WorldWideScience

Sample records for potential sodium channels

  1. Identification of sodium channel isoforms that mediate action potential firing in lamina I/II spinal cord neurons

    Directory of Open Access Journals (Sweden)

    Smith Paula L

    2011-09-01

    Full Text Available Abstract Background Voltage-gated sodium channels play key roles in acute and chronic pain processing. The molecular, biophysical, and pharmacological properties of sodium channel currents have been extensively studied for peripheral nociceptors while the properties of sodium channel currents in dorsal horn spinal cord neurons remain incompletely understood. Thus far, investigations into the roles of sodium channel function in nociceptive signaling have primarily focused on recombinant channels or peripheral nociceptors. Here, we utilize recordings from lamina I/II neurons withdrawn from the surface of spinal cord slices to systematically determine the functional properties of sodium channels expressed within the superficial dorsal horn. Results Sodium channel currents within lamina I/II neurons exhibited relatively hyperpolarized voltage-dependent properties and fast kinetics of both inactivation and recovery from inactivation, enabling small changes in neuronal membrane potentials to have large effects on intrinsic excitability. By combining biophysical and pharmacological channel properties with quantitative real-time PCR results, we demonstrate that functional sodium channel currents within lamina I/II neurons are predominantly composed of the NaV1.2 and NaV1.3 isoforms. Conclusions Overall, lamina I/II neurons express a unique combination of functional sodium channels that are highly divergent from the sodium channel isoforms found within peripheral nociceptors, creating potentially complementary or distinct ion channel targets for future pain therapeutics.

  2. Sodium Channel (Dys)Function and Cardiac Arrhythmias

    NARCIS (Netherlands)

    Remme, Carol Ann; Bezzina, Connie R.

    2010-01-01

    P>Cardiac voltage-gated sodium channels are transmembrane proteins located in the cell membrane of cardiomyocytes. Influx of sodium ions through these ion channels is responsible for the initial fast upstroke of the cardiac action potential. This inward sodium current thus triggers the initiation

  3. Preliminary Plugging tests in Narrow Sodium Channels by Sodium and Carbon Dioxide reaction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Hee; Wi, Myung-Hwan; Min, Jae Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    This report is on the investigation of the physical/chemical phenomena that a slow loss of CO{sub 2} inventory into sodium after the sodium-CO{sub 2} boundary failure in PCHEs in realistic operating conditions. The first phenomenon is potential channel plugging inside the narrow PCHE channel. Unlike a conventional shell and- tube type HXs, failures in a PCHE are expected to be small cracks. If the faulted channel is blocked, it may have a positive function for plant safety because the pressure boundary would automatically recover due to this self-plugging. The other one is damage propagation on pressure boundary, which is referred to as potential wastage with combined corrosion/erosion effect. Physical/chemical phenomena that a slow loss of CO{sub 2} inventory into sodium after the sodium-CO{sub 2} boundary failure in printed circuit heat exchangers (PCHEs) were investigated. Our preliminary experimental results of plugging show that sodium flow immediately stopped as CO{sub 2} was injected through the nozzle at 300-400 .deg. C in 3 mm sodium channels, whereas sodium flow stopped about 60 min after CO{sub 2} injection in 5 mm sodium channels.

  4. Action potential generation requires a high sodium channel density in the axon initial segment

    NARCIS (Netherlands)

    Kole, Maarten H. P.; Ilschner, Susanne U.; Kampa, Björn M.; Williams, Stephen R.; Ruben, Peter C.; Stuart, Greg J.

    2008-01-01

    The axon initial segment ( AIS) is a specialized region in neurons where action potentials are initiated. It is commonly assumed that this process requires a high density of voltage-gated sodium ( Na(+)) channels. Paradoxically, the results of patch-clamp studies suggest that the Na(+) channel

  5. Potential Roles of Amiloride-Sensitive Sodium Channels in Cancer Development

    Directory of Open Access Journals (Sweden)

    Siguang Xu

    2016-01-01

    Full Text Available The ENaC/degenerin ion channel superfamily includes the amiloride-sensitive epithelial sodium channel (ENaC and acid sensitive ionic channel (ASIC. ENaC is a multimeric ion channel formed by heteromultimeric membrane glycoproteins, which participate in a multitude of biological processes by mediating the transport of sodium (Na+ across epithelial tissues such as the kidney, lungs, bladder, and gut. Aberrant ENaC functions contribute to several human disease states including pseudohypoaldosteronism, Liddle syndrome, cystic fibrosis, and salt-sensitive hypertension. Increasing evidence suggests that ion channels not only regulate ion homeostasis and electric signaling in excitable cells but also play important roles in cancer cell behaviors such as proliferation, apoptosis, invasion, and migration. Indeed, ENaCs/ASICs had been reported to be associated with cancer characteristics. Given their cell surface localization and pharmacology, pharmacological strategies to target ENaC/ASIC family members may be promising cancer therapeutics.

  6. Investigation of Plugging of Narrow Sodium Channels by Sodium and Carbon Dioxide Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Hee; Wi, Myung-Hwan; Min, Jae Hong; Kim, Tae-joon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The supercritical CO{sub 2} Brayton cycle system is known to be a promising power conversion system for improving the efficiency and preventing the sodium water reaction (SWR) of the current SFR concept using a Rankine steam cycle. PCHEs are known to have potential for reducing the volume occupied by the sodium-to-CO{sub 2} exchangers as well as the heat exchanger mass relative to traditional shell-and-tube heat exchangers. Here, we report a study on a plugging test by the interaction of sodium and CO{sub 2} to investigate design parameters of sodium channels in the realistic operating conditions. We investigated a plugging test by an interaction of sodium and CO{sub 2} with different cross sectional areas of the sodium channels. It was found that the flow rate of sodium decreased earlier and faster with a narrower cross sectional area compared to a wider one. Our experimental results are expected to be used for determining the sodium channel areas of PCHEs.

  7. Voltage-gated sodium channels: action players with many faces

    NARCIS (Netherlands)

    Koopmann, Tamara T.; Bezzina, Connie R.; Wilde, Arthur A. M.

    2006-01-01

    Voltage-gated sodium channels are responsible for the upstroke of the action potential and thereby play an important role in propagation of the electrical impulse in excitable tissues like muscle, nerve and the heart. Duplication of the sodium channels encoding genes during evolution generated the

  8. Slack, Slick, and Sodium-Activated Potassium Channels

    Science.gov (United States)

    Kaczmarek, Leonard K.

    2013-01-01

    The Slack and Slick genes encode potassium channels that are very widely expressed in the central nervous system. These channels are activated by elevations in intracellular sodium, such as those that occur during trains of one or more action potentials, or following activation of nonselective cationic neurotransmitter receptors such as AMPA receptors. This review covers the cellular and molecular properties of Slack and Slick channels and compares them with findings on the properties of sodium-activated potassium currents (termed KNa currents) in native neurons. Human mutations in Slack channels produce extremely severe defects in learning and development, suggesting that KNa channels play a central role in neuronal plasticity and intellectual function. PMID:24319675

  9. Intracellular calcium modulation of voltage-gated sodium channels in ventricular myocytes

    NARCIS (Netherlands)

    Casini, Simona; Verkerk, Arie O.; van Borren, Marcel M. G. J.; van Ginneken, Antoni C. G.; Veldkamp, Marieke W.; de Bakker, Jacques M. T.; Tan, Hanno L.

    2009-01-01

    AIMS: Cardiac voltage-gated sodium channels control action potential (AP) upstroke and cell excitability. Intracellular calcium (Ca(i)(2+)) regulates AP properties by modulating various ion channels. Whether Ca(i)(2+) modulates sodium channels in ventricular myocytes, is unresolved. We studied

  10. Voltage-gated sodium channels in taste bud cells

    Directory of Open Access Journals (Sweden)

    Williams Mark E

    2009-03-01

    Full Text Available Abstract Background Taste bud cells transmit information regarding the contents of food from taste receptors embedded in apical microvilli to gustatory nerve fibers innervating basolateral membranes. In particular, taste cells depolarize, activate voltage-gated sodium channels, and fire action potentials in response to tastants. Initial cell depolarization is attributable to sodium influx through TRPM5 in sweet, bitter, and umami cells and an undetermined cation influx through an ion channel in sour cells expressing PKD2L1, a candidate sour taste receptor. The molecular identity of the voltage-gated sodium channels that sense depolarizing signals and subsequently initiate action potentials coding taste information to gustatory nerve fibers is unknown. Results We describe the molecular and histological expression profiles of cation channels involved in electrical signal transmission from apical to basolateral membrane domains. TRPM5 was positioned immediately beneath tight junctions to receive calcium signals originating from sweet, bitter, and umami receptor activation, while PKD2L1 was positioned at the taste pore. Using mouse taste bud and lingual epithelial cells collected by laser capture microdissection, SCN2A, SCN3A, and SCN9A voltage-gated sodium channel transcripts were expressed in taste tissue. SCN2A, SCN3A, and SCN9A were expressed beneath tight junctions in subsets of taste cells. SCN3A and SCN9A were expressed in TRPM5 cells, while SCN2A was expressed in TRPM5 and PKD2L1 cells. HCN4, a gene previously implicated in sour taste, was expressed in PKD2L1 cells and localized to cell processes beneath the taste pore. Conclusion SCN2A, SCN3A and SCN9A voltage-gated sodium channels are positioned to sense initial depolarizing signals stemming from taste receptor activation and initiate taste cell action potentials. SCN2A, SCN3A and SCN9A gene products likely account for the tetrodotoxin-sensitive sodium currents in taste receptor cells.

  11. Voltage-gated sodium channels in taste bud cells.

    Science.gov (United States)

    Gao, Na; Lu, Min; Echeverri, Fernando; Laita, Bianca; Kalabat, Dalia; Williams, Mark E; Hevezi, Peter; Zlotnik, Albert; Moyer, Bryan D

    2009-03-12

    Taste bud cells transmit information regarding the contents of food from taste receptors embedded in apical microvilli to gustatory nerve fibers innervating basolateral membranes. In particular, taste cells depolarize, activate voltage-gated sodium channels, and fire action potentials in response to tastants. Initial cell depolarization is attributable to sodium influx through TRPM5 in sweet, bitter, and umami cells and an undetermined cation influx through an ion channel in sour cells expressing PKD2L1, a candidate sour taste receptor. The molecular identity of the voltage-gated sodium channels that sense depolarizing signals and subsequently initiate action potentials coding taste information to gustatory nerve fibers is unknown. We describe the molecular and histological expression profiles of cation channels involved in electrical signal transmission from apical to basolateral membrane domains. TRPM5 was positioned immediately beneath tight junctions to receive calcium signals originating from sweet, bitter, and umami receptor activation, while PKD2L1 was positioned at the taste pore. Using mouse taste bud and lingual epithelial cells collected by laser capture microdissection, SCN2A, SCN3A, and SCN9A voltage-gated sodium channel transcripts were expressed in taste tissue. SCN2A, SCN3A, and SCN9A were expressed beneath tight junctions in subsets of taste cells. SCN3A and SCN9A were expressed in TRPM5 cells, while SCN2A was expressed in TRPM5 and PKD2L1 cells. HCN4, a gene previously implicated in sour taste, was expressed in PKD2L1 cells and localized to cell processes beneath the taste pore. SCN2A, SCN3A and SCN9A voltage-gated sodium channels are positioned to sense initial depolarizing signals stemming from taste receptor activation and initiate taste cell action potentials. SCN2A, SCN3A and SCN9A gene products likely account for the tetrodotoxin-sensitive sodium currents in taste receptor cells.

  12. Voltage-Gated Sodium Channels: Evolutionary History and Distinctive Sequence Features.

    Science.gov (United States)

    Kasimova, M A; Granata, D; Carnevale, V

    2016-01-01

    Voltage-gated sodium channels (Nav) are responsible for the rising phase of the action potential. Their role in electrical signal transmission is so relevant that their emergence is believed to be one of the crucial factors enabling development of nervous system. The presence of voltage-gated sodium-selective channels in bacteria (BacNav) has raised questions concerning the evolutionary history of the ones in animals. Here we review some of the milestones in the field of Nav phylogenetic analysis and discuss some of the most important sequence features that distinguish these channels from voltage-gated potassium channels and transient receptor potential channels. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Modification of sodium and potassium channel kinetics by diethyl ether and studies on sodium channel inactivation in the crayfish giant axon membrane

    Energy Technology Data Exchange (ETDEWEB)

    Bean, Bruce Palmer [Univ. of Rochester, NY (United States)

    1979-01-01

    The effects of ether and halothane on membrane currents in the voltage clamped crayfish giant axon membrane were investigated. Concentrations of ether up to 300 mM and of halothane up to 32 mM had no effect on resting potential or leakage conductance. Ether and halothane reduced the size of sodium currents without changing the voltage dependence of the peak currents or their reversal potential. Ether and halothane also produced a reversible, dose-dependent speeding of sodium current decay at all membrane potentials. Ether reduced the time constants for inactivation, and also shifted the midpoint of the steady-state inactivation curve in the hyperpolarizing direction. Potassium currents were smaller with ether present, with no change in the voltage dependence of steady-state currents. The activation of potassium channels was faster with ether present. There was no apparent change in the capacitance of the crayfish giant axon membrane with ether concentrations of up to 100 mM. Experiments on sodium channel inactivation kinetics were performed using 4-aminopyridine to block potassium currents. Sodium currents decayed with a time course generally fit well by a single exponential. The time constant of decay was a steep function of voltage, especially in the negative resistance region of the peak current vs voltage relation.The time course of inactivation was very similar to that of the decay of the current at the same potential. The measurement of steady-state inactivation curves with different test pulses showed no shifts along the voltage asix. The voltage-dependence of the integral of sodium conductance was measured to test models of sodium channel inactivation in which channels must open before inactivating; the results appear inconsistent with some of the simplest cases of such models.

  14. Conotoxins Targeting Neuronal Voltage-Gated Sodium Channel Subtypes: Potential Analgesics?

    Directory of Open Access Journals (Sweden)

    Jeffrey R. McArthur

    2012-11-01

    Full Text Available Voltage-gated sodium channels (VGSC are the primary mediators of electrical signal amplification and propagation in excitable cells. VGSC subtypes are diverse, with different biophysical and pharmacological properties, and varied tissue distribution. Altered VGSC expression and/or increased VGSC activity in sensory neurons is characteristic of inflammatory and neuropathic pain states. Therefore, VGSC modulators could be used in prospective analgesic compounds. VGSCs have specific binding sites for four conotoxin families: μ-, μO-, δ- and ί-conotoxins. Various studies have identified that the binding site of these peptide toxins is restricted to well-defined areas or domains. To date, only the μ- and μO-family exhibit analgesic properties in animal pain models. This review will focus on conotoxins from the μ- and μO-families that act on neuronal VGSCs. Examples of how these conotoxins target various pharmacologically important neuronal ion channels, as well as potential problems with the development of drugs from conotoxins, will be discussed.

  15. Targeting sodium channels in cardiac arrhythmia

    NARCIS (Netherlands)

    Remme, Carol Ann; Wilde, Arthur A. M.

    2014-01-01

    Cardiac voltage-gated sodium channels are responsible for proper electrical conduction in the heart. During acquired pathological conditions and inherited sodium channelopathies, altered sodium channel function causes conduction disturbances and ventricular arrhythmias. Although the clinical,

  16. Amiloride-Sensitive Sodium Channels and Pulmonary Edema

    Directory of Open Access Journals (Sweden)

    Mike Althaus

    2011-01-01

    Full Text Available The development of pulmonary edema can be considered as a combination of alveolar flooding via increased fluid filtration, impaired alveolar-capillary barrier integrity, and disturbed resolution due to decreased alveolar fluid clearance. An important mechanism regulating alveolar fluid clearance is sodium transport across the alveolar epithelium. Transepithelial sodium transport is largely dependent on the activity of sodium channels in alveolar epithelial cells. This paper describes how sodium channels contribute to alveolar fluid clearance under physiological conditions and how deregulation of sodium channel activity might contribute to the pathogenesis of lung diseases associated with pulmonary edema. Furthermore, sodium channels as putative molecular targets for the treatment of pulmonary edema are discussed.

  17. Distribution and function of voltage-gated sodium channels in the nervous system.

    Science.gov (United States)

    Wang, Jun; Ou, Shao-Wu; Wang, Yun-Jie

    2017-11-02

    Voltage-gated sodium channels (VGSCs) are the basic ion channels for neuronal excitability, which are crucial for the resting potential and the generation and propagation of action potentials in neurons. To date, at least nine distinct sodium channel isoforms have been detected in the nervous system. Recent studies have identified that voltage-gated sodium channels not only play an essential role in the normal electrophysiological activities of neurons but also have a close relationship with neurological diseases. In this study, the latest research findings regarding the structure, type, distribution, and function of VGSCs in the nervous system and their relationship to neurological diseases, such as epilepsy, neuropathic pain, brain tumors, neural trauma, and multiple sclerosis, are reviewed in detail.

  18. Metaflumizone is a novel sodium channel blocker insecticide.

    Science.gov (United States)

    Salgado, V L; Hayashi, J H

    2007-12-15

    Metaflumizone is a novel semicarbazone insecticide, derived chemically from the pyrazoline sodium channel blocker insecticides (SCBIs) discovered at Philips-Duphar in the early 1970s, but with greatly improved mammalian safety. This paper describes studies confirming that the insecticidal action of metaflumizone is due to the state-dependent blockage of sodium channels. Larvae of the moth Spodoptera eridania injected with metaflumizone became paralyzed, concomitant with blockage of all nerve activity. Furthermore, tonic firing of abdominal stretch receptor organs from Spodoptera frugiperda was blocked by metaflumizone applied in the bath, consistent with the block of voltage-dependent sodium channels. Studies on native sodium channels, in primary-cultured neurons isolated from the CNS of the larvae of the moth Manduca sexta and on Para/TipE sodium channels heterologously expressed in Xenopus (African clawed frog) oocytes, confirmed that metaflumizone blocks sodium channels by binding selectively to the slow-inactivated state, which is characteristic of the SCBIs. The results confirm that metaflumizone is a novel sodium channel blocker insecticide.

  19. Cation gating and selectivity in a purified, reconstituted, voltage-dependent sodium channel

    International Nuclear Information System (INIS)

    Barchi, R.L.; Tanaka, J.C.

    1984-01-01

    In excitable membranes, the voltage-dependent sodium channel controls the primary membrane conductance change necessary for the generation of an action potential. Over the past four decades, the time- and voltage-dependent sodium currents gated by this channel have been thoroughly documented with increasingly sophisticated voltage-clamp techniques. Recent advances in the biochemistry of membrane proteins have led to the solubilization and purification of this channel protein from nerve (6) and from muscle (4) or muscle-derived (1) membranes, and have provided an approach to the correlation of the channel's molecular structure with its functional properties. Each of these sodium channel preparations appears to contain a large glycoprotein either as its sole component (2) or in association with several small subunits (6, 3). Evidence that these purified proteins represent the excitable membrane sodium channel is presented. 8 refs., 1 fig., 1 tab

  20. Sodium Channel Nav1.8 Underlies TTX-Resistant Axonal Action Potential Conduction in Somatosensory C-Fibers of Distal Cutaneous Nerves.

    Science.gov (United States)

    Klein, Amanda H; Vyshnevska, Alina; Hartke, Timothy V; De Col, Roberto; Mankowski, Joseph L; Turnquist, Brian; Bosmans, Frank; Reeh, Peter W; Schmelz, Martin; Carr, Richard W; Ringkamp, Matthias

    2017-05-17

    Voltage-gated sodium (Na V ) channels are responsible for the initiation and conduction of action potentials within primary afferents. The nine Na V channel isoforms recognized in mammals are often functionally divided into tetrodotoxin (TTX)-sensitive (TTX-s) channels (Na V 1.1-Na V 1.4, Na V 1.6-Na V 1.7) that are blocked by nanomolar concentrations and TTX-resistant (TTX-r) channels (Na V 1.8 and Na V 1.9) inhibited by millimolar concentrations, with Na V 1.5 having an intermediate toxin sensitivity. For small-diameter primary afferent neurons, it is unclear to what extent different Na V channel isoforms are distributed along the peripheral and central branches of their bifurcated axons. To determine the relative contribution of TTX-s and TTX-r channels to action potential conduction in different axonal compartments, we investigated the effects of TTX on C-fiber-mediated compound action potentials (C-CAPs) of proximal and distal peripheral nerve segments and dorsal roots from mice and pigtail monkeys ( Macaca nemestrina ). In the dorsal roots and proximal peripheral nerves of mice and nonhuman primates, TTX reduced the C-CAP amplitude to 16% of the baseline. In contrast, >30% of the C-CAP was resistant to TTX in distal peripheral branches of monkeys and WT and Na V 1.9 -/- mice. In nerves from Na V 1.8 -/- mice, TTX-r C-CAPs could not be detected. These data indicate that Na V 1.8 is the primary isoform underlying TTX-r conduction in distal axons of somatosensory C-fibers. Furthermore, there is a differential spatial distribution of Na V 1.8 within C-fiber axons, being functionally more prominent in the most distal axons and terminal regions. The enrichment of Na V 1.8 in distal axons may provide a useful target in the treatment of pain of peripheral origin. SIGNIFICANCE STATEMENT It is unclear whether individual sodium channel isoforms exert differential roles in action potential conduction along the axonal membrane of nociceptive, unmyelinated peripheral nerve

  1. Propylparaben reduces the excitability of hippocampal neurons by blocking sodium channels.

    Science.gov (United States)

    Lara-Valderrábano, Leonardo; Rocha, Luisa; Galván, Emilio J

    2016-12-01

    Propylparaben (PPB) is an antimicrobial preservative widely used in food, cosmetics, and pharmaceutics. Virtual screening methodologies predicted anticonvulsant activity of PPB that was confirmed in vivo. Thus, we explored the effects of PPB on the excitability of hippocampal neurons by using standard patch clamp techniques. Bath perfusion of PPB reduced the fast-inactivating sodium current (I Na ) amplitude, causing a hyperpolarizing shift in the inactivation curve of the I Na, and markedly delayed the sodium channel recovery from the inactivation state. Also, PPB effectively suppressed the riluzole-sensitive, persistent sodium current (I NaP ). PPB perfusion also modified the action potential kinetics, and higher concentrations of PPB suppressed the spike activity. Nevertheless, the modulatory effects of PPB did not occur when PPB was internally applied by whole-cell dialysis. These results indicate that PPB reduces the excitability of CA1 pyramidal neurons by modulating voltage-dependent sodium channels. The mechanistic basis of this effect is a marked delay in the recovery from inactivation state of the voltage-sensitive sodium channels. Our results indicate that similar to local anesthetics and anticonvulsant drugs that act on sodium channels, PPB acts in a use-dependent manner. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Distribution of cardiac sodium channels in clusters potentiates ephaptic interactions in the intercalated disc.

    Science.gov (United States)

    Hichri, Echrak; Abriel, Hugues; Kucera, Jan P

    2018-02-15

    It has been proposed that ephaptic conduction, relying on interactions between the sodium (Na + ) current and the extracellular potential in intercalated discs, might contribute to cardiac conduction when gap junctional coupling is reduced, but this mechanism is still controversial. In intercalated discs, Na + channels form clusters near gap junction plaques, but the functional significance of these clusters has never been evaluated. In HEK cells expressing cardiac Na + channels, we show that restricting the extracellular space modulates the Na + current, as predicted by corresponding simulations accounting for ephaptic effects. In a high-resolution model of the intercalated disc, clusters of Na + channels that face each other across the intercellular cleft facilitate ephaptic impulse transmission when gap junctional coupling is reduced. Thus, our simulations reveal a functional role for the clustering of Na + channels in intercalated discs, and suggest that rearrangement of these clusters in disease may influence cardiac conduction. It has been proposed that ephaptic interactions in intercalated discs, mediated by extracellular potentials, contribute to cardiac impulse propagation when gap junctional coupling is reduced. However, experiments demonstrating ephaptic effects on the cardiac Na + current (I Na ) are scarce. Furthermore, Na + channels form clusters around gap junction plaques, but the electrophysiological significance of these clusters has never been investigated. In patch clamp experiments with HEK cells stably expressing human Na v 1.5 channels, we examined how restricting the extracellular space modulates I Na elicited by an activation protocol. In parallel, we developed a high-resolution computer model of the intercalated disc to investigate how the distribution of Na + channels influences ephaptic interactions. Approaching the HEK cells to a non-conducting obstacle always increased peak I Na at step potentials near the threshold of I Na activation

  3. Cellular hyper-excitability caused by mutations that alter the activation process of voltage-gated sodium channels

    Directory of Open Access Journals (Sweden)

    Mohamed-Yassine eAMAROUCH

    2015-02-01

    Full Text Available Voltage-gated sodium channels (Nav are widely expressed as macro-molecular complexes in both excitable and non-excitable tissues. In excitable tissues, the upstroke of the action potential is the result of the passage of a large and rapid influx of sodium ions through these channels. NaV dysfunction has been associated with an increasingly wide range of neurological, muscular and cardiac disorders. The purpose of this review is to summarize the recently identified sodium channel mutations that are linked to hyper-excitability phenotypes and associated with the alteration of the activation process of voltage gated sodium channels. Indeed, several clinical manifestations that demonstrate an alteration of tissue excitability were recently shown to be strongly associated with the presence of mutations that affect the activation process of the voltage-gated sodium channels. These emerging genotype-phenotype correlations have expanded the clinical spectrum of sodium channelopathies to include disorders which feature a hyper-excitability phenotype that may or may not be associated with a cardiomyopathy. The p.I141V mutation in SCN4A and SCN5A, as well as its homologous p.I136V mutation in SCN9A, are interesting examples of mutations that have been linked to inherited hyperexcitability myotonia, exercise-induced polymorphic ventricular arrhythmias and erythromelalgia, respectively. Regardless of which sodium channel isoform is investigated, the substitution of the isoleucine to valine in the locus 141 induces similar modifications in the biophysical properties of the voltage-gated sodium channels by shifting the voltage-dependence of steady state activation towards more negative potentials.

  4. Sodium Channel Mutations and Pyrethroid Resistance in Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Yuzhe Du

    2016-10-01

    Full Text Available Pyrethroid insecticides are widely used to control insect pests and human disease vectors. Voltage-gated sodium channels are the primary targets of pyrethroid insecticides. Mutations in the sodium channel have been shown to be responsible for pyrethroid resistance, known as knockdown resistance (kdr, in various insects including mosquitoes. In Aedes aegypti mosquitoes, the principal urban vectors of dengue, zika, and yellow fever viruses, multiple single nucleotide polymorphisms in the sodium channel gene have been found in pyrethroid-resistant populations and some of them have been functionally confirmed to be responsible for kdr in an in vitro expression system, Xenopus oocytes. This mini-review aims to provide an update on the identification and functional characterization of pyrethroid resistance-associated sodium channel mutations from Aedes aegypti. The collection of kdr mutations not only helped us develop molecular markers for resistance monitoring, but also provided valuable information for computational molecular modeling of pyrethroid receptor sites on the sodium channel.

  5. Visualizing individual sodium channels on the move.

    Science.gov (United States)

    Heinemann, Stefan H

    2012-07-27

    Visualization of voltage-gated sodium channels at work is an important requirement for the understanding of rapid electrical signaling in nerve cells. In this issue of Chemistry & Biology, Ondrus and colleagues have mastered this challenge by chemical synthesis of a fluorescent antagonist and by monitoring single sodium channels in living cells with unprecedented optical resolution. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Design of a Nested Eight-Channel Sodium and Four-Channel Proton Coil for 7 Tesla Knee Imaging

    Science.gov (United States)

    Brown, Ryan; Madelin, Guillaume; Lattanzi, Riccardo; Chang, Gregory; Regatte, Ravinder R.; Sodickson, Daniel K.; Wiggins, Graham C.

    2012-01-01

    The critical design aim for a dual-tuned sodium/proton coil is to maximize sodium sensitivity and transmit field (B1+) homogeneity while simultaneously providing adequate proton sensitivity and homogeneity. While most dual-frequency coils utilize lossy high-impedance trap circuits or PIN diodes to allow dual-resonance, we explored a nested-coil design for sodium/proton knee imaging at 7T. A stand-alone eight-channel sodium receive array was implemented without standard dual-resonance circuitry to provide improved sodium signal-to-noise ratio (SNR) over a volume coil. A detunable sodium birdcage was added for homogeneous sodium excitation and a four-channel proton transmit-receive array was added to provide anatomical reference imaging and B0 shimming capability. Both modules were implemented with minimal disturbance to the eight-channel sodium array by managing their respective resonances and geometrical arrangement. In vivo sodium SNR was 1.2 to 1.7 times greater in the developed eight-channel array than in a mono-nuclear sodium birdcage coil, while the developed four-channel proton array provided SNR similar to that of a commercial mono-nuclear proton birdcage coil. PMID:22887123

  7. Identification of potential novel interaction partners of the sodium-activated potassium channels Slick and Slack in mouse brain.

    Science.gov (United States)

    Rizzi, Sandra; Schwarzer, Christoph; Kremser, Leopold; Lindner, Herbert H; Knaus, Hans-Günther

    2015-12-01

    The sodium-activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are paralogous channels of the Slo family of high-conductance potassium channels. Slick and Slack channels are widely distributed in the mammalian CNS and they play a role in slow afterhyperpolarization, generation of depolarizing afterpotentials and in setting and stabilizing the resting potential. In the present study we used a combined approach of (co)-immunoprecipitation studies, Western blot analysis, double immunofluorescence and mass spectrometric sequencing in order to investigate protein-protein interactions of the Slick and Slack channels. The data strongly suggest that Slick and Slack channels co-assemble into identical cellular complexes. Double immunofluorescence experiments revealed that Slick and Slack channels co-localize in distinct mouse brain regions. Moreover, we identified the small cytoplasmic protein beta-synuclein and the transmembrane protein 263 (TMEM 263) as novel interaction partners of both, native Slick and Slack channels. In addition, the inactive dipeptidyl-peptidase (DPP 10) and the synapse associated protein 102 (SAP 102) were identified as constituents of the native Slick and Slack channel complexes in the mouse brain. This study presents new insights into protein-protein interactions of native Slick and Slack channels in the mouse brain.

  8. Energetics of discrete selectivity bands and mutation-induced transitions in the calcium-sodium ion channels family.

    Science.gov (United States)

    Kaufman, I; Luchinsky, D G; Tindjong, R; McClintock, P V E; Eisenberg, R S

    2013-11-01

    We use Brownian dynamics (BD) simulations to study the ionic conduction and valence selectivity of a generic electrostatic model of a biological ion channel as functions of the fixed charge Q(f) at its selectivity filter. We are thus able to reconcile the discrete calcium conduction bands recently revealed in our BD simulations, M0 (Q(f)=1e), M1 (3e), M2 (5e), with a set of sodium conduction bands L0 (0.5e), L1 (1.5e), thereby obtaining a completed pattern of conduction and selectivity bands vs Q(f) for the sodium-calcium channels family. An increase of Q(f) leads to an increase of calcium selectivity: L0 (sodium-selective, nonblocking channel) → M0 (nonselective channel) → L1 (sodium-selective channel with divalent block) → M1 (calcium-selective channel exhibiting the anomalous mole fraction effect). We create a consistent identification scheme where the L0 band is putatively identified with the eukaryotic sodium channel The scheme created is able to account for the experimentally observed mutation-induced transformations between nonselective channels, sodium-selective channels, and calcium-selective channels, which we interpret as transitions between different rows of the identification table. By considering the potential energy changes during permeation, we show explicitly that the multi-ion conduction bands of calcium and sodium channels arise as the result of resonant barrierless conduction. The pattern of periodic conduction bands is explained on the basis of sequential neutralization taking account of self-energy, as Q(f)(z,i)=ze(1/2+i), where i is the order of the band and z is the valence of the ion. Our results confirm the crucial influence of electrostatic interactions on conduction and on the Ca(2+)/Na(+) valence selectivity of calcium and sodium ion channels. The model and results could be also applicable to biomimetic nanopores with charged walls.

  9. Simplified numerical simulation of hot channel in sodium cooled reactor

    International Nuclear Information System (INIS)

    Fonseca, F. de A.S. da; Silva Filho, E.

    1988-12-01

    The thermal-hydraulic parameter values that restrict the operation of a liquid sodium cooled reactor are not established by the average conditions of the coolant in the reactor core but by the extreme conditions of the hot channel. The present work was developed to analysis of hot channel of a sodium cooled reactor, adapting to this reactor an existent simplified model for hot channel of pressurized water reactor. The model was applied for a standard sodium reactor and the results are considered satisfatory. (author) [pt

  10. Role of aquaporin and sodium channel in pleural water movement.

    Science.gov (United States)

    Jiang, Jinjun; Hu, Jie; Bai, Chunxue

    2003-12-16

    The role of the ENaC sodium channel and aquaporin-1 (AQP1) water channel on pleural fluid dynamics in mice was investigated. 0.25 ml of hypertonic or isosmolar fluid was infused into the pleural space in anesthetized wildtype and AQP1 null mice. Pleural fluid was sampled at specified times to quantify the osmolality and volume. The sodium channel activator terbutaline increased isosmolar fluid clearance by 90% while the sodium channel inhibitor amiloride decreased it by 15%, but had no effect on osmotically driven water transport. AQP1 deletion significantly decreased osmotic water transport in pleural space by twofold, but it had no effect on isosmolar fluid clearance. Pretreatment with dexamethasone increased pleural osmotic fluid entry by 25%, while intravenous injection of HgCl2 decreased osmotic pleural water movement by 43%. These results provided evidence for a role of a sodium channel in pleural fluid absorption; AQP1 plays a major role in osmotic liquid transport but it does not affect isosmolar fluid clearance.

  11. Distribution and function of sodium channel subtypes in human atrial myocardium

    NARCIS (Netherlands)

    Kaufmann, Susann G.; Westenbroek, Ruth E.; Maass, Alexander H.; Lange, Volkmar; Renner, Andre; Wischmeyer, Erhard; Bonz, Andreas; Muck, Jenny; Ertl, Georg; Catterall, William A.; Scheuer, Todd; Maier, Sebastian K. G.

    Voltage-gated sodium channels composed of a pore-forming alpha subunit and auxiliary beta subunits are responsible for the upstroke of the action potential in cardiac muscle. However, their localization and expression patterns in human myocardium have not yet been clearly defined. We used

  12. Voltage-gated sodium channels as targets for pyrethroid insecticides.

    Science.gov (United States)

    Field, Linda M; Emyr Davies, T G; O'Reilly, Andrias O; Williamson, Martin S; Wallace, B A

    2017-10-01

    The pyrethroid insecticides are a very successful group of compounds that have been used extensively for the control of arthropod pests of agricultural crops and vectors of animal and human disease. Unfortunately, this has led to the development of resistance to the compounds in many species. The mode of action of pyrethroids is known to be via interactions with the voltage-gated sodium channel. Understanding how binding to the channel is affected by amino acid substitutions that give rise to resistance has helped to elucidate the mode of action of the compounds and the molecular basis of their selectivity for insects vs mammals and between insects and other arthropods. Modelling of the channel/pyrethroid interactions, coupled with the ability to express mutant channels in oocytes and study function, has led to knowledge of both how the channels function and potentially how to design novel insecticides with greater species selectivity.

  13. Local anesthetics disrupt energetic coupling between the voltage-sensing segments of a sodium channel.

    Science.gov (United States)

    Muroi, Yukiko; Chanda, Baron

    2009-01-01

    Local anesthetics block sodium channels in a state-dependent fashion, binding with higher affinity to open and/or inactivated states. Gating current measurements show that local anesthetics immobilize a fraction of the gating charge, suggesting that the movement of voltage sensors is modified when a local anesthetic binds to the pore of the sodium channel. Here, using voltage clamp fluorescence measurements, we provide a quantitative description of the effect of local anesthetics on the steady-state behavior of the voltage-sensing segments of a sodium channel. Lidocaine and QX-314 shifted the midpoints of the fluorescence-voltage (F-V) curves of S4 domain III in the hyperpolarizing direction by 57 and 65 mV, respectively. A single mutation in the S6 of domain IV (F1579A), a site critical for local anesthetic block, abolished the effect of QX-314 on the voltage sensor of domain III. Both local anesthetics modestly shifted the F-V relationships of S4 domain IV toward hyperpolarized potentials. In contrast, the F-V curve of the S4 domain I was shifted by 11 mV in the depolarizing direction upon QX-314 binding. These antagonistic effects of the local anesthetic indicate that the drug modifies the coupling between the voltage-sensing domains of the sodium channel. Our findings suggest a novel role of local anesthetics in modulating the gating apparatus of the sodium channel.

  14. Slick (Kcnt2 Sodium-Activated Potassium Channels Limit Peptidergic Nociceptor Excitability and Hyperalgesia

    Directory of Open Access Journals (Sweden)

    Danielle L Tomasello

    2017-09-01

    Full Text Available The Slick (Kcnt2 sodium-activated potassium (K Na channel is a rapidly gating and weakly voltage-dependent and sodium-dependent potassium channel with no clearly defined physiological function. Within the dorsal root ganglia (DRGs, we show Slick channels are exclusively expressed in small-sized and medium-sized calcitonin gene–related peptide (CGRP-containing DRG neurons, and a pool of channels are localized to large dense-core vesicles (LDCV-containing CGRP. We stimulated DRG neurons for CGRP release and found Slick channels contained within CGRP-positive LDCV translocated to the neuronal membrane. Behavioral studies in Slick knockout (KO mice indicated increased basal heat detection and exacerbated thermal hyperalgesia compared with wild-type littermate controls during neuropathic and chronic inflammatory pain. Electrophysiologic recordings of DRG neurons from Slick KO mice revealed that Slick channels contribute to outward current, propensity to fire action potentials (APs, and to AP properties. Our data suggest that Slick channels restrain the excitability of CGRP-containing neurons, diminishing pain behavior after inflammation and injury.

  15. Toxins That Affect Voltage-Gated Sodium Channels.

    Science.gov (United States)

    Ji, Yonghua

    2017-10-26

    Voltage-gated sodium channels (VGSCs) are critical in generation and conduction of electrical signals in multiple excitable tissues. Natural toxins, produced by animal, plant, and microorganisms, target VGSCs through diverse strategies developed over millions of years of evolutions. Studying of the diverse interaction between VGSC and VGSC-targeting toxins has been contributing to the increasing understanding of molecular structure and function, pharmacology, and drug development potential of VGSCs. This chapter aims to summarize some of the current views on the VGSC-toxin interaction based on the established receptor sites of VGSC for natural toxins.

  16. Marine Toxins That Target Voltage-gated Sodium Channels

    Directory of Open Access Journals (Sweden)

    Robert J. French

    2006-04-01

    Full Text Available Abstract: Eukaryotic, voltage-gated sodium (NaV channels are large membrane proteins which underlie generation and propagation of rapid electrical signals in nerve, muscle and heart. Nine different NaV receptor sites, for natural ligands and/or drugs, have been identified, based on functional analyses and site-directed mutagenesis. In the marine ecosystem, numerous toxins have evolved to disrupt NaV channel function, either by inhibition of current flow through the channels, or by modifying the activation and inactivation gating processes by which the channels open and close. These toxins function in their native environment as offensive or defensive weapons in prey capture or deterrence of predators. In composition, they range from organic molecules of varying size and complexity to peptides consisting of ~10-70 amino acids. We review the variety of known NaV-targeted marine toxins, outlining, where known, their sites of interaction with the channel protein and their functional effects. In a number of cases, these natural ligands have the potential applications as drugs in clinical settings, or as models for drug development.

  17. Molecular and kinetic determinants of local anaesthetic action on sodium channels.

    Science.gov (United States)

    French, R J; Zamponi, G W; Sierralta, I E

    1998-11-23

    (1) Local anaesthetics (LA) rely for their clinical actions on state-dependent inhibition of voltage-dependent sodium channels. (2) Single, batrachoxin-modified sodium channels in planar lipid bilayers allow direct observation of drug-channel interactions. Two modes of inhibition of single-channel current are observed: fast block of the open channels and prolongation of a long-lived closed state, some of whose properties resemble those of the inactivated state of unmodified channels. (3) Analogues of different parts of the LA molecule separately mimic each blocking mode: amines--fast block, and water-soluble aromatics--closed state prolongation. (4) Interaction between a mu-conotoxin derivative and diethylammonium indicate an intrapore site of fast, open-state block. (5) Site-directed mutagenesis studies suggest that hydrophobic residues in transmembrane segment 6 of repeat domain 4 of sodium channels are critical for both LA binding and stabilization of the inactivated state.

  18. On conduction in a bacterial sodium channel.

    Directory of Open Access Journals (Sweden)

    Simone Furini

    Full Text Available Voltage-gated Na⁺-channels are transmembrane proteins that are responsible for the fast depolarizing phase of the action potential in nerve and muscular cells. Selective permeability of Na⁺ over Ca²⁺ or K⁺ ions is essential for the biological function of Na⁺-channels. After the emergence of the first high-resolution structure of a Na⁺-channel, an anionic coordination site was proposed to confer Na⁺ selectivity through partial dehydration of Na⁺ via its direct interaction with conserved glutamate side chains. By combining molecular dynamics simulations and free-energy calculations, a low-energy permeation pathway for Na⁺ ion translocation through the selectivity filter of the recently determined crystal structure of a prokaryotic sodium channel from Arcobacter butzleri is characterised. The picture that emerges is that of a pore preferentially occupied by two ions, which can switch between different configurations by crossing low free-energy barriers. In contrast to K⁺-channels, the movements of the ions appear to be weakly coupled in Na⁺-channels. When the free-energy maps for Na⁺ and K⁺ ions are compared, a selective site is characterised in the narrowest region of the filter, where a hydrated Na⁺ ion, and not a hydrated K⁺ ion, is energetically stable.

  19. Physiological regulation of epithelial sodium channel by proteolysis

    DEFF Research Database (Denmark)

    Svenningsen, Per; Friis, Ulla G; Bistrup, Claus

    2011-01-01

    PURPOSE OF REVIEW: Activation of epithelial sodium channel (ENaC) by proteolysis appears to be relevant for day-to-day physiological regulation of channel activity in kidney and other epithelial tissues. Pathophysiogical, proteolytic activation of ENaC in kidney has been demonstrated in proteinuric...

  20. Adaptive evolution of the vertebrate skeletal muscle sodium channel

    Directory of Open Access Journals (Sweden)

    Jian Lu

    2011-01-01

    Full Text Available Tetrodotoxin (TTX is a highly potent neurotoxin that blocks the action potential by selectively binding to voltage-gated sodium channels (Na v. The skeletal muscle Na v (Na v1.4 channels in most pufferfish species and certain North American garter snakes are resistant to TTX, whereas in most mammals they are TTX-sensitive. It still remains unclear as to whether the difference in this sensitivity among the various vertebrate species can be associated with adaptive evolution. In this study, we investigated the adaptive evolution of the vertebrate Na v1.4 channels. By means of the CODEML program of the PAML 4.3 package, the lineages of both garter snakes and pufferfishes were denoted to be under positive selection. The positively selected sites identified in the p-loop regions indicated their involvement in Na v1.4 channel sensitivity to TTX. Most of these sites were located in the intracellular regions of the Na v1.4 channel, thereby implying the possible association of these regions with the regulation of voltage-sensor movement.

  1. Action of insecticidal N-alkylamides at site 2 of the voltage-sensitive sodium channel

    International Nuclear Information System (INIS)

    Ottea, J.A.; Payne, G.T.; Soderlund, D.M.

    1990-01-01

    Nine synthetic N-alkylamides were examined as inhibitors of the specific binding of [ 3 H]batrachotoxinin A 20α-benzoate ([ 3 H]BTX-B) to sodium channels and as activators of sodium uptake in mouse brain synaptoneurosomes. In the presence of scorpion (Leiurus quinquestriatus) venom, the six insecticidal analogues were active as both inhibitors of [ 3 H]BTX-B binding and stimulators of sodium uptake. These findings are consistent with an action of these compounds at the alkaloid activator recognition site (site 2) of the voltage-sensitive sodium channel. The three noninsecticidal N-alkylamides also inhibited [ 3 H]BTX-B binding but were ineffective as activators of sodium uptake. Concentration-response studies revealed that some of the insecticidal amides also enhanced sodium uptake through a second, high-affinity interaction that does not involve site 2, but this secondary effect does not appear to be correlated with insecticidal activity. The activities of N-alkylamides as sodium channel activators were influenced by the length of the alkenyl chain and the location of unsaturation within the molecule. These results further define the actions of N-alkylamides on sodium channels and illustrate the significance of the multiple binding domains of the sodium channel as target sites for insect control agents

  2. β1 subunit stabilises sodium channel Nav1.7 against mechanical stress.

    Science.gov (United States)

    Körner, Jannis; Meents, Jannis; Machtens, Jan-Philipp; Lampert, Angelika

    2018-06-01

    The voltage-gated sodium channel Nav1.7 is a key player in neuronal excitability and pain signalling. In addition to voltage sensing, the channel is also modulated by mechanical stress. Using whole-cell patch-clamp experiments, we discovered that the sodium channel subunit β1 is able to prevent the impact of mechanical stress on Nav1.7. An intramolecular disulfide bond of β1 was identified to be essential for stabilisation of inactivation, but not activation, against mechanical stress using molecular dynamics simulations, homology modelling and site-directed mutagenesis. Our results highlight the role of segment 6 of domain IV in fast inactivation. We present a candidate mechanism for sodium channel stabilisation against mechanical stress, ensuring reliable channel functionality in living systems. Voltage-gated sodium channels are key players in neuronal excitability and pain signalling. Precise gating of these channels is crucial as even small functional alterations can lead to pathological phenotypes such as pain or heart failure. Mechanical stress has been shown to affect sodium channel activation and inactivation. This suggests that stabilising components are necessary to ensure precise channel gating in living organisms. Here, we show that mechanical shear stress affects voltage dependence of activation and fast inactivation of the Nav1.7 channel. Co-expression of the β1 subunit, however, protects both gating modes of Nav1.7 against mechanical shear stress. Using molecular dynamics simulation, homology modelling and site-directed mutagenesis, we identify an intramolecular disulfide bond of β1 (Cys21-Cys43) which is partially involved in this process: the β1-C43A mutant prevents mechanical modulation of voltage dependence of activation, but not of fast inactivation. Our data emphasise the unique role of segment 6 of domain IV for sodium channel fast inactivation and confirm previous reports that the intracellular process of fast inactivation can be

  3. Biological activity of the functional epitope of ciguatoxin fragment AB on the neuroblastoma sodium channel in tissue culture.

    Science.gov (United States)

    Hokama, Y; Chun, K E; Campora, C E; Higa, N; Suma, C; Hamajima, A; Isobe, M

    2006-01-01

    It is well established that the targeted receptor for ciguatoxin (CTX) in mammalian tissues is the sodium channel, affecting the influx of sodium into cells and altering the action potential and function of the cell. Since the syntheses of fragments of CTX has become available, our focus has been on the receptor functions of the west sphere AB and east sphere JKLM fragments using the neuroblastoma cell assay, guinea pig atrium assay, and the membrane immunobead assay (MIA). The data presented here suggest that the west sphere AB of the ciguatoxin molecule is the active portion and is responsible for the activation of the sodium channels. (c) 2006 Wiley-Liss, Inc.

  4. Structure-based assessment of disease-related mutations in human voltage-gated sodium channels

    Directory of Open Access Journals (Sweden)

    Weiyun Huang

    2017-02-01

    Full Text Available ABSTRACT Voltage-gated sodium (Nav channels are essential for the rapid upstroke of action potentials and the propagation of electrical signals in nerves and muscles. Defects of Nav channels are associated with a variety of channelopathies. More than 1000 disease-related mutations have been identified in Nav channels, with Nav1.1 and Nav1.5 each harboring more than 400 mutations. Nav channels represent major targets for a wide array of neurotoxins and drugs. Atomic structures of Nav channels are required to understand their function and disease mechanisms. The recently determined atomic structure of the rabbit voltage-gated calcium (Cav channel Cav1.1 provides a template for homology-based structural modeling of the evolutionarily related Nav channels. In this Resource article, we summarized all the reported disease-related mutations in human Nav channels, generated a homologous model of human Nav1.7, and structurally mapped disease-associated mutations. Before the determination of structures of human Nav channels, the analysis presented here serves as the base framework for mechanistic investigation of Nav channelopathies and for potential structure-based drug discovery.

  5. Structure-based assessment of disease-related mutations in human voltage-gated sodium channels.

    Science.gov (United States)

    Huang, Weiyun; Liu, Minhao; Yan, S Frank; Yan, Nieng

    2017-06-01

    Voltage-gated sodium (Na v ) channels are essential for the rapid upstroke of action potentials and the propagation of electrical signals in nerves and muscles. Defects of Na v channels are associated with a variety of channelopathies. More than 1000 disease-related mutations have been identified in Na v channels, with Na v 1.1 and Na v 1.5 each harboring more than 400 mutations. Na v channels represent major targets for a wide array of neurotoxins and drugs. Atomic structures of Na v channels are required to understand their function and disease mechanisms. The recently determined atomic structure of the rabbit voltage-gated calcium (Ca v ) channel Ca v 1.1 provides a template for homology-based structural modeling of the evolutionarily related Na v channels. In this Resource article, we summarized all the reported disease-related mutations in human Na v channels, generated a homologous model of human Na v 1.7, and structurally mapped disease-associated mutations. Before the determination of structures of human Na v channels, the analysis presented here serves as the base framework for mechanistic investigation of Na v channelopathies and for potential structure-based drug discovery.

  6. Voltage-gated sodium channel expression and action potential generation in differentiated NG108-15 cells.

    Science.gov (United States)

    Liu, Jinxu; Tu, Huiyin; Zhang, Dongze; Zheng, Hong; Li, Yu-Long

    2012-10-25

    The generation of action potential is required for stimulus-evoked neurotransmitter release in most neurons. Although various voltage-gated ion channels are involved in action potential production, the initiation of the action potential is mainly mediated by voltage-gated Na+ channels. In the present study, differentiation-induced changes of mRNA and protein expression of Na+ channels, Na+ currents, and cell membrane excitability were investigated in NG108-15 cells. Whole-cell patch-clamp results showed that differentiation (9 days) didn't change cell membrane excitability, compared to undifferentiated state. But differentiation (21 days) induced the action potential generation in 45.5% of NG108-15 cells (25/55 cells). In 9-day-differentiated cells, Na+ currents were mildly increased, which was also found in 21-day differentiated cells without action potential. In 21-day differentiated cells with action potential, Na+ currents were significantly enhanced. Western blot data showed that the expression of Na+ channels was increased with differentiated-time dependent manner. Single-cell real-time PCR data demonstrated that the expression of Na+ channel mRNA was increased by 21 days of differentiation in NG108-15 cells. More importantly, the mRNA level of Na+ channels in cells with action potential was higher than that in cells without action potential. Differentiation induces expression of voltage-gated Na+ channels and action potential generation in NG108-15 cells. A high level of the Na+ channel density is required for differentiation-triggered action potential generation.

  7. Mechanism of sodium channel block by local anesthetics, antiarrhythmics, and anticonvulsants.

    Science.gov (United States)

    Tikhonov, Denis B; Zhorov, Boris S

    2017-04-03

    Local anesthetics, antiarrhythmics, and anticonvulsants include both charged and electroneutral compounds that block voltage-gated sodium channels. Prior studies have revealed a common drug-binding region within the pore, but details about the binding sites and mechanism of block remain unclear. Here, we use the x-ray structure of a prokaryotic sodium channel, NavMs, to model a eukaryotic channel and dock representative ligands. These include lidocaine, QX-314, cocaine, quinidine, lamotrigine, carbamazepine (CMZ), phenytoin, lacosamide, sipatrigine, and bisphenol A. Preliminary calculations demonstrated that a sodium ion near the selectivity filter attracts electroneutral CMZ but repels cationic lidocaine. Therefore, we further docked electroneutral and cationic drugs with and without a sodium ion, respectively. In our models, all the drugs interact with a phenylalanine in helix IVS6. Electroneutral drugs trap a sodium ion in the proximity of the selectivity filter, and this same site attracts the charged group of cationic ligands. At this position, even small drugs can block the permeation pathway by an electrostatic or steric mechanism. Our study proposes a common pharmacophore for these diverse drugs. It includes a cationic moiety and an aromatic moiety, which are usually linked by four bonds. © 2017 Tikhonov and Zhorov.

  8. Essential Oils and Their Constituents Targeting the GABAergic System and Sodium Channels as Treatment of Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Ze-Jun Wang

    2018-05-01

    Full Text Available Essential oils and the constituents in them exhibit different pharmacological activities, such as antinociceptive, anxiolytic-like, and anticonvulsant effects. They are widely applied as a complementary therapy for people with anxiety, insomnia, convulsion, pain, and cognitive deficit symptoms through inhalation, oral administration, and aromatherapy. Recent studies show that essential oils are emerging as a promising source for modulation of the GABAergic system and sodium ion channels. This review summarizes the recent findings regarding the pharmacological properties of essential oils and compounds from the oils and the mechanisms underlying their effects. Specifically, the review focuses on the essential oils and their constituents targeting the GABAergic system and sodium channels, and their antinociceptive, anxiolytic, and anticonvulsant properties. Some constituents target transient receptor potential (TRP channels to exert analgesic effects. Some components could interact with multiple therapeutic target proteins, for example, inhibit the function of sodium channels and, at the same time, activate GABAA receptors. The review concentrates on perspective compounds that could be better candidates for new drug development in the control of pain and anxiety syndromes.

