371
Algorithms for Quantum Computers
Smith, Jamie; Mosca, Michele
2010-01-01
This paper surveys the field of quantum computer algorithms. It gives a taste of both the breadth and the depth of the known algorithms for quantum computers, focusing on some of the more recent results. It begins with a brief review of quantum Fourier transform based algorithms, followed by quantum searching and some of its early generalizations. It continues with a more in-depth description of two more recent developments: algorithms developed in the quantum walk paradigm, followed by tenso...
Scalable optical quantum computer
Manykin, E A; Mel' nichenko, E V [Institute for Superconductivity and Solid-State Physics, Russian Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)
2014-12-31
A way of designing a scalable optical quantum computer based on the photon echo effect is proposed. Individual rare earth ions Pr{sup 3+}, regularly located in the lattice of the orthosilicate (Y{sub 2}SiO{sub 5}) crystal, are suggested to be used as optical qubits. Operations with qubits are performed using coherent and incoherent laser pulses. The operation protocol includes both the method of measurement-based quantum computations and the technique of optical computations. Modern hybrid photon echo protocols, which provide a sufficient quantum efficiency when reading recorded states, are considered as most promising for quantum computations and communications. (quantum computer)
Scalable optical quantum computer
A way of designing a scalable optical quantum computer based on the photon echo effect is proposed. Individual rare earth ions Pr3+, regularly located in the lattice of the orthosilicate (Y2SiO5) crystal, are suggested to be used as optical qubits. Operations with qubits are performed using coherent and incoherent laser pulses. The operation protocol includes both the method of measurement-based quantum computations and the technique of optical computations. Modern hybrid photon echo protocols, which provide a sufficient quantum efficiency when reading recorded states, are considered as most promising for quantum computations and communications. (quantum computer)
'Photosynthetic' Quantum Computers?
Hitchcock, Scott M.
2001-01-01
Do quantum computers already exist in Nature? It is proposed that they do. Photosynthesis is one example in which a 'quantum computer' component may play a role in the 'classical' world of complex biological systems. A 'translation' of the standard metabolic description of the 'front-end' light harvesting complex in photosynthesis into the language of quantum computers is presented. Biological systems represent an untapped resource for thinking about the design and operation of hybrid quantum...
Quantum computer games: quantum minesweeper
Gordon, Michal; Gordon, Goren
2010-07-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical minesweeper the goal of the game is to discover all the mines laid out on a board without triggering them, in the quantum version there are several classical boards in superposition. The goal is to know the exact quantum state, i.e. the precise layout of all the mines in all the superposed classical boards. The player can perform three types of measurement: a classical measurement that probabilistically collapses the superposition; a quantum interaction-free measurement that can detect a mine without triggering it; and an entanglement measurement that provides non-local information. The application of the concepts taught by quantum minesweeper to one-way quantum computing are also presented.
Quantum computation as geometry.
Nielsen, Michael A; Dowling, Mark R; Gu, Mile; Doherty, Andrew C
2006-02-24
Quantum computers hold great promise for solving interesting computational problems, but it remains a challenge to find efficient quantum circuits that can perform these complicated tasks. Here we show that finding optimal quantum circuits is essentially equivalent to finding the shortest path between two points in a certain curved geometry. By recasting the problem of finding quantum circuits as a geometric problem, we open up the possibility of using the mathematical techniques of Riemannian geometry to suggest new quantum algorithms or to prove limitations on the power of quantum computers. PMID:16497928
Volovich, I. V.
1999-01-01
The current proposals for the realization of quantum computer such as NMR, quantum dots and trapped ions are based on the using of an atom or an ion as one qubit. In these proposals a quantum computer consists from several atoms and the coupling between them provides the coupling between qubits necessary for a quantum gate. We discuss whether a {\\it single} atom can be used as a quantum computer. Internal states of the atom serve to hold the quantum information and the spin-orbit and spin-spi...
Quantum information. Teleportation - cryptography - quantum computer
The following topics are dealt with: Reality in the test facility, quantum teleportation, the reality of quanta, interaction-free quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view in the future of quantum optics. (HSI)
Fujii, Toshiyuki; Matsuo, Shigemasa; Hatakenaka, Noriyuki
2009-01-01
We propose a fluxon-controlled quantum computer incorporated with three-qubit quantum error correction using special gate operations, i.e., joint-phase and SWAP gate operations, inherent in capacitively coupled superconducting flux qubits. The proposed quantum computer acts exactly like a knitting machine at home.
Quantum Computers and Dissipation
Palma, G. Massimo; Suominen, Kalle-Antti; Ekert, Artur K.
1997-01-01
We analyse dissipation in quantum computation and its destructive impact on efficiency of quantum algorithms. Using a general model of decoherence, we study the time evolution of a quantum register of arbitrary length coupled with an environment of arbitrary coherence length. We discuss relations between decoherence and computational complexity and show that the quantum factorization algorithm must be modified in order to be regarded as efficient and realistic.
Quantum Computing since Democritus
Aaronson, Scott
2013-03-01
1. Atoms and the void; 2. Sets; 3. Gödel, Turing, and friends; 4. Minds and machines; 5. Paleocomplexity; 6. P, NP, and friends; 7. Randomness; 8. Crypto; 9. Quantum; 10. Quantum computing; 11. Penrose; 12. Decoherence and hidden variables; 13. Proofs; 14. How big are quantum states?; 15. Skepticism of quantum computing; 16. Learning; 17. Interactive proofs and more; 18. Fun with the Anthropic Principle; 19. Free will; 20. Time travel; 21. Cosmology and complexity; 22. Ask me anything.
Quantum computing classical physics.
Meyer, David A
2002-03-15
In the past decade, quantum algorithms have been found which outperform the best classical solutions known for certain classical problems as well as the best classical methods known for simulation of certain quantum systems. This suggests that they may also speed up the simulation of some classical systems. I describe one class of discrete quantum algorithms which do so--quantum lattice-gas automata--and show how to implement them efficiently on standard quantum computers. PMID:16210187
Crutchfield, James P; Wiesner, Karoline
2006-01-01
We introduce ways to measure information storage in quantum systems, using a recently introduced computation-theoretic model that accounts for measurement effects. The first, the quantum excess entropy, quantifies the shared information between a quantum process's past and its future. The second, the quantum transient information, determines the difficulty with which an observer comes to know the internal state of a quantum process through measurements. We contrast these with von Neumann entr...
Knill, E.; Laflamme, R.; Zurek, W.H. [Los Alamos National Lab., NM (United States)
1998-01-16
Practical realization of quantum computers will require overcoming decoherence and operational errors, which lead to problems that are more severe than in classical computation. It is shown that arbitrarily accurate quantum computation is possible provided that the error per operation is below a threshold value. 36 refs., 1 fig.
Quantum Computation and Quantum Spin Dynamics
De Raedt, Hans; Michielsen, Kristel; Hams, Anthony; Miyashita, Seiji; Saito, Keiji
2001-01-01
We analyze the stability of quantum computations on physically realizable quantum computers by simulating quantum spin models representing quantum computer hardware. Examples of logically identical implementations of the controlled-NOT operation are used to demonstrate that the results of a quantum computation are unstable with respect to the physical realization of the quantum computer. We discuss the origin of these instabilities and discuss possibilities to overcome this, for practical pur...
Barenco, Adriano
1996-01-01
Recent theoretical results confirm that quantum theory provides the possibility of new ways of performing efficient calculations. The most striking example is the factoring problem. It has recently been shown that computers that exploit quantum features could factor large composite integers. This task is believed to be out of reach of classical computers as soon as the number of digits in the number to factor exceeds a certain limit. The additional power of quantum computers comes from the po...
Scalable optical quantum computer
Manykin, E. A.; Mel'nichenko, E. V.
2014-12-01
A way of designing a scalable optical quantum computer based on the photon echo effect is proposed. Individual rare earth ions Pr3+, regularly located in the lattice of the orthosilicate (Y2SiO5) crystal, are suggested to be used as optical qubits. Operations with qubits are performed using coherent and incoherent laser pulses. The operation protocol includes both the method of measurement-based quantum computations and the technique of optical computations. Modern hybrid photon echo protocols, which provide a sufficient quantum efficiency when reading recorded states, are considered as most promising for quantum computations and communications.
Lanzagorta, Marco
2009-01-01
In this text we present a technical overview of the emerging field of quantum computation along with new research results by the authors. What distinguishes our presentation from that of others is our focus on the relationship between quantum computation and computer science. Specifically, our emphasis is on the computational model of quantum computing rather than on the engineering issues associated with its physical implementation. We adopt this approach for the same reason that a book on computer programming doesn't cover the theory and physical realization of semiconductors. Another distin
Explorations in quantum computing
Williams, Colin P
2011-01-01
By the year 2020, the basic memory components of a computer will be the size of individual atoms. At such scales, the current theory of computation will become invalid. ""Quantum computing"" is reinventing the foundations of computer science and information theory in a way that is consistent with quantum physics - the most accurate model of reality currently known. Remarkably, this theory predicts that quantum computers can perform certain tasks breathtakingly faster than classical computers -- and, better yet, can accomplish mind-boggling feats such as teleporting information, breaking suppos
Dissipative quantum computing with open quantum walks
An open quantum walk approach to the implementation of a dissipative quantum computing scheme is presented. The formalism is demonstrated for the example of an open quantum walk implementation of a 3 qubit quantum circuit consisting of 10 gates
Duality and Recycling Computing in Quantum Computers
Long, Gui Lu; Yang LIU
2007-01-01
Quantum computer possesses quantum parallelism and offers great computing power over classical computer \\cite{er1,er2}. As is well-know, a moving quantum object passing through a double-slit exhibits particle wave duality. A quantum computer is static and lacks this duality property. The recently proposed duality computer has exploited this particle wave duality property, and it may offer additional computing power \\cite{r1}. Simply put it, a duality computer is a moving quantum computer pass...
Preskill, John
1997-01-01
The new field of quantum error correction has developed spectacularly since its origin less than two years ago. Encoded quantum information can be protected from errors that arise due to uncontrolled interactions with the environment. Recovery from errors can work effectively even if occasional mistakes occur during the recovery procedure. Furthermore, encoded quantum information can be processed without serious propagation of errors. Hence, an arbitrarily long quantum computation can be perf...
Zak, M.
1998-01-01
Quantum analog computing is based upon similarity between mathematical formalism of quantum mechanics and phenomena to be computed. It exploits a dynamical convergence of several competing phenomena to an attractor which can represent an externum of a function, an image, a solution to a system of ODE, or a stochastic process.
High Performance Quantum Computing
Simon J. Devitt; Munro, William J; Nemoto, Kae
2008-01-01
The architecture scalability afforded by recent proposals of a large scale photonic based quantum computer, utilizing the theoretical developments of topological cluster states and the photonic chip, allows us to move on to a discussion of massively scaled Quantum Information Processing (QIP). In this letter we introduce the model for a secure and unsecured topological cluster mainframe. We consider the quantum analogue of High Performance Computing, where a dedicated server farm is utilized ...
Quantum computing with trapped ions
Haeffner, H.; Roos, C. F.; Blatt, R.
2008-01-01
Quantum computers hold the promise to solve certain computational task much more efficiently than classical computers. We review the recent experimental advancements towards a quantum computer with trapped ions. In particular, various implementations of qubits, quantum gates and some key experiments are discussed. Furthermore, we review some implementations of quantum algorithms such as a deterministic teleportation of quantum information and an error correction scheme.
Digital computers are machines that can be programmed to perform logical and arithmetical operations. Contemporary digital computers are ''universal,'' in the sense that a program that runs on one computer can, if properly compiled, run on any other computer that has access to enough memory space and time. Any one universal computer can simulate the operation of any other; and the set of tasks that any such machine can perform is common to all universal machines. Since Bennett's discovery that computation can be carried out in a non-dissipative fashion, a number of Hamiltonian quantum-mechanical systems have been proposed whose time-evolutions over discrete intervals are equivalent to those of specific universal computers. The first quantum-mechanical treatment of computers was given by Benioff, who exhibited a Hamiltonian system with a basis whose members corresponded to the logical states of a Turing machine. In order to make the Hamiltonian local, in the sense that its structure depended only on the part of the computation being performed at that time, Benioff found it necessary to make the Hamiltonian time-dependent. Feynman discovered a way to make the computational Hamiltonian both local and time-independent by incorporating the direction of computation in the initial condition. In Feynman's quantum computer, the program is a carefully prepared wave packet that propagates through different computational states. Deutsch presented a quantum computer that exploits the possibility of existing in a superposition of computational states to perform tasks that a classical computer cannot, such as generating purely random numbers, and carrying out superpositions of computations as a method of parallel processing. In this paper, we show that such computers, by virtue of their common function, possess a common form for their quantum dynamics
Finkelstein, David Ritz
2012-01-01
Set theory reduces all processes to assembly and disassembly. A similar architecture is proposed for nature as quantum computer. It resolves the classical space-time underlying Feynman diagrams into a quantum network of creation and annihilation processes, reducing kinematics to quantum statistics, and regularizing the Lie algebra of the Einstein diffeomorphism group. The usually separate and singular Lie algebras of kinematics, statistics, and conserved currents merge into one regular statistics Lie algebra.
Quantum computing with trapped ions
Hughes, R.J.
1998-01-01
The significance of quantum computation for cryptography is discussed. Following a brief survey of the requirements for quantum computational hardware, an overview of the ion trap quantum computation project at Los Alamos is presented. The physical limitations to quantum computation with trapped ions are analyzed and an assessment of the computational potential of the technology is made.
This paper reports that current conceptions of quantum mechanical computers inherit from conventional digital machines two apparently interacting features, machine imperfection and temporal development of the computational process. On account of machine imperfection, the process would become ideally reversible only in the limiting case of zero speed. Therefore the process is irreversible in practice and cannot be considered to be a fundamental quantum one. By giving up classical features and using a linear, reversible and non-sequential representation of the computational process - not realizable in classical machines - the process can be identified with the mathematical form of a quantum steady state. This form of steady quantum computation would seem to have an important bearing on the notion of cognition
Castagnoli, G. (Dipt. di Informatica, Sistemistica, Telematica, Univ. di Genova, Viale Causa 13, 16145 Genova (IT))
1991-08-10
This paper reports that current conceptions of quantum mechanical computers inherit from conventional digital machines two apparently interacting features, machine imperfection and temporal development of the computational process. On account of machine imperfection, the process would become ideally reversible only in the limiting case of zero speed. Therefore the process is irreversible in practice and cannot be considered to be a fundamental quantum one. By giving up classical features and using a linear, reversible and non-sequential representation of the computational process - not realizable in classical machines - the process can be identified with the mathematical form of a quantum steady state. This form of steady quantum computation would seem to have an important bearing on the notion of cognition.
Using Quantum Computers for Quantum Simulation
Kendon, Vivien M.; Brown, Katherine L.; Munro, William J
2010-01-01
Numerical simulation of quantum systems is crucial to further our understanding of natural phenomena. Many systems of key interest and importance, in areas such as superconducting materials and quantum chemistry, are thought to be described by models which we cannot solve with sufficient accuracy, neither analytically nor numerically with classical computers. Using a quantum computer to simulate such quantum systems has been viewed as a key application of quantum computation from the very beg...
Quantum Spin Dynamics and Quantum Computation
De Raedt, H.; Hams, A.H.; Michielsen, K.; Miyashita, S.; Saito, K
1999-01-01
We describe a simulation method for a quantum spin model of a generic, general purpose quantum computer. The use of this quantum computer simulator is illustrated through several implementations of Grover's database search algorithm. Some preliminary results on the stability of quantum algorithms are presented.
Quantum Spin Dynamics and Quantum Computation
De Raedt, H.; Hams, A.H.; Michielsen, K.; Miyashita, S.; Saito, K; Saito, E.
2000-01-01
We describe a simulation method for a quantum spin model of a generic, general purpose quantum computer. The use of this quantum computer simulator is illustrated through several implementations of Grover’s database search algorithm. Some preliminary results on the stability of quantum algorithms are presented.
Quantum Computing: a Quantum Group Approach
Wang, Zhenghan
2013-01-01
There is compelling theoretical evidence that quantum physics will change the face of information science. Exciting progress has been made during the last two decades towards the building of a large scale quantum computer. A quantum group approach stands out as a promising route to this holy grail, and provides hope that we may have quantum computers in our future.
Towards Quantum Computational Logics
Ledda, Antonio; Sergioli, Giuseppe
2010-12-01
Quantum computational logics have recently stirred increasing attention (Cattaneo et al. in Math. Slovaca 54:87-108, 2004; Ledda et al. in Stud. Log. 82(2):245-270, 2006; Giuntini et al. in Stud. Log. 87(1):99-128, 2007). In this paper we outline their motivations and report on the state of the art of the approach to the logic of quantum computation that has been recently taken up and developed by our research group.
An Introduction to Quantum Computers
Zalka, Christof
1998-01-01
This is a short introduction to quantum computers, quantum algorithms and quantum error correcting codes. Familiarity with the principles of quantum theory is assumed. Emphasis is put on a concise presentation of the principles avoiding lengthy discussions.
Computational Methods for Simulating Quantum Computers
De Raedt, H.; Michielsen, K.
2004-01-01
This review gives a survey of numerical algorithms and software to simulate quantum computers.It covers the basic concepts of quantum computation and quantum algorithms and includes a few examples that illustrate the use of simulation software for ideal and physical models of quantum computers.
Ramelow, S; Steinberg, A M; White, A G
2009-01-01
In the circuit model, quantum computers rely on the availability of a universal quantum gate set. A particularly intriguing example of such a set is the "matchgates" along with swap, the simple exchange of two qubits. In this paper, we show a simple decomposition of arbitrary matchgates into better known elementary gates, and implement one matchgate in a linear optics experiment using single photons. We characterize the gate performance via quantum process tomography and represent the resulting quantum process in a novel way, as a fidelity map in the space of all possible nonlocal two-qubit unitaries. In addition, we propose a new non-local, diagnostic process measure.
Jones, Jonathan [Oxford University (United Kingdom)
2002-04-01
A quantum computer has successfully factorized a number for the first time. Quantum mechanics is an extremely successful theory, but also a troubling one. For many years progress was made by concentrating on the obvious applications, and not worrying too much about the counterintuitive world view that quantum mechanics implies. More recently, however, the development of quantum-information theory has reversed this approach. If we take seriously what quantum mechanics seems to be telling us about the world, we can use this 'quantum weirdness' to do apparently impossible things. Probably the most famous application of quantum mechanics is the quantum computer, which is capable of performing calculations that are impossible with any classical device. At first the questions that quantum computers could tackle were rather esoteric, but in 1994 Peter Shor of AT and T Laboratories showed how a quantum computer could factor large numbers, thus rendering most modern cryptographic systems potentially obsolete. In 1996 David Cory and co-workers at the Massachusetts Institute of Technology (MIT) showed how nuclear magnetic resonance (NMR) - a technique best known for its applications in medical imaging and in chemistry - could be used to build small quantum computers. NMR systems are easily controlled by the magnetic component of electromagnetic fields and are only weakly affected by decoherence, and so progress was extremely rapid. Within two years, several two-qubit computers had been developed, and simple algorithms had been implemented. The race was on to build bigger and better NMR quantum computers, and to use them for more interesting tasks. The lead in this race has been held by several different research groups, but has now been decisively claimed by Isaac Chuang's group at Stanford University and IBM's Almaden Research Center in California. Chuang and co-workers have implemented the simplest example of Shor's quantum-factoring algorithm (L Vandersypen 2001 Nature 414 883). In the April issue of Physics World, Jonathan Jones of Oxford University, UK, describes how Chuang's group factored the number 15 using only seven qubits. (U.K.)
A quantum computer has successfully factorized a number for the first time. Quantum mechanics is an extremely successful theory, but also a troubling one. For many years progress was made by concentrating on the obvious applications, and not worrying too much about the counterintuitive world view that quantum mechanics implies. More recently, however, the development of quantum-information theory has reversed this approach. If we take seriously what quantum mechanics seems to be telling us about the world, we can use this 'quantum weirdness' to do apparently impossible things. Probably the most famous application of quantum mechanics is the quantum computer, which is capable of performing calculations that are impossible with any classical device. At first the questions that quantum computers could tackle were rather esoteric, but in 1994 Peter Shor of AT and T Laboratories showed how a quantum computer could factor large numbers, thus rendering most modern cryptographic systems potentially obsolete. In 1996 David Cory and co-workers at the Massachusetts Institute of Technology (MIT) showed how nuclear magnetic resonance (NMR) - a technique best known for its applications in medical imaging and in chemistry - could be used to build small quantum computers. NMR systems are easily controlled by the magnetic component of electromagnetic fields and are only weakly affected by decoherence, and so progress was extremely rapid. Within two years, several two-qubit computers had been developed, and simple algorithms had been implemented. The race was on to build bigger and better NMR quantum computers, and to use them for more interesting tasks. The lead in this race has been held by several different research groups, but has now been decisively claimed by Isaac Chuang's group at Stanford University and IBM's Almaden Research Center in California. Chuang and co-workers have implemented the simplest example of Shor's quantum-factoring algorithm (L Vandersypen 2001 Nature 414 883). In the April issue of Physics World, Jonathan Jones of Oxford University, UK, describes how Chuang's group factored the number 15 using only seven qubits. (U.K.)
Using Quantum Computers for Quantum Simulation
Vivien M. Kendon
2010-11-01
Full Text Available Numerical simulation of quantum systems is crucial to further our understanding of natural phenomena. Many systems of key interest and importance, in areas such as superconducting materials and quantum chemistry, are thought to be described by models which we cannot solve with sufficient accuracy, neither analytically nor numerically with classical computers. Using a quantum computer to simulate such quantum systems has been viewed as a key application of quantum computation from the very beginning of the field in the 1980s. Moreover, useful results beyond the reach of classical computation are expected to be accessible with fewer than a hundred qubits, making quantum simulation potentially one of the earliest practical applications of quantum computers. In this paper we survey the theoretical and experimental development of quantum simulation using quantum computers, from the first ideas to the intense research efforts currently underway.
Using Quantum Computers for Quantum Simulation
Brown, Katherine L; Kendon, Vivien M
2010-01-01
Numerical simulation of quantum systems is crucial to further our understanding of natural phenomena. Many systems of key interest and importance, such as superconducting materials and quantum chemistry, are thought to be described by models which we cannot solve with sufficient accuracy, neither analytically nor with classical computers. Using a quantum computer to simulate such quantum systems has been viewed as a key application of quantum computation from the very beginning of the field in the 1980s. Moreover, useful results beyond the reach of classical computation are expected to be accessible with less than a hundred qubits, making quantum simulation potentially one of the earliest practical applications of quantum computers. In this paper we provide a review of the theoretical and experimental development of quantum simulation using quantum computers, from the first ideas to the intense research efforts currently underway.
Kashefi, Elham
Over the next five to ten years we will see a state of flux as quantum devices become part of the mainstream computing landscape. However adopting and applying such a highly variable and novel technology is both costly and risky as this quantum approach has an acute verification and validation problem: On the one hand, since classical computations cannot scale up to the computational power of quantum mechanics, verifying the correctness of a quantum-mediated computation is challenging; on the other hand, the underlying quantum structure resists classical certification analysis. Our grand aim is to settle these key milestones to make the translation from theory to practice possible. Currently the most efficient ways to verify a quantum computation is to employ cryptographic methods. I will present the current state of the art of various existing protocols where generally there exists a trade-off between the practicality of the scheme versus their generality, trust assumptions and security level. EK gratefully acknowledges funding through EPSRC Grants EP/N003829/1 and EP/M013243/1.
Quantum Computation toward Quantum Gravity
P. A. Zizzi
2000-01-01
The aim of this paper is to enlight the emerging relevance of Quantum Information Theory in the field of Quantum Gravity. As it was suggested by J. A. Wheeler, information theory must play a relevant role in understanding the foundations of Quantum Mechanics (the "It from bit" proposal). Here we suggest that quantum information must play a relevant role in Quantum Gravity (the "It from qubit" proposal). The conjecture is that Quantum Gravity, the theory which will reconcile Quantum Mechanics ...
Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C
Blaha, Stephen
2002-01-01
We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.
Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C Language
Blaha, Stephen
2002-01-01
We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.
An Introduction to Quantum Computing
Yanofsky, Noson S.
2007-01-01
Quantum Computing is a new and exciting field at the intersection of mathematics, computer science and physics. It concerns a utilization of quantum mechanics to improve the efficiency of computation. Here we present a gentle introduction to some of the ideas in quantum computing. The paper begins by motivating the central ideas of quantum mechanics and quantum computation with simple toy models. From there we move on to a formal presentation of the small fraction of (finite dimensional) quan...
I, Quantum Robot: Quantum Mind control on a Quantum Computer
Zizzi, Paola
2008-01-01
The logic which describes quantum robots is not orthodox quantum logic, but a deductive calculus which reproduces the quantum tasks (computational processes, and actions) taking into account quantum superposition and quantum entanglement. A way toward the realization of intelligent quantum robots is to adopt a quantum metalanguage to control quantum robots. A physical implementation of a quantum metalanguage might be the use of coherent states in brain signals.
Spintronics and Quantum Computing with Quantum Dots
Recher, P.; Loss, D,; Levy, J.
2000-01-01
The creation, coherent manipulation, and measurement of spins in nanostructures open up completely new possibilities for electronics and information processing, among them quantum computing and quantum communication. We review our theoretical proposal for using electron spins in quantum dots as quantum bits. We present single- and two qubit gate mechanisms in laterally as well as vertically coupled quantum dots and discuss the possibility to couple spins in quantum dots via superexchange. We ...
Quantum entanglement, quantum communication and the limits of quantum computing
Ambainis, Andris
Quantum entanglement is a term describing the quantum correlations between different parts of a quantum system. Quantum information theory has developed sophisticated techniques to quantify and study quantum entanglement. In this thesis, we show how to apply those techniques to problems in quantum algorithms, complexity theory, communication and cryptography. The main results are: (1) quantum communication protocols that are exponentially more efficient that conventional (classical) communication protocols, (2) unconditionally secure quantum protocols for cryptographic problems, (3) a new "quantum adversary" method for proving lower bounds on quantum algorithms, (4) a study of "one clean qubit computation", a model related to the experimental implementation of quantum computers using NMR (nucleo-magnetic resonance) technology.
Simulating Chemistry Using Quantum Computers
Kassal, Ivan; Whitfield, James D; Perdomo-Ortiz, Alejandro; Yung, Man-Hong; Aspuru-Guzik, Alan
2011-01-01
The difficulty of simulating quantum systems, well-known to quantum chemists, prompted the idea of quantum computation. One can avoid the steep scaling associated with the exact simulation of increasingly large quantum systems on conventional computers, by mapping the quantum system to another, more controllable one. In this review, we discuss to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems. We describe algorithms that achi...
Hamiltonians for Quantum Computing
Privman, Vladimir; Mozyrsky, Dima; Hotaling, Steven P.
1997-01-01
We argue that the analog nature of quantum computing makes the usual design approach of constructing complicated logical operations from many simple gates inappropriate. Instead, we propose to design multi-spin quantum gates in which the input and output two-state systems (spins) are not necessarily identical. We outline the design criteria for such devices and then review recent results for single-unit Hamiltonians that accomplish the NOT and XOR functions.
Quantum++ - A C++11 quantum computing library
Gheorghiu, Vlad
2014-01-01
Quantum++ is a general-purpose multi-threaded quantum computing library written in C++11 and composed solely of header files. The library is not restricted to qubit systems or specific quantum information processing tasks, being capable of simulating arbitrary quantum processes. The main design factors taken in consideration were ease of use, portability, and performance.
Wei, H; Wei, Haiqing; Xue, Xin
1997-01-01
Tailoring many-body interactions among a proper quantum system endows it with computing ability by means of static quantum computation in the sense that some of the physical degrees of freedom can be used to store binary information and the corresponding binary variables satisfy some given logic relations if and only if the system is in the ground state. Constructing a static quantum computing machine is within the reach of today's or the foreseeable future's technology. Such a machine works in the static manner so that dissipation does it no harm but helps. A general computational task is accomplished in two steps. The first is to evaluate logic functions by the static quantum network and encode the solutions into the ground state of the system. It is done upon the computer being constructed and the input being set. For this step the new concept of static computational complexity (SCC) in terms of the number of logic gates should be introduced instead of the usual time complexity. Two theorems on SCC are pro...
Quantum information and computation
During the past two decades, there has emerged the new subject of quantum information and computation which both offers the possibility of powerful new modes of computing and communication and also suggests deep links between the well established disciplines of quantum theory and information theory and computer science. In recent years, the growth of the subject has been explosive, with significant progress in theory and experiment. The area has a highly interdisciplinary character with contributions from physicists, mathematicians and computer scientists in particular. Developments have occurred in diverse areas including quantum algorithms, quantum communication, quantum cryptography, entanglement and nonlocality. This progress has been reflected in contributions to Journal of Physics A: Mathematical and General which traditionally provides a natural home for this area of research. Furthermore, the journal's commitment to this field has recently been strengthened by the appointments of Sandu Popescu and Nicolas Gisin to the Editorial Board, and in this special issue we take the opportunity to present a snapshot of the present state of the art. (author)
Quantum Statistical Mechanics on a Quantum Computer
De Raedt, H.; Hams, A.H.; Michielsen, K.; Miyashita, S.; Saito, K
1999-01-01
We describe a quantum algorithm to compute the density of states and thermal equilibrium properties of quantum many-body systems. We present results obtained by running this algorithm on a software implementation of a 21-qubit quantum computer for the case of an antiferromagnetic Heisenberg model on triangular lattices of different size.
Computational quantum chemistry website
This report contains the contents of a web page related to research on the development of quantum chemistry methods for computational thermochemistry and the application of quantum chemistry methods to problems in material chemistry and chemical sciences. Research programs highlighted include: Gaussian-2 theory; Density functional theory; Molecular sieve materials; Diamond thin-film growth from buckyball precursors; Electronic structure calculations on lithium polymer electrolytes; Long-distance electronic coupling in donor/acceptor molecules; and Computational studies of NOx reactions in radioactive waste storage
Topologically protected quantum computation
Wootton, James R; Doucot, Benoit; Pachos, Jiannis K
2009-01-01
We propose a novel fault-tolerant scheme for quantum computation based on the topological phase of a spin lattice model. Abelian anyons are used to simulate non-Abelian properties relevant to topological quantum computation. Universality is realized by using anyon transport and single spin measurements. Along with the topological nature of the encoding, logical states are protected from thermal excitations by a finite energy gap. A proof of principle scheme is proposed that can be realized in Josephson junctions with state of the art technology.
A Parallel Quantum Computer Simulator
Obenland, Kevin M.; Despain, Alvin M.
1998-01-01
A Quantum Computer is a new type of computer which can efficiently solve complex problems such as prime factorization. A quantum computer threatens the security of public key encryption systems because these systems rely on the fact that prime factorization is computationally difficult. Errors limit the effectiveness of quantum computers. Because of the exponential nature of quantum com puters, simulating the effect of errors on them requires a vast amount of processing and memory resources. ...
Undergraduate computational physics projects on quantum computing
Candela, D.
2015-08-01
Computational projects on quantum computing suitable for students in a junior-level quantum mechanics course are described. In these projects students write their own programs to simulate quantum computers. Knowledge is assumed of introductory quantum mechanics through the properties of spin 1/2. Initial, more easily programmed projects treat the basics of quantum computation, quantum gates, and Grover's quantum search algorithm. These are followed by more advanced projects to increase the number of qubits and implement Shor's quantum factoring algorithm. The projects can be run on a typical laptop or desktop computer, using most programming languages. Supplementing resources available elsewhere, the projects are presented here in a self-contained format especially suitable for a short computational module for physics students.
Demonstration of blind quantum computing.
Barz, Stefanie; Kashefi, Elham; Broadbent, Anne; Fitzsimons, Joseph F; Zeilinger, Anton; Walther, Philip
2012-01-20
Quantum computers, besides offering substantial computational speedups, are also expected to preserve the privacy of a computation. We present an experimental demonstration of blind quantum computing in which the input, computation, and output all remain unknown to the computer. We exploit the conceptual framework of measurement-based quantum computation that enables a client to delegate a computation to a quantum server. Various blind delegated computations, including one- and two-qubit gates and the Deutsch and Grover quantum algorithms, are demonstrated. The client only needs to be able to prepare and transmit individual photonic qubits. Our demonstration is crucial for unconditionally secure quantum cloud computing and might become a key ingredient for real-life applications, especially when considering the challenges of making powerful quantum computers widely available. PMID:22267806
Quantum computation with abelian anyons
Lloyd, Seth
2000-01-01
A universal quantum computer can be constructed using abelian anyons. Two qubit quantum logic gates such as controlled-NOT operations are performed using topological effects. Single-anyon operations such as hopping from site to site on a lattice suffice to perform all quantum logic operations. Quantum computation using abelian anyons shares some but not all of the robustness of quantum computation using non-abelian anyons.
An optically driven quantum dot quantum computer
Sanders, G. D.; Kim, K. W.; Holton, W. C.
1999-01-01
We propose a quantum computer structure based on coupled asymmetric single-electron quantum dots. Adjacent dots are strongly coupled by means of electric dipole-dipole interactions enabling rapid computation rates. Further, the asymmetric structures can be tailored for a long coherence time. The result maximizes the number of computation cycles prior to loss of coherence.
Quantum Computation and Spin Physics
DiVincenzo, David P.
1996-01-01
A brief review is given of the physical implementation of quantum computation within spin systems or other two-state quantum systems. The importance of the controlled-NOT or quantum XOR gate as the fundamental primitive operation of quantum logic is emphasized. Recent developments in the use of quantum entanglement to built error-robust quantum states, and the simplest protocol for quantum error correction, are discussed.
Quantum Nondemolition Monitoring of Universal Quantum Computers
Ozawa, Masanao
1997-01-01
The halt scheme for quantum Turing machines, originally proposed by Deutsch, is reformulated precisely and is proved to work without spoiling the computation. The ``conflict'' pointed out recently by Myers in the definition of a universal quantum computer is shown to be only apparent. In the context of quantum nondemolition (QND) measurement, it is also shown that the output observable, an observable representing the output of the computation, is a QND observable and that the halt scheme is e...
Quantum Computation toward Quantum Gravity
Zizzi, P A
2001-01-01
The aim of this paper is to enlight the emerging relevance of Quantum Information Theory in the field of Quantum Gravity. As it was suggested by J. A. Wheeler, information theory must play a relevant role in understanding the foundations of Quantum Mechanics (the "It from bit" proposal). Here we suggest that quantum information must play a relevant role in Quantum Gravity (the "It from qubit" proposal). The conjecture is that Quantum Gravity, the theory which will reconcile Quantum Mechanics with General Relativity, can be formulated in terms of quantum bits of information (qubits) stored in space at the Planck scale. This conjecture is based on the following arguments: a) The holographic principle, b) The loop quantum gravity approach and spin networks, c) Quantum geometry and black hole entropy. Here we present the quantum version of the holographic principle by considering each pixel of area of an event horizon as a qubit. This is possible if the horizon is pierced by spin networks' edges of spin 1\\2, in t...
Relativistic quantum chemistry on quantum computers
Veis, Libor; Vi?k, Jakub; Fleig, Timo; Knecht, Stefan; Saue, Trond; Visscher, Lucas; Pittner, Ji?
2012-03-01
The past few years have witnessed a remarkable interest in the application of quantum computing for solving problems in quantum chemistry more efficiently than classical computers allow. Very recently, proof-of-principle experimental realizations have been reported. However, so far only the nonrelativistic regime (i.e., the Schrdinger equation) has been explored, while it is well known that relativistic effects can be very important in chemistry. We present a quantum algorithm for relativistic computations of molecular energies. We show how to efficiently solve the eigenproblem of the Dirac-Coulomb Hamiltonian on a quantum computer and demonstrate the functionality of the proposed procedure by numerical simulations of computations of the spin-orbit splitting in the SbH molecule. Finally, we propose quantum circuits with three qubits and nine or ten controlled-not (cnot) gates, which implement a proof-of-principle relativistic quantum chemical calculation for this molecule and might be suitable for an experimental realization.
Quantum computers: Definition and implementations
The DiVincenzo criteria for implementing a quantum computer have been seminal in focusing both experimental and theoretical research in quantum-information processing. These criteria were formulated specifically for the circuit model of quantum computing. However, several new models for quantum computing (paradigms) have been proposed that do not seem to fit the criteria well. Therefore, the question is what are the general criteria for implementing quantum computers. To this end, a formal operational definition of a quantum computer is introduced. It is then shown that, according to this definition, a device is a quantum computer if it obeys the following criteria: Any quantum computer must consist of a quantum memory, with an additional structure that (1) facilitates a controlled quantum evolution of the quantum memory; (2) includes a method for information theoretic cooling of the memory; and (3) provides a readout mechanism for subsets of the quantum memory. The criteria are met when the device is scalable and operates fault tolerantly. We discuss various existing quantum computing paradigms and how they fit within this framework. Finally, we present a decision tree for selecting an avenue toward building a quantum computer. This is intended to help experimentalists determine the most natural paradigm given a particular physical implementation.
Notes on Adiabatic Quantum Computers
Tamir, Boaz; Cohen, Eliahu
2015-01-01
We discuss the basics of adiabatic computation, as well as some physical implementations. After a short introduction of the quantum circuit model, we describe quantum adiabatic computation, quantum annealing, and the strong relations between the three. We conclude with a brief presentation of the D-Wave computer and some future challenges.
Quantum cellular automaton for universal quantum computation
This paper describes a quantum cellular automaton capable of performing universal quantum computation. The automaton has an elementary transition function that acts on Margolus cells of 2x2 qubits, and both the 'quantum input' and the program are encoded in the initial state of the system
Bellac, Michel Le
2014-11-01
In everyday life, practically all the information which is processed, exchanged or stored is coded in the form of discrete entities called bits, which take two values only, by convention 0 and 1. With the present technology for computers and optical fibers, bits are carried by electrical currents and electromagnetic waves corresponding to macroscopic fluxes of electrons and photons, and they are stored in memories of various kinds, for example, magnetic memories. Although quantum physics is the basic physics which underlies the operation of a transistor (Chapter 6) or of a laser (Chapter 4), each exchanged or processed bit corresponds to a large number of elementary quantum systems, and its behavior can be described classically due to the strong interaction with the environment (Chapter 9). For about thirty years, physicists have learned to manipulate with great accuracy individual quantum systems: photons, electrons, neutrons, atoms, and so forth, which opens the way to using two-state quantum systems, such as the polarization states of a photon (Chapter 2) or the two energy levels of an atom or an ion (Chapter 4) in order to process, exchange or store information. In 2.3.2, we used the two polarization states of a photon, vertical (V) and horizontal (H), to represent the values 0 and 1 of a bit and to exchange information. In what follows, it will be convenient to use Dirac's notation (see Appendix A.2.2 for more details), where a vertical polarization state is denoted by |V> or |0> and a horizontal one by |H> or |1>, while a state with arbitrary polarization will be denoted by |?>. The polarization states of a photon give one possible realization of a quantum bit, or for short a qubit. Thanks to the properties of quantum physics, quantum computers using qubits, if they ever exist, would outperform classical computers for some specific, but very important, problems. In Sections 8.1 and 8.2, we describe some typical quantum algorithms and, in order to do so, we shall not be able to avoid some technical developments. However, these two sections may be skipped in a first reading, as they are not necessary for understanding the more general considerations of Sections 8.3 and 8.4.
Arrighi, P; Arrighi, Pablo; Salvail, Louis
2003-01-01
We investigate the possibility of having someone carry out the work of executing a function for you, but without letting him learn anything about your input. Say Alice wants Bob to compute some well-known function f upon her input x, but wants to prevent Bob from learning anything about x. The situation arises for instance if client Alice has limited computational resources in comparison with mistrusted server Bob, or if x is an inherently mobile piece of data. Could there be a protocol whereby Bob is forced to compute f(x) "blindly", i.e. without observing x? We provide such a blind computation protocol for the class of functions which admit an efficient procedure to generate random input-output pairs, e.g. factorization. The setting is quantum, the security is unconditional, the eavesdropper is as malicious as can be. Keywords: Secure Circuit Evaluation, Secure Two-party Computation, Information Hiding, Information gain vs disturbance.
Quantum walks, quantum gates, and quantum computers
The physics of quantum walks on graphs is formulated in Hamiltonian language, both for simple quantum walks and for composite walks, where extra discrete degrees of freedom live at each node of the graph. It is shown how to map between quantum walk Hamiltonians and Hamiltonians for qubit systems and quantum circuits; this is done for both single-excitation and multiexcitation encodings. Specific examples of spin chains, as well as static and dynamic systems of qubits, are mapped to quantum walks, and walks on hyperlattices and hypercubes are mapped to various gate systems. We also show how to map a quantum circuit performing the quantum Fourier transform, the key element of Shor's algorithm, to a quantum walk system doing the same. The results herein are an essential preliminary to a Hamiltonian formulation of quantum walks in which coupling to a dynamic quantum environment is included
Scalable Quantum Computing with "Enhancement" Quantum Dots
Lyanda-Geller, Y B; Yang, M J
2005-01-01
We propose a novel scheme of solid state realization of a quantum computer based on single spin "enhancement mode" quantum dots as building blocks. In the enhancement quantum dots, just one electron can be brought into initially empty dot, in contrast to depletion mode dots based on expelling of electrons from multi-electron dots by gates. The quantum computer architectures based on depletion dots are confronted by several challenges making scalability difficult. These challenges can be successfully met by the approach based on ehnancement mode, capable of producing square array of dots with versatile functionalities. These functionalities allow transportation of qubits, including teleportation, and error correction based on straightforward one- and two-qubit operations. We describe physical properties and demonstrate experimental characteristics of enhancement quantum dots and single-electron transistors based on InAs/GaSb composite quantum wells. We discuss the materials aspects of quantum dot quantum compu...
Vibrational coherent quantum computation
Paternostro, M; Knight, P L; Paternostro, Mauro
2005-01-01
A long-lived coherent state and non-linear interaction have been experimentally demonstrated for the vibrational mode of a trapped ion. We propose an implementation of quantum computation using coherent states of the vibrational modes of trapped ions. Differently from earlier experiments, we consider a far-off resonance for the interaction between external fields and the ion in a bidimensional trap. By appropriate choices of the detunings between the external fields, the adiabatic elimination of the ionic excited level from the Hamiltonian of the system allows for beam splitting between orthogonal vibrational modes, production of coherent states and non-linear interactions of various kinds. In particular, this model enables the generation of the four coherent Bell states. Furthermore, all the necessary operations for quantum computation such as preparation of qubits, one-qubit and controlled two-qubit operations, are possible. The detection of the state of a vibrational mode in a Bell state is made possible b...
Quantum Computation vs. Firewalls
Harlow, Daniel
2013-01-01
In this paper we discuss quantum computational restrictions on the types of thought experiments recently used by Almheiri, Marolf, Polchinski, and Sully to argue against the smoothness of black hole horizons. We argue that the quantum computations required to do these experiments take a time which is exponential in the entropy of the black hole under study, and we show that for a wide variety of black holes this prevents the experiments from being done. We interpret our results as motivating a broader type of non-locality than is usually considered in the context of black hole thought experiments, and claim that once this type of non-locality is allowed there is no need for firewalls. Our results do not threaten the unitarity of of black hole evaporation or the ability of advanced civilizations to test it.
Quantum Gravity on a Quantum Computer?
Kempf, Achim
2014-05-01
EPR-type measurements on spatially separated entangled spin qubits allow one, in principle, to detect curvature. Also the entanglement of the vacuum state is affected by curvature. Here, we ask if the curvature of spacetime can be expressed entirely in terms of the spatial entanglement structure of the vacuum. This would open up the prospect that quantum gravity could be simulated on a quantum computer and that quantum information techniques could be fully employed in the study of quantum gravity.
Quantum Gravity on a Quantum Computer?
Kempf, Achim
2013-01-01
EPR-type measurements on spatially separated entangled spin qubits allow one, in principle, to detect curvature. Also the entanglement of the vacuum state is affected by curvature. Here, we ask if the curvature of spacetime can be expressed entirely in terms of the spatial entanglement structure of the vacuum. This would open up the prospect that quantum gravity could be simulated on a quantum computer and that quantum information techniques could be fully employed in the study of quantum gravity.
New Trends in Quantum Computing
Brassard, Gilles
1996-01-01
Classical and quantum information are very different. Together they can perform feats that neither could achieve alone, such as quantum computing, quantum cryptography and quantum teleportation. Some of the applications range from helping to preventing spies from reading private communications. Among the tools that will facilitate their implementation, we note quantum purification and quantum error correction. Although some of these ideas are still beyond the grasp of current technology, quan...
Spin-Based Quantum Dot Quantum Computing
Hu, Xuedong
2004-01-01
We present a brief overview of the current theoretical and experimental progresses in the study of quantum dot-based quantum computing schemes, then focus on the spin-based varieties, which are generally regarded as the most scalable because of the relatively long coherence times of electron and nuclear spins. Reviewed topics include spin coherence, spin interaction, spin detection, and the current status of the experimental studies of spin-based quantum computing.
Relativistic quantum chemistry on quantum computers
Veis, Libor; Vi?k, Jakub; Fleig, Timo; Knecht, Stefan; Saue, Trond; Visscher, Lucas; Pittner, Ji?
2011-01-01
Last years witnessed a remarkable interest in application of quantum computing for solving problems in quantum chemistry more efficiently than classical computers allow. Very recently, even first proof-of-principle experimental realizations have been reported. However, so far only the non-relativistic regime (i.e. Schroedinger equation) has been explored, while it is well known that relativistic effects can be very important in chemistry. In this letter we present the first quantum algorithm ...
Quantum Computing and Dynamical Quantum Models
Aaronson, Scott
2002-01-01
A dynamical quantum model assigns an eigenstate to a specified observable even when no measurement is made, and gives a stochastic evolution rule for that eigenstate. Such a model yields a distribution over classical histories of a quantum state. We study what can be computed by sampling from that distribution, i.e., by examining an observer's entire history. We show that, relative to an oracle, one can solve problems in polynomial time that are intractable even for quantum computers; and can...
Quantum computing of semiclassical formulas
Georgeot, Bertrand; Giraud, Olivier
2008-01-01
We show that semiclassical formulas such as the Gutzwiller trace formula can be implemented on a quantum computer more efficiently than on a classical device. We give explicit quantum algorithms which yield quantum observables from classical trajectories, and which alternatively test the semiclassical approximation by computing classical actions from quantum evolution. The gain over classical computation is in general quadratic, and can be larger in some specific cases.
Relativistic quantum chemistry on quantum computers
Veis, L.; Visnak, J.; Fleig, T.; Knecht, S.; Saue, T.; Visscher, L.; Pittner, J.
2012-01-01
The past few years have witnessed a remarkable interest in the application of quantum computing for solving problems in quantum chemistry more efficiently than classical computers allow. Very recently, proof-of-principle experimental realizations have been reported. However, so far only the...... nonrelativistic regime (i.e., the Schrodinger equation) has been explored, while it is well known that relativistic effects can be very important in chemistry. We present a quantum algorithm for relativistic computations of molecular energies. We show how to efficiently solve the eigenproblem of the Dirac......-Coulomb Hamiltonian on a quantum computer and demonstrate the functionality of the proposed procedure by numerical simulations of computations of the spin-orbit splitting in the SbH molecule. Finally, we propose quantum circuits with three qubits and nine or ten controlled-NOT (CNOT) gates, which implement a proof...
Quantum computing on encrypted data
Fisher, K. A. G.; Broadbent, A.; Shalm, L. K.; Yan, Z.; Lavoie, J.; Prevedel, R.; Jennewein, T.; Resch, K. J.
2014-01-01
The ability to perform computations on encrypted data is a powerful tool for protecting privacy. Recently, protocols to achieve this on classical computing systems have been found. Here, we present an efficient solution to the quantum analogue of this problem that enables arbitrary quantum computations to be carried out on encrypted quantum data. We prove that an untrusted server can implement a universal set of quantum gates on encrypted quantum bits (qubits) without learning any information about the inputs, while the client, knowing the decryption key, can easily decrypt the results of the computation. We experimentally demonstrate, using single photons and linear optics, the encryption and decryption scheme on a set of gates sufficient for arbitrary quantum computations. As our protocol requires few extra resources compared with other schemes it can be easily incorporated into the design of future quantum servers. These results will play a key role in enabling the development of secure distributed quantum systems.
Vibrational coherent quantum computation
A long-lived coherent state and nonlinear interaction have been experimentally demonstrated for the vibrational mode of a trapped ion. We propose an implementation of quantum computation using coherent states of the vibrational modes of trapped ions. Differently from earlier experiments, we consider a far-off resonance for the interaction between external fields and the ion in a bidimensional trap. By appropriate choices of the detunings between the external fields, the adiabatic elimination of the ionic excited level from the Hamiltonian of the system allows for beam splitting between orthogonal vibrational modes, production of coherent states, and nonlinear interactions of various kinds. In particular, this model enables the generation of the four coherent Bell states. Furthermore, all the necessary operations for quantum computation, such as preparation of qubits and one-qubit and controlled two-qubit operations, are possible. The detection of the state of a vibrational mode in a Bell state is made possible by the combination of resonant and off-resonant interactions between the ion and some external fields. We show that our read-out scheme provides highly efficient discrimination between all the four Bell states. We extend this to a quantum register composed of many individually trapped ions. In this case, operations on two remote qubits are possible through a cavity mode. We emphasize that our remote-qubit operation scheme does not require a high-quality factor resonator: the cavity field acts as a catalyst for the gate operation
Quantum computation and complexity theory
Svozil, K.
1994-01-01
The Hilbert space formalism of quantum mechanics is reviewed with emphasis on applications to quantum computing. Standard interferomeric techniques are used to construct a physical device capable of universal quantum computation. Some consequences for recursion theory and complexity theory are discussed.
Energy Dissipation in Quantum Computers
Granik, A.; Chapline, G.
2003-01-01
A method is described for calculating the heat generated in a quantum computer due to loss of quantum phase information. Amazingly enough, this heat generation can take place at zero temperature. and may explain why it is impossible to extract energy from vacuum fluctuations. Implications for optical computers and quantum cosmology are also briefly discussed.
Communication Capacity of Quantum Computation
Bose, S.; Rallan, L.; Vedral, V.
2000-01-01
By considering quantum computation as a communication process, we relate its efficiency to a communication capacity. This formalism allows us to rederive lower bounds on the complexity of search algorithms. It also enables us to link the mixedness of a quantum computer to its efficiency. We discuss the implications of our results for quantum measurement.
Quantum computer for dummies (in Russian)
Grozin, Andrey
2011-01-01
An introduction (in Russian) to quantum computers, quantum cryptography, and quantum teleportation for students who have no previous knowledge of these subjects, but know quantum mechanics. Several simple examples are considered in detail using the quantum computer emulator QCL.
Breuer, Reinhard (comp.)
2010-07-01
The following topics are dealt with: Reality in the test house, quantum teleportation, 100 years of quantum theory, the reality of quanta, interactionless quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view into the future of quantum optics. (HSI)
Interactive Proofs For Quantum Computations
Aharonov, Dorit; Eban, Elad
2008-01-01
It is generally accepted that large quantum systems cannot be simulated efficiently by classical systems. Several fundamental questions arise: Experimentalist's aspect: the next generation of quantum computers will presumably contain a few tens of qubits or more. Such systems are already impossible to simulate efficiently classically. Which experiments should be conducted in order to verify that those claimed quantum computers are performing the way they should? Cryptographic aspect: assuming that the first generations of quantum computers will be extremely expensive, and thus quantum computations would be delegated to untrusted companies. How can one trust the outcome? Moreover, can the tasks being delegated be kept secret? Foundations of Quantum Mechanics aspect: assuming that small systems obey quantum mechanics to an extremely high accuracy, it is still possible that the physical description of large many-body systems deviates significantly from quantum mechanics. The conjecture that BQP is not equal to B...
Pulse controlled noise suppressed quantum computation
Duan, Lu-Ming; Guo, Guang-Can
1998-01-01
To make arbitrarily accurate quantum computation possible, practical realization of quantum computers will require suppressing noise in quantum memory and gate operations to make it below a threshold value. A scheme based on realistic quantum computer models is described for suppressing noise in quantum computation without the cost of stringent quantum computing resources.
Quantum computing for pattern classification
Schuld, Maria; Sinayskiy, Ilya; Petruccione, Francesco
2014-01-01
It is well known that for certain tasks, quantum computing outperforms classical computing. A growing number of contributions try to use this advantage in order to improve or extend classical machine learning algorithms by methods of quantum information theory. This paper gives a brief introduction into quantum machine learning using the example of pattern classification. We introduce a quantum pattern classification algorithm that draws on Trugenberger's proposal for measuring the Hamming di...
Interfacing External Quantum Devices to a Universal Quantum Computer
Lagana, Antonio A.; Lohe, Max A.; von Smekal, Lorenz
2011-01-01
We present a scheme to use external quantum devices using the universal quantum computer previously constructed. We thereby show how the universal quantum computer can utilize networked quantum information resources to carry out local computations. Such information may come from specialized quantum devices or even from remote universal quantum computers. We show how to accomplish this by devising universal quantum computer programs that implement well known oracle based quantum algorithms, na...
Quantum Computing's Classical Problem, Classical Computing's Quantum Problem
van Meter, Rodney
2013-01-01
Tasked with the challenge to build better and better computers, quantum computing and classical computing face the same conundrum: the success of classical computing systems. Small quantum computing systems have been demonstrated, and intermediate-scale systems are on the horizon, capable of calculating numeric results or simulating physical systems far beyond what humans can do by hand. However, to be commercially viable, they must surpass what our wildly successful, highly advanced classica...
It is shown that pure NQR can be utilized as a platform for quantum computing without applying a high external magnetic field. By exciting each resonance transition between quadrupole energy levels with two radio-frequency fields differing in phase and direction, the double degeneracy of the spin energy spectrum in an electric field gradient is removed. As an example, in the case of I=7/2 (nuclei 133Cs or 123Sb) the energy spectrum has eight levels which can be used as three qubits. (orig.)
Quantum Walks, Quantum Gates and Quantum Computers
Hines, Andrew P.; Stamp, P. C. E.
2007-01-01
The physics of quantum walks on graphs is formulated in Hamiltonian language, both for simple quantum walks and for composite walks, where extra discrete degrees of freedom live at each node of the graph. It is shown how to map between quantum walk Hamiltonians and Hamiltonians for qubit systems and quantum circuits; this is done for both a single- and multi-excitation coding, and for more general mappings. Specific examples of spin chains, as well as static and dynamic systems of qubits, are...
The universe as quantum computer
Lloyd, Seth
2013-01-01
This article reviews the history of digital computation, and investigates just how far the concept of computation can be taken. In particular, I address the question of whether the universe itself is in fact a giant computer, and if so, just what kind of computer it is. I will show that the universe can be regarded as a giant quantum computer. The quantum computational model of the universe explains a variety of observed phenomena not encompassed by the ordinary laws of physics. In particular, the model shows that the the quantum computational universe automatically gives rise to a mix of randomness and order, and to both simple and complex systems.
Decoherence in quantum walks and quantum computers
Hines, Andrew P.; Stamp, P. C. E.
2007-01-01
Decoherence is the major stumbling block in the realization of a large-scale quantum computer. Ingenious methods have been devised to overcome decoherence, but their success has been proven only for over-simplified models of system-environment interaction. Whether such methods will be reliable in the face of more realistic models is a fundamental open question. In this partly pedagogical article, we study two toy models of quantum information processing, using the language of \\emph{quantum wa...
THE APROACH OF CLASSICAL COMPUTER TO QUANTUM COMPUTER
SEYEDEH MOHADESEH ELTEJA
2013-01-01
The aim of this paper is to guide computer scientists through the barriers that separate quantum computing from conventional computing. We introduce basic principles of quantum mechanics to explain where the power of quantum computers comes from and why it is difficult to harness. We describe the diffrences between classical and quantum computers, bit and quantum bit and quantum key distribution.
Multi-party Quantum Computation
Smith, A
2001-01-01
We investigate definitions of and protocols for multi-party quantum computing in the scenario where the secret data are quantum systems. We work in the quantum information-theoretic model, where no assumptions are made on the computational power of the adversary. For the slightly weaker task of verifiable quantum secret sharing, we give a protocol which tolerates any t < n/4 cheating parties (out of n). This is shown to be optimal. We use this new tool to establish that any multi-party quantum computation can be securely performed as long as the number of dishonest players is less than n/6.
Spintronics and Quantum Dots for Quantum Computing and Quantum Communication
Burkard, Guido; Engel, Hans-Andreas; Loss, Daniel
2000-01-01
Control over electron-spin states, such as coherent manipulation, filtering and measurement promises access to new technologies in conventional as well as in quantum computation and quantum communication. We review our proposal of using electron spins in quantum confined structures as qubits and discuss the requirements for implementing a quantum computer. We describe several realizations of one- and two-qubit gates and of the read-in and read-out tasks. We discuss recently proposed schemes f...
Are Quantum Computing Models Realistic?
Kak, Subhash
2001-01-01
The commonly used circuit model of quantum computing leaves out the problems of imprecision in the initial state preparation, particle statistics (indistinguishability of particles belonging to the same quantum state), and error correction (current techniques cannot correct all small errors). The initial state in the circuit model computation is obtained by applying potentially imprecise Hadamard gate operations whereas useful quantum computation requires a state with no uncertainty. We revie...
Vianna, Reinaldo O.; Rabelo, Wilson R. M.; Monken, C. H.
2003-01-01
We discuss the performance of the Search and Fourier Transform algorithms on a hybrid computer constituted of classical and quantum processors working together. We show that this semi-quantum computer would be an improvement over a pure classical architecture, no matter how few qubits are available and, therefore, it suggests an easier implementable technology than a pure quantum computer with arbitrary number of qubits.
Visualizing a silicon quantum computer
Quantum computation is a fast-growing, multi-disciplinary research field. The purpose of a quantum computer is to execute quantum algorithms that efficiently solve computational problems intractable within the existing paradigm of 'classical' computing built on bits and Boolean gates. While collaboration between computer scientists, physicists, chemists, engineers, mathematicians and others is essential to the project's success, traditional disciplinary boundaries can hinder progress and make communicating the aims of quantum computing and future technologies difficult. We have developed a four minute animation as a tool for representing, understanding and communicating a silicon-based solid-state quantum computer to a variety of audiences, either as a stand-alone animation to be used by expert presenters or embedded into a longer movie as short animated sequences. The paper includes a generally applicable recipe for successful scientific animation production.
Algorithms on Ensemble Quantum Computers
Boykin, P. Oscar; Mor, Tal; Roychowdhury, Vwani; Vatan, Farrokh
1999-01-01
In ensemble (or bulk) quantum computation, all computations are performed on an ensemble of computers rather than on a single computer. Measurements of qubits in an individual computer cannot be performed; instead, only expectation values (over the complete ensemble of computers) can be measured. As a result of this limitation on the model of computation, many algorithms cannot be processed directly on such computers, and must be modified, as the common strategy of delaying the measurements u...
Koenneker, Carsten (comp.)
2012-11-01
The following topics are dealt with: Reality in the test facility, quantum teleportation, the reality of quanta, interaction-free quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view in the future of quantum optics. (HSI)
Quantum physics, simulation, and computation
Full text: The ultimate scope and power of computers will be determined by the laws of physics. Quantum computers exploit the rules of quantum mechanics, using quantum coherence and entanglement for new ways of information processing. Up to date, the realization of these systems requires extremely precise control of matter on the atomic scale and a nearly perfect isolation from the environment. The question, to what extent quantum information processing can also be exploited in 'natural' and less controlled systems, including biological ones, is exciting but still open. In this talk, I will present some of our recent work on (quantum) physically and biologically motivated models of information processing. (author)
Algorithms on ensemble quantum computers.
Boykin, P Oscar; Mor, Tal; Roychowdhury, Vwani; Vatan, Farrokh
2010-06-01
In ensemble (or bulk) quantum computation, all computations are performed on an ensemble of computers rather than on a single computer. Measurements of qubits in an individual computer cannot be performed; instead, only expectation values (over the complete ensemble of computers) can be measured. As a result of this limitation on the model of computation, many algorithms cannot be processed directly on such computers, and must be modified, as the common strategy of delaying the measurements usually does not resolve this ensemble-measurement problem. Here we present several new strategies for resolving this problem. Based on these strategies we provide new versions of some of the most important quantum algorithms, versions that are suitable for implementing on ensemble quantum computers, e.g., on liquid NMR quantum computers. These algorithms are Shor's factorization algorithm, Grover's search algorithm (with several marked items), and an algorithm for quantum fault-tolerant computation. The first two algorithms are simply modified using a randomizing and a sorting strategies. For the last algorithm, we develop a classical-quantum hybrid strategy for removing measurements. We use it to present a novel quantum fault-tolerant scheme. More explicitly, we present schemes for fault-tolerant measurement-free implementation of Toffoli and ?(z)() as these operations cannot be implemented "bitwise", and their standard fault-tolerant implementations require measurement. PMID:21475662
Simulating chemistry using quantum computers.
Kassal, Ivan; Whitfield, James D; Perdomo-Ortiz, Alejandro; Yung, Man-Hong; Aspuru-Guzik, Aln
2011-01-01
The difficulty of simulating quantum systems, well known to quantum chemists, prompted the idea of quantum computation. One can avoid the steep scaling associated with the exact simulation of increasingly large quantum systems on conventional computers, by mapping the quantum system to another, more controllable one. In this review, we discuss to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems. We describe algorithms that achieve significant advantages for the electronic-structure problem, the simulation of chemical dynamics, protein folding, and other tasks. Although theory is still ahead of experiment, we outline recent advances that have led to the first chemical calculations on small quantum information processors. PMID:21166541
Quantum Computing over Finite Fields
James, Roshan P; Sabry, Amr
2011-01-01
In recent work, Benjamin Schumacher and Michael~D. Westmoreland investigate a version of quantum mechanics which they call "modal quantum theory" but which we prefer to call "discrete quantum theory". This theory is obtained by instantiating the mathematical framework of Hilbert spaces with a finite field instead of the field of complex numbers. This instantiation collapses much the structure of actual quantum mechanics but retains several of its distinguishing characteristics including the notions of superposition, interference, and entanglement. Furthermore, discrete quantum theory excludes local hidden variable models, has a no-cloning theorem, and can express natural counterparts of quantum information protocols such as superdense coding and teleportation. Our first result is to distill a model of discrete quantum computing from this quantum theory. The model is expressed using a monadic metalanguage built on top of a universal reversible language for finite computations, and hence is directly implementab...
Quantum computation and hidden variables
Aristov, V V
2010-01-01
Many physicists limit oneself to an instrumentalist description of quantum phenomena and ignore the problems of foundation and interpretation of quantum mechanics. This instrumentalist approach results to "specialization barbarism" and mass delusion concerning the problem, how a quantum computer can be made. The idea of quantum computation can be described within the limits of quantum formalism. But in order to understand how this idea can be put into practice one should realize the question: "What could the quantum formalism describe?", in spite of the absence of an universally recognized answer. Only a realization of this question and the undecided problem of quantum foundations allows to see in which quantum systems the superposition and EPR correlation could be expected. Because of the "specialization barbarism" many authors are sure that Bell proved full impossibility of any hidden-variables interpretation. Therefore it is important to emphasize that in reality Bell has restricted to validity limits of t...
The Physics of Quantum Computation
Falci, Giuseppe; Paladino, Elisabette
2015-10-01
Quantum Computation has emerged in the past decades as a consequence of down-scaling of electronic devices to the mesoscopic regime and of advances in the ability of controlling and measuring microscopic quantum systems. QC has many interdisciplinary aspects, ranging from physics and chemistry to mathematics and computer science. In these lecture notes we focus on physical hardware, present day challenges and future directions for design of quantum architectures.
Experimental implementations of quantum computers
DiVincenzo, David
2006-01-01
Quantum Information, Computation and Complexity * Programme at the Institut Henri Poincar, January 4th April 7th, 2006 * Organizers: Ph.Grangier, M.Santha and D.L.Shepelyansky * Lectures have been filmed by Peter Rapcan and Michal Sedlak from Bratislava with the support of the Marie Curie RTN "CONQUEST" A trimester at the Centre Emile Borel - Institut Henri Poincar is devoted to modern developments in a rapidly growing field of quantum information and communication, quantum computers and ...
High Performance Computing & Quantum Chemistry
Applencourt, Thomas
2015-01-01
This thesis work has two main objectives: 1. To develop and apply original electronic structure methods for quantum chemistry 2. To implement several computational strategies to achieve efficient large-scale computer simulations.In the first part, both the Configuration Interaction (CI) and the Quantum Monte Carlo (QMC) methods used in this work for calculating quantum properties are presented. We then describe more specifically the selected CI approach (so-called CIPSI approach, Configuratio...
Duality quantum computer and the efficient quantum simulations
Wei, Shi-Jie; Long, Gui-Lu
2016-03-01
Duality quantum computing is a new mode of a quantum computer to simulate a moving quantum computer passing through a multi-slit. It exploits the particle wave duality property for computing. A quantum computer with n qubits and a qudit simulates a moving quantum computer with n qubits passing through a d-slit. Duality quantum computing can realize an arbitrary sum of unitaries and therefore a general quantum operator, which is called a generalized quantum gate. All linear bounded operators can be realized by the generalized quantum gates, and unitary operators are just the extreme points of the set of generalized quantum gates. Duality quantum computing provides flexibility and a clear physical picture in designing quantum algorithms, and serves as a powerful bridge between quantum and classical algorithms. In this paper, after a brief review of the theory of duality quantum computing, we will concentrate on the applications of duality quantum computing in simulations of Hamiltonian systems. We will show that duality quantum computing can efficiently simulate quantum systems by providing descriptions of the recent efficient quantum simulation algorithm of Childs and Wiebe (Quantum Inf Comput 12(11-12):901-924, 2012) for the fast simulation of quantum systems with a sparse Hamiltonian, and the quantum simulation algorithm by Berry et al. (Phys Rev Lett 114:090502, 2015), which provides exponential improvement in precision for simulating systems with a sparse Hamiltonian.
Quantum entanglement and quantum computational algorithms
Arvind
2001-02-01
The existence of entangled quantum states gives extra power to quantum computers over their classical counterparts. Quantum entanglement shows up qualitatively at the level of two qubits. We demonstrate that the one- and the two-bit Deutsch-Jozsa algorithm does not require entanglement and can be mapped onto a classical optical scheme. It is only for three and more input bits that the DJ algorithm requires the implementation of entangling transformations and in these cases it is impossible to implement this algorithm classically
Cartoon computation: quantum-like computing without quantum mechanics
Aerts, Diederik [Centrum Leo Apostel (CLEA) and Foundations of the Exact Sciences (FUND), Vrije Universiteit Brussel, 1050 Brussels (Belgium); Czachor, Marek [Katedra Fizyki Teoretycznej i Informatyki Kwantowej, Politechnika Gdanska, 80-952 Gdansk (Poland)
2007-03-30
We present a computational framework based on geometric structures. No quantum mechanics is involved, and yet the algorithms perform tasks analogous to quantum computation. Tensor products and entangled states are not needed-they are replaced by sets of basic shapes. To test the formalism we solve in geometric terms the Deutsch-Jozsa problem, historically the first example that demonstrated the potential power of quantum computation. Each step of the algorithm has a clear geometric interpretation and allows for a cartoon representation. (fast track communication)
Programming Pulse Driven Quantum Computers
Lloyd, Seth
1999-01-01
Arrays of weakly-coupled quantum systems can be made to compute by subjecting them to a sequence of electromagnetic pulses of well-defined frequency and length. Such pulsed arrays are true quantum computers: bits can be placed in superpositions of 0 and 1, logical operations take place coherently, and dissipation is required only for error correction. Programming such computers is accomplished by selecting the proper sequence of pulses.
Focus on topological quantum computation
Topological quantum computation started as a niche area of research aimed at employing particles with exotic statistics, called anyons, for performing quantum computation. Soon it evolved to include a wide variety of disciplines. Advances in the understanding of anyon properties inspired new quantum algorithms and helped in the characterization of topological phases of matter and their experimental realization. The conceptual appeal of topological systems as well as their promise for building fault-tolerant quantum technologies fuelled the fascination in this field. This focus on collection brings together several of the latest developments in the field and facilitates the synergy between different approaches. (editorial)
Polynomial Simulations of Decohered Quantum Computers
Aharonov, Dorit; Ben-Or, Michael
1996-01-01
We define formally decohered quantum computers (using density matrices), and present a simulation of them by a probabalistic classical Turing Machine. We study the slowdown of the simulation for two cases: (1) sequential quantum computers, or quantum Turing machines(QTM), and (2) parallel quantum computers, or quantum circuits. This paper shows that the computational power of decohered quantum computers depends strongly on the amount of parallelism in the computation. The expected slowdown of...
Quantum Computing Using Crossed Atomic Beams
Blythe, P.; Varcoe, B.
2006-01-01
A quantum computer is a hypothetical device in which the laws of quantum mechanics are used to introduce a degree of parallelism into computations and which could therefore significantly improve on the computational speed of a classical computer at certain tasks. Cluster state quantum computing (recently proposed by Raussendorf and Briegel) is a new paradigm in quantum information processing and is a departure from the conventional model of quantum computation. The cluster state quantum compu...
Quantum computation and hidden variables
Aristov, V. V.; Nikulov, A. V.
2008-03-01
Many physicists limit oneself to an instrumentalist description of quantum phenomena and ignore the problems of foundation and interpretation of quantum mechanics. This instrumentalist approach results to "specialization barbarism" and mass delusion concerning the problem, how a quantum computer can be made. The idea of quantum computation can be described within the limits of quantum formalism. But in order to understand how this idea can be put into practice one should realize the question: "What could the quantum formalism describe?", in spite of the absence of an universally recognized answer. Only a realization of this question and the undecided problem of quantum foundations allows to see in which quantum systems the superposition and EPR correlation could be expected. Because of the "specialization barbarism" many authors are sure that Bell proved full impossibility of any hidden-variables interpretation. Therefore it is important to emphasize that in reality Bell has restricted to validity limits of the no-hidden-variables proof and has shown that two-state quantum system can be described by hidden variables. The later means that no experimental result obtained on two-state quantum system can prove the existence of superposition and violation of the realism. One should not assume before unambiguous experimental evidence that any two-state quantum system is quantum bit. No experimental evidence of superposition of macroscopically distinct quantum states and of a quantum bit on base of superconductor structure was obtained for the present. Moreover same experimental results can not be described in the limits of the quantum formalism.
Quantum Computation Beyond the Circuit Model
Jordan, Stephen P.
2008-01-01
The quantum circuit model is the most widely used model of quantum computation. It provides both a framework for formulating quantum algorithms and an architecture for the physical construction of quantum computers. However, several other models of quantum computation exist which provide useful alternative frameworks for both discovering new quantum algorithms and devising new physical implementations of quantum computers. In this thesis, I first present necessary background material for a ge...
Database Manipulation on Quantum Computers
Younes, Ahmed
2007-01-01
Manipulating a database system on a quantum computer is an essential aim to benefit from the promising speed-up of quantum computers over classical computers in areas that take a vast amount of storage and processing time such as in databases. In this paper, the basic operations for manipulating the data in a quantum database will be defined, e.g. INSERT, UPDATE, DELETE, SELECT, backing up and restoring a database file. This gives the ability to perform the data processing that usually takes ...
Geometrical perspective on quantum states and quantum computation
Chen, Zeqian
2013-01-01
We interpret quantum computing as a geometric evolution process by reformulating finite quantum systems via Connes' noncommutative geometry. In this formulation, quantum states are represented as noncommutative connections, while gauge transformations on the connections play a role of unitary quantum operations. Thereby, a geometrical model for quantum computation is presented, which is equivalent to the quantum circuit model. This result shows a geometric way of realizing quantum computing a...