  9. A negative charge in transmembrane segment 1 of domain II of the cockroach sodium channel is critical for channel gating and action of pyrethroid insecticides

    International Nuclear Information System (INIS)

    Du Yuzhe; Song Weizhong; Groome, James R.; Nomura, Yoshiko; Luo Ningguang; Dong Ke

    2010-01-01

    Voltage-gated sodium channels are the primary target of pyrethroids, an important class of synthetic insecticides. Pyrethroids bind to a distinct receptor site on sodium channels and prolong the open state by inhibiting channel deactivation and inactivation. Recent studies have begun to reveal sodium channel residues important for pyrethroid binding. However, how pyrethroid binding leads to inhibition of sodium channel deactivation and inactivation remains elusive. In this study, we show that a negatively charged aspartic acid residue at position 802 (D802) located in the extracellular end of transmembrane segment 1 of domain II (IIS1) is critical for both the action of pyrethroids and the voltage dependence of channel activation. Charge-reversing or -neutralizing substitutions (K, G, or A) of D802 shifted the voltage dependence of activation in the depolarizing direction and reduced channel sensitivity to deltamethrin, a pyrethroid insecticide. The charge-reversing mutation D802K also accelerated open-state deactivation, which may have counteracted the inhibition of sodium channel deactivation by deltamethrin. In contrast, the D802G substitution slowed open-state deactivation, suggesting an additional mechanism for neutralizing the action of deltamethrin. Importantly, Schild analysis showed that D802 is not involved in pyrethroid binding. Thus, we have identified a sodium channel residue that is critical for regulating the action of pyrethroids on the sodium channel without affecting the receptor site of pyrethroids.

  10. Alterations of sodium and potassium channels of RGCs in RCS rat with the development of retinal degeneration.

    Science.gov (United States)

    Chen, Zhongshan; Song, Yanping; Yao, Junping; Weng, Chuanhuang; Yin, Zheng Qin

    2013-11-01

    All know that retinitis pigmentosa (RP) is a group of hereditary retinal degenerative diseases characterized by progressive dysfunction of photoreceptors and associated with progressive cells loss; nevertheless, little is known about how rods and cones loss affects the surviving inner retinal neurons and networks. Retinal ganglion cells (RGCs) process and convey visual information from retina to visual centers in the brain. The healthy various ion channels determine the normal reception and projection of visual signals from RGCs. Previous work on the Royal College of Surgeons (RCS) rat, as a kind of classical RP animal model, indicated that, at late stages of retinal degeneration in RCS rat, RGCs were also morphologically and functionally affected. Here, retrograde labeling for RGCs with Fluorogold was performed to investigate the distribution, density, and morphological changes of RGCs during retinal degeneration. Then, patch clamp recording, western blot, and immunofluorescence staining were performed to study the channels of sodium and potassium properties of RGCs, so as to explore the molecular and proteinic basis for understanding the alterations of RGCs membrane properties and firing functions. We found that the resting membrane potential, input resistance, and capacitance of RGCs changed significantly at the late stage of retinal degeneration. Action potential could not be evoked in a part of RGCs. Inward sodium current and outward potassium current recording showed that sodium current was impaired severely but only slightly in potassium current. Expressions of sodium channel protein were impaired dramatically at the late stage of retinal degeneration. The results suggested that the density of RGCs decreased, process ramification impaired, and sodium ion channel proteins destructed, which led to the impairment of electrophysiological functions of RGCs and eventually resulted in the loss of visual function.

  11. Functionalized Fullerene Targeting Human Voltage-Gated Sodium Channel, hNav1.7.

    Science.gov (United States)

    Hilder, Tamsyn A; Robinson, Anna; Chung, Shin-Ho

    2017-08-16

    Mutations of hNa v 1.7 that cause its activities to be enhanced contribute to severe neuropathic pain. Only a small number of hNa v 1.7 specific inhibitors have been identified, most of which interact with the voltage-sensing domain of the voltage-activated sodium ion channel. In our previous computational study, we demonstrated that a [Lys 6 ]-C 84 fullerene binds tightly (affinity of 46 nM) to Na v Ab, the voltage-gated sodium channel from the bacterium Arcobacter butzleri. Here, we extend this work and, using molecular dynamics simulations, demonstrate that the same [Lys 6 ]-C 84 fullerene binds strongly (2.7 nM) to the pore of a modeled human sodium ion channel hNa v 1.7. In contrast, the fullerene binds only weakly to a mutated model of hNa v 1.7 (I1399D) (14.5 mM) and a model of the skeletal muscle hNa v 1.4 (3.7 mM). Comparison of one representative sequence from each of the nine human sodium channel isoforms shows that only hNa v 1.7 possesses residues that are critical for binding the fullerene derivative and blocking the channel pore.

  12. Site of anticonvulsant action on sodium channels: autoradiographic and electrophysiological studies in rat brain

    International Nuclear Information System (INIS)

    Worley, P.F.; Baraban, J.M.

    1987-01-01

    The anticonvulsants phenytoin and carbamazepine interact allosterically with the batrachotoxin binding site of sodium channels. In the present study, we demonstrate an autoradiographic technique to localize the batrachotoxin binding site on sodium channels in rat brain using [ 3 H]batrachotoxinin-A 20-alpha-benzoate (BTX-B). Binding of [ 3 H]BTX-B to brain sections is dependent on potentiating allosteric interactions with scorpion venom and is displaced by BTX-B (Kd approximately 200 nM), aconitine, veratridine, and phenytoin with the same rank order of potencies as described in brain synaptosomes. The maximum number of [ 3 H]BTX-B binding sites in forebrain sections also agrees with biochemical determinations. Autoradiographic localizations indicate that [ 3 H]BTX-B binding sites are not restricted to cell bodies and axons but are present in synaptic zones throughout the brain. For example, a particularly dense concentration of these sites in the substantia nigra is associated with afferent terminals of the striatonigral projection. By contrast, myelinated structures possess much lower densities of binding sites. In addition, we present electrophysiological evidence that synaptic transmission, as opposed to axonal conduction, is preferentially sensitive to the action of aconitine and veratridine. Finally, the synaptic block produced by these sodium channel activators is inhibited by phenytoin and carbamazepine at therapeutic anticonvulsant concentrations

  13. Antiepileptic drugs targeting sodium channels: subunit and neuron-type specific interactions

    NARCIS (Netherlands)

    Qiao, X.

    2013-01-01

    Certain antiepileptic drugs (e.g. carbamazepine and lamotrigine) block sodium channels in an use-dependent manner and this mechanism contributes to the anti-convulsant properties of these drugs. There are, however, subtle differences in sodium current blocking properties of the antiepileptic drugs

  14. Regulation of sodium channel function by bilayer elasticity: the importance of hydrophobic coupling. Effects of Micelle-forming amphiphiles and cholesterol

    DEFF Research Database (Denmark)

    Lundbæk, Jens August; Birn, Pia; Hansen, Anker J

    2004-01-01

    , Triton X-100, and reduced Triton X-100) that make lipid bilayers less "stiff", as measured using gA channels, shift the voltage dependence of sodium channel inactivation toward more hyperpolarized potentials. At low amphiphile concentration, the magnitude of the shift is linearly correlated to the change...

  15. To4, the first Tityus obscurus β-toxin fully electrophysiologically characterized on human sodium channel isoforms.

    Science.gov (United States)

    Duque, Harry Morales; Mourão, Caroline Barbosa Farias; Tibery, Diogo Vieira; Barbosa, Eder Alves; Campos, Leandro Ambrósio; Schwartz, Elisabeth Ferroni

    2017-09-01

    Many scorpion toxins that act on sodium channels (NaScTxs) have been characterized till date. These toxins may act modulating the inactivation or the activation of sodium channels and are named α- or β-types, respectively. Some venom toxins from Tityus obscurus (Buthidae), a scorpion widely distributed in the Brazilian Amazon, have been partially characterized in previous studies; however, little information about their electrophysiological role on sodium ion channels has been published. In the present study, we describe the purification, identification and electrophysiological characterization of a NaScTx, which was first described as Tc54 and further fully sequenced and renamed To4. This toxin shows a marked β-type effect on different sodium channel subtypes (hNa v 1.1-hNa v 1.7) at low concentrations, and has more pronounced activity on hNa v 1.1, hNa v 1.2 and hNa v 1.4. By comparing To4 primary structure with other Tityus β-toxins which have already been electrophysiologically tested, it is possible to establish some key amino acid residues for the sodium channel activity. Thus, To4 is the first toxin from T. obscurus fully electrophysiologically characterized on different human sodium channel isoforms. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Hydration status regulates sodium flux and inflammatory pathways through epithelial sodium channel (ENaC) in the skin.

    Science.gov (United States)

    Xu, Wei; Hong, Seok Jong; Zeitchek, Michael; Cooper, Garry; Jia, Shengxian; Xie, Ping; Qureshi, Hannan A; Zhong, Aimei; Porterfield, Marshall D; Galiano, Robert D; Surmeier, D James; Mustoe, Thomas A

    2015-03-01

    Although it is known that the inflammatory response that results from disruption of epithelial barrier function after injury results in excessive scarring, the upstream signals remain unknown. It has also been observed that epithelial disruption results in reduced hydration status and that the use of occlusive dressings that prevent water loss from wounds decreases scar formation. We hypothesized that hydration status changes sodium homeostasis and induces sodium flux in keratinocytes, which result in activation of pathways responsible for keratinocyte-fibroblast signaling and ultimately lead to activation of fibroblasts. Here, we demonstrate that perturbations in epithelial barrier function lead to increased sodium flux in keratinocytes. We identified that sodium flux in keratinocytes is mediated by epithelial sodium channels (ENaCs) and causes increased secretion of proinflammatory cytokines, which activate fibroblast via the cyclooxygenase 2 (COX-2)/prostaglandin E2 (PGE2) pathway. Similar changes in signal transduction and sodium flux occur by increased sodium concentration, which simulates reduced hydration, in the media in epithelial cultures or human ex vivo skin cultures. Blockade of ENaC, prostaglandin synthesis, or PGE2 receptors all reduce markers of fibroblast activation and collagen synthesis. In addition, employing a validated in vivo excessive scar model in the rabbit ear, we demonstrate that utilization of either an ENaC blocker or a COX-2 inhibitor results in a marked reduction in scarring. Other experiments demonstrate that the activation of COX-2 in response to increased sodium flux is mediated through the PIK3/Akt pathway. Our results indicate that ENaC responds to small changes in sodium concentration with inflammatory mediators and suggest that the ENaC pathway is a potential target for a strategy to prevent fibrosis.

  17. Divergent actions of the pyrethroid insecticides S-bioallethrin, tefluthrin, and deltamethrin on rat Nav1.6 sodium channels

    International Nuclear Information System (INIS)

    Tan Jianguo; Soderlund, David M.

    2010-01-01

    We expressed rat Na v 1.6 sodium channels in combination with the rat β 1 and β 2 auxiliary subunits in Xenopus laevis oocytes and evaluated the effects of the pyrethroid insecticides S-bioallethrin, deltamethrin, and tefluthrin on expressed sodium currents using the two-electrode voltage clamp technique. S-Bioallethrin, a type I structure, produced transient modification evident in the induction of rapidly decaying sodium tail currents, weak resting modification (5.7% modification at 100 μM), and no further enhancement of modification upon repetitive activation by high-frequency trains of depolarizing pulses. By contrast deltamethrin, a type II structure, produced sodium tail currents that were ∼ 9-fold more persistent than those caused by S-bioallethrin, barely detectable resting modification (2.5% modification at 100 μM), and 3.7-fold enhancement of modification upon repetitive activation. Tefluthrin, a type I structure with high mammalian toxicity, exhibited properties intermediate between S-bioallethrin and deltamethrin: intermediate tail current decay kinetics, much greater resting modification (14.1% at 100 μM), and 2.8-fold enhancement of resting modification upon repetitive activation. Comparison of concentration-effect data showed that repetitive depolarization increased the potency of tefluthrin ∼ 15-fold and that tefluthrin was ∼ 10-fold more potent than deltamethrin as a use-dependent modifier of Na v 1.6 sodium channels. Concentration-effect data from parallel experiments with the rat Na v 1.2 sodium channel coexpressed with the rat β 1 and β 2 subunits in oocytes showed that the Na v 1.6 isoform was at least 15-fold more sensitive to tefluthrin and deltamethrin than the Na v 1.2 isoform. These results implicate sodium channels containing the Na v 1.6 isoform as potential targets for the central neurotoxic effects of pyrethroids.

  18. Comparative effects of sodium channel blockers in short term rat whole embryo culture

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Mats F, E-mail: Mats.Nilsson@farmbio.uu.se [Department of Pharmaceutical Biosciences, Uppsala University (Sweden); Sköld, Anna-Carin; Ericson, Ann-Christin; Annas, Anita; Villar, Rodrigo Palma [AstraZeneca R and D Södertälje (Sweden); Cebers, Gvido [AstraZeneca R and D, iMed, 141 Portland Street, Cambridge, MA 02139 (United States); Hellmold, Heike; Gustafson, Anne-Lee [AstraZeneca R and D Södertälje (Sweden); Webster, William S [Department of Anatomy and Histology, University of Sydney (Australia)

    2013-10-15

    This study was undertaken to examine the effect on the rat embryonic heart of two experimental drugs (AZA and AZB) which are known to block the sodium channel Nav1.5, the hERG potassium channel and the L-type calcium channel. The sodium channel blockers bupivacaine, lidocaine, and the L-type calcium channel blocker nifedipine were used as reference substances. The experimental model was the gestational day (GD) 13 rat embryo cultured in vitro. In this model the embryonic heart activity can be directly observed, recorded and analyzed using computer assisted image analysis as it responds to the addition of test drugs. The effect on the heart was studied for a range of concentrations and for a duration up to 3 h. The results showed that AZA and AZB caused a concentration-dependent bradycardia of the embryonic heart and at high concentrations heart block. These effects were reversible on washout. In terms of potency to cause bradycardia the compounds were ranked AZB > bupivacaine > AZA > lidocaine > nifedipine. Comparison with results from previous studies with more specific ion channel blockers suggests that the primary effect of AZA and AZB was sodium channel blockage. The study shows that the short-term rat whole embryo culture (WEC) is a suitable system to detect substances hazardous to the embryonic heart. - Highlights: • Study of the effect of sodium channel blocking drugs on embryonic heart function • We used a modified method rat whole embryo culture with image analysis. • The drugs tested caused a concentration dependent bradycardia and heart block. • The effect of drugs acting on multiple ion channels is difficult to predict. • This method may be used to detect cardiotoxicity in prenatal development.

  19. Comparative effects of sodium channel blockers in short term rat whole embryo culture

    International Nuclear Information System (INIS)

    Nilsson, Mats F; Sköld, Anna-Carin; Ericson, Ann-Christin; Annas, Anita; Villar, Rodrigo Palma; Cebers, Gvido; Hellmold, Heike; Gustafson, Anne-Lee; Webster, William S

    2013-01-01

    This study was undertaken to examine the effect on the rat embryonic heart of two experimental drugs (AZA and AZB) which are known to block the sodium channel Nav1.5, the hERG potassium channel and the L-type calcium channel. The sodium channel blockers bupivacaine, lidocaine, and the L-type calcium channel blocker nifedipine were used as reference substances. The experimental model was the gestational day (GD) 13 rat embryo cultured in vitro. In this model the embryonic heart activity can be directly observed, recorded and analyzed using computer assisted image analysis as it responds to the addition of test drugs. The effect on the heart was studied for a range of concentrations and for a duration up to 3 h. The results showed that AZA and AZB caused a concentration-dependent bradycardia of the embryonic heart and at high concentrations heart block. These effects were reversible on washout. In terms of potency to cause bradycardia the compounds were ranked AZB > bupivacaine > AZA > lidocaine > nifedipine. Comparison with results from previous studies with more specific ion channel blockers suggests that the primary effect of AZA and AZB was sodium channel blockage. The study shows that the short-term rat whole embryo culture (WEC) is a suitable system to detect substances hazardous to the embryonic heart. - Highlights: • Study of the effect of sodium channel blocking drugs on embryonic heart function • We used a modified method rat whole embryo culture with image analysis. • The drugs tested caused a concentration dependent bradycardia and heart block. • The effect of drugs acting on multiple ion channels is difficult to predict. • This method may be used to detect cardiotoxicity in prenatal development

  20. Mining the Virgin Land of Neurotoxicology: A Novel Paradigm of Neurotoxic Peptides Action on Glycosylated Voltage-Gated Sodium Channels

    Directory of Open Access Journals (Sweden)

    Zhirui Liu

    2012-01-01

    Full Text Available Voltage-gated sodium channels (VGSCs are important membrane protein carrying on the molecular basis for action potentials (AP in neuronal firings. Even though the structure-function studies were the most pursued spots, the posttranslation modification processes, such as glycosylation, phosphorylation, and alternative splicing associating with channel functions captured less eyesights. The accumulative research suggested an interaction between the sialic acids chains and ion-permeable pores, giving rise to subtle but significant impacts on channel gating. Sodium channel-specific neurotoxic toxins, a family of long-chain polypeptides originated from venomous animals, are found to potentially share the binding sites adjacent to glycosylated region on VGSCs. Thus, an interaction between toxin and glycosylated VGSC might hopefully join the campaign to approach the role of glycosylation in modulating VGSCs-involved neuronal network activity. This paper will cover the state-of-the-art advances of researches on glycosylation-mediated VGSCs function and the possible underlying mechanisms of interactions between toxin and glycosylated VGSCs, which may therefore, fulfill the knowledge in identifying the pharmacological targets and therapeutic values of VGSCs.

  1. Expression, purification and functional reconstitution of slack sodium-activated potassium channels.

    Science.gov (United States)

    Yan, Yangyang; Yang, Youshan; Bian, Shumin; Sigworth, Fred J

    2012-11-01

    The slack (slo2.2) gene codes for a potassium-channel α-subunit of the 6TM voltage-gated channel family. Expression of slack results in Na(+)-activated potassium channel activity in various cell types. We describe the purification and reconstitution of Slack protein and show that the Slack α-subunit alone is sufficient for potassium channel activity activated by sodium ions as assayed in planar bilayer membranes and in membrane vesicles.

  2. Ligand-based design and synthesis of novel sodium channel blockers from a combined phenytoin–lidocaine pharmacophore

    OpenAIRE

    Wang, Yuesheng; Jones, Paulianda J.; Batts, Timothy W.; Landry, Victoria; Patel, Manoj K.; Brown, Milton L.

    2008-01-01

    The voltage-gated sodium channel remains a rich area for the development of novel blockers. In this study we used comparative molecular field analysis (CoMFA), a ligand-based design strategy, to generate a 3D model based upon local anesthetics, hydantoins, and α-hydroxyphenylamides to elucidate a SAR for their binding site in the neuronal sodium channel. Correlation by partial least squares (PLS) analysis of in vitro sodium channel binding activity (expressed as pIC50) and the CoMFA descripto...

  3. Molecular cloning and analysis of zebrafish voltage-gated sodium channel beta subunit genes: implications for the evolution of electrical signaling in vertebrates

    Directory of Open Access Journals (Sweden)

    Zhong Tao P

    2007-07-01

    Full Text Available Abstract Background Action potential generation in excitable cells such as myocytes and neurons critically depends on voltage-gated sodium channels. In mammals, sodium channels exist as macromolecular complexes that include a pore-forming alpha subunit and 1 or more modulatory beta subunits. Although alpha subunit genes have been cloned from diverse metazoans including flies, jellyfish, and humans, beta subunits have not previously been identified in any non-mammalian species. To gain further insight into the evolution of electrical signaling in vertebrates, we investigated beta subunit genes in the teleost Danio rerio (zebrafish. Results We identified and cloned single zebrafish gene homologs for beta1-beta3 (zbeta1-zbeta3 and duplicate genes for beta4 (zbeta4.1, zbeta4.2. Sodium channel beta subunit loci are similarly organized in fish and mammalian genomes. Unlike their mammalian counterparts, zbeta1 and zbeta2 subunit genes display extensive alternative splicing. Zebrafish beta subunit genes and their splice variants are differentially-expressed in excitable tissues, indicating tissue-specific regulation of zbeta1-4 expression and splicing. Co-expression of the genes encoding zbeta1 and the zebrafish sodium channel alpha subunit Nav1.5 in Chinese Hamster Ovary cells increased sodium current and altered channel gating, demonstrating functional interactions between zebrafish alpha and beta subunits. Analysis of the synteny and phylogeny of mammalian, teleost, amphibian, and avian beta subunit and related genes indicated that all extant vertebrate beta subunits are orthologous, that beta2/beta4 and beta1/beta3 share common ancestry, and that beta subunits are closely related to other proteins sharing the V-type immunoglobulin domain structure. Vertebrate sodium channel beta subunit genes were not identified in the genomes of invertebrate chordates and are unrelated to known subunits of the para sodium channel in Drosophila. Conclusion The

  4. The sodium channel activator Lu AE98134 normalizes the altered firing properties of fast spiking interneurons in Dlx5/6+/- mice

    DEFF Research Database (Denmark)

    von Schoubye, Nadia Lybøl; Frederiksen, Kristen; Kristiansen, Uffe

    2018-01-01

    Mental disorders such as schizophrenia are associated with impaired firing properties of fast spiking inhibitory interneurons (FSINs) causing reduced task-evoked gamma-oscillation in prefrontal cortex. The voltage-gated sodium channel NaV1.1 is highly expressed in PV-positive interneurons, but only...... at low levels in principal cells. Positive modulators of Nav1.1 channels are for this reason considered potential candidates for the treatment of cognitive disorders. Here we examined the effect of the novel positive modulator of voltage-gated sodium channels Lu AE98134. We found that Lu AE98134...... facilitated the sodium current mediated by NaV1.1 expressed in HEK cells by shifting its activation to more negative values, decreasing its inactivation kinetics and promoting a persistent inward current. In a slice preparation from the brain of adult mice, Lu AE98134 promoted the excitability of fast spiking...

  5. Single sodium channels from human skeletal muscle in planar lipid bilayers: characterization and response to pentobarbital

    NARCIS (Netherlands)

    Wartenberg, Hans C.; Urban, Bernd W.

    2004-01-01

    PURPOSE: To investigate the response to general anesthetics of different sodium-channel subtypes, we examined the effects of pentobarbital, a close thiopental analogue, on single sodium channels from human skeletal muscle and compared them to existing data from human brain and human ventricular

  6. Molecular Basis of Paraltyic Neurotoxin Action on Voltage-Sensitive Sodium Channels

    Science.gov (United States)

    1985-10-14

    of 9,700 daltons isolated from the coral Goni2oora gy. (1). The toxin enhances neurally mediated contraction of blood vessels and taenia coli of the...sites on the solium channel and to identify the site of GPT action within the structure of the sodium channel protein. 2. Site of Action of Brvyetoxin

  7. Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution.

    Science.gov (United States)

    Shen, Huaizong; Zhou, Qiang; Pan, Xiaojing; Li, Zhangqiang; Wu, Jianping; Yan, Nieng

    2017-03-03

    Voltage-gated sodium (Na v ) channels are responsible for the initiation and propagation of action potentials. They are associated with a variety of channelopathies and are targeted by multiple pharmaceutical drugs and natural toxins. Here, we report the cryogenic electron microscopy structure of a putative Na v channel from American cockroach (designated Na v PaS) at 3.8 angstrom resolution. The voltage-sensing domains (VSDs) of the four repeats exhibit distinct conformations. The entrance to the asymmetric selectivity filter vestibule is guarded by heavily glycosylated and disulfide bond-stabilized extracellular loops. On the cytoplasmic side, a conserved amino-terminal domain is placed below VSD I , and a carboxy-terminal domain binds to the III-IV linker. The structure of Na v PaS establishes an important foundation for understanding function and disease mechanism of Na v and related voltage-gated calcium channels. Copyright © 2017, American Association for the Advancement of Science.

  8. A sodium-channel mutation causes isolated cardiac conduction disease

    NARCIS (Netherlands)

    Tan, H. L.; Bink-Boelkens, M. T.; Bezzina, C. R.; Viswanathan, P. C.; Beaufort-Krol, G. C.; van Tintelen, P. J.; van den Berg, M. P.; Wilde, A. A.; Balser, J. R.

    2001-01-01

    Cardiac conduction disorders slow the heart rhythm and cause disability in millions of people worldwide. Inherited mutations in SCN5A, the gene encoding the human cardiac sodium (Na+) channel, have been associated with rapid heart rhythms that occur suddenly and are life-threatening; however, a

  9. Different role of TTX-sensitive voltage-gated sodium channel (NaV 1) subtypes in action potential initiation and conduction in vagal airway nociceptors.

    Science.gov (United States)

    Kollarik, M; Sun, H; Herbstsomer, R A; Ru, F; Kocmalova, M; Meeker, S N; Undem, B J

    2018-04-15

    The action potential initiation in the nerve terminals and its subsequent conduction along the axons of afferent nerves are not necessarily dependent on the same voltage-gated sodium channel (Na V 1) subunits. The action potential initiation in jugular C-fibres within airway tissues is not blocked by TTX; nonetheless, conduction of action potentials along the vagal axons of these nerves is often dependent on TTX-sensitive channels. This is not the case for nodose airway Aδ-fibres and C-fibres, where both action potential initiation and conduction is abolished by TTX or selective Na V 1.7 blockers. The difference between the initiation of action potentials within the airways vs. conduction along the axons should be considered when developing Na V 1 blocking drugs for topical application to the respiratory tract. The action potential (AP) initiation in the nerve terminals and its subsequent AP conduction along the axons do not necessarily depend on the same subtypes of voltage-gated sodium channels (Na V 1s). We evaluated the role of TTX-sensitive and TTX-resistant Na V 1s in vagal afferent nociceptor nerves derived from jugular and nodose ganglia innervating the respiratory system. Single cell RT-PCR was performed on vagal afferent neurons retrogradely labelled from the guinea pig trachea. Almost all of the jugular neurons expressed the TTX-sensitive channel Na V 1.7 along with TTX-resistant Na V 1.8 and Na V 1.9. Tracheal nodose neurons also expressed Na V 1.7 but, less frequently, Na V 1.8 and Na V 1.9. Na V 1.6 were expressed in ∼40% of the jugular and 25% of nodose tracheal neurons. Other Na V 1 α subunits were only rarely expressed. Single fibre recordings were made from the vagal nodose and jugular nerve fibres innervating the trachea or lung in the isolated perfused vagally-innervated preparations that allowed for selective drug delivery to the nerve terminal compartment (AP initiation) or to the desheathed vagus nerve (AP conduction). AP initiation in

  10. The hitchhiker’s guide to the voltage-gated sodium channel galaxy

    Science.gov (United States)

    2016-01-01

    Eukaryotic voltage-gated sodium (Nav) channels contribute to the rising phase of action potentials and served as an early muse for biophysicists laying the foundation for our current understanding of electrical signaling. Given their central role in electrical excitability, it is not surprising that (a) inherited mutations in genes encoding for Nav channels and their accessory subunits have been linked to excitability disorders in brain, muscle, and heart; and (b) Nav channels are targeted by various drugs and naturally occurring toxins. Although the overall architecture and behavior of these channels are likely to be similar to the more well-studied voltage-gated potassium channels, eukaryotic Nav channels lack structural and functional symmetry, a notable difference that has implications for gating and selectivity. Activation of voltage-sensing modules of the first three domains in Nav channels is sufficient to open the channel pore, whereas movement of the domain IV voltage sensor is correlated with inactivation. Also, structure–function studies of eukaryotic Nav channels show that a set of amino acids in the selectivity filter, referred to as DEKA locus, is essential for Na+ selectivity. Structures of prokaryotic Nav channels have also shed new light on mechanisms of drug block. These structures exhibit lateral fenestrations that are large enough to allow drugs or lipophilic molecules to gain access into the inner vestibule, suggesting that this might be the passage for drug entry into a closed channel. In this Review, we will synthesize our current understanding of Nav channel gating mechanisms, ion selectivity and permeation, and modulation by therapeutics and toxins in light of the new structures of the prokaryotic Nav channels that, for the time being, serve as structural models of their eukaryotic counterparts. PMID:26712848

  11. A sodium-channel mutation causes isolated cardiac conduction disease

    NARCIS (Netherlands)

    Tan, HL; Bink-Boelkens, MTE; Bezzina, CR; Viswanathan, PC; Beaufort-Krol, GCM; van Tintelen, PJ; van den Berg, MP; Wilde, AAM; Balser, [No Value

    2001-01-01

    Cardiac conduction disorders slow the heart rhythm and cause disability in millions of people worldwide. Inherited mutations in SCN5A, the gene encoding the human cardiac sodium (Na+) channel, have been associated with rapid heart rhythms that occur suddenly and are life-threatening(1-3); however, a

  12. Safety and efficacy of a Nav1.7 selective sodium channel blocker in patients with trigeminal neuralgia

    DEFF Research Database (Denmark)

    Zakrzewska, Joanna M; Palmer, Joanne; Morisset, Valerie

    2017-01-01

    BACKGROUND: Current standard of care for trigeminal neuralgia is treatment with the sodium channel blockers carbamazepine and oxcarbazepine, which although effective are associated with poor tolerability and the need for titration. BIIB074, a Nav1.7-selective, state-dependent sodium-channel blocker...

  13. Individual variation and hormonal modulation of a sodium channel beta subunit in the electric organ correlate with variation in a social signal.

    Science.gov (United States)

    Liu, He; Wu, Ming-Ming; Zakon, Harold H

    2007-09-01

    The sodium channel beta1 subunit affects sodium channel gating and surface density, but little is known about the factors that regulate beta1 expression or its participation in the fine control of cellular excitability. In this study we examined whether graded expression of the beta1 subunit contributes to the gradient in sodium current inactivation, which is tightly controlled and directly related to a social behavior, the electric organ discharge (EOD), in a weakly electric fish Sternopygus macrurus. We found the mRNA and protein levels of beta1 in the electric organ both correlate with EOD frequency. We identified a novel mRNA splice form of this gene and found the splicing preference for this novel splice form also correlates with EOD frequency. Androgen implants lowered EOD frequency and decreased the beta1 mRNA level but did not affect splicing. Coexpression of each splice form in Xenopus oocytes with either the human muscle sodium channel gene, hNav1.4, or a Sternopygus ortholog, smNav1.4b, sped the rate of inactivation of the sodium current and shifted the steady-state inactivation toward less negative membrane potentials. The translational product of the novel mRNA splice form lacks a previously identified important tyrosine residue but still functions normally. The properties of the fish alpha and coexpressed beta1 subunits in the oocyte replicate those of the electric organ's endogenous sodium current. These data highlight the role of ion channel beta subunits in regulating cellular excitability.

  14. Increased renal sodium absorption by inhibition of prostaglandin synthesis during fasting in healthy man. A possible role of the epithelial sodium channels

    Directory of Open Access Journals (Sweden)

    Graffe Carolina C

    2010-10-01

    Full Text Available Abstract Background Treatment with prostaglandin inhibitors can reduce renal function and impair renal water and sodium excretion. We tested the hypotheses that a reduction in prostaglandin synthesis by ibuprofen treatment during fasting decreased renal water and sodium excretion by increased absorption of water and sodium via the aquaporin2 water channels and the epithelial sodium channels. Methods The effect of ibuprofen, 600 mg thrice daily, was measured during fasting in a randomized, placebo-controlled, double-blinded crossover study of 17 healthy humans. The subjects received a standardized diet on day 1, fasted at day 2, and received an IV infusion of 3% NaCl on day 3. The effect variables were urinary excretions of aquaporin2 (u-AQP2, the beta-fraction of the epithelial sodium channel (u-ENaCbeta, cyclic-AMP (u-cAMP, prostaglandin E2 (u-PGE2. Free water clearance (CH2O, fractional excretion of sodium (FENa, and plasma concentrations of vasopressin, angiotensin II, aldosterone, atrial-, and brain natriuretic peptide. Results Ibuprofen decreased u-AQP2, u-PGE2, and FENa at all parts of the study. During the same time, ibuprofen significantly increased u-ENaCbeta. Ibuprofen did not change the response in p-AVP, u-c-AMP, urinary output, and free water clearance during any of these periods. Atrial-and brain natriuretic peptide were higher. Conclusion During inhibition of prostaglandin synthesis, urinary sodium excretion decreased in parallel with an increase in sodium absorption and increase in u-ENaCbeta. U-AQP2 decreased indicating that water transport via AQP2 fell. The vasopressin-c-AMP-axis did not mediate this effect, but it may be a consequence of the changes in the natriuretic peptide system and/or the angiotensin-aldosterone system Trial Registration Clinical Trials Identifier: NCT00281762

  15. The Sodium-Activated Potassium Channel Slack Is Required for Optimal Cognitive Flexibility in Mice

    Science.gov (United States)

    Bausch, Anne E.; Dieter, Rebekka; Nann, Yvette; Hausmann, Mario; Meyerdierks, Nora; Kaczmarek, Leonard K.; Ruth, Peter; Lukowski, Robert

    2015-01-01

    "Kcnt1" encoded sodium-activated potassium channels (Slack channels) are highly expressed throughout the brain where they modulate the firing patterns and general excitability of many types of neurons. Increasing evidence suggests that Slack channels may be important for higher brain functions such as cognition and normal intellectual…

  16. Actions of the pyrethroid insecticide bifenthrin on sodium channels expressed in rat cerebral cortical neurons.

    Science.gov (United States)

    Yang, Lin; Li, Li

    2015-01-01

    Voltage-gated sodium channels are important sites for the neurotoxic actions of pyrethroid insecticides in mammals. Here, we studied the mode of action of bifenthrin on the native sodium channels in cerebral cortical neurons prepared from newborn rat brain, where the toxic effects are largely generated. Bifenthrin caused a pronounced late current that persisted at the end of a depolarizing pulse, a slowly-decaying tail current following repolarization and significant resting modification (25.3% modification at 10 μM). No significant bifenthrin-induced effect was observed at the peak current. Bifenthrin also caused a concentration-dependent hyperpolarizing shift in steady-state activation and inactivation as well as slowed recovery from channel inactivation. Repetitive depolarization increased the potency of bifenthrin with high frequency. There was approximately 64% inhibition of modification upon repetitive activation by 10-Hz trains of depolarizing pulses. These results suggest that bifenthrin binds to and modifies sodium channels in both the closed and open states and exhibits the behavior between type I and type II.

  17. Biophysical and Pharmacological Characterization of Nav1.9 Voltage Dependent Sodium Channels Stably Expressed in HEK-293 Cells.

    Directory of Open Access Journals (Sweden)

    Zhixin Lin

    Full Text Available The voltage dependent sodium channel Nav1.9, is expressed preferentially in peripheral sensory neurons and has been linked to human genetic pain disorders, which makes it target of interest for the development of new pain therapeutics. However, characterization of Nav1.9 pharmacology has been limited due in part to the historical difficulty of functionally expressing recombinant channels. Here we report the successful generation and characterization of human, mouse and rat Nav1.9 stably expressed in human HEK-293 cells. These cells exhibit slowly activating and inactivating inward sodium channel currents that have characteristics of native Nav1.9. Optimal functional expression was achieved by coexpression of Nav1.9 with β1/β2 subunits. While recombinantly expressed Nav1.9 was found to be sensitive to sodium channel inhibitors TC-N 1752 and tetracaine, potency was up to 100-fold less than reported for other Nav channel subtypes despite evidence to support an interaction with the canonical local anesthetic (LA binding region on Domain 4 S6. Nav1.9 Domain 2 S6 pore domain contains a unique lysine residue (K799 which is predicted to be spatially near the local anesthetic interaction site. Mutation of this residue to the consensus asparagine (K799N resulted in an increase in potency for tetracaine, but a decrease for TC-N 1752, suggesting that this residue can influence interaction of inhibitors with the Nav1.9 pore. In summary, we have shown that stable functional expression of Nav1.9 in the widely used HEK-293 cells is possible, which opens up opportunities to better understand channel properties and may potentially aid identification of novel Nav1.9 based pharmacotherapies.

  18. Effects of the β1 auxiliary subunit on modification of Rat Na{sub v}1.6 sodium channels expressed in HEK293 cells by the pyrethroid insecticides tefluthrin and deltamethrin

    Energy Technology Data Exchange (ETDEWEB)

    He, Bingjun [College of Life Sciences, Nankai University, Tianjin 300071 (China); Soderlund, David M., E-mail: dms6@cornell.edu [Department of Entomology, Cornell University, Geneva, NY 14456 (United States)

    2016-01-15

    We expressed rat Na{sub v}1.6 sodium channels with or without the rat β1 subunit in human embryonic kidney (HEK293) cells and evaluated the effects of the pyrethroid insecticides tefluthrin and deltamethrin on whole-cell sodium currents. In assays with the Na{sub v}1.6 α subunit alone, both pyrethroids prolonged channel inactivation and deactivation and shifted the voltage dependence of channel activation and steady-state inactivation toward hyperpolarization. Maximal shifts in activation were ~ 18 mV for tefluthrin and ~ 24 mV for deltamethrin. These compounds also caused hyperpolarizing shifts of ~ 10–14 mV in the voltage dependence of steady-state inactivation and increased in the fraction of sodium current that was resistant to inactivation. The effects of pyrethroids on the voltage-dependent gating greatly increased the size of sodium window currents compared to unmodified channels; modified channels exhibited increased probability of spontaneous opening at membrane potentials more negative than the normal threshold for channel activation and incomplete channel inactivation. Coexpression of Na{sub v}1.6 with the β1 subunit had no effect on the kinetic behavior of pyrethroid-modified channels but had divergent effects on the voltage-dependent gating of tefluthrin- or deltamethrin-modified channels, increasing the size of tefluthrin-induced window currents but decreasing the size of corresponding deltamethrin-induced currents. Unexpectedly, the β1 subunit did not confer sensitivity to use-dependent channel modification by either tefluthrin or deltamethrin. We conclude from these results that functional reconstitution of channels in vitro requires careful attention to the subunit composition of channel complexes to ensure that channels in vitro are faithful functional and pharmacological models of channels in neurons. - Highlights: • We expressed Na{sub v}1.6 sodium channels with or without β1 subunits in HEK293 cells. • Tefluthrin and deltamethrin

  19. Modulation of epithelial sodium channel in human alveolar epithelial ...

    African Journals Online (AJOL)

    Modulation of epithelial sodium channel in human alveolar epithelial cells by lipoxin A4 through AhR-cAMP-dependent pathway. Bi-Huan Cheng1,2, Li-Wei Pan2, Sheng-Rong Zhang3, Bin-Yu Ying2, Ben-Ji. Wang2, Guo-Liang Lin2 and Shi-Fang Ding1*. 1Department of Critical Care Medicine, Qilu Hospital of Shandong ...

  20. Predictive 3D modelling of the interactions of pyrethroids with the voltage-gated sodium channels of ticks and mites.

    Science.gov (United States)

    O'Reilly, Andrias O; Williamson, Martin S; González-Cabrera, Joel; Turberg, Andreas; Field, Linda M; Wallace, B A; Davies, T G Emyr

    2014-03-01

    The pyrethroid insecticides are a very successful group of compounds that target invertebrate voltage-gated sodium channels and are widely used in the control of insects, ticks and mites. It is well established that some pyrethroids are good insecticides whereas others are more effective as acaricides. This species specificity is advantageous for controlling particular pest(s) in the presence of another non-target invertebrate, for example controlling the Varroa mite in honeybee colonies. We applied in silico techniques to compare the voltage-gated sodium channels of insects versus ticks and mites and their interactions with a range of pyrethroids and DDT analogues. We identified a single amino acid difference within the pyrethroid binding pocket of ticks/mites that may have significant impact on the effectiveness of pyrethroids as acaricides. Other individual amino acid differences within the binding pocket in distinct tick and mite species may provide a basis for future acaricidal selectivity. Three-dimensional modelling of the pyrethroid/DDT receptor site has led to a new hypothesis to explain the preferential binding of acaricidal pyrethroids to the sodium channels of ticks/mites. This is important for understanding pyrethroid selectivity and the potential effects of mutations that can give rise to resistance to pyrethroids in commercially-important pest species. © 2013 Society of Chemical Industry.

  1. Spontaneous and CRH-Induced Excitability and Calcium Signaling in Mice Corticotrophs Involves Sodium, Calcium, and Cation-Conducting Channels

    Czech Academy of Sciences Publication Activity Database

    Zemková, Hana; Tomič, M.; Kučka, M.; Aguilera, G.; Stojilkovic, S. S.

    2016-01-01

    Roč. 157, č. 4 (2016), s. 1576-1589 ISSN 0013-7227 R&D Projects: GA ČR(CZ) GBP304/12/G069; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 Keywords : action potential * background sodium conductance * bursting activity * cation -conducting channels * cytosolic calcium concentration * resting membrane potential Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 4.286, year: 2016

  2. Coupled-channel optical calculation of electron-atom scattering: elastic scattering from sodium at 20 to 150 eV

    International Nuclear Information System (INIS)

    Bray, Igor; Konovalov, D.A.; McCarthy, I.E.

    1991-04-01

    A coupled-channel optical method for electron-atom scattering is applied to elastic electron-sodium scattering at energies of 20, 22.1, 54.4, 100, and 150 eV. It is demonstrated that the effect of all the inelastic channels on elastic scattering may be well reproduced by the 'ab initio' calculated complex non-local polarization potential. Whilst the experiments generally agree at small angles and therefore agree on the total elastic cross section, there is considerable discrepancy at intermediate and backward angles. 9 refs., 2 tabs., 1 fig

  3. Mining Protein Evolution for Insights into Mechanisms of Voltage-Dependent Sodium Channel Auxiliary Subunits.

    Science.gov (United States)

    Molinarolo, Steven; Granata, Daniele; Carnevale, Vincenzo; Ahern, Christopher A

    2018-02-21

    Voltage-gated sodium channel (VGSC) beta (β) subunits have been called the "overachieving" auxiliary ion channel subunit. Indeed, these subunits regulate the trafficking of the sodium channel complex at the plasma membrane and simultaneously tune the voltage-dependent properties of the pore-forming alpha-subunit. It is now known that VGSC β-subunits are capable of similar modulation of multiple isoforms of related voltage-gated potassium channels, suggesting that their abilities extend into the broader voltage-gated channels. The gene family for these single transmembrane immunoglobulin beta-fold proteins extends well beyond the traditional VGSC β1-β4 subunit designation, with deep roots into the cell adhesion protein family and myelin-related proteins - where inherited mutations result in a myriad of electrical signaling disorders. Yet, very little is known about how VGSC β-subunits support protein trafficking pathways, the basis for their modulation of voltage-dependent gating, and, ultimately, their role in shaping neuronal excitability. An evolutionary approach can be useful in yielding new clues to such functions as it provides an unbiased assessment of protein residues, folds, and functions. An approach is described here which indicates the greater emergence of the modern β-subunits roughly 400 million years ago in the early neurons of Bilateria and bony fish, and the unexpected presence of distant homologues in bacteriophages. Recent structural breakthroughs containing α and β eukaryotic sodium channels containing subunits suggest a novel role for a highly conserved polar contact that occurs within the transmembrane segments. Overall, a mixture of approaches will ultimately advance our understanding of the mechanism for β-subunit interactions with voltage-sensor containing ion channels and membrane proteins.

  4. Trans-Channel Interactions in Batrachotoxin-Modified Skeletal Muscle Sodium Channels: Voltage-Dependent Block by Cytoplasmic Amines, and the Influence of μ-Conotoxin GIIIA Derivatives and Permeant Ions

    Science.gov (United States)

    Pavlov, Evgeny; Britvina, Tatiana; McArthur, Jeff R.; Ma, Quanli; Sierralta, Iván; Zamponi, Gerald W.; French, Robert J.

    2008-01-01

    External μ-conotoxins and internal amine blockers inhibit each other's block of voltage-gated sodium channels. We explore the basis of this interaction by measuring the shifts in voltage-dependence of channel inhibition by internal amines induced by two μ-conotoxin derivatives with different charge distributions and net charges. Charge changes on the toxin were made at residue 13, which is thought to penetrate most deeply into the channel, making it likely to have the strongest individual interaction with an internal charged ligand. When an R13Q or R13E molecule was bound to the channel, the voltage dependence of diethylammonium (DEA)-block shifted toward more depolarized potentials (23 mV for R13Q, and 16 mV for R13E). An electrostatic model of the repulsion between DEA and the toxin simulated these data, with a distance between residue 13 of the μ-conotoxin and the DEA-binding site of ∼15 Å. Surprisingly, for tetrapropylammonium, the shifts were only 9 mV for R13Q, and 7 mV for R13E. The smaller shifts associated with R13E, the toxin with a smaller net charge, are generally consistent with an electrostatic interaction. However, the smaller shifts observed for tetrapropylammonium than for DEA suggest that other factors must be involved. Two observations indicate that the coupling of permeant ion occupancy of the channel to blocker binding may contribute to the overall amine-toxin interaction: 1), R13Q binding decreases the apparent affinity of sodium for the conducting pore by ∼4-fold; and 2), increasing external [Na+] decreases block by DEA at constant voltage. Thus, even though a number of studies suggest that sodium channels are occupied by no more than one ion most of the time, measurable coupling occurs between permeant ions and toxin or amine blockers. Such interactions likely determine, in part, the strength of trans-channel, amine-conotoxin interactions. PMID:18658222

  5. Trans-channel interactions in batrachotoxin-modified skeletal muscle sodium channels: voltage-dependent block by cytoplasmic amines, and the influence of mu-conotoxin GIIIA derivatives and permeant ions.

    Science.gov (United States)

    Pavlov, Evgeny; Britvina, Tatiana; McArthur, Jeff R; Ma, Quanli; Sierralta, Iván; Zamponi, Gerald W; French, Robert J

    2008-11-01

    External mu-conotoxins and internal amine blockers inhibit each other's block of voltage-gated sodium channels. We explore the basis of this interaction by measuring the shifts in voltage-dependence of channel inhibition by internal amines induced by two mu-conotoxin derivatives with different charge distributions and net charges. Charge changes on the toxin were made at residue 13, which is thought to penetrate most deeply into the channel, making it likely to have the strongest individual interaction with an internal charged ligand. When an R13Q or R13E molecule was bound to the channel, the voltage dependence of diethylammonium (DEA)-block shifted toward more depolarized potentials (23 mV for R13Q, and 16 mV for R13E). An electrostatic model of the repulsion between DEA and the toxin simulated these data, with a distance between residue 13 of the mu-conotoxin and the DEA-binding site of approximately 15 A. Surprisingly, for tetrapropylammonium, the shifts were only 9 mV for R13Q, and 7 mV for R13E. The smaller shifts associated with R13E, the toxin with a smaller net charge, are generally consistent with an electrostatic interaction. However, the smaller shifts observed for tetrapropylammonium than for DEA suggest that other factors must be involved. Two observations indicate that the coupling of permeant ion occupancy of the channel to blocker binding may contribute to the overall amine-toxin interaction: 1), R13Q binding decreases the apparent affinity of sodium for the conducting pore by approximately 4-fold; and 2), increasing external [Na(+)] decreases block by DEA at constant voltage. Thus, even though a number of studies suggest that sodium channels are occupied by no more than one ion most of the time, measurable coupling occurs between permeant ions and toxin or amine blockers. Such interactions likely determine, in part, the strength of trans-channel, amine-conotoxin interactions.

  6. The antipsychotic drug loxapine is an opener of the sodium-activated potassium channel slack (Slo2.2).

    Science.gov (United States)

    Biton, B; Sethuramanujam, S; Picchione, Kelly E; Bhattacharjee, A; Khessibi, N; Chesney, F; Lanneau, C; Curet, O; Avenet, P

    2012-03-01

    Sodium-activated potassium (K(Na)) channels have been suggested to set the resting potential, to modulate slow after-hyperpolarizations, and to control bursting behavior or spike frequency adaptation (Trends Neurosci 28:422-428, 2005). One of the genes that encodes K(Na) channels is called Slack (Kcnt1, Slo2.2). Studies found that Slack channels were highly expressed in nociceptive dorsal root ganglion neurons and modulated their firing frequency (J Neurosci 30:14165-14172, 2010). Therefore, Slack channel openers are of significant interest as putative analgesic drugs. We screened the library of pharmacologically active compounds with recombinant human Slack channels expressed in Chinese hamster ovary cells, by using rubidium efflux measurements with atomic absorption spectrometry. Riluzole at 500 μM was used as a reference agonist. The antipsychotic drug loxapine and the anthelmintic drug niclosamide were both found to activate Slack channels, which was confirmed by using manual patch-clamp analyses (EC(50) = 4.4 μM and EC(50) = 2.9 μM, respectively). Psychotropic drugs structurally related to loxapine were also evaluated in patch-clamp experiments, but none was found to be as active as loxapine. Loxapine properties were confirmed at the single-channel level with recombinant rat Slack channels. In dorsal root ganglion neurons, loxapine was found to behave as an opener of native K(Na) channels and to increase the rheobase of action potential. This study identifies new K(Na) channel pharmacological tools, which will be useful for further Slack channel investigations.

  7. Loss-of-Function Sodium Channel Mutations in Infancy A Pattern Unfolds

    NARCIS (Netherlands)

    Chockalingam, Priya; Wilde, Arthur A. M.

    2012-01-01

    The role of channelopathies in the pathogenesis of sudden cardiac death (SCD) in patients with structurally normal hearts is a rapidly evolving story.(1) Many ion channels are involved, including loss-of-function sodium channelopathies of which the phenotypic spectrum ranges from lethal arrhythmias

  8. Domain IV voltage-sensor movement is both sufficient and rate limiting for fast inactivation in sodium channels.

    Science.gov (United States)

    Capes, Deborah L; Goldschen-Ohm, Marcel P; Arcisio-Miranda, Manoel; Bezanilla, Francisco; Chanda, Baron

    2013-08-01

    Voltage-gated sodium channels are critical for the generation and propagation of electrical signals in most excitable cells. Activation of Na(+) channels initiates an action potential, and fast inactivation facilitates repolarization of the membrane by the outward K(+) current. Fast inactivation is also the main determinant of the refractory period between successive electrical impulses. Although the voltage sensor of domain IV (DIV) has been implicated in fast inactivation, it remains unclear whether the activation of DIV alone is sufficient for fast inactivation to occur. Here, we functionally neutralize each specific voltage sensor by mutating several critical arginines in the S4 segment to glutamines. We assess the individual role of each voltage-sensing domain in the voltage dependence and kinetics of fast inactivation upon its specific inhibition. We show that movement of the DIV voltage sensor is the rate-limiting step for both development and recovery from fast inactivation. Our data suggest that activation of the DIV voltage sensor alone is sufficient for fast inactivation to occur, and that activation of DIV before channel opening is the molecular mechanism for closed-state inactivation. We propose a kinetic model of sodium channel gating that can account for our major findings over a wide voltage range by postulating that DIV movement is both necessary and sufficient for fast inactivation.

  9. Voltage-Gated Sodium Channel β1/β1B Subunits Regulate Cardiac Physiology and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Nnamdi Edokobi

    2018-04-01

    Full Text Available Cardiac myocyte contraction is initiated by a set of intricately orchestrated electrical impulses, collectively known as action potentials (APs. Voltage-gated sodium channels (NaVs are responsible for the upstroke and propagation of APs in excitable cells, including cardiomyocytes. NaVs consist of a single, pore-forming α subunit and two different β subunits. The β subunits are multifunctional cell adhesion molecules and channel modulators that have cell type and subcellular domain specific functional effects. Variants in SCN1B, the gene encoding the Nav-β1 and -β1B subunits, are linked to atrial and ventricular arrhythmias, e.g., Brugada syndrome, as well as to the early infantile epileptic encephalopathy Dravet syndrome, all of which put patients at risk for sudden death. Evidence over the past two decades has demonstrated that Nav-β1/β1B subunits play critical roles in cardiac myocyte physiology, in which they regulate tetrodotoxin-resistant and -sensitive sodium currents, potassium currents, and calcium handling, and that Nav-β1/β1B subunit dysfunction generates substrates for arrhythmias. This review will highlight the role of Nav-β1/β1B subunits in cardiac physiology and pathophysiology.

  10. Development and validation of a thallium flux-based functional assay for the sodium channel NaV1.7 and its utility for lead discovery and compound profiling.

    Science.gov (United States)

    Du, Yu; Days, Emily; Romaine, Ian; Abney, Kris K; Kaufmann, Kristian; Sulikowski, Gary; Stauffer, Shaun; Lindsley, Craig W; Weaver, C David

    2015-06-17

    Ion channels are critical for life, and they are targets of numerous drugs. The sequencing of the human genome has revealed the existence of hundreds of different ion channel subunits capable of forming thousands of ion channels. In the face of this diversity, we only have a few selective small-molecule tools to aid in our understanding of the role specific ion channels in physiology which may in turn help illuminate their therapeutic potential. Although the advent of automated electrophysiology has increased the rate at which we can screen for and characterize ion channel modulators, the technique's high per-measurement cost and moderate throughput compared to other high-throughput screening approaches limit its utility for large-scale high-throughput screening. Therefore, lower cost, more rapid techniques are needed. While ion channel types capable of fluxing calcium are well-served by low cost, very high-throughput fluorescence-based assays, other channel types such as sodium channels remain underserved by present functional assay techniques. In order to address this shortcoming, we have developed a thallium flux-based assay for sodium channels using the NaV1.7 channel as a model target. We show that the assay is able to rapidly and cost-effectively identify NaV1.7 inhibitors thus providing a new method useful for the discovery and profiling of sodium channel modulators.

  11. Sodium channels as targets for volatile anesthetics

    Directory of Open Access Journals (Sweden)

    Karl F. Herold

    2012-03-01

    Full Text Available The molecular mechanisms of modern inhaled anesthetics although widely used in clinical settings are still poorly understood. Considerable evidence supports effects on membrane proteins such as ligand- and voltage-gated ion channels of excitable cells. Na+ channels are crucial to action potential initiation and propagation, and represent potential targets for volatile anesthetics. Inhibition of presynaptic Na+ channels leads to reduced neurotransmitter release at the synapse and could therefore contribute to the mechanisms by which volatile anesthetics produce their characteristic effects: amnesia, unconsciousness, and immobility. Early studies on crayfish and squid giant axon showed inhibition of Na+ currents by volatile anesthetics. Subsequent studies using native neuronal preparations and heterologous expression systems with various mammalian Na+ channel isoforms implicated inhibition of presynaptic Na+ channels in anesthetic actions. Volatile anesthetics reduce peak Na+ current and shift the voltage of half-maximal steady-state inactivation towards more negative potentials, thus stabilizing the fast-inactivated state. Furthermore recovery from fast-inactivation is slowed together with an enhanced use-dependent block during pulse train protocols. These effects can reduce neurotransmitter release by depressing presynaptic excitability, depolarization and Ca entry, and ultimately transmitter release. This reduction in transmitter release is more portent for glutamatergic vs. GABAergic terminals. Involvement of Na+ channel inhibition in mediating the immobility caused by volatile anesthetics has been demonstrated in animal studies, in which intrathecal infusion of the Na+ channel blocker tetrodotoxin increases volatile anesthetic potency, whereas infusion of the Na+ channels agonist veratridine reduces anesthetic potency. These studies indicate that inhibition of presynaptic Na+ channels by volatile anesthetics is involved in mediating some of

  12. Structure-activity relationships for the action of 11 pyrethroid insecticides on rat Nav1.8 sodium channels expressed in Xenopus oocytes

    International Nuclear Information System (INIS)

    Choi, J.-S.; Soderlund, David M.

    2006-01-01

    Pyrethroid insecticides bind to voltage-sensitive sodium channels and modify their gating kinetics, thereby disrupting nerve function. This paper describes the action of 11 structurally diverse commercial pyrethroid insecticides on the rat Na v 1.8 sodium channel isoform, the principal carrier of the tetrodotoxin-resistant, pyrethroid-sensitive sodium current of sensory neurons, expressed in Xenopus laevis oocytes. All 11 compounds produced characteristic sodium tail currents following a depolarizing pulse that ranged from rapidly-decaying monoexponential currents (allethrin, cismethrin and permethrin) to persistent biexponential currents (cyfluthrin, cyhalothrin, cypermethrin and deltamethrin). Tail currents for the remaining compounds (bifenthrin, fenpropathrin, fenvalerate and tefluthrin) were monoexponential and decayed with kinetics intermediate between these extremes. Reconstruction of currents carried solely by the pyrethroid-modified subpopulation of channels revealed two types of pyrethroid-modified currents. The first type, found with cismethrin, allethrin, permethrin and tefluthrin, activated relatively rapidly and inactivated partially during a 40-ms depolarization. The second type, found with cypermethrin, cyfluthrin, cyhalothrin, deltamethrin, fenpropathrin and fenvalerate, activated more slowly and did not detectably inactivate during a 40-ms depolarization. Only bifenthrin did not produce modified currents that fit clearly into either of these categories. In all cases, the rate of activation of modified channels was strongly correlated with the rate of tail current decay following repolarization. Modification of Na v 1.8 sodium channels by cyfluthrin, cyhalothrin, cypermethrin and deltamethrin was enhanced 2.3- to 3.4-fold by repetitive stimulation; this effect appeared to result from the accumulation of persistently open channels rather than preferential binding to open channel states. Fenpropathrin was the most effective compound against Na v 1

  13. Mutations in sodium channel {beta}-subunit SCN3B are associated with early-onset lone atrial fibrillation

    DEFF Research Database (Denmark)

    Olesen, Morten Salling; Jespersen, Thomas; Nielsen, Jonas Bille

    2011-01-01

    AIMS: Atrial fibrillation (AF) is the most frequent arrhythmia. Screening of SCN5A-the gene encoding the a-subunit of the cardiac sodium channel-has indicated that disturbances of the sodium current may play a central role in the mechanism of lone AF. We tested the hypothesis that lone AF in young...... across species. Electrophysiological studies on the SCN3B mutation were carried out and all three SCN3B mutations caused a functionally reduced sodium channel current. One synonymous variant was found in SCN4B. CONCLUSION: In 192 young lone AF patients, we found three patients with suspected disease...

  14. Distinct molecular sites of anaesthetic action: pentobarbital block of human brain sodium channels is alleviated by removal of fast inactivation

    NARCIS (Netherlands)

    Wartenberg, H. C.; Urban, B. W.; Duch, D. S.

    1999-01-01

    Fast inactivation of sodium channel function is modified by anaesthetics. Its quantitative contribution to the overall anaesthetic effect is assessed by removing the fast inactivation mechanism enzymatically. Sodium channels from human brain cortex were incorporated into planar lipid bilayers. After

  15. International Union of Basic and Clinical Pharmacology. C. Nomenclature and Properties of Calcium-Activated and Sodium-Activated Potassium Channels.

    Science.gov (United States)

    Kaczmarek, Leonard K; Aldrich, Richard W; Chandy, K George; Grissmer, Stephan; Wei, Aguan D; Wulff, Heike

    2017-01-01

    A subset of potassium channels is regulated primarily by changes in the cytoplasmic concentration of ions, including calcium, sodium, chloride, and protons. The eight members of this subfamily were originally all designated as calcium-activated channels. More recent studies have clarified the gating mechanisms for these channels and have documented that not all members are sensitive to calcium. This article describes the molecular relationships between these channels and provides an introduction to their functional properties. It also introduces a new nomenclature that differentiates between calcium- and sodium-activated potassium channels. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  16. Unusual Voltage-Gated Sodium Currents as Targets for Pain.

    Science.gov (United States)

    Barbosa, C; Cummins, T R

    2016-01-01

    Pain is a serious health problem that impacts the lives of many individuals. Hyperexcitability of peripheral sensory neurons contributes to both acute and chronic pain syndromes. Because voltage-gated sodium currents are crucial to the transmission of electrical signals in peripheral sensory neurons, the channels that underlie these currents are attractive targets for pain therapeutics. Sodium currents and channels in peripheral sensory neurons are complex. Multiple-channel isoforms contribute to the macroscopic currents in nociceptive sensory neurons. These different isoforms exhibit substantial variations in their kinetics and pharmacology. Furthermore, sodium current complexity is enhanced by an array of interacting proteins that can substantially modify the properties of voltage-gated sodium channels. Resurgent sodium currents, atypical currents that can enhance recovery from inactivation and neuronal firing, are increasingly being recognized as playing potentially important roles in sensory neuron hyperexcitability and pain sensations. Here we discuss unusual sodium channels and currents that have been identified in nociceptive sensory neurons, describe what is known about the molecular determinants of the complex sodium currents in these neurons. Finally, we provide an overview of therapeutic strategies to target voltage-gated sodium currents in nociceptive neurons. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Pacemaker rate and depolarization block in nigral dopamine neurons: a somatic sodium channel balancing act

    Science.gov (United States)

    Tucker, Kristal R.; Huertas, Marco A.; Horn, John P.; Canavier, Carmen C.; Levitan, Edwin S.

    2012-01-01

    Midbrain dopamine (DA) neurons are slow intrinsic pacemakers that undergo depolarization (DP) block upon moderate stimulation. Understanding DP block is important because it has been correlated with the clinical efficacy of chronic antipsychotic drug treatment. Here we describe how voltage-gated sodium (NaV) channels regulate DP block and pacemaker activity in DA neurons of the substantia nigra using rat brain slices. The distribution, density and gating of NaV currents were manipulated by blocking native channels with tetrodotoxin and by creating virtual channels and anti-channels with dynamic clamp. Although action potentials initiate in the axon initial segment (AIS) and NaV channels are distributed in multiple dendrites, selective reduction of NaV channel activity in the soma was sufficient to decrease pacemaker frequency and increase susceptibility to DP block. Conversely, increasing somatic NaV current density raised pacemaker frequency and lowered susceptibility to DP block. Finally, when NaV currents were restricted to the soma, pacemaker activity occurred at abnormally high rates due to excessive local subthreshold NaV current. Together with computational simulations, these data show that both the slow pacemaker rate and the sensitivity to DP block that characterizes DA neurons result from the low density of somatic NaV channels. More generally, we conclude that the somatodendritic distribution of NaV channels is a major determinant of repetitive spiking frequency. PMID:23077037

  18. Differential distribution of the sodium-activated potassium channels slick and slack in mouse brain.

    Science.gov (United States)

    Rizzi, Sandra; Knaus, Hans-Günther; Schwarzer, Christoph

    2016-07-01

    The sodium-activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are high-conductance potassium channels of the Slo family. In neurons, Slick and Slack channels are involved in the generation of slow afterhyperpolarization, in the regulation of firing patterns, and in setting and stabilizing the resting membrane potential. The distribution and subcellular localization of Slick and Slack channels in the mouse brain have not yet been established in detail. The present study addresses this issue through in situ hybridization and immunohistochemistry. Both channels were widely distributed and exhibited distinct distribution patterns. However, in some brain regions, their expression overlapped. Intense Slick channel immunoreactivity was observed in processes, varicosities, and neuronal cell bodies of the olfactory bulb, granular zones of cortical regions, hippocampus, amygdala, lateral septal nuclei, certain hypothalamic and midbrain nuclei, and several regions of the brainstem. The Slack channel showed primarily a diffuse immunostaining pattern, and labeling of cell somata and processes was observed only occasionally. The highest Slack channel expression was detected in the olfactory bulb, lateral septal nuclei, basal ganglia, and distinct areas of the midbrain, brainstem, and cerebellar cortex. In addition, comparing our data obtained from mouse brain with a previously published study on rat brain revealed some differences in the expression and distribution of Slick and Slack channels in these species. J. Comp. Neurol. 524:2093-2116, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  19. Sodium Channel β2 Subunits Prevent Action Potential Propagation Failures at Axonal Branch Points.

    Science.gov (United States)

    Cho, In Ha; Panzera, Lauren C; Chin, Morven; Hoppa, Michael B

    2017-09-27

    Neurotransmitter release depends on voltage-gated Na + channels (Na v s) to propagate an action potential (AP) successfully from the axon hillock to a synaptic terminal. Unmyelinated sections of axon are very diverse structures encompassing branch points and numerous presynaptic terminals with undefined molecular partners of Na + channels. Using optical recordings of Ca 2+ and membrane voltage, we demonstrate here that Na + channel β2 subunits (Na v β2s) are required to prevent AP propagation failures across the axonal arborization of cultured rat hippocampal neurons (mixed male and female). When Na v β2 expression was reduced, we identified two specific phenotypes: (1) membrane excitability and AP-evoked Ca 2+ entry were impaired at synapses and (2) AP propagation was severely compromised with >40% of axonal branches no longer responding to AP-stimulation. We went on to show that a great deal of electrical signaling heterogeneity exists in AP waveforms across the axonal arborization independent of axon morphology. Therefore, Na v β2 is a critical regulator of axonal excitability and synaptic function in unmyelinated axons. SIGNIFICANCE STATEMENT Voltage-gated Ca 2+ channels are fulcrums of neurotransmission that convert electrical inputs into chemical outputs in the form of vesicle fusion at synaptic terminals. However, the role of the electrical signal, the presynaptic action potential (AP), in modulating synaptic transmission is less clear. What is the fidelity of a propagating AP waveform in the axon and what molecules shape it throughout the axonal arborization? Our work identifies several new features of AP propagation in unmyelinated axons: (1) branches of a single axonal arborization have variable AP waveforms independent of morphology, (2) Na + channel β2 subunits modulate AP-evoked Ca 2+ -influx, and (3) β2 subunits maintain successful AP propagation across the axonal arbor. These findings are relevant to understanding the flow of excitation in the

  20. Epoxyeicosatrienoic acid analogue lowers blood pressure through vasodilation and sodium channel inhibition

    Czech Academy of Sciences Publication Activity Database

    Khan, M. A. H.; Pavlov, T. S.; Christain, S. V.; Neckář, Jan; Staruschenko, A.; Gauthier, K. M.; Capdevila, J. H.; Falck, J. R.; Campbell, W. B.; Imig, J. D.

    2014-01-01

    Roč. 127, č. 7 (2014), s. 463-474 ISSN 0143-5221 Institutional support: RVO:67985823 Keywords : angiotensin II * epithelial sodium channel (ENaC) * epoxyeicosatrienoic acid analogue * hypertension Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 5.598, year: 2014

  1. Molecular basis for class Ib anti-arrhythmic inhibition of cardiac sodium channels

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Galpin, Jason D; Frankel, Adam

    2011-01-01

    Cardiac sodium channels are established therapeutic targets for the management of inherited and acquired arrhythmias by class I anti-arrhythmic drugs (AADs). These drugs share a common target receptor bearing two highly conserved aromatic side chains, and are subdivided by the Vaughan-Williams...

  2. Modulation of epithelial sodium channel trafficking and function by sodium 4-phenylbutyrate in human nasal epithelial cells.

    Science.gov (United States)

    Prulière-Escabasse, Virginie; Planès, Carole; Escudier, Estelle; Fanen, Pascale; Coste, André; Clerici, Christine

    2007-11-23

    Sodium 4-phenylbutyrate (4-PBA) has been shown to correct the cellular trafficking of several mutant or nonmutant plasma membrane proteins such as cystic fibrosis transmembrane conductance regulator through the expression of 70-kDa heat shock proteins. The objective of the study was to determine whether 4-PBA may influence the functional expression of epithelial sodium channels (ENaC) in human nasal epithelial cells (HNEC). Using primary cultures of HNEC, we demonstrate that 4-PBA (5 mm for 6 h) markedly stimulated amiloride-sensitive sodium channel activity and that this was related to an increased abundance of alpha-, beta-, and gamma-ENaC subunits in the apical membrane. The increase in ENaC cell surface expression (i) was due to insertion of newly ENaC subunits as determined by brefeldin A experiments and (ii) was not associated with cell surface retention of ENaC subunits because endocytosis of ENaC subunits was unchanged. In addition, we find that ENaC co-immunoprecipitated with the heat shock protein constitutively expressed Hsc70, that has been reported to modulate ENaC trafficking, and that 4-PBA decreased Hsc70 protein level. Finally, we report that in cystic fibrosis HNEC obtained from two cystic fibrosis patients, 4-PBA increased functional expression of ENaC as demonstrated by the increase in amiloride-sensitive sodium transport and in alpha-, beta-, and gamma-ENaC subunit expression in the apical membrane. Our results suggest that in HNEC, 4-PBA increases the functional expression of ENaC through the insertion of new alpha-, beta-, and gamma-ENaC subunits into the apical membrane and also suggest that 4-PBA could modify ENaC trafficking by reducing Hsc70 protein expression.

  3. Gating transitions in the selectivity filter region of a sodium channel are coupled to the domain IV voltage sensor.

    Science.gov (United States)

    Capes, Deborah L; Arcisio-Miranda, Manoel; Jarecki, Brian W; French, Robert J; Chanda, Baron

    2012-02-14

    Voltage-dependent ion channels are crucial for generation and propagation of electrical activity in biological systems. The primary mechanism for voltage transduction in these proteins involves the movement of a voltage-sensing domain (D), which opens a gate located on the cytoplasmic side. A distinct conformational change in the selectivity filter near the extracellular side has been implicated in slow inactivation gating, which is important for spike frequency adaptation in neural circuits. However, it remains an open question whether gating transitions in the selectivity filter region are also actuated by voltage sensors. Here, we examine conformational coupling between each of the four voltage sensors and the outer pore of a eukaryotic voltage-dependent sodium channel. The voltage sensors of these sodium channels are not structurally symmetric and exhibit functional specialization. To track the conformational rearrangements of individual voltage-sensing domains, we recorded domain-specific gating pore currents. Our data show that, of the four voltage sensors, only the domain IV voltage sensor is coupled to the conformation of the selectivity filter region of the sodium channel. Trapping the outer pore in a particular conformation with a high-affinity toxin or disulphide crossbridge impedes the return of this voltage sensor to its resting conformation. Our findings directly establish that, in addition to the canonical electromechanical coupling between voltage sensor and inner pore gates of a sodium channel, gating transitions in the selectivity filter region are also coupled to the movement of a voltage sensor. Furthermore, our results also imply that the voltage sensor of domain IV is unique in this linkage and in the ability to initiate slow inactivation in sodium channels.

  4. Asymmetric functional contributions of acidic and aromatic side chains in sodium channel voltage-sensor domains

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Elstone, Fisal D; Niciforovic, Ana P

    2014-01-01

    largely enigmatic. To this end, natural and unnatural side chain substitutions were made in the S2 hydrophobic core (HC), the extracellular negative charge cluster (ENC), and the intracellular negative charge cluster (INC) of the four VSDs of the skeletal muscle sodium channel isoform (NaV1......Voltage-gated sodium (NaV) channels mediate electrical excitability in animals. Despite strong sequence conservation among the voltage-sensor domains (VSDs) of closely related voltage-gated potassium (KV) and NaV channels, the functional contributions of individual side chains in Nav VSDs remain.......4). The results show that the highly conserved aromatic side chain constituting the S2 HC makes distinct functional contributions in each of the four NaV domains. No obvious cation-pi interaction exists with nearby S4 charges in any domain, and natural and unnatural mutations at these aromatic sites produce...

  5. Conduction velocity is regulated by sodium channel inactivation in unmyelinated axons innervating the rat cranial meninges.

    Science.gov (United States)

    De Col, Roberto; Messlinger, Karl; Carr, Richard W

    2008-02-15

    Axonal conduction velocity varies according to the level of preceding impulse activity. In unmyelinated axons this typically results in a slowing of conduction velocity and a parallel increase in threshold. It is currently held that Na(+)-K(+)-ATPase-dependent axonal hyperpolarization is responsible for this slowing but this has long been equivocal. We therefore examined conduction velocity changes during repetitive activation of single unmyelinated axons innervating the rat cranial meninges. In direct contradiction to the currently accepted postulate, Na(+)-K(+)-ATPase blockade actually enhanced activity-induced conduction velocity slowing, while the degree of velocity slowing was curtailed in the presence of lidocaine (10-300 microm) and carbamazepine (30-500 microm) but not tetrodotoxin (TTX, 10-80 nm). This suggests that a change in the number of available sodium channels is the most prominent factor responsible for activity-induced changes in conduction velocity in unmyelinated axons. At moderate stimulus frequencies, axonal conduction velocity is determined by an interaction between residual sodium channel inactivation following each impulse and the retrieval of channels from inactivation by a concomitant Na(+)-K(+)-ATPase-mediated hyperpolarization. Since the process is primarily dependent upon sodium channel availability, tracking conduction velocity provides a means of accessing relative changes in the excitability of nociceptive neurons.

  6. RNAi-mediated knockdown of the voltage gated sodium ion channel TcNav causes mortality in Tribolium castaneum.

    Science.gov (United States)

    Abd El Halim, Hesham M; Alshukri, Baida M H; Ahmad, Munawar S; Nakasu, Erich Y T; Awwad, Mohammed H; Salama, Elham M; Gatehouse, Angharad M R; Edwards, Martin G

    2016-07-14

    The voltage-gated sodium ion channel (VGSC) belongs to the largest superfamily of ion channels. Since VGSCs play key roles in physiological processes they are major targets for effective insecticides. RNA interference (RNAi) is widely used to analyse gene function, but recently, it has shown potential to contribute to novel strategies for selectively controlling agricultural insect pests. The current study evaluates the delivery of dsRNA targeted to the sodium ion channel paralytic A (TcNav) gene in Tribolium castaneum as a viable means of controlling this insect pest. Delivery of TcNav dsRNA caused severe developmental arrest with larval mortalities up to 73% post injection of dsRNA. Injected larvae showed significant (p < 0.05) knockdown in gene expression between 30-60%. Expression was also significantly (p < 0.05) reduced in pupae following injection causing 30% and 42% knockdown for early and late pupal stages, respectively. Oral delivery of dsRNA caused dose-dependant mortalities of between 19 and 51.34%; this was accompanied by significant (p < 0.05) knockdown in gene expression following 3 days of continuous feeding. The majority of larvae injected with, or fed, dsRNA died during the final larval stage prior to pupation. This work provides evidence of a viable RNAi-based strategy for insect control.

  7. Cardiac sodium channel NaV1.5 distribution in myocytes via interacting proteins: the multiple pool model.

    Science.gov (United States)

    Shy, Diana; Gillet, Ludovic; Abriel, Hugues

    2013-04-01

    The cardiac sodium current (INa) is responsible for the rapid depolarization of cardiac cells, thus allowing for their contraction. It is also involved in regulating the duration of the cardiac action potential (AP) and propagation of the impulse throughout the myocardium. Cardiac INa is generated by the voltage-gated Na(+) channel, NaV1.5, a 2016-residue protein which forms the pore of the channel. Over the past years, hundreds of mutations in SCN5A, the human gene coding for NaV1.5, have been linked to many cardiac electrical disorders, including the congenital and acquired long QT syndrome, Brugada syndrome, conduction slowing, sick sinus syndrome, atrial fibrillation, and dilated cardiomyopathy. Similar to many membrane proteins, NaV1.5 has been found to be regulated by several interacting proteins. In some cases, these different proteins, which reside in distinct membrane compartments (i.e. lateral membrane vs. intercalated disks), have been shown to interact with the same regulatory domain of NaV1.5, thus suggesting that several pools of NaV1.5 channels may co-exist in cardiac cells. The aim of this review article is to summarize the recent works that demonstrate its interaction with regulatory proteins and illustrate the model that the sodium channel NaV1.5 resides in distinct and different pools in cardiac cells. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Modeling and Validation of Sodium Plugging for Heat Exchangers in Sodium-cooled Fast Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ferroni, Paolo [Westinghouse Electric Company LLC, Cranberry Township, PA (United States). Global Technology Development; Tatli, Emre [Westinghouse Electric Company LLC, Cranberry Township, PA (United States); Czerniak, Luke [Westinghouse Electric Company LLC, Cranberry Township, PA (United States); Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States); Chien, Hual-Te [Argonne National Lab. (ANL), Argonne, IL (United States); Yoichi, Momozaki [Argonne National Lab. (ANL), Argonne, IL (United States); Bakhtiari, Sasan [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-06-29

    The project “Modeling and Validation of Sodium Plugging for Heat Exchangers in Sodium-cooled Fast Reactor Systems” was conducted jointly by Westinghouse Electric Company (Westinghouse) and Argonne National Laboratory (ANL), over the period October 1, 2013- March 31, 2016. The project’s motivation was the need to provide designers of Sodium Fast Reactors (SFRs) with a validated, state-of-the-art computational tool for the prediction of sodium oxide (Na2O) deposition in small-diameter sodium heat exchanger (HX) channels, such as those in the diffusion bonded HXs proposed for SFRs coupled with a supercritical CO2 (sCO2) Brayton cycle power conversion system. In SFRs, Na2O deposition can potentially occur following accidental air ingress in the intermediate heat transport system (IHTS) sodium and simultaneous failure of the IHTS sodium cold trap. In this scenario, oxygen can travel through the IHTS loop and reach the coldest regions, represented by the cold end of the sodium channels of the HXs, where Na2O precipitation may initiate and continue. In addition to deteriorating HX heat transfer and pressure drop performance, Na2O deposition can lead to channel plugging especially when the size of the sodium channels is small, which is the case for diffusion bonded HXs whose sodium channel hydraulic diameter is generally below 5 mm. Sodium oxide melts at a high temperature well above the sodium melting temperature such that removal of a solid plug such as through dissolution by pure sodium could take a lengthy time. The Sodium Plugging Phenomena Loop (SPPL) was developed at ANL, prior to this project, for investigating Na2O deposition phenomena within sodium channels that are prototypical of the diffusion bonded HX channels envisioned for SFR-sCO2 systems. In this project, a Computational Fluid Dynamic (CFD) model capable of simulating the thermal-hydraulics of the SPPL test

  9. Mitochondria-derived superoxide and voltage-gated sodium channels in baroreceptor neurons from chronic heart-failure rats.

    Science.gov (United States)

    Tu, Huiyin; Liu, Jinxu; Zhu, Zhen; Zhang, Libin; Pipinos, Iraklis I; Li, Yu-Long

    2012-01-01

    Our previous study has shown that chronic heart failure (CHF) reduces expression and activation of voltage-gated sodium (Na(v)) channels in baroreceptor neurons, which are involved in the blunted baroreceptor neuron excitability and contribute to the impairment of baroreflex in the CHF state. The present study examined the role of mitochondria-derived superoxide in the reduced Na(v) channel function in coronary artery ligation-induced CHF rats. CHF decreased the protein expression and activity of mitochondrial complex enzymes and manganese SOD (MnSOD) and elevated the mitochondria-derived superoxide level in the nodose neurons compared with those in sham nodose neurons. Adenoviral MnSOD (Ad.MnSOD) gene transfection (50 multiplicity of infection) into the nodose neurons normalized the MnSOD expression and reduced the elevation of mitochondrial superoxide in the nodose neurons from CHF rats. Ad.MnSOD also partially reversed the reduced protein expression and current density of the Na(v) channels and the suppressed cell excitability (the number of action potential and the current threshold for inducing action potential) in aortic baroreceptor neurons from CHF rats. Data from the present study indicate that mitochondrial dysfunction, including decreased protein expression and activity of mitochondrial complex enzymes and MnSOD and elevated mitochondria-derived superoxide, contributes to the reduced Na(v) channel activation and cell excitability in the aortic baroreceptor neurons in CHF rats.

  10. Native pyroglutamation of huwentoxin-IV: a post-translational modification that increases the trapping ability to the sodium channel.

    Science.gov (United States)

    Rong, Mingqiang; Duan, Zhigui; Chen, Juliang; Li, Jianglin; Xiao, Yuchen; Liang, Songping

    2013-01-01

    Huwentoxin-IV (HWTX-IV), a tetrodotoxin-sensitive (TTX-s) sodium channel antagonist, is found in the venom of the Chinese spider Ornithoctonus huwena. A naturally modified HWTX-IV (mHWTX-IV), having a molecular mass 18 Da lower than HWTX-IV, has also been isolated from the venom of the same spider. By a combination of enzymatic fragmentation and MS/MS de novo sequencing, mHWTX-IV has been shown to have the same amino acid sequence as that of HWTX-IV, except that the N-terminal glutamic acid replaced by pyroglutamic acid. mHWTX-IV inhibited tetrodotoxin-sensitive voltage-gated sodium channels of dorsal root ganglion neurons with an IC50 nearly equal to native HWTX-IV. mHWTX-IV showed the same activation and inactivation kinetics seen for native HWTX-IV. In contrast with HWTX-IV, which dissociates at moderate voltage depolarization voltages (+50 mV, 180000 ms), mHWTX-IV inhibition of TTX-sensitive sodium channels is not reversed by strong depolarization voltages (+200 mV, 500 ms). Recovery of Nav1.7current was voltage-dependent and was induced by extreme depolarization in the presence of HWTX-IV, but no obvious current was elicited after application of mHWTX-IV. Our data indicate that the N-terminal modification of HWTX-IV gives the peptide toxin a greater ability to trap the voltage sensor in the sodium channel. Loss of a negative charge, caused by cyclization at the N-terminus, is a possible reason why the modified toxin binds much stronger. To our knowledge, this is the first report of a pyroglutamic acid residue in a spider toxin; this modification seems to increase the trapping ability of the voltage sensor in the sodium channel.

  11. Native pyroglutamation of huwentoxin-IV: a post-translational modification that increases the trapping ability to the sodium channel.

    Directory of Open Access Journals (Sweden)

    Mingqiang Rong

    Full Text Available Huwentoxin-IV (HWTX-IV, a tetrodotoxin-sensitive (TTX-s sodium channel antagonist, is found in the venom of the Chinese spider Ornithoctonus huwena. A naturally modified HWTX-IV (mHWTX-IV, having a molecular mass 18 Da lower than HWTX-IV, has also been isolated from the venom of the same spider. By a combination of enzymatic fragmentation and MS/MS de novo sequencing, mHWTX-IV has been shown to have the same amino acid sequence as that of HWTX-IV, except that the N-terminal glutamic acid replaced by pyroglutamic acid. mHWTX-IV inhibited tetrodotoxin-sensitive voltage-gated sodium channels of dorsal root ganglion neurons with an IC50 nearly equal to native HWTX-IV. mHWTX-IV showed the same activation and inactivation kinetics seen for native HWTX-IV. In contrast with HWTX-IV, which dissociates at moderate voltage depolarization voltages (+50 mV, 180000 ms, mHWTX-IV inhibition of TTX-sensitive sodium channels is not reversed by strong depolarization voltages (+200 mV, 500 ms. Recovery of Nav1.7current was voltage-dependent and was induced by extreme depolarization in the presence of HWTX-IV, but no obvious current was elicited after application of mHWTX-IV. Our data indicate that the N-terminal modification of HWTX-IV gives the peptide toxin a greater ability to trap the voltage sensor in the sodium channel. Loss of a negative charge, caused by cyclization at the N-terminus, is a possible reason why the modified toxin binds much stronger. To our knowledge, this is the first report of a pyroglutamic acid residue in a spider toxin; this modification seems to increase the trapping ability of the voltage sensor in the sodium channel.

  12. Structural inferences for the native skeletal muscle sodium channel as derived from patterns of endogenous proteolysis

    International Nuclear Information System (INIS)

    Kraner, S.; Yang, J.; Barchi, R.

    1989-01-01

    The alpha subunit (Mr approximately 260,000) of the rat skeletal muscle sodium channel is sensitive to cleavage by endogenous proteases during the isolation of muscle surface membrane. Antisera against synthetic oligopeptides were used to map the resultant fragments in order to identify protease-sensitive regions of the channel's structure in its native membrane environment. Antibodies to the amino terminus labeled major fragments of Mr approximately 130,000 and 90,000 and lesser amounts of other peptides as small as Mr approximately 12,000. Antisera to epitopes within the carboxyl-terminal half of the primary sequence recognized two fragments of Mr approximately 110,000 and 78,000. Individual antisera also selectively labeled smaller polypeptides in the most extensively cleaved preparations. The immunoreactivity patterns of monoclonal antibodies previously raised against the purified channel were then surveyed. The binding sites for one group of monoclonals, including several that recognize subtype-specific epitopes in the channel structure, were localized within a 12-kDa fragment near the amino terminus. The distribution of carbohydrate along the primary structure of the channel was also assessed by quantitating 125 I-wheat germ agglutinin and 125I-concanavalin A binding to the proteolytic peptides. Most of the carbohydrate detected by these lectins was located between 22 and 90 kDa from the amino terminus of the protein. No lectin binding was detected to fragments arising from carboxyl-terminal half of the protein. These results were analyzed in terms of current models of sodium channel tertiary structure. In its normal membrane environment, the skeletal muscle sodium channel appears sensitive to cleavage by endogenous proteases in regions predicted to link the four repeat domains on the cytoplasmic side of the membrane while the repeat domains themselves are resistant to proteolysis

  13. Ionizing radiation alters the properties of sodium channels in rat brain synaptosomes

    Energy Technology Data Exchange (ETDEWEB)

    Mullin, M J; Hunt, W A; Harris, R A

    1986-08-01

    The effect of ionizing radiation on neuronal membrane function was assessed by measurement of neurotoxin-stimulated /sup 22/Na/sup +/ uptake by rat brain synaptosomes. High-energy electrons and gamma photons were equally effective in reducing the maximal uptake of /sup 22/Na/sup +/ with no significant change in the affinity of veratridine for its binding site in the channel. Ionizing radiation reduced the veratridine-stimulated uptake at the earliest times measured (3 and 5 s), when the rate of uptake was greatest. Batrachotoxin-stimulated /sup 22/Na/sup +/ uptake was less sensitive to inhibition by radiation. The binding of (/sup 3/H)saxitoxin to its receptor in the sodium channel was unaffected by exposure to ionizing radiation. The effect of ionizing radiation on the lipid order of rat brain synaptic plasma membranes was measured by the fluorescence polarization of the molecular probes 1,6-diphenyl-1,3,5-hexatriene and 1-(4-(trimethylammonium)phenyl)-6-phenyl-1,3,5-hexatriene. A dose of radiation that reduced the veratridine-stimulated uptake of /sup 22/Na/sup +/ had no effect on the fluorescence polarization of either probe. These results demonstrate an inhibitory effect of ionizing radiation on the voltage-sensitive sodium channels in rat brain synaptosomes. This effect of radiation is not dependent on changes in the order of membrane lipids.

  14. Determining the Advantages, Costs, and Trade-Offs of a Novel Sodium Channel Mutation in the Copepod Acartia hudsonica to Paralytic Shellfish Toxins (PST.

    Directory of Open Access Journals (Sweden)

    Michael Finiguerra

    Full Text Available The marine copepod Acartia hudsonica was shown to be adapted to dinoflagellate prey, Alexandrium fundyense, which produce paralytic shellfish toxins (PST. Adaptation to PSTs in other organisms is caused by a mutation in the sodium channel. Recently, a mutation in the sodium channel in A. hudsonica was found. In this study, we rigorously tested for advantages, costs, and trade-offs associated with the mutant isoform of A. hudsonica under toxic and non-toxic conditions. We combined fitness with wild-type: mutant isoform ratio measurements on the same individual copepod to test our hypotheses. All A. hudsonica copepods express both the wild-type and mutant sodium channel isoforms, but in different proportions; some individuals express predominantly mutant (PMI or wild-type isoforms (PWI, while most individuals express relatively equal amounts of each (EI. There was no consistent pattern of improved performance as a function of toxin dose for egg production rate (EPR, ingestion rate (I, and gross growth efficiency (GGE for individuals in the PMI group relative to individuals in the PWI expression group. Neither was there any evidence to indicate a fitness benefit to the mutant isoform at intermediate toxin doses. No clear advantage under toxic conditions was associated with the mutation. Using a mixed-diet approach, there was also no observed relationship between individual wild-type: mutant isoform ratios and among expression groups, on both toxic and non-toxic diets, for eggs produced over three days. Lastly, expression of the mutant isoform did not mitigate the negative effects of the toxin. That is, the reductions in EPR from a toxic to non-toxic diet for copepods were independent of expression groups. Overall, the results did not support our hypotheses; the mutant sodium channel isoform does not appear to be related to adaptation to PST in A. hudsonica. Other potential mechanisms responsible for the adaptation are discussed.

  15. Parallel evolution of tetrodotoxin resistance in three voltage-gated sodium channel genes in the garter snake Thamnophis sirtalis.

    Science.gov (United States)

    McGlothlin, Joel W; Chuckalovcak, John P; Janes, Daniel E; Edwards, Scott V; Feldman, Chris R; Brodie, Edmund D; Pfrender, Michael E; Brodie, Edmund D

    2014-11-01

    Members of a gene family expressed in a single species often experience common selection pressures. Consequently, the molecular basis of complex adaptations may be expected to involve parallel evolutionary changes in multiple paralogs. Here, we use bacterial artificial chromosome library scans to investigate the evolution of the voltage-gated sodium channel (Nav) family in the garter snake Thamnophis sirtalis, a predator of highly toxic Taricha newts. Newts possess tetrodotoxin (TTX), which blocks Nav's, arresting action potentials in nerves and muscle. Some Thamnophis populations have evolved resistance to extremely high levels of TTX. Previous work has identified amino acid sites in the skeletal muscle sodium channel Nav1.4 that confer resistance to TTX and vary across populations. We identify parallel evolution of TTX resistance in two additional Nav paralogs, Nav1.6 and 1.7, which are known to be expressed in the peripheral nervous system and should thus be exposed to ingested TTX. Each paralog contains at least one TTX-resistant substitution identical to a substitution previously identified in Nav1.4. These sites are fixed across populations, suggesting that the resistant peripheral nerves antedate resistant muscle. In contrast, three sodium channels expressed solely in the central nervous system (Nav1.1-1.3) showed no evidence of TTX resistance, consistent with protection from toxins by the blood-brain barrier. We also report the exon-intron structure of six Nav paralogs, the first such analysis for snake genes. Our results demonstrate that the molecular basis of adaptation may be both repeatable across members of a gene family and predictable based on functional considerations. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. A novel tarantula toxin stabilizes the deactivated voltage sensor of bacterial sodium channel.

    Science.gov (United States)

    Tang, Cheng; Zhou, Xi; Nguyen, Phuong Tran; Zhang, Yunxiao; Hu, Zhaotun; Zhang, Changxin; Yarov-Yarovoy, Vladimir; DeCaen, Paul G; Liang, Songping; Liu, Zhonghua

    2017-07-01

    Voltage-gated sodium channels (Na V s) are activated by transiting the voltage sensor from the deactivated to the activated state. The crystal structures of several bacterial Na V s have captured the voltage sensor module (VSM) in an activated state, but structure of the deactivated voltage sensor remains elusive. In this study, we sought to identify peptide toxins stabilizing the deactivated VSM of bacterial Na V s. We screened fractions from several venoms and characterized a cystine knot toxin called JZTx-27 from the venom of tarantula Chilobrachys jingzhao as a high-affinity antagonist of the prokaryotic Na V s Ns V Ba (nonselective voltage-gated Bacillus alcalophilus ) and NaChBac (bacterial sodium channel from Bacillus halodurans ) (IC 50 = 112 nM and 30 nM, respectively). JZTx-27 was more efficacious at weaker depolarizing voltages and significantly slowed the activation but accelerated the deactivation of Ns V Ba, whereas the local anesthetic drug lidocaine was shown to antagonize Ns V Ba without affecting channel gating. Mutation analysis confirmed that JZTx-27 bound to S3-4 linker of Ns V Ba, with F98 being the critical residue in determining toxin affinity. All electrophysiological data and in silico analysis suggested that JZTx-27 trapped VSM of Ns V Ba in one of the deactivated states. In mammalian Na V s, JZTx-27 preferably inhibited the inactivation of Na V 1.5 by targeting the fourth transmembrane domain. To our knowledge, this is the first report of peptide antagonist for prokaryotic Na V s. More important, we proposed that JZTx-27 stabilized the Ns V Ba VSM in the deactivated state and may be used as a probe to determine the structure of the deactivated VSM of Na V s.-Tang, C., Zhou, X., Nguyen, P. T., Zhang, Y., Hu, Z., Zhang, C., Yarov-Yarovoy, V., DeCaen, P. G., Liang, S., Liu, Z. A novel tarantula toxin stabilizes the deactivated voltage sensor of bacterial sodium channel. © FASEB.

  17. Influence of water-soluble channeling agents on the release of diclofenac sodium from Irvingia malayana wax matrix tablets.

    Science.gov (United States)

    Yotsawimonwat, Songwut; Charumanee, Suporn; Kaewvichit, Sayam; Sirithunyalug, Jakkapan; Sirisa-Ard, Panee; Piyamongkol, Sirivipa; Siangwong, Kulthawat

    2017-05-01

    Irvingia malayana wax (IW) is majorly composed of esters of medium chain fatty acids. Its melting point is low and closed to the body temperature. This study aimed at investigating the potential of IW as a matrix-forming agent and evaluate the effect of soluble channeling agents on the release of diclofenac sodium (DS) from IW matrix tablets. The preformulation study by infrared spectroscopy and differential scanning calorimetry showed no incompatibility between IW and DS or soluble channeling agents, namely PEG 4000, PEG 6000 and lactose. IW retarded the release of DS from the matrix tablets more efficiently than carnauba wax due to its greater hydrophobicity and its ability to become partial molten wax at 37° C. Factors affecting the release of DS from IW matrix were drug concentrations, and types and concentrations of channeling agents. The release of DS significantly improved when DS concentration reached approximately 33%. The fast dissolving channeling agent, lactose, could enhance the drug release rate more effectively than PEG 4000 and PEG 6000, respectively. The linear relationship between the DS release rate and the concentration of the chosen channeling agent, PEG 6000, was found (r 2 =0.9866).

  18. Effects of n-3 polyunsaturated fatty acids on cardiac ion channels

    Directory of Open Access Journals (Sweden)

    Cristina eMoreno

    2012-07-01

    Full Text Available Dietary n-3 polyunsaturated fatty acids (PUFAs have been reported to exhibit antiarrhythmic properties, attributed to their capability to modulate ion channels. In the present review, we will focus on the effects of PUFAs on cardiac sodium channel (Nav1.5 and two potassium channels (Kv (Kv1.5 and Kv11.1. n-3 marine (docohexaenoic and eicohexapentaenoic acid and plant origin (alpha-linolenic acid PUFAs block Kv1.5 and Kv11.1 channels at physiological concentrations. Also, DHA and EPA decreased Nav1.5 and calcium channels. These effects on Na and Ca channels theoretically should shorten the cardiac APD, whereas the blocking actions of n-3 PUFAs of Kv channels should lengthen the cardiac action potential. Experiments performed in female rabbits fed with a diet rich in n-3 PUFAs show a longer cardiac action potential and effective refractory period. This study was performed to analyze if their antiarrhythmic effects are due to a reduction of triangulation, reverse use-dependence, instability and dispersion of the cardiac action potential (TRIaD as a measure of proarrhythmic effects. Dietary n-3 PUFAs supplementation markedly reduced dofetilide-induced TRIaD and abolished dofetilide-induced torsades de pointes (TdP. Ultrafast sodium channel block by DHA may account for the antiarrhythmic protection of dietary supplements of n-3 PUFAs against dofetilide induced proarrhythmia observed in this animal model. The cardiac effects of n-3 PUFAs resemble those of amiodarone: both block sodium, calcium and potassium channels, have anti-adrenergic properties, can prolong the cardiac action potential, reverse TRIaD and suppress TdP. The main difference is that sodium channel block by n-3 PUFAs has a much faster onset and offset kinetics. Therefore, the electrophysiological profile of n-3 PUFAs appears more desirable: the duration of reduced sodium current (facilitates re-entry is much shorter. The n-3 PUFAs appear as a safer alternative to other antiarrhythmic

  19. Transient receptor potential channels in essential hypertension

    DEFF Research Database (Denmark)

    Liu, Daoyan; Scholze, Alexandra; Zhu, Zhiming

    2006-01-01

    The role of nonselective cation channels of the transient receptor potential channel (TRPC) family in essential hypertension has not yet been investigated.......The role of nonselective cation channels of the transient receptor potential channel (TRPC) family in essential hypertension has not yet been investigated....

  20. Sodium channel Nav1.7 immunoreactivity in painful human dental pulp and burning mouth syndrome

    Directory of Open Access Journals (Sweden)

    Yiangou Yiangos

    2010-06-01

    Full Text Available Abstract Background Voltage gated sodium channels Nav1.7 are involved in nociceptor nerve action potentials and are known to affect pain sensitivity in clinical genetic disorders. Aims and Objectives To study Nav1.7 levels in dental pulpitis pain, an inflammatory condition, and burning mouth syndrome (BMS, considered a neuropathic orofacial pain disorder. Methods Two groups of patients were recruited for this study. One group consisted of patients with dental pulpitis pain (n = 5 and controls (n = 12, and the other patients with BMS (n = 7 and controls (n = 10. BMS patients were diagnosed according to the International Association for the Study of Pain criteria; a pain history was collected, including the visual analogue scale (VAS. Immunohistochemistry with visual intensity and computer image analysis were used to evaluate levels of Nav1.7 in dental pulp tissue samples from the dental pulpitis group, and tongue biopsies from the BMS group. Results There was a significantly increased visual intensity score for Nav1.7 in nerve fibres in the painful dental pulp specimens, compared to controls. Image analysis showed a trend for an increase of the Nav1.7 immunoreactive % area in the painful pulp group, but this was not statistically significant. When expressed as a ratio of the neurofilament % area, there was a strong trend for an increase of Nav1.7 in the painful pulp group. Nav1.7 immunoreactive fibres were seen in abundance in the sub-mucosal layer of tongue biopsies, with no significant difference between BMS and controls. Conclusion Nav1.7 sodium channel may play a significant role in inflammatory dental pain. Clinical trials with selective Nav1.7 channel blockers should prioritise dental pulp pain rather than BMS.

  1. Sodium channel Nav1.7 immunoreactivity in painful human dental pulp and burning mouth syndrome

    Science.gov (United States)

    2010-01-01

    Background Voltage gated sodium channels Nav1.7 are involved in nociceptor nerve action potentials and are known to affect pain sensitivity in clinical genetic disorders. Aims and Objectives To study Nav1.7 levels in dental pulpitis pain, an inflammatory condition, and burning mouth syndrome (BMS), considered a neuropathic orofacial pain disorder. Methods Two groups of patients were recruited for this study. One group consisted of patients with dental pulpitis pain (n = 5) and controls (n = 12), and the other patients with BMS (n = 7) and controls (n = 10). BMS patients were diagnosed according to the International Association for the Study of Pain criteria; a pain history was collected, including the visual analogue scale (VAS). Immunohistochemistry with visual intensity and computer image analysis were used to evaluate levels of Nav1.7 in dental pulp tissue samples from the dental pulpitis group, and tongue biopsies from the BMS group. Results There was a significantly increased visual intensity score for Nav1.7 in nerve fibres in the painful dental pulp specimens, compared to controls. Image analysis showed a trend for an increase of the Nav1.7 immunoreactive % area in the painful pulp group, but this was not statistically significant. When expressed as a ratio of the neurofilament % area, there was a strong trend for an increase of Nav1.7 in the painful pulp group. Nav1.7 immunoreactive fibres were seen in abundance in the sub-mucosal layer of tongue biopsies, with no significant difference between BMS and controls. Conclusion Nav1.7 sodium channel may play a significant role in inflammatory dental pain. Clinical trials with selective Nav1.7 channel blockers should prioritise dental pulp pain rather than BMS. PMID:20529324

  2. Sodium intake in US ethnic subgroups and potential impact of a new sodium reduction technology: NHANES Dietary Modeling.

    Science.gov (United States)

    Fulgoni, Victor L; Agarwal, Sanjiv; Spence, Lisa; Samuel, Priscilla

    2014-12-18

    Because excessive dietary sodium intake is a major contributor to hypertension, a reduction in dietary sodium has been recommended for the US population. Using the National Health and Nutrition Examination Survey (NHANES) 2007-2010 data, we estimated current sodium intake in US population ethnic subgroups and modeled the potential impact of a new sodium reduction technology on sodium intake. NHANES 2007-2010 data were analyzed using The National Cancer Institute method to estimate usual intake in population subgroups. Potential impact of SODA-LO® Salt Microspheres sodium reduction technology on sodium intake was modeled using suggested sodium reductions of 20-30% in 953 foods and assuming various market penetrations. SAS 9.2, SUDAAN 11, and NHANES survey weights were used in all calculations with assessment across age, gender and ethnic groups. Current sodium intake across all population subgroups exceeds the Dietary Guidelines 2010 recommendations and has not changed during the last decade. However, sodium intake measured as a function of food intake has decreased significantly during the last decade for all ethnicities. "Grain Products" and "Meat, Poultry, Fish, & Mixtures" contribute about 2/3rd of total sodium intake. Sodium reduction, using SODA-LO® Salt Microspheres sodium reduction technology (with 100% market penetration) was estimated to be 185-323 mg/day or 6.3-8.4% of intake depending upon age, gender and ethnic group. Current sodium intake in US ethnic subgroups exceeds the recommendations and sodium reduction technologies could potentially help reduce dietary sodium intake among those groups.

  3. Chronic ciguatoxin treatment induces synaptic scaling through voltage gated sodium channels in cortical neurons.

    Science.gov (United States)

    Martín, Víctor; Vale, Carmen; Rubiolo, Juan A; Roel, Maria; Hirama, Masahiro; Yamashita, Shuji; Vieytes, Mercedes R; Botana, Luís M

    2015-06-15

    Ciguatoxins are sodium channels activators that cause ciguatera, one of the most widespread nonbacterial forms of food poisoning, which presents with long-term neurological alterations. In central neurons, chronic perturbations in activity induce homeostatic synaptic mechanisms that adjust the strength of excitatory synapses and modulate glutamate receptor expression in order to stabilize the overall activity. Immediate early genes, such as Arc and Egr1, are induced in response to activity changes and underlie the trafficking of glutamate receptors during neuronal homeostasis. To better understand the long lasting neurological consequences of ciguatera, it is important to establish the role that chronic changes in activity produced by ciguatoxins represent to central neurons. Here, the effect of a 30 min exposure of 10-13 days in vitro (DIV) cortical neurons to the synthetic ciguatoxin CTX 3C on Arc and Egr1 expression was evaluated using real-time polymerase chain reaction approaches. Since the toxin increased the mRNA levels of both Arc and Egr1, the effect of CTX 3C in NaV channels, membrane potential, firing activity, miniature excitatory postsynaptic currents (mEPSCs), and glutamate receptors expression in cortical neurons after a 24 h exposure was evaluated using electrophysiological and western blot approaches. The data presented here show that CTX 3C induced an upregulation of Arc and Egr1 that was prevented by previous coincubation of the neurons with the NaV channel blocker tetrodotoxin. In addition, chronic CTX 3C caused a concentration-dependent shift in the activation voltage of NaV channels to more negative potentials and produced membrane potential depolarization. Moreover, 24 h treatment of cortical neurons with 5 nM CTX 3C decreased neuronal firing and induced synaptic scaling mechanisms, as evidenced by a decrease in the amplitude of mEPSCs and downregulation in the protein level of glutamate receptors that was also prevented by tetrodotoxin

  4. Heteromeric Kv7.2/7.3 channels differentially regulate action potential initiation and conduction in neocortical myelinated axons.

    Science.gov (United States)

    Battefeld, Arne; Tran, Baouyen T; Gavrilis, Jason; Cooper, Edward C; Kole, Maarten H P

    2014-03-05

    Rapid energy-efficient signaling along vertebrate axons is achieved through intricate subcellular arrangements of voltage-gated ion channels and myelination. One recently appreciated example is the tight colocalization of K(v)7 potassium channels and voltage-gated sodium (Na(v)) channels in the axonal initial segment and nodes of Ranvier. The local biophysical properties of these K(v)7 channels and the functional impact of colocalization with Na(v) channels remain poorly understood. Here, we quantitatively examined K(v)7 channels in myelinated axons of rat neocortical pyramidal neurons using high-resolution confocal imaging and patch-clamp recording. K(v)7.2 and 7.3 immunoreactivity steeply increased within the distal two-thirds of the axon initial segment and was mirrored by the conductance density estimates, which increased from ~12 (proximal) to 150 pS μm(-2) (distal). The axonal initial segment and nodal M-currents were similar in voltage dependence and kinetics, carried by K(v)7.2/7.3 heterotetramers, 4% activated at the resting membrane potential and rapidly activated with single-exponential time constants (~15 ms at 28 mV). Experiments and computational modeling showed that while somatodendritic K(v)7 channels are strongly activated by the backpropagating action potential to attenuate the afterdepolarization and repetitive firing, axonal K(v)7 channels are minimally recruited by the forward-propagating action potential. Instead, in nodal domains K(v)7.2/7.3 channels were found to increase Na(v) channel availability and action potential amplitude by stabilizing the resting membrane potential. Thus, K(v)7 clustering near axonal Na(v) channels serves specific and context-dependent roles, both restraining initiation and enhancing conduction of the action potential.

  5. Comparison and optimization of in silico algorithms for predicting the pathogenicity of sodium channel variants in epilepsy.

    Science.gov (United States)

    Holland, Katherine D; Bouley, Thomas M; Horn, Paul S

    2017-07-01

    Variants in neuronal voltage-gated sodium channel α-subunits genes SCN1A, SCN2A, and SCN8A are common in early onset epileptic encephalopathies and other autosomal dominant childhood epilepsy syndromes. However, in clinical practice, missense variants are often classified as variants of uncertain significance when missense variants are identified but heritability cannot be determined. Genetic testing reports often include results of computational tests to estimate pathogenicity and the frequency of that variant in population-based databases. The objective of this work was to enhance clinicians' understanding of results by (1) determining how effectively computational algorithms predict epileptogenicity of sodium channel (SCN) missense variants; (2) optimizing their predictive capabilities; and (3) determining if epilepsy-associated SCN variants are present in population-based databases. This will help clinicians better understand the results of indeterminate SCN test results in people with epilepsy. Pathogenic, likely pathogenic, and benign variants in SCNs were identified using databases of sodium channel variants. Benign variants were also identified from population-based databases. Eight algorithms commonly used to predict pathogenicity were compared. In addition, logistic regression was used to determine if a combination of algorithms could better predict pathogenicity. Based on American College of Medical Genetic Criteria, 440 variants were classified as pathogenic or likely pathogenic and 84 were classified as benign or likely benign. Twenty-eight variants previously associated with epilepsy were present in population-based gene databases. The output provided by most computational algorithms had a high sensitivity but low specificity with an accuracy of 0.52-0.77. Accuracy could be improved by adjusting the threshold for pathogenicity. Using this adjustment, the Mendelian Clinically Applicable Pathogenicity (M-CAP) algorithm had an accuracy of 0.90 and a

  6. TWIK-1 two-pore domain potassium channels change ion selectivity and conduct inward leak sodium currents in hypokalemia.