Distinguishing Short Quantum Computations
Rosgen, Bill
2007-01-01
Distinguishing logarithmic depth quantum circuits on mixed states is shown to be complete for QIP, the class of problems having quantum interactive proof systems. Circuits in this model can represent arbitrary quantum processes, and thus this result has implications for the verification of implementations of quantum algorithms. The distinguishability problem is also complete for QIP on constant depth circuits containing the unbounded fan-out gate. These results are shown by reducing a QIP-complete problem to a logarithmic depth version of itself using a parallelization technique.
Surfing Electrons in Quantum Computers?
Pomeau, Y.
I take this opportunity of writing a piece of science for my friend Manuel G. Velarde to discuss things dear to his heart: surfing of electrons on acoustic waves. It has been claimed recently, but not by him, that transport of electrons by surf could be used to carry quantum information in quantum computers. This is physically impossible because this would require to maintain the quantum coherence linked to localisation, a coherence decaying very fastly in the real world.
Quantum computers in phase space
Miquel, Cesar; Paz, Juan Pablo; Saraceno, Marcos
2002-01-01
We represent both the states and the evolution of a quantum computer in phase space using the discrete Wigner function. We study properties of the phase space representation of quantum algorithms: apart from analyzing important examples, such as the Fourier Transform and Grover's search, we examine the conditions for the existence of a direct correspondence between quantum and classical evolutions in phase space. Finally, we describe how to directly measure the Wigner function in a given phas...
Self-correcting quantum computers
Bombin, H.; Chhajlany, R W; Horodecki, M.; Martin-Delgado, M. A.
2013-01-01
Is the notion of a quantum computer (QC) resilient to thermal noise unphysical? We address this question from a constructive perspective and show that local quantum Hamiltonian models provide self-correcting QCs. To this end, we first give a sufficient condition on the connectedness of excitations for a stabilizer code model to be a self-correcting quantum memory. We then study the two main examples of topological stabilizer codes in arbitrary dimensions and establish their self-correcting ca...
Cryptography, quantum computation and trapped ions
Hughes, Richard J.
1998-03-01
The significance of quantum computation for cryptography is discussed. Following a brief survey of the requirements for quantum computational hardware, an overview of the ion trap quantum computation project at Los Alamos is presented. The physical limitations to quantum computation with trapped ions are analyzed and an assessment of the computational potential of the technology is made.
Duality quantum computer and the efficient quantum simulations
Wei, Shi-Jie; Long, Gui-Lu
2015-01-01
In this paper, we firstly briefly review the duality quantum computer. Distinctly, the generalized quantum gates, the basic evolution operators in a duality quantum computer are no longer unitary, and they can be expressed in terms of linear combinations of unitary operators. All linear bounded operators can be realized in a duality quantum computer, and unitary operators are just the extreme points of the set of generalized quantum gates. A d-slits duality quantum computer can be realized in...
The quantum field as a quantum computer
D'Ariano, Giacomo Mauro
2012-01-01
It is supposed that at very small scales a quantum field is an infinite homogeneous quantum computer. On a quantum computer the information cannot propagate faster than c=a/?, a and ? being the minimum space and time distances between gates, respectively. For one space dimension it is shown that the information flow satisfies a Dirac equation, with speed v=?c and ?=?(m) mass-dependent. For c the speed of light ? is a vacuum refraction index that increases monotonically from ?(0)=1 to ?(M)=?, M being the Planck mass for 2a the Planck length. The Fermi anticommuting field can be entirely qubitized, i.e. it can be written in terms of local Pauli matrices and with the field interaction remaining local on qubits. Extensions to larger space dimensions are discussed.
Towards Quantum Chemistry on a Quantum Computer
Lanyon, B. P.; Whitfield, James Daniel; Gillett, G.G.; Goggin, M. E.; Almeida, M.P.; Kassal, Ivan; Biamonte, J. D.; Mohseni, Masoud; Powell, B. J.; Barbieri, M.; Aspuru-Guzik, Alan; Andrew G. White
2010-01-01
The fundamental problem faced in quantum chemistry is the calculation of molecular properties, which are of practical importance in fields ranging from materials science to biochemistry. Within chemical precision, the total energy of a molecule as well as most other properties, can be calculated by solving the Schrodinger equation. However, the computational resources required to obtain exact solutions on a conventional computer generally increase exponentially with the number of atoms involv...
An Algebra of Reversible Quantum Computing
WANG, Yong
2015-01-01
Based on the axiomatization of reversible computing RACP, we generalize it to quantum reversible computing which is called qRACP. By use of the framework of quantum configuration, we show that structural reversibility and quantum state reversibility must be satisfied simultaneously in quantum reversible computation. RACP and qRACP has the same axiomatization modulo the so-called quantum forward-reverse bisimularity, that is, classical reversible computing and quantum reversible computing are ...
Blind topological measurement-based quantum computation
Morimae, Tomoyuki; Fujii, Keisuke
2011-01-01
Blind quantum computation is a novel secure quantum-computing protocol that enables Alice, who does not have sufficient quantum technology at her disposal, to delegate her quantum computation to Bob, who has a fully fledged quantum computer, in such a way that Bob cannot learn anything about Alice's input, output and algorithm. A recent proof-of-principle experiment demonstrating blind quantum computation in an optical system has raised new challenges regarding the scalability of blind quantu...
Computing quantum eigenvalues made easy
An extremely simple and convenient method is presented for computing eigenvalues in quantum mechanics by representing position and momentum operators in matrix form. The simplicity and success of the method is illustrated by numerical results concerning eigenvalues of bound systems and resonances for Hermitian and non-Hermitian Hamiltonians as well as driven quantum systems. Various MATLAB program codes are listed. (author)
Minimal ancilla mediated quantum computation
Proctor, Timothy J. [University of Leeds, School of Physics and Astronomy, Leeds (United Kingdom); Kendon, Viv [University of Leeds, School of Physics and Astronomy, Leeds (United Kingdom); Durham University, Department of Physics, Durham (United Kingdom)
2014-12-01
Schemes of universal quantum computation in which the interactions between the computational elements, in a computational register, are mediated by some ancillary system are of interest due to their relevance to the physical implementation of a quantum computer. Furthermore, reducing the level of control required over both the ancillary and register systems has the potential to simplify any experimental implementation. In this paper we consider how to minimise the control needed to implement universal quantum computation in an ancilla-mediated fashion. Considering computational schemes which require no measurements and hence evolve by unitary dynamics for the global system, we show that when employing an ancilla qubit there are certain fixed-time ancilla-register interactions which, along with ancilla initialisation in the computational basis, are universal for quantum computation with no additional control of either the ancilla or the register. We develop two distinct models based on locally inequivalent interactions and we then discuss the relationship between these unitary models and the measurement-based ancilla-mediated models known as ancilla-driven quantum computation. (orig.)
Silicon-based Quantum Computation
Kane, B E
2000-01-01
An architecture for a quantum computer is presented in which spins associatedwith donors in silicon function as qubits. Quantum operations on the spins areperformed using a combination of voltages applied to gates adjacent to thespins and radio frequency applied magnetic fields resonant with spintransitions. Initialization and measurement of electron spins is made byelectrostatic probing of a two electron system, whose orbital configurationmust depend on the spin states of the electrons because of the Pauli Principle.Specific devices will be discussed which perform all the necessary operationsfor quantum computing, with an emphasis placed on the qualitative principlesunderlying their operation. The likely impediments to achieving large-scale quantum computation usingthis architecture will be addressed: the computer must operate at extremely lowtemperature, must be fabricated from devices built with near atomic precision,and will require extremely accurate gating operations in order to performquantum logic. Re...
Stability of holonomic quantum computations
Kuvshinov, V. I.; Kuzmin, A. V.
2003-01-01
We study the stability of holonomic quantum computations with respect to errors in assignment of control parameters. The general expression for fidelity is obtaned. In the small errors limit the simple formulae for the fidelity decrease rate is derived.
Quantum Computers, Factoring, and Decoherence
Chuang, I.; Laflamme, Raymond; Shor, P.; Zurek, W.
1995-01-01
In a quantum computer any superposition of inputs evolves unitarily into the corresponding superposition of outputs. It has been recently demonstrated that such computers can dramatically speed up the task of finding factors of large numbers -- a problem of great practical significance because of its cryptographic applications. Instead of the nearly exponential ($\\sim \\exp L^{1/3}$, for a number with $L$ digits) time required by the fastest classical algorithm, the quantum algorithm gives fac...
Interactive Proofs For Quantum Computations
Aharonov, Dorit; Ben-Or, Michael; Eban, Elad
2008-01-01
The widely held belief that BQP strictly contains BPP raises fundamental questions: Upcoming generations of quantum computers might already be too large to be simulated classically. Is it possible to experimentally test that these systems perform as they should, if we cannot efficiently compute predictions for their behavior? Vazirani has asked: If predicting Quantum Mechanical systems requires exponential resources, is QM a falsifiable theory? In cryptographic settings, an untrusted future c...
Quantum Computation and Algorithms
It is now firmly established that quantum algorithms provide a substantial speedup over classical algorithms for a variety of problems, including the factorization of large numbers and the search for a marked element in an unsorted database. In this talk I will review the principles of quantum algorithms, the basic quantum gates and their operation. The combination of superposition and interference, that makes these algorithms efficient, will be discussed. In particular, Grover's search algorithm will be presented as an example. I will show that the time evolution of the amplitudes in Grover's algorithm can be found exactly using recursion equations, for any initial amplitude distribution
Quantum Computing with Very Noisy Devices
Knill, E.
2004-01-01
In theory, quantum computers can efficiently simulate quantum physics, factor large numbers and estimate integrals, thus solving otherwise intractable computational problems. In practice, quantum computers must operate with noisy devices called ``gates'' that tend to destroy the fragile quantum states needed for computation. The goal of fault-tolerant quantum computing is to compute accurately even when gates have a high probability of error each time they are used. Here we give evidence that...
The quantum field as a quantum computer
D' Ariano, Giacomo Mauro, E-mail: dariano@unipv.it [University of Pavia, QUIT Group, Dipartimento di Fisica A. Volta, via Bassi 6, 27100 Pavia, PV (Italy); Istituto Nazionale di Fisica Nucleare, Gruppo IV, Sezione di Pavia, PV (Italy)
2012-01-16
It is supposed that at very small scales a quantum field is an infinite homogeneous quantum computer. On a quantum computer the information cannot propagate faster than c=a/?, a and ? being the minimum space and time distances between gates, respectively. For one space dimension it is shown that the information flow satisfies a Dirac equation, with speed v=?c and ?=?(m) mass-dependent. For c the speed of light ?{sup ?1} is a vacuum refraction index that increases monotonically from ?{sup ?1}(0)=1 to ?{sup ?1}(M)=?, M being the Planck mass for 2a the Planck length. The Fermi anticommuting field can be entirely qubitized, i.e. it can be written in terms of local Pauli matrices and with the field interaction remaining local on qubits. Extensions to larger space dimensions are discussed. -- Highlights: ? q-Computational approach to quantum field theory, the Wheeler's It from Bit. ? Dirac derived as free flow of information, without requiring Lorentz covariance. ? Info-interpretation of inertial mass and h{sup } and field Hamiltonian derived from gates. ? Violation of dispersion relation as mass-dependent vacuum refraction index. ? Fermi anticommuting fields substituted by qubits.
Self-Correcting Quantum Computers
Bombin, H; Horodecki, M; Martín-Delgado, M A
2009-01-01
Is the notion of a quantum computer resilient to thermal noise unphysical? We address this question from a constructive perspective and show that local quantum Hamiltonian models provide self-correcting quantum computers. To this end, we first give a sufficient condition on the connectedness of excitations for a stabilizer code model to be a self-correcting quantum memory. We then study the two main examples of topological stabilizer codes in arbitrary dimensions and establish their self-correcting capabilities. Also, we address the transversality properties of topological color codes, showing that 6D color codes provide a self-correcting model that allows the transversal and local implementation of a universal set of operations in seven spatial dimensions. Finally, we give a procedure to initialize such quantum memories at finite temperature.
Quantum Computing via The Bethe Ansatz
Zhang, Yong
2011-01-01
We recognize quantum circuit model of computation as factorisable scattering model and propose that a quantum computer is associated with a quantum many-body system solved by the Bethe ansatz. As an typical example to support our perspectives on quantum computation, we study quantum computing in one-dimensional nonrelativistic system with delta-function interaction, where the two-body scattering matrix satisfies the factorisation equation (the quantum Yang--Baxter equation) and acts as a para...
Faster Quantum Chemistry Simulation on Fault-Tolerant Quantum Computers
Jones, N. Cody; Whitfield, James D; McMahon, Peter L.; Yung, Man-Hong; Van Meter, Rodney; Aspuru-Guzik, Alan; Yamamoto, Yoshihisa
2012-01-01
Quantum computers can in principle simulate quantum physics exponentially faster than their classical counterparts, but some technical hurdles remain. We propose methods which substantially improve the performance of a particular form of simulation, ab initio quantum chemistry, on fault-tolerant quantum computers; these methods generalize readily to other quantum simulation problems. Quantum teleportation plays a key role in these improvements and is used extensively as a computing resource...
Prospective Algorithms for Quantum Evolutionary Computation
Sofge, Donald A.
2008-01-01
This effort examines the intersection of the emerging field of quantum computing and the more established field of evolutionary computation. The goal is to understand what benefits quantum computing might offer to computational intelligence and how computational intelligence paradigms might be implemented as quantum programs to be run on a future quantum computer. We critically examine proposed algorithms and methods for implementing computational intelligence paradigms, primarily focused on ...
Quantum Computing using Linear Optics
Pittman, T B; Franson, J D
2004-01-01
Quantum computers are expected to be able to solve mathematical problems that cannot be solved using conventional computers. Many of these problems are of practical importance, especially in the areas of cryptography and secure communications. APL is developing an optical approach to quantum computing in which the bits, or "qubits", are represented by single photons. Our approach allows the use of ordinary (linear) optical elements that are available for the most part as off-the-shelf components. Recent experimental demonstrations of a variety of logic gates for single photons, a prototype memory device, and other devices will be described.
Shaped pulses for quantum computing
Quantum computers based on pulsed microwave operations are inherently sensitive to the pulse amplitude and detuning between the quantum bit and the microwave frequency. Designing techniques that can compensate both errors simultaneously have been challenging. Here we present a technique that achieves this goal by extending known numerical optimization schemes to obtain amplitude modulated microwave pulses robust against a large detuning range, and combining them with composite pulse techniques that are insensitive to amplitude errors
Handbook of computational quantum chemistry
Cook, David B
2005-01-01
Quantum chemistry forms the basis of molecular modeling, a tool widely used to obtain important chemical information and visual images of molecular systems. Recent advances in computing have resulted in considerable developments in molecular modeling, and these developments have led to significant achievements in the design and synthesis of drugs and catalysts. This comprehensive text provides upper-level undergraduates and graduate students with an introduction to the implementation of quantum ideas in molecular modeling, exploring practical applications alongside theoretical explanations.Wri
Some foundational aspects of quantum computers and quantum robots.
Benioff, P.; Physics
1998-01-01
This paper addresses foundational issues related to quantum computing. The need for a universally valid theory such as quantum mechanics to describe to some extent its own validation is noted. This includes quantum mechanical descriptions of systems that do theoretical calculations (i.e. quantum computers) and systems that perform experiments. Quantum robots interacting with an environment are a small first step in this direction. Quantum robots are described here as mobile quantum systems with on-board quantum computers that interact with environments. Included are discussions on the carrying out of tasks and the division of tasks into computation and action phases. Specific models based on quantum Turing machines are described. Differences and similarities between quantum robots plus environments and quantum computers are discussed.
Maintaining coherence in Quantum Computers
Unruh, W G
1994-01-01
The effect of the inevitable coupling to external degrees of freedom of a quantum computer are examined. It is found that for quantum calculations (in which the maintenance of coherence over a large number of states is important), not only must the coupling be small but the time taken in the quantum calculation must be less than the thermal time scale, $\\hbar/k_B T$. For longer times the condition on the strength of the coupling to the external world becomes much more stringent.
Entanglement Echoes in Quantum Computation
Rossini, Davide; Benenti, Giuliano; Casati, Giulio
2003-01-01
We study the stability of entanglement in a quantum computer implementing an efficient quantum algorithm, which simulates a quantum chaotic dynamics. For this purpose, we perform a forward-backward evolution of an initial state in which two qubits are in a maximally entangled Bell state. If the dynamics is reversed after an evolution time $t_r$, there is an echo of the entanglement between these two qubits at time $t_e=2t_r$. Perturbations attenuate the pairwise entanglement echo and generate...
On the Problem of Programming Quantum Computers
de Raedt, Hans; Hams, Anthony; Michielsen, Kristel; Miyashita, Seiji; Saito, Keiji
2000-01-01
We study effects of the physical realization of quantum computers on their logical operation. Through simulation of physical models of quantum computer hardware, we analyse the difficulties that are encountered in programming physical implementations of quantum computers. We discuss the origin of the instabilities of quantum algorithms and explore physical mechanisms to enlarge the region(s) of stable operation.
On optimising quantum communication in verifiable quantum computing
Kapourniotis, Theodoros; Dunjko, Vedran; Kashefi, Elham
2015-01-01
In the absence of any efficient classical schemes for verifying a universal quantum computer, the importance of limiting the required quantum resources for this task has been highlighted recently. Currently, most of efficient quantum verification protocols are based on cryptographic techniques where an almost classical verifier executes her desired encrypted quantum computation remotely on an untrusted quantum prover. In this work we present a new protocol for quantum verification by incorpor...
Reversible computing fundamentals, quantum computing, and applications
De Vos, Alexis
2010-01-01
Written by one of the few top internationally recognized experts in the field, this book concentrates on those topics that will remain fundamental, such as low power computing, reversible programming languages, and applications in thermodynamics. It describes reversible computing from various points of view: Boolean algebra, group theory, logic circuits, low-power electronics, communication, software, quantum computing. It is this multidisciplinary approach that makes it unique.Backed by numerous examples, this is useful for all levels of the scientific and academic community, from undergr
Salvail, Louis; Arrighi, Pablo
2006-01-01
We investigate the possibility of "having someone carry out the work of executing a function for you, but without letting him learn anything about your input". Say Alice wants Bob to compute some known function f upon her input x, but wants to prevent Bob from learning anything about x. The...... situation arises for instance if client Alice has limited computational resources in comparison with mistrusted server Bob, or if x is an inherently mobile piece of data. Could there be a protocol whereby Bob is forced to compute f(x) "blindly", i.e. without observing x? We provide such a blind computation...
Quantum Computation--The Ultimate Frontier
Adami, Chris; Dowling, Jonathan P.
2002-01-01
The discovery of an algorithm for factoring which runs in polynomial time on a quantum computer has given rise to a concerted effort to understand the principles, advantages, and limitations of quantum computing. At the same time, many different quantum systems are being explored for their suitability to serve as a physical substrate for the quantum computer of the future. I discuss some of the theoretical foundations of quantum computer science, including algorithms and error correction, and...
A Short Survey on Quantum Computers
Kanamori, Yoshito [University of Alabama, Huntsville; Yoo, Seong-Moo [University of Alabama, Huntsville; Pan, W. D. [University of Alabama, Huntsville; Sheldon, Frederick T [ORNL
2006-01-01
Quantum computing is an emerging technology. The clock frequency of current computer processor systems may reach about 40 GHz within the next 10 years. By then, one atom may represent one bit. Electrons under such conditions are no longer described by classical physics and a new model of the computer may be necessary by then. The quantum computer is one proposal that may have merit in dealing with the problems associated with the fact that certain important computationally intense problems present that current (classical) computers cannot solve because they require too much processing time. For example, Shor's algorithm performs factoring a large integer in polynomial time while classical factoring algorithms can do it in exponential time. In this paper we briefly survey the current status of quantum computers, quantum computer systems, and quantum simulators. Keywords Classical computers, quantum computers, quantum computer systems, quantum simulators, Shor's algorithm.
Spin-based quantum computation in multielectron quantum dots
Hu, Xuedong; Sarma, S. Das
2001-01-01
In a quantum computer the hardware and software are intrinsically connected because the quantum Hamiltonian (or more precisely its time development) is the code that runs the computer. We demonstrate this subtle and crucial relationship by considering the example of electron-spin-based solid state quantum computer in semiconductor quantum dots. We show that multielectron quantum dots with one valence electron in the outermost shell do not behave simply as an effective single spin system unles...
Hyper-parallel photonic quantum computation with coupled quantum dots
Bao-Cang Ren; Fu-Guo Deng
2014-01-01
It is well known that a parallel quantum computer is more powerful than a classical one. So far, there are some important works about the construction of universal quantum logic gates, the key elements in quantum computation. However, they are focused on operating on one degree of freedom (DOF) of quantum systems. Here, we investigate the possibility of achieving scalable hyper-parallel quantum computation based on two DOFs of photon systems. We construct a deterministic hyper-controlled-not ...
Can quantum chemistry be performed on a small quantum computer?
Wecker, Dave; Clark, Bryan K; Hastings, Matthew B; Troyer, Matthias
2013-01-01
As quantum computing technology improves and quantum computers with a small but non-trivial number of N > 100 qubits appear feasible in the near future the question of possible applications of small quantum computers gains importance. One frequently mentioned application is Feynman's original proposal of simulating quantum systems, and in particular the electronic structure of molecules and materials. In this paper, we analyze the computational requirements for one of the standard algorithms to perform quantum chemistry on a quantum computer. We focus on the quantum resources required to find the ground state of a molecule twice as large as what current classical computers can solve exactly. We find that while such a problem requires about a ten-fold increase in the number of qubits over current technology, the required increase in the number of gates that can be coherently executed is many orders of magnitude larger. This suggests that for quantum computation to become useful for quantum chemistry problems, ...
Quantum Ballistic Evolution in Quantum Mechanics: Application to Quantum Computers
Benioff, Paul
1996-01-01
Quantum computers are important examples of processes whose evolution can be described in terms of iterations of single step operators or their adjoints. Based on this, Hamiltonian evolution of processes with associated step operators $T$ is investigated here. The main limitation of this paper is to processes which evolve quantum ballistically, i.e. motion restricted to a collection of nonintersecting or distinct paths on an arbitrary basis. The main goal of this paper is proof of a theorem w...
Quantum Walks for Computer Scientists
Venegas-Andraca, Salvador
2008-01-01
Quantum computation, one of the latest joint ventures between physics and the theory of computation, is a scientific field whose main goals include the development of hardware and algorithms based on the quantum mechanical properties of those physical systems used to implement such algorithms. Solving difficult tasks (for example, the Satisfiability Problem and other NP-complete problems) requires the development of sophisticated algorithms, many of which employ stochastic processes as their mathematical basis. Discrete random walks are a popular choice among those stochastic processes. Inspir
An all silicon quantum computer
Ladd, T D; Yamaguchi, F; Yamamoto, Y; Abe, E; Itoh, K M
2002-01-01
A solid-state implementation of a quantum computer composed entirely of silicon is proposed. Qubits are Si-29 nuclear spins arranged as chains in a Si-28 (spin-0) matrix with Larmor frequencies separated by a large magnetic field gradient. No impurity dopants or electrical contacts are needed. Initialization is accomplished by optical pumping, algorithmic cooling, and pseudo-pure state techniques. Magnetic resonance force microscopy is used for readout. This proposal takes advantage of many of the successful aspects of solution NMR quantum computation, including ensemble measurement, RF control, and long decoherence times, but it allows for more qubits and improved initialization.
Realizing the quantum baker's map on an NMR quantum computer
Brun, Todd A.; Schack, Ruediger
1998-01-01
By numerically simulating an implementation of the quantum baker's map on a 3-qubit NMR quantum computer based on the molecule trichloroethylene, we demonstrate the feasibility of quantum chaos experiments on present-day quantum computers. We give detailed descriptions of proposed experiments that investigate (a) the rate of entropy increase due to decoherence and (b) the phenomenon of hypersensitivity to perturbation.
Using a quantum computer to investigate quantum chaos
Schack, Ruediger
1997-01-01
We show that the quantum baker's map, a prototypical map invented for theoretical studies of quantum chaos, has a very simple realization in terms of quantum gates. Chaos in the quantum baker's map could be investigated experimentally on a quantum computer based on only 3 qubits.
Miao, Xijia
2011-01-01
It is shown in the paper that the unitary quantum dynamics in quantum mechanics is the universal quantum driving force to speed up a quantum computation. This assertion supports strongly in theory that the unitary quantum dynamics is the fundamental and universal principle in nature. On the other hand, the symmetric structure of Hilbert space of a composite quantum system is the quantum-computing resource that is not owned by classical computation. A new quantum-computing speedup theory is se...
Quantum ballistic evolution in quantum mechanics: Application to quantum computers
Quantum computers are important examples of processes whose evolution can be described in terms of iterations of single-step operators or their adjoints. Based on this, Hamiltonian evolution of processes with associated step operators T is investigated here. The main limitation of this paper is to processes which evolve quantum ballistically, i.e., motion restricted to a collection of nonintersecting or distinct paths on an arbitrary basis. The main goal of this paper is proof of a theorem which gives necessary and sufficient conditions that T must satisfy so that there exists a Hamiltonian description of quantum ballistic evolution for the process, namely, that T is a partial isometry and is orthogonality preserving and stable on some basis. Simple examples of quantum ballistic evolution for quantum Turing machines with one and with more than one type of elementary step are discussed. It is seen that for nondeterministic machines the basis set can be quite complex with much entanglement present. It is also proven that, given a step operator T for an arbitrary deterministic quantum Turing machine, it is decidable if T is stable and orthogonality preserving, and if quantum ballistic evolution is possible. The proof fails if T is a step operator for a nondeterministic machine. It is an open question if such a decision procedure exists for nondeterministic machines. This problem does not occur in classical mechanics. Also the definition of quantum Turing machines used here is compared with that used by other authors. copyright 1996 The American Physical Society
Quantum computing of quantum chaos and imperfection effects
Song, Pil Hun; Dima L. Shepelyansky
2000-01-01
We study numerically the imperfection effects in the quantum computing of the kicked rotator model in the regime of quantum chaos. It is shown that there are two types of physical characteristics: for one of them the quantum computation errors grow exponentially with the number of qubits in the computer while for the other the growth is polynomial. Certain similarity between classical and quantum computing errors is also discussed.
Self-correcting quantum computers
Is the notion of a quantum computer (QC) resilient to thermal noise unphysical? We address this question from a constructive perspective and show that local quantum Hamiltonian models provide self-correcting QCs. To this end, we first give a sufficient condition on the connectedness of excitations for a stabilizer code model to be a self-correcting quantum memory. We then study the two main examples of topological stabilizer codes in arbitrary dimensions and establish their self-correcting capabilities. Also, we address the transversality properties of topological color codes, showing that six-dimensional color codes provide a self-correcting model that allows the transversal and local implementation of a universal set of operations in seven spatial dimensions. Finally, we give a procedure for initializing such quantum memories at finite temperature. (paper)
Self-correcting quantum computers
Bombin, H.; Chhajlany, R. W.; Horodecki, M.; Martin-Delgado, M. A.
2013-05-01
Is the notion of a quantum computer (QC) resilient to thermal noise unphysical? We address this question from a constructive perspective and show that local quantum Hamiltonian models provide self-correcting QCs. To this end, we first give a sufficient condition on the connectedness of excitations for a stabilizer code model to be a self-correcting quantum memory. We then study the two main examples of topological stabilizer codes in arbitrary dimensions and establish their self-correcting capabilities. Also, we address the transversality properties of topological color codes, showing that six-dimensional color codes provide a self-correcting model that allows the transversal and local implementation of a universal set of operations in seven spatial dimensions. Finally, we give a procedure for initializing such quantum memories at finite temperature.
Using Quantum Computers to Learn Physics
Wiebe, Nathan
2014-01-01
Since its inception at the beginning of the twentieth century, quantum mechanics has challenged our conceptions of how the universe ought to work; however, the equations of quantum mechanics can be too computationally difficult to solve using existing computers for even modestly large systems. Here I will show that quantum computers can sometimes be used to address such problems and that quantum computer science can assign formal complexities to learning facts about nature. Hence, computer sc...
Phase Information in Quantum Oracle Computing
Machta, J.
1998-01-01
Computational devices may be supplied with external sources of information (oracles). Quantum oracles may transmit phase information which is available to a quantum computer but not a classical computer. One consequence of this observation is that there is an oracle which is of no assistance to a classical computer but which allows a quantum computer to solve undecidable problems. Thus useful relativized separations between quantum and classical complexity classes must exclude the transmissio...
Brokered Graph State Quantum Computing
Benjamin, Simon C.; Browne, Dan E.; Fitzsimons, Joe; Morton, John J. L.
2005-01-01
We describe a procedure for graph state quantum computing that is tailored to fully exploit the physics of optically active multi-level systems. Leveraging ideas from the literature on distributed computation together with the recent work on probabilistic cluster state synthesis, our model assigns to each physical system two logical qubits: the broker and the client. Groups of brokers negotiate new graph state fragments via a probabilistic optical protocol. Completed fragments are mapped from...
Topological cluster state quantum computing
Fowler, Austin G.; Goyal, Kovid
2009-01-01
The quantum computing scheme described in Phys. Rev. Lett. 98, 190504 (2007), when viewed as a cluster state computation, features a 3-D cluster state, novel adjustable strength error correction capable of correcting general errors through the correction of Z errors only, a threshold error rate approaching 1% and low overhead arbitrarily long-range logical gates. In this work, we review the scheme in detail framing discussion solely in terms of the required 3-D cluster state and its stabilizers.
The Physical Implementation of Quantum Computation
Divincenzo, David P.; IBM
2000-01-01
After a brief introduction to the principles and promise of quantum information processing, the requirements for the physical implementation of quantum computation are discussed. These five requirements, plus two relating to the communication of quantum information, are extensively explored and related to the many schemes in atomic physics, quantum optics, nuclear and electron magnetic resonance spectroscopy, superconducting electronics, and quantum-dot physics, for achieving quantum computing.
Quantum Computation by Geometrical Means
Pachos, Jiannis
2000-01-01
A geometrical approach to quantum computation is presented, where a non-abelian connection is introduced in order to rewrite the evolution operator of an energy degenerate system as a holonomic unitary. For a simple geometrical model we present an explicit construction of a universal set of gates, represented by holonomies acting on degenerate states.
An Early Quantum Computing Proposal
Lee, Stephen Russell [Los Alamos National Laboratory; Alexander, Francis Joseph [Los Alamos National Laboratory; Barros, Kipton Marcos [Los Alamos National Laboratory; Daniels, Marcus G. [Los Alamos National Laboratory; Gattiker, James R. [Los Alamos National Laboratory; Hamada, Michael Scott [Los Alamos National Laboratory; Howse, James Walter [Los Alamos National Laboratory; Loncaric, Josip [Los Alamos National Laboratory; Pakin, Scott D. [Los Alamos National Laboratory; Somma, Rolando Diego [Los Alamos National Laboratory; Vernon, Louis James [Los Alamos National Laboratory
2016-04-04
The D-Wave 2X is the third generation of quantum processing created by D-Wave. NASA (with Google and USRA) and Lockheed Martin (with USC), both own D-Wave systems. Los Alamos National Laboratory (LANL) purchased a D-Wave 2X in November 2015. The D-Wave 2X processor contains (nominally) 1152 quantum bits (or qubits) and is designed to specifically perform quantum annealing, which is a well-known method for finding a global minimum of an optimization problem. This methodology is based on direct execution of a quantum evolution in experimental quantum hardware. While this can be a powerful method for solving particular kinds of problems, it also means that the D-Wave 2X processor is not a general computing processor and cannot be programmed to perform a wide variety of tasks. It is a highly specialized processor, well beyond what NNSA currently thinks of as an “advanced architecture.”A D-Wave is best described as a quantum optimizer. That is, it uses quantum superposition to find the lowest energy state of a system by repeated doses of power and settling stages. The D-Wave produces multiple solutions to any suitably formulated problem, one of which is the lowest energy state solution (global minimum). Mapping problems onto the D-Wave requires defining an objective function to be minimized and then encoding that function in the Hamiltonian of the D-Wave system. The quantum annealing method is then used to find the lowest energy configuration of the Hamiltonian using the current D-Wave Two, two-level, quantum processor. This is not always an easy thing to do, and the D-Wave Two has significant limitations that restrict problem sizes that can be run and algorithmic choices that can be made. Furthermore, as more people are exploring this technology, it has become clear that it is very difficult to come up with general approaches to optimization that can both utilize the D-Wave and that can do better than highly developed algorithms on conventional computers for specific applications. These are all fundamental challenges that must be overcome for the D-Wave, or similar, quantum computing technology to be broadly applicable.
QCE: A Simulator for Quantum Computer Hardware
Michielsen, Kristel; De Raedt, Hans
2003-01-01
The Quantum Computer Emulator (QCE) described in this paper consists of a simulator of a generic, general purpose quantum computer and a graphical user interface. The latter is used to control the simulator, to define the hardware of the quantum computer and to debug and execute quantum algorithms. QCE runs in a Windows 98/NT/2000/ME/XP environment. It can be used to validate designs of physically realizable quantum processors and as an interactive educational tool to learn about qu...
ASCR Workshop on Quantum Computing for Science
Aspuru-Guzik, Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Van Dam, Wim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Farhi, Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gaitan, Frank [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Humble, Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jordan, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Landahl, Andrew J [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Love, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lucas, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Preskill, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Muller, Richard P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Svore, Krysta [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wiebe, Nathan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Williams, Carl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-06-01
This report details the findings of the DOE ASCR Workshop on Quantum Computing for Science that was organized to assess the viability of quantum computing technologies to meet the computational requirements of the DOE’s science and energy mission, and to identify the potential impact of quantum technologies. The workshop was held on February 17-18, 2015, in Bethesda, MD, to solicit input from members of the quantum computing community. The workshop considered models of quantum computation and programming environments, physical science applications relevant to DOE's science mission as well as quantum simulation, and applied mathematics topics including potential quantum algorithms for linear algebra, graph theory, and machine learning. This report summarizes these perspectives into an outlook on the opportunities for quantum computing to impact problems relevant to the DOE’s mission as well as the additional research required to bring quantum computing to the point where it can have such impact.
Fault tolerance for holonomic quantum computation
Oreshkov, Ognyan; Brun, Todd A.; Lidar, Daniel A.
2013-01-01
Comment: 16 pages, this is a chapter in the book "Quantum Error Correction", edited by Daniel A. Lidar and Todd A. Brun, (Cambridge University Press, 2013), at http://www.cambridge.org/us/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-error-correction
Universal Quantum Computation with Shutter Logic
Garcia-Escartin, Juan Carlos; Chamorro-Posada, Pedro
2005-01-01
We show that universal quantum logic can be achieved using only linear optics and a quantum shutter device. With these elements, we design a quantum memory for any number of qubits and a CNOT gate which are the basis of a universal quantum computer. An interaction-free model for a quantum shutter is given.
The Quantum Way of Doing Computations
Full text: Since the mid nineties of the 20th century it became apparent that one of the centuries’ most important technological inventions, computers in general and many of their applications could possibly be further enormously enhanced by using operations based on quantum. This is timely since the classical road maps for the development of computational devices, commonly known as Moore’s law, will cease to be applicable within the next decade due to the ever smaller sizes of the electronic components that soon will enter the quantum physics realm. Computations, whether they happen in our heads or with any computational device, always rely on real physical processes, which are data input, data representation in a memory, data manipulation using algorithms and finally, the data output. Building a quantum computer then requires the implementation of quantum bits (qubits) as storage sites for quantum information, quantum registers and quantum gates for data handling and processing and the development of quantum algorithms. In this talk, the basic functional principle of a quantum computer will be reviewed and a few technologies for their implementation will be highlighted. In particular, the quantum way of doing computations will be illustrated by showing how quantum correlations, commonly known as entanglement can enhance computational processes. Aside from their use for quantum computers, these quantum technologies open wide perspectives for applications in many technical areas. Examples such as quantum enhanced metrology and quantum simulations will be presented. (author)
Universal quantum computing with nanowire double quantum dots
Xue, P
2011-01-01
We show a method for implementing universal quantum computing using of a singlet and triplets of nanowire double quantum dots coupled to a one-dimensional transmission line resonator. This method is attractive for both quantum computing and quantum control with inhibition of spontaneous emission, enhanced spin qubit lifetime, strong coupling and quantum nondemolition measurements of spin qubits. We analyze the performance and stability of all required operations and emphasize that all techniq...
A Quantum to Classical Phase Transition in Noisy Quantum Computers
Aharonov, Dorit
1999-01-01
The fundamental problem of the transition from quantum to classical physics is usually explained by decoherence, and viewed as a gradual process. The study of entanglement, or quantum correlations, in noisy quantum computers implies that in some cases the transition from quantum to classical is actually a phase transition. We define the notion of entanglement length in $d$-dimensional noisy quantum computers, and show that a phase transition in entanglement occurs at a critical noise rate, wh...
Universal quantum computation using the discrete time quantum walk
Lovett, Neil B; Everitt, Matthew; Trevers, Matthew; Kendon, Viv
2009-01-01
A proof that continuous time quantum walks are universal for quantum computation, using unweighted graphs of low degree, has recently been presented by Childs [PRL 102 180501 (2009)]. We present a version based instead on the discrete time quantum walk. We show the discrete time quantum walk is also a computational primitive and is able to implement the same universal gate set. Additionally we give a set of components on which the discrete time quantum walk provides perfect state transfer.
Classical computing, quantum computing, and Shor's factoring algorithm
Manin, Yuri I.
1999-01-01
This is an expository talk written for the Bourbaki Seminar. After a brief introduction, Section 1 discusses in the categorical language the structure of the classical deterministic computations. Basic notions of complexity icluding the P/NP problem are reviewed. Section 2 introduces the notion of quantum parallelism and explains the main issues of quantum computing. Section 3 is devoted to four quantum subroutines: initialization, quantum computing of classical Boolean functions, quantum Fou...
Experimental realization of the quantum games on a quantum computer
Du, J; Xu, X; Shi, M; Wu, J; Zhou, X; Han, R; Du, Jiangfeng; Li, Hui; Xu, Xiaodong; Shi, Mingjun; Wu, Jihui; Zhou, Xianyi; Han, Rongdian
2002-01-01
Many previous works on quantum games are based on maximally entangled state. In this letter, we investigate the role of entanglement in quantum games. For the particular case of the quantum Prisoners' Dilemma, the property of the game changes fascinatingly with the variation of the measure of the game's entanglement. Furthermore this quantum game is experimental realized on our nuclear magnetic resonance quantum computer. Up to now, there is no quantum game in any form become pratical.
Programming physical realizations of quantum computers
de Raedt, Hans; Michielsen, Kristel; Hams, Anthony; Miyashita, Seiji; Saito, Keiji
2001-01-01
We study effects of the physical realization of quantum computers on their logical operation. Through simulation of physical models of quantum computer hardware, we analyze the difficulties that are encountered in programming physical realizations of quantum computers. Examples of logically identical implementations of the controlled-NOT operation and Grover's database search algorithm are used to demonstrate that the results of a quantum computation are unstable with respect to the physical ...
Exploiting locality in quantum computation for quantum chemistry
McClean, Jarrod R.; Babbush, Ryan; Love, Peter J.; Aspuru-Guzik, Alán
2014-01-01
Accurate prediction of chemical and material properties from first principles quantum chemistry is a challenging task on traditional computers. Recent developments in quantum computation offer a route towards highly accurate solutions with polynomial cost, however this solution still carries a large overhead. In this perspective, we aim to bring together known results about the locality of physical interactions from quantum chemistry with ideas from quantum computation. We show that the utili...
Quantum computing from the ground up
Perry, Riley Tipton
2012-01-01
Quantum computing - the application of quantum mechanics to information - represents a fundamental break from classical information and promises to dramatically increase a computer's power. Many difficult problems, such as the factorization of large numbers, have so far resisted attack by classical computers yet are easily solved with quantum computers. If they become feasible, quantum computers will end standard practices such as RSA encryption. Most of the books or papers on quantum computing require (or assume) prior knowledge of certain areas such as linear algebra or quantum mechanics. The majority of the currently-available literature is hard to understand for the average computer enthusiast or interested layman. This text attempts to teach quantum computing from the ground up in an easily readable way, providing a comprehensive tutorial that includes all the necessary mathematics, computer science and physics.
Strange attractor simulated on a quantum computer
Terraneo, M.; Georgeot, B.; Shepelyansky, D. L.
2002-01-01
We show that dissipative classical dynamics converging to a strange attractor can be simulated on a quantum computer. Such quantum computations allow to investigate efficiently the small scale structure of strange attractors, yielding new information inaccessible to classical computers. This opens new possibilities for quantum simulations of various dissipative processes in nature.
The Next Generation Computing Brainwave-Quantum Computing
T.Venkat Narayana Rao; Shirish Pathania
2010-01-01
This paper is written to explicate the working of Quantum Computing and its mechanics. Quantum Computing is basically a minute field from Nanotechnology. The main purpose of this paper is to explain an inexperienced user about the technology and principles used while designing the architect of a quantum computer. Operational quantum computers would be a reality in forth coming years by the virtue of new mechanisms to explore and implementations. This paper is sectioned into 7 parts. Part 1 is...
Quantum computation with graphene nanoribbon
We propose a scheme to implement quantum computation in graphene nanoribbon (GNR). It is shown that an electron or hole can be naturally localized in each zigzag region for a GNR with a sequence of Z-shaped structures, without using confined gates. A one-dimensional graphene quantum dot chain is formed in such a GNR, where an electron or hole spin can be used as a qubit. The coupling interaction between neighboring qubits is found to be of the always-on Heisenberg type. By exploiting the bang-bang control strategy and the decoherence-free subspaces encoding method, universal quantum gates are argued to be realizable with the present techniques.
Problems and solutions in quantum computing and quantum information
Steeb, Willi-Hans
2012-01-01
Quantum computing and quantum information are two of the fastest growing and most exciting research fields in physics. Entanglement, teleportation and the possibility of using the non-local behavior of quantum mechanics to factor integers in random polynomial time have also added to this new interest. This book supplies a huge collection of problems in quantum computing and quantum information together with their detailed solutions, which will prove to be invaluable to students as well as researchers in these fields. All the important concepts and topics such as quantum gates and quantum circuits, product Hilbert spaces, entanglement and entanglement measures, deportation, Bell states, Bell inequality, Schmidt decomposition, quantum Fourier transform, magic gate, von Neumann entropy, quantum cryptography, quantum error corrections, number states and Bose operators, coherent states, squeezed states, Gaussian states, POVM measurement, quantum optics networks, beam splitter, phase shifter and Kerr Hamilton opera...
Exponential Gain in Quantum Computing of Quantum Chaos and Localization
Georgeot, B.; Shepelyansky, D. L.
2000-01-01
We present a quantum algorithm which simulates the quantum kicked rotator model exponentially faster than classical algorithms. This shows that important physical problems of quantum chaos, localization and Anderson transition can be modelled efficiently on a quantum computer. We also show that a similar algorithm simulates efficiently classical chaos in certain area-preserving maps.
Quantum ballistic evolution in quantum mechanics: Application to quantum computers
Benioff, P. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)
1996-08-01
Quantum computers are important examples of processes whose evolution can be described in terms of iterations of single-step operators or their adjoints. Based on this, Hamiltonian evolution of processes with associated step operators {ital T} is investigated here. The main limitation of this paper is to processes which evolve quantum ballistically, i.e., motion restricted to a collection of nonintersecting or distinct paths on an arbitrary basis. The main goal of this paper is proof of a theorem which gives necessary and sufficient conditions that {ital T} must satisfy so that there exists a Hamiltonian description of quantum ballistic evolution for the process, namely, that {ital T} is a partial isometry and is orthogonality preserving and stable on some basis. Simple examples of quantum ballistic evolution for quantum Turing machines with one and with more than one type of elementary step are discussed. It is seen that for nondeterministic machines the basis set can be quite complex with much entanglement present. It is also proven that, given a step operator {ital T} for an arbitrary {ital deterministic} quantum Turing machine, it is decidable if {ital T} is stable and orthogonality preserving, and if quantum ballistic evolution is possible. The proof fails if {ital T} is a step operator for a {ital nondeterministic} machine. It is an open question if such a decision procedure exists for nondeterministic machines. This problem does not occur in classical mechanics. Also the definition of quantum Turing machines used here is compared with that used by other authors. {copyright} {ital 1996 The American Physical Society.}
Quantum computing with parafermions
Hutter, Adrian; Loss, Daniel
2016-03-01
Zd parafermions are exotic non-Abelian quasiparticles generalizing Majorana fermions, which correspond to the case d =2 . In contrast to Majorana fermions, braiding of parafermions with d >2 allows one to perform an entangling gate. This has spurred interest in parafermions, and a variety of condensed matter systems have been proposed as potential hosts for them. In this work, we study the computational power of braiding parafermions more systematically. We make no assumptions on the underlying physical model but derive all our results from the algebraical relations that define parafermions. We find a family of 2 d representations of the braid group that are compatible with these relations. The braiding operators derived this way reproduce those derived previously from physical grounds as special cases. We show that if a d -level qudit is encoded in the fusion space of four parafermions, braiding of these four parafermions allows one to generate the entire single-qudit Clifford group (up to phases), for any d . If d is odd, then we show that in fact the entire many-qudit Clifford group can be generated.
Quantum computation with programmable connections between gates
Colnaghi, Timoteo, E-mail: timoteo.colnaghi@gmail.com [QUIT group, Dipartimento di Fisica, via Bassi 6, 27100 Pavia (Italy); D' Ariano, Giacomo Mauro [QUIT group, Dipartimento di Fisica, via Bassi 6, 27100 Pavia (Italy); INFN Gruppo IV, Sezione di Pavia, via Bassi, 6, 27100 Pavia (Italy); Facchini, Stefano, E-mail: stefano.facchini@unipv.it [QUIT group, Dipartimento di Fisica, via Bassi 6, 27100 Pavia (Italy); Perinotti, Paolo [QUIT group, Dipartimento di Fisica, via Bassi 6, 27100 Pavia (Italy); INFN Gruppo IV, Sezione di Pavia, via Bassi, 6, 27100 Pavia (Italy)
2012-10-01
A new model of quantum computation is considered, in which the connections between gates are programmed by the state of a quantum register. This new model of computation is shown to be more powerful than the usual quantum computation, e.g. in achieving the programmability of permutations of N different unitary channels with 1 use instead of N uses per channel. For this task, a new elemental resource is needed, the quantum switch, which can be programmed to switch the order of two channels with a single use of each one. -- Highlights: ? New model of quantum computation performing tasks not allowed by quantum circuits. ? Task requiring a single oracle evaluation instead of N. ? Computation is based on a new gate called quantum switch. ? Quantum switch has been achieved in the quantum optical lab.
Geometry of quantum computation with qutrits.
Li, Bin; Yu, Zu-Huan; Fei, Shao-Ming
2013-01-01
Determining the quantum circuit complexity of a unitary operation is an important problem in quantum computation. By using the mathematical techniques of Riemannian geometry, we investigate the efficient quantum circuits in quantum computation with n qutrits. We show that the optimal quantum circuits are essentially equivalent to the shortest path between two points in a certain curved geometry of SU(3(n)). As an example, three-qutrit systems are investigated in detail. PMID:24005379
Towards Linear Optical Quantum Computers
Dowling, Jonathan P; Franson, James D.; Lee, Hwang; Milburn, Gerald J.
2004-01-01
Scalable quantum computation with linear optics was considered to be impossible due to the lack of efficient two-qubit logic gates, despite its ease of implementation of one-qubit gates. Two-qubit gates necessarily need a nonlinear interaction between the two photons, and the efficiency of this nonlinear interaction is typically very tiny in bulk materials. However, we recently have shown that this barrier can be circumvented with effective nonlinearities produced by projective measurements, ...
Dynamical Imperfections in quantum computers
Facchi, Paolo; Montangero, Simone; Fazio, Rosario; Pascazio, Saverio
2004-01-01
We study the effects of dynamical imperfections in quantum computers. By considering an explicit example, we identify different regimes ranging from the low-frequency case, where the imperfections can be considered as static but with renormalized parameters, to the high frequency fluctuations, where the effects of imperfections are completely wiped out. We generalize our results by proving a theorem on the dynamical evolution of a system in the presence of dynamical perturbations.
Geometry of discrete quantum computing
Conventional quantum computing entails a geometry based on the description of an n-qubit state using 2n infinite precision complex numbers denoting a vector in a Hilbert space. Such numbers are in general uncomputable using any real-world resources, and, if we have the idea of physical law as some kind of computational algorithm of the universe, we would be compelled to alter our descriptions of physics to be consistent with computable numbers. Our purpose here is to examine the geometric implications of using finite fields Fp and finite complexified fields Fp2 (based on primes p congruent to 3 (mod4)) as the basis for computations in a theory of discrete quantum computing, which would therefore become a computable theory. Because the states of a discrete n-qubit system are in principle enumerable, we are able to determine the proportions of entangled and unentangled states. In particular, we extend the Hopf fibration that defines the irreducible state space of conventional continuous n-qubit theories (which is the complex projective space CP2n-1) to an analogous discrete geometry in which the Hopf circle for any n is found to be a discrete set of p + 1 points. The tally of unit-length n-qubit states is given, and reduced via the generalized Hopf fibration to DCP2n-1, the discrete analogue of the complex projective space, which has p2n-1(p-1) Πk=1n-1( p2k+1) irreducible states. Using a measure of entanglement, the purity, we explore the entanglement features of discrete quantum states and find that the n-qubit states based on the complexified field Fp2 have pn(p − 1)n unentangled states (the product of the tally for a single qubit) with purity 1, and they have pn+1(p − 1)(p + 1)n−1 maximally entangled states with purity zero. (paper)
EXPLORATIONS IN QUANTUM COMPUTING FOR FINANCIAL APPLICATIONS
Gare, Jesse
2010-01-01
Quantum computers have the potential to increase the solution speed for many computational problems. This paper is a first step into possible applications for quantum computing in the context of computational finance. The fundamental ideas of quantum computing are introduced, followed by an exposition of the algorithms of Deutsch and Grover. Improved mean and median estimation are shown as results of Grover?s generalized framework. The algorithm for mean estimation is refined to an improved M...
Quantum chemistry simulation on quantum computers: theories and experiments.
Lu, Dawei; Xu, Boruo; Xu, Nanyang; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng
2012-07-14
It has been claimed that quantum computers can mimic quantum systems efficiently in the polynomial scale. Traditionally, those simulations are carried out numerically on classical computers, which are inevitably confronted with the exponential growth of required resources, with the increasing size of quantum systems. Quantum computers avoid this problem, and thus provide a possible solution for large quantum systems. In this paper, we first discuss the ideas of quantum simulation, the background of quantum simulators, their categories, and the development in both theories and experiments. We then present a brief introduction to quantum chemistry evaluated via classical computers followed by typical procedures of quantum simulation towards quantum chemistry. Reviewed are not only theoretical proposals but also proof-of-principle experimental implementations, via a small quantum computer, which include the evaluation of the static molecular eigenenergy and the simulation of chemical reaction dynamics. Although the experimental development is still behind the theory, we give prospects and suggestions for future experiments. We anticipate that in the near future quantum simulation will become a powerful tool for quantum chemistry over classical computations. PMID:22652702
RISQ - reduced instruction set quantum computers
Molmer, Klaus; Sorensen, Anders
2000-01-01
Candidates for quantum computing which offer only restricted control, e.g., due to lack of access to individual qubits, are not useful for general purpose quantum computing. We present concrete proposals for the use of systems with such limitations as RISQ - reduced instruction set quantum computers and devices - for simulation of quantum dynamics, for multi-particle entanglement and squeezing of collective spin variables. These tasks are useful in their own right, and they also provide exper...
From Monte Carlo to Quantum Computation
Heinrich, Stefan
2001-01-01
Quantum computing was so far mainly concerned with discrete problems. Recently, E. Novak and the author studied quantum algorithms for high dimensional integration and dealt with the question, which advantages quantum computing can bring over classical deterministic or randomized methods for this type of problem. In this paper we give a short introduction to the basic ideas of quantum computing and survey recent results on high dimensional integration. We discuss connections to the Monte Carl...
A Quantum Computer Architecture using Nonlocal Interactions
Brennen, Gavin K; Song, Daegene; Williams, Carl J.
2003-01-01
Several authors have described the basic requirements essential to build a scalable quantum computer. Because many physical implementation schemes for quantum computing rely on nearest neighbor interactions, there is a hidden quantum communication overhead to connect distant nodes of the computer. In this paper we propose a physical solution to this problem which, together with the key building blocks, provides a pathway to a scalable quantum architecture using nonlocal interactions. Our solu...
Exploiting locality in quantum computation for quantum chemistry
McClean, Jarrod R; Love, Peter J; Aspuru-Guzik, Aln
2014-01-01
Accurate prediction of chemical and material properties from first principles quantum chemistry is a challenging task on traditional computers. Recent developments in quantum computation offer a route towards highly accurate solutions with polynomial cost, however this solution still carries a large overhead. In this perspective, we aim to bring together known results about the locality of physical interactions from quantum chemistry with ideas from quantum computation. We show that the utilization of spatial locality combined with the Bravyi-Kitaev transformation offers an improvement in the scaling of known quantum algorithms for quantum chemistry and provide numerical examples to help illustrate this point. We combine these developments to improve the outlook for the future of quantum chemistry on quantum computers.
Quantum ballistic evolution in quantum mechanics application to quantum computers
Benioff, P
1996-01-01
Quantum computers are important examples of processes whose evolution can be described in terms of iterations of single step operators or their adjoints. Based on this, Hamiltonian evolution of processes with associated step operators T is investigated here. The main limitation of this paper is to processes which evolve quantum ballistically, i.e. motion restricted to a collection of nonintersecting or distinct paths on an arbitrary basis. The main goal of this paper is proof of a theorem which gives necessary and sufficient conditions that T must satisfy so that there exists a Hamiltonian description of quantum ballistic evolution for the process, namely, that T is a partial isometry and is orthogonality preserving and stable on some basis. Simple examples of quantum ballistic evolution for quantum Turing machines with one and with more than one type of elementary step are discussed. It is seen that for nondeterministic machines the basis set can be quite complex with much entanglement present. It is also pr...
Computational multiqubit tunnelling in programmable quantum annealers
Boixo, Sergio; Smelyanskiy, Vadim N.; Shabani, Alireza; Isakov, Sergei V.; Dykman, Mark; Denchev, Vasil S.; Amin, Mohammad H.; Smirnov, Anatoly Yu; Mohseni, Masoud; Neven, Hartmut
2016-01-01
Quantum tunnelling is a phenomenon in which a quantum state traverses energy barriers higher than the energy of the state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational multiqubit tunnelling has not yet been observed, and a theory of co-tunnelling under high- and low-frequency noises is lacking. Here we show that 8-qubit tunnelling plays a computational role in a currently available programmable quantum annealer. We devise a probe for tunnelling, a computational primitive where classical paths are trapped in a false minimum. In support of the design of quantum annealers we develop a nonperturbative theory of open quantum dynamics under realistic noise characteristics. This theory accurately predicts the rate of many-body dissipative quantum tunnelling subject to the polaron effect. Furthermore, we experimentally demonstrate that quantum tunnelling outperforms thermal hopping along classical paths for problems with up to 200 qubits containing the computational primitive.
Computational multiqubit tunnelling in programmable quantum annealers.
Boixo, Sergio; Smelyanskiy, Vadim N; Shabani, Alireza; Isakov, Sergei V; Dykman, Mark; Denchev, Vasil S; Amin, Mohammad H; Smirnov, Anatoly Yu; Mohseni, Masoud; Neven, Hartmut
2016-01-01
Quantum tunnelling is a phenomenon in which a quantum state traverses energy barriers higher than the energy of the state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational multiqubit tunnelling has not yet been observed, and a theory of co-tunnelling under high- and low-frequency noises is lacking. Here we show that 8-qubit tunnelling plays a computational role in a currently available programmable quantum annealer. We devise a probe for tunnelling, a computational primitive where classical paths are trapped in a false minimum. In support of the design of quantum annealers we develop a nonperturbative theory of open quantum dynamics under realistic noise characteristics. This theory accurately predicts the rate of many-body dissipative quantum tunnelling subject to the polaron effect. Furthermore, we experimentally demonstrate that quantum tunnelling outperforms thermal hopping along classical paths for problems with up to 200 qubits containing the computational primitive. PMID:26739797
Efficient Simulation of Quantum Systems by Quantum Computers
Zalka, Christof
1996-01-01
We show that the time evolution of the wave function of a quantum mechanical many particle system can be implemented very efficiently on a quantum computer. The computational cost of such a simulation is comparable to the cost of a conventional simulation of the corresponding classical system. We then sketch how results of interest, like the energy spectrum of a system, can be obtained. We also indicate that ultimately the simulation of quantum field theory might be possible on large quantum ...
Suppression of quantum chaos in a quantum computer hardware
Lages, J.; Shepelyansky, D. L.
2005-01-01
We present numerical and analytical studies of a quantum computer proposed by the Yamamoto group in Phys. Rev. Lett. 89, 017901 (2002). The stable and quantum chaos regimes in the quantum computer hardware are identified as a function of magnetic field gradient and dipole-dipole couplings between qubits on a square lattice. It is shown that a strong magnetic field gradient leads to suppression of quantum chaos.
Layered Architectures for Quantum Computers and Quantum Repeaters
Jones, Nathan C.
This chapter examines how to organize quantum computers and repeaters using a systematic framework known as layered architecture, where machine control is organized in layers associated with specialized tasks. The framework is flexible and could be used for analysis and comparison of quantum information systems. To demonstrate the design principles in practice, we develop architectures for quantum computers and quantum repeaters based on optically controlled quantum dots, showing how a myriad of technologies must operate synchronously to achieve fault-tolerance. Optical control makes information processing in this system very fast, scalable to large problem sizes, and extendable to quantum communication.
Universal quantum computation using the discrete-time quantum walk
A proof that continuous-time quantum walks are universal for quantum computation, using unweighted graphs of low degree, has recently been presented by A. M. Childs [Phys. Rev. Lett. 102, 180501 (2009)]. We present a version based instead on the discrete-time quantum walk. We show that the discrete-time quantum walk is able to implement the same universal gate set and thus both discrete and continuous-time quantum walks are computational primitives. Additionally, we give a set of components on which the discrete-time quantum walk provides perfect state transfer.
Nanophotonic quantum computer based on atomic quantum transistor
Andrianov, S. N.; Moiseev, S. A.
2015-10-01
We propose a scheme of a quantum computer based on nanophotonic elements: two buses in the form of nanowaveguide resonators, two nanosized units of multiatom multiqubit quantum memory and a set of nanoprocessors in the form of photonic quantum transistors, each containing a pair of nanowaveguide ring resonators coupled via a quantum dot. The operation modes of nanoprocessor photonic quantum transistors are theoretically studied and the execution of main logical operations by means of them is demonstrated. We also discuss the prospects of the proposed nanophotonic quantum computer for operating in high-speed optical fibre networks.
The Quantum Human Computer (QHC) Hypothesis
Salmani-Nodoushan, Mohammad Ali
2008-01-01
This article attempts to suggest the existence of a human computer called Quantum Human Computer (QHC) on the basis of an analogy between human beings and computers. To date, there are two types of computers: Binary and Quantum. The former operates on the basis of binary logic where an object is said to exist in either of the two states of 1 and…
Quantum machine learning what quantum computing means to data mining
Wittek, Peter
2014-01-01
Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research. Quantum Machine L
Adiabatic quantum computation and quantum annealing theory and practice
McGeoch, Catherine C
2014-01-01
Adiabatic quantum computation (AQC) is an alternative to the better-known gate model of quantum computation. The two models are polynomially equivalent, but otherwise quite dissimilar: one property that distinguishes AQC from the gate model is its analog nature. Quantum annealing (QA) describes a type of heuristic search algorithm that can be implemented to run in the ``native instruction set'''' of an AQC platform. D-Wave Systems Inc. manufactures {quantum annealing processor chips} that exploit quantum properties to realize QA computations in hardware. The chips form the centerpiece of a nov
The Heisenberg Representation of Quantum Computers
Gottesman, Daniel
1998-01-01
Since Shor's discovery of an algorithm to factor numbers on a quantum computer in polynomial time, quantum computation has become a subject of immense interest. Unfortunately, one of the key features of quantum computers - the difficulty of describing them on classical computers - also makes it difficult to describe and understand precisely what can be done with them. A formalism describing the evolution of operators rather than states has proven extremely fruitful in understanding an importa...
Parallel computing and quantum chromodynamics
Bowler, K C
1999-01-01
The study of Quantum Chromodynamics (QCD) remains one of the most challenging topics in elementary particle physics. The lattice formulation of QCD, in which space-time is treated as a four- dimensional hypercubic grid of points, provides the means for a numerical solution from first principles but makes extreme demands upon computational performance. High Performance Computing (HPC) offers us the tantalising prospect of a verification of QCD through the precise reproduction of the known masses of the strongly interacting particles. It is also leading to the development of a phenomenological tool capable of disentangling strong interaction effects from weak interaction effects in the decays of one kind of quark into another, crucial for determining parameters of the standard model of particle physics. The 1980s saw the first attempts to apply parallel architecture computers to lattice QCD. The SIMD and MIMD machines used in these pioneering efforts were the ICL DAP and the Cosmic Cube, respectively. These wer...
Computational model underlying the one-way quantum computer
Raussendorf, Robert; Briegel, Hans
2001-01-01
In this paper we present the computational model underlying the one-way quantum computer which we introduced recently [Phys. Rev. Lett. 86, 5188 (2001)]. The one-way quantum computer has the property that any quantum logic network can be simulated on it. Conversely, not all ways of quantum information processing that are possible with the one-way quantum computer can be understood properly in network model terms. We show that the logical depth is, for certain algorithms, lower than has so far...
Quantum computing with superconductors I: Architectures
Geller, Michael R.; Pritchett, Emily J.; Sornborger, Andrew T.; Wilhelm, F.K.
2006-01-01
Josephson junctions have demonstrated enormous potential as qubits for scalable quantum computing architectures. Here we discuss the current approaches for making multi-qubit circuits and performing quantum information processing with them.
Non-unitary probabilistic quantum computing
Gingrich, Robert M.; Williams, Colin P.
2004-01-01
We present a method for designing quantum circuits that perform non-unitary quantum computations on n-qubit states probabilistically, and give analytic expressions for the success probability and fidelity.
Probability Analysis of a Quantum Computer
Einarsson, Göran
2003-01-01
The quantum computer algorithm by Peter Shor for factorization of integers is studied. The quantum nature of a QC makes its outcome random. The output probability distribution is investigated and the chances of a successful operation is determined
The Essence of Quantum Theory for Computers
Parke, W. C.
2014-01-01
Quantum computers take advantage of interfering quantum alternatives in order to handle problems that might be too time consuming with algorithms based on classical logic. Developing quantum computers requires new ways of thinking beyond those in the familiar classical world. To help in this thinking, we give a description of the foundational ideas that hold in all of our successful physical models, including quantum theory. Our emphasis will be on the proper interpretation of our theories, a...
Zeno effect for quantum computation and control
Paz-Silva, G A; Lidar, D A
2011-01-01
It is well known that the quantum Zeno effect can protect specific quantum states from decoherence by using projective measurements. Here we combine the theory of weak measurements with stabilizer quantum error correction and detection codes. We derive rigorous performance bounds which demonstrate that the Zeno effect can be used to protect appropriately encoded arbitrary states to arbitrary accuracy, while at the same time allowing for universal quantum computation or quantum control.
Polynomial simulations of decohered quantum computers
Aharonov, D.; Ben-Or, M. [Hebrew Univ., Jerusalem (Israel)
1996-12-31
Recently it has become clear, that a key issue in quantum computation is understanding how interaction with the environment, or {open_quote}decoherence{close_quotes}, effects the computational power of quantum computers. We adopt the standard physical method of describing systems which are interwound with their environment by {open_quotes}density matrices{close_quotes}, and within this framework define a model of decoherence in quantum computation. Our results show that the computational power of decohered quantum computers depends strongly on the amount of parallelism in the computation. We first present a simulation of decohered sequential quantum computers, on a classical probabilistic Turing machine, and prove that the expected slowdown of this simulation is polynomial in time and space of the quantum computation, for any non zero decoherence rate. Similar results hold for Quantum computers that are allowed to operate on logarithmic number of qubits at a time. For decohered quantum circuits (with local gates), the situation is more subtle and depends on the decoherence rate, {eta}. We find that our simulation is efficient for circuits with decoherence rate {eta} higher than some constant {eta}{sub 1}, but exponential for a general (random) circuit subjected to decoherence rate lower than some constant {eta}{sub 2}. The transition from exponential cost to polynomial cost happens in a short range of decoherence rates. We use computer experiments to exhibit the phase transitions in various quantum circuits.
Physics and computer science: quantum computation and other approaches
Salvador E. Venegas-Andraca
2011-01-01
This is a position paper written as an introduction to the special volume on quantum algorithms I edited for the journal Mathematical Structures in Computer Science (Volume 20 - Special Issue 06 (Quantum Algorithms), 2010).
Blind topological measurement-based quantum computation.
Morimae, Tomoyuki; Fujii, Keisuke
2012-01-01
Blind quantum computation is a novel secure quantum-computing protocol that enables Alice, who does not have sufficient quantum technology at her disposal, to delegate her quantum computation to Bob, who has a fully fledged quantum computer, in such a way that Bob cannot learn anything about Alice's input, output and algorithm. A recent proof-of-principle experiment demonstrating blind quantum computation in an optical system has raised new challenges regarding the scalability of blind quantum computation in realistic noisy conditions. Here we show that fault-tolerant blind quantum computation is possible in a topologically protected manner using the Raussendorf-Harrington-Goyal scheme. The error threshold of our scheme is 4.3 10(-3), which is comparable to that (7.5 10(-3)) of non-blind topological quantum computation. As the error per gate of the order 10(-3) was already achieved in some experimental systems, our result implies that secure cloud quantum computation is within reach. PMID:22948818
From Monte Carlo to Quantum Computation
Heinrich, S
2001-01-01
Quantum computing was so far mainly concerned with discrete problems. Recently, E. Novak and the author studied quantum algorithms for high dimensional integration and dealt with the question, which advantages quantum computing can bring over classical deterministic or randomized methods for this type of problem. In this paper we give a short introduction to the basic ideas of quantum computing and survey recent results on high dimensional integration. We discuss connections to the Monte Carlo methology and compare the optimal error rates of quantum algorithms to those of classical deterministic and randomized algorithms.
The Halting Problem for Quantum Computers
Linden, Noah; Popescu, Sandu
1998-01-01
We argue that the halting problem for quantum computers which was first raised by Myers, is by no means solved, as has been claimed recently. We explicitly demonstrate the difficulties that arise in a quantum computer when different branches of the computation halt at different, unknown, times.
Brokered Graph State Quantum Computing
Benjamin, S C; Fitzsimons, J; Morton, J J L; Benjamin, Simon C.; Browne, Dan E.; Fitzsimons, Joe; Morton, John J. L.
2005-01-01
We describe a procedure for graph state quantum computing that is tailored to fully exploit the physics of optically active multi-level systems. Leveraging ideas from the literature on distributed computation together with the recent work on probabilistic cluster state synthesis, our model assigns to each physical system two logical qubits: the broker and the client. Groups of brokers negotiate new graph state fragments via a probabilistic optical protocol. Completed fragments are mapped from broker to clients via a simple state transition and measurement. The clients, whose role is to store the nascent graph state long term, remain entirely insulated from failures during the brokerage. We describe an implementation in terms of NV-centres in diamond, where brokers and clients are very naturally embodied as electron and nuclear spins.
Helping Students Learn Quantum Mechanics for Quantum Computing
Singh, Chandralekha
2016-01-01
Quantum information science and technology is a rapidly growing interdisciplinary field drawing researchers from science and engineering fields. Traditional instruction in quantum mechanics is insufficient to prepare students for research in quantum computing because there is a lack of emphasis in the current curriculum on quantum formalism and dynamics. We are investigating the difficulties students have with quantum mechanics and are developing and evaluating quantum interactive learning tutorials (QuILTs) to reduce the difficulties. Our investigation includes interviews with individual students and the development and administration of free-response and multiple-choice tests. We discuss the implications of our research and development project on helping students learn quantum mechanics relevant for quantum computing.
Quantum Computing in Solid State Systems
Ruggiero, B; Granata, C
2006-01-01
The aim of Quantum Computation in Solid State Systems is to report on recent theoretical and experimental results on the macroscopic quantum coherence of mesoscopic systems, as well as on solid state realization of qubits and quantum gates. Particular attention has been given to coherence effects in Josephson devices. Other solid state systems, including quantum dots, optical, ion, and spin devices which exhibit macroscopic quantum coherence are also discussed. Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing and information processing devices, and in particular observations of quantum behavior in several solid state systems. On the theoretical side, the complementary expertise of the contributors provides models of the various structures in connection with the problem of minimizing decoherence.
The Power of Noisy Fermionic Quantum Computation
de Melo, F.; Cwiklinski, P.; Terhal, B.
2012-01-01
We consider the realization of universal quantum computation through braiding of Majorana fermions supplemented by unprotected preparation of noisy ancillae. It has been shown by Bravyi [Phys. Rev. A 73, 042313 (2006)] that under the assumption of perfect braiding operations, universal quantum computation is possible if the noise rate on a particular 4-fermion ancilla is below 40%. We show that beyond a noise rate of 89% on this ancilla the quantum computation can be efficiently simulated cla...
Disciplines, models, and computers: the path to computational quantum chemistry.
Lenhard, Johannes
2014-12-01
Many disciplines and scientific fields have undergone a computational turn in the past several decades. This paper analyzes this sort of turn by investigating the case of computational quantum chemistry. The main claim is that the transformation from quantum to computational quantum chemistry involved changes in three dimensions. First, on the side of instrumentation, small computers and a networked infrastructure took over the lead from centralized mainframe architecture. Second, a new conception of computational modeling became feasible and assumed a crucial role. And third, the field of computa- tional quantum chemistry became organized in a market-like fashion and this market is much bigger than the number of quantum theory experts. These claims will be substantiated by an investigation of the so-called density functional theory (DFT), the arguably pivotal theory in the turn to computational quantum chemistry around 1990. PMID:25571750
Quantum Computational Logics and Possible Applications
Chiara, Maria Luisa Dalla; Giuntini, Roberto; Leporini, Roberto; di Francia, Giuliano Toraldo
2008-01-01
In quantum computational logics meanings of formulas are identified with quantum information quantities: systems of qubits or, more generally, mixtures of systems of qubits. We consider two kinds of quantum computational semantics: (1) a compositional semantics, where the meaning of a compound formula is determined by the meanings of its parts; (2) a holistic semantics, which makes essential use of the characteristic holistic features of the quantum-theoretic formalism. The compositional and the holistic semantics turn out to characterize the same logic. In this framework, one can introduce the notion of quantum-classical truth table, which corresponds to the most natural way for a quantum computer to calculate classical tautologies. Quantum computational logics can be applied to investigate different kinds of semantic phenomena where holistic, contextual and gestaltic patterns play an essential role (from natural languages to musical compositions).
Difficulties in the Implementation of Quantum Computers
Ponnath, Abhilash
2006-01-01
This paper reviews various engineering hurdles facing the field of quantum computing. Specifically, problems related to decoherence, state preparation, error correction, and implementability of gates are considered.
Quantum-mechanical computers and uncomputability
Lloyd, S. (Complex Systems Group (T-13) and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States))
1993-08-09
The time evolution operator for any quantum-mechanical computer is diagonalizable, but to obtain the diagonal decomposition of a program state of the computer is as hard as actually performing the computation corresponding to the program. In particular, if a quantum-mechanical system is capable of universal computation, then the diagonal decomposition of program states is uncomputable. As a result, in a universe in which local variables support universal computation, a quantum-mechanical theory for that universe that supplies its spectrum cannot supply the spectral decomposition of the computational variables. A theory of everything'' can be simultaneously correct and fundamentally incomplete.
The Heisenberg representation of quantum computers
Gottesman, D.