    Science.gov (United States)

    Ma, Liqun; Zhang, Xuexin; Chen, Haijun

    2011-06-07

    Background potassium (K+) channels, which are normally selectively permeable to K+, maintain the cardiac resting membrane potential at around -80 mV. In subphysiological extracellular K+ concentrations ([K+]o), which occur in pathological hypokalemia, the resting membrane potential of human cardiomyocytes can depolarize to around -50 mV, whereas rat and mouse cardiomyocytes become hyperpolarized, consistent with the Nernst equation for K+. This paradoxical depolarization of cardiomyocytes in subphysiological [K+]o, which may contribute to cardiac arrhythmias, is thought to involve an inward leak sodium (Na+) current. Here, we show that human cardiac TWIK-1 (also known as K2P1) two-pore domain K+ channels change ion selectivity, becoming permeable to external Na+, and conduct inward leak Na+ currents in subphysiological [K+]o. A specific threonine residue (Thr118) within the pore selectivity sequence TxGYG was required for this altered ion selectivity. Mouse cardiomyocyte-derived HL-1 cells exhibited paradoxical depolarization with ectopic expression of TWIK-1 channels, whereas TWIK-1 knockdown in human spherical primary cardiac myocytes eliminated paradoxical depolarization. These findings indicate that ion selectivity of TWIK-1 K+ channels changes during pathological hypokalemia, elucidate a molecular basis for inward leak Na+ currents that could trigger or contribute to cardiac paradoxical depolarization in lowered [K+]o, and identify a mechanism for regulating cardiac excitability.

  7. Substitutions in the domain III voltage-sensing module enhance the sensitivity of an insect sodium channel to a scorpion beta-toxin.

    Science.gov (United States)

    Song, Weizhong; Du, Yuzhe; Liu, Zhiqi; Luo, Ningguang; Turkov, Michael; Gordon, Dalia; Gurevitz, Michael; Goldin, Alan L; Dong, Ke

    2011-05-06

    Scorpion β-toxins bind to the extracellular regions of the voltage-sensing module of domain II and to the pore module of domain III in voltage-gated sodium channels and enhance channel activation by trapping and stabilizing the voltage sensor of domain II in its activated state. We investigated the interaction of a highly potent insect-selective scorpion depressant β-toxin, Lqh-dprIT(3), from Leiurus quinquestriatus hebraeus with insect sodium channels from Blattella germanica (BgNa(v)). Like other scorpion β-toxins, Lqh-dprIT(3) shifts the voltage dependence of activation of BgNa(v) channels expressed in Xenopus oocytes to more negative membrane potentials but only after strong depolarizing prepulses. Notably, among 10 BgNa(v) splice variants tested for their sensitivity to the toxin, only BgNa(v)1-1 was hypersensitive due to an L1285P substitution in IIIS1 resulting from a U-to-C RNA-editing event. Furthermore, charge reversal of a negatively charged residue (E1290K) at the extracellular end of IIIS1 and the two innermost positively charged residues (R4E and R5E) in IIIS4 also increased the channel sensitivity to Lqh-dprIT(3). Besides enhancement of toxin sensitivity, the R4E substitution caused an additional 20-mV negative shift in the voltage dependence of activation of toxin-modified channels, inducing a unique toxin-modified state. Our findings provide the first direct evidence for the involvement of the domain III voltage-sensing module in the action of scorpion β-toxins. This hypersensitivity most likely reflects an increase in IIS4 trapping via allosteric mechanisms, suggesting coupling between the voltage sensors in neighboring domains during channel activation.

  8. Voltage-gated sodium channels: pharmaceutical targets via anticonvulsants to treat epileptic syndromes.

    Science.gov (United States)

    Abdelsayed, Mena; Sokolov, Stanislav

    2013-01-01

    Epilepsy is a brain disorder characterized by seizures and convulsions. The basis of epilepsy is an increase in neuronal excitability that, in some cases, may be caused by functional defects in neuronal voltage gated sodium channels, Nav1.1 and Nav1.2. The effects of antiepileptic drugs (AEDs) as effective therapies for epilepsy have been characterized by extensive research. Most of the classic AEDs targeting Nav share a common mechanism of action by stabilizing the channel's fast-inactivated state. In contrast, novel AEDs, such as lacosamide, stabilize the slow-inactivated state in neuronal Nav1.1 and Nav1.7 isoforms. This paper reviews the different mechanisms by which this stabilization occurs to determine new methods for treatment.

  9. Two novel sodium channel mutations associated with resistance to indoxacarb and metaflumizone in the diamondback moth, Plutella xylostella.

    Science.gov (United States)

    Wang, Xing-Liang; Su, Wen; Zhang, Jian-Heng; Yang, Yi-Hua; Dong, Ke; Wu, Yi-Dong

    2016-02-01

    Indoxacarb and metaflumizone belong to a relatively new class of sodium channel blocker insecticides (SCBIs). Due to intensive use of indoxacarb, field-evolved indoxacarb resistance has been reported in several lepidopteran pests, including the diamondback moth Plutella xylostella, a serious pest of cruciferous crops. In particular, the BY12 population of P. xylostella, collected from Baiyun, Guangdong Province of China in 2012, was 750-fold more resistant to indoxacarb and 70-fold more resistant to metaflumizone compared with the susceptible Roth strain. Comparison of complementary DNA sequences encoding the sodium channel genes of Roth and BY12 revealed two point mutations (F1845Y and V1848I) in the sixth segment of domain IV of the PxNav protein in the BY population. Both mutations are located within a highly conserved sequence region that is predicted to be involved in the binding sites of local anesthetics and SCBIs based on mammalian sodium channels. A significant correlation was observed among 10 field-collected populations between the mutant allele (Y1845 or I1848) frequencies (1.7% to 52.5%) and resistance levels to both indoxacarb (34- to 870-fold) and metaflumizone (1- to 70-fold). The two mutations were never found to co-exist in the same allele of PxNav , suggesting that they arose independently. This is the first time that sodium channel mutations have been associated with high levels of resistance to SCBIs. F1845Y and V1848I are molecular markers for resistance monitoring in the diamondback moth and possibly other insect pest species. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  10. The human Nav1.5 F1486 deletion associated with long QT syndrome leads to impaired sodium channel inactivation and reduced lidocaine sensitivity

    Science.gov (United States)

    Song, Weihua; Xiao, Yucheng; Chen, Hanying; Ashpole, Nicole M; Piekarz, Andrew D; Ma, Peilin; Hudmon, Andy; Cummins, Theodore R; Shou, Weinian

    2012-01-01

    The deletion of phenylalanine 1486 (F1486del) in the human cardiac voltage-gated sodium channel (hNav1.5) is associated with fatal long QT (LQT) syndrome. In this study we determined how F1486del impairs the functional properties of hNav1.5 and alters action potential firing in heterologous expression systems (human embryonic kidney (HEK) 293 cells) and their native cardiomyocyte background. Cells expressing hNav1.5-F1486del exhibited a loss-of-function alteration, reflected by an 80% reduction of peak current density, and several gain-of-function alterations, including reduced channel inactivation, enlarged window current, substantial augmentation of persistent late sodium current and an increase in ramp current. We also observed substantial action potential duration (APD) prolongation and prominent early afterdepolarizations (EADs) in neonatal cardiomyocytes expressing the F1486del channels, as well as in computer simulations of myocyte activity. In addition, lidocaine sensitivity was dramatically reduced, which probably contributed to the poor therapeutic outcome observed in the patient carrying the hNav1.5-F1486del mutation. Therefore, despite the significant reduction in peak current density, the F1486del mutation also leads to substantial gain-of-function alterations that are sufficient to cause APD prolongation and EADs, the predominant characteristic of LQTs. These data demonstrate that hNav1.5 mutations can have complex functional consequences and highlight the importance of identifying the specific molecular defect when evaluating potential treatments for individuals with prolonged QT intervals. PMID:22826127

  11. A SCN9A gene-encoded dorsal root ganglia sodium channel polymorphism associated with severe fibromyalgia

    Directory of Open Access Journals (Sweden)

    Vargas-Alarcon Gilberto

    2012-02-01

    Full Text Available Abstract Background A consistent line of investigation suggests that autonomic nervous system dysfunction may explain the multi-system features of fibromyalgia (FM; and that FM is a sympathetically maintained neuropathic pain syndrome. Dorsal root ganglia (DRG are key sympathetic-nociceptive short-circuit sites. Sodium channels located in DRG (particularly Nav1.7 act as molecular gatekeepers for pain detection. Nav1.7 is encoded in gene SCN9A of chromosome 2q24.3 and is predominantly expressed in the DRG pain-sensing neurons and sympathetic ganglia neurons. Several SCN9A sodium channelopathies have been recognized as the cause of rare painful dysautonomic syndromes such as paroxysmal extreme pain disorder and primary erythromelalgia. The aim of this study was to search for an association between fibromyalgia and several SCN9A sodium channels gene polymorphisms. Methods We studied 73 Mexican women suffering from FM and 48 age-matched women who considered themselves healthy. All participants filled out the Fibromyalgia Impact Questionnaire (FIQ. Genomic DNA from whole blood containing EDTA was extracted by standard techniques. The following SCN9A single-nucleotide polymorphisms (SNP were determined by 5' exonuclease TaqMan assays: rs4371369; rs4387806; rs4453709; rs4597545; rs6746030; rs6754031; rs7607967; rs12620053; rs12994338; and rs13017637. Results The frequency of the rs6754031 polymorphism was significantly different in both groups (P = 0.036 mostly due to an absence of the GG genotype in controls. Interestingly; patients with this rs6754031 GG genotype had higher FIQ scores (median = 80; percentile 25/75 = 69/88 than patients with the GT genotype (median = 63; percentile 25/75 = 58/73; P = 0.002 and the TT genotype (median = 71; percentile 25/75 = 64/77; P = 0.001. Conclusion In this ethnic group; a disabling form of FM is associated to a particular SCN9A sodium channel gene variant. These preliminary results raise the possibility that

  12. Cardiac sodium channel Na(v)1.5 interacts with and is regulated by the protein tyrosine phosphatase PTPH1

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Gavillet, Bruno; van Bemmelen, Miguel X

    2006-01-01

    In order to identify proteins interacting with the cardiac voltage-gated sodium channel Na(v)1.5, we used the last 66 amino acids of the C-terminus of the channel as bait to screen a human cardiac cDNA library. We identified the protein tyrosine phosphatase PTPH1 as an interacting protein. Pull......-down experiments confirmed the interaction, and indicated that it depends on the PDZ-domain binding motif of Na(v)1.5. Co-expression experiments in HEK293 cells showed that PTPH1 shifts the Na(v)1.5 availability relationship toward hyperpolarized potentials, whereas an inactive PTPH1 or the tyrosine kinase Fyn...... does the opposite. The results of this study suggest that tyrosine phosphorylation destabilizes the inactivated state of Na(v)1.5....

  13. Amiloride blocks lithium entry through the sodium channel thereby attenuating the resultant nephrogenic diabetes insipidus.

    NARCIS (Netherlands)

    Kortenoeven, M.L.A.; Li, Y.; Shaw, S.M.; Gaeggeler, H.P.; Rossier, B.C.; Wetzels, J.F.M.; Deen, P.M.T.

    2009-01-01

    Lithium therapy frequently induces nephrogenic diabetes insipidus; amiloride appears to prevent its occurrence in some clinical cases. Amiloride blocks the epithelial sodium channel (ENaC) located in the apical membrane of principal cells; hence one possibility is that ENaC is the main entry site

  14. Molecular Surface of JZTX-V (β-Theraphotoxin-Cj2a Interacting with Voltage-Gated Sodium Channel Subtype NaV1.4

    Directory of Open Access Journals (Sweden)

    Ji Luo

    2014-07-01

    Full Text Available Voltage-gated sodium channels (VGSCs; NaV1.1–NaV1.9 have been proven to be critical in controlling the function of excitable cells, and human genetic evidence shows that aberrant function of these channels causes channelopathies, including epilepsy, arrhythmia, paralytic myotonia, and pain. The effects of peptide toxins, especially those isolated from spider venom, have shed light on the structure–function relationship of these channels. However, most of these toxins have not been analyzed in detail. In particular, the bioactive faces of these toxins have not been determined. Jingzhaotoxin (JZTX-V (also known as β-theraphotoxin-Cj2a is a 29-amino acid peptide toxin isolated from the venom of the spider Chilobrachys jingzhao. JZTX-V adopts an inhibitory cysteine knot (ICK motif and has an inhibitory effect on voltage-gated sodium and potassium channels. Previous experiments have shown that JZTX-V has an inhibitory effect on TTX-S and TTX-R sodium currents on rat DRG cells with IC50 values of 27.6 and 30.2 nM, respectively, and is able to shift the activation and inactivation curves to the depolarizing and the hyperpolarizing direction, respectively. Here, we show that JZTX-V has a much stronger inhibitory effect on NaV1.4, the isoform of voltage-gated sodium channels predominantly expressed in skeletal muscle cells, with an IC50 value of 5.12 nM, compared with IC50 values of 61.7–2700 nM for other heterologously expressed NaV1 subtypes. Furthermore, we investigated the bioactive surface of JZTX-V by alanine-scanning the effect of toxin on NaV1.4 and demonstrate that the bioactive face of JZTX-V is composed of three hydrophobic (W5, M6, and W7 and two cationic (R20 and K22 residues. Our results establish that, consistent with previous assumptions, JZTX-V is a Janus-faced toxin which may be a useful tool for the further investigation of the structure and function of sodium channels.

  15. Affinity purification of the voltage-sensitive sodium channel from electroplax with resins selective for sialic acid

    Energy Technology Data Exchange (ETDEWEB)

    James, W.M.; Emerick, M.C.; Agnew, W.S. (Yale Univ. School of medicine, New Haven, CT (USA))

    1989-07-11

    The voltage-sensitive sodium channel present in the eel (Electrophorus electricus) has an unusually high content of sialic acid, including {alpha}-(2{yields}8)-linked polysialic acid, not found in other electroplax membrane glycopeptides. Lectins from Limax flavus (LFA) and wheat germ (WGA) proved the most effective of 11 lectin resins tried. The most selective resin was prepared from IgM antibodies against Neisseria meningitidis {alpha}-(2{yields}8)-polysialic acid which were affinity purified and coupled to Sepharose 4B. The sodium channel was found to bind to WGA, LFA, and IgM resins and was readily eluted with the appropriate soluble carbohydrates. Experiments with LFA and IgM resins demonstrated binding and unbinding rates and displacement kinetics, which suggest highly specific binding at multiple sites on the sodium channel protein. In preparative-scale purification of protein previously fractionated by anion-exchange chromatography, without stabilizing TTX, high yields were reproducibly obtained. Further, when detergent extracts were prepared from electroplax membranes fractionated by low-speed sedimentation, a single step over the IgM resin provided a 70-fold purification, yielding specific activities of 3,200 pmol of ({sup 3}H)TTX-binding sites/mg of protein and a single polypeptide of {approximately}285,000 Da on SDS-acrylamide gels. No small peptides were observed after this 5-h isolation. The authors describe a cation-dependent stabilization with millimolar levels of monovalent and micromolar levels of divalent species.

  16. Gene expression profile of sodium channel subunits in the anterior cingulate cortex during experimental paclitaxel-induced neuropathic pain in mice

    Directory of Open Access Journals (Sweden)

    Willias Masocha

    2016-11-01

    Full Text Available Paclitaxel, a chemotherapeutic agent, causes neuropathic pain whose supraspinal pathophysiology is not fully understood. Dysregulation of sodium channel expression, studied mainly in the periphery and spinal cord level, contributes to the pathogenesis of neuropathic pain. We examined gene expression of sodium channel (Nav subunits by real time polymerase chain reaction (PCR in the anterior cingulate cortex (ACC at day 7 post first administration of paclitaxel, when mice had developed paclitaxel-induced thermal hyperalgesia. The ACC was chosen because increased activity in the ACC has been observed during neuropathic pain. In the ACC of vehicle-treated animals the threshold cycle (Ct values for Nav1.4, Nav1.5, Nav1.7, Nav1.8 and Nav1.9 were above 30 and/or not detectable in some samples. Thus, comparison in mRNA expression between untreated control, vehicle-treated and paclitaxel treated animals was done for Nav1.1, Nav1.2, Nav1.3, Nav1.6, Nax as well as Navβ1–Navβ4. There were no differences in the transcript levels of Nav1.1–Nav1.3, Nav1.6, Nax, Navβ1–Navβ3 between untreated and vehicle-treated mice, however, vehicle treatment increased Navβ4 expression. Paclitaxel treatment significantly increased the mRNA expression of Nav1.1, Nav1.2, Nav1.6 and Nax, but not Nav1.3, sodium channel alpha subunits compared to vehicle-treated animals. Treatment with paclitaxel significantly increased the expression of Navβ1 and Navβ3, but not Navβ2 and Navβ4, sodium channel beta subunits compared to vehicle-treated animals. These findings suggest that during paclitaxel-induced neuropathic pain (PINP there is differential upregulation of sodium channels in the ACC, which might contribute to the increased neuronal activity observed in the area during neuropathic pain.

  17. The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake.

    Science.gov (United States)

    Böhm, Jennifer; Scherzer, Sönke; Krol, Elzbieta; Kreuzer, Ines; von Meyer, Katharina; Lorey, Christian; Mueller, Thomas D; Shabala, Lana; Monte, Isabel; Solano, Roberto; Al-Rasheid, Khaled A S; Rennenberg, Heinz; Shabala, Sergey; Neher, Erwin; Hedrich, Rainer

    2016-02-08

    Carnivorous plants, such as the Venus flytrap (Dionaea muscipula), depend on an animal diet when grown in nutrient-poor soils. When an insect visits the trap and tilts the mechanosensors on the inner surface, action potentials (APs) are fired. After a moving object elicits two APs, the trap snaps shut, encaging the victim. Panicking preys repeatedly touch the trigger hairs over the subsequent hours, leading to a hermetically closed trap, which via the gland-based endocrine system is flooded by a prey-decomposing acidic enzyme cocktail. Here, we asked the question as to how many times trigger hairs have to be stimulated (e.g., now many APs are required) for the flytrap to recognize an encaged object as potential food, thus making it worthwhile activating the glands. By applying a series of trigger-hair stimulations, we found that the touch hormone jasmonic acid (JA) signaling pathway is activated after the second stimulus, while more than three APs are required to trigger an expression of genes encoding prey-degrading hydrolases, and that this expression is proportional to the number of mechanical stimulations. A decomposing animal contains a sodium load, and we have found that these sodium ions enter the capture organ via glands. We identified a flytrap sodium channel DmHKT1 as responsible for this sodium acquisition, with the number of transcripts expressed being dependent on the number of mechano-electric stimulations. Hence, the number of APs a victim triggers while trying to break out of the trap identifies the moving prey as a struggling Na(+)-rich animal and nutrition for the plant. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Sodium channels in axons and glial cells of the optic nerve of Necturus maculosa.

    Science.gov (United States)

    Tang, C M; Strichartz, G R; Orkand, R K

    1979-11-01

    Experiments investigating both the binding of radioactively labelled saxitoxin (STX) and the electrophysiological response to drugs that increase the sodium permeability of excitable membranes were conducted in an effort to detect sodium channels in glial cells of the optic nerve of Necturus maculosa, the mudpuppy. Glial cells in nerves from chronically enucleated animals, which lack optic nerve axons, show no saturable uptake of STX whereas a saturable uptake is clearly present in normal optic nerves. The normal nerve is depolarized by aconitine, batrachotoxin, and veratridine (10(-6)-10(-5) M), whereas the all-glial preparation is only depolarized by veratridine and at concentrations greater than 10(-3) M. Unlike the depolarization caused by veratridine in normal nerves, the response in the all-glial tissue is not blocked by tetrodotoxin nor enhanced by scorpion venom (Leiurus quinquestriatus). In glial cells of the normal nerve, where axons are also present, the addition of 10(-5) M veratridine does lead to a transient depolarization; however, it is much briefer than the axonal response to veratridine in this same tissue. This glial response to veratridine could be caused by the efflux of K+ from the drug-depolarized axons, and is similar to the glial response to extracellular K+ accumulation resulting from action potentials in the axon.

  19. Channel sialic acids limit hERG channel activity during the ventricular action potential.

    Science.gov (United States)

    Norring, Sarah A; Ednie, Andrew R; Schwetz, Tara A; Du, Dongping; Yang, Hui; Bennett, Eric S

    2013-02-01

    Activity of human ether-a-go-go-related gene (hERG) 1 voltage-gated K(+) channels is responsible for portions of phase 2 and phase 3 repolarization of the human ventricular action potential. Here, we questioned whether and how physiologically and pathophysiologically relevant changes in surface N-glycosylation modified hERG channel function. Voltage-dependent hERG channel gating and activity were evaluated as expressed in a set of Chinese hamster ovary (CHO) cell lines under conditions of full glycosylation, no sialylation, no complex N-glycans, and following enzymatic deglycosylation of surface N-glycans. For each condition of reduced glycosylation, hERG channel steady-state activation and inactivation relationships were shifted linearly by significant depolarizing ∼9 and ∼18 mV, respectively. The hERG window current increased significantly by 50-150%, and the peak shifted by a depolarizing ∼10 mV. There was no significant change in maximum hERG current density. Deglycosylated channels were significantly more active (20-80%) than glycosylated controls during phases 2 and 3 of action potential clamp protocols. Simulations of hERG current and ventricular action potentials corroborated experimental data and predicted reduced sialylation leads to a 50-70-ms decrease in action potential duration. The data describe a novel mechanism by which hERG channel gating is modulated through physiologically and pathophysiologically relevant changes in N-glycosylation; reduced channel sialylation increases hERG channel activity during the action potential, thereby increasing the rate of action potential repolarization.

  20. Systematic Study of Binding of μ-Conotoxins to the Sodium Channel NaV1.4

    Directory of Open Access Journals (Sweden)

    Somayeh Mahdavi

    2014-12-01

    Full Text Available Voltage-gated sodium channels (NaV are fundamental components of the nervous system. Their dysfunction is implicated in a number of neurological disorders, such as chronic pain, making them potential targets for the treatment of such disorders. The prominence of the NaV channels in the nervous system has been exploited by venomous animals for preying purposes, which have developed toxins that can block the NaV channels, thereby disabling their function. Because of their potency, such toxins could provide drug leads for the treatment of neurological disorders associated with NaV channels. However, most toxins lack selectivity for a given target NaV channel, and improving their selectivity profile among the NaV1 isoforms is essential for their development as drug leads. Computational methods will be very useful in the solution of such design problems, provided accurate models of the protein-ligand complex can be constructed. Using docking and molecular dynamics simulations, we have recently constructed a model for the NaV1.4-μ-conotoxin-GIIIA complex and validated it with the ample mutational data available for this complex. Here, we use the validated NaV1.4 model in a systematic study of binding other μ-conotoxins (PIIIA, KIIIA and BuIIIB to NaV1.4. The binding mode obtained for each complex is shown to be consistent with the available mutation data and binding constants. We compare the binding modes of PIIIA, KIIIA and BuIIIB to that of GIIIA and point out the similarities and differences among them. The detailed information about NaV1.4-μ-conotoxin interactions provided here will be useful in the design of new NaV channel blocking peptides.

  1. Effects of channel blocking on information transmission and energy efficiency in squid giant axons.

    Science.gov (United States)

    Liu, Yujiang; Yue, Yuan; Yu, Yuguo; Liu, Liwei; Yu, Lianchun

    2018-04-01

    Action potentials are the information carriers of neural systems. The generation of action potentials involves the cooperative opening and closing of sodium and potassium channels. This process is metabolically expensive because the ions flowing through open channels need to be restored to maintain concentration gradients of these ions. Toxins like tetraethylammonium can block working ion channels, thus affecting the function and energy cost of neurons. In this paper, by computer simulation of the Hodgkin-Huxley neuron model, we studied the effects of channel blocking with toxins on the information transmission and energy efficiency in squid giant axons. We found that gradually blocking sodium channels will sequentially maximize the information transmission and energy efficiency of the axons, whereas moderate blocking of potassium channels will have little impact on the information transmission and will decrease the energy efficiency. Heavy blocking of potassium channels will cause self-sustained oscillation of membrane potentials. Simultaneously blocking sodium and potassium channels with the same ratio increases both information transmission and energy efficiency. Our results are in line with previous studies suggesting that information processing capacity and energy efficiency can be maximized by regulating the number of active ion channels, and this indicates a viable avenue for future experimentation.

  2. Identification of Novel Voltage-Gated Sodium Channel Mutations in Human Head and Body Lice (Phthiraptera: Pediculidae).

    Science.gov (United States)

    Firooziyan, Samira; Sadaghianifar, Ali; Taghilou, Behrooz; Galavani, Hossein; Ghaffari, Eslam; Gholizadeh, Saber

    2017-09-01

    In recent years, the increase of head louse infestation in Iran (7.4%) and especially in West-Azerbaijan Province (248%) has raised the hypothesis of insecticide resistance development. There are different mechanisms of resistance to various groups of insecticides, and knockdown resistance (kdr) is a prominent mechanism of resistance to pyrethroids, an insecticide group which is used conventionally for pediculosis control. For detection of kdr-type well-known amino acid substitutions (M815I-T917I-L920F) and additional sodium channel mutations potentially associated with kdr resistance in head and body lice, louse populations were collected from West-Azerbaijan and Zanjan Provinces of Iran. Six novel mutations were found to be located in the IIS1-2 extracellular loop (H813P) and IIS5 (I927F, L928A, R929V, L930M, and L932M) of the α-subunit. Genotyping results showed that all specimens (100%) have at least one of these or the well-known mutations. Therefore, the presence of kdr-related and novel mutations in the sodium channel is likely to be the reason for the frequent use of pyrethroid insecticides due to treatment failure against lice. Further studies are now required to evaluate the prevalence of the kdr-like mutant allele for monitoring of insecticide resistance and the management of head and body lice in other provinces of the country. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. DRG Voltage-Gated Sodium Channel 1.7 Is Upregulated in Paclitaxel-Induced Neuropathy in Rats and in Humans with Neuropathic Pain.

    Science.gov (United States)

    Li, Yan; North, Robert Y; Rhines, Laurence D; Tatsui, Claudio Esteves; Rao, Ganesh; Edwards, Denaya D; Cassidy, Ryan M; Harrison, Daniel S; Johansson, Caj A; Zhang, Hongmei; Dougherty, Patrick M

    2018-01-31

    Chemotherapy-induced peripheral neuropathy (CIPN) is a common adverse effect experienced by cancer patients receiving treatment with paclitaxel. The voltage-gated sodium channel 1.7 (Na v 1.7) plays an important role in multiple preclinical models of neuropathic pain and in inherited human pain phenotypes, and its gene expression is increased in dorsal root ganglia (DRGs) of paclitaxel-treated rats. Hence, the potential of change in the expression and function of Na v 1.7 protein in DRGs from male rats with paclitaxel-related CIPN and from male and female humans with cancer-related neuropathic pain was tested here. Double immunofluorescence in CIPN rats showed that Na v 1.7 was upregulated in small DRG neuron somata, especially those also expressing calcitonin gene-related peptide (CGRP), and in central processes of these cells in the superficial spinal dorsal horn. Whole-cell patch-clamp recordings in rat DRG neurons revealed that paclitaxel induced an enhancement of ProTx II (a selective Na v 1.7 channel blocker)-sensitive sodium currents. Bath-applied ProTx II suppressed spontaneous action potentials in DRG neurons occurring in rats with CIPN, while intrathecal injection of ProTx II significantly attenuated behavioral signs of CIPN. Complementarily, DRG neurons isolated from segments where patients had a history of neuropathic pain also showed electrophysiological and immunofluorescence results indicating an increased expression of Na v 1.7 associated with spontaneous activity. Na v 1.7 was also colocalized in human cells expressing transient receptor potential vanilloid 1 and CGRP. Furthermore, ProTx II decreased firing frequency in human DRGs with spontaneous action potentials. This study suggests that Na v 1.7 may provide a potential new target for the treatment of neuropathic pain, including chemotherapy (paclitaxel)-induced neuropathic pain. SIGNIFICANCE STATEMENT This work demonstrates that the expression and function of the voltage-gated sodium channel Na

  4. Potential drop sensors for sodium loops

    International Nuclear Information System (INIS)

    Selvaraj, R.

    1978-11-01

    Potential drop sensors to detect the presence or the absence of sodium in pipe lines are described. These are very handy during loop charging and dumping operations. Their suitability to detect level surges and to monitor continuous level of liquid metals in certain applications is discussed. (author)

  5. Multiple sodium channel isoforms mediate the pathological effects of Pacific ciguatoxin-1

    Science.gov (United States)

    Inserra, Marco C.; Israel, Mathilde R.; Caldwell, Ashlee; Castro, Joel; Deuis, Jennifer R.; Harrington, Andrea M.; Keramidas, Angelo; Garcia-Caraballo, Sonia; Maddern, Jessica; Erickson, Andelain; Grundy, Luke; Rychkov, Grigori Y.; Zimmermann, Katharina; Lewis, Richard J.; Brierley, Stuart M.; Vetter, Irina

    2017-01-01

    Human intoxication with the seafood poison ciguatoxin, a dinoflagellate polyether that activates voltage-gated sodium channels (NaV), causes ciguatera, a disease characterised by gastrointestinal and neurological disturbances. We assessed the activity of the most potent congener, Pacific ciguatoxin-1 (P-CTX-1), on NaV1.1–1.9 using imaging and electrophysiological approaches. Although P-CTX-1 is essentially a non-selective NaV toxin and shifted the voltage-dependence of activation to more hyperpolarising potentials at all NaV subtypes, an increase in the inactivation time constant was observed only at NaV1.8, while the slope factor of the conductance-voltage curves was significantly increased for NaV1.7 and peak current was significantly increased for NaV1.6. Accordingly, P-CTX-1-induced visceral and cutaneous pain behaviours were significantly decreased after pharmacological inhibition of NaV1.8 and the tetrodotoxin-sensitive isoforms NaV1.7 and NaV1.6, respectively. The contribution of these isoforms to excitability of peripheral C- and A-fibre sensory neurons, confirmed using murine skin and visceral single-fibre recordings, reflects the expression pattern of NaV isoforms in peripheral sensory neurons and their contribution to membrane depolarisation, action potential initiation and propagation. PMID:28225079

  6. Coupled channels Marchenko inversion for nucleon-nucleon potentials

    International Nuclear Information System (INIS)

    Kohlhoff, H.; Geramb, H.V. von

    1994-01-01

    Marchenko inversion is used to determine local energy independent but channel dependent potential matrices from optimum sets of experimental phase shifts. 3 SD 1 and 3 PF 2 channels of nucleon-nucleon systems contain in their off-diagonal potential matrices explicitly the tensor force for T = 0 and 1 isospin. We obtain, together with single channels, complete sets of quantitative nucleon-nucleon potential results which are ready for application in nuclear structure and reaction analyses. The historic coupled channels inversion result of Newton and Fulton is revisited. (orig.)

  7. Development and Testing of an In Vitro Assay for Screening of Potential Therapeutic Agents against Na Channel Neurotoxins

    Science.gov (United States)

    1987-02-03

    or by synthesis , the search almost certainly would have failed (3). Fortunately, the accumulated knowledge of sodium channel pharmacology allows the...distinct sodium channel domains. These studies were made possible by the synthesis of a tritiated analog of BTX, batrachotoxinin-A benzoate (BTX-B), of...elaborated upon. Creveling et al. (11) found that the local anesthetic lidocaine ethiodide was 10 times more potent at displacing specifically bound [3H]BTX-B

  8. Evidence for Dual Binding Sites for 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) in Insect Sodium Channels*

    Science.gov (United States)

    Du, Yuzhe; Nomura, Yoshiko; Zhorov, Boris S.; Dong, Ke

    2016-01-01

    1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT), the first organochlorine insecticide, and pyrethroid insecticides are sodium channel agonists. Although the use of DDT is banned in most of the world due to its detrimental impact on the ecosystem, indoor residual spraying of DDT is still recommended for malaria control in Africa. Development of resistance to DDT and pyrethroids is a serious global obstacle for managing disease vectors. Mapping DDT binding sites is necessary for understanding mechanisms of resistance and modulation of sodium channels by structurally different ligands. The pioneering model of the housefly sodium channel visualized the first receptor for pyrethroids, PyR1, in the II/III domain interface and suggested that DDT binds within PyR1. Previously, we proposed the second pyrethroid receptor, PyR2, at the I/II domain interface. However, whether DDT binds to both pyrethroid receptor sites remains unknown. Here, using computational docking of DDT into the Kv1.2-based mosquito sodium channel model, we predict that two DDT molecules can bind simultaneously within PyR1 and PyR2. The bulky trichloromethyl group of each DDT molecule fits snugly between four helices in the bent domain interface, whereas two p-chlorophenyl rings extend into two wings of the interface. Model-driven mutagenesis and electrophysiological analysis confirmed these propositions and revealed 10 previously unknown DDT-sensing residues within PyR1 and PyR2. Our study proposes a dual DDT-receptor model and provides a structural background for rational development of new insecticides. PMID:26637352

  9. Ciguatoxins Evoke Potent CGRP Release by Activation of Voltage-Gated Sodium Channel Subtypes NaV1.9, NaV1.7 and NaV1.1

    Directory of Open Access Journals (Sweden)

    Filip Touska

    2017-08-01

    Full Text Available Ciguatoxins (CTXs are marine toxins that cause ciguatera fish poisoning, a debilitating disease dominated by sensory and neurological disturbances that include cold allodynia and various painful symptoms as well as long-lasting pruritus. Although CTXs are known as the most potent mammalian sodium channel activator toxins, the etiology of many of its neurosensory symptoms remains unresolved. We recently described that local application of 1 nM Pacific Ciguatoxin-1 (P-CTX-1 into the skin of human subjects induces a long-lasting, painful axon reflex flare and that CTXs are particularly effective in releasing calcitonin-gene related peptide (CGRP from nerve terminals. In this study, we used mouse and rat skin preparations and enzyme-linked immunosorbent assays (ELISA to study the molecular mechanism by which P-CTX-1 induces CGRP release. We show that P-CTX-1 induces CGRP release more effectively in mouse as compared to rat skin, exhibiting EC50 concentrations in the low nanomolar range. P-CTX-1-induced CGRP release from skin is dependent on extracellular calcium and sodium, but independent from the activation of various thermosensory transient receptor potential (TRP ion channels. In contrast, lidocaine and tetrodotoxin (TTX reduce CGRP release by 53–75%, with the remaining fraction involving L-type and T-type voltage-gated calcium channels (VGCC. Using transgenic mice, we revealed that the TTX-resistant voltage-gated sodium channel (VGSC NaV1.9, but not NaV1.8 or NaV1.7 alone and the combined activation of the TTX-sensitive VGSC subtypes NaV1.7 and NaV1.1 carry the largest part of the P-CTX-1-caused CGRP release of 42% and 34%, respectively. Given the contribution of CGRP to nociceptive and itch sensing pathways, our findings contribute to a better understanding of sensory symptoms of acute and chronic ciguatera that may help in the identification of potential therapeutics.

  10. Ciguatoxins Evoke Potent CGRP Release by Activation of Voltage-Gated Sodium Channel Subtypes NaV1.9, NaV1.7 and NaV1.1

    Science.gov (United States)

    Touska, Filip; Sattler, Simon; Malsch, Philipp; Lewis, Richard J.; Zimmermann, Katharina

    2017-01-01

    Ciguatoxins (CTXs) are marine toxins that cause ciguatera fish poisoning, a debilitating disease dominated by sensory and neurological disturbances that include cold allodynia and various painful symptoms as well as long-lasting pruritus. Although CTXs are known as the most potent mammalian sodium channel activator toxins, the etiology of many of its neurosensory symptoms remains unresolved. We recently described that local application of 1 nM Pacific Ciguatoxin-1 (P-CTX-1) into the skin of human subjects induces a long-lasting, painful axon reflex flare and that CTXs are particularly effective in releasing calcitonin-gene related peptide (CGRP) from nerve terminals. In this study, we used mouse and rat skin preparations and enzyme-linked immunosorbent assays (ELISA) to study the molecular mechanism by which P-CTX-1 induces CGRP release. We show that P-CTX-1 induces CGRP release more effectively in mouse as compared to rat skin, exhibiting EC50 concentrations in the low nanomolar range. P-CTX-1-induced CGRP release from skin is dependent on extracellular calcium and sodium, but independent from the activation of various thermosensory transient receptor potential (TRP) ion channels. In contrast, lidocaine and tetrodotoxin (TTX) reduce CGRP release by 53–75%, with the remaining fraction involving L-type and T-type voltage-gated calcium channels (VGCC). Using transgenic mice, we revealed that the TTX-resistant voltage-gated sodium channel (VGSC) NaV1.9, but not NaV1.8 or NaV1.7 alone and the combined activation of the TTX-sensitive VGSC subtypes NaV1.7 and NaV1.1 carry the largest part of the P-CTX-1-caused CGRP release of 42% and 34%, respectively. Given the contribution of CGRP to nociceptive and itch sensing pathways, our findings contribute to a better understanding of sensory symptoms of acute and chronic ciguatera that may help in the identification of potential therapeutics. PMID:28867800

  11. Modulation of the epithelial sodium channel (ENaC by bacterial metalloproteases and protease inhibitors.

    Directory of Open Access Journals (Sweden)

    Michael B Butterworth

    Full Text Available The serralysin family of metalloproteases is associated with the virulence of multiple gram-negative human pathogens, including Pseudomonas aeruginosa and Serratia marcescens. The serralysin proteases share highly conserved catalytic domains and show evolutionary similarity to the mammalian matrix metalloproteases. Our previous studies demonstrated that alkaline protease (AP from Pseudomonas aeruginosa is capable of activating the epithelial sodium channel (ENaC, leading to an increase in sodium absorption in airway epithelia. The serralysin proteases are often co-expressed with endogenous, intracellular or periplasmic inhibitors, which putatively protect the bacterium from unwanted or unregulated protease activities. To evaluate the potential use of these small protein inhibitors in regulating the serralysin induced activation of ENaC, proteases from Pseudomonas aeruginosa and Serratia marcescens were purified for characterization along with a high affinity inhibitor from Pseudomonas. Both proteases showed activity against in vitro substrates and could be blocked by near stoichiometric concentrations of the inhibitor. In addition, both proteases were capable of activating ENaC when added to the apical surfaces of multiple epithelial cells with similar slow activation kinetics. The high-affinity periplasmic inhibitor from Pseudomonas effectively blocked this activation. These data suggest that multiple metalloproteases are capable of activating ENaC. Further, the endogenous, periplasmic bacterial inhibitors may be useful for modulating the downstream effects of the serralysin virulence factors under physiological conditions.

  12. Heteromeric Kv7.2/7.3 channels differentially regulate action potential initiation and conduction in neocortical myelinated axons

    NARCIS (Netherlands)

    Battefeld, A.; Tran, B.T.; Gavrilis, J.; Cooper, E.C.; Kole, Maarten|info:eu-repo/dai/nl/256257574

    2014-01-01

    Rapid energy-efficient signaling along vertebrate axons is achieved through intricate subcellular arrangements of voltage-gated ion channels and myelination. One recently appreciated example is the tight colocalization of Kv7 potassium channels and voltage-gated sodium (Nav ) channels in the axonal

  13. Heteromeric Kv7.2/7.3 channels differentially regulate action potential initiation and conduction in neocortical myelinated axons

    NARCIS (Netherlands)

    Battefeld, A.; Tran, Baouyen T; Gavrilis, Jason; Cooper, Edward C; Kole, Maarten H P

    2014-01-01

    Rapid energy-efficient signaling along vertebrate axons is achieved through intricate subcellular arrangements of voltage-gated ion channels and myelination. One recently appreciated example is the tight colocalization of K(v)7 potassium channels and voltage-gated sodium (Na(v)) channels in the

  14. The epithelial sodium channel γ-subunit is processed proteolytically in human kidney

    DEFF Research Database (Denmark)

    Langkilde, Rikke Zachar; Skjødt, Karsten; Marcussen, Niels

    2015-01-01

    The epithelial sodium channel (ENaC) of the kidney is necessary for extracellular volume homeostasis and normal arterial BP. Activity of ENaC is enhanced by proteolytic cleavage of the gamma-subunit and putative release of a 43-amino acid inhibitory tract from the gamma-subunit ectodomain. We......ENaC was detected consistently only in tissue from patients with proteinuria and observed in collecting ducts. In conclusion, human kidney gammaENaC is subject to proteolytic cleavage, yielding fragments compatible with furin cleavage, and proteinuria is associated with cleavage at the putative prostasin...

  15. Synthetic Ciguatoxins Selectively Activate Nav1.8-derived Chimeric Sodium Channels Expressed in HEK293 Cells*

    Science.gov (United States)

    Yamaoka, Kaoru; Inoue, Masayuki; Miyazaki, Keisuke; Hirama, Masahiro; Kondo, Chie; Kinoshita, Eiji; Miyoshi, Hiroshi; Seyama, Issei

    2009-01-01

    The synthetic ciguatoxin CTX3C has been shown to activate tetrodotoxin (TTX)-sensitive sodium channels (Nav1.2, Nav1.4, and Nav1.5) by accelerating activation kinetics and shifting the activation curve toward hyperpolarization (Yamaoka, K., Inoue, M., Miyahara, H., Miyazaki, K., and Hirama, M. (2004) Br. J. Pharmacol. 142, 879–889). In this study, we further explored the effects of CTX3C on the TTX-resistant sodium channel Nav1.8. TTX-resistant channels have been shown to be involved in transducing pain and related sensations (Akopian, A. N., Sivilotti, L., and Wood, J. N. (1996) Nature 379, 257–262). Thus, we hypothesized that ciguatoxin-induced activation of the Nav1.8 current would account for the neurological symptoms of ciguatera poisoning. We found that 0.1 μm CTX3C preferentially affected the activation process of the Nav1.8 channel compared with those of the Nav1.2 and Nav1.4 channels. Importantly, without stimulation, 0.1 μm CTX3C induced a large leakage current (IL). The conductance of the IL calculated relative to the maximum conductance (Gmax) was 10 times larger than that of Nav1.2 or Nav1.4. To determine the molecular domain of Nav1.8 responsible for conferring higher sensitivity to CTX3C, we made two chimeric constructs from Nav1.4 and Nav1.8. Chimeras containing the N-terminal half of Nav1.8 exhibited a large response similar to wild-type Nav1.8, indicating that the region conferring high sensitivity to ciguatoxin action is located in the D1 or D2 domains. PMID:19164297

  16. Characterization of the binding of the Ptychodiscus brevis neurotoxin T17 to sodium channels in rat brain synaptosomes

    International Nuclear Information System (INIS)

    Poli, M.A.

    1985-01-01

    The lipid-soluble polyether neurotoxins isolated from the marine dinoflagellate Ptychodiscus brevis (formerly Gymnodinium breve) have been determined to bind to a unique receptor site associated with the voltage-sensitive sodium channel in rat brain synaptosomes. Reduction of the C 42 aldehyde function of T34 to the alcohol function of T17 using NaB 3 H 4 yielded 3 H-T17 with a specific activity of 15 Ci;/mmol. Using this specific probe, binding to sodium channels was measured at 4 0 CC, 22 0 C, and 37 0 C. Rosenthal analysis of the binding data yielded a K/sub d/ of 2.9 nM and B/sub max/ of 6.8 pmoles 3 H-T17 per mg of synaptosomal protein at 4 0 C. Both K/sub d/ and B/sub max/ were found to be temperature dependent. Depolarization of the synaptosomes by osmotic lysis resulted in the loss of 34% of the available receptor sites, with no decrease in binding affinity. Unlabeled T17, T34, and synthetic T17 (reduced T34) were equipotent in their ability to displace 3 H-T17 from its specific receptor site. Competition experiments using natural toxin probes specific for sites I-IV on the voltage-sensitive sodium channel demonstrate that 3 H-T17 does not bind to any of the previously-described neurotoxin receptor sites. A fifth site is proposed

  17. Characterization of the binding of the Ptychodiscus brevis neurotoxin T17 to sodium channels in rat brain synaptosomes

    Energy Technology Data Exchange (ETDEWEB)

    Poli, M.A.

    1985-01-01

    The lipid-soluble polyether neurotoxins isolated from the marine dinoflagellate Ptychodiscus brevis (formerly Gymnodinium breve) have been determined to bind to a unique receptor site associated with the voltage-sensitive sodium channel in rat brain synaptosomes. Reduction of the C/sub 42/ aldehyde function of T34 to the alcohol function of T17 using NaB/sup 3/H/sub 4/ yielded /sup 3/H-T17 with a specific activity of 15 Ci;/mmol. Using this specific probe, binding to sodium channels was measured at 4/sup 0/CC, 22/sup 0/C, and 37/sup 0/C. Rosenthal analysis of the binding data yielded a K/sub d/ of 2.9 nM and B/sub max/ of 6.8 pmoles /sup 3/H-T17 per mg of synaptosomal protein at 4/sup 0/C. Both K/sub d/ and B/sub max/ were found to be temperature dependent. Depolarization of the synaptosomes by osmotic lysis resulted in the loss of 34% of the available receptor sites, with no decrease in binding affinity. Unlabeled T17, T34, and synthetic T17 (reduced T34) were equipotent in their ability to displace /sup 3/H-T17 from its specific receptor site. Competition experiments using natural toxin probes specific for sites I-IV on the voltage-sensitive sodium channel demonstrate that /sup 3/H-T17 does not bind to any of the previously-described neurotoxin receptor sites. A fifth site is proposed.

  18. Evidence for Dual Binding Sites for 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) in Insect Sodium Channels.

    Science.gov (United States)

    Du, Yuzhe; Nomura, Yoshiko; Zhorov, Boris S; Dong, Ke

    2016-02-26

    1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT), the first organochlorine insecticide, and pyrethroid insecticides are sodium channel agonists. Although the use of DDT is banned in most of the world due to its detrimental impact on the ecosystem, indoor residual spraying of DDT is still recommended for malaria control in Africa. Development of resistance to DDT and pyrethroids is a serious global obstacle for managing disease vectors. Mapping DDT binding sites is necessary for understanding mechanisms of resistance and modulation of sodium channels by structurally different ligands. The pioneering model of the housefly sodium channel visualized the first receptor for pyrethroids, PyR1, in the II/III domain interface and suggested that DDT binds within PyR1. Previously, we proposed the second pyrethroid receptor, PyR2, at the I/II domain interface. However, whether DDT binds to both pyrethroid receptor sites remains unknown. Here, using computational docking of DDT into the Kv1.2-based mosquito sodium channel model, we predict that two DDT molecules can bind simultaneously within PyR1 and PyR2. The bulky trichloromethyl group of each DDT molecule fits snugly between four helices in the bent domain interface, whereas two p-chlorophenyl rings extend into two wings of the interface. Model-driven mutagenesis and electrophysiological analysis confirmed these propositions and revealed 10 previously unknown DDT-sensing residues within PyR1 and PyR2. Our study proposes a dual DDT-receptor model and provides a structural background for rational development of new insecticides. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Pado, a fluorescent protein with proton channel activity can optically monitor membrane potential, intracellular pH, and map gap junctions.

    Science.gov (United States)

    Kang, Bok Eum; Baker, Bradley J

    2016-04-04

    An in silico search strategy was developed to identify potential voltage-sensing domains (VSD) for the development of genetically encoded voltage indicators (GEVIs). Using a conserved charge distribution in the S2 α-helix, a single in silico search yielded most voltage-sensing proteins including voltage-gated potassium channels, voltage-gated calcium channels, voltage-gated sodium channels, voltage-gated proton channels, and voltage-sensing phosphatases from organisms ranging from mammals to bacteria and plants. A GEVI utilizing the VSD from a voltage-gated proton channel identified from that search was able to optically report changes in membrane potential. In addition this sensor was capable of manipulating the internal pH while simultaneously reporting that change optically since it maintains the voltage-gated proton channel activity of the VSD. Biophysical characterization of this GEVI, Pado, demonstrated that the voltage-dependent signal was distinct from the pH-dependent signal and was dependent on the movement of the S4 α-helix. Further investigation into the mechanism of the voltage-dependent optical signal revealed that inhibiting the dimerization of the fluorescent protein greatly reduced the optical signal. Dimerization of the FP thereby enabled the movement of the S4 α-helix to mediate a fluorescent response.

  20. Synthetic ciguatoxins selectively activate Nav1.8-derived chimeric sodium channels expressed in HEK293 cells.

    Science.gov (United States)

    Yamaoka, Kaoru; Inoue, Masayuki; Miyazaki, Keisuke; Hirama, Masahiro; Kondo, Chie; Kinoshita, Eiji; Miyoshi, Hiroshi; Seyama, Issei

    2009-03-20

    The synthetic ciguatoxin CTX3C has been shown to activate tetrodotoxin (TTX)-sensitive sodium channels (Na(v)1.2, Na(v)1.4, and Na(v)1.5) by accelerating activation kinetics and shifting the activation curve toward hyperpolarization (Yamaoka, K., Inoue, M., Miyahara, H., Miyazaki, K., and Hirama, M. (2004) Br. J. Pharmacol. 142, 879-889). In this study, we further explored the effects of CTX3C on the TTX-resistant sodium channel Na(v)1.8. TTX-resistant channels have been shown to be involved in transducing pain and related sensations (Akopian, A. N., Sivilotti, L., and Wood, J. N. (1996) Nature 379, 257-262). Thus, we hypothesized that ciguatoxin-induced activation of the Na(v)1.8 current would account for the neurological symptoms of ciguatera poisoning. We found that 0.1 mum CTX3C preferentially affected the activation process of the Na(v)1.8 channel compared with those of the Na(v)1.2 and Na(v)1.4 channels. Importantly, without stimulation, 0.1 mum CTX3C induced a large leakage current (I (L)). The conductance of the I (L) calculated relative to the maximum conductance (G (max)) was 10 times larger than that of Na(v)1.2 or Na(v)1.4. To determine the molecular domain of Na(v)1.8 responsible for conferring higher sensitivity to CTX3C, we made two chimeric constructs from Na(v)1.4 and Na(v)1.8. Chimeras containing the N-terminal half of Na(v)1.8 exhibited a large response similar to wild-type Na(v)1.8, indicating that the region conferring high sensitivity to ciguatoxin action is located in the D1 or D2 domains.

  1. Bromodomain-containing Protein 4 Activates Voltage-gated Sodium Channel 1.7 Transcription in Dorsal Root Ganglia Neurons to Mediate Thermal Hyperalgesia in Rats.

    Science.gov (United States)

    Hsieh, Ming-Chun; Ho, Yu-Cheng; Lai, Cheng-Yuan; Wang, Hsueh-Hsiao; Lee, An-Sheng; Cheng, Jen-Kun; Chau, Yat-Pang; Peng, Hsien-Yu

    2017-11-01

    Bromodomain-containing protein 4 binds acetylated promoter histones and promotes transcription; however, the role of bromodomain-containing protein 4 in inflammatory hyperalgesia remains unclear. Male Sprague-Dawley rats received hind paw injections of complete Freund's adjuvant to induce hyperalgesia. The dorsal root ganglia were examined to detect changes in bromodomain-containing protein 4 expression and the activation of genes involved in the expression of voltage-gated sodium channel 1.7, which is a key pain-related ion channel. The intraplantar complete Freund's adjuvant injections resulted in thermal hyperalgesia (4.0 ± 1.5 s; n = 7). The immunohistochemistry and immunoblotting results demonstrated an increase in the bromodomain-containing protein 4-expressing dorsal root ganglia neurons (3.78 ± 0.38 fold; n = 7) and bromodomain-containing protein 4 protein levels (2.62 ± 0.39 fold; n = 6). After the complete Freund's adjuvant injection, histone H3 protein acetylation was enhanced in the voltage-gated sodium channel 1.7 promoter, and cyclin-dependent kinase 9 and phosphorylation of RNA polymerase II were recruited to this area. Furthermore, the voltage-gated sodium channel 1.7-mediated currents were enhanced in neurons of the complete Freund's adjuvant rats (55 ± 11 vs. 19 ± 9 pA/pF; n = 4 to 6 neurons). Using bromodomain-containing protein 4-targeted antisense small interfering RNA to the complete Freund's adjuvant-treated rats, the authors demonstrated a reduction in the expression of bromodomain-containing protein 4 (0.68 ± 0.16 fold; n = 7), a reduction in thermal hyperalgesia (7.5 ± 1.5 s; n = 7), and a reduction in the increased voltage-gated sodium channel 1.7 currents (21 ± 4 pA/pF; n = 4 to 6 neurons). Complete Freund's adjuvant triggers enhanced bromodomain-containing protein 4 expression, ultimately leading to the enhanced excitability of nociceptive neurons and thermal hyperalgesia. This effect is

  2. Heteromeric K(v)7.2/7.3 Channels Differentially Regulate Action Potential Initiation and Conduction in Neocortical Myelinated Axons

    NARCIS (Netherlands)

    Battefeld, Arne; Tran, Baouyen T.; Gavrilis, Jason; Cooper, Edward C.; Kole, Maarten H. P.

    2014-01-01

    Rapid energy-efficient signaling along vertebrate axons is achieved through intricate subcellular arrangements of voltage-gated ion channels and myelination. One recently appreciated example is the tight colocalization of K(v)7 potassium channels and voltage-gated sodium (Na-v) channels in the

  3. Lysine and the Na+/K+ Selectivity in Mammalian Voltage-Gated Sodium Channels.

    Directory of Open Access Journals (Sweden)

    Yang Li

    Full Text Available Voltage-gated sodium (Nav channels are critical in the generation and transmission of neuronal signals in mammals. The crystal structures of several prokaryotic Nav channels determined in recent years inspire the mechanistic studies on their selection upon the permeable cations (especially between Na+ and K+ ions, a property that is proposed to be mainly determined by residues in the selectivity filter. However, the mechanism of cation selection in mammalian Nav channels lacks direct explanation at atomic level due to the difference in amino acid sequences between mammalian and prokaryotic Nav homologues, especially at the constriction site where the DEKA motif has been identified to determine the Na+/K+ selectivity in mammalian Nav channels but is completely absent in the prokaryotic counterparts. Among the DEKA residues, Lys is of the most importance since its mutation to Arg abolishes the Na+/K+ selectivity. In this work, we modeled the pore domain of mammalian Nav channels by mutating the four residues at the constriction site of a prokaryotic Nav channel (NavRh to DEKA, and then mechanistically investigated the contribution of Lys in cation selection using molecular dynamics simulations. The DERA mutant was generated as a comparison to understand the loss of ion selectivity caused by the K-to-R mutation. Simulations and free energy calculations on the mutants indicate that Lys facilitates Na+/K+ selection by electrostatically repelling the cation to a highly Na+-selective location sandwiched by the carboxylate groups of Asp and Glu at the constriction site. In contrast, the electrostatic repulsion is substantially weakened when Lys is mutated to Arg, because of two intrinsic properties of the Arg side chain: the planar geometric design and the sparse charge distribution of the guanidine group.

  4. Lysine and the Na+/K+ Selectivity in Mammalian Voltage-Gated Sodium Channels.

    Science.gov (United States)

    Li, Yang; Liu, Huihui; Xia, Mengdie; Gong, Haipeng

    2016-01-01

    Voltage-gated sodium (Nav) channels are critical in the generation and transmission of neuronal signals in mammals. The crystal structures of several prokaryotic Nav channels determined in recent years inspire the mechanistic studies on their selection upon the permeable cations (especially between Na+ and K+ ions), a property that is proposed to be mainly determined by residues in the selectivity filter. However, the mechanism of cation selection in mammalian Nav channels lacks direct explanation at atomic level due to the difference in amino acid sequences between mammalian and prokaryotic Nav homologues, especially at the constriction site where the DEKA motif has been identified to determine the Na+/K+ selectivity in mammalian Nav channels but is completely absent in the prokaryotic counterparts. Among the DEKA residues, Lys is of the most importance since its mutation to Arg abolishes the Na+/K+ selectivity. In this work, we modeled the pore domain of mammalian Nav channels by mutating the four residues at the constriction site of a prokaryotic Nav channel (NavRh) to DEKA, and then mechanistically investigated the contribution of Lys in cation selection using molecular dynamics simulations. The DERA mutant was generated as a comparison to understand the loss of ion selectivity caused by the K-to-R mutation. Simulations and free energy calculations on the mutants indicate that Lys facilitates Na+/K+ selection by electrostatically repelling the cation to a highly Na+-selective location sandwiched by the carboxylate groups of Asp and Glu at the constriction site. In contrast, the electrostatic repulsion is substantially weakened when Lys is mutated to Arg, because of two intrinsic properties of the Arg side chain: the planar geometric design and the sparse charge distribution of the guanidine group.

  5. The Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) voltage-gated sodium channel and mutations associated with pyrethroid resistance in field-collected adult males.

    Science.gov (United States)

    Hopkins, B W; Pietrantonio, P V

    2010-05-01

    Helicoverpa zea is one of the most costly insect pests of food and fiber crops throughout the Americas. Pyrethroid insecticides are widely applied for its control as they are effective and relatively inexpensive; however, resistance to pyrethroids threatens agricultural systems sustainability because alternative insecticides are often more expensive or less effective. Although pyrethroid resistance has been identified in this pest since 1990, the mechanisms of resistance have not yet been elucidated at the molecular level. Pyrethroids exert their toxicity by prolonging the open state of the voltage-gated sodium channel. Here we report the cDNA sequence of the H. zea sodium channel alpha-subunit homologous to the para gene from Drosophila melanogaster. In field-collected males which were resistant to cypermethrin as determined by the adult vial test, we identify known resistance-conferring mutations L1029H and V421M, along with two novel mutations at the V421 residue, V421A and V421G. An additional mutation, I951V, may be the first example of a pyrethroid resistance mutation caused by RNA editing. Identification of the sodium channel cDNA sequence will allow for testing hypotheses on target-site resistance for insecticides acting on this channel through modeling and expression studies. Understanding the mechanisms responsible for resistance will greatly improve our ability to identify and predict resistance, as well as preserve susceptibility to pyrethroid insecticides. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Propafenone Overdose-induced Arrhythmia and Subsequent Correction After Administration of Sodium Bicarbonate

    Directory of Open Access Journals (Sweden)

    Patrick Bruss, MD

    2018-04-01

    Full Text Available History of present illness: 71-year old woman presented to the emergency department with near-syncope, chest pain, and shortness of breath. She has a history of hypertension, congestive heart failure and an “irregular heartbeat.” She cannot remember what medications she takes. She recently saw her cardiologist and had some of her medications adjusted, but she can’t remember what specific changes were made. An electrocardiogram was performed, one ampule of sodium bicarbonate was administered and a repeat ECG obtained; patient felt improvement of her symptoms after administration of sodium bicarbonate. Significant findings: The first ECG in this case showed sinus tachycardia with a widened QRS (black arrow, a rightward axis, prolonged corrected QT interval (QTc, and terminal R wave in AVR (white arrow. There are several potential causes for these ECG findings, but put together with the patient’s history, we were suspicious of sodium channel blockers being the most likely cause. The second ECG, after sodium bicarbonate was administered, demonstrated a normal QRS (black arrow and no rightward axis deviation, reduction of the QTC and resolution of the terminal R wave (white arrow. We later learned that the patient’s cardiologist recently increased her propafenone dose. Discussion: Propafenone is a class 1C anti-arrhythmic that slows influx of sodium ions into the cells. It slows the rate of increase of the action potential thereby prolonging conduction and refractoriness in all areas of the myocardium.1 The mortality from acute Class 1C toxicity has been reported as high as 22.5%.1 The degree of propafenone toxicity is directly correlated to the QRS interval,1 so monitoring said interval is very helpful in determining resolution of the drug’s cardiotoxic effects. The electrocardiac effect of tricyclic antidepressants (TCAs is a well-known and often tested finding. These effects include prolongation of the QRS and QTc, right axis deviation

  7. Constraint shapes convergence in tetrodotoxin-resistant sodium channels of snakes.

    Science.gov (United States)

    Feldman, Chris R; Brodie, Edmund D; Brodie, Edmund D; Pfrender, Michael E

    2012-03-20

    Natural selection often produces convergent changes in unrelated lineages, but the degree to which such adaptations occur via predictable genetic paths is unknown. If only a limited subset of possible mutations is fixed in independent lineages, then it is clear that constraint in the production or function of molecular variants is an important determinant of adaptation. We demonstrate remarkably constrained convergence during the evolution of resistance to the lethal poison, tetrodotoxin, in six snake species representing three distinct lineages from around the globe. Resistance-conferring amino acid substitutions in a voltage-gated sodium channel, Na(v)1.4, are clustered in only two regions of the protein, and a majority of the replacements are confined to the same three positions. The observed changes represent only a small fraction of the experimentally validated mutations known to increase Na(v)1.4 resistance to tetrodotoxin. These results suggest that constraints resulting from functional tradeoffs between ion channel function and toxin resistance led to predictable patterns of evolutionary convergence at the molecular level. Our data are consistent with theoretical predictions and recent microcosm work that suggest a predictable path is followed during an adaptive walk along a mutational landscape, and that natural selection may be frequently constrained to produce similar genetic outcomes even when operating on independent lineages.

  8. Acid-sensing ion and epithelial sodium channels do not contribute to the mechanoreceptor component of the exercise pressor reflex

    OpenAIRE

    McCord, Jennifer L.; Hayes, Shawn G.; Kaufman, Marc P.

    2008-01-01

    Amiloride, injected into the popliteal artery, has been reported to attenuate the reflex pressor response to static contraction of the triceps surae muscles. Both mechanical and metabolic stimuli arising in contracting skeletal muscle are believed to evoke this effect, which has been named the exercise pressor reflex. Amiloride blocks both acid-sensing ion channels, as well as epithelial sodium channels. Nevertheless, amiloride is thought to block the metabolic stimulus to the reflex, because...

  9. Intron retention in mRNA encoding ancillary subunit of insect voltage-gated sodium channel modulates channel expression, gating regulation and drug sensitivity.

    Directory of Open Access Journals (Sweden)

    Céline M Bourdin

    Full Text Available Insect voltage-gated sodium (Nav channels are formed by a well-known pore-forming α-subunit encoded by para-like gene and ancillary subunits related to TipE from the mutation "temperature-induced-paralysis locus E." The role of these ancillary subunits in the modulation of biophysical and pharmacological properties of Na(+ currents are not enough documented. The unique neuronal ancillary subunit TipE-homologous protein 1 of Drosophila melanogaster (DmTEH1 strongly enhances the expression of insect Nav channels when heterologously expressed in Xenopus oocytes. Here we report the cloning and functional expression of two neuronal DmTEH1-homologs of the cockroach, Periplaneta americana, PaTEH1A and PaTEH1B, encoded by a single bicistronic gene. In PaTEH1B, the second exon encoding the last 11-amino-acid residues of PaTEH1A is shifted to 3'UTR by the retention of a 96-bp intron-containing coding-message, thus generating a new C-terminal end. We investigated the gating and pharmacological properties of the Drosophila Nav channel variant (DmNav1-1 co-expressed with DmTEH1, PaTEH1A, PaTEH1B or a truncated mutant PaTEH1Δ(270-280 in Xenopus oocytes. PaTEH1B caused a 2.2-fold current density decrease, concomitant with an equivalent α-subunit incorporation decrease in the plasma membrane, compared to PaTEH1A and PaTEH1Δ(270-280. PaTEH1B positively shifted the voltage-dependences of activation and slow inactivation of DmNav1-1 channels to more positive potentials compared to PaTEH1A, suggesting that the C-terminal end of both proteins may influence the function of the voltage-sensor and the pore of Nav channel. Interestingly, our findings showed that the sensitivity of DmNav1-1 channels to lidocaine and to the pyrazoline-type insecticide metabolite DCJW depends on associated TEH1-like subunits. In conclusion, our work demonstrates for the first time that density, gating and pharmacological properties of Nav channels expressed in Xenopus oocytes can be

  10. RING finger protein 121 facilitates the degradation and membrane localization of voltage-gated sodium channels

    Science.gov (United States)

    Ogino, Kazutoyo; Low, Sean E.; Yamada, Kenta; Saint-Amant, Louis; Zhou, Weibin; Muto, Akira; Asakawa, Kazuhide; Nakai, Junichi; Kawakami, Koichi; Kuwada, John Y.; Hirata, Hiromi

    2015-01-01

    Following their synthesis in the endoplasmic reticulum (ER), voltage-gated sodium channels (NaV) are transported to the membranes of excitable cells, where they often cluster, such as at the axon initial segment of neurons. Although the mechanisms by which NaV channels form and maintain clusters have been extensively examined, the processes that govern their transport and degradation have received less attention. Our entry into the study of these processes began with the isolation of a new allele of the zebrafish mutant alligator, which we found to be caused by mutations in the gene encoding really interesting new gene (RING) finger protein 121 (RNF121), an E3-ubiquitin ligase present in the ER and cis-Golgi compartments. Here we demonstrate that RNF121 facilitates two opposing fates of NaV channels: (i) ubiquitin-mediated proteasome degradation and (ii) membrane localization when coexpressed with auxiliary NaVβ subunits. Collectively, these results indicate that RNF121 participates in the quality control of NaV channels during their synthesis and subsequent transport to the membrane. PMID:25691753

  11. Distinct interactions of Na+ and Ca2+ ions with the selectivity filter of the bacterial sodium channel NaVAb

    International Nuclear Information System (INIS)

    Ke, Song; Zangerl, Eva-Maria; Stary-Weinzinger, Anna

    2013-01-01

    Highlights: ► Ca 2+ translocates slowly in the filter, due to lack of “loose” knock-on mechanism. ► Identification of a high affinity binding site in Na V Ab selectivity filter. ► Changes of EEEE locus triggered by electrostatic interactions with Ca 2+ ions. -- Abstract: Rapid and selective ion transport is essential for the generation and regulation of electrical signaling pathways in living organisms. In this study, we use molecular dynamics simulations and free energy calculations to investigate how the bacterial sodium channel Na V Ab (Arcobacter butzleri) differentiates between Na + and Ca 2+ ions. Multiple nanosecond molecular dynamics simulations revealed distinct binding patterns for these two cations in the selectivity filter and suggested a high affinity calcium binding site formed by backbone atoms of residues Leu-176 and Thr-175 (S CEN ) in the sodium channel selectivity filter

  12. In vivo potency of different ligands on voltage-gated sodium channels.

    Science.gov (United States)

    Safrany-Fark, Arpad; Petrovszki, Zita; Kekesi, Gabriella; Liszli, Peter; Benedek, Gyorgy; Keresztes, Csilla; Horvath, Gyongyi

    2015-09-05

    The Ranvier nodes of thick myelinated nerve fibers contain almost exclusively voltage-gated sodium channels (Navs), while the unmyelinated fibers have several receptors (e.g., cannabinoid, transient receptor potential vanilloid receptor 1), too. Therefore, a nerve which contains only motor fibers can be an appropriate in vivo model for selective influence of Navs. The goals were to evaluate the potency of local anesthetic drugs on such a nerve in vivo; furthermore, to investigate the effects of ligands with different structures (arachidonic acid, anandamide, capsaicin and nisoxetine) that were proved to inhibit Navs in vitro with antinociceptive properties. The marginal mandibular branch of the facial nerve was explored in anesthetized Wistar rats; after its stimulation, the electrical activity of the vibrissae muscles was registered following the perineural injection of different drugs. Lidocaine, bupivacaine and ropivacaine evoked dose-dependent decrease in electromyographic activity, i.e., lidocaine had lower potency than bupivacaine or ropivacaine. QX-314 did not cause any effect by itself, but its co-application with lidocaine produced a prolonged inhibition. Nisoxetine had a very low potency. While anandamide and capsaicin in high doses caused about 50% decrease in the amplitude of action potential, arachidonic acid did not influence the responses. We proved that the classical local anesthetics have high potency on motor nerves, suggesting that this method might be a reliable model for selective targeting of Navs in vivo circumstances. It is proposed that the effects of these endogenous lipids and capsaicin on sensory fibers are not primarily mediated by Navs. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Voltage-gated sodium channel polymorphism and metabolic resistance in pyrethroid-resistant Aedes aegypti from Brazil.

    Science.gov (United States)

    Martins, Ademir Jesus; Lins, Rachel Mazzei Moura de Andrade; Linss, Jutta Gerlinde Birgitt; Peixoto, Alexandre Afranio; Valle, Denise

    2009-07-01

    The nature of pyrethroid resistance in Aedes aegypti Brazilian populations was investigated. Quantification of enzymes related to metabolic resistance in two distinct populations, located in the Northeast and Southeast regions, revealed increases in Glutathione-S-transferase (GST) and Esterase levels. Additionally, polymorphism was found in the IIS6 region of Ae. aegypti voltage-gated sodium channel (AaNa(V)), the pyrethroid target site. Sequences were classified in two haplotype groups, A and B, according to the size of the intron in that region. Rockefeller, a susceptible control lineage, contains only B sequences. In field populations, some A sequences present a substitution in the 1011 site (Ile/Met). When resistant and susceptible individuals were compared, the frequency of both A (with the Met mutation) and B sequences were slightly increased in resistant specimens. The involvement of the AaNa(V) polymorphism in pyrethroid resistance and the metabolic mechanisms that lead to potential cross-resistance between organophosphate and pyrethroids are discussed.

  14. Skeletal Muscle Na+ Channel Disorders

    Directory of Open Access Journals (Sweden)

    Dina eSimkin

    2011-10-01

    Full Text Available Five inherited human disorders affecting skeletal muscle contraction have been traced to mutations in the gene encoding the voltage-gated sodium channel Nav1.4. The main symptoms of these disorders are myotonia or periodic paralysis caused by changes in skeletal muscle fiber excitability. Symptoms of these disorders vary from mild or latent disease to incapacitating or even death in severe cases. As new human sodium channel mutations corresponding to disease states become discovered, the importance of understanding the role of the sodium channel in skeletal muscle function and disease state grows.

  15. Membrane potential and cation channels in rat juxtaglomerular cells

    DEFF Research Database (Denmark)

    Friis, U G; Jørgensen, F; Andreasen, D

    2004-01-01

    The relationship between membrane potential and cation channels in juxtaglomerular (JG) cells is not well understood. Here we review electrophysiological and molecular studies of JG cells demonstrating the presence of large voltage-sensitive, calcium-activated potassium channels (BK(Ca)) of the Z......The relationship between membrane potential and cation channels in juxtaglomerular (JG) cells is not well understood. Here we review electrophysiological and molecular studies of JG cells demonstrating the presence of large voltage-sensitive, calcium-activated potassium channels (BK...

  16. Modeling of action potential generation in NG108-15 cells.

    Science.gov (United States)

    Molnar, Peter; Hickman, James J

    2014-01-01

    In order to explore the possibility of identifying toxins based on their effect on the shape of action potentials, we created a computer model of the action potential generation in NG108-15 cells (a neuroblastoma/glioma hybrid cell line). To generate the experimental data for model validation, voltage-dependent sodium, potassium and high-threshold calcium currents, as well as action potentials, were recorded from NG108-15 cells with conventional whole-cell patch-clamp methods. Based on the classic Hodgkin-Huxley formalism and the linear thermodynamic description of the rate constants, ion-channel parameters were estimated using an automatic fitting method. Utilizing the established parameters, action potentials were generated using the Hodgkin-Huxley formalism and were fitted to the recorded action potentials. To demonstrate the applicability of the method for toxin detection and discrimination, the effect of tetrodotoxin (a sodium channel blocker) and tefluthrin (a pyrethroid that is a sodium channel opener) were studied. The two toxins affected the shape of the action potentials differently, and their respective effects were identified based on the predicted changes in the fitted parameters.

  17. [Mechanism of action of neurotoxins acting on the inactivation of voltage-gated sodium channels].

    Science.gov (United States)

    Benoit, E

    1998-01-01

    This review focuses on the mechanism(s) of action of neurotoxins acting on the inactivation of voltage-gated Na channels. Na channels are transmembrane proteins which are fundamental for cellular communication. These proteins form pores in the plasma membrane allowing passive ionic movements to occur. Their opening and closing are controlled by gating systems which depend on both membrane potential and time. Na channels have three functional properties, mainly studied using electrophysiological and biochemical techniques, to ensure their role in the generation and propagation of action potentials: 1) a highly selectivity for Na ions, 2) a rapid opening ("activation"), responsible for the depolarizing phase of the action potential, and 3) a late closing ("inactivation") involved in the repolarizing phase of the action potential. As an essential protein for membrane excitability, the Na channel is the specific target of a number of vegetal and animal toxins which, by binding to the channel, alter its activity by affecting one or more of its properties. At least six toxin receptor sites have been identified on the neuronal Na channel on the basis of binding studies. However, only toxins interacting with four of these sites (sites 2, 3, 5 et 6) produce alterations of channel inactivation. The maximal percentage of Na channels modified by the binding of neurotoxins to sites 2 (batrachotoxin and some alkaloids), 3 (alpha-scorpion and sea anemone toxins), 5 (brevetoxins and ciguatoxins) et 6 (delta-conotoxins) is different according to the site considered. However, in all cases, these channels do not inactivate. Moreover, Na channels modified by toxins which bind to sites 2, 5 and 6 activate at membrane potentials more negative than do unmodified channels. The physiological consequences of Na channel modifications, induced by the binding of neurotoxins to sites 2, 3, 5 and 6, are (i) an inhibition of cellular excitability due to an important membrane depolarization (site

  18. Calculation of total cross sections for electron and positron scattering on sodium and potassium

    International Nuclear Information System (INIS)

    McCarthy, I.E.; Ratnavelu, K.; Zhou, Y.

    1993-02-01

    Total cross sections for electron and positron scattering on sodium and potassium are calculated at various energies and compared with experiment. The method use is the coupled-channels-optical method with the equivalent-local polarisation potential, which takes all channels into account. For electrons the calculations are checked by comparison with coupled-channels-optical calculations using a detailed polarisation potential that makes only one approximation, that of weak coupling in the ionisation space. The polarisation potential for positrons includes effects of ionisation and positronium formation. 13 refs., 2 tabs

  19. Guanidinium Toxins and Their Interactions with Voltage-Gated Sodium Ion Channels

    Directory of Open Access Journals (Sweden)

    Lorena M. Durán-Riveroll

    2017-10-01

    Full Text Available Guanidinium toxins, such as saxitoxin (STX, tetrodotoxin (TTX and their analogs, are naturally occurring alkaloids with divergent evolutionary origins and biogeographical distribution, but which share the common chemical feature of guanidinium moieties. These guanidinium groups confer high biological activity with high affinity and ion flux blockage capacity for voltage-gated sodium channels (NaV. Members of the STX group, known collectively as paralytic shellfish toxins (PSTs, are produced among three genera of marine dinoflagellates and about a dozen genera of primarily freshwater or brackish water cyanobacteria. In contrast, toxins of the TTX group occur mainly in macrozoa, particularly among puffer fish, several species of marine invertebrates and a few terrestrial amphibians. In the case of TTX and analogs, most evidence suggests that symbiotic bacteria are the origin of the toxins, although endogenous biosynthesis independent from bacteria has not been excluded. The evolutionary origin of the biosynthetic genes for STX and analogs in dinoflagellates and cyanobacteria remains elusive. These highly potent molecules have been the subject of intensive research since the latter half of the past century; first to study the mode of action of their toxigenicity, and later as tools to characterize the role and structure of NaV channels, and finally as therapeutics. Their pharmacological activities have provided encouragement for their use as therapeutants for ion channel-related pathologies, such as pain control. The functional role in aquatic and terrestrial ecosystems for both groups of toxins is unproven, although plausible mechanisms of ion channel regulation and chemical defense are often invoked. Molecular approaches and the development of improved detection methods will yield deeper understanding of their physiological and ecological roles. This knowledge will facilitate their further biotechnological exploitation and point the way towards

  20. Loss of Sodium-Activated Potassium Channel Slack and FMRP Differentially Affect Social Behavior in Mice.

    Science.gov (United States)

    Bausch, Anne E; Ehinger, Rebekka; Straubinger, Julia; Zerfass, Patrick; Nann, Yvette; Lukowski, Robert

    2018-05-31

    The sodium-activated potassium channel Slack (Slo2.2) is widely expressed in central and peripheral neurons where it is supposed to shape firing properties important for neuronal excitability. Slack activity is enhanced by interaction with the Fragile-X-Mental-Retardation-Protein (FMRP) and loss of FMRP leads to decreased sodium-activated potassium currents in medial nucleus of the trapezoid body neurons of the Fmr1-knockout (KO) mouse representing a mouse model of the human Fragile-X-Syndrome (FXS) and autism. Autism is a frequent comorbidity of FXS, but it is unclear whether Slack is involved in autistic or related conditions of FXS in vivo. By applying a wide range of behavioral tests, we compared social and autism-related behaviors in Slack- and FMRP-deficient mice. In our hands, as expected, FMRP-deficiency causes autism-related behavioral changes in nesting and in a marble-burying test. In contrast, Slack-deficient males exhibited specific abnormalities in sociability in direct and indirect social interaction tests. Hence, we show for the first time that a proper Slack channel function is mandatory for normal social behavior in mice. Nevertheless, as deficits in social behaviors seem to occur independently from each other in FMRP and Slack null mutants, we conclude that Slack is not involved in the autistic phenotype of FMRP KO mice. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Activation of sodium channels by α-scorpion toxin, BmK NT1, produced neurotoxicity in cerebellar granule cells: an association with intracellular Ca2+ overloading.

    Science.gov (United States)

    He, Yuwei; Zou, Xiaohan; Li, Xichun; Chen, Juan; Jin, Liang; Zhang, Fan; Yu, Boyang; Cao, Zhengyu

    2017-02-01

    Voltage-gated sodium channels (VGSCs) are responsible for the action potential generation in excitable cells including neurons and involved in many physiological and pathological processes. Scorpion toxins are invaluable tools to explore the structure and function of ion channels. BmK NT1, a scorpion toxin from Buthus martensii Karsch, stimulates sodium influx in cerebellar granule cells (CGCs). In this study, we characterized the mode of action of BmK NT1 on the VGSCs and explored the cellular response in CGC cultures. BmK NT1 delayed the fast inactivation of VGSCs, increased the Na + currents, and shifted the steady-state activation and inactivation to more hyperpolarized membrane potential, which was similar to the mode of action of α-scorpion toxins. BmK NT1 stimulated neuron death (EC 50  = 0.68 µM) and produced massive intracellular Ca 2+ overloading (EC 50  = 0.98 µM). TTX abrogated these responses, suggesting that both responses were subsequent to the activation of VGSCs. The Ca 2+ response of BmK NT1 was primary through extracellular Ca 2+ influx since reducing the extracellular Ca 2+ concentration suppressed the Ca 2+ response. Further pharmacological evaluation demonstrated that BmK NT1-induced Ca 2+ influx and neurotoxicity were partially blocked either by MK-801, an NMDA receptor blocker, or by KB-R7943, an inhibitor of Na + /Ca 2+ exchangers. Nifedipine, an L-type Ca 2+ channel inhibitor, slightly suppressed both Ca 2+ response and neurotoxicity. A combination of these three inhibitors abrogated both responses. Considered together, these data ambiguously demonstrated that activation of VGSCs by an α-scorpion toxin was sufficient to produce neurotoxicity which was associated with intracellular Ca 2+ overloading through both NMDA receptor- and Na + /Ca 2+ exchanger-mediated Ca 2+ influx.

  2. Surface dynamics of voltage-gated ion channels

    Science.gov (United States)

    Heine, Martin; Ciuraszkiewicz, Anna; Voigt, Andreas; Heck, Jennifer; Bikbaev, Arthur

    2016-01-01

    ABSTRACT Neurons encode information in fast changes of the membrane potential, and thus electrical membrane properties are critically important for the integration and processing of synaptic inputs by a neuron. These electrical properties are largely determined by ion channels embedded in the membrane. The distribution of most ion channels in the membrane is not spatially uniform: they undergo activity-driven changes in the range of minutes to days. Even in the range of milliseconds, the composition and topology of ion channels are not static but engage in highly dynamic processes including stochastic or activity-dependent transient association of the pore-forming and auxiliary subunits, lateral diffusion, as well as clustering of different channels. In this review we briefly discuss the potential impact of mobile sodium, calcium and potassium ion channels and the functional significance of this for individual neurons and neuronal networks. PMID:26891382

  3. ASIC3 channels in multimodal sensory perception.

    Science.gov (United States)

    Li, Wei-Guang; Xu, Tian-Le

    2011-01-19

    Acid-sensing ion channels (ASICs), which are members of the sodium-selective cation channels belonging to the epithelial sodium channel/degenerin (ENaC/DEG) family, act as membrane-bound receptors for extracellular protons as well as nonproton ligands. At least five ASIC subunits have been identified in mammalian neurons, which form both homotrimeric and heterotrimeric channels. The highly proton sensitive ASIC3 channels are predominantly distributed in peripheral sensory neurons, correlating with their roles in multimodal sensory perception, including nociception, mechanosensation, and chemosensation. Different from other ASIC subunit composing ion channels, ASIC3 channels can mediate a sustained window current in response to mild extracellular acidosis (pH 7.3-6.7), which often occurs accompanied by many sensory stimuli. Furthermore, recent evidence indicates that the sustained component of ASIC3 currents can be enhanced by nonproton ligands including the endogenous metabolite agmatine. In this review, we first summarize the growing body of evidence for the involvement of ASIC3 channels in multimodal sensory perception and then discuss the potential mechanisms underlying ASIC3 activation and mediation of sensory perception, with a special emphasis on its role in nociception. We conclude that ASIC3 activation and modulation by diverse sensory stimuli represent a new avenue for understanding the role of ASIC3 channels in sensory perception. Furthermore, the emerging implications of ASIC3 channels in multiple sensory dysfunctions including nociception allow the development of new pharmacotherapy.

  4. Trafficking regulates the subcellular distribution of voltage-gated sodium channels in primary sensory neurons.

    Science.gov (United States)

    Bao, Lan

    2015-09-30

    Voltage-gated sodium channels (Navs) comprise at least nine pore-forming α subunits. Of these, Nav1.6, Nav1.7, Nav1.8 and Nav1.9 are the most frequently studied in primary sensory neurons located in the dorsal root ganglion and are mainly localized to the cytoplasm. A large pool of intracellular Navs raises the possibility that changes in Nav trafficking could alter channel function. The molecular mediators of Nav trafficking mainly consist of signals within the Navs themselves, interacting proteins and extracellular factors. The surface expression of Navs is achieved by escape from the endoplasmic reticulum and proteasome degradation, forward trafficking and plasma membrane anchoring, and it is also regulated by channel phosphorylation and ubiquitination in primary sensory neurons. Axonal transport and localization of Navs in afferent fibers involves the motor protein KIF5B and scaffold proteins, including contactin and PDZ domain containing 2. Localization of Nav1.6 to the nodes of Ranvier in myelinated fibers of primary sensory neurons requires node formation and the submembrane cytoskeletal protein complex. These findings inform our understanding of the molecular and cellular mechanisms underlying Nav trafficking in primary sensory neurons.

  5. Activity of the anticonvulsant lacosamide in experimental and human epilepsy via selective effects on slow Na+ channel inactivation.

    Science.gov (United States)

    Holtkamp, Dominik; Opitz, Thoralf; Niespodziany, Isabelle; Wolff, Christian; Beck, Heinz

    2017-01-01

    In human epilepsy, pharmacoresistance to antiepileptic drug therapy is a major problem affecting ~30% of patients with epilepsy. Many classical antiepileptic drugs target voltage-gated sodium channels, and their potent activity in inhibiting high-frequency firing has been attributed to their strong use-dependent blocking action. In chronic epilepsy, a loss of use-dependent block has emerged as a potential cellular mechanism of pharmacoresistance for anticonvulsants acting on voltage-gated sodium channels. The anticonvulsant drug lacosamide (LCM) also targets sodium channels, but has been shown to preferentially affect sodium channel slow inactivation processes, in contrast to most other anticonvulsants. We used whole-cell voltage clamp recordings in acutely isolated cells to investigate the effects of LCM on transient Na + currents. Furthermore, we used whole-cell current clamp recordings to assess effects on repetitive action potential firing in hippocampal slices. We show here that LCM exerts its effects primarily via shifting the slow inactivation voltage dependence to more hyperpolarized potentials in hippocampal dentate granule cells from control and epileptic rats, and from patients with epilepsy. It is important to note that this activity of LCM was maintained in chronic experimental and human epilepsy. Furthermore, we demonstrate that the efficacy of LCM in inhibiting high-frequency firing is undiminished in chronic experimental and human epilepsy. Taken together, these results show that LCM exhibits maintained efficacy in chronic epilepsy, in contrast to conventional use-dependent sodium channel blockers such as carbamazepine. They also establish that targeting slow inactivation may be a promising strategy for overcoming target mechanisms of pharmacoresistance. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  6. Transient receptor potential channel superfamily: Role in lower urinary tract function.

    Science.gov (United States)

    Ogawa, Teruyuki; Imamura, Tetsuya; Nakazawa, Masaki; Hiragata, Shiro; Nagai, Takashi; Minagawa, Tomonori; Yokoyama, Hitoshi; Ishikawa, Masakuni; Domen, Takahisa; Ishizuka, Osamu

    2015-11-01

    Lower urinary tract symptoms associated with neurogenic bladder and overactive bladder syndrome are mediated in part by members of the transient receptor potential channel superfamily. The best studied member of this superfamily is the vanilloid receptor. Other transient receptor potential channels, such as the melastatin receptor and the ankyrin receptor, are also active in the pathogenesis of lower urinary tract dysfunction. However, the detailed mechanisms by which the transient receptor potential channels contribute to lower urinary tract symptoms are still not clear, and the therapeutic benefits of modulating transient receptor potential channel activity have not been proved in the clinical setting. In the present review, to better understand the pathophysiology and therapeutic potential for lower urinary tract symptoms, we summarize the presence and role of different members of the transient receptor potential channel superfamily in the lower urinary tract. © 2015 The Japanese Urological Association.

  7. Sodium hyaluronate enhances colorectal tumour cell metastatic potential in vitro and in vivo.

    LENUS (Irish Health Repository)

    Tan, B

    2012-02-03

    BACKGROUND: Sodium hyaluronate has been used intraperitoneally to prevent postoperative adhesions. However, the effect of sodium hyaluronate on tumour growth and metastasis in vitro and in vivo is still unknown. METHODS: Human colorectal tumour cell lines SW480, SW620 and SW707 were treated with sodium hyaluronate (10-500 microg\\/ml) and carboxymethylcellulose (0.125-1 per cent), and tumour cell proliferation and motility were determined in vitro. For the in vivo experiments male BD IX rats were randomized to a sodium hyaluronate group (n = 11; intraperitoneal administration of 0.5 x 10(6) DHD\\/K12 tumour cells and 5 ml 0.4 per cent sodium hyaluronate) or a phosphate-buffered saline group (n = 11; 0.5 x 10(6) DHD\\/K12 tumour cells and 5 ml phosphate-buffered saline intraperitoneally). Four weeks later the intraperitoneal tumour load was visualized directly. RESULTS: In vitro sodium hyaluronate increased tumour cell proliferation and motility significantly. Sodium hyaluronate-induced tumour cell motility appeared to be CD44 receptor dependent, whereas sodium hyaluronate-induced tumour cell proliferation was CD44 receptor independent. In vivo there was a significantly higher total tumour nodule count in the peritoneal cavity of the sodium hyaluronate-treated group compared with the control (P = 0.016). CONCLUSION: Sodium hyaluronate enhances tumour metastatic potential in vitro and in vivo, which suggests that use of sodium hyaluronate to prevent adhesions in colorectal cancer surgery may also potentiate intraperitoneal tumour growth. Presented to the Patey Prize Session of the Surgical Research Society and the annual scientific meeting of the Association of Surgeons of Great Britain and Ireland, Brighton, UK, 4-7 May 1999

  8. The potential impacts of sodium management on Frit Development for Coupled Operations

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peeler, D. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-06-10

    In this report, Section 2.0 provides a description of sodium management and its impact on the glass waste form, Section 3.0 provides background information on phase separation, Section 4.0 provides the impact of sodium management on SB9 frit development efforts and the results of a limited scoping study investigating phase separation in potential DWPF frits, and Section 5.0 discusses potential technical issues associated with using a phase separated frit for DWPF operations.

  9. Sodium voiding analysis in Kalimer

    International Nuclear Information System (INIS)

    Chang, Won-Pyo; Jeong, Kwan-Seong; Hahn, Dohee

    2001-01-01

    A sodium boiling model has been developed for calculations of the void reactivity feedback as well as the fuel and cladding temperatures in the KALIMER core after onset of sodium boiling. The sodium boiling in liquid metal reactors using sodium as coolant should be modeled because of phenomenon difference observed from that in light water reactor systems. The developed model is a multiple -bubble slug ejection model. It allows a finite number of bubbles in a channel at any time. Voiding is assumed to result from formation of bubbles that fill the whole cross section of the coolant channel except for liquid film left on the cladding surface. The vapor pressure, currently, is assumed to be uniform within a bubble. The present study is focused on not only demonstration of the sodium voiding behavior predicted by the developed model, but also confirmation on qualitative acceptance for the model. In results, the model catches important phenomena for sodium boiling, while further effort should be made for the complete analysis. (author)

  10. Distribution of TTX-sensitive voltage-gated sodium channels in primary sensory endings of mammalian muscle spindles.

    Science.gov (United States)

    Carrasco, Dario I; Vincent, Jacob A; Cope, Timothy C

    2017-04-01

    Knowledge of the molecular mechanisms underlying signaling of mechanical stimuli by muscle spindles remains incomplete. In particular, the ionic conductances that sustain tonic firing during static muscle stretch are unknown. We hypothesized that tonic firing by spindle afferents depends on sodium persistent inward current (INaP) and tested for the necessary presence of the appropriate voltage-gated sodium (NaV) channels in primary sensory endings. The NaV 1.6 isoform was selected for both its capacity to produce INaP and for its presence in other mechanosensors that fire tonically. The present study shows that NaV 1.6 immunoreactivity (IR) is concentrated in heminodes, presumably where tonic firing is generated, and we were surprised to find NaV 1.6 IR strongly expressed also in the sensory terminals, where mechanotransduction occurs. This spatial pattern of NaV 1.6 IR distribution was consistent for three mammalian species (rat, cat, and mouse), as was tonic firing by primary spindle afferents. These findings meet some of the conditions needed to establish participation of INaP in tonic firing by primary sensory endings. The study was extended to two additional NaV isoforms, selected for their sensitivity to TTX, excluding TTX-resistant NaV channels, which alone are insufficient to support firing by primary spindle endings. Positive immunoreactivity was found for NaV 1.1 , predominantly in sensory terminals together with NaV 1.6 and for NaV 1.7 , mainly in preterminal axons. Differential distribution in primary sensory endings suggests specialized roles for these three NaV isoforms in the process of mechanosensory signaling by muscle spindles. NEW & NOTEWORTHY The molecular mechanisms underlying mechanosensory signaling responsible for proprioceptive functions are not completely elucidated. This study provides the first evidence that voltage-gated sodium channels (NaVs) are expressed in the spindle primary sensory ending, where NaVs are found at every site

  11. Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels.

    Science.gov (United States)

    Shaya, David; Findeisen, Felix; Abderemane-Ali, Fayal; Arrigoni, Cristina; Wong, Stephanie; Nurva, Shailika Reddy; Loussouarn, Gildas; Minor, Daniel L

    2014-01-23

    Voltage-gated sodium channels (NaVs) are central elements of cellular excitation. Notwithstanding advances from recent bacterial NaV (BacNaV) structures, key questions about gating and ion selectivity remain. Here, we present a closed conformation of NaVAe1p, a pore-only BacNaV derived from NaVAe1, a BacNaV from the arsenite oxidizer Alkalilimnicola ehrlichei found in Mono Lake, California, that provides insight into both fundamental properties. The structure reveals a pore domain in which the pore-lining S6 helix connects to a helical cytoplasmic tail. Electrophysiological studies of full-length BacNaVs show that two elements defined by the NaVAe1p structure, an S6 activation gate position and the cytoplasmic tail "neck", are central to BacNaV gating. The structure also reveals the selectivity filter ion entry site, termed the "outer ion" site. Comparison with mammalian voltage-gated calcium channel (CaV) selectivity filters, together with functional studies, shows that this site forms a previously unknown determinant of CaV high-affinity calcium binding. Our findings underscore commonalities between BacNaVs and eukaryotic voltage-gated channels and provide a framework for understanding gating and ion permeation in this superfamily. © 2013. Published by Elsevier Ltd. All rights reserved.

  12. Inhibition of cardiac sodium currents by toluene exposure

    Science.gov (United States)

    Cruz, Silvia L; Orta-Salazar, Gerardo; Gauthereau, Marcia Y; Millan-Perez Peña, Lourdes; Salinas-Stefanón, Eduardo M

    2003-01-01

    Toluene is an industrial solvent widely used as a drug of abuse, which can produce sudden sniffing death due to cardiac arrhythmias. In this paper, we tested the hypothesis that toluene inhibits cardiac sodium channels in Xenopus laevis oocytes transfected with Nav1.5 cDNA and in isolated rat ventricular myocytes. In oocytes, toluene inhibited sodium currents (INa+) in a concentration-dependent manner, with an IC50 of 274 μM (confidence limits: 141–407μM). The inhibition was complete, voltage-independent, and slowly reversible. Toluene had no effect on: (i) the shape of the I–V curves; (ii) the reversal potential of Na+; and (iii) the steady-state inactivation. The slow recovery time constant from inactivation of INa+ decreased with toluene exposure, while the fast recovery time constant remained unchanged. Block of INa+ by toluene was use- and frequency-dependent. In rat cardiac myocytes, 300 μM toluene inhibited the sodium current (INa+) by 62%; this inhibition was voltage independent. These results suggest that toluene binds to cardiac Na+ channels in the open state and unbinds either when channels move between inactivated states or from an inactivated to a closed state. The use- and frequency-dependent block of INa+ by toluene might be responsible, at least in part, for its arrhythmogenic effect. PMID:14534149

  13. COMMD1 regulates the delta epithelial sodium channel (δENaC) through trafficking and ubiquitination

    International Nuclear Information System (INIS)

    Chang, Tina; Ke, Ying; Ly, Kevin; McDonald, Fiona J.

    2011-01-01

    Highlights: → The COMM domain of COMMD1 mediates binding to δENaC. → COMMD1 reduces the cell surface population of δENaC. → COMMD1 increases the population of δENaC-ubiquitin. → Both endogenous and transfected δENaC localize with COMMD1 and transferrin suggesting they are located in early/recycling endosomes. -- Abstract: The delta subunit of the epithelial sodium channel (δENaC) is a member of the ENaC/degenerin family of ion channels. δENaC is distinct from the related α-, β- and γENaC subunits, known for their role in sodium homeostasis and blood pressure control, as δENaC is expressed in brain neurons and activated by external protons. COMMD1 (copper metabolism Murr1 domain 1) was previously found to associate with and downregulate δENaC activity. Here, we show that COMMD1 interacts with δENaC through its COMM domain. Co-expression of δENaC with COMMD1 significantly reduced δENaC surface expression, and led to an increase in δENaC ubiquitination. Immunocytochemical and confocal microscopy studies show that COMMD1 promoted localization of δENaC to the early/recycling endosomal pool where the two proteins were localized together. These results suggest that COMMD1 downregulates δENaC activity by reducing δENaC surface expression through promoting internalization of surface δENaC to an intracellular recycling pool, possibly via enhanced ubiquitination.

  14. COMMD1 regulates the delta epithelial sodium channel ({delta}ENaC) through trafficking and ubiquitination

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Tina; Ke, Ying; Ly, Kevin [Department of Physiology, University of Otago, P.O. Box 913, Dunedin 9054 (New Zealand); McDonald, Fiona J., E-mail: fiona.mcdonald@otago.ac.nz [Department of Physiology, University of Otago, P.O. Box 913, Dunedin 9054 (New Zealand)

    2011-08-05

    Highlights: {yields} The COMM domain of COMMD1 mediates binding to {delta}ENaC. {yields} COMMD1 reduces the cell surface population of {delta}ENaC. {yields} COMMD1 increases the population of {delta}ENaC-ubiquitin. {yields} Both endogenous and transfected {delta}ENaC localize with COMMD1 and transferrin suggesting they are located in early/recycling endosomes. -- Abstract: The delta subunit of the epithelial sodium channel ({delta}ENaC) is a member of the ENaC/degenerin family of ion channels. {delta}ENaC is distinct from the related {alpha}-, {beta}- and {gamma}ENaC subunits, known for their role in sodium homeostasis and blood pressure control, as {delta}ENaC is expressed in brain neurons and activated by external protons. COMMD1 (copper metabolism Murr1 domain 1) was previously found to associate with and downregulate {delta}ENaC activity. Here, we show that COMMD1 interacts with {delta}ENaC through its COMM domain. Co-expression of {delta}ENaC with COMMD1 significantly reduced {delta}ENaC surface expression, and led to an increase in {delta}ENaC ubiquitination. Immunocytochemical and confocal microscopy studies show that COMMD1 promoted localization of {delta}ENaC to the early/recycling endosomal pool where the two proteins were localized together. These results suggest that COMMD1 downregulates {delta}ENaC activity by reducing {delta}ENaC surface expression through promoting internalization of surface {delta}ENaC to an intracellular recycling pool, possibly via enhanced ubiquitination.

  15. Sodium channel SCN8A (Nav1.6: properties and de novo mutations in epileptic encephalopathy and intellectual disability

    Directory of Open Access Journals (Sweden)

    Janelle Elizabeth O'Brien

    2013-10-01

    Full Text Available The sodium channel Nav1.6, encoded by the gene SCN8A, is one of the major voltage-gated channels in human brain. The sequences of sodium channels have been highly conserved during evolution, and minor changes in biophysical properties can have a major impact in vivo. Insight into the role of Nav1.6 has come from analysis of spontaneous and induced mutations of mouse Scn8a during the past 18 years. Only within the past year has the role of SCN8A in human disease become apparent from whole exome and genome sequences of patients with sporadic disease. Unique features of Nav1.6 include its contribution to persistent current, resurgent current, repetitive neuronal firing, and subcellular localization at the axon initial segment and nodes of Ranvier. Loss of Nav1.6 activity results in reduced neuronal excitability, while gain-of-function mutations can increase neuronal excitability. Mouse Scn8a (med mutants exhibit movement disorders including ataxia, tremor and dystonia. Thus far, more than ten human de novo mutations have been identified in patients with two types of disorders, epileptic encephalopathy and intellectual disability. We review these human mutations as well as the unique features of Nav1.6 that contribute to its role in determining neuronal excitability in vivo. A supplemental figure illustrating the positions of amino acid residues within the 4 domains and 24 transmembrane segments of Nav1.6 is provided to facilitate the location of novel mutations within the channel protein.

  16. FMRFamide-gated sodium channel and ASIC channels: a new class of ionotropic receptors for FMRFamide and related peptides.

    Science.gov (United States)

    Lingueglia, Eric; Deval, Emmanuel; Lazdunski, Michel

    2006-05-01

    FMRFamide and related peptides typically exert their action through G-protein coupled receptors. However, two ionotropic receptors for these peptides have recently been identified. They are both members of the epithelial amiloride-sensitive Na+ channel and degenerin (ENaC/DEG) family of ion channels. The invertebrate FMRFamide-gated Na+ channel (FaNaC) is a neuronal Na+-selective channel which is directly gated by micromolar concentrations of FMRFamide and related tetrapeptides. Its response is fast and partially desensitizing, and FaNaC has been proposed to participate in peptidergic neurotransmission. On the other hand, mammalian acid-sensing ion channels (ASICs) are not gated but are directly modulated by FMRFamide and related mammalian peptides like NPFF and NPSF. ASICs are activated by external protons and are therefore extracellular pH sensors. They are expressed both in the central and peripheral nervous system and appear to be involved in many physiological and pathophysiological processes such as hippocampal long-term potentiation and defects in learning and memory, acquired fear-related behavior, retinal function, brain ischemia, pain sensation in ischemia and inflammation, taste perception, hearing functions, and mechanoperception. The potentiation of ASIC activity by endogenous RFamide neuropeptides probably participates in the response to noxious acidosis in sensory and central neurons. Available data also raises the possibility of the existence of still unknown FMRFamide related endogenous peptides acting as direct agonists for ASICs.

  17. Differential state-dependent modification of rat Na{sub v}1.6 sodium channels expressed in human embryonic kidney (HEK293) cells by the pyrethroid insecticides tefluthrin and deltamethrin

    Energy Technology Data Exchange (ETDEWEB)

    He, Bingjun [College of Life Sciences, Nankai University, Tianjin 300071 (China); Soderlund, David M., E-mail: dms6@cornell.edu [Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456 (United States)

    2011-12-15

    We expressed rat Na{sub v}1.6 sodium channels in combination with the rat {beta}1 and {beta}2 auxiliary subunits in human embryonic kidney (HEK293) cells and evaluated the effects of the pyrethroid insecticides tefluthrin and deltamethrin on expressed sodium currents using the whole-cell patch clamp technique. Both pyrethroids produced concentration-dependent, resting modification of Na{sub v}1.6 channels, prolonging the kinetics of channel inactivation and deactivation to produce persistent 'late' currents during depolarization and tail currents following repolarization. Both pyrethroids also produced concentration dependent hyperpolarizing shifts in the voltage dependence of channel activation and steady-state inactivation. Maximal shifts in activation, determined from the voltage dependence of the pyrethroid-induced late and tail currents, were {approx} 25 mV for tefluthrin and {approx} 20 mV for deltamethrin. The highest attainable concentrations of these compounds also caused shifts of {approx} 5-10 mV in the voltage dependence of steady-state inactivation. In addition to their effects on the voltage dependence of inactivation, both compounds caused concentration-dependent increases in the fraction of sodium current that was resistant to inactivation following strong depolarizing prepulses. We assessed the use-dependent effects of tefluthrin and deltamethrin on Na{sub v}1.6 channels by determining the effect of trains of 1 to 100 5-ms depolarizing prepulses at frequencies of 20 or 66.7 Hz on the extent of channel modification. Repetitive depolarization at either frequency increased modification by deltamethrin by {approx} 2.3-fold but had no effect on modification by tefluthrin. Tefluthrin and deltamethrin were equally potent as modifiers of Na{sub v}1.6 channels in HEK293 cells using the conditions producing maximal modification as the basis for comparison. These findings show that the actions of tefluthrin and deltamethrin of Na{sub v}1.6 channels

  18. Eslicarbazepine and the enhancement of slow inactivation of voltage-gated sodium channels: a comparison with carbamazepine, oxcarbazepine and lacosamide.

    Science.gov (United States)

    Hebeisen, Simon; Pires, Nuno; Loureiro, Ana I; Bonifácio, Maria João; Palma, Nuno; Whyment, Andrew; Spanswick, David; Soares-da-Silva, Patrício

    2015-02-01

    This study aimed at evaluating the effects of eslicarbazepine, carbamazepine (CBZ), oxcarbazepine (OXC) and lacosamide (LCM) on the fast and slow inactivated states of voltage-gated sodium channels (VGSC). The anti-epileptiform activity was evaluated in mouse isolated hippocampal slices. The anticonvulsant effects were evaluated in MES and the 6-Hz psychomotor tests. The whole-cell patch-clamp technique was used to investigate the effects of eslicarbazepine, CBZ, OXC and LCM on sodium channels endogenously expressed in N1E-115 mouse neuroblastoma cells. CBZ and eslicarbazepine exhibit similar concentration dependent suppression of epileptiform activity in hippocampal slices. In N1E-115 mouse neuroblastoma cells, at a concentration of 250 μM, the voltage dependence of the fast inactivation was not influenced by eslicarbazepine, whereas LCM, CBZ and OXC shifted the V0.5 value (mV) by -4.8, -12.0 and -16.6, respectively. Eslicarbazepine- and LCM-treated fast-inactivated channels recovered similarly to control conditions, whereas CBZ- and OXC-treated channels required longer pulses to recover. CBZ, eslicarbazepine and LCM shifted the voltage dependence of the slow inactivation (V0.5, mV) by -4.6, -31.2 and -53.3, respectively. For eslicarbazepine, LCM, CBZ and OXC, the affinity to the slow inactivated state was 5.9, 10.4, 1.7 and 1.8 times higher than to the channels in the resting state, respectively. In conclusion, eslicarbazepine did not share with CBZ and OXC the ability to alter fast inactivation of VGSC. Both eslicarbazepine and LCM reduce VGSC availability through enhancement of slow inactivation, but LCM demonstrated higher interaction with VGSC in the resting state and with fast inactivation gating. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. CFD Modeling of Sodium-Oxide Deposition in Sodium-Cooled Fast Reactor Compact Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Tatli, Emre; Ferroni, Paolo; Mazzoccoli, Jason

    2015-09-02

    The possible use of compact heat exchangers (HXs) in sodium-cooled fast reactors (SFR) employing a Brayton cycle is promising due to their high power density and resulting small volume in comparison with conventional shell-and-tube HXs. However, the small diameter of their channels makes them more susceptible to plugging due to Na2O deposition during accident conditions. Although cold traps are designed to reduce oxygen impurity levels in the sodium coolant, their failure, in conjunction with accidental air ingress into the sodium boundary, could result in coolant oxygen levels that are above the saturation limit in the cooler parts of the HX channels. This can result in Na2O crystallization and the formation of solid deposits on cooled channel surfaces, limiting or even blocking coolant flow. The development of analysis tools capable of modeling the formation of these deposits in the presence of sodium flow will allow designers of SFRs to properly size the HX channels so that, in the scenario mentioned above, the reactor operator has sufficient time to detect and react to the affected HX. Until now, analytical methodologies to predict the formation of these deposits have been developed, but never implemented in a high-fidelity computational tool suited to modern reactor design techniques. This paper summarizes the challenges and the current status in the development of a Computational Fluid Dynamics (CFD) methodology to predict deposit formation, with particular emphasis on sensitivity studies on some parameters affecting deposition.