1998-06-24
Since Shor`s discovery of an algorithm to factor numbers on a quantum computer in polynomial time, quantum computation has become a subject of immense interest. Unfortunately, one of the key features of quantum computers--the difficulty of describing them on classical computers--also makes it difficult to describe and understand precisely what can be done with them. A formalism describing the evolution of operators rather than states has proven extremely fruitful in understanding an important class of quantum operations. States used in error correction and certain communication protocols can be described by their stabilizer, a group of tensor products of Pauli matrices. Even this simple group structure is sufficient to allow a rich range of quantum effects, although it falls short of the full power of quantum computation.
Quantum Computer Games: Schrodinger Cat and Hounds
Gordon, Michal; Gordon, Goren
2012-01-01
The quantum computer game "Schrodinger cat and hounds" is the quantum extension of the well-known classical game fox and hounds. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. "Schrodinger cat and hounds" demonstrates the effects of superposition, destructive and constructive interference, measurements and
Treatment of sound on quantum computers
Lee, Jae Weon; Chepelianskii, Alexei; Shepelyansky, Dima
2003-01-01
We study numerically how a sound signal stored in a quantum computer can be recognized and restored with a minimal number of measurements in presence of random quantum gate errors. A method developed uses elements of MP3 sound compression and allows to recover human speech and sound of complex quantum wavefunctions.
Quantum Computer Games: Schrodinger Cat and Hounds
Gordon, Michal; Gordon, Goren
2012-01-01
The quantum computer game "Schrodinger cat and hounds" is the quantum extension of the well-known classical game fox and hounds. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. "Schrodinger cat and hounds" demonstrates the effects of superposition, destructive and constructive interference, measurements and…
How to test the ``quantumness'' of a quantum computer?
Zagoskin, Alexandre; Il'ichev, Evgeni; Grajcar, Miroslav; Betouras, Joseph; Nori, Franco
2014-05-01
Recent devices, using hundreds of superconducting quantum bits, claim to perform quantum computing. However, it is not an easy task to determine and quantify the degree of quantum coherence and control used by these devices. Namely, it is a difficult task to know with certainty whether or not a given device (e.g., the D-Wave One or D-Wave Two) is a quantum computer. Such a verification of quantum computing would be more accessible if we already had some kind of working quantum computer, to be able to compare the outputs of these various computing devices. Moreover, the verification process itself could strongly depend on whether the tested device is a standard (gate-based) or, e.g., an adiabatic quantum computer. Here we do not propose a technical solution to this quantum-computing verification problem, but rather outline the problem in a way which would help both specialists and non-experts to see the scale of this difficult task, and indicate some possible paths towards its solution.
Computational quantum-classical boundary of noisy commuting quantum circuits.
Fujii, Keisuke; Tamate, Shuhei
2016-01-01
It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region. PMID:27189039
Quantum state diffusion, localization and computation
Schack, R; Percival, I C
1995-01-01
Numerical simulation of individual open quantum systems has proven advantages over density operator computations. Quantum state diffusion with a moving basis (MQSD) provides a practical numerical simulation method which takes full advantage of the localization of quantum states into wave packets occupying small regions of classical phase space. Following and extending the original proposal of Percival, Alber and Steimle, we show that MQSD can provide a further gain over ordinary QSD and other quantum trajectory methods of many orders of magnitude in computational space and time. Because of these gains, it is even possible to calculate an open quantum system trajectory when the corresponding isolated system is intractable. MQSD is particularly advantageous where classical or semiclassical dynamics provides an adequate qualitative picture but is numerically inaccurate because of significant quantum effects. The principles are illustrated by computations for the quantum Duffing oscillator and for second harmonic...
Quantum computing in a piece of glass
Miller, Warner A; Tison, Christopher; Alsing, Paul M; McDonald, Jonathan R
2011-01-01
Quantum gates and simple quantum algorithms can be designed utilizing the diffraction phenomena of a photon within a multiplexed holographic element. The quantum eigenstates we use are the photon's linear momentum (LM) as measured by the number of waves of tilt across the aperture. Two properties of quantum computing within the circuit model make this approach attractive. First, any conditional measurement can be commuted in time with any unitary quantum gate - the timeless nature of quantum computing. Second, photon entanglement can be encoded as a superposition state of a single photon in a higher-dimensional state space afforded by LM. Our theoretical and numerical results indicate that OptiGrate's photo-thermal refractive (PTR) glass is an enabling technology. We will review our previous design of a quantum projection operator and give credence to this approach on a representative quantum gate grounded on coupled-mode theory and numerical simulations, all with parameters consistent with PTR glass. We disc...
Universality and programmability of quantum computers
Fouche', Willem; Heidema, Johannes; Jones, Glyn; Potgieter, Petrus H.
2007-01-01
Manin, Feynman, and Deutsch have viewed quantum computing as a kind of universal physical simulation procedure. Much of the writing about quantum logic circuits and quantum Turing machines has shown how these machines can simulate an arbitrary unitary transformation on a finite number of qubits. The problem of universality has been addressed most famously in a paper by Deutsch, and later by Bernstein and Vazirani as well as Kitaev and Solovay. The quantum logic circuit model, developed by Fey...
Geometry of quantum computation with qudits.
Luo, Ming-Xing; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun
2014-01-01
The circuit complexity of quantum qubit system evolution as a primitive problem in quantum computation has been discussed widely. We investigate this problem in terms of qudit system. Using the Riemannian geometry the optimal quantum circuits are equivalent to the geodetic evolutions in specially curved parametrization of SU(d(n)). And the quantum circuit complexity is explicitly dependent of controllable approximation error bound. PMID:24509710
The potential of the quantum computer
2006-01-01
The Physics Section of the University of Geneva is continuing its series of lectures, open to the general public, on the most recent developments in the field of physics. The next lecture, given by Professor Michel Devoret of Yale University in the United States, will be on the potential of the quantum computer. The quantum computer is, as yet, a hypothetical machine which would operate on the basic principles of quantum mechanics. Compared to standard computers, it represents a significant gain in computing power for certain complex calculations. Quantum operations can simultaneously explore a very large number of possibilities. The correction of quantum errors, which until recently had been deemed impossible, has now become a well-established technique. Several prototypes for, as yet, very simple quantum processors have been developed. The lecture will begin with a demonstration in the auditorium of the detection of cosmic rays and, in collaboration with Professor E. Ellberger of the Conservatoire de M...
AN INTRODUCTION TO QUANTUM NEURAL COMPUTING
Shaktikanta Nayak
2011-09-01
Full Text Available The goal of the artificial neural network is to create powerful artificial problem solving systems. The field of quantum computation applies ideas from quantum mechanics to the study of computation and has made interesting progress. Quantum Neural Network (QNN is one of the new paradigms built upon the combination of classical neural computation and quantum computation. It is argued that the study of QNN may explain the brain functionality in a better way and create new systems for information processing including solving some classically intractable problems. In this paper we have given an introductory representation of quantum artificial neural network to show how it can be modelled on the basis of double-slit experiment. Also an attempt is made to show the quantum mechanical representation of a classical neuron to implement Hadamard transformation.
Determining Ramsey numbers on a quantum computer
Wang, Hefeng
2016-03-01
We present a quantum algorithm for computing the Ramsey numbers whose computational complexity grows superexponentially with the number of vertices of a graph on a classical computer. The problem is mapped to a decision problem on a quantum computer, and a probe qubit is coupled to a register that represents the problem and detects the energy levels of the problem Hamiltonian. The decision problem is solved by detecting the decay dynamics of the probe qubit.
Problems and solutions in quantum computing and quantum information
Steeb, Willi-Hans
2004-01-01
Quantum computing and quantum information are two of thefastest-growing and most exciting research areas in physics. Thepossibilities of using non-local behaviour of quantum mechanics tofactorize integers in random polynomial time have added to this newinterest. This invaluable book provides a collection of problems inquantum computing and quantum information together with detailedsolutions. It consists of two parts: in the first partfinite-dimensional systems are considered, while the second part dealswith finite-dimensional systems. All the important concepts and topics are included, such as
Quantum computation architecture using optical tweezers
Weitenberg, Christof; Kuhr, Stefan; Mølmer, Klaus; Sherson, Jacob
2011-01-01
We present a complete architecture for scalable quantum computation with ultracold atoms in optical lattices using optical tweezers focused to the size of a lattice spacing. We discuss three different two-qubit gates based on local collisional interactions. The gates between arbitrary qubits...... quantum computing....
Selecting ensembles for rare earth quantum computation
Sellars, J. J. Longdell M. J.
2003-01-01
We discuss the issues surrounding the implementation of quantum computation in rare-earth-ion doped solids. We describe a practical scheme for two qubit gate operations which utilise experimentally available interactions between the qubits. Possibilities for a scalable quantum computer are discussed.
Wavelets and Wavelet Packets on Quantum Computers
Klappenecker, Andreas
1999-01-01
We show how periodized wavelet packet transforms and periodized wavelet transforms can be implemented on a quantum computer. Surprisingly, we find that the implementation of wavelet packet transforms is less costly than the implementation of wavelet transforms on a quantum computer.
Quantum Computing and the Jones Polynomial
Kauffman, Louis H.
2001-01-01
This paper is an exploration of relationships between the Jones polynomial and quantum computing. We discuss the structure of the Jones polynomial in relation to representations of the Temperley Lieb algebra, and give an example of a unitary representation of the braid group. We discuss the evaluation of the polynomial as a generalized quantum amplitude and show how the braiding part of the evaluation can be construed as a quantum computation when the braiding representation is unitary. The q...
Decoherence, Control, and Symmetry in Quantum Computers
Bacon, D.
2003-01-01
In this thesis we describe methods for avoiding the detrimental effects of decoherence while at the same time still allowing for computation of the quantum information. The philosophy of the method discussed in the first part of this thesis is to use a symmetry of the decoherence mechanism to find robust encodings of the quantum information. Stability, control, and methods for using decoherence-free information in a quantum computer are presented with a specific emphasis on decoherence due to...
Accounting Principles are Simulated on Quantum Computers
Diep, Do Ngoc; Giang, Do Hoang
2005-01-01
The paper is devoted to a new idea of simulation of accounting by quantum computing. We expose the actual accounting principles in a pure mathematics language. After that we simulated the accounting principles on quantum computers. We show that all arbitrary accounting actions are exhausted by the described basic actions. The main problem of accounting are reduced to some system of linear equations in the economic model of Leontief. In this simulation we use our constructed quantum Gau\\ss-Jor...
Error correction and symmetrization in quantum computers
Peres, Asher
1996-01-01
Errors in quantum computers are of two kinds: sudden perturbations to isolated qubits, and slow random drifts of all the qubits. The latter may be reduced, but not eliminated, by means of symmetrization, namely by using many replicas of the computer, and forcing their joint quantum state to be completely symmetric. On the other hand, isolated errors can be corrected by quantum codewords that represent a logical qubit in a redundant way, by several physical qubits. If one of the physical qubit...
How fast can a quantum computer search?
Grover, Lov K.
1998-01-01
This paper gives a simple proof of why a quantum computer, despite being in all possible states simultaneously, needs at least 0.707 sqrt(N) queries to retrieve a desired item from an unsorted list of items. The proof is refined to show that a quantum computer would need at least 0.785 sqrt(N) queries. The quantum search algorithm needs precisely this many queries.
Quantum computation over the butterfly network
Soeda, Akihito; Kinjo, Yoshiyuki; Turner, Peter S.; Murao, Mio
2010-01-01
In order to investigate distributed quantum computation under restricted network resources, we introduce a quantum computation task over the butterfly network where both quantum and classical communications are limited. We consider deterministically performing a two-qubit global unitary operation on two unknown inputs given at different nodes, with outputs at two distinct nodes. By using a particular resource setting introduced by M. Hayashi [Phys. Rev. A \\textbf{76}, 040301(R) (2007)], which...
The General Quantum Interference Principle and the Duality Computer
Long, Gui Lu
2005-01-01
In this article, we propose a general principle of quantum interference for quantum system, and based on this we propose a new type of computing machine, the duality computer, that may outperform in principle both classical computer and the quantum computer. According to the general principle of quantum interference, the very essence of quantum interference is the interference of the sub-waves of the quantum system itself. A quantum system considered here can be any quantum system: a single m...
Experimental demonstration of deterministic one-way quantum computation on a NMR quantum computer
One-way quantum computing is an important and novel approach to quantum computation. By exploiting the existing particle-particle interactions, we report an experimental realization of the complete process of deterministic one-way quantum Deutsch-Josza algorithm in NMR, including graph state preparation, single-qubit measurements, and feed-forward corrections. The findings in our experiment may shed light on the future scalable one-way quantum computation.
Quantum computer: an appliance for playing market games
Piotrowski, Edward W.; Jan Sladkowski
2003-01-01
Recent development in quantum computation and quantum information theory allows to extend the scope of game theory for the quantum world. The authors have recently proposed a quantum description of financial market in terms of quantum game theory. The paper contain an analysis of such markets that shows that there would be advantage in using quantum computers and quantum strategies.
The case for biological quantum computer elements
Baer, Wolfgang; Pizzi, Rita
2009-05-01
An extension to vonNeumann's analysis of quantum theory suggests self-measurement is a fundamental process of Nature. By mapping the quantum computer to the brain architecture we will argue that the cognitive experience results from a measurement of a quantum memory maintained by biological entities. The insight provided by this mapping suggests quantum effects are not restricted to small atomic and nuclear phenomena but are an integral part of our own cognitive experience and further that the architecture of a quantum computer system parallels that of a conscious brain. We will then review the suggestions for biological quantum elements in basic neural structures and address the de-coherence objection by arguing for a self- measurement event model of Nature. We will argue that to first order approximation the universe is composed of isolated self-measurement events which guaranties coherence. Controlled de-coherence is treated as the input/output interactions between quantum elements of a quantum computer and the quantum memory maintained by biological entities cognizant of the quantum calculation results. Lastly we will present stem-cell based neuron experiments conducted by one of us with the aim of demonstrating the occurrence of quantum effects in living neural networks and discuss future research projects intended to reach this objective.
Quantum Computing and the Limits of the Efficiently Computable
CERN. Geneva
2015-01-01
I'll discuss how computational complexity---the study of what can and can't be feasibly computed---has been interacting with physics in interesting and unexpected ways. I'll first give a crash course about computer science's P vs. NP problem, as well as about the capabilities and limits of quantum computers. I'll then touch on speculative models of computation that would go even beyond quantum computers, using (for example) hypothetical nonlinearities in the Schrodinger equation. Finally, I'll discuss BosonSampling ---a proposal for a simple form of quantum computing, which nevertheless seems intractable to simulate using a classical computer---as well as the role of computational complexity in the black hole information puzzle.
Racing a quantum computer through Minkowski spacetime
The Lorentzian length of a timelike curve connecting both endpoints of a computation in Minkowski spacetime is smaller than the Lorentzian length of the corresponding geodesic. In this talk, I will point out some properties of spacetime that allow an inertial classical computer to outperform a quantum one, at the completion of a long journey. We will focus on a comparison between the optimal quadratic Grover speed up from quantum computing and an n=2 speedup using classical computers and relativistic effects. These results are not practical as a new model of computation, but allow us to probe the ultimate limits physics places on computers.
Models of Quantum Computers and Decoherence Problem
I. V. Volovich
1999-01-01
Mathematical models of quantum computers such as a multidimensional quantum Turing machine and quantum circuits are described and its relations with lattice spin models are discussed. One of the main open problems one has to solve if one wants to build a quantum computer is the decoherence due to the coupling with the environment. We propose a possible solution of this problem by using a control of parameters of the system. This proposal is based on the analysis of the spin-boson Hamiltonian ...
Quantum computing with defects in diamond
Full text: Single spins in semiconductors, in particular associated with defect centers, are promising candidates for practical and scalable implementation of quantum computing even at room temperature. Such an implementation may also use the reliable and well known gate constructions from bulk nuclear magnetic resonance (NMR) quantum computing. Progress in development of quantum processor based on defects in diamond will be discussed. By combining optical microscopy, and magnetic resonance techniques, the first quantum logical operations on single spins in a solid are now demonstrated. The system is perspective for room temperature operation because of a weak dependence of decoherence on temperature (author)
Video Encryption and Decryption on Quantum Computers
Yan, Fei; Iliyasu, Abdullah M.; Venegas-Andraca, Salvador E.; Yang, Huamin
2015-08-01
A method for video encryption and decryption on quantum computers is proposed based on color information transformations on each frame encoding the content of the encoding the content of the video. The proposed method provides a flexible operation to encrypt quantum video by means of the quantum measurement in order to enhance the security of the video. To validate the proposed approach, a tetris tile-matching puzzle game video is utilized in the experimental simulations. The results obtained suggest that the proposed method enhances the security and speed of quantum video encryption and decryption, both properties required for secure transmission and sharing of video content in quantum communication.
Quantum Computation Using Optically Coupled Quantum Dot Arrays
Pradhan, Prabhakar; Anantram, M. P.; Wang, K. L.; Roychowhury, V. P.; Saini, Subhash (Technical Monitor)
1998-01-01
A solid state model for quantum computation has potential advantages in terms of the ease of fabrication, characterization, and integration. The fundamental requirements for a quantum computer involve the realization of basic processing units (qubits), and a scheme for controlled switching and coupling among the qubits, which enables one to perform controlled operations on qubits. We propose a model for quantum computation based on optically coupled quantum dot arrays, which is computationally similar to the atomic model proposed by Cirac and Zoller. In this model, individual qubits are comprised of two coupled quantum dots, and an array of these basic units is placed in an optical cavity. Switching among the states of the individual units is done by controlled laser pulses via near field interaction using the NSOM technology. Controlled rotations involving two or more qubits are performed via common cavity mode photon. We have calculated critical times, including the spontaneous emission and switching times, and show that they are comparable to the best times projected for other proposed models of quantum computation. We have also shown the feasibility of accessing individual quantum dots using the NSOM technology by calculating the photon density at the tip, and estimating the power necessary to perform the basic controlled operations. We are currently in the process of estimating the decoherence times for this system; however, we have formulated initial arguments which seem to indicate that the decoherence times will be comparable, if not longer, than many other proposed models.
Principles of quantum computation and information
Benenti, Giuliano; Strini, Giuliano
2004-01-01
Quantum computation and information is a new, rapidly developing interdisciplinary field. Therefore, it is not easy to understand its fundamental concepts and central results without facing numerous technical details. This book provides the reader a useful and not-too-heavy guide. It offers a simple and self-contained introduction; no previous knowledge of quantum mechanics or classical computation is required. Volume I may be used as a textbook for a one-semester introductory course in quantum information and computation, both for upper-level undergraduate students and for graduate students.
Quantum computers on multiatomic ensembles in quantum electrodynamic cavity
Andrianov, S. N.; Moiseev, S. A.
2012-03-01
Schemes for the construction of quantum computers on multiatomic ensembles in quantum electrodynamic cavity are considered. With that, both encoding of physical qubits on each separate multiatomic ensemble and logical encoding of qubits on the pairs of ensembles are introduced. Possible constructions of swapping ( SWAP, sqrt {SWAP} ) and controlled swapping gates ( CSWAP) are analyzed. Mechanism of collective blockade and dynamical elimination procedure are proposed for realization of these gates. The comparison of the scheme solutions is carried out for the construction of quantum computer at using of physical and logical qubits.
Hamiltonian models of quantum computers which evolve quantum ballistically
Benioff, P.
1996-12-31
Quantum computation is a subject of much recent interest. In much of the work in the literature quantum computers are described as built up from a sequence of unitary operators where each unitary operator carries out a stage of the overall quantum computation. The sequence and connection of the different unitary operators is provided presumably by some external agent which governs the overall process. However there is no description of a an overall Hamiltonian needed to give the actual quantum dynamics of the computation process. In this talk, earlier work by the author is followed in that simple, time independent Hamiltonians are used to describe quantum computation, and the Schroedinger evolution of the computation system is considered to be quantum ballistic. However, the definition of quantum ballistic evolution used here is more general than that used in the earlier work. In particular, the requirement that the step operator {ital T} associated with a process be a partial isometry, used in, is relaxed to require that {ital T} be a contraction operator. (An operator {ital T} is a partial isometry if the self-adjoint operators T{sup {dagger}}T and TT{sup {dagger}} are also projection operators.{ital T} is a contraction operator if {vert_bar}{vert_bar} {ital T} {vert_bar}{vert_bar} {<=} 1.) The main purpose of this talk is to investigate some consequences for quantum computation under this weaker requirement. It will be seen that system motion along discrete paths in a basis still occurs. However the motion occurs in ,the presence of potentials whose height and distribution along the path depends on {ital T} and the path states.
Faster quantum chemistry simulation on fault-tolerant quantum computers
Cody Jones, N.; Whitfield, James D.; McMahon, Peter L.; Yung, Man-Hong; Van Meter, Rodney; Aspuru-Guzik, Aln; Yamamoto, Yoshihisa
2012-11-01
Quantum computers can in principle simulate quantum physics exponentially faster than their classical counterparts, but some technical hurdles remain. We propose methods which substantially improve the performance of a particular form of simulation, ab initio quantum chemistry, on fault-tolerant quantum computers; these methods generalize readily to other quantum simulation problems. Quantum teleportation plays a key role in these improvements and is used extensively as a computing resource. To improve execution time, we examine techniques for constructing arbitrary gates which perform substantially faster than circuits based on the conventional Solovay-Kitaev algorithm (Dawson and Nielsen 2006 Quantum Inform. Comput. 6 81). For a given approximation error ?, arbitrary single-qubit gates can be produced fault-tolerantly and using a restricted set of gates in time which is O(log??) or O(log?log??) with sufficient parallel preparation of ancillas, constant average depth is possible using a method we call programmable ancilla rotations. Moreover, we construct and analyze efficient implementations of first- and second-quantized simulation algorithms using the fault-tolerant arbitrary gates and other techniques, such as implementing various subroutines in constant time. A specific example we analyze is the ground-state energy calculation for lithium hydride.
Technologies for photonic quantum computing
Full text: The photon is a near ideal carrier of quantum information showing little or no decoherence. The main sources of error become losses and small technical errors due to imperfect components. In the absence of single photon non-linearity we can use linear optics interference to make quantum gates albeit with limited efficiency. These optical quantum logic schemes require high efficiency sources of single and pair photons. These components in the quantum logic toolbox could be realised by exploiting wavelength scale engineering of optical structures. We discuss progress in developing high efficiency single photon sources based on periodic dielectric structures and generation of photon pairs in microstructured fibres. (author)
Materials Frontiers to Empower Quantum Computing
Taylor, Antoinette Jane [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sarrao, John Louis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Richardson, Christopher [Laboratory for Physical Sciences, College Park, MD (United States)
2015-06-11
This is an exciting time at the nexus of quantum computing and materials research. The materials frontiers described in this report represent a significant advance in electronic materials and our understanding of the interactions between the local material and a manufactured quantum state. Simultaneously, directed efforts to solve materials issues related to quantum computing provide an opportunity to control and probe the fundamental arrangement of matter that will impact all electronic materials. An opportunity exists to extend our understanding of materials functionality from electronic-grade to quantum-grade by achieving a predictive understanding of noise and decoherence in qubits and their origins in materials defects and environmental coupling. Realizing this vision systematically and predictively will be transformative for quantum computing and will represent a qualitative step forward in materials prediction and control.
Space-Efficient Simulation of Quantum Computers
Frank, Michael P.; Meyer-Baese, Uwe H.; Chiorescu, Irinel; Oniciuc, Liviu; van Engelen, Robert A.
2008-01-01
Traditional algorithms for simulating quantum computers on classical ones require an exponentially large amount of memory, and so typically cannot simulate general quantum circuits with more than about 30 or so qubits on a typical PC-scale platform with only a few gigabytes of main memory. However, more memory-efficient simulations are possible, requiring only polynomial or even linear space in the size of the quantum circuit being simulated. In this paper, we describe one such technique, whi...
Applicability of Rydberg atoms to quantum computers
Ryabtsev, Igor I.; Tretyakov, Denis B.; Beterov, Ilya I.
2004-01-01
Applicability of Rydberg atoms to quantum computers is examined from experimental point of view. In many theoretical proposals appeared recently, excitation of atoms into highly excited Rydberg states was considered as a way to achieve quantum entanglement in cold atomic ensembles via dipole-dipole interaction that could be strong for Rydberg atoms. Appropriate conditions to realize a conditional quantum phase gate have been analyzed. We also present the results of modeling experiments on mic...
Can quantum mechanics help distributed computing?
Broadbent, Anne
2008-01-01
We present a brief survey of results where quantum information processing is useful to solve distributed computation tasks. We describe problems that are impossible to solve using classical resources but that become feasible with the help of quantum mechanics. We also give examples where the use of quantum information significantly reduces the need for communication. The main focus of the survey is on communication complexity but we also address other distributed tasks.
Image segmentation on a quantum computer
Caraiman, Simona; Manta, Vasile I.
2015-05-01
In this paper, we address the field of quantum information processing and analyze the prospects of applying quantum computation concepts to image processing tasks. Specifically, we discuss the development of a quantum version for the image segmentation operation. This is an important technique that comes up in many image processing applications. We consider the threshold-based segmentation and show that a quantum circuit to achieve this operation can be built using a quantum oracle that implements the thresholding function. We discuss the circuit implementation of the oracle operator and provide examples of segmenting synthetic and real images. The main advantage of the quantum version for image segmentation over the classical approach is its speedup and is provided by the special properties of quantum information processing: superposition of states and inherent parallelism.
Composable security of delegated quantum computation
Dunjko, Vedran; Joseph F. Fitzsimons; Portmann, Christopher; Renner, Renato
2013-01-01
Delegating difficult computations to remote large computation facilities, with appropriate security guarantees, is a possible solution for the ever-growing needs of personal computing power. For delegated computation protocols to be usable in a larger context---or simply to securely run two protocols in parallel---the security definitions need to be composable. Here, we define composable security for delegated quantum computation. We distinguish between protocols which provide only blindness-...
Reducing computational complexity of quantum correlations
Chanda, Titas; Das, Tamoghna; Sadhukhan, Debasis; Pal, Amit Kumar; SenDe, Aditi; Sen, Ujjwal
2015-12-01
We address the issue of reducing the resource required to compute information-theoretic quantum correlation measures such as quantum discord and quantum work deficit in two qubits and higher-dimensional systems. We show that determination of the quantum correlation measure is possible even if we utilize a restricted set of local measurements. We find that the determination allows us to obtain a closed form of quantum discord and quantum work deficit for several classes of states, with a low error. We show that the computational error caused by the constraint over the complete set of local measurements reduces fast with an increase in the size of the restricted set, implying usefulness of constrained optimization, especially with the increase of dimensions. We perform quantitative analysis to investigate how the error scales with the system size, taking into account a set of plausible constructions of the constrained set. Carrying out a comparative study, we show that the resource required to optimize quantum work deficit is usually higher than that required for quantum discord. We also demonstrate that minimization of quantum discord and quantum work deficit is easier in the case of two-qubit mixed states of fixed ranks and with positive partial transpose in comparison to the corresponding states having nonpositive partial transpose. Applying the methodology to quantum spin models, we show that the constrained optimization can be used with advantage in analyzing such systems in quantum information-theoretic language. For bound entangled states, we show that the error is significantly low when the measurements correspond to the spin observables along the three Cartesian coordinates, and thereby we obtain expressions of quantum discord and quantum work deficit for these bound entangled states.
Is the Brain a Quantum Computer?
Litt, Abninder; Eliasmith, Chris; Kroon, Frederick W.; Weinstein, Steven; Thagard, Paul
2006-01-01
We argue that computation via quantum mechanical processes is irrelevant to explaining how brains produce thought, contrary to the ongoing speculations of many theorists. First, quantum effects do not have the temporal properties required for neural information processing. Second, there are substantial physical obstacles to any organic
Directional Coupling for Quantum Computing and Communication
Nikolopoulos, Georgios M.
2008-01-01
We introduce the concept of directional coupling, i.e., the selective transfer of a state between adjacent quantum wires, in the context of quantum computing and short-distance communication. Our analysis rests upon a mathematical analogy between a dual-channel directional coupler and a composite spin system.
Is the Brain a Quantum Computer?
Litt, Abninder; Eliasmith, Chris; Kroon, Frederick W.; Weinstein, Steven; Thagard, Paul
2006-01-01
We argue that computation via quantum mechanical processes is irrelevant to explaining how brains produce thought, contrary to the ongoing speculations of many theorists. First, quantum effects do not have the temporal properties required for neural information processing. Second, there are substantial physical obstacles to any organic…
Carmichael Numbers on a Quantum Computer
A. Carlini; Hosoya, A.
1999-01-01
We present a quantum probabilistic algorithm which tests with a polynomial computational complexity whether a given composite number is of the Carmichael type. We also suggest a quantum algorithm which could verify a conjecture by Pomerance, Selfridge and Wagstaff concerning the asymptotic distribution of Carmichael numbers smaller than a given integer.
An introduction to quantum computing algorithms
Pittenger, Arthur O
2000-01-01
In 1994 Peter Shor [65] published a factoring algorithm for a quantum computer that finds the prime factors of a composite integer N more efficiently than is possible with the known algorithms for a classical com puter. Since the difficulty of the factoring problem is crucial for the se curity of a public key encryption system, interest (and funding) in quan tum computing and quantum computation suddenly blossomed. Quan tum computing had arrived. The study of the role of quantum mechanics in the theory of computa tion seems to have begun in the early 1980s with the publications of Paul Benioff [6]' [7] who considered a quantum mechanical model of computers and the computation process. A related question was discussed shortly thereafter by Richard Feynman [35] who began from a different perspec tive by asking what kind of computer should be used to simulate physics. His analysis led him to the belief that with a suitable class of "quantum machines" one could imitate any quantum system.
Algorithms Bridging Quantum Computation and Chemistry
McClean, Jarrod Ryan
The design of new materials and chemicals derived entirely from computation has long been a goal of computational chemistry, and the governing equation whose solution would permit this dream is known. Unfortunately, the exact solution to this equation has been far too expensive and clever approximations fail in critical situations. Quantum computers offer a novel solution to this problem. In this work, we develop not only new algorithms to use quantum computers to study hard problems in chemistry, but also explore how such algorithms can help us to better understand and improve our traditional approaches. In particular, we first introduce a new method, the variational quantum eigensolver, which is designed to maximally utilize the quantum resources available in a device to solve chemical problems. We apply this method in a real quantum photonic device in the lab to study the dissociation of the helium hydride (HeH+) molecule. We also enhance this methodology with architecture specific optimizations on ion trap computers and show how linear-scaling techniques from traditional quantum chemistry can be used to improve the outlook of similar algorithms on quantum computers. We then show how studying quantum algorithms such as these can be used to understand and enhance the development of classical algorithms. In particular we use a tool from adiabatic quantum computation, Feynman's Clock, to develop a new discrete time variational principle and further establish a connection between real-time quantum dynamics and ground state eigenvalue problems. We use these tools to develop two novel parallel-in-time quantum algorithms that outperform competitive algorithms as well as offer new insights into the connection between the fermion sign problem of ground states and the dynamical sign problem of quantum dynamics. Finally we use insights gained in the study of quantum circuits to explore a general notion of sparsity in many-body quantum systems. In particular we use developments from the field of compressed sensing to find compact representations of ground states. As an application we study electronic systems and find solutions dramatically more compact than traditional configuration interaction expansions, offering hope to extend this methodology to challenging systems in chemical and material design.
Relativistic quantum chemistry on quantum computers
Veis, Libor; Višňák, Jakub; Fleig, T.; Knecht, S.; Saue, T.; Visscher, L.; Pittner, Jiří
2012-01-01
Roč. 85, č. 3 (2012), 030304. ISSN 1050-2947 R&D Projects: GA ČR GA203/08/0626 Institutional support: RVO:61388955 Keywords : simulation * algorithm * computation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.042, year: 2012
Quantum computer architecture for fast entropy extraction
Steane, A M
2002-01-01
If a quantum computer is stabilized by fault-tolerant quantum error correction (QEC), then most of its resources (qubits and operations) are dedicated to the extraction of error information. Analysis of this process leads to a set of central requirements for candidate computing devices, in addition to the basic ones of stable qubits and controllable gates and measurements. The logical structure of the extraction process has a natural geometry and hierarchy of communication needs; a computer whose physical architecture is designed to reflect this will be able to tolerate the most noise. The relevant networks are dominated by quantum information transport, therefore to assess a computing device it is necessary to characterize its ability to transport quantum information, in addition to assessing the performance of conditional logic on nearest neighbours and the passive stability of the memory. The transport distances involved in QEC networks are estimated, and it is found that a device relying on swap operation...
Universality of Black Hole Quantum Computing
Dvali, Gia; Lust, Dieter; Omar, Yasser; Richter, Benedikt
2016-01-01
By analyzing the key properties of black holes from the point of view of quantum information, we derive a model-independent picture of black hole quantum computing. It has been noticed that this picture exhibits striking similarities with quantum critical condensates, allowing the use of a common language to describe quantum computing in both systems. We analyze such quantum computing by allowing coupling to external modes, under the condition that the external influence must be soft-enough in order not to offset the basic properties of the system. We derive model-independent bounds on some crucial time-scales, such as the times of gate operation, decoherence, maximal entanglement and total scrambling. We show that for black hole type quantum computers all these time-scales are of the order of the black hole half-life time. Furthermore, we construct explicitly a set of Hamiltonians that generates a universal set of quantum gates for the black hole type computer. We find that the gates work at maximal energy e...
Quantum computation with trapped polar molecules
DeMille, D.
2001-01-01
We propose a novel physical realization of a quantum computer. The qubits are electric dipole moments of ultracold diatomic molecules, oriented along or against an external electric field. Individual molecules are held in a 1-D trap array, with an electric field gradient allowing spectroscopic addressing of each site. Bits are coupled via the electric dipole-dipole interaction. Using technologies similar to those already demonstrated, this design can plausibly lead to a quantum computer with ...
Realizable Hamiltonians for Universal Adiabatic Quantum Computers
Biamonte, Jacob D.; Love, Peter J.
2007-01-01
It has been established that local lattice spin Hamiltonians can be used for universal adiabatic quantum computation. However, the 2-local model Hamiltonians used in these proofs are general and hence do not limit the types of interactions required between spins. To address this concern, the present paper provides two simple model Hamiltonians that are of practical interest to experimentalists working towards the realization of a universal adiabatic quantum computer. The model Hamiltonians pr...
Simulating quantum computers with probabilistic methods
Nest, M. Van den
2009-01-01
We investigate the boundary between classical and quantum computational power. This work consists of two parts. First we develop new classical simulation algorithms that are centered on sampling methods. Using these techniques we generate new classes of classically simulatable quantum circuits where standard techniques relying on the exact computation of measurement probabilities fail to provide efficient simulations. For example, we show how various concatenations of matchgate, Toffoli, Clif...
Noise thresholds for optical quantum computers
Dawson, Christopher M.; Haselgrove, Henry L.; Nielsen, Michael A.
2005-01-01
In this paper we numerically investigate the fault-tolerant threshold for optical cluster-state quantum computing. We allow both photon loss noise and depolarizing noise (as a general proxy for all local noise), and obtain a threshold region of allowed pairs of values for the two types of noise. Roughly speaking, our results show that scalable optical quantum computing is possible for photon loss probabilities less than 0.003, and for depolarization probabilities less than 0.0001.
Noise thresholds for optical quantum computers.
Dawson, Christopher M; Haselgrove, Henry L; Nielsen, Michael A
2006-01-20
In this Letter we numerically investigate the fault-tolerant threshold for optical cluster-state quantum computing. We allow both photon loss noise and depolarizing noise (as a general proxy for all local noise), and obtain a threshold region of allowed pairs of values for the two types of noise. Roughly speaking, our results show that scalable optical quantum computing is possible for photon loss probabilities <3 x 10(-3), and for depolarization probabilities <10(-4). PMID:16486553
Basics of Quantum Computation (Part 1)
Rosinger, E E
2004-01-01
The aim of this textbook is to bridge in regard of quantum computation what proves to be a considerable threshold even to the usual science trained readership between the level of science popularization, and on the other hand, the presently available more encyclopedic textbooks. In this respect the present textbook is aimed to be a short, simple, rigorous and direct introduction, addressing itself only to quantum computation proper.