  20. Thermoreversible gel formulation containing sodium lauryl sulfate as a potential contraceptive device.

    Science.gov (United States)

    Haineault, Caroline; Gourde, Pierrette; Perron, Sylvie; Désormeaux, André; Piret, Jocelyne; Omar, Rabeea F; Tremblay, Roland R; Bergeron, Michel G

    2003-08-01

    The contraceptive properties of a gel formulation containing sodium lauryl sulfate were investigated in both in vitro and in vivo models. Results showed that sodium lauryl sulfate inhibited, in a concentration-dependent manner, the activity of sheep testicular hyaluronidase. Sodium lauryl sulfate also completely inhibited human sperm motility as evaluated by the 30-sec Sander-Cramer test. The acid-buffering capacity of gel formulations containing sodium lauryl sulfate increased with the molarity of the citrate buffers used for their preparations. Furthermore, experiments in which semen was mixed with undiluted gel formulations in different proportions confirmed their physiologically relevant buffering capacity. Intravaginal application of the gel formulation containing sodium lauryl sulfate to rabbits before their artificial insemination with freshly ejaculated semen completely prevented egg fertilization. The gel formulation containing sodium lauryl sulfate was fully compatible with nonlubricated latex condoms. Taken together, these results suggest that the gel formulation containing sodium lauryl sulfate could represent a potential candidate for use as a topical vaginal spermicidal formulation to provide fertility control in women.

  1. Repassivation Potential of Alloy 22 in Sodium and Calcium Chloride Brines

    International Nuclear Information System (INIS)

    Rebak, R B; Ilevbare, G O; Carranza, R M

    2007-01-01

    A comprehensive matrix of 60 tests was designed to explore the effect of calcium chloride vs. sodium chloride and the ratio R of nitrate concentration over chloride concentration on the repassivation potential of Alloy 22. Tests were conducted using the cyclic potentiodynamic polarization (CPP) technique at 75 C and at 90 C. Results show that at a ratio R of 0.18 and higher nitrate was able to inhibit the crevice corrosion in Alloy 22 induced by chloride. Current results fail to show in a consistent way a different effect on the repassivation potential of Alloy 22 for calcium chloride solutions than for sodium chloride solutions

  2. Ionic channels underlying the ventricular action potential in zebrafish embryo.

    Science.gov (United States)

    Alday, Aintzane; Alonso, Hiart; Gallego, Monica; Urrutia, Janire; Letamendia, Ainhoa; Callol, Carles; Casis, Oscar

    2014-06-01

    Over the last years zebrafish has become a popular model in the study of cardiac physiology, pathology and pharmacology. Recently, the application of the 3Rs regulation and the characteristics of the embryo have reduced the use of adult zebrafish use in many studies. However, the zebrafish embryo cardiac physiology is poorly characterized since most works have used indirect techniques and direct recordings of cardiac action potential and ionic currents are scarce. In order to optimize the zebrafish embryo model, we used electrophysiological, pharmacological and immunofluorescence tools to identify the characteristics and the ionic channels involved in the ventricular action potentials of zebrafish embryos. The application of Na(+) or T-type Ca(+2) channel blockers eliminated the cardiac electrical activity, indicating that the action potential upstroke depends on Na(+) and T-type Ca(+2) currents. The plateau phase depends on L-type Ca(+2) channels since it is abolished by specific blockade. The direct channel blockade indicates that the action potential repolarization and diastolic potential depends on ERG K(+) channels. The presence in the embryonic heart of the Nav1.5, Cav1.2, Cav3.2 and ERG channels was also confirmed by immunofluorescence, while the absence of effect of specific blockers and immunostaining indicate that two K(+) repolarizing currents present in human heart, Ito and IKs, are absent in the embryonic zebrafish heart. Our results describe the ionic channels present and its role in the zebrafish embryo heart and support the use of zebrafish embryos to study human diseases and their use for drug testing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Hydrogen Sulfide Prevents Advanced Glycation End-Products Induced Activation of the Epithelial Sodium Channel

    Directory of Open Access Journals (Sweden)

    Qiushi Wang

    2015-01-01

    Full Text Available Advanced glycation end-products (AGEs are complex and heterogeneous compounds implicated in diabetes. Sodium reabsorption through the epithelial sodium channel (ENaC at the distal nephron plays an important role in diabetic hypertension. Here, we report that H2S antagonizes AGEs-induced ENaC activation in A6 cells. ENaC open probability (PO in A6 cells was significantly increased by exogenous AGEs and that this AGEs-induced ENaC activity was abolished by NaHS (a donor of H2S and TEMPOL. Incubating A6 cells with the catalase inhibitor 3-aminotriazole (3-AT mimicked the effects of AGEs on ENaC activity, but did not induce any additive effect. We found that the expression levels of catalase were significantly reduced by AGEs and both AGEs and 3-AT facilitated ROS uptake in A6 cells, which were significantly inhibited by NaHS. The specific PTEN and PI3K inhibitors, BPV(pic  and LY294002, influence ENaC activity in AGEs-pretreated A6 cells. Moreover, after removal of AGEs from AGEs-pretreated A6 cells for 72 hours, ENaC PO remained at a high level, suggesting that an AGEs-related “metabolic memory” may be involved in sodium homeostasis. Our data, for the first time, show that H2S prevents AGEs-induced ENaC activation by targeting the ROS/PI3K/PTEN pathway.

  4. A single Markov-type kinetic model accounting for the macroscopic currents of all human voltage-gated sodium channel isoforms.

    Science.gov (United States)

    Balbi, Pietro; Massobrio, Paolo; Hellgren Kotaleski, Jeanette

    2017-09-01

    Modelling ionic channels represents a fundamental step towards developing biologically detailed neuron models. Until recently, the voltage-gated ion channels have been mainly modelled according to the formalism introduced by the seminal works of Hodgkin and Huxley (HH). However, following the continuing achievements in the biophysical and molecular comprehension of these pore-forming transmembrane proteins, the HH formalism turned out to carry limitations and inconsistencies in reproducing the ion-channels electrophysiological behaviour. At the same time, Markov-type kinetic models have been increasingly proven to successfully replicate both the electrophysiological and biophysical features of different ion channels. However, in order to model even the finest non-conducting molecular conformational change, they are often equipped with a considerable number of states and related transitions, which make them computationally heavy and less suitable for implementation in conductance-based neurons and large networks of those. In this purely modelling study we develop a Markov-type kinetic model for all human voltage-gated sodium channels (VGSCs). The model framework is detailed, unifying (i.e., it accounts for all ion-channel isoforms) and computationally efficient (i.e. with a minimal set of states and transitions). The electrophysiological data to be modelled are gathered from previously published studies on whole-cell patch-clamp experiments in mammalian cell lines heterologously expressing the human VGSC subtypes (from NaV1.1 to NaV1.9). By adopting a minimum sequence of states, and using the same state diagram for all the distinct isoforms, the model ensures the lightest computational load when used in neuron models and neural networks of increasing complexity. The transitions between the states are described by original ordinary differential equations, which represent the rate of the state transitions as a function of voltage (i.e., membrane potential). The

  5. Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons.

    Science.gov (United States)

    Lazcano-Pérez, Fernando; Castro, Héctor; Arenas, Isabel; García, David E; González-Muñoz, Ricardo; Arreguín-Espinosa, Roberto

    2016-05-05

    The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7), voltage-gated calcium channel (CaV2.2), the A-type transient outward (IA) and delayed rectifier (IDR) currents of KV channels of the superior cervical ganglion (SCG) neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels.

  6. Binding modes and functional surface of anti-mammalian scorpion α-toxins to sodium channels.

    Science.gov (United States)

    Chen, Rong; Chung, Shin-Ho

    2012-10-02

    Scorpion α-toxins bind to the voltage-sensing domains of voltage-gated sodium (Na(V)) channels and interfere with the inactivation mechanisms. The functional surface of α-toxins has been shown to contain an NC-domain consisting of the five-residue turn (positions 8-12) and the C-terminus (positions 56-64) and a core-domain centered on the residue 18. The NC- and core-domains are interconnected by the linker-domain (positions 8-18). Here with atomistic molecular dynamics simulations, we examine the binding modes between two α-toxins, the anti-mammalian AahII and the anti-insect LqhαIT, and the voltage-sensing domain of rat Na(V)1.2, a subtype of Na(V) channels expressed in nerve cells. Both toxins are docked to the extracellular side of the voltage-sensing domain of Na(V)1.2 using molecular dynamics simulations, with the linker-domain assumed to wedge into the binding pocket. Several salt bridges and hydrophobic clusters are observed to form between the NC- and core-domains of the toxins and Na(V)1.2 and stabilize the toxin-channel complexes. The binding modes predicted are consistent with available mutagenesis data and can readily explain the relative affinities of AahII and LqhαIT for Na(V)1.2. The dissociation constants for the two toxin-channel complexes are derived, which compare favorably with experiment. Our models demonstrate that the functional surface of anti-mammalian scorpion α-toxins is centered on the linker-domain, similar to that of β-toxins.

  7. Post-translational modifications of voltage-gated sodium channels in chronic pain syndromes.

    Directory of Open Access Journals (Sweden)

    Cédric James Laedermann

    2015-11-01

    Full Text Available In the peripheral sensory nervous system the neuronal expression of voltage-gated sodium channels (Navs is a very important for the transmission of nociceptive information since they give rise to the upstroke of the action potential. Navs are composed of 9 different isoforms with distinct biophysical properties. Studying the mutations associated with the increase or absence of pain sensitivity in humans, as well as other expression studies, have highlighted Nav1.7, Nav1.8 and Nav1.9 as being the most important contributors to the control of nociceptive neuronal electrogenesis. Modulating their expression and/or function can impact the shape of the action potential and consequently modify pain transmission, a process that is observed in persistent pain conditions.Post-translational modification (PTM of Navs is a well-known process that modifies their expression and function. In chronic pain syndromes, the release of inflammatory molecules into the direct environment of dorsal root ganglia (DRG sensory neurons leads to an abnormal activation of enzymes that induce Navs PTM. The addition of small molecules, i.e. peptides, phosphoryl groups, ubiquitin moieties and/or carbohydrates, can modify the function of Navs in two different ways: via direct physical interference with the subunit of Nav gating, or via the control of Nav trafficking. Both mechanisms have a profound impact on neuronal excitability. In this review we will discuss the role of Protein Kinase A, B and C, Mitogen Activated Protein Kinases and Ca++/Calmodulin-dependent Kinase II in peripheral chronic pain syndromes. We will also discuss more recent findings that the ubiquitination of Nav1.7 by Nedd4-2 and the effect of methylglyoxal on Nav1.8 are also implicated in the development of experimental neuropathic pain. We will address the potential roles of other PTMs in chronic pain and highlight the need for further investigation of PTMs of Navs in order to develop new pharmacological

  8. Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Fernando Lazcano-Pérez

    2016-05-01

    Full Text Available The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7, voltage-gated calcium channel (CaV2.2, the A-type transient outward (IA and delayed rectifier (IDR currents of KV channels of the superior cervical ganglion (SCG neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels.

  9. ASIC and ENaC type sodium channels: conformational states and the structures of the ion selectivity filters.

    Science.gov (United States)

    Hanukoglu, Israel

    2017-02-01

    The acid-sensing ion channels (ASICs) and epithelial sodium channels (ENaC) are members of a superfamily of channels that play critical roles in mechanosensation, chemosensation, nociception, and regulation of blood volume and pressure. These channels look and function like a tripartite funnel that directs the flow of Na + ions into the cytoplasm via the channel pore in the membrane. The subunits that form these channels share a common structure with two transmembrane segments (TM1 and TM2) and a large extracellular part. In most vertebrates, there are five paralogous genes that code for ASICs (ASIC1-ASIC5), and four for ENaC subunits alpha, beta, gamma, and delta (α, β, γ, and δ). While ASICs can form functional channels as a homo- or heterotrimer, ENaC functions as an obligate heterotrimer composed of α-β-γ or β-γ-δ subunits. The structure of ASIC has been determined in several conformations, including desensitized and open states. This review presents a comparison of the structures of these states using easy-to-understand molecular models of the full complex, the central tunnel that includes an outer vestibule, the channel pore, and ion selectivity filter. The differences in the secondary, tertiary, and quaternary structures of the states are summarized to pinpoint the conformational changes responsible for channel opening. Results of site-directed mutagenesis studies of ENaC subunits are examined in light of ASIC1 models. Based on these comparisons, a molecular model for the selectivity filter of ENaC is built by in silico mutagenesis of an ASIC1 structure. These models suggest that Na + ions pass through the filter in a hydrated state. © 2016 Federation of European Biochemical Societies.

  10. Studies of alpha-helicity and intersegmental interactions in voltage-gated Na+ channels: S2D4.

    Directory of Open Access Journals (Sweden)

    Zhongming Ma

    2009-11-01

    Full Text Available Much data, including crystallographic, support structural models of sodium and potassium channels consisting of S1-S4 transmembrane segments (the "voltage-sensing domain" clustered around a central pore-forming region (S5-S6 segments and the intervening loop. Voltage gated sodium channels have four non-identical domains which differentiates them from the homotetrameric potassium channels that form the basis for current structural models. Since potassium and sodium channels also exhibit many different functional characteristics and the fourth domain (D4 of sodium channels differs in function from other domains (D1-D3, we have explored its structure in order to determine whether segments in D4 of sodium channels differ significantly from that determined for potassium channels. We have probed the secondary and tertiary structure and the role of the individual amino acid residues of the S2D4 of Na(v1.4 by employing cysteine-scanning mutagenesis (with tryptophan and glutamine substituted for native cysteine. A Fourier transform power spectrum of perturbations in free energy of steady-state inactivation gating (using midpoint potentials and slopes of Boltzmann equation fits of channel availability, h(infinity-V plots indicates a substantial amount of alpha-helical structure in S2D4 (peak at 106 degrees, alpha-Periodicity Index (alpha-PI of 3.10, This conclusion is supported by alpha-PI values of 3.28 and 2.84 for the perturbations in rate constants of entry into (beta and exit from (alpha fast inactivation at 0 mV for mutant channels relative to WT channels assuming a simple two-state model for transition from the open to inactivated state. The results of cysteine substitution at the two most sensitive sites of the S2D4 alpha-helix (N1382 and E1392C support the existence of electrostatic network interactions between S2 and other transmembrane segments within Na(v1.4D4 similar to but not identical to those proposed for K+ channels.

  11. THE PRESENCE OF A B SUBUNIT INCREASES SENSITIVITY OF SODIUM CHANNEL NAV1.3, BUT NOT NAV1.2, TO TYPE II PYRETHROIDS.

    Science.gov (United States)

    Voltage-sensitive sodium channels (VSSCs) are a primary target of pyrethroid insecticides. VSSCs are comprised of a pore-forming ¿ and auxillary ß subunits, and multiple isoforms of both subunit types exist. The sensitivity of different isoform combinations to pyrethroids has not...

  12. Substituted 4-phenyl-2-aminoimidazoles and 4-phenyl-4,5-dihydro-2-aminoimidazoles as voltage-gated sodium channel modulators.

    Science.gov (United States)

    Zidar, Nace; Jakopin, Žiga; Madge, David J; Chan, Fiona; Tytgat, Jan; Peigneur, Steve; Dolenc, Marija Sollner; Tomašić, Tihomir; Ilaš, Janez; Mašič, Lucija Peterlin; Kikelj, Danijel

    2014-03-03

    Voltage-gated sodium channels play an integral part in neurotransmission and their dysfunction is frequently a cause of various neurological disorders. On the basis of the structure of marine alkaloid clathrodin, twenty eight new analogs were designed, synthesized and tested for their ability to block human NaV1.3, NaV1.4 and NaV1.7 channels, as well as for their selectivity against human cardiac isoform NaV1.5, using automated patch clamp electrophysiological assay. Several compounds exhibited promising activities on different NaV channel isoforms in the medium micromolar range and some of the compounds showed also moderate isoform selectivities. The most promising results were obtained for the NaV1.3 channel, for which four compounds were found to possess IC₅₀ values lower than 15 μM. All of the active compounds bind to the open-inactivated states of the channels and therefore act as state-dependent modulators. The obtained results validate the approach of using natural products driven chemistry for drug discovery starting points and represent a good foundation for future design of selective NaV modulators. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  13. Mechanosensitive Piezo Channels in the Gastrointestinal Tract.

    Science.gov (United States)

    Alcaino, C; Farrugia, G; Beyder, A

    2017-01-01

    Sensation of mechanical forces is critical for normal function of the gastrointestinal (GI) tract and abnormalities in mechanosensation are linked to GI pathologies. In the GI tract there are several mechanosensitive cell types-epithelial enterochromaffin cells, intrinsic and extrinsic enteric neurons, smooth muscle cells and interstitial cells of Cajal. These cells use mechanosensitive ion channels that respond to mechanical forces by altering transmembrane ionic currents in a process called mechanoelectrical coupling. Several mechanosensitive ionic conductances have been identified in the mechanosensory GI cells, ranging from mechanosensitive voltage-gated sodium and calcium channels to the mechanogated ion channels, such as the two-pore domain potassium channels K2P (TREK-1) and nonselective cation channels from the transient receptor potential family. The recently discovered Piezo channels are increasingly recognized as significant contributors to cellular mechanosensitivity. Piezo1 and Piezo2 are nonselective cationic ion channels that are directly activated by mechanical forces and have well-defined biophysical and pharmacologic properties. The role of Piezo channels in the GI epithelium is currently under investigation and their role in the smooth muscle syncytium and enteric neurons is still not known. In this review, we outline the current state of knowledge on mechanosensitive ion channels in the GI tract, with a focus on the known and potential functions of the Piezo channels. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Down-regulation of voltage-dependent sodium channels initiated by sodium influx in developing neurons

    International Nuclear Information System (INIS)

    Dargent, B.; Couraud, F.

    1990-01-01

    To address the issue of whether regulatory feedback exists between the electrical activity of a neuron and ion-channel density, the authors investigated the effect of Na + -channel activators (scorpion α toxin, batrachotoxin, and veratridine) on the density of Na + channels in fetal rat brain neurons in vitro. A partial but rapid (t 1/2 , 15 min) disappearance of surface Na + channels was observed as measured by a decrease in the specific binding of [ 3 H]saxitoxin and 125 I-labeled scorpion β toxin and a decrease in specific 22 Na + uptake. Moreover, the increase in the number of Na + channels that normally occurs during neuronal maturation in vitro was inhibited by chronic channel activator treatment. The induced disappearance of Na + channels was abolished by tetrodotoxin, was found to be dependent on the external Na + concentration, and was prevented when either choline (a nonpermeant ion) or Li + (a permeant ion) was substituted for Na + . Amphotericin B, a Na + ionophore, and monensin were able to mimick the effect of Na + -channel activators, while a KCl depolarization failed to do this. This feedback regulation seems to be a neuronal property since Na + -channel density in cultured astrocytes was not affected by channel activator treatment or by amphotericin B. The present evidence suggests that an increase in intracellular Na + concentration, whether elicited by Na + -channel activators or mediated by a Na + ionophore, can induce a decrease in surface Na + channels and therefore is involved in down-regulation of Na + -channel density in fetal rat brain neurons in vitro

  15. Direct evidence that scorpion α-toxins (site-3 modulate sodium channel inactivation by hindrance of voltage-sensor movements.

    Directory of Open Access Journals (Sweden)

    Zhongming Ma

    Full Text Available The position of the voltage-sensing transmembrane segment, S4, in voltage-gated ion channels as a function of voltage remains incompletely elucidated. Site-3 toxins bind primarily to the extracellular loops connecting transmembrane helical segments S1-S2 and S3-S4 in Domain 4 (D4 and S5-S6 in Domain 1 (D1 and slow fast-inactivation of voltage-gated sodium channels. As S4 of the human skeletal muscle voltage-gated sodium channel, hNav1.4, moves in response to depolarization from the resting to the inactivated state, two D4S4 reporters (R2C and R3C, Arg1451Cys and Arg1454Cys, respectively move from internal to external positions as deduced by reactivity to internally or externally applied sulfhydryl group reagents, methane thiosulfonates (MTS. The changes in reporter reactivity, when cycling rapidly between hyperpolarized and depolarized voltages, enabled determination of the positions of the D4 voltage-sensor and of its rate of movement. Scorpion α-toxin binding impedes D4S4 segment movement during inactivation since the modification rates of R3C in hNav1.4 with methanethiosulfonate (CH3SO2SCH2CH2R, where R = -N(CH33 (+ trimethylammonium, MTSET and benzophenone-4-carboxamidocysteine methanethiosulfonate (BPMTS were slowed ~10-fold in toxin-modified channels. Based upon the different size, hydrophobicity and charge of the two reagents it is unlikely that the change in reactivity is due to direct or indirect blockage of access of this site to reagent in the presence of toxin (Tx, but rather is the result of inability of this segment to move outward to the normal extent and at the normal rate in the toxin-modified channel. Measurements of availability of R3C to internally applied reagent show decreased access (slower rates of thiol reaction providing further evidence for encumbered D4S4 movement in the presence of toxins consistent with the assignment of at least part of the toxin binding site to the region of D4S4 region of the voltage

  16. Proteolytic activation of the epithelial sodium channel ENaC in preeclampsia examined with urinary exosomes

    DEFF Research Database (Denmark)

    Nielsen, Maria Ravn; Rytz, Mie; Frederiksen-Møller, Britta

    2015-01-01

    OBJECTIVES: Increased activity of the epithelial sodium channel (ENaC) in the kidneys may explain the coupling between proteinuria, edema, suppressed aldosterone and hypertension in preeclampsia. Preeclamptic women excrete plasminogen-plasmin in urine. In vitro, plasmin increases the activity...... as a positive control for the presence of collecting duct membrane. RESULTS: Urine plasmin-plasminogen/creatinine ratio was increased in the preeclampsia group (p... pregnancy and preeclampsia CONCLUSIONS: It is possible to examine collecting duct transport proteins in urine exosome from pregnant women including γ-ENaC, 2) Urine exosome fraction displays a variable pattern of γ-ENaC signal with a predominance of cleaved forms in both normal and preeclamptic women...

  17. Evaluation of stochastic differential equation approximation of ion channel gating models.

    Science.gov (United States)

    Bruce, Ian C

    2009-04-01

    Fox and Lu derived an algorithm based on stochastic differential equations for approximating the kinetics of ion channel gating that is simpler and faster than "exact" algorithms for simulating Markov process models of channel gating. However, the approximation may not be sufficiently accurate to predict statistics of action potential generation in some cases. The objective of this study was to develop a framework for analyzing the inaccuracies and determining their origin. Simulations of a patch of membrane with voltage-gated sodium and potassium channels were performed using an exact algorithm for the kinetics of channel gating and the approximate algorithm of Fox & Lu. The Fox & Lu algorithm assumes that channel gating particle dynamics have a stochastic term that is uncorrelated, zero-mean Gaussian noise, whereas the results of this study demonstrate that in many cases the stochastic term in the Fox & Lu algorithm should be correlated and non-Gaussian noise with a non-zero mean. The results indicate that: (i) the source of the inaccuracy is that the Fox & Lu algorithm does not adequately describe the combined behavior of the multiple activation particles in each sodium and potassium channel, and (ii) the accuracy does not improve with increasing numbers of channels.

  18. Photocontrol of Voltage-Gated Ion Channel Activity by Azobenzene Trimethylammonium Bromide in Neonatal Rat Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Sheyda R Frolova

    Full Text Available The ability of azobenzene trimethylammonium bromide (azoTAB to sensitize cardiac tissue excitability to light was recently reported. The dark, thermally relaxed trans- isomer of azoTAB suppressed spontaneous activity and excitation propagation speed, whereas the cis- isomer had no detectable effect on the electrical properties of cardiomyocyte monolayers. As the membrane potential of cardiac cells is mainly controlled by activity of voltage-gated ion channels, this study examined whether the sensitization effect of azoTAB was exerted primarily via the modulation of voltage-gated ion channel activity. The effects of trans- and cis- isomers of azoTAB on voltage-dependent sodium (INav, calcium (ICav, and potassium (IKv currents in isolated neonatal rat cardiomyocytes were investigated using the whole-cell patch-clamp technique. The experiments showed that azoTAB modulated ion currents, causing suppression of sodium (Na+ and calcium (Ca2+ currents and potentiation of net potassium (K+ currents. This finding confirms that azoTAB-effect on cardiac tissue excitability do indeed result from modulation of voltage-gated ion channels responsible for action potential.

  19. Potential information and stopping power from channeling in diamond

    International Nuclear Information System (INIS)

    Edge, R.D.; Derry, J.E.; Fearick, R.W.; Sellschop, J.P.F.

    1983-01-01

    When a carefully cleaned diamond crystal was bombarded with helium nuclei parallel to a low index plane, up to seven peaks in the energy spectrum of backscattered ions were seen. These arose from particles oscillating to and fro across the channel as they progressed along it. Spectra taken with ions incident in different directions in the same plane allowed both the wavelengths of the oscillations in the channel, lambda, and the stopping power within the channel to be obtained. The character of the oscillations changed as the beam deviated from exact alignment with the channel, giving the highest maximum at an angle /psi/ /SUB m/ to the channel. Calculations based on those of Barrett employing lambda, /psi/ /SUB m/, and the stopping power showed a smoother potential for the (111) planar channel, which has a larger spacing, than (100) and (110). The energy dependence of the stopping power and oscillation wavelength was also determined from 0.2 to 1.2 MeV for the (110) planar channel

  20. A remarkably stable TipE gene cluster: evolution of insect Para sodium channel auxiliary subunits

    Directory of Open Access Journals (Sweden)

    Li Jia

    2011-11-01

    Full Text Available Abstract Background First identified in fruit flies with temperature-sensitive paralysis phenotypes, the Drosophila melanogaster TipE locus encodes four voltage-gated sodium (NaV channel auxiliary subunits. This cluster of TipE-like genes on chromosome 3L, and a fifth family member on chromosome 3R, are important for the optional expression and functionality of the Para NaV channel but appear quite distinct from auxiliary subunits in vertebrates. Here, we exploited available arthropod genomic resources to trace the origin of TipE-like genes by mapping their evolutionary histories and examining their genomic architectures. Results We identified a remarkably conserved synteny block of TipE-like orthologues with well-maintained local gene arrangements from 21 insect species. Homologues in the water flea, Daphnia pulex, suggest an ancestral pancrustacean repertoire of four TipE-like genes; a subsequent gene duplication may have generated functional redundancy allowing gene losses in the silk moth and mosquitoes. Intronic nesting of the insect TipE gene cluster probably occurred following the divergence from crustaceans, but in the flour beetle and silk moth genomes the clusters apparently escaped from nesting. Across Pancrustacea, TipE gene family members have experienced intronic nesting, escape from nesting, retrotransposition, translocation, and gene loss events while generally maintaining their local gene neighbourhoods. D. melanogaster TipE-like genes exhibit coordinated spatial and temporal regulation of expression distinct from their host gene but well-correlated with their regulatory target, the Para NaV channel, suggesting that functional constraints may preserve the TipE gene cluster. We identified homology between TipE-like NaV channel regulators and vertebrate Slo-beta auxiliary subunits of big-conductance calcium-activated potassium (BKCa channels, which suggests that ion channel regulatory partners have evolved distinct lineage

  1. Nanomolar bifenthrin alters synchronous Ca2+ oscillations and cortical neuron development independent of sodium channel activity.

    Science.gov (United States)

    Cao, Zhengyu; Cui, Yanjun; Nguyen, Hai M; Jenkins, David Paul; Wulff, Heike; Pessah, Isaac N

    2014-04-01

    Bifenthrin, a relatively stable type I pyrethroid that causes tremors and impairs motor activity in rodents, is broadly used. We investigated whether nanomolar bifenthrin alters synchronous Ca(2+) oscillations (SCOs) necessary for activity-dependent dendritic development. Primary mouse cortical neurons were cultured 8 or 9 days in vitro (DIV), loaded with the Ca(2+) indicator Fluo-4, and imaged using a Fluorescence Imaging Plate Reader Tetra. Acute exposure to bifenthrin rapidly increased the frequency of SCOs by 2.7-fold (EC50 = 58 nM) and decreased SCO amplitude by 36%. Changes in SCO properties were independent of modifications in voltage-gated sodium channels since 100 nM bifenthrin had no effect on the whole-cell Na(+) current, nor did it influence neuronal resting membrane potential. The L-type Ca(2+) channel blocker nifedipine failed to ameliorate bifenthrin-triggered SCO activity. By contrast, the metabotropic glutamate receptor (mGluR)5 antagonist MPEP [2-methyl-6-(phenylethynyl)pyridine] normalized bifenthrin-triggered increase in SCO frequency without altering baseline SCO activity, indicating that bifenthrin amplifies mGluR5 signaling independent of Na(+) channel modification. Competitive [AP-5; (-)-2-amino-5-phosphonopentanoic acid] and noncompetitive (dizocilpine, or MK-801 [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate]) N-methyl-d-aspartate antagonists partially decreased both basal and bifenthrin-triggered SCO frequency increase. Bifenthrin-modified SCO rapidly enhanced the phosphorylation of cAMP response element-binding protein (CREB). Subacute (48 hours) exposure to bifenthrin commencing 2 DIV-enhanced neurite outgrowth and persistently increased SCO frequency and reduced SCO amplitude. Bifenthrin-stimulated neurite outgrowth and CREB phosphorylation were dependent on mGluR5 activity since MPEP normalized both responses. Collectively these data identify a new mechanism by which bifenthrin potently alters Ca(2

  2. Functional modifications of acid-sensing ion channels by ligand-gated chloride channels.

    Directory of Open Access Journals (Sweden)

    Xuanmao Chen

    Full Text Available Together, acid-sensing ion channels (ASICs and epithelial sodium channels (ENaC constitute the majority of voltage-independent sodium channels in mammals. ENaC is regulated by a chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR. Here we show that ASICs were reversibly inhibited by activation of GABA(A receptors in murine hippocampal neurons. This inhibition of ASICs required opening of the chloride channels but occurred with both outward and inward GABA(A receptor-mediated currents. Moreover, activation of the GABA(A receptors modified the pharmacological features and kinetic properties of the ASIC currents, including the time course of activation, desensitization and deactivation. Modification of ASICs by open GABA(A receptors was also observed in both nucleated patches and outside-out patches excised from hippocampal neurons. Interestingly, ASICs and GABA(A receptors interacted to regulate synaptic plasticity in CA1 hippocampal slices. The activation of glycine receptors, which are similar to GABA(A receptors, also modified ASICs in spinal neurons. We conclude that GABA(A receptors and glycine receptors modify ASICs in neurons through mechanisms that require the opening of chloride channels.

  3. Fast breeder reactors secondary piping potential sodium leakage rate assessment

    International Nuclear Information System (INIS)

    Alicino, F.; Cardini, S.

    1989-01-01

    In the liquid metal fast breeder reactors (LMFBRs) it must always be taken under control any possible air-sodium contact, because of the elevated air-sodium reactivity. This requires that LMFBRs be carefully designed so that over the entire plant life such an event can't occur in an uncontrolled way. For these reactors the operating conditions usually impose that a lot of life be spent in the creep regime and moreover generally severe hot and cold thermal transients are anticipated, which increases the potential of crack propagation. Then, a useful means to ascertain if this event can occur is to adopt a fracture mechanics approach. This paper presents a computer program to perform fracture mechanics calculations

  4. Ion Selectivity Mechanism in a Bacterial Pentameric Ligand-Gated Ion Channel

    International Nuclear Information System (INIS)

    Wang, Hailong; Cheng, Xiaolin

    2011-01-01

    The proton-gated ion channel from Gloeobacter violaceus (GLIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor (nAChR) that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. Recent emergence of a high resolution crystal structure of GLIC captured in a potentially open state allowed detailed, atomic-level insight into ion conduction and selectivity mechanisms in these channels. Herein, we have examined the barriers to ion conduction and origins of ion selectivity in the GLIC channel by the construction of potential of mean force (PMF) profiles for sodium and chloride ions inside the transmembrane region. Our calculations reveal that the GLIC channel is open for a sodium ion to transport, but presents a ∼10 kcal/mol free energy barrier for a chloride ion, which arises primarily from the unfavorable interactions with a ring of negatively charged glutamate residues (E-2) at the intracellular end and a ring of hydrophobic residues (I9) in the middle of the transmembrane domain. Our collective findings further suggest that the charge selection mechanism can, to a large extent, be attributed to the narrow intracellular end and a ring of glutamate residues in this position their strong negative electrostatics and ability to bind cations. By contrast, E19 at the extracellular entrance only plays a minor role in ion selectivity of GLIC. In addition to electrostatics, both ion hydration and protein dynamics are found to be crucial for ion conduction as well, which explains why a chloride ion experiences a much greater barrier than a sodium ion in the hydrophobic region of the pore.

  5. Kir2.1 channels set two levels of resting membrane potential with inward rectification.

    Science.gov (United States)

    Chen, Kuihao; Zuo, Dongchuan; Liu, Zheng; Chen, Haijun

    2018-04-01

    Strong inward rectifier K + channels (Kir2.1) mediate background K + currents primarily responsible for maintenance of resting membrane potential. Multiple types of cells exhibit two levels of resting membrane potential. Kir2.1 and K2P1 currents counterbalance, partially accounting for the phenomenon of human cardiomyocytes in subphysiological extracellular K + concentrations or pathological hypokalemic conditions. The mechanism of how Kir2.1 channels contribute to the two levels of resting membrane potential in different types of cells is not well understood. Here we test the hypothesis that Kir2.1 channels set two levels of resting membrane potential with inward rectification. Under hypokalemic conditions, Kir2.1 currents counterbalance HCN2 or HCN4 cation currents in CHO cells that heterologously express both channels, generating N-shaped current-voltage relationships that cross the voltage axis three times and reconstituting two levels of resting membrane potential. Blockade of HCN channels eliminated the phenomenon in K2P1-deficient Kir2.1-expressing human cardiomyocytes derived from induced pluripotent stem cells or CHO cells expressing both Kir2.1 and HCN2 channels. Weakly inward rectifier Kir4.1 or inward rectification-deficient Kir2.1•E224G mutant channels do not set such two levels of resting membrane potential when co-expressed with HCN2 channels in CHO cells or when overexpressed in human cardiomyocytes derived from induced pluripotent stem cells. These findings demonstrate a common mechanism that Kir2.1 channels set two levels of resting membrane potential with inward rectification by balancing inward currents through different cation channels such as hyperpolarization-activated HCN channels or hypokalemia-induced K2P1 leak channels.

  6. Channeling potential in single-walled carbon nanotubes: The effect of radial deformation

    International Nuclear Information System (INIS)

    Abu-Assy, M.K.; Soliman, M.S.

    2016-01-01

    We study the effect of radial deformation in single-walled carbon nanotubes (SWCNTs), due to one external factor, on the channeling potential. The calculations covered the channeling potential for positrons of 100 MeV move along the z-axis, which is the axis of the radially deformed SWCNTs (6, 0), (8, 0) under external mechanical stress at different values for the induced strain and also for radially deformed SWCNT (5, 5) under external transverse electric field of 1.8 and 2.6 V/Å. The calculations executed according to the continuum model approximation given by Lindhard for the case of an axial channeling in single crystals. The results of the calculations in this work agreed well with previous calculations depending on the equilibrium electron density in perfect carbon nanotubes. It has been found that, for perfect nanotubes, the channeling potential, i.e., the potential at any point (x, y) in a plane normal to the nanotube axis (xy-plane), is a function of the distance from the nanotube center whatever the (x, y) coordinate and hence, it could be expressed in terms of one independent variable. On the other hand, in radially deformed SWCNTs, the channeling potential was found to be a function of two independent variables (x, y) and could be given here by a general formula in terms of fitting parameters for each nanotube with chiral index (n, m). The obtained formula has been used in plotting the contour plot for the channeling potential.

  7. Channeling potential in single-walled carbon nanotubes: The effect of radial deformation

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Assy, M.K. [Physics Department, Faculty of Science, Suez-Canal University, Ismailia 41522 (Egypt); Soliman, M.S., E-mail: Mahmoud_einstien2@yahoo.com [Physics Department, Faculty of Science, Suez-Canal University, El-Arish (Egypt)

    2016-10-01

    We study the effect of radial deformation in single-walled carbon nanotubes (SWCNTs), due to one external factor, on the channeling potential. The calculations covered the channeling potential for positrons of 100 MeV move along the z-axis, which is the axis of the radially deformed SWCNTs (6, 0), (8, 0) under external mechanical stress at different values for the induced strain and also for radially deformed SWCNT (5, 5) under external transverse electric field of 1.8 and 2.6 V/Å. The calculations executed according to the continuum model approximation given by Lindhard for the case of an axial channeling in single crystals. The results of the calculations in this work agreed well with previous calculations depending on the equilibrium electron density in perfect carbon nanotubes. It has been found that, for perfect nanotubes, the channeling potential, i.e., the potential at any point (x, y) in a plane normal to the nanotube axis (xy-plane), is a function of the distance from the nanotube center whatever the (x, y) coordinate and hence, it could be expressed in terms of one independent variable. On the other hand, in radially deformed SWCNTs, the channeling potential was found to be a function of two independent variables (x, y) and could be given here by a general formula in terms of fitting parameters for each nanotube with chiral index (n, m). The obtained formula has been used in plotting the contour plot for the channeling potential.

  8. Interparticle potential of 10 nanometer titanium nanoparticles in liquid sodium: Theoretical approach

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soo Jae; Park, Gun Yeop; Park, Hyun Sun; Baek, Je Hyun [POSTECH, Pohang (Korea, Republic of); Kim, Moo Hwan [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    A suspension of titanium nanoparticles (Ti NPs) in liquid sodium (Na) has been proposed as a method to mitigate the violent sodium-water reaction (SWR). The interparticle potential between Ti NPs in liquid Na may play a significant role in the agglomeration of NPs on the reaction surface and in the bulk liquid Na, since the potential contributes to a reduction in the long-term dispersion stability. For the effective control of the SWR with NPs, a physical understanding of the molecular dynamics of NPs in liquid Na is key. Therefore in this study, the nonretarded Van der Waals model and the solvation potential model are employed to analyze the interparticle potential. The ab initio calculation reveals that a strong repulsive force driven by the solvation potential exceeds the interparticle attraction and predicts the agglomeration energy required for two 10-nm Ti NPs to be 4 x 10{sup -17} J. The collision theory suggests that Ti NPs can be effective suppressors of the SWR due to the high energy barrier that prevents significant agglomeration of Ti NPs in quiescent liquid Na.

  9. Selective activation of heteromeric SK channels contributes to action potential repolarization in mouse atrial myocytes.

    Science.gov (United States)

    Hancock, Jane M; Weatherall, Kate L; Choisy, Stéphanie C; James, Andrew F; Hancox, Jules C; Marrion, Neil V

    2015-05-01

    Activation of small conductance calcium-activated potassium (SK) channels is proposed to contribute to repolarization of the action potential in atrial myocytes. This role is controversial, as these cardiac SK channels appear to exhibit an uncharacteristic pharmacology. The objectives of this study were to resolve whether activation of SK channels contributes to atrial action potential repolarization and to determine the likely subunit composition of the channel. The effect of 2 SK channel inhibitors was assessed on outward current evoked in voltage clamp and on action potential duration in perforated patch and whole-cell current clamp recording from acutely isolated mouse atrial myocytes. The presence of SK channel subunits was assessed using immunocytochemistry. A significant component of outward current was reduced by the SK channel blockers apamin and UCL1684. Block by apamin displayed a sensitivity indicating that this current was carried by homomeric SK2 channels. Action potential duration was significantly prolonged by UCL1684, but not by apamin. This effect was accompanied by an increase in beat-to-beat variability and action potential triangulation. This pharmacology was matched by that of expressed heteromeric SK2-SK3 channels in HEK293 cells. Immunocytochemistry showed that atrial myocytes express both SK2 and SK3 channels with an overlapping expression pattern. Only proposed heteromeric SK2-SK3 channels are physiologically activated to contribute to action potential repolarization, which is indicated by the difference in pharmacology of evoked outward current and prolongation of atrial action potential duration. The effect of blocking this channel on the action potential suggests that SK channel inhibition during cardiac function has the potential to be proarrhythmic. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  10. Detection Test for Leakage of CO2 into Sodium Loop

    International Nuclear Information System (INIS)

    Park, Sun Hee; Wi, Myung-Hwan; Min, Jae Hong

    2015-01-01

    This report is about the facility for the detection test for leakage of CO 2 into sodium loop. The facility for the detection test for leakage of CO 2 into sodium loop was introduced. The test will be carried out. Our experimental results are going to be expected to be used for approach methods to detect CO 2 leaking into sodium in heat exchangers. A sodium-and-carbon dioxide (Na-CO 2 ) heat exchanger is one of the key components for the supercritical CO 2 Brayton cycle power conversion system of sodium-cooled fast reactors (SFRs). A printed circuit heat exchanger (PCHE) is considered for the Na-CO 2 heat exchanger, which is known to have potential for reducing the volume occupied by the exchangers compared to traditional shell-and-tube heat exchangers. Among various issues about the Na- CO 2 exchanger, detection of CO 2 leaking into sodium in the heat exchanger is most important thing for its safe operation. It is known that reaction products from sodium and CO 2 such as sodium carbonate (Na 2 CO 3 ) and amorphous carbon are hardly soluble in sodium, which cause plug sodium channels. Detection technique for Na 2 CO 3 in sodium loop has not been developed yet. Therefore, detection of CO 2 and CO from reaction of sodium and CO 2 are proper to detect CO 2 leakage into sodium loop

  11. Dopamine negatively modulates the NCA ion channels in C. elegans.

    Science.gov (United States)

    Topalidou, Irini; Cooper, Kirsten; Pereira, Laura; Ailion, Michael

    2017-10-01

    The NALCN/NCA ion channel is a cation channel related to voltage-gated sodium and calcium channels. NALCN has been reported to be a sodium leak channel with a conserved role in establishing neuronal resting membrane potential, but its precise cellular role and regulation are unclear. The Caenorhabditis elegans orthologs of NALCN, NCA-1 and NCA-2, act in premotor interneurons to regulate motor circuit activity that sustains locomotion. Recently we found that NCA-1 and NCA-2 are activated by a signal transduction pathway acting downstream of the heterotrimeric G protein Gq and the small GTPase Rho. Through a forward genetic screen, here we identify the GPCR kinase GRK-2 as a new player affecting signaling through the Gq-Rho-NCA pathway. Using structure-function analysis, we find that the GPCR phosphorylation and membrane association domains of GRK-2 are required for its function. Genetic epistasis experiments suggest that GRK-2 acts on the D2-like dopamine receptor DOP-3 to inhibit Go signaling and positively modulate NCA-1 and NCA-2 activity. Through cell-specific rescuing experiments, we find that GRK-2 and DOP-3 act in premotor interneurons to modulate NCA channel function. Finally, we demonstrate that dopamine, through DOP-3, negatively regulates NCA activity. Thus, this study identifies a pathway by which dopamine modulates the activity of the NCA channels.

  12. Computational model based approach to analysis ventricular arrhythmias: Effects of dysfunction calcium channels

    Science.gov (United States)

    Gulothungan, G.; Malathi, R.

    2018-04-01

    Disturbed sodium (Na+) and calcium (Ca2+) handling is known to be a major predisposing factor for life-threatening cardiac arrhythmias. Cardiac contractility in ventricular tissue is prominent by Ca2+ channels like voltage dependent Ca2+ channels, sodium-calcium exchanger (Na+-Ca2+x) and sacroplasmicrecticulum (SR) Ca2+ pump and leakage channels. Experimental and clinical possibilities for studying cardiac arrhythmias in human ventricular myocardium are very limited. Therefore, the use of alternative methods such as computer simulations is of great importance. Our aim of this article is to study the impact on action potential (AP) generation and propagation in single ventricular myocyte and ventricular tissue under different dysfunction Ca2+ channels condition. In enhanced activity of Na+-Ca2+x, single myocyte produces AP duration (APD90) and APD50 is significantly smaller (266 ms and 235 ms). Its Na+-Ca2+x current at depolarization is increases 60% from its normal level and repolarization current goes more negative (nonfailing= -0.28 pA/pF and failing= -0.47 pA/pF). Similarly, same enhanced activity of Na+-Ca2+x in 10 mm region of ventricular sheet, raises the plateau potential abruptly, which ultimately affects the diastolic repolarization. Compare with normal ventricular sheet region of 10 mm, 10% of ventricular sheet resting state is reduces and ventricular sheet at time 250 ms is goes to resting state very early. In hypertrophy condition, single myocyte produces APD90 and APD50 is worthy of attention smaller (232 mS and 198 ms). Its sodium-potassium (Na+-K+) pump current is 75% reduces from its control conditions (0.13 pA/pF). Hypertrophy condition, 50% of ventricular sheet is reduces to minimum plateau potential state, that starts the repolarization process very early and reduces the APD. In a single failing SR Ca2+ channels myocyte, recovery of Ca2+ concentration level in SR reduces upto 15% from its control myocytes. At time 290 ms, 70% of ventricular sheet

  13. Behaviour of carbon-bearing impurity suspensions in sodium loops

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, F A; Zagorulko, Yu I; Alexseev, V V [Institute of Physics and Power Engineering, Obninsk (USSR)

    1980-05-01

    The experimental estimation results of the carbon-bearing impurity particle sizes in sodium by the sedimentometric analysis methods are presented. The techniques and results of the mass transfer calculations between the sodium flows contained the carbon-bearing impurity disperse phase, and the channel walls, the carbon particles solution kinetics and the soluble carbon near-wall concentration in channel with allowance for the flow-wall mass transfer processes, are given. (author)

  14. Behaviour of carbon-bearing impurity suspensions in sodium loops

    International Nuclear Information System (INIS)

    Kozlov, F.A.; Zagorulko, Yu.I.; Alexseev, V.V.

    1980-01-01

    The experimental estimation results of the carbon-bearing impurity particle sizes in sodium by the sedimentometric analysis methods are presented. The techniques and results of the mass transfer calculations between the sodium flows contained the carbon-bearing impurity disperse phase, and the channel walls, the carbon particles solution kinetics and the soluble carbon near-wall concentration in channel with allowance for the flow-wall mass transfer processes, are given. (author)

  15. Potential hazard to secondary containment from HCDA-generated missiles and sodium fires

    International Nuclear Information System (INIS)

    Romander, C.M.

    1979-02-01

    The potential hazard of HCDA-generated missiles is analyzed, and the current status of the potential hazards of sodium fires is summarized. Simple analyses are performed to determine lower bounds on the HCDA energetics required to generate missiles that could reach the secondary containment structure of a 1000-MWe LMFBR. The potential missiles considered include the vessel head, components mounted on the head, and conrol rods

  16. Spatiotemporal magnetic fields enhance cytosolic Ca.sup.2+./sup. levels and induce actin polymerization via activation of voltage-gated sodium channels in skeletal muscle cells

    Czech Academy of Sciences Publication Activity Database

    Rubio Ayala, M.; Syrovets, T.; Hafner, S.; Zablotskyy, Vitaliy A.; Dejneka, Alexandr; Simmet, T.

    2018-01-01

    Roč. 163, May (2018), s. 174-184 ISSN 0142-9612 Institutional support: RVO:68378271 Keywords : alternating magnetic field * skeletal muscle * cytosolic calcium * modeling * eddy current * voltage-gated sodium channels Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 8.402, year: 2016

  17. Sodium intake status in United States and potential reduction modeling: an NHANES 2007-2010 analysis.

    Science.gov (United States)

    Agarwal, Sanjiv; Fulgoni, Victor L; Spence, Lisa; Samuel, Priscilla

    2015-11-01

    Limiting dietary sodium intake has been a consistent dietary recommendation. Using NHANES 2007-2010 data, we estimated current sodium intake and modeled the potential impact of a new sodium reduction technology on sodium intake. NHANES 2007-2010 data were used to assess current sodium intake. The National Cancer Institute method was used for usual intake determination. Suggested sodium reductions using SODA-LO (®) Salt Microspheres ranged from 20% to 30% in 953 foods and usual intakes were modeled by using various reduction factors and levels of market penetration. SAS 9.2, SUDAAN 11, and NHANES survey weights were used in all calculations with assessment across gender and age groups. Current (2007-2010) sodium intake (mg/day) exceeds recommendations across all age gender groups and has not changed during the last decade. However, sodium intake measured as a function of food intake (mg/g food) has decreased significantly during the last decade. Two food categories contribute about 2/3rd of total sodium intake: "Grain Products" and "Meat, Poultry, Fish & Mixtures". Sodium reduction, with 100% market penetration of the new technology, was estimated to be 230-300 mg/day or 7-9% of intake depending upon age and gender group. Sodium reduction innovations like SODA-LO (®) Salt Microspheres could contribute to meaningful reductions in sodium intake.

  18. Atrial fibrillation: Therapeutic potential of atrial K+ channel blockers.

    Science.gov (United States)

    Ravens, Ursula; Odening, Katja E

    2017-08-01

    Despite the epidemiological scale of atrial fibrillation, current treatment strategies are of limited efficacy and safety. Ideally, novel drugs should specifically correct the pathophysiological mechanisms responsible for atrial fibrillation with no other cardiac or extracardiac actions. Atrial-selective drugs are directed toward cellular targets with sufficiently different characteristics in atria and ventricles to modify only atrial function. Several potassium (K + ) channels with either predominant expression in atria or distinct electrophysiological properties in atria and ventricles can serve as atrial-selective drug targets. These channels include the ultra-rapidly activating, delayed outward-rectifying Kv1.5 channel conducting I Kur , the acetylcholine-activated inward-rectifying Kir3.1/Kir3.4 channel conducting I K,ACh , the Ca 2+ -activated K + channels of small conductance (SK) conducting I SK , and the two pore domain K + (K2P) channels TWIK-1, TASK-1 and TASK-3 that are responsible for voltage-independent background currents I TWIK-1 , I TASK-1 , and I TASK-3 . Here, we briefly review the characteristics of these K + channels and their roles in atrial fibrillation. The antiarrhythmic potential of drugs targeting the described channels is discussed as well as their putative value in treatment of atrial fibrillation. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Investigation of the potential barrier lowering for quasi-ballistic transport in short channel MOSFETs

    International Nuclear Information System (INIS)

    Lee, Jaehong; Kwon, Yongmin; Ji, Junghwan; Shin, Hyungcheol

    2011-01-01

    In this paper, the quasi-ballistic carrier transport in short channel MOSFETs is investigated from the point of potential barrier lowering. To investigate the ballistic characteristic of transistors, we extracted the channel backscattering coefficient and the ballistic ratio from experimental data obtained by RF C-V and DC I-V measurements. Two factors that modulate the potential barrier height, besides the gate bias, are considered in this work: the drain bias (V DS ) and the channel doping concentration (N A ). We extract the critical length by calculating the potential drop in the channel region and conclude that the drain bias and the channel doping concentration affect the quasi-ballistic carrier transport.

  20. Effect of voltage-gated sodium channels blockers on motility and viability of human sperm in vitro

    Directory of Open Access Journals (Sweden)

    Hammad Ahmad Gakhar

    2018-01-01

    Full Text Available Objective: To test the effect of voltage-gated sodium channels (VGSCs blockers on the motility and viability of human sperm in-vitro and to evaluate the tested compounds as potential contact spermicidal.Methods: Sperm samples were obtained from healthy nonsmoking volunteers of age 25-30 years who had not taken any drug 3 months before and during the course of the study. The effect of VGSCs blockers evaluated from two pharmacological classes including antiarrhythmic (amiodarone, procainamide and disopyramide and antiepileptic (carbamazepine, oxcarbazepine, phenytoin, and lamotrigine drugs. They were tested on the in-vitro motility and viability of human sperm using Computer Assisted Semen Analyzer.Results: All tested drugs except oxcarbazepine showed dose dependent inhibition of total motility with significant reduction (P<0.05 at the maximum concentration of 200 μΜ when compared with the control. The concentrations of drugs that reduced total sperm motility to 50% of control (half maximal inhibitory concentration were 2.76, 14.16 and 20.29 μΜ for phenytoin, lamotrigine and carbamazepine, respectively; and 2.53, 5.32 and 0.37 μΜ for amiodarone, procainamide and disopyramide, respectively. The anti-motility effects were reversible to various degrees. There was statistically insignificant difference in the inhibition of sperm viability among amiodarone, procainamide and disopyramide. Phenytoin demonstrated the most potent spermicidal action.Conclusions: VGSCs blockers have significant adverse effects on in-vitro motility of human spermatozoa. So in-vivo studies are required to determine their potential toxicological effects on human semen quality, which is an important factor regarding fertility. Moreover, these drugs have the potential to be developed into contact spermicidal.