Braid group representation on quantum computation
There are many studies about topological representation of quantum computation recently. One of diagram representation of quantum computation is by using ZX-Calculus. In this paper we will make a diagrammatical scheme of Dense Coding. We also proved that ZX-Calculus diagram of maximally entangle state satisfies Yang-Baxter Equation and therefore, we can construct a Braid Group representation of set of maximally entangle state
Universal Quantum Computation Using Continuous Dynamical Decoupling
Fanchini, Felipe F.; Napolitano, Reginaldo d. J.; Caldeira, Amir O.
2010-01-01
We show, for the first time, that continuous dynamical decoupling can preserve the coherence of a two-qubit state as it evolves during a SWAP quantum operation. Hence, because the Heisenberg exchange interaction alone can be used for achieving universal quantum computation, its combination with continuous dynamical decoupling can also make the computation robust against general environmental perturbations. Furthermore, since the exchange-interaction Hamiltonian is invariant under rotations, t...
Weighing matrices and optical quantum computing
Flammia, Steven T.; Severini, Simone
2008-01-01
Quantum computation in the one-way model requires the preparation of certain resource states known as cluster states. We describe how the construction of continuous-variable cluster states for optical quantum computing relate to the existence of certain families of matrices. The relevant matrices are known as weighing matrices, with a few additional constraints. We prove some results regarding the structure of these matrices, and their associated graphs.
Delayed commutation in quantum computer networks
Garcia-Escartin, Juan Carlos; Chamorro-Posada, Pedro
2005-01-01
In the same way that classical computer networks connect and enhance the capabilities of classical computers, quantum networks can combine the advantages of quantum information and communications. We propose a non-classical network element, a delayed commutation switch, that can solve the problem of switching time in packet switching networks. With the help of some local ancillary qubits and superdense codes we can route the information after part of it has left the network node.
Methodological testing: Are fast quantum computers illusions?
Popularity of the idea for computers constructed from the principles of QM started with Feynman's 'Lectures On Computation', but he called the idea crazy and dependent on statistical mechanics. In 1987, Feynman published a paper in 'Quantum Implications - Essays in Honor of David Bohm' on negative probabilities which he said gave him cultural shock. The problem with imagined fast quantum computers (QC) is that speed requires both statistical behavior and truth of the mathematical formalism. The Swedish Royal Academy 2012 Nobel Prize in physics press release touted the discovery of methods to control ''individual quantum systems'', to ''measure and control very fragile quantum states'' which enables ''first steps towards building a new type of super fast computer based on quantum physics.'' A number of examples where widely accepted mathematical descriptions have turned out to be problematic are examined: Problems with the use of Oracles in P=NP computational complexity, Paul Finsler's proof of the continuum hypothesis, and Turing's Enigma code breaking versus William tutte's Colossus. I view QC research as faith in computational oracles with wished for properties. Arther Fine's interpretation in 'The Shaky Game' of Einstein's skepticism toward QM is discussed. If Einstein's reality as space-time curvature is correct, then space-time computers will be the next type of super fast computer.
Universally Composable Quantum Multi-Party Computation
Unruh, Dominique
2009-01-01
The Universal Composability model (UC) by Canetti (FOCS 2001) allows for secure composition of arbitrary protocols. We present a quantum version of the UC model which enjoys the same compositionality guarantees. We prove that in this model statistically secure oblivious transfer protocols can be constructed from commitments. Furthermore, we show that every statistically classically UC secure protocol is also statistically quantum UC secure. Such implications are not known for other quantum security definitions. As a corollary, we get that quantum UC secure protocols for general multi-party computation can be constructed from commitments.
Discrete Cosine Transforms on Quantum Computers
Klappenecker, A; Klappenecker, Andreas; Roetteler, Martin
2001-01-01
A classical computer does not allow to calculate a discrete cosine transform on N points in less than linear time. This trivial lower bound is no longer valid for a computer that takes advantage of quantum mechanical superposition, entanglement, and interference principles. In fact, we show that it is possible to realize the discrete cosine transforms and the discrete sine transforms of size NxN and types I,II,III, and IV with as little as O(log^2 N) operations on a quantum computer, whereas the known fast algorithms on a classical computer need O(N log N) operations.
Why now is the right time to study quantum computing
Harrow, Aram W.
2014-01-01
Quantum computing is a good way to justify difficult physics experiments. But until quantum computers are built, do computer scientists need to know anything about quantum information? In fact, quantum computing is not merely a recipe for new computing devices, but a new way of looking at the world that has been astonishingly intellectually productive. In this article, I'll talk about where quantum computing came from, what it is, and what we can learn from it.
Computing the Exit Complexity of Knowledge in Distributed Quantum Computers
Abbas, M. A.
2013-01-01
Distributed Quantum computers abide from the exit complexity of the knowledge. The exit complexity is the accrue of the nodal information needed to clarify the total egress system with deference to a distinguished exit node. The core objective of this paper is to compile an arrogant methodology for assessing the exit complexity of the knowledge in distributed quantum computers. The proposed methodology is based on contouring the knowledge using the unlabeled binary trees, hence building an b...
Universal Quantum Computation Using Continuous Dynamical Decoupling
Fanchini, Felipe F; Caldeira, Amir O
2010-01-01
We show, for the first time, that continuous dynamical decoupling can preserve the coherence of a two-qubit state as it evolves during a SWAP quantum operation. Hence, because the Heisenberg exchange interaction alone can be used for achieving universal quantum computation, its combination with continuous dynamical decoupling can also make the computation robust against general environmental perturbations. Furthermore, since the exchange-interaction Hamiltonian is invariant under rotations, the same control-field arrangement used to protect a stationary quantum-memory state can also preserve the coherence of the driven qubits. The simplicity of the required control fields greatly improves prospects for an experimental realization.
Quantum Computing and Shor`s Factoring Algorithm
Volovich, Igor V.
2001-01-01
Lectures on quantum computing. Contents: Algorithms. Quantum circuits. Quantum Fourier transform. Elements of number theory. Modular exponentiation. Shor`s algorithm for finding the order. Computational complexity of Schor`s algorithm. Factoring integers. NP-complete problems.
Classical signal-flow in cluster-state quantum computation
Oshima, Kazuto
2009-01-01
We study concretely how classical signals should be processed in quantum cluster-state computation. Deforming corresponding quantum teleportation circuit, we find a simple rule of a classical signal-flow to obtain correct quantum computation results.
Brain-Computer Interfaces and Quantum Robots
Pessa, Eliano
2009-01-01
The actual (classical) Brain-Computer Interface attempts to use brain signals to drive suitable actuators performing the actions corresponding to subject's intention. However this goal is not fully reached, and when BCI works, it does only in particular situations. The reason of this unsatisfactory result is that intention cannot be conceived simply as a set of classical input-output relationships. It is therefore necessary to resort to quantum theory, allowing the occurrence of stable coherence phenomena, in turn underlying high-level mental processes such as intentions and strategies. More precisely, within the context of a dissipative Quantum Field Theory of brain operation it is possible to introduce generalized coherent states associated, within the framework of logic, to the assertions of a quantum metalanguage. The latter controls the quantum-mechanical computing corresponding to standard mental operation. It thus become possible to conceive a Quantum Cyborg in which a human mind controls, through a qu...
Natural and artificial atoms for quantum computation
Remarkable progress towards realizing quantum computation has been achieved using natural and artificial atoms as qubits. This paper presents a brief overview of the current status of different types of qubits. On the one hand, natural atoms (such as neutral atoms and ions) have long coherence times, and could be stored in large arrays, providing ideal 'quantum memories'. On the other hand, artificial atoms (such as superconducting circuits or semiconductor quantum dots) have the advantage of custom-designed features and could be used as 'quantum processing units'. Natural and artificial atoms can be coupled with each other and can also be interfaced with photons for long-distance communications. Hybrid devices made of natural/artificial atoms and photons may provide the next-generation design for quantum computers.
Elements of quantum computing history, theories and engineering applications
Akama, Seiki
2015-01-01
A quantum computer is a computer based on a computational model which uses quantum mechanics, which is a subfield of physics to study phenomena at the micro level. There has been a growing interest on quantum computing in the 1990's, and some quantum computers at the experimental level were recently implemented. Quantum computers enable super-speed computation, and can solve some important problems whose solutions were regarded impossible or intractable with traditional computers. This book provides a quick introduction to quantum computing for readers who have no backgrounds of both theory of computation and quantum mechanics. Elements of Quantum Computing presents the history, theories, and engineering applications of quantum computing. The book is suitable to computer scientists, physicist, and software engineers.
Hamiltonian quantum computer in one dimension
Wei, Tzu-Chieh; Liang, John C.
2015-12-01
Quantum computation can be achieved by preparing an appropriate initial product state of qudits and then letting it evolve under a fixed Hamiltonian. The readout is made by measurement on individual qudits at some later time. This approach is called the Hamiltonian quantum computation and it includes, for example, the continuous-time quantum cellular automata and the universal quantum walk. We consider one spatial dimension and study the compromise between the locality k and the local Hilbert space dimension d . For geometrically 2-local (i.e., k =2 ), it is known that d =8 is already sufficient for universal quantum computation but the Hamiltonian is not translationally invariant. As the locality k increases, it is expected that the minimum required d should decrease. We provide a construction of a Hamiltonian quantum computer for k =3 with d =5 . One implication is that simulating one-dimensional chains of spin-2 particles is BQP-complete (BQP denotes "bounded error, quantum polynomial time"). Imposing translation invariance will increase the required d . For this we also construct another 3-local (k =3 ) Hamiltonian that is invariant under translation of a unit cell of two sites but that requires d to be 8.
Quantum computation and pseudo-telepathic games
Bub, Jeffrey
2010-01-01
A quantum algorithm succeeds not because the superposition principle allows 'the computation of all values of a function at once' via 'quantum parallelism,' but rather because the structure of a quantum state space allows new sorts of correlations associated with entanglement, with new possibilities for information-processing transformations between correlations, that are not possible in a classical state space. I illustrate this with an elementary example of a problem for which a quantum algorithm is more efficient than any classical algorithm. I also introduce the notion of 'pseudo-telepathic' games and show how the difference between classical and quantum correlations plays a similar role here for games that can be won by quantum players exploiting entanglement, but not by classical players whose only allowed common resource consists of shared strings of random numbers (common causes of the players' correlated responses in a game).
Quantum algorithms for computational nuclear physics
Višňák Jakub
2015-01-01
Full Text Available While quantum algorithms have been studied as an efficient tool for the stationary state energy determination in the case of molecular quantum systems, no similar study for analogical problems in computational nuclear physics (computation of energy levels of nuclei from empirical nucleon-nucleon or quark-quark potentials have been realized yet. Although the difference between the above mentioned studies might seem negligible, it will be examined. First steps towards a particular simulation (on classical computer of the Iterative Phase Estimation Algorithm for deuterium and tritium nuclei energy level computation will be carried out with the aim to prove algorithm feasibility (and extensibility to heavier nuclei for its possible practical realization on a real quantum computer.
Simulating physical phenomena with a quantum computer
Ortiz, Gerardo
2003-03-01
In a keynote speech at MIT in 1981 Richard Feynman raised some provocative questions in connection to the exact simulation of physical systems using a special device named a ``quantum computer'' (QC). At the time it was known that deterministic simulations of quantum phenomena in classical computers required a number of resources that scaled exponentially with the number of degrees of freedom, and also that the probabilistic simulation of certain quantum problems were limited by the so-called sign or phase problem, a problem believed to be of exponential complexity. Such a QC was intended to mimick physical processes exactly the same as Nature. Certainly, remarks coming from such an influential figure generated widespread interest in these ideas, and today after 21 years there are still some open questions. What kind of physical phenomena can be simulated with a QC?, How?, and What are its limitations? Addressing and attempting to answer these questions is what this talk is about. Definitively, the goal of physics simulation using controllable quantum systems (``physics imitation'') is to exploit quantum laws to advantage, and thus accomplish efficient imitation. Fundamental is the connection between a quantum computational model and a physical system by transformations of operator algebras. This concept is a necessary one because in Quantum Mechanics each physical system is naturally associated with a language of operators and thus can be considered as a possible model of quantum computation. The remarkable result is that an arbitrary physical system is naturally simulatable by another physical system (or QC) whenever a ``dictionary'' between the two operator algebras exists. I will explain these concepts and address some of Feynman's concerns regarding the simulation of fermionic systems. Finally, I will illustrate the main ideas by imitating simple physical phenomena borrowed from condensed matter physics using quantum algorithms, and present experimental quantum simulations performed in a liquid NMR QC.
Geometry of abstraction in quantum computation
Pavlovic, Dusko
2010-01-01
Modern cryptography is based on various assumptions about computational hardness and feasibility. But while computability is a very robust notion (cf Church's Thesis), feasibility seems quite sensitive to the available computational resources. A prime example are, of course, quantum channels, which provide feasible solutions of some otherwise hard problems; but ants' pheromones, used as a computational resource, also provide feasible solutions of other hard problems. So at least in principle,...
Diagonal quantum circuits: their computational power and applications
Nakata, Yoshifumi; Murao, Mio
2014-01-01
Diagonal quantum circuits are quantum circuits comprising only diagonal gates in the computational basis. In spite of a classical feature of diagonal quantum circuits in the sense of commutativity of all gates, their computational power is highly likely to outperform classical one and they are exploited for applications in quantum informational tasks. We review computational power of diagonal quantum circuits and their applications. We focus on the computational power of instantaneous quantum...
Models to Reduce the Complexity of Simulating a Quantum Computer
Obenland, Kevin M.; Despain, Alvin M.
1997-01-01
Recently Quantum Computation has generated a lot of interest due to the discovery of a quantum algorithm which can factor large numbers in polynomial time. The usefulness of a quantum com puter is limited by the effect of errors. Simulation is a useful tool for determining the feasibility of quantum computers in the presence of errors. The size of a quantum computer that can be simulat ed is small because faithfully modeling a quantum computer requires an exponential amount of storage and num...
Quantum memory and quantum computations in the optical subradiance regime
The possibilities of creation and manipulation of subradiant states in an extended atomic system by coherent 2π pulses are analysed. It is shown that excitation of the atomic system to collective subradiant states eliminates the superradiant broadening of the resonance line in quantum optical memory devices. The scheme of a nonlinear sign-shift two-qubit gate is proposed, which can be used in optical quantum computers. (fourth seminar to the memory of d.n. klyshko)
Quantum-cellular-automata quantum computing with endohedral fullerenes
We present a scheme to perform universal quantum computation using global addressing techniques as applied to a physical system of endohedrally doped fullerenes. The system consists of an ABAB linear array of group-V endohedrally doped fullerenes. Each molecule spin site consists of a nuclear spin coupled via a hyperfine interaction to an electron spin. The electron spin of each molecule is in a quartet ground state S=3/2. Neighboring molecular electron spins are coupled via a magnetic dipole interaction. We find that an all-electron construction of a quantum cellular automaton is frustrated due to the degeneracy of the electronic transitions. However, we can construct a quantum-cellular-automata quantum computing architecture using these molecules by encoding the quantum information on the nuclear spins while using the electron spins as a local bus. We deduce the NMR and ESR pulses required to execute the basic cellular automaton operation and obtain a rough figure of merit for the number of gate operations per decoherence time. We find that this figure of merit compares well with other physical quantum computer proposals. We argue that the proposed architecture meets well the first four DiVincenzo criteria and we outline various routes toward meeting the fifth criterion: qubit readout
Quantum computing with black-box quantum subroutines
In classical computation a subroutine is treated as a black box and we do not need to know its exact physical implementation to use it. A complex problem can be decomposed into smaller problems using such modularity. We show that quantum mechanically applying an unknown quantum process as a subroutine is impossible, and this restricts computation models such as DQC1 from operating on unknown inputs. We present a method to avoid this situation for certain computational problems and apply to a modular version of Shor's factoring algorithm. We examine how quantum entanglement and discord fare in this implementation. In this way we are able to study the role of discord in Shor's factoring algorithm.
Exploiting Particle Statistics in Quantum Computation
Castagnoli, Giuseppe; Monti, Dalida
1998-01-01
We describe a plausible-speculative form of quantum computation which exploits particle (fermionic, bosonic) statistics, under a generalized, counterfactual interpretation thereof. In the idealized situation of an isolated system, it seems that this form of computation yields to NP-complete=P.
Linear optical quantum computation with parity encoding
Full text: We present a linear optics quantum computation scheme that employs an incremental parity encoding approach. The scheme is circuit-based but uses techniques from cluster state computation, and achieves comparable resource usage to the cluster state approach. Our scheme also offers increased tolerance to photon loss. (author)
Qubus ancilla-driven quantum computation
Brown, Katherine Louise [School of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70808, United States and School of Physics and Astronomy, University of Leeds, LS2 9JT (United Kingdom); De, Suvabrata; Kendon, Viv [School of Physics and Astronomy, University of Leeds, LS2 9JT (United Kingdom); Munro, Bill [National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan and NTT Basic Research Laboratories, 3-1, Morinosato Wakamiya Atsugi-shi, Kanagawa 243-0198 (Japan)
2014-12-04
Hybrid matter-optical systems offer a robust, scalable path to quantum computation. Such systems have an ancilla which acts as a bus connecting the qubits. We demonstrate how using a continuous variable qubus as the ancilla provides savings in the total number of operations required when computing with many qubits.
Qubus ancilla-driven quantum computation
Hybrid matter-optical systems offer a robust, scalable path to quantum computation. Such systems have an ancilla which acts as a bus connecting the qubits. We demonstrate how using a continuous variable qubus as the ancilla provides savings in the total number of operations required when computing with many qubits
Quantum Computer with Fixed Interaction is Universal
Ozhigov, Yuri; Fedichkin, Leonid
2002-01-01
It is proved that a quantum computer with fixed and permanent interaction of diagonal type between qubits proposed in the work quant-ph/0201132 is universal. Such computer is controlled only by one-qubit quick transformations, and this makes it feasible.
Discrete Cosine Transforms on Quantum Computers
Klappenecker, Andreas; Roetteler, Martin
2001-01-01
A classical computer does not allow to calculate a discrete cosine transform on N points in less than linear time. This trivial lower bound is no longer valid for a computer that takes advantage of quantum mechanical superposition, entanglement, and interference principles. In fact, we show that it is possible to realize the discrete cosine transforms and the discrete sine transforms of size NxN and types I,II,III, and IV with as little as O(log^2 N) operations on a quantum computer, whereas ...
Strictly contractive quantum channels and physically realizable quantum computers
Raginsky, Maxim
2001-01-01
We study the robustness of quantum computers under the influence of errors modelled by strictly contractive channels. A channel $T$ is defined to be strictly contractive if, for any pair of density operators $\\rho,\\sigma$ in its domain, $\\| T\\rho - T\\sigma \\|_1 \\le k \\| \\rho-\\sigma \\|_1$ for some $0 \\le k < 1$ (here $\\| \\cdot \\|_1$ denotes the trace norm). In other words, strictly contractive channels render the states of the computer less distinguishable in the sense of quantum detection the...
Biologically inspired path to quantum computer
Ogryzko, Vasily; Ozhigov, Yuri
2014-12-01
We describe an approach to quantum computer inspired by the information processing at the molecular level in living cells. It is based on the separation of a small ensemble of qubits inside the living system (e.g., a bacterial cell), such that coherent quantum states of this ensemble remain practically unchanged for a long time. We use the notion of a quantum kernel to describe such an ensemble. Quantum kernel is not strictly connected with certain particles; it permanently exchanges atoms and molecules with the environment, which makes quantum kernel a virtual notion. There are many reasons to expect that the state of quantum kernel of a living system can be treated as the stationary state of some Hamiltonian. While the quantum kernel is responsible for the stability of dynamics at the time scale of cellular life, at the longer inter-generation time scale it can change, varying smoothly in the course of biological evolution. To the first level of approximation, quantum kernel can be described in the framework of qubit modification of Jaynes-Cummings-Hubbard model, in which the relaxation corresponds to the exchange of matter between quantum kernel and the rest of the cell and is represented as Lindblad super-operators.
Power of one qumode for quantum computation
Liu, Nana; Thompson, Jayne; Weedbrook, Christian; Lloyd, Seth; Vedral, Vlatko; Gu, Mile; Modi, Kavan
2016-05-01
Although quantum computers are capable of solving problems like factoring exponentially faster than the best-known classical algorithms, determining the resources responsible for their computational power remains unclear. An important class of problems where quantum computers possess an advantage is phase estimation, which includes applications like factoring. We introduce a computational model based on a single squeezed state resource that can perform phase estimation, which we call the power of one qumode. This model is inspired by an interesting computational model known as deterministic quantum computing with one quantum bit (DQC1). Using the power of one qumode, we identify that the amount of squeezing is sufficient to quantify the resource requirements of different computational problems based on phase estimation. In particular, we can use the amount of squeezing to quantitatively relate the resource requirements of DQC1 and factoring. Furthermore, we can connect the squeezing to other known resources like precision, energy, qudit dimensionality, and qubit number. We show the circumstances under which they can likewise be considered good resources.
Effective pure states for bulk quantum computation
In bulk quantum computation one can manipulate a large number of indistinguishable quantum computers by parallel unitary operations and measure expectation values of certain observables with limited sensitivity. The initial state of each computer in the ensemble is known but not pure. Methods for obtaining effective pure input states by a series of manipulations have been described by Gershenfeld and Chuang (logical labeling) [Science 275, 350 (1997)] and Cory et al. (spatial averaging) [Proc. Natl. Acad. Sci. USA 94, 1634 (1997)] for the case of quantum computation with nuclear magnetic resonance. We give a different technique called temporal averaging. This method is based on classical randomization, requires no ancilla quantum bits, and can be implemented in nuclear magnetic resonance without using gradient fields. We introduce several temporal averaging algorithms suitable for both high-temperature and low-temperature bulk quantum computing and analyze the signal-to-noise behavior of each. Most of these algorithms require only a constant multiple of the number of experiments needed by the other methods for creating effective pure states. copyright 1998 The American Physical Society
Bethe ansatz, quantum computers, and unitary geometry
Lulek, T [Rzeszow University of Technology, Faculty of Mathematics and Applied Physics, Department of Physics, Powstancow Warszawy 6, 35-959 Rzeszow (Poland)], E-mail: tadlulek@prz.edu.pl
2008-03-01
The one-dimensional ring of N magnetic nodes, each node with the spin 1/2, can be seen as a faithful prototype of a quantum computer with N qubits. We point out here some analogies between typical problems and known solutions of the Heisenberg model of a magnet on this ring, and the related questions posed within the midst of quantum information processing. In particular, we relate such notions as the memory, gates, or entanglement of quantum states with exact results of Bethe Ansatz, expressed in combinatoric terms of rigged string configurations. A promising and transparent interpretation of relation between Bethe Ansatz and quantum computation can be provided by the unitary geometry of Schwinger, presented in our previous SSPCM schools by prof. Vourdas.
Bethe ansatz, quantum computers, and unitary geometry
The one-dimensional ring of N magnetic nodes, each node with the spin 1/2, can be seen as a faithful prototype of a quantum computer with N qubits. We point out here some analogies between typical problems and known solutions of the Heisenberg model of a magnet on this ring, and the related questions posed within the midst of quantum information processing. In particular, we relate such notions as the memory, gates, or entanglement of quantum states with exact results of Bethe Ansatz, expressed in combinatoric terms of rigged string configurations. A promising and transparent interpretation of relation between Bethe Ansatz and quantum computation can be provided by the unitary geometry of Schwinger, presented in our previous SSPCM schools by prof. Vourdas
Accelerating commutation circuits in quantum computer networks
Jiang, Min; Huang, Xu; Chen, Xiaoping; Zhang, Zeng-ke
2012-12-01
In a high speed and packet-switched quantum computer network, a packet routing delay often leads to traffic jams, becoming a severe bottleneck for speeding up the transmission rate. Based on the delayed commutation circuit proposed in Phys. Rev. Lett. 97, 110502 (2006), we present an improved scheme for accelerating network transmission. For two more realistic scenarios, we utilize the characteristic of a quantum state to simultaneously implement a data switch and transmission that makes it possible to reduce the packet delay and route a qubit packet even before its address is determined. This circuit is further extended to the quantum network for the transmission of the unknown quantum information. The analysis demonstrates that quantum communication technology can considerably reduce the processing delay time and build faster and more efficient packet-switched networks.
Simulated Quantum Computation of Global Minima
Zhu, Jing; Kais, Sabre
2009-01-01
Finding the optimal solution to a complex optimization problem is of great importance in practically all fields of science, technology, technical design and econometrics. We demonstrate that a modified Grover's quantum algorithm can be applied to real problems of finding a global minimum using modest numbers of quantum bits. Calculations of the global minimum of simple test functions and Lennard-Jones clusters have been carried out on a quantum computer simulator using a modified Grover's algorithm. The number of function evaluations $N$ reduced from O(N) in classical simulation to $O(\\sqrt{N})$ in quantum simulation. We also show how the Grover's quantum algorithm can be combined with the classical Pivot method for global optimization to treat larger systems.
Analogue Quantum Computers for Data Analysis
Vlasov, Alexander Yu.
1998-01-01
Analogue computers use continuous properties of physical system for modeling. In the paper is described possibility of modeling by analogue quantum computers for some model of data analysis. It is analogue associative memory and a formal neural network. A particularity of the models is combination of continuous internal processes with discrete set of output states. The modeling of the system by classical analogue computers was offered long times ago, but now it is not very effectively in comp...
Quantum Computers: A New Paradigm in Information Technology
Raisinghani, Mahesh S
2001-01-01
The word 'quantum' comes from the Latin word quantus meaning 'how much'. Quantum computing is a fundamentally new mode of information processing that can be performed only by harnessing physical phenomena unique to quantum mechanics (especially quantum interference). Paul Benioff of the Argonne National Laboratory first applied quantum theory to computers in 1981 and David Deutsch of Oxford proposed quantum parallel computers in 1985, years before the realization of qubits in 1995. However, i...
Optical quantum computer based on RDS crystal
Sazonova, Z. S.; Singh, Ranjit
2001-01-01
We have proposed the construction of optical quantum computer (OQC) on regular domain structure (RDS) crystal. By using RDS crystal, we can perform all the logical operations on one RDS crystal. Moreover, RDS crystals are parctically independent to the heating effects i.e., can perform logic operations constantly without cooling the RDS crystal. Also, we have proposed the quantum parallelsim i.e., parallel coherent laser beams are injected at the input of the RDS crystals. By using the RDS cr...
Interconnection Networks for Scalable Quantum Computers
Isailovic, Nemanja; Patel, Yatish; Whitney, Mark; Kubiatowicz, John
2006-01-01
We show that the problem of communication in a quantum computer reduces to constructing reliable quantum channels by distributing high-fidelity EPR pairs. We develop analytical models of the latency, bandwidth, error rate and resource utilization of such channels, and show that 100s of qubits must be distributed to accommodate a single data communication. Next, we show that a grid of teleportation nodes forms a good substrate on which to distribute EPR pairs. We also explore the control requi...
Local Search Methods for Quantum Computers
Hogg, Tad; YANIK, Mehmet
1998-01-01
Local search algorithms use the neighborhood relations among search states and often perform well for a variety of NP-hard combinatorial search problems. This paper shows how quantum computers can also use these neighborhood relations. An example of such a local quantum search is evaluated empirically for the satisfiability (SAT) problem and shown to be particularly effective for highly constrained instances. For problems with an intermediate number of constraints, it is somewhat less effecti...
Entanglement and Quantum Computation: An Overview
Perez, R.B.
2000-06-27
This report presents a selective compilation of basic facts from the fields of particle entanglement and quantum information processing prepared for those non-experts in these fields that may have interest in an area of physics showing counterintuitive, ''spooky'' (Einstein's words) behavior. In fact, quantum information processing could, in the near future, provide a new technology to sustain the benefits to the U.S. economy due to advanced computer technology.
Quantum computing by pairing trapped ultracold ions
Mang, F; Kelin, G; Lei, S; Mang, Feng; Xiwen, Zhu; Kelin, Gao; Lei, Shi
2000-01-01
The superpositional wave function oscillations for finite-time implementation of quantum algorithms modifies the desired interference required for quantum computing. We propose a scheme with trapped ultracold ion-pairs being qubits to diminish the detrimental effect of the wave function oscillations, and apply the scheme to the two-qubit Grover's search. It can be also found that the qubits in our scheme are more robust against the decoherence caused by the environment, and the model is scalable.
Discrete Wigner functions and quantum computational speedup
Gibbons et al. [Phys. Rev. A 70, 062101 (2004)] have recently defined a class of discrete Wigner functions W to represent quantum states in a finite Hilbert space dimension d. I characterize the set Cd of states having non-negative W simultaneously in all definitions of W in this class. For d≤5 I show Cd is the convex hull of stabilizer states. This supports the conjecture that negativity of W is necessary for exponential speedup in pure-state quantum computation
Quantum learning for a quantum lattice gas computer
Behrman, Elizabeth; Steck, James
2015-03-01
Quantum lattice gas is the logical generalization of quantum cellular automata. In low energy the dynamics are well described by the Gross-Pitaevskii equation in the mean field limit, which is an effective nonlinear interaction model of a Bose-Einstein condensate. In previous work, we have shown in simulation that both spatial and temporal models of quantum learning computers can be used to ``design'' non-trivial quantum algorithms. The advantages of quantum learning over the usual practice of using quantum gate building blocks are, first, the rapidity with which the problem can be solved, without having to decompose the problem; second, the fact that our technique can be used readily even when the problem, or the operator, is not well understood; and, third, that because the interactions are a natural part of the physical system, connectivity is automatic. The advantage to quantum learning obviously grows with the size and the complexity of the problem. We develop and present our learning algorithm as applied to the mean field lattice gas equation, and present a few preliminary results.
Quantum learning in a quantum lattice gas computer
Behrman, Elizabeth; Steck, James
2015-04-01
Quantum lattice gas is the logical generalization of quantum cellular automata. At low energy the dynamics are well described by the Gross-Pitaevskii equation in the mean field limit, which is an effective nonlinear interaction model of a Bose-Einstein condensate. In previous work, we have shown in simulation that both spatial and temporal models of quantum learning computers can be used to ``design'' non-trivial quantum algorithms. The advantages of quantum learning over the usual practice of using quantum gate building blocks are, first, the rapidity with which the problem can be solved, without having to decompose the problem; second, the fact that our technique can be used readily even when the problem, or the operator, is not well understood; and, third, that because the interactions are a natural part of the physical system, connectivity is automatic. The advantage to quantum learning obviously grows with the size and the complexity of the problem. We develop and present our learning algorithm as applied to the mean field lattice gas equation, and present a few preliminary results.
Consequences and Limitations of Conventional Computers and their Solutions through Quantum Computers
Nilesh BARDE; Deepak THAKUR; Pranav BARDAPURKAR; Sanjaykumar DALVI
2012-01-01
Quantum computer is the current topic of research in the field of computational science, which uses principles of quantum mechanics. Quantum computers will be much more powerful than the classical computer due to its enormous computational speed. Recent developments in quantum computers which are based on the laws of quantum mechanics, shows different ways of performing efficient calculations along with the various results which are not possible on the classical computers in an efficient peri...
Universal Dephasing Control During Quantum Computation
Gordon, Goren
2007-01-01
Dephasing is a ubiquitous phenomenon that leads to the loss of coherence in quantum systems and the corruption of quantum information. We present a universal dynamical control approach to combat dephasing during all stages of quantum computation, namely, storage, single- and two-qubit operators. We show that (a) tailoring multi-frequency gate pulses to the dephasing dynamics can increase fidelity; (b) cross-dephasing, introduced by entanglement, can be eliminated by appropriate control fields; (c) counter-intuitively and contrary to previous schemes, one can increase the gate duration, while simultaneously increasing the total gate fidelity.
Error correcting codes for adiabatic quantum computation
Jordan, S P; Shor, P W; Farhi, Edward; Jordan, Stephen P.; Shor, Peter W.
2005-01-01
Recently, there has been growing interest in using adiabatic quantum computation as an architecture for experimentally realizable quantum computers. One of the reasons for this is the idea that the energy gap should provide some inherent resistance to noise. It is now known that universal quantum computation can be achieved adiabatically using 2-local Hamiltonians. The energy gap in these Hamiltonians scales as an inverse polynomial in the problem size. Here we present stabilizer codes which can be used to produce a constant energy gap against 1-local and 2-local noise. The corresponding fault-tolerant universal Hamiltonians are 4-local and 6-local respectively, which is the optimal result achievable within this framework.
Methodological testing: Are fast quantum computers illusions?
Meyer, Steven [Tachyon Design Automation, San Francisco, CA (United States)
2013-07-01
Popularity of the idea for computers constructed from the principles of QM started with Feynman's 'Lectures On Computation', but he called the idea crazy and dependent on statistical mechanics. In 1987, Feynman published a paper in 'Quantum Implications - Essays in Honor of David Bohm' on negative probabilities which he said gave him cultural shock. The problem with imagined fast quantum computers (QC) is that speed requires both statistical behavior and truth of the mathematical formalism. The Swedish Royal Academy 2012 Nobel Prize in physics press release touted the discovery of methods to control ''individual quantum systems'', to ''measure and control very fragile quantum states'' which enables ''first steps towards building a new type of super fast computer based on quantum physics.'' A number of examples where widely accepted mathematical descriptions have turned out to be problematic are examined: Problems with the use of Oracles in P=NP computational complexity, Paul Finsler's proof of the continuum hypothesis, and Turing's Enigma code breaking versus William tutte's Colossus. I view QC research as faith in computational oracles with wished for properties. Arther Fine's interpretation in 'The Shaky Game' of Einstein's skepticism toward QM is discussed. If Einstein's reality as space-time curvature is correct, then space-time computers will be the next type of super fast computer.
Fault-Tolerant Postselected Quantum Computation: Threshold Analysis
Knill, E.
2004-01-01
The schemes for fault-tolerant postselected quantum computation given in [Knill, Fault-Tolerant Postselected Quantum Computation: Schemes, http://arxiv.org/abs/quant-ph/0402171] are analyzed to determine their error-tolerance. The analysis is based on computer-assisted heuristics. It indicates that if classical and quantum communication delays are negligible, then scalable qubit-based quantum computation is possible with errors above 1% per elementary quantum gate.
Quantum Computation and Quantum Information: Are They Related to Quantum Paradoxology?
Gyftopoulos, Elias P.; von Spakovsky, Michael R.
2004-01-01
We review both the Einstein, Podolsky, Rosen (EPR) paper about the completeness of quantum theory, and Schrodinger's responses to the EPR paper. We find that both the EPR paper and Schrodinger's responses, including the cat paradox, are not consistent with the current understanding of quantum theory and thermodynamics. Because both the EPR paper and Schrodinger's responses play a leading role in discussions of the fascinating and promising fields of quantum computation and quantum information...
Random Numbers and Quantum Computers
McCartney, Mark; Glass, David
2002-01-01
The topic of random numbers is investigated in such a way as to illustrate links between mathematics, physics and computer science. First, the generation of random numbers by a classical computer using the linear congruential generator and logistic map is considered. It is noted that these procedures yield only pseudo-random numbers since
Random Numbers and Quantum Computers
McCartney, Mark; Glass, David
2002-01-01
The topic of random numbers is investigated in such a way as to illustrate links between mathematics, physics and computer science. First, the generation of random numbers by a classical computer using the linear congruential generator and logistic map is considered. It is noted that these procedures yield only pseudo-random numbers since…
Towards universal quantum computation through relativistic motion
Bruschi, David Edward; Kok, Pieter; Johansson, Gran; Delsing, Per; Fuentes, Ivette
2013-01-01
We show how to use relativistic motion to generate continuous variable Gaussian cluster states within cavity modes. Our results can be demonstrated experimentally using superconducting circuits where tunable boundary conditions correspond to mirrors moving with velocities close to the speed of light. In particular, we propose the generation of a quadripartite square cluster state as a first example that can be readily implemented in the laboratory. Since cluster states are universal resources for universal one-way quantum computation, our results pave the way for relativistic quantum computation schemes.