  1. Multi-channel motor evoked potential monitoring during anterior cervical discectomy and fusion

    Directory of Open Access Journals (Sweden)

    Dong-Gun Kim

    Full Text Available Objectives: Anterior cervical discectomy and fusion (ACDF surgery is the most common surgical procedure for the cervical spine with low complication rate. Despite the potential prognostic benefit, intraoperative neurophysiological monitoring (IONM, a method for detecting impending neurological compromise, is not routinely used in ACDF surgery. The present study aimed to identify the potential benefits of monitoring multi-channel motor evoked potentials (MEPs during ACDF surgery. Methods: We retrospectively reviewed 200 consecutive patients who received IONM with multi-channel MEPs and somatosensory evoked potentials (SSEPs. On average, 9.2 muscles per patient were evaluated under MEP monitoring. Results: The rate of MEP change during surgery in the multi-level ACDF group was significantly higher than the single-level group. Two patients from the single-level ACDF group (1.7% and four patients from the multi-level ACDF group (4.9% experienced post-operative motor deficits. Multi-channel MEPs monitoring during single and multi-level ACDF surgery demonstrated higher sensitivity, specificity, positive predictive and negative predictive value than SSEP monitoring. Conclusions: Multi-channel MEP monitoring might be beneficial for the detection of segmental injury as well as long tract injury during single- and multi-level ACDF surgery. Significance: This is first large scale study to identify the usefulness of multi-channel MEPs in monitoring ACDF surgery. Keywords: Disc disease, Somatosensory evoked potentials, Intraoperative neurophysiological monitoring, Motor evoked potentials, Anterior cervical discectomy and fusion

  2. Exothermic potential of sodium nitrate salt cake

    International Nuclear Information System (INIS)

    Beitel, G.A.

    1977-06-01

    High-Level radioactive liquid waste is being reduced to a liquid slurry by an evaporation and crystallization process and stored in the existing single-shell tanks. Continuous pumping of the waste storage tank will reduce the present 30 to 50% moisture to the minimum possible. The reduced waste is a relatively immobile salt cake consisting predominantly of sodium nitrate (NaNO 3 ) with lesser amounts of sodium nitrite (NaNO 2 ), sodium metaaluminate (NaAlO 2 ), and sodium hydroxide (NaOH). Trace amounts of fission products, transuranics, and a broad spectrum of organic materials in small but unknown amounts are also present. A program was initiated in 1973 to determine whether or not conditions exist which could lead to an exothermic reaction in the salt cake. Results of the latest series of tests conducted to determine the effects of mass and pressure are summarized. Hanford salt cake, as stored, cannot support combustion, and does not ignite when covered with a burning volatile hydrocarbon

  3. Effects of (−-Gallocatechin-3-Gallate on Tetrodotoxin-Resistant Voltage-Gated Sodium Channels in Rat Dorsal Root Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Jian-Min Jiang

    2013-05-01

    Full Text Available The (−-gallocatechin-3-gallate (GCG concentration in some tea beverages can account for as much as 50% of the total catechins. It has been shown that catechins have analgesic properties. Voltage-gated sodium channels (Nav mediate neuronal action potentials. Tetrodotoxin inhibits all Nav isoforms, but Nav1.8 and Nav1.9 are relatively tetrodotoxin-resistant compared to other isoforms and functionally linked to nociception. In this study, the effects of GCG on tetrodotoxin-resistant Na+ currents were investigated in rat primary cultures of dorsal root ganglion neurons via the whole-cell patch-clamp technique. We found that 1 μM GCG reduced the amplitudes of peak current density of tetrodotoxin-resistant Na+ currents significantly. Furthermore, the inhibition was accompanied by a depolarizing shift of the activation voltage and a hyperpolarizing shift of steady-state inactivation voltage. The percentage block of GCG (1 μM on tetrodotoxin-resistant Na+ current was 45.1% ± 1.1% in 10 min. In addition, GCG did not produce frequency-dependent block of tetrodotoxin-resistant Na+ currents at stimulation frequencies of 1 Hz, 2 Hz and 5 Hz. On the basis of these findings, we propose that GCG may be a potential analgesic agent.

  4. Identification of an alternative knockdown resistance (kdr)-like mutation, M918L, and a novel mutation, V1010A, in the Thrips tabaci voltage-gated sodium channel gene.

    Science.gov (United States)

    Wu, Meixiang; Gotoh, Hiroki; Waters, Timothy; Walsh, Douglas B; Lavine, Laura Corley

    2014-06-01

    Knockdown resistance (kdr) has been identified as a main mechanism against pyrethroid insecticides in many arthropod pests including in the onion thrips, Thrips tabaci. To characterize and identify pyrethroid-resistance in onion thrips in Washington state, we conducted insecticide bioassays and sequenced a region of the voltage gated sodium channel gene from several different T. tabaci populations. Field collected Thrips tabaci were found to have large variations in resistance to the pyrethroid insecticide lambda-cyhalothrin. We identified two single nucleotide substitutions in our analysis of a partial sequence of the T. tabaci voltage-gated sodium channel gene. One mutation resulted in the non-synonymous substitution of methionine with leucine (M918L), which is well known to be responsible for super knockdown resistance in some pest species. Another non-synonymous substitution, a valine (GTT) to alanine (GCT) replacement at amino acid 1010 (V1010A) was identified in our study and was associated with lambda-cyhalothrin resistance. We have characterized a known kdr mutation and identified a novel mutation in the voltage-gated sodium channel gene of Thrips tabaci associated with resistance to lambda-cyhalothrin. This gene region and these mutations are expected to be useful in the development of a diagnostic test to detect kdr resistance in many onion thrips populations. © 2013 Society of Chemical Industry.

  5. Calmodulin and calcium differentially regulate the neuronal Nav1.1 voltage-dependent sodium channel

    Energy Technology Data Exchange (ETDEWEB)

    Gaudioso, Christelle; Carlier, Edmond; Youssouf, Fahamoe [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France); Clare, Jeffrey J. [Eaton Pharma Consulting, Eaton Socon, Cambridgeshire PE19 8EF (United Kingdom); Debanne, Dominique [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France); Alcaraz, Gisele, E-mail: gisele.alcaraz@univmed.fr [INSERM U641, Institut Jean Roche, Marseille F-13344 (France); Universite de la Mediterranee, Faculte de Medecine Secteur Nord, IFR 11, Marseille F-13344 (France)

    2011-07-29

    Highlights: {yields} Both Ca{sup ++}-Calmodulin (CaM) and Ca{sup ++}-free CaM bind to the C-terminal region of Nav1.1. {yields} Ca{sup ++} and CaM have both opposite and convergent effects on I{sub Nav1.1}. {yields} Ca{sup ++}-CaM modulates I{sub Nav1.1} amplitude. {yields} CaM hyperpolarizes the voltage-dependence of activation, and increases the inactivation rate. {yields} Ca{sup ++} alone antagonizes CaM for both effects, and depolarizes the voltage-dependence of inactivation. -- Abstract: Mutations in the neuronal Nav1.1 voltage-gated sodium channel are responsible for mild to severe epileptic syndromes. The ubiquitous calcium sensor calmodulin (CaM) bound to rat brain Nav1.1 and to the human Nav1.1 channel expressed by a stably transfected HEK-293 cell line. The C-terminal region of the channel, as a fusion protein or in the yeast two-hybrid system, interacted with CaM via a consensus C-terminal motif, the IQ domain. Patch clamp experiments on HEK1.1 cells showed that CaM overexpression increased peak current in a calcium-dependent way. CaM had no effect on the voltage-dependence of fast inactivation, and accelerated the inactivation kinetics. Elevating Ca{sup ++} depolarized the voltage-dependence of fast inactivation and slowed down the fast inactivation kinetics, and for high concentrations this effect competed with the acceleration induced by CaM alone. Similarly, the depolarizing action of calcium antagonized the hyperpolarizing shift of the voltage-dependence of activation due to CaM overexpression. Fluorescence spectroscopy measurements suggested that Ca{sup ++} could bind the Nav1.1 C-terminal region with micromolar affinity.

  6. The Snake with the Scorpion’s Sting: Novel Three-Finger Toxin Sodium Channel Activators from the Venom of the Long-Glanded Blue Coral Snake (Calliophis bivirgatus

    Directory of Open Access Journals (Sweden)

    Daryl C. Yang

    2016-10-01

    Full Text Available Millions of years of evolution have fine-tuned the ability of venom peptides to rapidly incapacitate both prey and potential predators. Toxicofera reptiles are characterized by serous-secreting mandibular or maxillary glands with heightened levels of protein expression. These glands are the core anatomical components of the toxicoferan venom system, which exists in myriad points along an evolutionary continuum. Neofunctionalisation of toxins is facilitated by positive selection at functional hotspots on the ancestral protein and venom proteins have undergone dynamic diversification in helodermatid and varanid lizards as well as advanced snakes. A spectacular point on the venom system continuum is the long-glanded blue coral snake (Calliophis bivirgatus, a specialist feeder that preys on fast moving, venomous snakes which have both a high likelihood of prey escape but also represent significant danger to the predator itself. The maxillary venom glands of C. bivirgatus extend one quarter of the snake’s body length and nestle within the rib cavity. Despite the snake’s notoriety its venom has remained largely unstudied. Here we show that the venom uniquely produces spastic paralysis, in contrast to the flaccid paralysis typically produced by neurotoxic snake venoms. The toxin responsible, which we have called calliotoxin (δ-elapitoxin-Cb1a, is a three-finger toxin (3FTx. Calliotoxin shifts the voltage-dependence of NaV1.4 activation to more hyperpolarised potentials, inhibits inactivation, and produces large ramp currents, consistent with its profound effects on contractile force in an isolated skeletal muscle preparation. Voltage-gated sodium channels (NaV are a particularly attractive pharmacological target as they are involved in almost all physiological processes including action potential generation and conduction. Accordingly, venom peptides that interfere with NaV function provide a key defensive and predatory advantage to a range of

  7. Selective spider toxins reveal a role for Nav1.1 channel in mechanical pain

    OpenAIRE

    Osteen, Jeremiah D.; Herzig, Volker; Gilchrist, John; Emrick, Joshua J.; Zhang, Chuchu; Wang, Xidao; Castro, Joel; Garcia-Caraballo, Sonia; Grundy, Luke; Rychkov, Grigori Y.; Weyer, Andy D.; Dekan, Zoltan; Undheim, Eivind A. B.; Alewood, Paul; Stucky, Cheryl L.

    2016-01-01

    Voltage-gated sodium (Nav) channels initiate action potentials in most neurons, including primary afferent nerve fibers of the pain pathway. Local anesthetics block pain through non-specific actions at all Nav channels, but the discovery of selective modulators would facilitate the analysis of individual subtypes and their contributions to chemical, mechanical, or thermal pain. Here, we identify and characterize spider toxins that selectively activate the Nav1.1 subtype, whose role in nocicep...

  8. Effects of channel noise on firing coherence of small-world Hodgkin-Huxley neuronal networks

    Science.gov (United States)

    Sun, X. J.; Lei, J. Z.; Perc, M.; Lu, Q. S.; Lv, S. J.

    2011-01-01

    We investigate the effects of channel noise on firing coherence of Watts-Strogatz small-world networks consisting of biophysically realistic HH neurons having a fraction of blocked voltage-gated sodium and potassium ion channels embedded in their neuronal membranes. The intensity of channel noise is determined by the number of non-blocked ion channels, which depends on the fraction of working ion channels and the membrane patch size with the assumption of homogeneous ion channel density. We find that firing coherence of the neuronal network can be either enhanced or reduced depending on the source of channel noise. As shown in this paper, sodium channel noise reduces firing coherence of neuronal networks; in contrast, potassium channel noise enhances it. Furthermore, compared with potassium channel noise, sodium channel noise plays a dominant role in affecting firing coherence of the neuronal network. Moreover, we declare that the observed phenomena are independent of the rewiring probability.

  9. A two-dimensional analytical model for channel potential and threshold voltage of short channel dual material gate lightly doped drain MOSFET

    International Nuclear Information System (INIS)

    Tripathi Shweta

    2014-01-01

    An analytical model for the channel potential and the threshold voltage of the short channel dual-material-gate lightly doped drain (DMG-LDD) metal—oxide—semiconductor field-effect transistor (MOSFET) is presented using the parabolic approximation method. The proposed model takes into account the effects of the LDD region length, the LDD region doping, the lengths of the gate materials and their respective work functions, along with all the major geometrical parameters of the MOSFET. The impact of the LDD region length, the LDD region doping, and the channel length on the channel potential is studied in detail. Furthermore, the threshold voltage of the device is calculated using the minimum middle channel potential, and the result obtained is compared with the DMG MOSFET threshold voltage to show the improvement in the threshold voltage roll-off. It is shown that the DMG-LDD MOSFET structure alleviates the problem of short channel effects (SCEs) and the drain induced barrier lowering (DIBL) more efficiently. The proposed model is verified by comparing the theoretical results with the simulated data obtained by using the commercially available ATLAS™ 2D device simulator. (interdisciplinary physics and related areas of science and technology)

  10. A two-dimensional analytical model for channel potential and threshold voltage of short channel dual material gate lightly doped drain MOSFET

    Science.gov (United States)

    Shweta, Tripathi

    2014-11-01

    An analytical model for the channel potential and the threshold voltage of the short channel dual-material-gate lightly doped drain (DMG-LDD) metal—oxide—semiconductor field-effect transistor (MOSFET) is presented using the parabolic approximation method. The proposed model takes into account the effects of the LDD region length, the LDD region doping, the lengths of the gate materials and their respective work functions, along with all the major geometrical parameters of the MOSFET. The impact of the LDD region length, the LDD region doping, and the channel length on the channel potential is studied in detail. Furthermore, the threshold voltage of the device is calculated using the minimum middle channel potential, and the result obtained is compared with the DMG MOSFET threshold voltage to show the improvement in the threshold voltage roll-off. It is shown that the DMG-LDD MOSFET structure alleviates the problem of short channel effects (SCEs) and the drain induced barrier lowering (DIBL) more efficiently. The proposed model is verified by comparing the theoretical results with the simulated data obtained by using the commercially available ATLAS™ 2D device simulator.

  11. Temperature fluctuation of sodium in annular flow channel heated by single-pin with blockage

    International Nuclear Information System (INIS)

    Miyazaki, Keiji; Kimura, Jiro; Ogawa, Masuro; Okada, Toshio

    1978-01-01

    Root mean square (RMS) value and power spectral density (PSD) of temperature fluctuation were measured with use of forced-circulating sodium in an annular channel (6.5 mm I.D., 20mm O.D.) with concentric disk to simulate blockage (about 80%) of sodium flow. The experimental range of the heat flux was 40 -- 150 W/cm 2 and the bulk flow velocity 0.14--0.41m/sec (Re=7.7x10 3 --2.3x10 4 ) under a temperature of 500--800 0 C. The RMS value measured at the exit of heating section (150mm downstream from the blockage) is larger by a factor of 2 -- 3 than that in the wake (10 -- 20mm downstream from the blockage), marking a few deg.C for a heat flux of 105W/cm 2 and a flow velocity of 0.27m/sec. The RMS value is proportional to the wall-to-bulk-fluid temperature difference in heat transfer, presenting the similar dependence on the heat flux and flow velocity. The fluctuations of temperature are greatly attenuated in the upper unheated section where the radial temperature gradient is absent, and consequently it is suggested that the fluctuations of temperature should be caused by the local turbulence of flow, such as a vortex street due to blockage in the present experiment, under the presence of large gradient of temperature near the heating surface. (auth.)

  12. State-dependent compound inhibition of Nav1.2 sodium channels using the FLIPR Vm dye: on-target and off-target effects of diverse pharmacological agents.

    Science.gov (United States)

    Benjamin, Elfrida R; Pruthi, Farhana; Olanrewaju, Shakira; Ilyin, Victor I; Crumley, Gregg; Kutlina, Elena; Valenzano, Kenneth J; Woodward, Richard M

    2006-02-01

    Voltage-gated sodium channels (NaChs) are relevant targets for pain, epilepsy, and a variety of neurological and cardiac disorders. Traditionally, it has been difficult to develop structure-activity relationships for NaCh inhibitors due to rapid channel kinetics and state-dependent compound interactions. Membrane potential (Vm) dyes in conjunction with a high-throughput fluorescence imaging plate reader (FLIPR) offer a satisfactory 1st-tier solution. Thus, the authors have developed a FLIPR Vm assay of rat Nav1.2 NaCh. Channels were opened by addition of veratridine, and Vm dye responses were measured. The IC50 values from various structural classes of compounds were compared to the resting state binding constant (Kr)and inactivated state binding constant (Ki)obtained using patch-clamp electrophysiology (EP). The FLIPR values correlated with Ki but not Kr. FLIPRIC50 values fell within 0.1-to 1.5-fold of EP Ki values, indicating that the assay generally reports use-dependent inhibition rather than resting state block. The Library of Pharmacologically Active Compounds (LOPAC, Sigma) was screened. Confirmed hits arose from diverse classes such as dopamine receptor antagonists, serotonin transport inhibitors, and kinase inhibitors. These data suggest that NaCh inhibition is inherent in a diverse set of biologically active molecules and may warrant counterscreening NaChs to avoid unwanted secondary pharmacology.

  13. Effect of mitochondrial potassium channel on the renal protection mediated by sodium thiosulfate against ethylene glycol induced nephrolithiasis in rat model

    Directory of Open Access Journals (Sweden)

    N. Baldev

    2015-12-01

    Full Text Available Purpose: Sodium thiosulfate (STS is clinically reported to be a promising drug in preventing nephrolithiasis. However, its mechanism of action remains unclear. In the present study, we investigated the role of mitochondrial KATP channel in the renal protection mediated by STS. Materials and Methods: Nephrolithiasis was induced in Wistar rats by administrating 0.4% ethylene glycol (EG along with 1% ammonium chloride for one week in drinking water followed by only 0.75% EG for two weeks. Treatment groups received STS, mitochondrial KATP channel opener and closer exclusively or in combination with STS for two weeks. Results: Animals treated with STS showed normal renal tissue architecture, supported by near normal serum creatinine, urea and ALP activity. Diazoxide (mitochondria KATP channel opening treatment to the animal also showed normal renal tissue histology and improved serum chemistry. However, an opposite result was shown by glibenclamide (mitochondria KATP channel closer treated rats. STS administered along with diazoxide negated the renal protection rendered by diazoxide alone, while it imparted protection to the glibenclamide treated rats, formulating a mitochondria modulated STS action. Conclusion: The present study confirmed that STS render renal protection not only through chelation and antioxidant effect but also by modulating the mitochondrial KATP channel for preventing urolithiasis.

  14. Detection Test for Leakage of CO{sub 2} into Sodium Loop

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Hee; Wi, Myung-Hwan; Min, Jae Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    This report is about the facility for the detection test for leakage of CO{sub 2} into sodium loop. The facility for the detection test for leakage of CO{sub 2} into sodium loop was introduced. The test will be carried out. Our experimental results are going to be expected to be used for approach methods to detect CO{sub 2} leaking into sodium in heat exchangers. A sodium-and-carbon dioxide (Na-CO{sub 2}) heat exchanger is one of the key components for the supercritical CO{sub 2} Brayton cycle power conversion system of sodium-cooled fast reactors (SFRs). A printed circuit heat exchanger (PCHE) is considered for the Na-CO{sub 2} heat exchanger, which is known to have potential for reducing the volume occupied by the exchangers compared to traditional shell-and-tube heat exchangers. Among various issues about the Na- CO{sub 2} exchanger, detection of CO{sub 2} leaking into sodium in the heat exchanger is most important thing for its safe operation. It is known that reaction products from sodium and CO{sub 2} such as sodium carbonate (Na{sub 2}CO{sub 3}) and amorphous carbon are hardly soluble in sodium, which cause plug sodium channels. Detection technique for Na{sub 2}CO{sub 3} in sodium loop has not been developed yet. Therefore, detection of CO{sub 2} and CO from reaction of sodium and CO{sub 2} are proper to detect CO{sub 2} leakage into sodium loop.

  15. A new sodium channel {alpha}-subunit gene (Scn9a) from Schwann cells maps to the Scn1a, Scn2a, Scn3a cluster of mouse chromosome 2

    Energy Technology Data Exchange (ETDEWEB)

    Beckers, M.C.; Ernst, E.; Gros, P. [McGill Univ., Montreal (Canada)

    1996-08-15

    We have used a total of 27 AXB/BXA recombinant inbred mouse strains to determine the chromosomal location of a newly identified gene encoding an {alpha}-subunit isoform of the sodium channel from Schwann cells, Scn9a. Linkage analysis established that Scn9a mapped to the proximal segment of mouse chromosome 2. The segregation of restriction fragment length polymorphisms in 145 progeny from a Mus spretus x C57BL/6J backcross indicates that Scn9a is very tightly linked to Scn1a (gene encoding the type I sodium channel {alpha}-subunit of the brain) and forms part of a cluster of four Scna genes located on mouse chromosome 2. 17 refs., 1 fig., 3 tabs.

  16. Assessing a nephrology-focused YouTube channel's potential to educate health care providers.

    Science.gov (United States)

    Desai, Tejas; Sanghani, Vivek; Fang, Xiangming; Christiano, Cynthia; Ferris, Maria

    2013-01-01

    YouTube has emerged as a potential teaching tool. Studies of the teaching potential of YouTube videos have not addressed health care provider (HCP) satisfaction; a necessary prerequisite for any teaching tool. We conducted a 4-month investigation to determine HCP satisfaction with a nephrology-specific YouTube channel. The Nephrology On-Demand YouTube channel was analyzed from January 1 through April 30, 2011. Sixty-minute nephrology lectures at East Carolina University were compressed into 10-minute videos and uploaded to the channel. HCPs were asked to answer a 5-point Likert questionnaire regarding the accuracy, currency, objectivity and usefulness of the digital format of the teaching videos. Means, standard deviations and 2-sided chi-square testing were performed to analyze responses. Over 80% of HCPs considered the YouTube channel to be accurate, current and objective. A similar percentage considered the digital format useful despite the compression of videos and lack of audio. The nephrology-specific YouTube channel has the potential to educate HCPs of various training backgrounds. Additional studies are required to determine if such specialty-specific channels can improve knowledge acquisition and retention.

  17. Reduced Sodium Current in the Lateral Ventricular Wall Induces Inferolateral J-Waves.

    Science.gov (United States)

    Meijborg, Veronique M F; Potse, Mark; Conrath, Chantal E; Belterman, Charly N W; De Bakker, Jacques M T; Coronel, Ruben

    2016-01-01

    J-waves in inferolateral leads are associated with a higher risk for idiopathic ventricular fibrillation. We aimed to test potential mechanisms (depolarization or repolarization dependent) responsible for inferolateral J-waves. We hypothesized that inferolateral J-waves can be caused by regional delayed activation of myocardium that is activated late during normal conditions. Computer simulations were performed to evaluate how J-point elevation is influenced by reducing sodium current conductivity (GNa), increasing transient outward current conductivity (Gto), or cellular uncoupling in three predefined ventricular regions (lateral, anterior, or septal). Two pig hearts were Langendorff-perfused with selective perfusion with a sodium channel blocker of lateral or anterior/septal regions. Volume-conducted pseudo-electrocardiograms (ECG) were recorded to detect the presence of J-waves. Epicardial unipolar electrograms were simultaneously recorded to obtain activation times (AT). Simulation data showed that conduction slowing, caused by reduced sodium current, in lateral, but not in other regions induced inferolateral J-waves. An increase in transient outward potassium current or cellular uncoupling in the lateral zone elicited slight J-point elevations which did not meet J-wave criteria. Additional conduction slowing in the entire heart attenuated J-waves and J-point elevations on the ECG, because of masking by the QRS. Experimental data confirmed that conduction slowing attributed to sodium channel blockade in the left lateral but not in the anterior/septal ventricular region induced inferolateral J-waves. J-waves coincided with the delayed activation. Reduced sodium current in the left lateral ventricular myocardium can cause inferolateral J-waves on the ECG.

  18. Some problems of leaks in sodium-water steam generator

    International Nuclear Information System (INIS)

    Kozlov, F.A.; Sergeev, G.V.; Sednev, A.R.; Makarov, V.M.

    1976-01-01

    The paper contains data on wastage of steam generator structural materials and high-nickel alloys in the zone of water leakage into sodium as well as investigation results for self-enlargement of water leaks into sodium through defects in these materials. It is shown that the rate of material damage in the zone of sodium-water reaction and in the channel with water leaking-out decreases with increasing nickel content in steels and strongly depends on sodium temperature. The paper presents experimentally obtained dependences of leakage self-enlargement rates on sodium temperature and leakage size

  19. Role of Transient Receptor Potential Ankyrin 1 Ion Channel and Somatostatin sst4 Receptor in the Antinociceptive and Anti-inflammatory Effects of Sodium Polysulfide and Dimethyl Trisulfide

    Directory of Open Access Journals (Sweden)

    István Z. Bátai

    2018-02-01

    Full Text Available Transient receptor potential ankyrin 1 (TRPA1 non-selective ligand-gated cation channels are mostly expressed in primary sensory neurons. Polysulfides (POLYs are Janus-faced substances interacting with numerous target proteins and associated with both protective and detrimental processes. Activation of TRPA1 in sensory neurons, consequent somatostatin (SOM liberation and action on sst4 receptors have recently emerged as mediators of the antinociceptive effect of organic trisulfide dimethyl trisulfide (DMTS. In the frame of the present study, we set out to compare the participation of this mechanism in antinociceptive and anti-inflammatory effects of inorganic sodium POLY and DMTS in carrageenan-evoked hind-paw inflammation. Inflammation of murine hind paws was induced by intraplantar injection of carrageenan (3% in 30 µL saline. Animals were treated intraperitoneally with POLY (17 µmol/kg or DMTS (250 µmol/kg or their respective vehicles 30 min prior paw challenge and six times afterward every 60 min. Mechanical pain threshold and swelling of the paws were measured by dynamic plantar aesthesiometry and plethysmometry at 2, 4, and 6 h after initiation of inflammation. Myeloperoxidase (MPO activity in the hind paws were detected 6 h after challenge by luminescent imaging. Mice genetically lacking TRPA1 ion channels, sst4 receptors and their wild-type counterparts were used to examine the participation of these proteins in POLY and DMTS effects. POLY counteracted carrageenan-evoked mechanical hyperalgesia in a TRPA1 and sst4 receptor-dependent manner. POLY did not influence paw swelling and MPO activity. DMTS ameliorated all examined inflammatory parameters. Mitigation of mechanical hyperalgesia and paw swelling by DMTS were mediated through sst4 receptors. These effects were present in TRPA1 knockout animals, too. DMTS inhibited MPO activity with no participation of the sensory neuron–SOM axis. While antinociceptive effects of

  20. Combustion suppressing device for leaked sodium

    International Nuclear Information System (INIS)

    Ooto, Akihiro.

    1985-01-01

    Purpose: To suppress the atmospheric temperature to secure the building safety and shorten the recovery time after the leakage in a chamber for containing sodium leaked from coolant circuit equipments or pipeways of LMFBR type rector by suppressing the combustion of sodium contained in the chamber. Constitution: To the inner wall of a chamber for containing sodium handling equipments, are vertically disposed a panel having a coolant supply port at the upper portion and a coolant discharge port at the lower portion thereof and defined with a coolant flowing channel and a panel for sucking the coolant discharged from the abovementioned panel and exhausting the same externally. Further, a corrugated combustion suppressing plate having apertures for draining the condensated leaked sodium is disposed near the sodium handling equipments. If ruptures are resulted to the sodium handling equipments or pipeway, leaked sodium is passed through the drain apertures in the suppressing plate and stored at the bottom of the containing chamber. (Horiuchi, T.)

  1. Evaluation of sodium carbonate peroxyhydrate as a potential catfish egg disinfectant.

    Science.gov (United States)

    Small, Brian C

    2009-06-01

    Two experiments were conducted to evaluate the efficacy of sodium carbonate peroxyhydrate (SCP) in improving the hatching success of channel catfish Ictalurus punctatus when used as a prophylactic chemotherapeutant during egg incubation. In the first experiment, the efficacy of SCP was evaluated in 379-L aluminum incubation troughs similar to those used in commercial hatcheries. Egg masses treated daily with 254 mg of SCP/L of water had significantly higher mean hatching success than untreated controls, and a pathogen-inhibiting effect was also evident (i.e., no gross infection was observed on the treated egg masses). In the second experiment, the hatching success of egg masses treated daily with 254 mg/L was compared with that of egg masses treated daily with hydrogen peroxide (70 mg/L). The effects of both treatments on the pH, dissolved oxygen, and hydrogen peroxide concentrations in the trough were also examined. Both SCP and hydrogen peroxide significantly improved hatching success. Unlike in the treatment with hydrogen peroxide, water pH increased during the treatment with SCP; however, no negative effects on hatching success were observed. The results of this research suggest that SCP acts similarly to hydrogen peroxide in improving channel catfish hatching success and warrants further research to determine whether it could be a practical and effective alternative for managing catfish egg infections in commercial hatcheries.

  2. Major Channels Involved In Neuropsychiatric Disorders And Therapeutic Perspectives

    Directory of Open Access Journals (Sweden)

    Paola eImbrici

    2013-05-01

    Full Text Available Voltage-gated ion channels are important mediators of physiological functions in the central nervous system. The cyclic activation of these channels influences neurotransmitter release, neuron excitability, gene transcription and plasticity, providing distinct brain areas with unique physiological and pharmacological response. A growing body of data has implicated ion channels in the susceptibility or pathogenesis of psychiatric diseases. Indeed, population studies support the association of polymorphisms in calcium and potassium channels with the genetic risk for bipolar disorders or schizophrenia. Moreover, point mutations in calcium, sodium and potassium channel genes have been identified in some childhood developmental disorders. Finally, antibodies against potassium channel complexes occur in a series of autoimmune psychiatric diseases. Here we report recent studies assessing the role of calcium, sodium and potassium channels in bipolar disorder, schizophrenia and autism spectrum disorders, and briefly summarize promising pharmacological strategies targeted on ion channels for the therapy of mental illness and related genetic tests.

  3. Development and utilization of a fluorescence-based receptor-binding assay for the site 5 voltage-sensitive sodium channel ligands brevetoxin and ciguatoxin.

    Science.gov (United States)

    McCall, Jennifer R; Jacocks, Henry M; Niven, Susan C; Poli, Mark A; Baden, Daniel G; Bourdelais, Andrea J

    2014-01-01

    Brevetoxins are a family of ladder-frame polyether toxins produced during blooms of the marine dinoflagellate Karenia brevis. Consumption of fish exposed to K. brevis blooms can lead to the development of neurotoxic shellfish poisoning. The toxic effects of brevetoxins are due to activation of voltage-sensitive sodium channels (VSSCs) in cell membranes. Binding of toxins has historically been measured using a radioligand competition assay that is fraught with difficulty. In this study, we developed a novel fluorescence-based binding assay for the brevetoxin receptor. Several fluorophores were conjugated to polyether brevetoxin-2 and used as the labeled ligand. Brevetoxin analogs were able to compete for binding with the fluorescent ligands. This assay was qualified against the standard radioligand receptor assay for the brevetoxin receptor. Furthermore, the fluorescence-based assay was used to determine relative concentrations of toxins in raw extracts of K. brevis culture, and to determine ciguatoxin affinity to site 5 of VSSCs. The fluorescence-based assay was quicker, safer, and far less expensive. As such, this assay can be used to replace the current radioligand assay and will be a vital tool for future experiments examining the binding affinity of various ligands for site 5 on sodium channels.

  4. Molecular identity of dendritic voltage-gated sodium channels.

    Science.gov (United States)

    Lorincz, Andrea; Nusser, Zoltan

    2010-05-14

    Active invasion of the dendritic tree by action potentials (APs) generated in the axon is essential for associative synaptic plasticity and neuronal ensemble formation. In cortical pyramidal cells (PCs), this AP back-propagation is supported by dendritic voltage-gated Na+ (Nav) channels, whose molecular identity is unknown. Using a highly sensitive electron microscopic immunogold technique, we revealed the presence of the Nav1.6 subunit in hippocampal CA1 PC proximal and distal dendrites. Here, the subunit density is lower by a factor of 35 to 80 than that found in axon initial segments. A gradual decrease in Nav1.6 density along the proximodistal axis of the dendritic tree was also detected without any labeling in dendritic spines. Our results reveal the characteristic subcellular distribution of the Nav1.6 subunit, identifying this molecule as a key substrate enabling dendritic excitability.

  5. Metal-coated microfluidic channels: An approach to eliminate streaming potential effects in nano biosensors.

    Science.gov (United States)

    Lee, Jieun; Wipf, Mathias; Mu, Luye; Adams, Chris; Hannant, Jennifer; Reed, Mark A

    2017-01-15

    We report a method to suppress streaming potential using an Ag-coated microfluidic channel on a p-type silicon nanowire (SiNW) array measured by a multiplexed electrical readout. The metal layer sets a constant electrical potential along the microfluidic channel for a given reference electrode voltage regardless of the flow velocity. Without the Ag layer, the magnitude and sign of the surface potential change on the SiNW depends on the flow velocity, width of the microfluidic channel and the device's location inside the microfluidic channel with respect to the reference electrode. Noise analysis of the SiNW array with and without the Ag coating in the fluidic channel shows that noise frequency peaks, resulting from the operation of a piezoelectric micropump, are eliminated using the Ag layer with two reference electrodes located at inlet and outlet. This strategy presents a simple platform to eliminate the streaming potential and can become a powerful tool for nanoscale potentiometric biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Local versus non-local core potentials in electron scattering from sodium atoms

    International Nuclear Information System (INIS)

    Bartschat, K.; Bray, I.

    1996-01-01

    We have tested the use of a local potential instead of the non-local Hartree-Fock potential to represent exchange effects between the valence or the projectile electron and the core in electron scattering from sodium atoms. For some of the most detailed observables in this collision system, the results of the two approaches are nearly identical, even though the effect of the exchange part is shown to be particularly large. (Author)

  7. GAPDH-mediated posttranscriptional regulations of sodium channel Scn1a and Scn3a genes under seizure and ketogenic diet conditions.

    Science.gov (United States)

    Lin, Guo-Wang; Lu, Ping; Zeng, Tao; Tang, Hui-Ling; Chen, Yong-Hong; Liu, Shu-Jing; Gao, Mei-Mei; Zhao, Qi-Hua; Yi, Yong-Hong; Long, Yue-Sheng

    2017-02-01

    Abnormal expressions of sodium channel SCN1A and SCN3A genes alter neural excitability that are believed to contribute to the pathogenesis of epilepsy, a long-term risk of recurrent seizures. Ketogenic diet (KD), a high-fat and low-carbohydrate treatment for difficult-to-control (refractory) epilepsy in children, has been suggested to reverse gene expression patterns. Here, we reveal a novel role of GAPDH on the posttranscriptional regulation of mouse Scn1a and Scn3a expressions under seizure and KD conditions. We show that GAPDH binds to a conserved region in the 3' UTRs of human and mouse SCN1A and SCN3A genes, which decreases and increases genes' expressions by affecting mRNA stability through SCN1A 3' UTR and SCN3A 3' UTR, respectively. In seizure mice, the upregulation and phosphorylation of GAPDH enhance its binding to the 3' UTR, which lead to downregulation of Scn1a and upregulation of Scn3a. Furthermore, administration of KD generates β-hydroxybutyric acid which rescues the abnormal expressions of Scn1a and Scn3a by weakening the GAPDH's binding to the element. Taken together, these data suggest that GAPDH-mediated expression regulation of sodium channel genes may be associated with epilepsy and the anticonvulsant action of KD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The Role of Sodium Bicarbonate in the Management of Some Toxic Ingestions

    Directory of Open Access Journals (Sweden)

    Aibek E. Mirrakhimov

    2017-01-01

    Full Text Available Adverse reactions to commonly prescribed medications and to substances of abuse may result in severe toxicity associated with increased morbidity and mortality. According to the Center for Disease Control, in 2013, at least 2113 human fatalities attributed to poisonings occurred in the United States of America. In this article, we review the data regarding the impact of systemic sodium bicarbonate administration in the management of certain poisonings including sodium channel blocker toxicities, salicylate overdose, and ingestion of some toxic alcohols and in various pharmacological toxicities. Based on the available literature and empiric experience, the administration of sodium bicarbonate appears to be beneficial in the management of a patient with the above-mentioned toxidromes. However, most of the available evidence originates from case reports, case series, and expert consensus recommendations. The potential mechanisms of sodium bicarbonate include high sodium load and the development of metabolic alkalosis with resultant decreased tissue penetration of the toxic substance with subsequent increased urinary excretion. While receiving sodium bicarbonate, patients must be monitored for the development of associated side effects including electrolyte abnormalities, the progression of metabolic alkalosis, volume overload, worsening respiratory status, and/or worsening metabolic acidosis. Patients with oliguric/anuric renal failure and advanced decompensated heart failure should not receive sodium bicarbonate.

  9. The Role of Sodium Bicarbonate in the Management of Some Toxic Ingestions.

    Science.gov (United States)

    Mirrakhimov, Aibek E; Ayach, Taha; Barbaryan, Aram; Talari, Goutham; Chadha, Romil; Gray, Adam

    2017-01-01

    Adverse reactions to commonly prescribed medications and to substances of abuse may result in severe toxicity associated with increased morbidity and mortality. According to the Center for Disease Control, in 2013, at least 2113 human fatalities attributed to poisonings occurred in the United States of America. In this article, we review the data regarding the impact of systemic sodium bicarbonate administration in the management of certain poisonings including sodium channel blocker toxicities, salicylate overdose, and ingestion of some toxic alcohols and in various pharmacological toxicities. Based on the available literature and empiric experience, the administration of sodium bicarbonate appears to be beneficial in the management of a patient with the above-mentioned toxidromes. However, most of the available evidence originates from case reports, case series, and expert consensus recommendations. The potential mechanisms of sodium bicarbonate include high sodium load and the development of metabolic alkalosis with resultant decreased tissue penetration of the toxic substance with subsequent increased urinary excretion. While receiving sodium bicarbonate, patients must be monitored for the development of associated side effects including electrolyte abnormalities, the progression of metabolic alkalosis, volume overload, worsening respiratory status, and/or worsening metabolic acidosis. Patients with oliguric/anuric renal failure and advanced decompensated heart failure should not receive sodium bicarbonate.

  10. Pyrethroid resistance in Sitophilus zeamais is associated with a mutation (T929I) in the voltage-gated sodium channel.

    Science.gov (United States)

    Araújo, Rúbia A; Williamson, Martin S; Bass, Christopher; Field, Linda M; Duce, Ian R

    2011-08-01

    The maize weevil, Sitophilus zeamais, is the most important pest affecting stored grain in Brazil and its control relies heavily on the use of insecticides. The intensive use of compounds such as the pyrethroids has led to the emergence of resistance, and previous studies have suggested that resistance to both pyrethroids and 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) may result from reduced sensitivity of the insecticide target, the voltage-gated sodium channel. To identify the molecular mechanisms underlying pyrethroid resistance in S. zeamais, the domain II region of the voltage-gated sodium channel (para-orthologue) gene was amplified by PCR and sequenced from susceptible and resistant laboratory S. zeamais strains that were selected with a discriminating dose of DDT. A single point mutation, T929I, was found in the para gene of the resistant S. zeamais populations and its presence in individual weevils was strongly associated with survival after DDT exposure. This is the first identification of a target-site resistance mutation in S. zeamais and unusually it is a super-kdr type mutation occurring in the absence of the more common kdr (L1014F) substitution. A high-throughput assay based on TaqMan single nucleotide polymorphism genotyping was developed for sensitive detection of the mutation and used to screen field-collected strains of S. zeamais. This showed that the mutation is present at low frequency in field populations and is a useful tool for informing control strategies. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.

  11. Properties of an intermediate-duration inactivation process of the voltage-gated sodium conductance in rat hippocampal CA1 neurons.

    Science.gov (United States)

    French, Christopher R; Zeng, Zhen; Williams, David A; Hill-Yardin, Elisa L; O'Brien, Terence J

    2016-02-01

    Rapid transmembrane flow of sodium ions produces the depolarizing phase of action potentials (APs) in most excitable tissue through voltage-gated sodium channels (NaV). Macroscopic currents display rapid activation followed by fast inactivation (IF) within milliseconds. Slow inactivation (IS) has been subsequently observed in several preparations including neuronal tissues. IS serves important physiological functions, but the kinetic properties are incompletely characterized, especially the operative timescales. Here we present evidence for an "intermediate inactivation" (II) process in rat hippocampal CA1 neurons with time constants of the order of 100 ms. The half-inactivation potentials (V0.5) of steady-state inactivation curves were hyperpolarized by increasing conditioning pulse duration from 50 to 500 ms and could be described by a sum of Boltzmann relations. II state transitions were observed after opening as well as subthreshold potentials. Entry into II after opening was relatively insensitive to membrane potential, and recovery of II became more rapid at hyperpolarized potentials. Removal of fast inactivation with cytoplasmic papaine revealed time constants of INa decay corresponding to II and IS with long depolarizations. Dynamic clamp revealed attenuation of trains of APs over the 10(2)-ms timescale, suggesting a functional role of II in repetitive firing accommodation. These experimental findings could be reproduced with a five-state Markov model. It is likely that II affects important aspects of hippocampal neuron response and may provide a drug target for sodium channel modulation. Copyright © 2016 the American Physiological Society.

  12. Endolysosomal Cation Channels and Cancer—A Link with Great Potential

    Science.gov (United States)

    Grimm, Christian; Bartel, Karin; Vollmar, Angelika M.; Biel, Martin

    2018-01-01

    The endolysosomal system (ES) consists of lysosomes; early, late, and recycling endosomes; and autophagosomes. It is a key regulator not only of macromolecule degradation and recycling, plasma membrane repair, homeostasis, and lipid storage, but also of antigen presentation, immune defense, cell motility, cell death signaling, tumor growth, and cancer progression. In addition, it plays a critical role in autophagy, and the autophagy-lysosome pathway is intimately associated with the hallmarks of cancer, such as escaping cell death pathways, evading immune surveillance, and deregulating metabolism. The function of endolysosomes is critically dependent on both soluble and endolysosomal membrane proteins such as ion channels and transporters. Cation channels found in the ES include members of the TRP (transient receptor potential) channel superfamily, namely TRPML channels (mucolipins) as well as two-pore channels (TPCs). In recent studies, these channels have been found to play crucial roles in endolysosomal trafficking, lysosomal exocytosis, and autophagy. Mutation or loss of these channel proteins can impact multiple endolysosomal trafficking pathways. A role for TPCs in cancer cell migration and metastasis, linked to distinct defects in endolysosomal trafficking such as integrin trafficking, has been recently established. In this review, we give an overview on the function of lysosomes in cancer with a particular focus on the roles which TPCs and TRPML channels play in the ES and how this can affect cancer cells. PMID:29303993

  13. Endolysosomal Cation Channels and Cancer-A Link with Great Potential.

    Science.gov (United States)

    Grimm, Christian; Bartel, Karin; Vollmar, Angelika M; Biel, Martin

    2018-01-05

    The endolysosomal system (ES) consists of lysosomes; early, late, and recycling endosomes; and autophagosomes. It is a key regulator not only of macromolecule degradation and recycling, plasma membrane repair, homeostasis, and lipid storage, but also of antigen presentation, immune defense, cell motility, cell death signaling, tumor growth, and cancer progression. In addition, it plays a critical role in autophagy, and the autophagy-lysosome pathway is intimately associated with the hallmarks of cancer, such as escaping cell death pathways, evading immune surveillance, and deregulating metabolism. The function of endolysosomes is critically dependent on both soluble and endolysosomal membrane proteins such as ion channels and transporters. Cation channels found in the ES include members of the TRP (transient receptor potential) channel superfamily, namely TRPML channels (mucolipins) as well as two-pore channels (TPCs). In recent studies, these channels have been found to play crucial roles in endolysosomal trafficking, lysosomal exocytosis, and autophagy. Mutation or loss of these channel proteins can impact multiple endolysosomal trafficking pathways. A role for TPCs in cancer cell migration and metastasis, linked to distinct defects in endolysosomal trafficking such as integrin trafficking, has been recently established. In this review, we give an overview on the function of lysosomes in cancer with a particular focus on the roles which TPCs and TRPML channels play in the ES and how this can affect cancer cells.

  14. Local vs. Non-local core potentials in electron scattering from sodium atoms

    International Nuclear Information System (INIS)

    Bartschat, K.; Bray, I.

    1996-02-01

    We have tested the use of a local potential instead of the non-local Hartree-Fock potential to represent exchange effects between the valence or the projectile electron and the core in electron scattering from sodium atoms For some of the most detailed observables in this collision system/ the results of the two approaches are nearly identical, even though the effect of the exchange part is shown to be particularly large. (authors). 16 refs., 4 figs

  15. Interaction of H2S with Calcium Permeable Channels and Transporters

    Directory of Open Access Journals (Sweden)

    Weihua Zhang

    2015-01-01

    Full Text Available A growing amount of evidence has suggested that hydrogen sulfide (H2S, as a gasotransmitter, is involved in intensive physiological and pathological processes. More and more research groups have found that H2S mediates diverse cellular biological functions related to regulating intracellular calcium concentration. These groups have demonstrated the reciprocal interaction between H2S and calcium ion channels and transporters, such as L-type calcium channels (LTCC, T-type calcium channels (TTCC, sodium/calcium exchangers (NCX, transient receptor potential (TRP channels, β-adrenergic receptors, and N-methyl-D-aspartate receptors (NMDAR in different cells. However, the understanding of the molecular targets and mechanisms is incomplete. Recently, some research groups demonstrated that H2S modulates the activity of calcium ion channels through protein S-sulfhydration and polysulfide reactions. In this review, we elucidate that H2S controls intracellular calcium homeostasis and the underlying mechanisms.

  16. Salt-Induced Hypertension in a Mouse Model of Liddle's Syndrome is Mediated by Epithelial Sodium Channels in the Brain

    Science.gov (United States)

    Van Huysse, James W.; Amin, Md. Shahrier; Yang, Baoli; Leenen, Frans H. H.

    2012-01-01

    Neural precursor cell expressed and developmentally downregulated 4-2 protein (Nedd4-2) facilitates the endocytosis of epithelial Na channels (ENaC). Both mice and humans with a loss of regulation of ENaC by Nedd4-2 have salt-induced hypertension. ENaC is also expressed in the brain, where it is critical for hypertension on high salt diet in salt-sensitive rats. In the present studies we assessed whether Nedd4-2 knockout (−/−) mice have: 1) increased brain ENaC; 2) elevated CSF sodium on high salt diet; and 3) enhanced pressor responses to CSF sodium and hypertension on high salt diet, both mediated by brain ENaC. Prominent choroid plexus and neuronal ENaC staining was present in −/− but not in wild-type (W/T) mice. In chronically instrumented mice, intracerebroventricular (icv) infusion of Na-rich aCSF increased MAP 3-fold higher in −/− than W/T. Icv infusion of the ENaC blocker benzamil abolished this enhancement. In telemetered −/− mice on high salt diet (8% NaCl), CSF [Na+], MAP and HR increased significantly, MAP by 30-35 mmHg. These MAP and HR responses were largely prevented by icv benzamil, but only to a minor extent by sc benzamil at the icv rate. We conclude that increased ENaC expression in the brain of Nedd 4-2 −/− mice mediates their hypertensive response to high salt diet, by causing increased sodium levels in the CSF as well as hyper-responsiveness to CSF sodium. These findings highlight the possible causative contribution of CNS ENaC in the etiology of salt-induced hypertension. PMID:22802227

  17. Direct effect of methylprednisolone on renal sodium and water transport via the principal cells in the kidney

    DEFF Research Database (Denmark)

    Lauridsen, Thomas G; Vase, Henrik; Bech, Jesper N

    2010-01-01

    Glucocorticoids influence renal concentrating and diluting ability. We tested the hypothesis that methylprednisolone treatment increased renal water and sodium absorption by increased absorption via the aquaporin-2 (AQP2) water channels and the epithelial sodium channels (ENaCs) respectively....

  18. Modulation of epithelial sodium channel (ENaC expression in mouse lung infected with Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Radzioch Danuta

    2005-01-01

    Full Text Available Abstract Background The intratracheal instillation of Pseudomonas aeruginosa entrapped in agar beads in the mouse lung leads to chronic lung infection in susceptible mouse strains. As the infection generates a strong inflammatory response with some lung edema, we tested if it could modulate the expression of genes involved in lung liquid clearance, such as the α, β and γ subunits of the epithelial sodium channel (ENaC and the catalytic subunit of Na+-K+-ATPase. Methods Pseudomonas aeruginosa entrapped in agar beads were instilled in the lung of resistant (BalB/c and susceptible (DBA/2, C57BL/6 and A/J mouse strains. The mRNA expression of ENaC and Na+-K+-ATPase subunits was tested in the lung by Northern blot following a 3 hours to 14 days infection. Results The infection of the different mouse strains evoked regulation of α and β ENaC mRNA. Following Pseudomonas instillation, the expression of αENaC mRNA decreased to a median of 43% on days 3 and 7 after infection and was still decreased to a median of 45% 14 days after infection (p 1Na+-K+-ATPase mRNA, the catalytic subunit of the sodium pump, was recorded. The distinctive expression profiles of the three subunits were not different, between the susceptible and resistant mouse strains. Conclusions These results show that Pseudomonas infection, by modulating ENaC subunit expression, could influence edema formation and clearance in infected lungs.

  19. The role of transient receptor potential channels in joint diseases.

    Science.gov (United States)

    Krupkova, O; Zvick, J; Wuertz-Kozak, K

    2017-10-10

    Transient receptor potential channels (TRP channels) are cation selective transmembrane receptors with diverse structures, activation mechanisms and physiological functions. TRP channels act as cellular sensors for a plethora of stimuli, including temperature, membrane voltage, oxidative stress, mechanical stimuli, pH and endogenous, as well as, exogenous ligands, thereby illustrating their versatility. As such, TRP channels regulate various functions in both excitable and non-excitable cells, mainly by mediating Ca2+ homeostasis. Dysregulation of TRP channels is implicated in many pathologies, including cardiovascular diseases, muscular dystrophies and hyperalgesia. However, the importance of TRP channel expression, physiological function and regulation in chondrocytes and intervertebral disc (IVD) cells is largely unexplored. Osteoarthritis (OA) and degenerative disc disease (DDD) are chronic age-related disorders that significantly affect the quality of life by causing pain, activity limitation and disability. Furthermore, currently available therapies cannot effectively slow-down or stop progression of these diseases. Both OA and DDD are characterised by reduced tissue cellularity, enhanced inflammatory responses and molecular, structural and mechanical alterations of the extracellular matrix, hence affecting load distribution and reducing joint flexibility. However, knowledge on how chondrocytes and IVD cells sense their microenvironment and respond to its changes is still limited. In this review, we introduced six families of mammalian TRP channels, their mechanisms of activation, as well as, activation-driven cellular consequences. We summarised the current knowledge on TRP channel expression and activity in chondrocytes and IVD cells, as well as, the significance of TRP channels as therapeutic targets for the treatment of OA and DDD.

  20. The role of transient receptor potential channels in joint diseases

    Directory of Open Access Journals (Sweden)

    O Krupkova

    2017-10-01

    Full Text Available ransient receptor potential channels (TRP channels are cation selective transmembrane receptors with diverse structures, activation mechanisms and physiological functions. TRP channels act as cellular sensors for a plethora of stimuli, including temperature, membrane voltage, oxidative stress, mechanical stimuli, pH and endogenous, as well as, exogenous ligands, thereby illustrating their versatility. As such, TRP channels regulate various functions in both excitable and non-excitable cells, mainly by mediating Ca2+ homeostasis. Dysregulation of TRP channels is implicated in many pathologies, including cardiovascular diseases, muscular dystrophies and hyperalgesia. However, the importance of TRP channel expression, physiological function and regulation in chondrocytes and intervertebral disc (IVD cells is largely unexplored. Osteoarthritis (OA and degenerative disc disease (DDD are chronic age-related disorders that significantly affect the quality of life by causing pain, activity limitation and disability. Furthermore, currently available therapies cannot effectively slow-down or stop progression of these diseases. Both OA and DDD are characterised by reduced tissue cellularity, enhanced inflammatory responses and molecular, structural and mechanical alterations of the extracellular matrix, hence affecting load distribution and reducing joint flexibility. However, knowledge on how chondrocytes and IVD cells sense their microenvironment and respond to its changes is still limited. In this review, we introduced six families of mammalian TRP channels, their mechanisms of activation, as well as, activation-driven cellular consequences. We summarised the current knowledge on TRP channel expression and activity in chondrocytes and IVD cells, as well as, the significance of TRP channels as therapeutic targets for the treatment of OA and DDD.