Few electron quantum computing structures and lattice gas computation
There are several paths available when downscaling devices and computing architectures to the nanoscale. The first is to keep silicon technology irrespective of computational models. In the next decade, it is clear that we have to learn to build and control devices at the nanometer and even atomic scale. These devices will use few electron quantum tunneling for state switching, wires and storage. The arena will be electron gases confined to wires or wells at milli-kelvin and even room temperatures. In this paper, the authors focus their aims on building a quantum electronics based on few electron nanodevices and quantum dot arrays. Nandoevices could initially be made with a technology that allows sufficient quantity and diversity for at least special purpose processing tasks. hopefully, one can also see how to do large scale general computation
Adiabatic graph-state quantum computation
Measurement-based quantum computation (MBQC) and holonomic quantum computation (HQC) are two very different computational methods. The computation in MBQC is driven by adaptive measurements executed in a particular order on a large entangled state. In contrast in HQC the system starts in the ground subspace of a Hamiltonian which is slowly changed such that a transformation occurs within the subspace. Following the approach of Bacon and Flammia, we show that any MBQC on a graph state with generalized flow (gflow) can be converted into an adiabatically driven holonomic computation, which we call adiabatic graph-state quantum computation (AGQC). We then investigate how properties of AGQC relate to the properties of MBQC, such as computational depth. We identify a trade-off that can be made between the number of adiabatic steps in AGQC and the norm of H-dot as well as the degree of H, in analogy to the trade-off between the number of measurements and classical post-processing seen in MBQC. Finally the effects of performing AGQC with orderings that differ from standard MBQC are investigated. (paper)
Mizel, Ari
2003-01-01
Ground-state quantum computers mimic quantum mechanical time evolution within the amplitudes of a time-independent quantum state. We explore the principles that constrain this mimicking. A no-cloning argument is found to impose strong restrictions. It is shown, however, that there is flexibility that can be exploited using quantum teleportation methods to improve ground-state quantum computer design.
Quantum pathology of static internal imperfections in flawed quantum computers
Cetinbas, Murat [Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6 (Canada)], E-mail: cetinbas@sfu.ca; Wilkie, Joshua [Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6 (Canada)], E-mail: wilkie@sfu.ca
2007-10-22
Even in the absence of external influences the operability of a quantum computer (QC) is not guaranteed because of the effects of residual one- and two-body imperfections. Here we investigate how these internal flaws affect the performance of a quantum controlled-NOT (CNOT) gate in an isolated flawed QC. First we find that the performance of the CNOT gate is considerably better when the two-body imperfections are strong. Secondly, we find that the largest source of error is due to a coherent shift rather than decoherence or dissipation. Our results suggest that the problem of internal imperfections should be given much more attention in designing scalable QC architectures.
Quantum pathology of static internal imperfections in flawed quantum computers
Cetinbas, Murat; Wilkie, Joshua
2007-01-01
Even in the absence of external influences the operability of a quantum computer (QC) is not guaranteed because of the effects of residual one- and two-body imperfections. Here we investigate how these internal flaws affect the performance of a quantum controlled-NOT (CNOT) gate in an isolated flawed QC. First we find that the performance of the CNOT gate is considerably better when the two-body imperfections are strong. Secondly, we find that the largest source of error is due to a coherent ...
Quantum pathology of static internal imperfections in flawed quantum computers
Cetinbas, Murat
2007-01-01
Even in the absence of external influences the operability of a quantum computer (QC) is not guaranteed because of the effects of residual one- and two-body imperfections. Here we investigate how these internal flaws affect the performance of a quantum controlled-NOT (CNOT) gate in an isolated flawed QC. First we find that the performance of the CNOT gate is considerably better when the two-body imperfections are strong. Secondly, we find that the largest source of error is due to a coherent shift rather than decoherence or dissipation. Our results suggest that the problem of internal imperfections should be given much more attention in designing scalable QC architectures.
Quantum Computers and Classical Randomized Algorithms
Carlini, A
1999-01-01
We present a quantum version of the classical probabilistic algorithms Grover's operator for the quantum search of a database and of Shor's Fourier transform for extracting the periodicity of a function, and their combined use in the counting algorithm originally introduced by Brassard et al. One of the main novelties of our quantum probabilistic algorithm is its full unitarity and reversibility, which would make its use possible as part of larger and more complicated networks in quantum computers. As an example of this we describe polynomial time algorithms for studying some important problems in number theory, such as the test of the primality of an integer, the so called 'prime number theorem' and Hardy and Littlewood's conjecture about the asymptotic number of representations of an even integer as a sum of two primes.
Theory of measurement-based quantum computing
de Beaudrap, Jonathan Robert Niel
2008-01-01
In the study of quantum computation, data is represented in terms of linear operators which form a generalized model of probability, and computations are most commonly described as products of unitary transformations, which are the transformations which preserve the quality of the data in a precise sense. This naturally leads to "unitary circuit models", which are models of computation in which unitary operators are expressed as a product of "elementary" unitary transformations. However, unitary transformations can also be effected as a composition of operations which are not all unitary themselves: the "one-way measurement model" is one such model of quantum computation. In this thesis, we examine the relationship between representations of unitary operators and decompositions of those operators in the one-way measurement model. In particular, we consider different circumstances under which a procedure in the one-way measurement model can be described as simulating a unitary circuit, by considering the combi...
Quantum computation over the butterfly network
Kinjo, Yoshiyuki; Soeda, Akihito; Turner, Peter S
2010-01-01
In order to investigate distributed quantum computation under restricted network resources, we introduce a quantum computation task over the butterfly network where both quantum and classical communications are limited. We consider performing a two qubit global unitary operation on two unknown inputs given at different nodes, with outputs at two distinct nodes. By using a particular resource scenario introduced by Hayashi, which is capable of performing a swap operation by adding two maximally entangled qubits (ebits) between the two input nodes, we show that any controlled unitary operation can be performed without adding any entanglement resource. We also construct protocols for performing controlled traceless unitary operations with a 1-ebit resource and for performing global Clifford operations with a 2-ebit resource.
Imperfect Detectors in Linear Optical Quantum Computers
Glancy, Scott; LoSecco, J. M.; Vasconcelos, H. M.; Tanner, C E
2002-01-01
We discuss the effects of imperfect photon detectors suffering from loss and noise on the reliability of linear optical quantum computers. We show that for a given detector efficiency, there is a maximum achievable success probability, and that increasing the number of ancillary photons and detectors used for one controlled sign flip gate beyond a critical point will decrease the probability that the computer will function correctly. We have also performed simulations of some small logic gate...
Design Constraints for Nanometer Scale Quantum Computers
Mainieri, Ronnie
1994-01-01
Nanometer scale electronics present a challenge for the computer architect. These quantum devices have small gain and are difficult to interconnect. I have analyzed current device capabilities and explored two general design requirements for the design of computers: error correction and long range connections. These two principles follow when Turing machines are implemented as integrated circuits. I consider the roles of electromigration through thin wires, circuit layout, and error rates for...
Building logical qubits in a superconducting quantum computing system
Gambetta, Jay M.; Chow, Jerry M.; Steffen, Matthias
2015-01-01
The technological world is in the midst of a quantum computing and quantum information revolution. Since Richard Feynman's famous "plenty of room at the bottom" lecture, hinting at the notion of novel devices employing quantum mechanics, the quantum information community has taken gigantic strides in understanding the potential applications of a quantum computer and laid the foundational requirements for building one. We believe that the next significant step will be to demonstrate a quantum ...
Almost-classical quantum computers
Boes, Michiel; Vos, Alexis De; De Beule, Jan
2010-01-01
By means of a subgroup of the 2 X 2 unitary matrices, i.e. a subgroup Q of U(2), acting on a single qubit, we create a group X, acting on w qubits. If Q equals the group of order 2 consisting of the follower and the inverter, we recover S_{2^w}, i.e. the permutation matrices describing a classical reversible computer acting on w bits. If Q is another group of two 2 X 2 matrices, then a new kind of computing appears.
Statistical mechanics of classical and quantum computational complexity
Laumann, C. R.; Moessner, R.; A. Scardicchio; Sondhi, S. L.
2010-01-01
The quest for quantum computers is motivated by their potential for solving problems that defy existing, classical, computers. The theory of computational complexity, one of the crown jewels of computer science, provides a rigorous framework for classifying the hardness of problems according to the computational resources, most notably time, needed to solve them. Its extension to quantum computers allows the relative power of quantum computers to be analyzed. This framework identifies familie...
The quantum computer game: citizen science
Damgaard, Sidse; Mølmer, Klaus; Sherson, Jacob
2013-05-01
Progress in the field of quantum computation is hampered by daunting technical challenges. Here we present an alternative approach to solving these by enlisting the aid of computer players around the world. We have previously examined a quantum computation architecture involving ultracold atoms in optical lattices and strongly focused tweezers of light. In The Quantum Computer Game (see http://www.scienceathome.org/), we have encapsulated the time-dependent Schrödinger equation for the problem in a graphical user interface allowing for easy user input. Players can then search the parameter space with real-time graphical feedback in a game context with a global high-score that rewards short gate times and robustness to experimental errors. The game which is still in a demo version has so far been tried by several hundred players. Extensions of the approach to other models such as Gross-Pitaevskii and Bose-Hubbard are currently under development. The game has also been incorporated into science education at high-school and university level as an alternative method for teaching quantum mechanics. Initial quantitative evaluation results are very positive. AU Ideas Center for Community Driven Research, CODER.
Can quantum computing solve classically unsolvable problems?
Hodges, A
2005-01-01
T. D. Kieu has claimed that a quantum computing procedure can solve a classically unsolvable problem. Recent work of W. D. Smith has shown that Kieu's central mathematical claim cannot be sustained. Here, a more general critique is given of Kieu's proposal and some suggestions are made regarding the Church-Turing thesis.
Simulations of Probabilities for Quantum Computing
Zak, M.
1996-01-01
It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-LIpschitz dynamics, without utilization of any man-made devices (such as random number generators). Self-organizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed.
Computer animations of quantum field theory
A visualization mehtod for quantum field theories based on the transfer matrix formalism is presented. It generates computer animations simulating the time evolution of complex physical systems subject to local Hamiltonians. The method may be used as a means of gaining insight to theories such as QCD, and as an educational tool in explaining high-energy physics. (orig.)
Quantum Computing: Selected Internet Resources for Librarians, Researchers, and the Casually Curious
Cirasella, Jill
2009-01-01
This article is an annotated selection of the most important and informative Internet resources for learning about quantum computing, finding quantum computing literature, and tracking quantum computing news.
Quantum computation with nuclear spins in quantum dots
The role of nuclear spins for quantum information processing in quantum dots is theoretically investigated in this thesis. Building on the established fact that the most strongly coupled environment for the potential electron spin quantum bit are the surrounding lattice nuclear spins interacting via the hyperfine interaction, we turn this vice into a virtue by designing schemes for harnessing this strong coupling. In this perspective, the ensemble of nuclear spins can be considered an asset, suitable for an active role in quantum information processing due to its intrinsic long coherence times. We present experimentally feasible protocols for the polarization, i.e. initialization, of the nuclear spins and a quantitative solution to our derived master equation. The polarization limiting destructive interference effects, caused by the collective nature of the nuclear coupling to the electron spin, are studied in detail. Efficient ways of mitigating these constraints are presented, demonstrating that highly polarized nuclear ensembles in quantum dots are feasible. At high, but not perfect, polarization of the nuclei the evolution of an electron spin in contact with the spin bath can be efficiently studied by means of a truncation of the Hilbert space. It is shown that the electron spin can function as a mediator of universal quantum gates for collective nuclear spin qubits, yielding a promising architecture for quantum information processing. Furthermore, we show that at high polarization the hyperfine interaction of electron and nuclear spins resembles the celebrated Jaynes-Cummings model of quantum optics. This result opens the door for transfer of knowledge from the mature field of quantum computation with atoms and photons. Additionally, tailored specifically for the quantum dot environment, we propose a novel scheme for the generation of highly squeezed collective nuclear states. Finally we demonstrate that even an unprepared completely mixed nuclear spin ensemble can be utilized for the important task of sequentially generating entanglement between electrons. This is true despite the fact that electrons and nuclei become only very weakly entangled through the hyperfine interaction. Straightforward experimentally feasible protocols for the generation of multipartite entangled (GHZ- and W-)states are presented. (orig.)
Quantum computation with nuclear spins in quantum dots
Christ, H.
2008-01-24
The role of nuclear spins for quantum information processing in quantum dots is theoretically investigated in this thesis. Building on the established fact that the most strongly coupled environment for the potential electron spin quantum bit are the surrounding lattice nuclear spins interacting via the hyperfine interaction, we turn this vice into a virtue by designing schemes for harnessing this strong coupling. In this perspective, the ensemble of nuclear spins can be considered an asset, suitable for an active role in quantum information processing due to its intrinsic long coherence times. We present experimentally feasible protocols for the polarization, i.e. initialization, of the nuclear spins and a quantitative solution to our derived master equation. The polarization limiting destructive interference effects, caused by the collective nature of the nuclear coupling to the electron spin, are studied in detail. Efficient ways of mitigating these constraints are presented, demonstrating that highly polarized nuclear ensembles in quantum dots are feasible. At high, but not perfect, polarization of the nuclei the evolution of an electron spin in contact with the spin bath can be efficiently studied by means of a truncation of the Hilbert space. It is shown that the electron spin can function as a mediator of universal quantum gates for collective nuclear spin qubits, yielding a promising architecture for quantum information processing. Furthermore, we show that at high polarization the hyperfine interaction of electron and nuclear spins resembles the celebrated Jaynes-Cummings model of quantum optics. This result opens the door for transfer of knowledge from the mature field of quantum computation with atoms and photons. Additionally, tailored specifically for the quantum dot environment, we propose a novel scheme for the generation of highly squeezed collective nuclear states. Finally we demonstrate that even an unprepared completely mixed nuclear spin ensemble can be utilized for the important task of sequentially generating entanglement between electrons. This is true despite the fact that electrons and nuclei become only very weakly entangled through the hyperfine interaction. Straightforward experimentally feasible protocols for the generation of multipartite entangled (GHZ- and W-)states are presented. (orig.)
Quantum Computation and Information From Theory to Experiment
Imai, Hiroshi
2006-01-01
Recently, the field of quantum computation and information has been developing through a fusion of results from various research fields in theoretical and practical areas. This book consists of the reviews of selected topics charterized by great progress and cover the field from theoretical areas to experimental ones. It contains fundamental areas, quantum query complexity, quantum statistical inference, quantum cloning, quantum entanglement, additivity. It treats three types of quantum security system, quantum public key cryptography, quantum key distribution, and quantum steganography. A photonic system is highlighted for the realization of quantum information processing.
Quantum computing implementations with neutral particles
Negretti, Antonio; Treutlein, Philipp; Calarco, Tommaso
2011-01-01
We review quantum information processing with cold neutral particles, that is, atoms or polar molecules. First, we analyze the best suited degrees of freedom of these particles for storing quantum information, and then we discuss both single- and two-qubit gate implementations. We focus our discu...... optimal control theory might be a powerful tool to enhance the speed up of the gate operations as well as to achieve high fidelities required for fault tolerant quantum computation.......We review quantum information processing with cold neutral particles, that is, atoms or polar molecules. First, we analyze the best suited degrees of freedom of these particles for storing quantum information, and then we discuss both single- and two-qubit gate implementations. We focus our...... discussion mainly on collisional quantum gates, which are best suited for atom-chip-like devices, as well as on gate proposals conceived for optical lattices. Additionally, we analyze schemes both for cold atoms confined in optical cavities and hybrid approaches to entanglement generation, and we show how...
Discrete Wigner functions and quantum computation
Full text: Gibbons et al. have recently defined a class of discrete Wigner functions W to represent quantum states in a finite Hilbert space dimension d. I characterize the set Cd of states having non-negative W simultaneously in all definitions of W in this class. I then argue that states in this set behave classically in a well-defined computational sense. I show that one-qubit states in C2 do not provide for universal computation in a recent model proposed by Bravyi and Kitaev [quant-ph/0403025]. More generally, I show that the only pure states in Cd are stabilizer states, which have an efficient description using the stabilizer formalism. This result shows that two different notions of 'classical' states coincide: states with non-negative Wigner functions are those which have an efficient description. This suggests that negativity of W may be necessary for exponential speed-up in pure-state quantum computation. (author)
Measurement-Based Interference in Quantum Computation
The interference has been measured by the visibility in two-level systems, which, however, does not work for multi-level systems. We generalize a measure of the interference based on decoherence process, consistent with the visibility in qubit systems. By taking cluster states as examples, we show in the one-way quantum computation that the gate fidelity is proportional to the interference of the measured qubit and is inversely proportional to the interference of all register qubits. We also find that the interference increases with the number of the computing steps. So we conjecture that the interference may be the source of the speedup of the one-way quantum computation. (general)
Measurement-Based Interference in Quantum Computation
Xu, You-Yang
2013-09-01
The interference has been measured by the visibility in two-level systems, which, however, does not work for multi-level systems. We generalize a measure of the interference based on decoherence process, consistent with the visibility in qubit systems. By taking cluster states as examples, we show in the one-way quantum computation that the gate fidelity is proportional to the interference of the measured qubit and is inversely proportional to the interference of all register qubits. We also find that the interference increases with the number of the computing steps. So we conjecture that the interference may be the source of the speedup of the one-way quantum computation.
Deterministic quantum computation with one photonic qubit
Hor-Meyll, M.; Tasca, D. S.; Walborn, S. P.; Ribeiro, P. H. Souto; Santos, M. M.; Duzzioni, E. I.
2015-07-01
We show that deterministic quantum computing with one qubit (DQC1) can be experimentally implemented with a spatial light modulator, using the polarization and the transverse spatial degrees of freedom of light. The scheme allows the computation of the trace of a high-dimension matrix, being limited by the resolution of the modulator panel and the technical imperfections. In order to illustrate the method, we compute the normalized trace of unitary matrices and implement the Deutsch-Jozsa algorithm. The largest matrix that can be manipulated with our setup is 1080 ×1920 , which is able to represent a system with approximately 21 qubits.
QCWAVE, a Mathematica quantum computer simulation update
Tabakin, Frank
2011-01-01
This Mathematica 7.0/8.0 package upgrades and extends the quantum computer simulation code called QDENSITY. Use of the density matrix was emphasized in QDENSITY, although that code was also applicable to a quantum state description. In the present version, the quantum state version is stressed and made amenable to future extensions to parallel computer simulations. The add-on QCWAVE extends QDENSITY in several ways. The first way is to describe the action of one, two and three- qubit quantum gates as a set of small ($2 \\times 2, 4\\times 4$ or $8\\times 8$) matrices acting on the $2^{n_q}$ amplitudes for a system of $n_q$ qubits. This procedure was described in our parallel computer simulation QCMPI and is reviewed here. The advantage is that smaller storage demands are made, without loss of speed, and that the procedure can take advantage of message passing interface (MPI) techniques, which will hopefully be generally available in future Mathematica versions. Another extension of QDENSITY provided here is a mu...
Nonlinear quantum optical computing via measurement
Hutchinson, G D
2004-01-01
We show how the measurement induced model of quantum computation proposed by Raussendorf and Briegel [Phys. Rev. Letts. 86, 5188 (2001)] can be adapted to a nonlinear optical interaction. This optical implementation requires a Kerr nonlinearity, a single photon source, a single photon detector and fast feed forward. Although nondeterministic optical quantum information proposals such as that suggested by KLM [Nature 409, 46 (2001)] do not require a Kerr nonlinearity they do require complex reconfigurable optical networks. The proposal in this paper has the benefit of a single static optical layout with fixed device parameters, where the algorithm is defined by the final measurement procedure.
Mathematical optics classical, quantum, and computational methods
Lakshminarayanan, Vasudevan
2012-01-01
Going beyond standard introductory texts, Mathematical Optics: Classical, Quantum, and Computational Methods brings together many new mathematical techniques from optical science and engineering research. Profusely illustrated, the book makes the material accessible to students and newcomers to the field. Divided into six parts, the text presents state-of-the-art mathematical methods and applications in classical optics, quantum optics, and image processing. Part I describes the use of phase space concepts to characterize optical beams and the application of dynamic programming in optical wave
Scheme for Quantum Computing Immune to Decoherence
Williams, Colin; Vatan, Farrokh
2008-01-01
A constructive scheme has been devised to enable mapping of any quantum computation into a spintronic circuit in which the computation is encoded in a basis that is, in principle, immune to quantum decoherence. The scheme is implemented by an algorithm that utilizes multiple physical spins to encode each logical bit in such a way that collective errors affecting all the physical spins do not disturb the logical bit. The scheme is expected to be of use to experimenters working on spintronic implementations of quantum logic. Spintronic computing devices use quantum-mechanical spins (typically, electron spins) to encode logical bits. Bits thus encoded (denoted qubits) are potentially susceptible to errors caused by noise and decoherence. The traditional model of quantum computation is based partly on the assumption that each qubit is implemented by use of a single two-state quantum system, such as an electron or other spin-1.2 particle. It can be surprisingly difficult to achieve certain gate operations . most notably, those of arbitrary 1-qubit gates . in spintronic hardware according to this model. However, ironically, certain 2-qubit interactions (in particular, spin-spin exchange interactions) can be achieved relatively easily in spintronic hardware. Therefore, it would be fortunate if it were possible to implement any 1-qubit gate by use of a spin-spin exchange interaction. While such a direct representation is not possible, it is possible to achieve an arbitrary 1-qubit gate indirectly by means of a sequence of four spin-spin exchange interactions, which could be implemented by use of four exchange gates. Accordingly, the present scheme provides for mapping any 1-qubit gate in the logical basis into an equivalent sequence of at most four spin-spin exchange interactions in the physical (encoded) basis. The complexity of the mathematical derivation of the scheme from basic quantum principles precludes a description within this article; it must suffice to report that the derivation provides explicit constructions for finding the exchange couplings in the physical basis needed to implement any arbitrary 1-qubit gate. These constructions lead to spintronic encodings of quantum logic that are more efficient than those of a previously published scheme that utilizes a universal but fixed set of gates.
Blueprint for a microwave ion trap quantum computer
Lekitsch, B; Weidt, S.; Fowler, A. G.; Mølmer, K.; Devitt, S. J.; Wunderlich, C.; Hensinger, W K
2015-01-01
A universal quantum computer will have fundamental impact on a vast number of research fields and technologies. Therefore an increasingly large scientific and industrial community is working towards the realization of such a device. A large scale quantum computer is best constructed using a modular approach. We present the blueprint for an ion trap based scalable quantum computer module which makes it possible to create an arbitrarily large quantum computer architecture powered by long-wavele...
Quantum Annealing and Computation: A Brief Documentary Note
Ghosh, Asim; Mukherjee, Sudip
2013-01-01
Major breakthrough in quantum computation has recently been achieved using quantum annealing to develop analog quantum computers instead of gate based computers. After a short introduction to quantum computation, we retrace very briefly the history of these developments and discuss the Indian researches in this connection and provide some interesting documents (in the Figs.) obtained from a chosen set of high impact papers (and also some recent news etc. blogs appearing in the Internet). This...
A repeat-until-success quantum computing scheme
Beige, A [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Lim, Y L [DSO National Laboratories, 20 Science Park Drive, Singapore 118230, Singapore (Singapore); Kwek, L C [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore (Singapore)
2007-06-15
Recently we proposed a hybrid architecture for quantum computing based on stationary and flying qubits: the repeat-until-success (RUS) quantum computing scheme. The scheme is largely implementation independent. Despite the incompleteness theorem for optical Bell-state measurements in any linear optics set-up, it allows for the implementation of a deterministic entangling gate between distant qubits. Here we review this distributed quantum computation scheme, which is ideally suited for integrated quantum computation and communication purposes.
Quantum Computers: A New Paradigm in Information Technology
Mahesh S. Raisinghani
2001-01-01
Full Text Available The word 'quantum' comes from the Latin word quantus meaning 'how much'. Quantum computing is a fundamentally new mode of information processing that can be performed only by harnessing physical phenomena unique to quantum mechanics (especially quantum interference. Paul Benioff of the Argonne National Laboratory first applied quantum theory to computers in 1981 and David Deutsch of Oxford proposed quantum parallel computers in 1985, years before the realization of qubits in 1995. However, it may be well into the 21st century before we see quantum computing used at a commercial level for a variety of reasons discussed in this paper. The subject of quantum computing brings together ideas from classical information theory, computer science, and quantum physics. This paper discusses some of the current advances, applications, and chal-lenges of quantum computing as well as its impact on corporate computing and implications for management. It shows how quantum computing can be utilized to process and store information, as well as impact cryptography for perfectly secure communication, algorithmic searching, factorizing large numbers very rapidly, and simulating quantum-mechanical systems efficiently. A broad interdisciplinary effort will be needed if quantum com-puters are to fulfill their destiny as the world's fastest computing devices.
Quantum mechanics on the personal computer
'Quantum Mechanics on the PC' presents the most up-to-date access to elementary quantum mechanics. Based on the interactive program Interquanta (included on a 5 1/4'' Floppy Disk, MS-DOS) and its extensive 3D colour graphic features, the book guides its readers through computer experiments on - free particles and wave packets - bound states in various potentials - coherent and squeezed states in time-dependent motion - scattering and resonances - analogies in optics - quantized angular momentum - distinguishable and indistinguishable particles - special functions of mathematical physics. The course with a wide variety of more than 250 detailed, class-tested problems provides students with a unique practical experience of complex probability amplitudes, eigenvalues, scattering cross sections and the like. Lecturers and teachers will find excellent, hands-on classroom demonstrations for their quantum mechanics course. (orig.)
Quantum Computers and Classical Randomized Algorithms addendum
Carlini, A
1999-01-01
We discuss an exact generalization of Grover's quantum algorithm for an unstructured search problem and of the Count algorithm by Brassard et al. in the case when the initial state is unknown and arbitrarily entangled. This is the most general situation one might expect to have when working with subroutines involving quantum search or counting in a larger quantum computation. We derive, in particular, an exact iteration formula for the action of the original Grover's operator and find, similarly to the case of an initial state with unknown amplitudes, that the final state is a periodic function of the number of 'good' items and can be expressed in terms of first and second order moments of the initial amplitude distribution of states alone. Grover's search algorithm with arbitrary phases as discussed by Chi and Kim is also generalized with an exact formula.
EDITORIAL: Optical implementation of quantum computers
Rarity, John; Weinfurter, Harald
2005-07-01
Optical quantum computation was limited to a few photon applications such as quantum cryptography and partial teleportation until 2001. Then the possibility of performing arbitrary logic conditional on certain detection outcomes was introduced by Knill, Laflamme and Milburn (Nature 2001 409 46). Simple circuits consisting of single photon sources, entangled pair sources, linear optical elements and high efficiency photon counting detectors can be used to develop probabilistic two-photon logic gates. Initially such gates show a low probability of success but can approach the success rate of deterministic (non-linear) logic at the cost of added complexity. These developments have led to the emergence of a novel field of research aimed at improving the efficiency of linear logic and developing the efficient sources and detectors for its implementation. This topical issue of Journal of Optics B: Quantum and Semiclassical Optics is devoted to recent advances in this field. Key to all linear optics gates is the interference effect between separate photons that have no previous history. In this issue we include the first experiment to show such an effect (Rarity et al), on which many later experiments are based. These interference effects can then be used to entangle separate pairs of particles into higher order entangled states (Zou et al 2005 J. Opt. B: Quantum Semiclass. Opt. 7 119-121) and also to establish entanglement between matter qubits (Kok et al). Quantum dot single photon sources suitable for linear optics quantum logic are discussed in the paper by Unitt et al while a waveguide source of pair photons is presented by Ducci et al. The difficulties in scaling linear optics quantum computing arise from the low success probabilities of the gates. Introducing a small amount of non-linearity could allow unit efficiency gates to be designed (Munro et al) while large non-linearities generated by the collective effects in EIT could be used to implement a wide variety of quantum logic functions (Petrosyan). The development of algorithms suitable for optical implementation is addressed by Ellinas et al. Key contributors to this issue are collaborating in the project IST:38864 RAMBOQ which has a primary goal of developing linear optics computation tools and techniques.
Efficiency of open quantum walk implementation of dissipative quantum computing algorithms
Sinayskiy, I.; Petruccione, F
2014-01-01
An open quantum walk formalism for dissipative quantum computing is presented. The approach is illustrated with the examples of the Toffoli gate and the Quantum Fourier Transform for 3 and 4 qubits. It is shown that the algorithms based on the open quantum walk formalism are more efficient than the canonical dissipative quantum computing approach. In particular, the open quantum walks can be designed to converge faster to the desired steady state and to increase the probability of detection o...
Blind Quantum Computation over a collective-noise photonic quantum channel
Takeuchi, Yuki; FUJII, KEISUKE; Ikuta, Rikizo; Yamamoto, Takashi; Imoto, Nobuyuki
2015-01-01
Blind quantum computation (BQC) allows an unconditionally secure delegated quantum computation for a client (Alice) who only possesses cheap quantum devices. So far, extensive efforts have been paid to make Alice's devices as classical as possible. Along this direction, quantum channels between Alice and the quantum server (Bob) should be considered as a part of Alice's devices, and the noise during a long distance quantum communication should be also taken into account. Here we propose to us...
Measurement and Information Extraction in Complex Dynamics Quantum Computation
Casati, Giulio; Montangero, Simone
Quantum Information processing has several di.erent applications: some of them can be performed controlling only few qubits simultaneously (e.g. quantum teleportation or quantum cryptography) [1]. Usually, the transmission of large amount of information is performed repeating several times the scheme implemented for few qubits. However, to exploit the advantages of quantum computation, the simultaneous control of many qubits is unavoidable [2]. This situation increases the experimental di.culties of quantum computing: maintaining quantum coherence in a large quantum system is a di.cult task. Indeed a quantum computer is a many-body complex system and decoherence, due to the interaction with the external world, will eventually corrupt any quantum computation. Moreover, internal static imperfections can lead to quantum chaos in the quantum register thus destroying computer operability [3]. Indeed, as it has been shown in [4], a critical imperfection strength exists above which the quantum register thermalizes and quantum computation becomes impossible. We showed such e.ects on a quantum computer performing an e.cient algorithm to simulate complex quantum dynamics [5,6].
Quantum computation: algorithms and implementation in quantum dot devices
Gamble, John King
In this thesis, we explore several aspects of both the software and hardware of quantum computation. First, we examine the computational power of multi-particle quantum random walks in terms of distinguishing mathematical graphs. We study both interacting and non-interacting multi-particle walks on strongly regular graphs, proving some limitations on distinguishing powers and presenting extensive numerical evidence indicative of interactions providing more distinguishing power. We then study the recently proposed adiabatic quantum algorithm for Google PageRank, and show that it exhibits power-law scaling for realistic WWW-like graphs. Turning to hardware, we next analyze the thermal physics of two nearby 2D electron gas (2DEG), and show that an analogue of the Coulomb drag effect exists for heat transfer. In some distance and temperature, this heat transfer is more significant than phonon dissipation channels. After that, we study the dephasing of two-electron states in a single silicon quantum dot. Specifically, we consider dephasing due to the electron-phonon coupling and charge noise, separately treating orbital and valley excitations. In an ideal system, dephasing due to charge noise is strongly suppressed due to a vanishing dipole moment. However, introduction of disorder or anharmonicity leads to large effective dipole moments, and hence possibly strong dephasing. Building on this work, we next consider more realistic systems, including structural disorder systems. We present experiment and theory, which demonstrate energy levels that vary with quantum dot translation, implying a structurally disordered system. Finally, we turn to the issues of valley mixing and valley-orbit hybridization, which occurs due to atomic-scale disorder at quantum well interfaces. We develop a new theoretical approach to study these effects, which we name the disorder-expansion technique. We demonstrate that this method successfully reproduces atomistic tight-binding techniques, while using a fraction of the computational resources and providing considerably more physical insight. Using this technique, we demonstrate that large dipole moments can exist between valley states in disordered systems, and calculate corrections to intervalley tunnel rates..
Quantum computation architecture using optical tweezers
Weitenberg, Christof; Kuhr, Stefan; Mlmer, Klaus; Sherson, Jacob F.
2011-09-01
We present a complete architecture for scalable quantum computation with ultracold atoms in optical lattices using optical tweezers focused to the size of a lattice spacing. We discuss three different two-qubit gates based on local collisional interactions. The gates between arbitrary qubits require the transport of atoms to neighboring sites. We numerically optimize the nonadiabatic transport of the atoms through the lattice and the intensity ramps of the optical tweezer in order to maximize the gate fidelities. We find overall gate times of a few 100?s, while keeping the error probability due to vibrational excitations and spontaneous scattering below 10-3. The requirements on the positioning error and intensity noise of the optical tweezer and the magnetic field stability are analyzed and we show that atoms in optical lattices could meet the requirements for fault-tolerant scalable quantum computing.
Quantum computation architecture using optical tweezers
Weitenberg, Christof [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching (Germany); Kuhr, Stefan [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching (Germany); University of Strathclyde, Department of Physics, SUPA, Glasgow G4 0NG (United Kingdom); Moelmer, Klaus; Sherson, Jacob F. [Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark)
2011-09-15
We present a complete architecture for scalable quantum computation with ultracold atoms in optical lattices using optical tweezers focused to the size of a lattice spacing. We discuss three different two-qubit gates based on local collisional interactions. The gates between arbitrary qubits require the transport of atoms to neighboring sites. We numerically optimize the nonadiabatic transport of the atoms through the lattice and the intensity ramps of the optical tweezer in order to maximize the gate fidelities. We find overall gate times of a few 100 {mu}s, while keeping the error probability due to vibrational excitations and spontaneous scattering below 10{sup -3}. The requirements on the positioning error and intensity noise of the optical tweezer and the magnetic field stability are analyzed and we show that atoms in optical lattices could meet the requirements for fault-tolerant scalable quantum computing.
A quantum computation architecture using optical tweezers
Weitenberg, Christof; Mlmer, Klaus; Sherson, Jacob F
2011-01-01
We present a complete architecture for scalable quantum computation with ultracold atoms in optical lattices using optical tweezers focused to the size of a lattice spacing. We discuss three different two-qubit gates based on local collisional interactions. The gates between arbitrary qubits require the transport of atoms to neighboring sites. We numerically optimize the non-adiabatic transport of the atoms through the lattice and the intensity ramps of the optical tweezer in order to maximize the gate fidelities. We find overall gate times of a few 100 us, while keeping the error probability due to vibrational excitations and spontaneous scattering below 10^3. The requirements on the positioning error and intensity noise of the optical tweezer and the magnetic field stability are analyzed and we show that atoms in optical lattices could meet the requirements for fault-tolerant scalable quantum computing.
Quantum computation architecture using optical tweezers
We present a complete architecture for scalable quantum computation with ultracold atoms in optical lattices using optical tweezers focused to the size of a lattice spacing. We discuss three different two-qubit gates based on local collisional interactions. The gates between arbitrary qubits require the transport of atoms to neighboring sites. We numerically optimize the nonadiabatic transport of the atoms through the lattice and the intensity ramps of the optical tweezer in order to maximize the gate fidelities. We find overall gate times of a few 100 μs, while keeping the error probability due to vibrational excitations and spontaneous scattering below 10-3. The requirements on the positioning error and intensity noise of the optical tweezer and the magnetic field stability are analyzed and we show that atoms in optical lattices could meet the requirements for fault-tolerant scalable quantum computing.
Belaga, Edward G.; Grucker, Daniel
2003-01-01
We briefly summarize here the history, conceptual base, as well as challenges and implications of quantum computing. Then, we present the theoretical requirements for viable quantum computation, as well as thestate-of-the-art experimental approach and a project of solid 129Xe NMR-based quantum computer.
Photonic entanglement as a resource in quantum computation and quantum communication
Prevedel, Robert; Aspelmeyer, Markus; Brukner, Caslav; Jennewein, Thomas; Zeilinger, Anton
2008-01-01
Entanglement is an essential resource in current experimental implementations for quantum information processing. We review a class of experiments exploiting photonic entanglement, ranging from one-way quantum computing over quantum communication complexity to long-distance quantum communication. We then propose a set of feasible experiments that will underline the advantages of photonic entanglement for quantum information processing.
Photonic Quantum Computation with Waveguide-Linked Optical Cavities and Quantum Dots
Yamaguchi, Makoto; Asano, Takashi; Sato, Yoshiya; Noda, Susumu
2011-01-01
We propose a new scheme for solid-state photonic quantum computation in which trapped photons in optical cavities are taken as a quantum bit. Quantum gates can be realized by coupling the cavities with quantum dots through waveguides. The proposed scheme allows programmable and deterministic gate operations and the system can be scaled up to many quantum bits.
Solving Random Satisfiability Problems with Quantum Computers
Hogg, Tad
2001-01-01
Quantum computer algorithms can exploit the structure of random satisfiability problems. This paper extends a previous empirical evaluation of such an algorithm and gives an approximate asymptotic analysis accounting for both the average and variation of amplitudes among search states with the same costs. The analysis predicts good performance, on average, for a variety of problems including those near a phase transition associated with a high concentration of hard cases. Based on empirical e...
Vibrational Decoherence in Ion Trap Quantum Computers
Garg, Anupam
1997-01-01
Decoherence is studied in an attractive proposal for an actual implementation of a quantum computer based on trapped ions. Emphasis is placed on the decoherence arising from the vibrational motion of the ions, which is compared with that due to spontaneous emission from excited states of the ions. The calculation is made tractable by exploiting the vast difference in time scales between the vibrational excitations and the intra-ionic electronic excitations. Since the latter are several orders...
Single Molecule Magnetic Resonance and Quantum Computation
Wei, Haiqing; Xue, Xin
1998-01-01
It is proposed that nuclear (or electron) spins in a trapped molecule would be well isolated from the environment and the state of each spin can be measured by means of mechanical detection of magnetic resonance. Therefore molecular traps make an entirely new approach possible for spin-resonance quantum computation which can be conveniently scaled up. In the context of magnetic resonance spectroscopy, a molecular trap promises the ultimate sensitivity for single spin detection and an unpreced...
Repeat-Until-Success Quantum Computing
Lim, Yuan Liang; Beige, Almut; Kwek, Leong Chuan
2004-01-01
We demonstrate the possibility to perform distributed quantum computing using only single photon sources (atom-cavity-like systems), linear optics and photon detectors. The qubits are encoded in stable ground states of the sources. To implement a universal two-qubit gate, two photons should be generated simultaneously and pass through a linear optics network, where a measurement is performed on them. Gate operations can be repeated until a success is heralded without destroying the qubits at ...
Nuclear spin quantum computing with trapped ions
Wang, Kunling; Feng, Mang; Mintert, Florian; Wunderlich, Christof
2011-01-01
Quantum computing with qubits encoded in nuclear spins of trapped ions is studied with particular attention to the Yb$^+$ ion. For this purpose we consider the Paschen-Back regime (strong magnetic field) and employ a high-field approximation in this treatment. An efficient scheme is proposed to carry out gate operations on an array of trapped ions, and the feasibility of generating the required high magnetic field is discussed.
Quantum computing with quantum dots using the Heisenberg exchange interaction
Dewaele, Nick J.
One of the most promising systems for creating a working quantum computer is the triple quantum dots in a linear semiconductor. One of the biggest advantages is that we are able to perform Heisenberg exchange gates on the physical qubits. These exchanges are both fast and relatively low energy. Which means that they would be excellent for producing fast and accurate operations. In order to prevent leakage errors we use a 3 qubit DFS to encode a logical qubit. Here we determine the theoretical time dependent affects of applying the Heisenberg exchange gates in the DFS basis as well as the effect of applying multiple exchange gates at the same time. we also find that applying two heisenberg exchange gates at the same time is an effective way of implementing a leakage elimination operator.
Quantum picturalism for topological cluster-state computing
Horsman, Clare
2011-01-01
Topological quantum computing is a way of allowing precise quantum computations to run on noisy and imperfect hardware. One implementation uses surface codes created by forming defects in a highly-entangled cluster state. Such a method of computing is a leading candidate for large-scale quantum computing. However, there has been a lack of sufficiently powerful high-level languages to describe computing in this form without resorting to single-qubit operations, which quickly become prohibitive...
Non-unitary probabilistic quantum computing circuit and method
Williams, Colin P. (Inventor); Gingrich, Robert M. (Inventor)
2009-01-01
A quantum circuit performing quantum computation in a quantum computer. A chosen transformation of an initial n-qubit state is probabilistically obtained. The circuit comprises a unitary quantum operator obtained from a non-unitary quantum operator, operating on an n-qubit state and an ancilla state. When operation on the ancilla state provides a success condition, computation is stopped. When operation on the ancilla state provides a failure condition, computation is performed again on the ancilla state and the n-qubit state obtained in the previous computation, until a success condition is obtained.
The power of noisy fermionic quantum computation
We consider the realization of universal quantum computation through braiding of Majorana fermions supplemented by unprotected preparation of noisy ancillae. It has been shown by Bravyi (2006 Phys. Rev. A 73 042313) that under the assumption of perfect braiding operations, universal quantum computation is possible if the noise rate on a particular four-fermion ancilla is below 40%. We show that beyond a noise rate of 89% on this ancilla the quantum computation can be efficiently simulated classically: we explicitly show that the noisy ancilla is a convex mixture of Gaussian fermionic states in this region, while for noise rates below 53% we prove that the state is not a mixture of Gaussian states. These results are obtained by generalizing concepts in entanglement theory to the setting of Gaussian states and their convex mixtures. In particular, we develop a complete set of criteria, namely the existence of a Gaussian-symmetric extension, which determine whether a state is a convex mixture of Gaussian states. (paper)
Scalable quantum computer architecture with coupled donor-quantum dot qubits
Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey
2014-08-26
A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.
Universal quantum gates for Single Cooper Pair Box based quantum computing
Echternach, P.; Williams, C. P.; Dultz, S. C.; Braunstein, S.; Dowling, J. P.
2000-01-01
We describe a method for achieving arbitrary 1-qubit gates and controlled-NOT gates within the context of the Single Cooper Pair Box (SCB) approach to quantum computing. Such gates are sufficient to support universal quantum computation.
Cluster state quantum computing in optical fibers
Soudagar, Y; Berlin, G; Lacroix, S; Fernndez, J M; Godbout, N; Soudagar, Yasaman; Bussieres, Felix; Berlin, Guido; Lacroix, Suzanne; Fernandez, Jose M.; Godbout, Nicolas
2006-01-01
A scheme for the implementation of the cluster state model of quantum computing in optical fibers, which enables the feedforward feature, is proposed. This scheme uses the time-bin encoding of qubits. Following previously suggested methods of applying arbitrary one-qubit gates in optical fibers, two different ways for the realization of fusion gate types I and II for cluster production are proposed: a fully time-bin based encoding scheme and a combination of time-bin and polarization based encoding scheme. Also the methods of measurement in any desired bases for the purpose of the processing of cluster state computing for both these encodings are explained.
Universal quantum computation with metaplectic anyons
We show that braidings of the metaplectic anyons Xϵ in SO(3)2 = SU(2)4 with their total charge equal to the metaplectic mode Y supplemented with projective measurements of the total charge of two metaplectic anyons are universal for quantum computation. We conjecture that similar universal anyonic computing models can be constructed for all metaplectic anyon systems SO(p)2 for any odd prime p ≥ 5. In order to prove universality, we find new conceptually appealing universal gate sets for qutrits and qupits
Artificial Decoherence and its Suppression in NMR Quantum Computer
Kondo, Yasushi; Nakahara, Mikio; Tanimura, Shogo
2006-01-01
Liquid-state NMR quantum computer has demonstrated the possibility of quantum computation and supported its development. Using NMR quantum computer techniques, we observed phase decoherence under two kinds of artificial noise fields; one a noise with a long period, and the other with shorter random period. The first one models decoherence in a quantum channel while the second one models transverse relaxation. We demonstrated that the bang-bang control suppresses decoherence in both cases.
PREFACE: Quantum Information, Communication, Computation and Cryptography
Benatti, F.; Fannes, M.; Floreanini, R.; Petritis, D.
2007-07-01
The application of quantum mechanics to information related fields such as communication, computation and cryptography is a fast growing line of research that has been witnessing an outburst of theoretical and experimental results, with possible practical applications. On the one hand, quantum cryptography with its impact on secrecy of transmission is having its first important actual implementations; on the other hand, the recent advances in quantum optics, ion trapping, BEC manipulation, spin and quantum dot technologies allow us to put to direct test a great deal of theoretical ideas and results. These achievements have stimulated a reborn interest in various aspects of quantum mechanics, creating a unique interplay between physics, both theoretical and experimental, mathematics, information theory and computer science. In view of all these developments, it appeared timely to organize a meeting where graduate students and young researchers could be exposed to the fundamentals of the theory, while senior experts could exchange their latest results. The activity was structured as a school followed by a workshop, and took place at The Abdus Salam International Center for Theoretical Physics (ICTP) and The International School for Advanced Studies (SISSA) in Trieste, Italy, from 12-23 June 2006. The meeting was part of the activity of the Joint European Master Curriculum Development Programme in Quantum Information, Communication, Cryptography and Computation, involving the Universities of Cergy-Pontoise (France), Chania (Greece), Leuven (Belgium), Rennes1 (France) and Trieste (Italy). This special issue of Journal of Physics A: Mathematical and Theoretical collects 22 contributions from well known experts who took part in the workshop. They summarize the present day status of the research in the manifold aspects of quantum information. The issue is opened by two review articles, the first by G Adesso and F Illuminati discussing entanglement in continuous variable systems, the second by T Prosen, discussing chaos and complexity in quantum systems. Both topics have theoretical as well as experimental relevance and are likely to witness a fast growing development in the near future. The remaining contributions present more specific and very recent results. They involve the study of the structure of quantum states and their estimation (B Baumgartner et al, C King et al, S Olivares et al, D Petz et al and W van Dam et al), of entanglement generation and its quantification (G Brida et al, F Ciccarello et al, G Costantini et al, O Romero-Isart et al, D Rossini et al, A Serafini et al and D Vitali et al), of randomness related effects on entanglement behaviour (I Akhalwaya et al, O Dahlsten et al and L Viola et al), and of abstract and applied aspects of quantum computation and communication (K Audenart, G M D'Ariano et al, N Datta et al, L C Kwek et al and M Nathanson et al). We would like to express our gratitude to the European Commission, the Abdus Salam ICTP, SISSA and Eurotech SpA (Amaro, Udine, Italy) for financial and/or logistic support. Special thanks also go to the workshop secretary Marina De Comelli, and the secretaries of the Department of Theoretical Physics, University of Trieste, Sabrina Gaspardis and Rosita Glavina for their precious help and assistance.
Hard chaos, quantum billiards, and quantum dot computers
Mainieri, R.; Cvitanovic, P.; Hasslacher, B.
1996-07-01
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Research was performed in analytic and computational techniques for dealing with hard chaos, especially the powerful tool of cycle expansions. This work has direct application to the understanding of electrons in nanodevices, such as junctions of quantum wires, or in arrays of dots or antidots. We developed a series of techniques for computing the properties of quantum systems with hard chaos, in particular the flow of electrons through nanodevices. These techniques are providing the insight and tools to design computers with nanoscale components. Recent efforts concentrated on understanding the effects of noise and orbit pruning in chaotic dynamical systems. We showed that most complicated chaotic systems (not just those equivalent to a finite shift) will develop branch points in their cycle expansion. Once the singularity is known to exist, it can be removed with a dramatic increase in the speed of convergence of quantities of physical interest.
Gate count estimates for performing quantum chemistry on small quantum computers
Wecker, Dave; Bauer, Bela; Clark, Bryan K.; Hastings, Matthew B.; Troyer, Matthias
2013-01-01
As quantum computing technology improves and quantum computers with a small but non-trivial number of N > 100 qubits appear feasible in the near future the question of possible applications of small quantum computers gains importance. One frequently mentioned application is Feynman's original proposal of simulating quantum systems, and in particular the electronic structure of molecules and materials. In this paper, we analyze the computational requirements for one of the standard algorithms ...
How detrimental is decoherence in adiabatic quantum computation?
Albash, Tameem
2015-01-01
Recent experiments with increasingly larger numbers of qubits have sparked renewed interest in adiabatic quantum computation, and in particular quantum annealing. A central question that is repeatedly asked is whether quantum features of the evolution can survive over the long time-scales used for quantum annealing relative to standard measures of the decoherence time. We reconsider the role of decoherence in adiabatic quantum computation and quantum annealing using the adiabatic quantum master equation formalism. We restrict ourselves to the weak-coupling and singular-coupling limits, which correspond to decoherence in the energy eigenbasis and in the computational basis, respectively. We demonstrate that decoherence in the instantaneous energy eigenbasis does not necessarily detrimentally affect adiabatic quantum computation, and in particular that a short single-qubit $T_2$ time need not imply adverse consequences for the success of the quantum adiabatic algorithm. We further demonstrate that boundary canc...
Vector and parallel computers for quantum Monte Carlo computations
Reynolds, P.J.; Alexander, S.; Logan, D.; Lester, W.A. Jr.
1985-08-01
Monte Carlo simulations are inherently compute-bound. Although short computations may provide order-of-magnitude estimates, long CPU times are generally required to achieve the accuracy needed for reliable comparison of Monte Carlo results with experiment or theory. The advent of supercomputers, which have made possible significantly increased computer speeds for those applications which are amenable to vector or parallel processing, thus offers promise for Monte Carlo applications. In fact, Monte Carlo codes are often highly parallel, and offer multiple avenues for both parallelisation and vectorization. We explore the gains to be obtained with supercomputers for the quantum Monte Carlo (QMC) method. The QMC algorithm treated here is used in quantum mechanical molecular calculations, to obtain solutions to the Schroedinger equation. This approach has recently been shown to achieve high accuracy in electronic structure computations. QMC is here demonstrated to fully take advantage of parallel and vector processor systems. Levels of parallelism are discussed, and an overview of parallel computer architectures, as well as present vector supercomputers is given. We also discuss how one adapts QMC to these machines. Performance ratios (versus scalar operation) for a number of supercomputer systems are given. 37 refs., 2 tabs.
Symmetrically private information retrieval based on blind quantum computing
Sun, Zhiwei; Yu, Jianping; Wang, Ping; Xu, Lingling
2015-05-01
Universal blind quantum computation (UBQC) is a new secure quantum computing protocol which allows a user Alice who does not have any sophisticated quantum technology to delegate her computing to a server Bob without leaking any privacy. Using the features of UBQC, we propose a protocol to achieve symmetrically private information retrieval, which allows a quantum limited Alice to query an item from Bob with a fully fledged quantum computer; meanwhile, the privacy of both parties is preserved. The security of our protocol is based on the assumption that malicious Alice has no quantum computer, which avoids the impossibility proof of Lo. For the honest Alice, she is almost classical and only requires minimal quantum resources to carry out the proposed protocol. Therefore, she does not need any expensive laboratory which can maintain the coherence of complicated quantum experimental setups.
Topos logic in measurement-based quantum computation
Loveridge, Leon; Dridi, Raouf; Raussendorf, Robert
2014-01-01
We report first steps towards elucidating the relationship between contextuality, measurement-based quantum computation (MBQC) and the non-classical logic of a topos associated with the computation. We show that, in a class of MBQC, classical universality requires non-classical logic, which is 'consumed' during the course of the computation, thereby pinpointing another potential quantum computational resource.
Applicability of Rydberg atoms to quantum computers
Ryabtsev, Igor I; Tretyakov, Denis B; Beterov, Ilya I [Institute of Semiconductor Physics, Prospekt Lavrentyeva 13, 630090 Novosibirsk (Russian Federation)
2005-01-28
The applicability of Rydberg atoms to quantum computers is examined from an experimental point of view. In many recent theoretical proposals, the excitation of atoms into highly excited Rydberg states was considered as a way to achieve quantum entanglement in cold atomic ensembles via dipole-dipole interactions that could be strong for Rydberg atoms. Appropriate conditions to realize a conditional quantum phase gate have been analysed. We also present the results of modelling experiments on microwave spectroscopy of single- and multi-atom excitations at the one-photon 37S{sub 1/2} {yields} 37P{sub 1/2} and two-photon 37S{sub 1/2} {yields} 38S{sub 1/2} transitions in an ensemble of a few sodium Rydberg atoms. The microwave spectra were investigated for various final states of the ensemble initially prepared in its ground state. The results may be applied to the studies on collective laser excitation of ground-state atoms aiming to realize quantum gates.
Interactive Quantum Mechanics Quantum Experiments on the Computer
Brandt, S; Dahmen, H.D
2011-01-01
Extra Materials available on extras.springer.com INTERACTIVE QUANTUM MECHANICS allows students to perform their own quantum-physics experiments on their computer, in vivid 3D color graphics. Topics covered include: • harmonic waves and wave packets, • free particles as well as bound states and scattering in various potentials in one and three dimensions (both stationary and time dependent), • two-particle systems, coupled harmonic oscillators, • distinguishable and indistinguishable particles, • coherent and squeezed states in time-dependent motion, • quantized angular momentum, • spin and magnetic resonance, • hybridization. For the present edition the physics scope has been widened appreciably. Moreover, INTERQUANTA can now produce user-defined movies of quantum-mechanical situations. Movies can be viewed directly and also be saved to be shown later in any browser. Sections on spec...
Macroscopic models for quantum systems and computers
Aerts, Diederik [Center Leo Apostel, Vrije Universiteit Brussel, Krijgskundestraat 33, 1160 Brussels (Belgium); Czachor, Marek [Katedra Fizyki Teoretycznej i Metod Matematycznych, Politechnika Gdanska, 80-952 Gdansk (Poland); Dehaene, Jeroen [SISTA, Department of Electrical Engineering (ESAT), Faculty of Engineering, Katholieke Universiteit Leuven, 3000 Leuven (Belgium); Moor, Bart De [SISTA, Department of Electrical Engineering (ESAT), Faculty of Engineering, Katholieke Universiteit Leuven, 3000 Leuven (Belgium); D' Hooghe, Bart [Center Leo Apostel, Vrije Universiteit Brussel, Krijgskundestraat 33, 1160 Brussels (Belgium)
2007-05-15
We present examples of macroscopic systems entailing a quantum mechanical structure. One of our examples has a structure which is isomorphic to the spin structure for a spin 1/2 and another system entails a structure isomorphic to the structure of two spin 1/2 in the entangled singlet state. We elaborate this system by showing that an arbitrary tensor product state representing two entangled qubits can be described in a complete way by a specific internal constraint between the ray or density states of the two qubits, which describes the behavior of the state of one of the spins if measurements are executed on the other spin. Since any n-qubit unitary operation can be decomposed into 2-qubit gates and unary operations, we argue that our representation of 2-qubit entanglement contributes to a better understanding of the role of n-qubit entanglement in quantum computation. We illustrate our approach on two 2-qubit algorithms proposed by Deutsch, respectively Arvind et al. One of the advantages of the 2-qubit case besides its relative simplicity is that it allows for a nice geometrical representation of entanglement, which contributes to a more intuitive grasp of what is going on in a 2-qubit quantum computation.
Quantum computation over the butterfly network
In order to investigate distributed quantum computation under restricted network resources, we introduce a quantum computation task over the butterfly network where both quantum and classical communications are limited. We consider deterministically performing a two-qubit global unitary operation on two unknown inputs given at different nodes, with outputs at two distinct nodes. By using a particular resource setting introduced by M. Hayashi [Phys. Rev. A 76, 040301(R) (2007)], which is capable of performing a swap operation by adding two maximally entangled qubits (ebits) between the two input nodes, we show that unitary operations can be performed without adding any entanglement resource, if and only if the unitary operations are locally unitary equivalent to controlled unitary operations. Our protocol is optimal in the sense that the unitary operations cannot be implemented if we relax the specifications of any of the channels. We also construct protocols for performing controlled traceless unitary operations with a 1-ebit resource and for performing global Clifford operations with a 2-ebit resource.
An Introduction to Quantum Computing using Cavity QED concepts
Burell, Zachary
2012-01-01
We present a concise but complete conceptual treatment of quantum computing implemented with Cavity Quantum Electrodynamics (CQED. The paper is intended as a brief overview for professionals who are coming over to the field from other areas and who may have not discussed the concepts behind quantum computing during their technical training.
A 2 rebit gate universal for quantum computing
Rudolph, Terry; Grover, Lov
2002-01-01
We show, within the circuit model, how any quantum computation can be efficiently performed using states with only real amplitudes (a result known within the Quantum Turing Machine model). This allows us to identify a 2-qubit (in fact 2-rebit) gate which is universal for quantum computing, although it cannot be used to perform arbitrary unitary transformations.
Solving Satisfiability Problems by the Ground-State Quantum Computer
Mao, Wenjin
2005-01-01
A quantum algorithm is proposed to solve the Satisfiability problems by the ground-state quantum computer. The scale of the energy gap of the ground-state quantum computer is analyzed for the 3-bit Exact Cover problem. The time cost of this algorithm on the general SAT problems is discussed.
Verification for measurement-only blind quantum computing
Morimae, Tomoyuki
2012-01-01
Blind quantum computing is a new secure quantum computing protocol where a client who does not have any sophisticated quantum technlogy can delegate her quantum computing to a server without leaking any privacy. It is known that a client who has only a measurement device can perform blind quantum computing [T. Morimae and K. Fujii, Phys. Rev. A {\\bf87}, 050301(R) (2013)]. It has been an open problem whether the protocol can enjoy the verification, i.e., the ability of client to check the corr...
Quantum computation and Shor close-quote s factoring algorithm
Current technology is beginning to allow us to manipulate rather than just observe individual quantum phenomena. This opens up the possibility of exploiting quantum effects to perform computations beyond the scope of any classical computer. Recently Peter Shor discovered an efficient algorithm for factoring whole numbers, which uses characteristically quantum effects. The algorithm illustrates the potential power of quantum computation, as there is no known efficient classical method for solving this problem. The authors give an exposition of Shor close-quote s algorithm together with an introduction to quantum computation and complexity theory. They discuss experiments that may contribute to its practical implementation. copyright 1996 The American Physical Society
Multiple-server Flexible Blind Quantum Computation in Networks
Kong, Xiaoqin; Li, Qin; Wu, Chunhui; Yu, Fang; He, Jinjun; Sun, Zhiyuan
2016-02-01
Blind quantum computation (BQC) can allow a client with limited quantum power to delegate his quantum computation to a powerful server and still keep his own data private. In this paper, we present a multiple-server flexible BQC protocol, where a client who only needs the ability of accessing qua ntum channels can delegate the computational task to a number of servers. Especially, the client's quantum computation also can be achieved even when one or more delegated quantum servers break down in networks. In other words, when connections to certain quantum servers are lost, clients can adjust flexibly and delegate their quantum computation to other servers. Obviously it is trivial that the computation will be unsuccessful if all servers are interrupted.
Howard, Mark; Vala, Jiri
2012-02-01
An obstacle affecting any proposal for a topological quantum computer based on Ising anyons is that quasiparticle braiding can only implement a finite (nonuniversal) set of quantum operations. The computational power of this restricted set of operations (often called stabilizer operations) has been studied in quantum information theory, and it is known that no quantum-computational advantage can be obtained without the help of an additional nonstabilizer operation. Similarly, a bipartite two-qubit system based on Ising anyons can not exhibit nonlocality (in the sense of violating a Bell inequality) when only topologically protected stabilizer operations are performed. To produce correlations that can not be described by a local hidden variable model again requires the use of a nonstabilizer operation. Using geometric techniques, we relate the sets of operations that enable universal quantum computing (UQC) with those that enable violation of a Bell inequality. Motivated by the fact that nonstabilizer operations are expected to be highly imperfect, our aim is to provide a benchmark for identifying UQC-enabling operations that is both experimentally practical and conceptually simple. We show that any (noisy) single-qubit nonstabilizer operation that, together with perfect stabilizer operations, enables violation of the simplest two-qubit Bell inequality, can also be used to enable UQC. This benchmarking requires finding the expectation values of two distinct Pauli measurements on each qubit of a bipartite system.
Simulation of Electronic Structure Hamiltonians Using Quantum Computers
Whitfield, James D; Biamonte, Jacob; Aspuru-Guzik, Aln
2010-01-01
Over the last century, a large number of physical and mathematical developments paired with rapidly advancing technology have allowed the field of quantum chemistry to advance dramatically. However, the lack of computationally efficient methods for the exact simulation of quantum systems on classical computers presents a limitation of current computational approaches. We report, in detail, how a set of pre-computed molecular integrals can be used to explicitly create a quantum circuit, i.e. a...
Fault-tolerant Operations for Universal Blind Quantum Computation
Chien, Chia-Hung; Van Meter, Rodney; Kuo, Sy-Yen
2013-01-01
Blind quantum computation is an appealing use of quantum information technology because it can conceal both the client's data and the algorithm itself from the server. However, problems need to be solved in the practical use of blind quantum computation and fault-tolerance is a major challenge. On an example circuit, the computational cost measured in T gates executed by the client is 97 times more than performing the original computation directly, without using the server, even before applyi...
Computing the Exit Complexity of Knowledge in Distributed Quantum Computers
M.A.Abbas
2013-01-01
Full Text Available Distributed Quantum computers abide from the exit complexity of the knowledge. The exit complexity is the accrue of the nodal information needed to clarify the total egress system with deference to a distinguished exit node. The core objective of this paper is to compile an arrogant methodology for assessing the exit complexity of the knowledge in distributed quantum computers. The proposed methodology is based on contouring the knowledge using the unlabeled binary trees, hence building an benchmarked and a computer based model. The proposed methodology dramatizes knowledge autocratically calculates the exit complexity. The methodology consists of several amphitheaters, starting with detecting the baron aspect of the tree of others entitled express knowledge and then measure the volume of information and the complexity of behavior destining from the bargain of information. Then calculate egress resulting from episodes that do not lead to the withdrawal of the information. In the end is calculated total egress complexity and then appraised total exit complexity of the system. Given the complexity of the operations within the Distributed Computing Quantity, this research addresses effective transactions that could affect the three-dimensional behavior of knowledge. The results materialized that the best affair where total exit complexity as minimal as possible is a picture of a binary tree is entitled at the rate of positive and negative cardinal points medium value. It could be argued that these cardinal points should not amass the upper bound apex or minimum.
QCWAVE - A Mathematica quantum computer simulation update
Tabakin, Frank; Juliá-Díaz, Bruno
2011-08-01
This Mathematica 7.0/8.0 package upgrades and extends the quantum computer simulation code called QDENSITY. Use of the density matrix was emphasized in QDENSITY, although that code was also applicable to a quantum state description. In the present version, the quantum state version is stressed and made amenable to future extensions to parallel computer simulations. The add-on QCWAVE extends QDENSITY in several ways. The first way is to describe the action of one, two and three-qubit quantum gates as a set of small (2×2, 4×4 or 8×8) matrices acting on the 2 amplitudes for a system of nq qubits. This procedure was described in our parallel computer simulation QCMPI and is reviewed here. The advantage is that smaller storage demands are made, without loss of speed, and that the procedure can take advantage of message passing interface (MPI) techniques, which will hopefully be generally available in future Mathematica versions. Another extension of QDENSITY provided here is a multiverse approach, as described in our QCMPI paper. This multiverse approach involves using the present slave-master parallel processing capabilities of Mathematica 7.0/8.0 to simulate errors and error correction. The basic idea is that parallel versions of QCWAVE run simultaneously with random errors introduced on some of the processors, with an ensemble average used to represent the real world situation. Within this approach, error correction steps can be simulated and their efficacy tested. This capability allows one to examine the detrimental effects of errors and the benefits of error correction on particular quantum algorithms. Other upgrades provided in this version include circuit-diagram drawing commands, better Dirac form and amplitude display features. These are included in the add-ons QCWave.m and Circuits.m, and are illustrated in tutorial notebooks. In separate notebooks, QCWAVE is applied to sample algorithms in which the parallel multiverse setup is illustrated and error correction is simulated. These extensions and upgrades will hopefully help in both instruction and in application to QC dynamics and error correction studies.
Semiquantum key distribution with secure delegated quantum computation
Li, Qin; Chan, Wai Hong; Zhang, Shengyu
2016-01-01
Semiquantum key distribution allows a quantum party to share a random key with a classical party who only can prepare and measure qubits in the computational basis or reorder some qubits when he has access to a quantum channel. In this work, we present a protocol where a secret key can be established between a quantum user and an almost classical user who only needs the quantum ability to access quantum channels, by securely delegating quantum computation to a quantum server. We show the proposed protocol is robust even when the delegated quantum server is a powerful adversary, and is experimentally feasible with current technology. As one party of our protocol is the most quantum-resource efficient, it can be more practical and significantly widen the applicability scope of quantum key distribution.
Semiquantum key distribution with secure delegated quantum computation.
Li, Qin; Chan, Wai Hong; Zhang, Shengyu
2016-01-01
Semiquantum key distribution allows a quantum party to share a random key with a "classical" party who only can prepare and measure qubits in the computational basis or reorder some qubits when he has access to a quantum channel. In this work, we present a protocol where a secret key can be established between a quantum user and an almost classical user who only needs the quantum ability to access quantum channels, by securely delegating quantum computation to a quantum server. We show the proposed protocol is robust even when the delegated quantum server is a powerful adversary, and is experimentally feasible with current technology. As one party of our protocol is the most quantum-resource efficient, it can be more practical and significantly widen the applicability scope of quantum key distribution. PMID:26813384
Quantum chemical methods for massively parallel computers
Colvin, M.E.
1986-11-01
For many years it has been recognized that fundamental physical constraints such as the speed of light will limit the ultimate speed of single processor computers to less than about three billion floating point operations per second. A way to avoid this limit is to harness together many processors to work on a single computation problem. The work described in this thesis represents a first step toward the development of a general system of parallel quantum chemistry programs. Parallel algorithms have been developed for several important quantum chemical techniques: integral evaluation, self consistent field calculation, integral transformation and second order Moller Plesset energy calculation. These algorithms have been implemented and tested on a 32 processor Intel Hypercube. The benchmark calculations indicate very good parallel performance for all of these algorithms. The most computationally complex step, the two electron integral transformation, exhibits nearly perfect parallel speedup. That is, when utilizing n processors, the execution speed is increased by a factor of n over the single processor implementation.
An Overview of Quantum Computing for Technology Managers
Rieffel, Eleanor G.
2008-01-01
Faster algorithms, novel cryptographic mechanisms, and alternative methods of communication become possible when the model underlying information and computation changes from a classical mechanical model to a quantum mechanical one. Quantum algorithms perform a select set of tasks vastly more efficiently than any classical algorithm, but for many tasks it has been proved that quantum algorithms provide no advantage. The breadth of quantum computing applications is still being explored. Major ...
Logic Synthesis for Fault-Tolerant Quantum Computers
Jones, N. Cody
2013-01-01
Efficient constructions for quantum logic are essential since quantum computation is experimentally challenging. This thesis develops quantum logic synthesis as a paradigm for reducing the resource overhead in fault-tolerant quantum computing. The model for error correction considered here is the surface code. After developing the theory behind general logic synthesis, the resource costs of magic-state distillation for the $T = \\exp(i \\pi (I-Z)/8)$ gate are quantitatively analyzed. The resour...
Quantum Computation: Particle and Wave Aspects of Algorithms
Patel, Apoorva
2011-01-01
The driving force in the pursuit for quantum computation is the exciting possibility that quantum algorithms can be more efficient than their classical analogues. Research on the subject has unraveled several aspects of how that can happen. Clever quantum algorithms have been discovered in recent years, although not systematically, and the field remains under active investigation. Richard Feynman was one of the pioneers who foresaw the power of quantum computers. In this issue dedicated to hi...
One-Way Quantum Computing in the Optical Frequency Comb
Menicucci, Nicolas C.; Flammia, Steven T.; Pfister, Olivier
2008-01-01
One-way quantum computing allows any quantum algorithm to be implemented easily using just measurements. The difficult part is creating the universal resource, a cluster state, on which the measurements are made. We propose a radically new approach: a scalable method that uses a single, multimode optical parametric oscillator (OPO). The method is very efficient and generates a continuous-variable cluster state, universal for quantum computation, with quantum information encoded in the quadrat...
Quantum computation and communication in strongly interacting systems
Antonio, R. G.
2015-01-01
Each year, the gap between theoretical proposals and experimental endeavours to create quantum computers gets smaller, driven by the promise of fundamentally faster algorithms and quantum simulations. This occurs by the combination of experimental ingenuity and ever simpler theoretical schemes. This thesis comes from the latter perspective, aiming to find new, simpler ways in which components of a quantum computer could be built. We first search for ways to create quantum gates, the primitive...
Reversible logic synthesis methodologies with application to quantum computing
Taha, Saleem Mohammed Ridha
2016-01-01
This book opens the door to a new interesting and ambitious world of reversible and quantum computing research. It presents the state of the art required to travel around that world safely. Top world universities, companies and government institutions are in a race of developing new methodologies, algorithms and circuits on reversible logic, quantum logic, reversible and quantum computing and nano-technologies. In this book, twelve reversible logic synthesis methodologies are presented for the first time in a single literature with some new proposals. Also, the sequential reversible logic circuitries are discussed for the first time in a book. Reversible logic plays an important role in quantum computing. Any progress in the domain of reversible logic can be directly applied to quantum logic. One of the goals of this book is to show the application of reversible logic in quantum computing. A new implementation of wavelet and multiwavelet transforms using quantum computing is performed for this purpose. Rese...
Vertical Josephson interferometers for quantum computation
Ruggiero, B. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Granata, C. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Russo, M. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Corato, V. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Dipartimento di Ingegneria dell' lnformazione, Seconda Universita di Napoli, I-81031 Aversa (Italy); Silvestrini, P. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy) and Dipartimento di Ingegneria dell' lnformazione, Seconda Universita di Napoli, I-81031 Aversa (Italy)]. E-mail: p.silvestrini@cib.na.cnr.it
2005-02-28
We characterize a niobium-based vertical Josephson interferometer which we propose to include in a superconducting loop for applications to quantum computation using flux qubits. The most interesting feature of this device is that the Josephson current is precisely modulated by a small transversal magnetic field parallel to superconducting loop plane from a maximum to zero, with fine control and precision. This device can be used to independently control the off-diagonal Hamiltonian terms of flux qubits and/or to control the flux transfer function of a superconducting transformer for inter-qubits coupling.
Superconducting system for adiabatic quantum computing
Corato, V [Dipartimento di Ingegneria dell' Informazione, Second University of Naples, 81031 Aversa (Italy); Roscilde, T [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484 (Canada); Ruggiero, B [Istituto di Cibernetica ' E.Caianiello' del CNR, I-80078, Pozzuoli (Italy); Granata, C [Istituto di Cibernetica ' E.Caianiello' del CNR, I-80078, Pozzuoli (Italy); Silvestrini, P [Dipartimento di Ingegneria dell' Informazione, Second University of Naples, 81031 Aversa (Italy)
2006-06-01
We study the Hamiltonian of a system of inductively coupled flux qubits, which has been theoretically proposed for adiabatic quantum computation to handle NP problems. We study the evolution of a basic structure consisting of three coupled rf-SQUIDs upon tuning the external flux bias, and we show that the adiabatic nature of the evolution is guaranteed by the presence of the single-SQUID gap. We further propose a scheme and the first realization of an experimental device suitable for verifying the theoretical results.
Decoherence in Ion Trap Quantum Computers
Garg, Anupam
1996-01-01
The {\\it intrinsic} decoherence from vibrational coupling of the ions in the Cirac-Zoller quantum computer [Phys. Rev. Lett. {\\bf 74}, 4091 (1995)] is considered. Starting from a state in which the vibrational modes are at a temperature $T$, and each ion is in a superposition of an excited and a ground state, an adiabatic approximation is used to find the inclusive probability $P(t)$ for the ions to evolve as they would without the vibrations, and for the vibrational modes to evolve into any ...
Scaling of Decoherence Effects in Quantum Computers
Dalton, B. J.
2002-01-01
The scaling of decoherence rates with the number of q-bits is studied for a simple quantum computer model. Two state q-bits are localised around well-separated positions via trapping potentials, but vibrational motion of q-bits centre of mass motion occurs. Coherent one and two q-bit gating processes are controlled by external classical fields and facilitated by a high Q cavity mode. Decoherence due to q-bit and cavity mode coupling to a bath of spontaneous emission modes, cavity decay modes ...