  1. The Role of Canonical Transient Receptor Potential Channels in Seizure and Excitotoxicity

    Directory of Open Access Journals (Sweden)

    Fang Zheng

    2014-04-01

    Full Text Available Canonical transient receptor potential (TRPC channels are a family of polymodal cation channels with some degree of Ca2+ permeability. Although initially thought to be channels mediating store-operated Ca2+ influx, TRPC channels can be activated by stimulation of Gq-coupled G-protein coupled receptors, or by an increase in intracellular free Ca2+ concentration. Thus, activation of TRPC channels could be a common downstream event of many signaling pathways that contribute to seizure and excitotoxicity, such as N-methyl-D-aspartate (NMDA receptor-mediated Ca2+ influx, or metabotropic glutamate receptor activation. Recent studies with genetic ablation of various TRPC family members have demonstrated that TRPC channels, in particular heteromeric TRPC1/4 channels and homomeric TRPC5 channels, play a critical role in both pilocarpine-induced acute seizures and neuronal cell death. However, exact underlying mechanisms remain to be fully elucidated, and selective TRPC modulators and antibodies with better specificity are urgently needed for future research.

  2. Perturbation analysis of spontaneous action potential initiation by stochastic ion channels

    KAUST Repository

    Keener, James P.

    2011-07-01

    A stochastic interpretation of spontaneous action potential initiation is developed for the Morris-Lecar equations. Initiation of a spontaneous action potential can be interpreted as the escape from one of the wells of a double well potential, and we develop an asymptotic approximation of the mean exit time using a recently developed quasistationary perturbation method. Using the fact that the activating ionic channel\\'s random openings and closings are fast relative to other processes, we derive an accurate estimate for the mean time to fire an action potential (MFT), which is valid for a below-threshold applied current. Previous studies have found that for above-threshold applied current, where there is only a single stable fixed point, a diffusion approximation can be used. We also explore why different diffusion approximation techniques fail to estimate the MFT. © 2011 American Physical Society.

  3. Rab27a regulates epithelial sodium channel (ENaC) activity through synaptotagmin-like protein (SLP-5) and Munc13-4 effector mechanism

    International Nuclear Information System (INIS)

    Saxena, Sunil K.; Horiuchi, Hisanori; Fukuda, Mitsunori

    2006-01-01

    Liddle's syndrome (excessive absorption of sodium ions) and PHA-1 (pseudohypoaldosteronism type 1) with decreased sodium absorption are caused by the mutations in the amiloride-sensitive epithelial sodium channel ENaC. Rab proteins are small GTPases involved in vesicle transport, docking, and fusion. Earlier, we reported that Rab27a inhibits ENaC-mediated currents through protein-protein interaction in HT-29 cells. We hereby report that Rab27a-dependent inhibition is associated with the GTP/GDP status as constitutively active or GTPase-deficient mutant Q78L inhibits amiloride-sensitive currents whereas GDP-locked inactive mutant T23N showed no effect. In order to further explore the molecular mechanism of this regulation, we performed competitive assays with two Rab27a-binding proteins: synaptotagmin-like protein (SLP-5) and Munc13-4 (a putative priming factor for exocytosis). Both proteins eliminate negative modulation of Rab27a on ENaC function. The SLP-5 reversal of Rab27a effect was restricted to C-terminal C2A/C2B domains assigned for putative phospholipids-binding function while the Rab27a-binding SHD motif imparted higher inhibition. The ENaC-mediated currents remain unaffected by Rab27a though SLP-5 appears to strongly bind it. The immunoprecipitation experiments suggest that in the presence of excessive Munc13-4 and SLP-5 proteins, Rab27a interaction with ENaC is diminished. Munc13-4 and SLP-5 limit the Rab27a availability to ENaC, thus minimizing its effect on channel function. These observations decisively prove that Rab27a inhibits ENaC function through a complex mechanism that involves GTP/GDP status, and protein-protein interactions involving Munc13-4 and SLP-5 effector proteins

  4. Characterization of the voltage-gated sodium channel of the Asian citrus psyllid, Diaphorina citri.

    Science.gov (United States)

    Liu, Bin; Coy, Monique R; Wang, Jin-Jun; Stelinski, Lukasz L

    2017-02-01

    The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is an important insect pest of citrus. It is the vector of 'Candidatus' Liberibacter asiaticus, a phloem-limited bacterium that infects citrus, resulting in the disease Huanglongbing (HLB). Disease management relies heavily on suppression of D. citri populations with insecticides, including pyrethroids. In recent annual surveys to monitor insecticide resistance, reduced susceptibility to fenpropathrin was identified in several field populations of D. citri. The primary target of pyrethroids is the voltage-gated sodium channel (VGSC). The VGSC is prone to target-site insensitivity because of mutations that either reduce pyrethroid binding and/or alter gating kinetics. These mutations, known as knockdown resistance or kdr, have been reported in a wide diversity of arthropod species. Alternative splicing, in combination with kdr mutations, has been also associated with reduced pyrethroid efficacy. Here we report the molecular characterization of the VGSC in D. citri along with a survey of alternative splicing across developmental stages of this species. Previous studies demonstrated that D. citri has an exquisite enzymatic arsenal to detoxify insecticides resulting in reduced efficacy. The results from the current investigation demonstrate that target-site insensitivity is also a potential basis for insecticide resistance to pyrethroids in D. citri. The VGSC sequence and its molecular characterization should facilitate early elucidation of the underlying cause of an established case of resistance to pyrethroids. This is the first characterization of a VGSC from a hemipteran to this level of detail, with the majority of the previous studies on dipterans and lepidopterans. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  5. Mitragynine and its potential blocking effects on specific cardiac potassium channels

    Energy Technology Data Exchange (ETDEWEB)

    Tay, Yea Lu; Teah, Yi Fan; Chong, Yoong Min [Malaysian Institute of Pharmaceuticals & Nutraceuticals, NIBM, Ministry of Science, Technology & Innovation (MOSTI), Pulau Pinang (Malaysia); Jamil, Mohd Fadzly Amar [Clinical Research Center, Hospital Seberang Jaya, Kementerian Kesihatan Malaysia, Pulau Pinang (Malaysia); Kollert, Sina [Institute of Physiology, University of Wurzburg, Wurzburg (Germany); Adenan, Mohd Ilham [Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Selangor Darul Ehsan (Malaysia); Wahab, Habibah Abdul [Pharmaceutical Design & Simulation (PhDS) Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang (Malaysia); Döring, Frank; Wischmeyer, Erhard [Institute of Physiology, University of Wurzburg, Wurzburg (Germany); Tan, Mei Lan, E-mail: tanml@usm.my [Malaysian Institute of Pharmaceuticals & Nutraceuticals, NIBM, Ministry of Science, Technology & Innovation (MOSTI), Pulau Pinang (Malaysia); Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang (Malaysia)

    2016-08-15

    Mitragyna speciosa Korth is known for its euphoric properties and is frequently used for recreational purposes. Several poisoning and fatal cases involving mitragynine have been reported but the underlying causes remain unclear. Human ether-a-go-go-related gene (hERG) encodes the cardiac I{sub Kr} current which is a determinant of the duration of ventricular action potentials and QT interval. On the other hand, I{sub K1}, a Kir current mediated by Kir2.1 channel and I{sub KACh}, a receptor-activated Kir current mediated by GIRK channel are also known to be important in maintaining the cardiac function. This study investigated the effects of mitragynine on the current, mRNA and protein expression of hERG channel in hERG-transfected HEK293 cells and Xenopus oocytes. The effects on Kir2.1 and GIRK channels currents were also determined in the oocytes. The hERG tail currents following depolarization pulses were inhibited by mitragynine with an IC{sub 50} value of 1.62 μM and 1.15 μM in the transfected cell line and Xenopus oocytes, respectively. The S6 point mutations of Y652A and F656A attenuated the inhibitor effects of mitragynine, indicating that mitragynine interacts with these high affinity drug-binding sites in the hERG channel pore cavity which was consistent with the molecular docking simulation. Interestingly, mitragynine does not affect the hERG expression at the transcriptional level but inhibits the protein expression. Mitragynine is also found to inhibit I{sub KACh} current with an IC{sub 50} value of 3.32 μM but has no significant effects on I{sub K1}. Blocking of both hERG and GIRK channels may cause additive cardiotoxicity risks. - Highlights: • The potential cardiac potassium channel blocking properties of mitragynine were investigated. • Mitragynine blocks hERG channel and I{sub Kr} in hERG-transfected HEK293 cells and hERG cRNA-injected Xenopus oocytes. • Mitragynine inhibits the hERG protein but not the mRNA expression. • Mitragynine

  6. Mitragynine and its potential blocking effects on specific cardiac potassium channels

    International Nuclear Information System (INIS)

    Tay, Yea Lu; Teah, Yi Fan; Chong, Yoong Min; Jamil, Mohd Fadzly Amar; Kollert, Sina; Adenan, Mohd Ilham; Wahab, Habibah Abdul; Döring, Frank; Wischmeyer, Erhard; Tan, Mei Lan

    2016-01-01

    Mitragyna speciosa Korth is known for its euphoric properties and is frequently used for recreational purposes. Several poisoning and fatal cases involving mitragynine have been reported but the underlying causes remain unclear. Human ether-a-go-go-related gene (hERG) encodes the cardiac I Kr current which is a determinant of the duration of ventricular action potentials and QT interval. On the other hand, I K1 , a Kir current mediated by Kir2.1 channel and I KACh , a receptor-activated Kir current mediated by GIRK channel are also known to be important in maintaining the cardiac function. This study investigated the effects of mitragynine on the current, mRNA and protein expression of hERG channel in hERG-transfected HEK293 cells and Xenopus oocytes. The effects on Kir2.1 and GIRK channels currents were also determined in the oocytes. The hERG tail currents following depolarization pulses were inhibited by mitragynine with an IC 50 value of 1.62 μM and 1.15 μM in the transfected cell line and Xenopus oocytes, respectively. The S6 point mutations of Y652A and F656A attenuated the inhibitor effects of mitragynine, indicating that mitragynine interacts with these high affinity drug-binding sites in the hERG channel pore cavity which was consistent with the molecular docking simulation. Interestingly, mitragynine does not affect the hERG expression at the transcriptional level but inhibits the protein expression. Mitragynine is also found to inhibit I KACh current with an IC 50 value of 3.32 μM but has no significant effects on I K1 . Blocking of both hERG and GIRK channels may cause additive cardiotoxicity risks. - Highlights: • The potential cardiac potassium channel blocking properties of mitragynine were investigated. • Mitragynine blocks hERG channel and I Kr in hERG-transfected HEK293 cells and hERG cRNA-injected Xenopus oocytes. • Mitragynine inhibits the hERG protein but not the mRNA expression. • Mitragynine inhibits GIRK channel. • Simultaneous

  7. Acid-sensing ion channels and transient-receptor potential ion channels in zebrafish taste buds.

    Science.gov (United States)

    Levanti, M; Randazzo, B; Viña, E; Montalbano, G; Garcia-Suarez, O; Germanà, A; Vega, J A; Abbate, F

    2016-09-01

    Sensory information from the environment is required for life and survival, and it is detected by specialized cells which together make up the sensory system. The fish sensory system includes specialized organs that are able to detect mechanical and chemical stimuli. In particular, taste buds are small organs located on the tongue in terrestrial vertebrates that function in the perception of taste. In fish, taste buds occur on the lips, the flanks, and the caudal (tail) fins of some species and on the barbels of others. In fish taste receptor cells, different classes of ion channels have been detected which, like in mammals, presumably participate in the detection and/or transduction of chemical gustatory signals. However, since some of these ion channels are involved in the detection of additional sensory modalities, it can be hypothesized that taste cells sense stimuli other than those specific for taste. This mini-review summarizes current knowledge on the presence of transient-receptor potential (TRP) and acid-sensing (ASIC) ion channels in the taste buds of teleosts, especially adult zebrafish. Up to now ASIC4, TRPC2, TRPA1, TRPV1 and TRPV4 ion channels have been found in the sensory cells, while ASIC2 was detected in the nerves supplying the taste buds. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Multi-country Survey Revealed Prevalent and Novel F1534S Mutation in Voltage-Gated Sodium Channel (VGSC Gene in Aedes albopictus.

    Directory of Open Access Journals (Sweden)

    Jiabao Xu

    2016-05-01

    Full Text Available Aedes albopictus is an important dengue vector because of its aggressive biting behavior and rapid spread out of its native home range in Southeast Asia. Pyrethroids are widely used for adult mosquito control, and resistance to pyrethroids should be carefully monitored because vector control is the only effective method currently available to prevent dengue transmission. The voltage-gated sodium channel gene is the target site of pyrethroids, and mutations in this gene cause knockdown resistance (kdr. Previous studies reported various mutations in the voltage-gated sodium channel (VGSC gene, but the spatial distribution of kdr mutations in Ae. albopictus has not been systematically examined, and the association between kdr mutation and phenotypic resistance has not been established.A total of 597 Ae. albopictus individuals from 12 populations across Asia, Africa, America and Europe were examined for mutations in the voltage-gated sodium channel gene. Three domains for a total of 1,107 bp were sequenced for every individual. Two populations from southern China were examined for pyrethroid resistance using the World Health Organization standard tube bioassay, and the association between kdr mutations and phenotypic resistance was tested.A total of 29 synonymous mutations were found across domain II, III and IV of the VGSC gene. Non-synonymous mutations in two codons of the VGSC gene were detected in 5 populations from 4 countries. A novel mutation at 1532 codon (I1532T was found in Rome, Italy with a frequency of 19.7%. The second novel mutation at codon 1534 (F1534S was detected in southern China and Florida, USA with a frequency ranging from 9.5-22.6%. The WHO insecticide susceptibility bioassay found 90.1% and 96.1% mortality in the two populations from southern China, suggesting resistance and probable resistance. Positive association between kdr mutations with deltamethrin resistance was established in these two populations.Two novel kdr

  9. Multi-country Survey Revealed Prevalent and Novel F1534S Mutation in Voltage-Gated Sodium Channel (VGSC) Gene in Aedes albopictus.

    Science.gov (United States)

    Xu, Jiabao; Bonizzoni, Mariangela; Zhong, Daibin; Zhou, Guofa; Cai, Songwu; Li, Yiji; Wang, Xiaoming; Lo, Eugenia; Lee, Rebecca; Sheen, Roger; Duan, Jinhua; Yan, Guiyun; Chen, Xiao-Guang

    2016-05-01

    Aedes albopictus is an important dengue vector because of its aggressive biting behavior and rapid spread out of its native home range in Southeast Asia. Pyrethroids are widely used for adult mosquito control, and resistance to pyrethroids should be carefully monitored because vector control is the only effective method currently available to prevent dengue transmission. The voltage-gated sodium channel gene is the target site of pyrethroids, and mutations in this gene cause knockdown resistance (kdr). Previous studies reported various mutations in the voltage-gated sodium channel (VGSC) gene, but the spatial distribution of kdr mutations in Ae. albopictus has not been systematically examined, and the association between kdr mutation and phenotypic resistance has not been established. A total of 597 Ae. albopictus individuals from 12 populations across Asia, Africa, America and Europe were examined for mutations in the voltage-gated sodium channel gene. Three domains for a total of 1,107 bp were sequenced for every individual. Two populations from southern China were examined for pyrethroid resistance using the World Health Organization standard tube bioassay, and the association between kdr mutations and phenotypic resistance was tested. A total of 29 synonymous mutations were found across domain II, III and IV of the VGSC gene. Non-synonymous mutations in two codons of the VGSC gene were detected in 5 populations from 4 countries. A novel mutation at 1532 codon (I1532T) was found in Rome, Italy with a frequency of 19.7%. The second novel mutation at codon 1534 (F1534S) was detected in southern China and Florida, USA with a frequency ranging from 9.5-22.6%. The WHO insecticide susceptibility bioassay found 90.1% and 96.1% mortality in the two populations from southern China, suggesting resistance and probable resistance. Positive association between kdr mutations with deltamethrin resistance was established in these two populations. Two novel kdr mutations, I1532T

  10. A selectivity filter at the intracellular end of the acid-sensing ion channel pore

    DEFF Research Database (Denmark)

    Lynagh, Timothy; Flood, Emelie; Boiteux, Céline

    2017-01-01

    Increased extracellular proton concentrations during neurotransmission are converted to excitatory sodium influx by acid-sensing ion channels (ASICs). 10-fold sodium/potassium selectivity in ASICs has long been attributed to a central constriction in the channel pore, but experimental verificatio...... at the "GAS belt" in the central constriction. Instead, we identified a band of glutamate and aspartate side chains at the lower end of the pore that enables preferential sodium conduction....

  11. Kaempferol enhances endothelium-dependent relaxation in the porcine coronary artery through activation of large-conductance Ca(2+) -activated K(+) channels.

    Science.gov (United States)

    Xu, Y C; Leung, S W S; Leung, G P H; Man, R Y K

    2015-06-01

    Kaempferol, a plant flavonoid present in normal human diet, can modulate vasomotor tone. The present study aimed to elucidate the signalling pathway through which this flavonoid enhanced relaxation of vascular smooth muscle. The effect of kaempferol on the relaxation of porcine coronary arteries to endothelium-dependent (bradykinin) and -independent (sodium nitroprusside) relaxing agents was studied in an in vitro organ chamber setup. The whole-cell patch-clamp technique was used to determine the effect of kaempferol on potassium channels in porcine coronary artery smooth muscle cells (PCASMCs). At a concentration without direct effect on vascular tone, kaempferol (3 × 10(-6) M) enhanced relaxations produced by bradykinin and sodium nitroprusside. The potentiation by kaempferol of the bradykinin-induced relaxation was not affected by N(ω)-nitro-L-arginine methyl ester, an inhibitor of NO synthase (10(-4) M) or TRAM-34 plus UCL 1684, inhibitors of intermediate- and small-conductance calcium-activated potassium channels, respectively (10(-6) M each), but was abolished by tetraethylammonium chloride, a non-selective inhibitor of calcium-activated potassium channels (10(-3) M), and iberiotoxin, a selective inhibitor of large-conductance calcium-activated potassium channel (KCa 1.1; 10(-7) M). Iberiotoxin also inhibited the potentiation by kaempferol of sodium nitroprusside-induced relaxations. Kaempferol stimulated an outward-rectifying current in PCASMCs, which was abolished by iberiotoxin. The present results suggest that, in smooth muscle cells of the porcine coronary artery, kaempferol enhanced relaxations caused by endothelium-derived and exogenous NO as well as those due to endothelium-dependent hyperpolarization. This vascular effect of kaempferol involved the activation of KCa 1.1 channels. © 2015 The British Pharmacological Society.

  12. Developmental regulation of voltage-sensitive sodium channels in rat skeletal muscle

    International Nuclear Information System (INIS)

    Sherman, S.J.

    1985-01-01

    The developmental regulation of the voltage-sensitive Na + channel in rat skeletal muscle was studied in vivo and in vitro. In triceps surae muscle developing in vivo the development of TTX-sensitive Na + channel occurred primarily during the first three postnatal weeks as determined by the specific binding of [ 3 H]saxitoxin. This development proceeded in two separate phases. The first phase occurs independently of continuing motor neuron innervation and accounts for 60% of the adult density of TTX-sensitive Na + channels. The second phase, which begins about day 11, requires innervation. Muscle cells in primary culture were found to have both TTX-sensitive and insensitive Na + channels. The development of the TTX-sensitive channel, in vitro, paralleled the initial innervation-independent phase of development observed in vivo. The density of TTX-sensitive Na + channels in cultured muscle cells was regulated by electrical activity and cytosolic Ca ++ levels. Pharmacological blockade of the spontaneous electrical activity present in these cells lead to a nearly 2-fold increase in the surface density of TTX-sensitive channels. The turnover time of the TTX-sensitive Na + channel was measured by blocking the incorporation of newly synthesized channels with tunicamycin, an inhibitor of N-linked protein glycosylation. The regulation of channel density by electrical activity, cytosolic Ca ++ levels, and agents affecting cyclic neucleotide levels had no effect on the turnover time of the TTX-sensitive Na + channel, indicating that these regulatory agents instead affect the synthesis of the channel

  13. Eag1 channels as potential early-stage biomarkers of hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Chávez-López MG

    2016-09-01

    Full Text Available María de Guadalupe Chávez-López,1 Violeta Zúñiga-García,1 Julio Isael Pérez-Carreón,2 Arturo Avalos-Fuentes,3 Yesenia Escobar,4 Javier Camacho1 1Department of Pharmacology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 2Instituto Nacional de Medicina Genómica, 3Department of Physiology, Biophysics and Neuroscience, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 4Centro de Investigación Clínica Acelerada Sc, Mexico City, Mexico Abstract: Hepatocellular carcinoma (HCC is a major cause of cancer death worldwide. HCC is usually asymptomatic at potential curative stages, and it has very poor prognosis if detected later. Thus, the identification of early biomarkers and novel therapies is essential to improve HCC patient survival. Ion channels have been proposed as potential tumor markers and therapeutic targets for several cancers including HCC. Especially, the ether à-go-go-1 (Eag1 voltage-gated potassium channel has been suggested as an early marker for HCC. Eag1 is overexpressed during HCC development from the cirrhotic and the preneoplastic lesions preceding HCC in a rat model. The channel is also overexpressed in human HCC. Astemizole has gained great interest as a potential anticancer drug because it targets several proteins involved in cancer including Eag1. Actually, in vivo studies have shown that astemizole may have clinical utility for HCC prevention and treatment. Here, we will review first some general aspects of HCC including the current biomarkers and therapies, and then we will focus on Eag1 channels as promising tools in the early diagnosis of HCC. Keywords: ion channels, Eag1, hepatocellular carcinoma, astemizole, diethylnitrosamine

  14. The potential roles of T-type Ca2+ channels in motor coordination

    Directory of Open Access Journals (Sweden)

    Young-Gyun ePark

    2013-10-01

    Full Text Available Specific behavioral patterns are expressed by complex combinations of muscle coordination. Tremors are simple behavioral patterns and are the focus of studies investigating motor coordination mechanisms in the brain. T-type Ca2+ channels mediate intrinsic neuronal oscillations and rhythmic burst spiking, and facilitate the generation of tremor rhythms in motor circuits. Despite substantial evidence that T-type Ca2+ channels mediate pathological tremors, their roles in physiological motor coordination and behavior remain unknown. Here, we review recent progress in understanding the roles that T-type Ca2+ channels play under pathological conditions, and discuss the potential relevance of these channels in mediating physiological motor coordination.

  15. A Flexible Nested Sodium and Proton Coil Array with Wideband Matching for Knee Cartilage MRI at 3 Tesla

    Science.gov (United States)

    Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Alon, Leeor; Chang, Gregory; Sodickson, Daniel K.; Regatte, Ravinder R.; Wiggins, Graham C.

    2015-01-01

    Purpose We describe a 6×2 channel sodium/proton array for knee MRI at 3 Tesla. Multi-element coil arrays are desirable because of well-known signal-to-noise ratio advantages over volume and single-element coils. However, low coil-tissue coupling that is characteristic of coils operating at low frequency can make the potential gains from a phased array difficult to realize. Methods The issue of low coil-tissue coupling in the developed six channel sodium receive array was addressed by implementing 1) a mechanically flexible former to minimize coil-to-tissue distance and reduce the overall diameter of the array and 2) a wideband matching scheme that counteracts preamplifier noise degradation caused by coil coupling and a high quality factor. The sodium array was complemented with a nested proton array to enable standard MRI. Results The wideband matching scheme and tight-fitting mechanical design contributed to greater than 30% central SNR gain on the sodium module over a mono-nuclear sodium birdcage coil, while the performance of the proton module was sufficient for clinical imaging. Conclusion We expect the strategies presented in this work to be generally relevant in high density receive arrays, particularly in x-nuclei or small animal applications, or in those where the array is distant from the targeted tissue. PMID:26502310

  16. Electron scattering from sodium at intermediate energies

    International Nuclear Information System (INIS)

    Mitroy, J.; McCarthy, I.E.

    1986-10-01

    A comprehensive comparison is made between theoretical calculations and experimental data for intermediate energy (≥ 10 eV) electron scattering from sodium vapour. The theoretical predictions of coupled-channels calculations (including one, two or four channels) do not agree with experimental values of the differential cross sections for elastic scattering or the resonant 3s to 3p excitation. Increasingly-more-sophisticated calculations, incorporating electron correlations in the target states, and also including core-excited states in the close-coupling expansion, are done at a few selected energies in an attempt to isolate the cause of the discrepancies between theory and experiment. It is found that these more-sophisticated calculations give essentially the same results as the two- and four-channel calculations using Hartree-Fock wavefunctions. Comparison of the sodium high-energy elastic differential cross sections with those of neon suggests that the sodium differential cross section experiments may suffer from systematic errors. There is also disagreement, at the higher energies, between theoretical values for the scattering parameters and those that are derived from laser-excited superelastic scattering and electron photon coincidence experiments. When allowance is made for the finite acceptance angle of the electron spectrometers used in the experiments by convoluting the theory with a function representing the distribution of electrons entering the electron spectrometer it is found that the magnitudes of the differences between theory and experiment are reduced

  17. Propofol (2,6-diisopropylphenol) is an applicable immersion anesthetic in the axolotl with potential uses in hemodynamic and neurophysiological experiments

    DEFF Research Database (Denmark)

    Thygesen, Mathias; Rasmussen, Mikkel Mylius; Madsen, Jesper Guldsmed

    2017-01-01

    The Mexican axolotl (Ambystoma mexicanum) is an important model species in regenerative biology. Traditionally, axolotls are anesthetized using benzocaine or MS-222, both of which act to inhibit voltage gated sodium channels thereby preventing action potential propagation. In some neurophysiologi......The Mexican axolotl (Ambystoma mexicanum) is an important model species in regenerative biology. Traditionally, axolotls are anesthetized using benzocaine or MS-222, both of which act to inhibit voltage gated sodium channels thereby preventing action potential propagation. In some...... neurophysiological experiments this is not desirable; therefore we tested propofol as an alternative anesthetic in the axolotl. We evaluated benzocaine, MS-222, and propofol's cardiovascular effects, effects on action potential propagation in the spinal cord, and gross limb regenerative effects. We found...

  18. Atrial-selective K+ channel blockers: potential antiarrhythmic drugs in atrial fibrillation?

    Science.gov (United States)

    Ravens, Ursula

    2017-11-01

    In the wake of demographic change in Western countries, atrial fibrillation has reached an epidemiological scale, yet current strategies for drug treatment of the arrhythmia lack sufficient efficacy and safety. In search of novel medications, atrial-selective drugs that specifically target atrial over other cardiac functions have been developed. Here, I will address drugs acting on potassium (K + ) channels that are either predominantly expressed in atria or possess electrophysiological properties distinct in atria from ventricles. These channels include the ultra-rapidly activating, delayed outward-rectifying Kv1.5 channel conducting I Kur , the acetylcholine-activated inward-rectifying Kir3.1/Kir3.4 channel conducting I K,ACh , the Ca 2+ -activated K + channels of small conductance (SK) conducting I SK , and the two-pore domain K + (K2P) channels (tandem of P domains, weak inward-rectifying K + channels (TWIK-1), TWIK-related acid-sensitive K + channels (TASK-1 and TASK-3)) that are responsible for voltage-independent background currents I TWIK-1 , I TASK-1 , and I TASK-3 . Direct drug effects on these channels are described and their putative value in treatment of atrial fibrillation is discussed. Although many potential drug targets have emerged in the process of unravelling details of the pathophysiological mechanisms responsible for atrial fibrillation, we do not know whether novel antiarrhythmic drugs will be more successful when modulating many targets or a single specific one. The answer to this riddle can only be solved in a clinical context.

  19. Comparison of the therapeutic effect between sodium bicarbonate and insulin on acute propafenone toxicity.

    Science.gov (United States)

    Yi, Hwa Yeon; Lee, Jang Young; Lee, Won Suk; Sung, Won Young; Seo, Sang Won

    2014-10-01

    Unlike other sodium-channel-blocking antiarrhythmic agents, propafenone has β-blocking effects and calcium-channel-blocking effects. Yi et al recently studied insulin's treatment effect on acute propafenone toxicity in rats. However, because the degree of effectiveness of insulin compared to the previously known antidote sodium bicarbonate (NaHCO3) was not studied, the 2 treatment methods were compared for propafenone intoxication in rats. Rats received intravenous propafenone (36 mg/[kg h]) for 12 minutes. After the induction of toxicity, rats (n = 10 per group) received normal saline solution (NSS), NaHCO3, or insulin with glucose as treatment. Animals in the NSS, NaHCO3, and Insulin groups received an intravenous infusion of 36 mg/(kg h) propafenone until death occurred. For each animal, the mean arterial pressure (MAP, heart rate, PR interval, QRS duration, total hemoglobin, sodium, potassium, potential of hydrogen, bicarbonate, glucose, lactate, and central venous oxygen saturation (Scvo2) were measured and compared among the groups. Survival of the Insulin group was greater than that of the NSS group by log-rank test (P = .021). Sodium bicarbonate prevented the decline of MAP for 55 minutes. In comparison, insulin prevented the decline of MAP and heart rate, and the elongation of the PR interval and QRS duration for 55 minutes (P < .05). Propafenone toxicity led to decreased Ca(2+), potential of hydrogen, and Scvo2 and increased lactate levels. Insulin prevented the decrease of Ca(2+) and Scvo2, whereas NaHCO3 prevented the increase in lactate. Insulin treatment was more effective than NaHCO3 on acute propafenone toxicity in rat. Therefore, when propafenone-induced cardiotoxicity occurs, which is unresponsive to current treatment methods, glucose-insulin infusion may be considered. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. The role of transient receptor potential channels in metabolic syndrome

    DEFF Research Database (Denmark)

    Liu, Daoyan; Zhu, Zhiming; Tepel, Martin

    2008-01-01

    Metabolic syndrome is correlated with increased cardiovascular risk and characterized by several factors, including visceral obesity, hypertension, insulin resistance, and dyslipidemia. Several members of a large family of nonselective cation entry channels, e.g., transient receptor potential (TRP...

  1. On the Mechanism of Human Red Blood Cell Longevity: Roles of Calcium, the Sodium Pump, PIEZO1, and Gardos Channels

    Directory of Open Access Journals (Sweden)

    Virgilio L. Lew

    2017-12-01

    Full Text Available In a healthy adult, the transport of O2 and CO2 between lungs and tissues is performed by about 2 · 1013 red blood cells, of which around 1.7 · 1011 are renewed every day, a turnover resulting from an average circulatory lifespan of about 120 days. Cellular lifespan is the result of an evolutionary balance between the energy costs of maintaining cells in a fit functional state versus cell renewal. In this Review we examine how the set of passive and active membrane transporters of the mature red blood cells interact to maximize their circulatory longevity thus minimizing costs on expensive cell turnover. Red blood cell deformability is critical for optimal rheology and gas exchange functionality during capillary flow, best fulfilled when the volume of each human red blood cell is kept at a fraction of about 0.55–0.60 of the maximal spherical volume allowed by its membrane area, the optimal-volume-ratio range. The extent to which red blood cell volumes can be preserved within or near these narrow optimal-volume-ratio margins determines the potential for circulatory longevity. We show that the low cation permeability of red blood cells allows volume stability to be achieved with extraordinary cost-efficiency, favouring cell longevity over cell turnover. We suggest a mechanism by which the interplay of a declining sodium pump and two passive membrane transporters, the mechanosensitive PIEZO1 channel, a candidate mediator of Psickle in sickle cells, and the Ca2+-sensitive, K+-selective Gardos channel, can implement red blood cell volume stability around the optimal-volume-ratio range, as required for extended circulatory longevity.

  2. Proteinuric diseases with sodium retention: Is plasmin the link?

    DEFF Research Database (Denmark)

    Svenningsen, Per; Skøtt, Ole; Jensen, Boye L

    2012-01-01

    1. Sodium retention in disease states characterized by proteinuria, such as nephrotic syndrome, preeclampsia, and diabetic nephropathy, occurs through poorly understood mechanism(s). 2. In the nephrotic syndrome, data from experimental and clinical studies indicate that the sodium retention...... originates in the renal cortical collecting duct and involves hyper-activity of the epithelial sodium channel (ENaC). 3. The stimulus for the increased ENaC activity does not appear to involve any of the classical sodium retaining mechanisms, such as the renin-angiotensin-aldosterone system, arginine...... and diabetic nephropathy, which are also characterized by proteinuria and sodium retention. 7. In this review, we will examine the evidence for a role of urinary serine protease activity in the development of sodium and water retention in diseases characterised by proteinuria with a focus on the nephrotic...

  3. The Nav1.2 channel is regulated by GSK3

    Science.gov (United States)

    James, Thomas F.; Nenov, Miroslav N.; Wildburger, Norelle C.; Lichti, Cheryl; Luisi, Jonathan; Vergara, Fernanda; Panova-Electronova, Neli I.; Nilsson, Carol L.; Rudra, Jai; Green, Thomas A.; Labate, Demetrio; Laezza, Fernanda

    2015-01-01

    Background Phosphorylation plays an essential role in regulating the voltage-gated sodium (Nav) channels and excitability. Yet, a surprisingly limited number of kinases have been identified as regulators of Nav channels. Herein, we posited that glycogen synthase kinase 3 (GSK3), a critical kinase found associated with numerous brain disorders, might directly regulate neuronal Nav channels. Methods We used patch-clamp electrophysiology to record sodium currents from Nav1.2 channels stably expressed in HEK-293 cells. mRNA and protein levels were quantified with RT-PCR, Western blot, or confocal microscopy, and in vitro phosphorylation and mass spectrometry to identify phosphorylated residues. Results We found that exposure of cells to GSK3 inhibitor XIII significantly potentiates the peak current density of Nav1.2, a phenotype reproduced by silencing GSK3 with siRNA. Contrarily, overexpression of GSK3β suppressed Nav1.2-encoded currents. Neither mRNA nor total protein expression were changed upon GSK3 inhibition. Cell surface labeling of CD4-chimeric constructs expressing intracellular domains of the Nav1.2 channel indicates that cell surface expression of CD4-Nav1.2-Ctail was up-regulated upon pharmacological inhibition of GSK3, resulting in an increase of surface puncta at the plasma membrane. Finally, using in vitro phosphorylation in combination with high resolution mass spectrometry, we further demonstrate that GSK3β phosphorylates T1966 at the C-terminal tail of Nav1.2. Conclusion These findings provide evidence for a new mechanism by which GSK3 modulate Nav channel function via its C-terminal tail. General Significance These findings provide fundamental knowledge in understanding signaling dysfunction common in several neuropsychiatric disorders. PMID:25615535

  4. Evoked potential correlates of selective attention with multi-channel auditory inputs

    Science.gov (United States)

    Schwent, V. L.; Hillyard, S. A.

    1975-01-01

    Ten subjects were presented with random, rapid sequences of four auditory tones which were separated in pitch and apparent spatial position. The N1 component of the auditory vertex evoked potential (EP) measured relative to a baseline was observed to increase with attention. It was concluded that the N1 enhancement reflects a finely tuned selective attention to one stimulus channel among several concurrent, competing channels. This EP enhancement probably increases with increased information load on the subject.

  5. PG BN 1600 sodium fire protection system

    International Nuclear Information System (INIS)

    Bar, J.; Urbancik, L.

    1978-12-01

    A design was developed of a fire protection system for steam generator of a 1600 MW sodium cooled fast reactor (BN-1600). Chemical reactions are described of liquid sodium with atmospheric components and solid materials coming into contact with sodium in its release from the steam generator, and in safeguarding protection against sodium fires. The requirements for the purity of nitrogen as an atmosphere inert to liquid sodium are given. Characteristics and basic parameters are shown of level and spray fires, elementary terms are explained concerning the properties of aerosols formed during fires, the methods and means of release signalling and fire alarm are described as are fire precautions using fire-fighting equipment, modifying the support tank and the cell bottom and building sewage pits. The design of the system comprises an alarm system for liquid sodium using point and line electric contact sensors and flame photometer based aerosol sensors as well as a fire-fighting system based on the system of channelling liquid sodium into emergency discharge tanks filled with an inert gas, a set of fire extinguishers and other fire fighting material, and measures for the elimination of sodium fire consequences. (J.B.)

  6. [Effect of pulse magnetic field on distribution of neuronal action potential].

    Science.gov (United States)

    Zheng, Yu; Cai, Di; Wang, Jin-Hai; Li, Gang; Lin, Ling

    2014-08-25

    The biological effect on the organism generated by magnetic field is widely studied. The present study was aimed to observe the change of sodium channel under magnetic field in neurons. Cortical neurons of Kunming mice were isolated, subjected to 15 Hz, 1 mT pulse magnetic stimulation, and then the currents of neurons were recorded by whole-cell patch clamp. The results showed that, under magnetic stimulation, the activation process of Na(+) channel was delayed, and the inactivation process was accelerated. Given the classic three-layer model, the polarization diagram of cell membrane potential distribution under pulse magnetic field was simulated, and it was found that the membrane potential induced was associated with the frequency and intensity of magnetic field. Also the effect of magnetic field-induced current on action potential was simulated by Hodgkin-Huxley (H-H) model. The result showed that the generation of action potential was delayed, and frequency and the amplitudes were decreased when working current was between -1.32 μA and 0 μA. When the working current was higher than 0 μA, the generation frequency of action potential was increased, and the change of amplitudes was not obvious, and when the working current was lower than -1.32 μA, the time of rising edge and amplitudes of action potential were decreased drastically, and the action potential was unable to generate. These results suggest that the magnetic field simulation can affect the distribution frequency and amplitude of action potential of neuron via sodium channel mediation.

  7. Novel Mutations in the Voltage-Gated Sodium Channel of Pyrethroid-Resistant Varroa destructor Populations from the Southeastern USA

    Science.gov (United States)

    González-Cabrera, Joel; Rodríguez-Vargas, Sonia; Davies, T. G. Emyr; Field, Linda M.; Schmehl, Daniel; Ellis, James D.; Krieger, Klemens; Williamson, Martin S.

    2016-01-01

    The parasitic mite Varroa destructor has a significant worldwide impact on bee colony health. In the absence of control measures, parasitized colonies invariably collapse within 3 years. The synthetic pyrethroids tau-fluvalinate and flumethrin have proven very effective at managing this mite within apiaries, but intensive control programs based mainly on one active ingredient have led to many reports of pyrethroid resistance. In Europe, a modification of leucine to valine at position 925 (L925V) of the V. destructor voltage-gated sodium channel was correlated with resistance, the mutation being found at high frequency exclusively in hives with a recent history of pyrethroid treatment. Here, we identify two novel mutations, L925M and L925I, in tau-fluvalinate resistant V. destructor collected at seven sites across Florida and Georgia in the Southeastern region of the USA. Using a multiplexed TaqMan® allelic discrimination assay, these mutations were found to be present in 98% of the mites surviving tau-fluvalinate treatment. The mutations were also found in 45% of the non-treated mites, suggesting a high potential for resistance evolution if selection pressure is applied. The results from a more extensive monitoring programme, using the Taqman® assay described here, would clearly help beekeepers with their decision making as to when to include or exclude pyrethroid control products and thereby facilitate more effective mite management programmes. PMID:27191597

  8. Novel Mutations in the Voltage-Gated Sodium Channel of Pyrethroid-Resistant Varroa destructor Populations from the Southeastern USA.

    Science.gov (United States)

    González-Cabrera, Joel; Rodríguez-Vargas, Sonia; Davies, T G Emyr; Field, Linda M; Schmehl, Daniel; Ellis, James D; Krieger, Klemens; Williamson, Martin S

    2016-01-01

    The parasitic mite Varroa destructor has a significant worldwide impact on bee colony health. In the absence of control measures, parasitized colonies invariably collapse within 3 years. The synthetic pyrethroids tau-fluvalinate and flumethrin have proven very effective at managing this mite within apiaries, but intensive control programs based mainly on one active ingredient have led to many reports of pyrethroid resistance. In Europe, a modification of leucine to valine at position 925 (L925V) of the V. destructor voltage-gated sodium channel was correlated with resistance, the mutation being found at high frequency exclusively in hives with a recent history of pyrethroid treatment. Here, we identify two novel mutations, L925M and L925I, in tau-fluvalinate resistant V. destructor collected at seven sites across Florida and Georgia in the Southeastern region of the USA. Using a multiplexed TaqMan® allelic discrimination assay, these mutations were found to be present in 98% of the mites surviving tau-fluvalinate treatment. The mutations were also found in 45% of the non-treated mites, suggesting a high potential for resistance evolution if selection pressure is applied. The results from a more extensive monitoring programme, using the Taqman® assay described here, would clearly help beekeepers with their decision making as to when to include or exclude pyrethroid control products and thereby facilitate more effective mite management programmes.

  9. Plasmin in Nephrotic Urine Activates the Epithelial Sodium Channel

    DEFF Research Database (Denmark)

    Svenningsen, Per; Bistrup, Claus; Friis, Ulla G

    2009-01-01

    stimulated amiloride-sensitive transepithelial sodium transport in M-1 cells and increased amiloride-sensitive whole-cell currents in Xenopus laevis oocytes heterologously expressing ENaC. Activation of ENaC by plasmin involved cleavage and release of an inhibitory peptide from the ENaC gamma subunit...

  10. Anestésicos locais: interação com membranas biológicas e com o canal de sódio voltagem-dependente Local anesthetics: interaction with biological membranes and with the voltage-gated sodium channel

    Directory of Open Access Journals (Sweden)

    Daniele Ribeiro de Araujo

    2008-01-01

    Full Text Available Many theories about the mechanism of action of local anesthetics (LA are described in the literature. Two types of theories can be distinguished: those that focus on the direct effects of LA on their target protein in the axon membranes, i.e. the voltage-gated sodium channel and the ones that take into account the interaction of anesthetic molecules with the lipid membrane phase for the reversible nerve blockage. Since there is a direct correlation between LA hydrophobicity and potency, it is crucial to take this physico-chemical property into account to understand the mechanism of action of LA, be it on the sodium channel protein, lipid(s, or on the whole membrane phase.

  11. High affinity for the rat brain sodium channel of newly discovered hydroxybenzoate saxitoxin analogues from the dinoflagellate Gymnodinium catenatum.

    Science.gov (United States)

    Llewellyn, Lyndon; Negri, Andrew; Quilliam, Michael

    2004-01-01

    The paralytic shellfish poison family has been recently extended by the discovery of several analogues possessing a hydoxybenzoate moiety instead of the carbamoyl group one finds in saxitoxin, the parent molecule of this toxin family. We have investigated the potency of these new analogues on a representative isoform of the pharmacological target of these toxins, the voltage gated sodium channel. These toxins were found to have K1's in the low nanomolar range, only slightly less potent than saxitoxin. The hydroxybenzoate group may increase the lipophilicity of these toxins and improve their ability to pass through epithelia and therefore its uptake and elimination in both intoxication victims and animals that bioaccumulate paralytic shellfish toxins.

  12. CNS sites activated by renal pelvic epithelial sodium channels (ENaCs) in response to hypertonic saline in awake rats.

    Science.gov (United States)

    Goodwill, Vanessa S; Terrill, Christopher; Hopewood, Ian; Loewy, Arthur D; Knuepfer, Mark M

    2017-05-01

    In some patients, renal nerve denervation has been reported to be an effective treatment for essential hypertension. Considerable evidence suggests that afferent renal nerves (ARN) and sodium balance play important roles in the development and maintenance of high blood pressure. ARN are sensitive to sodium concentrations in the renal pelvis. To better understand the role of ARN, we infused isotonic or hypertonic NaCl (308 or 500mOsm) into the left renal pelvis of conscious rats for two 2hours while recording arterial pressure and heart rate. Subsequently, brain tissue was analyzed for immunohistochemical detection of the protein Fos, a marker for neuronal activation. Fos-immunoreactive neurons were identified in numerous sites in the forebrain and brainstem. These areas included the nucleus tractus solitarius (NTS), the lateral parabrachial nucleus, the paraventricular nucleus of the hypothalamus (PVH) and the supraoptic nucleus (SON). The most effective stimulus was 500mOsm NaCl. Activation of these sites was attenuated or prevented by administration of benzamil (1μM) or amiloride (10μM) into the renal pelvis concomitantly with hypertonic saline. In anesthetized rats, infusion of hypertonic saline but not isotonic saline into the renal pelvis elevated ARN activity and this increase was attenuated by simultaneous infusion of benzamil or amiloride. We propose that renal pelvic epithelial sodium channels (ENaCs) play a role in activation of ARN and, via central visceral afferent circuits, this system modulates fluid volume and peripheral blood pressure. These pathways may contribute to the development of hypertension. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Kaempferol enhances endothelium-dependent relaxation in the porcine coronary artery through activation of large-conductance a2+-activated K+ channels

    Science.gov (United States)

    Xu, Y C; Leung, S W S; Leung, G P H; Man, R Y K

    2015-01-01

    Background and Purpose Kaempferol, a plant flavonoid present in normal human diet, can modulate vasomotor tone. The present study aimed to elucidate the signalling pathway through which this flavonoid enhanced relaxation of vascular smooth muscle. Experimental Approach The effect of kaempferol on the relaxation of porcine coronary arteries to endothelium-dependent (bradykinin) and -independent (sodium nitroprusside) relaxing agents was studied in an in vitro organ chamber setup. The whole-cell patch-clamp technique was used to determine the effect of kaempferol on potassium channels in porcine coronary artery smooth muscle cells (PCASMCs). Key Results At a concentration without direct effect on vascular tone, kaempferol (3 × 10−6 M) enhanced relaxations produced by bradykinin and sodium nitroprusside. The potentiation by kaempferol of the bradykinin-induced relaxation was not affected by Nω-nitro-L-arginine methyl ester, an inhibitor of NO synthase (10−4 M) or TRAM-34 plus UCL 1684, inhibitors of intermediate- and small-conductance calcium-activated potassium channels, respectively (10−6 M each), but was abolished by tetraethylammonium chloride, a non-selective inhibitor of calcium-activated potassium channels (10−3 M), and iberiotoxin, a selective inhibitor of large-conductance calcium-activated potassium channel (KCa1.1; 10−7 M). Iberiotoxin also inhibited the potentiation by kaempferol of sodium nitroprusside-induced relaxations. Kaempferol stimulated an outward-rectifying current in PCASMCs, which was abolished by iberiotoxin. Conclusions and Implications The present results suggest that, in smooth muscle cells of the porcine coronary artery, kaempferol enhanced relaxations caused by endothelium-derived and exogenous NO as well as those due to endothelium-dependent hyperpolarization. This vascular effect of kaempferol involved the activation of KCa1.1 channels. PMID:25652142

  14. Experimentation with PEC channel prototype

    International Nuclear Information System (INIS)

    Caponetti, R.; Iacovelli, M.

    1984-01-01

    Experimentation on prototypes of PEC components is presently being carried out at Casaccia CRE. This report shows the results of the first cycle of experimentation of the central channel, concerning the aspects of sodium removal after experimentation

  15. Robustness, Death of Spiral Wave in the Network of Neurons under Partial Ion Channel Block

    International Nuclear Information System (INIS)

    Jun, Ma; Long, Huang; Chun-Ni, Wang; Zhong-Sheng, Pu

    2013-01-01

    The development of spiral wave in a two-dimensional square array due to partial ion channel block (Potassium, Sodium) is investigated, the dynamics of the node is described by Hodgkin—Huxley neuron and these neurons are coupled with nearest neighbor connection. The parameter ratio x Na (and x K ), which defines the ratio of working ion channel number of sodium (potassium) to the total ion channel number of sodium (and potassium), is used to measure the shift conductance induced by channel block. The distribution of statistical variable R in the two-parameter phase space (parameter ratio vs. poisoning area) is extensively calculated to mark the parameter region for transition of spiral wave induced by partial ion channel block, the area with smaller factors of synchronization R is associated the parameter region that spiral wave keeps alive and robust to the channel poisoning. Spiral wave keeps alive when the poisoned area (potassium or sodium) and degree of intoxication are small, distinct transition (death, several spiral waves coexist or multi-arm spiral wave emergence) occurs under moderate ratio x Na (and x K ) when the size of blocked area exceeds certain thresholds. Breakup of spiral wave occurs and multi-arm of spiral waves are observed when the channel noise is considered. (interdisciplinary physics and related areas of science and technology)

  16. An increase in [Ca2+]i activates basolateral chloride channels and inhibits apical sodium channels in frog skin epithelium

    DEFF Research Database (Denmark)

    Brodin, Birger; Rytved, K A; Nielsen, R

    1996-01-01

    The aim of this study was to investigate the mechanisms by which increases in free cytosolic calcium ([Ca2+]i) cause a decrease in macroscopic sodium absorption across principal cells of the frog skin epithelium. [Ca2+]i was measured with fura-2 in an epifluorescence microscope set-up, sodium abs...

  17. Aldosterone induction of electrogenic sodium transport in the apical membrane vesicles of rat distal colon

    International Nuclear Information System (INIS)

    Rajendran, V.M.; Kashgarian, M.; Binder, H.J.

    1989-01-01

    Na-H exchange is present in apical membrane vesicles (AMV) isolated from distal colon of normal rats. Because in intact tissue aldosterone both induces amiloride-sensitive electrogenic sodium transport and inhibits electroneutral sodium absorption, these studies with AMV were designed to establish the effect of aldosterone on sodium transport. An outward-directed proton gradient stimulated 22Na uptake in AMV isolated from distal colon of normal and dietary sodium depleted (with elevated aldosterone levels) experimental rats. Unlike normal AMV, proton gradient-dependent 22Na uptake in experimental AMV was inhibited when uptake was measured under voltage-clamped conditions. 10 microM amiloride inhibited the initial rate of proton gradient-dependent 22Na uptake in AMV of normal and experimental rats by 30 and 75%, respectively. In contrast, 1 mM amiloride produced comparable inhibition (90 and 80%) of 22Na uptake in normal and experimental AMV. Intravesicular-negative potential stimulated 22Na uptake in experimental but not in normal AMV. This increase was inhibited by 90% by 10 microM amiloride. An analogue of amiloride, 5-(N-ethylisopropyl) amiloride (1 microM), a potent inhibitor of electroneutral Na-H exchange in AMV of normal rat distal colon, did not alter potassium diffusion potential-dependent 22Na uptake. Increasing sodium concentration saturated proton gradient-dependent 22Na uptake in normal AMV. However, in experimental AMV, 22Na uptake stimulated by both proton gradient and potassium diffusion potential did not saturate as a function of increasing sodium concentration. We conclude from these results that an electrically sensitive conductive channel, not electroneutral Na-H exchange, mediates 22Na uptake in AMV isolated from the distal colon of aldosterone rats

  18. A mutation (L1014F) in the voltage-gated sodium channel of the grain aphid, Sitobion avenae, is associated with resistance to pyrethroid insecticides.

    Science.gov (United States)

    Foster, Stephen P; Paul, Verity L; Slater, Russell; Warren, Anne; Denholm, Ian; Field, Linda M; Williamson, Martin S

    2014-08-01

    The grain aphid, Sitobion avenae Fabricius (Hemiptera: Aphididae), is an important pest of cereal crops. Pesticides are the main method for control but carry the risk of selecting for resistance. In response to reports of reduced efficacy of pyrethroid sprays applied to S. avenae, field samples were collected and screened for mutations in the voltage-gated sodium channel, the primary target site for pyrethroids. Aphid mobility and mortality to lambda-cyhalothrin were measured in coated glass vial bioassays. A single amino acid substitution (L1014F) was identified in the domain IIS6 segment of the sodium channel from the S. avenae samples exhibiting reduced pyrethroid efficacy. Bioassays on aphids heterozygous for the kdr mutation (SR) or homozygous for the wild-type allele (SS) showed that those carrying the mutation had significantly lower susceptibility to lambda-cyhalothrin. The L1014F (kdr) mutation, known to confer pyrethroid resistance in many insect pests, has been identified for the first time in S. avenae. Clonal lines heterozygous for the mutation showed 35-40-fold resistance to lambda-cyhalothrin in laboratory bioassays, consistent with the reported effect of this mutation on pyrethroid sensitivity in other aphid species. © 2013 Society of Chemical Industry.

  19. Potential miscanthus' adoption in Illinois: Information needs and preferred information channels

    Energy Technology Data Exchange (ETDEWEB)

    Villamil, Maria B. [Department of Human and Community Development, Laboratory for Community and Economic Development, 222 Bevier Hall, 905 South Goodwin Ave., Urbana, IL 61801 (United States); Department of Crop Sciences, University of Illinois, AW-101 Turner Hall, 1102 South Goodwin Ave., Urbana, IL 61801 (United States); Silvis, Anne Heinze [Department of Human and Community Development, Laboratory for Community and Economic Development, 222 Bevier Hall, 905 South Goodwin Ave., Urbana, IL 61801 (United States); Bollero, German A. [Department of Crop Sciences, University of Illinois, AW-101 Turner Hall, 1102 South Goodwin Ave., Urbana, IL 61801 (United States)

    2008-12-15

    This study examined farmers' information needs and concerns and preferred information channels regarding the introduction of miscanthus in their current production systems in the state of Illinois, USA. Surveys and focus groups targeted farming populations from Northern, Central, and Southern regions of the state to evidence regional differences. A secondary objective was to identify potential adopters of miscanthus and to asses the level of awareness regarding miscanthus and the associated possibility of receiving carbon credits. Factor analysis, multivariate ANOVA, and categorical data analysis were the selected statistical tools. Only two out of 313 respondents knew about the existence of the crop before completing the survey. Thirty percent of the respondents were identified as potential adopters of miscanthus with the highest proportion of potential adopters found among farmers in the Northern Illinois region. There are clear differences among the information needs of farmers in each region in Illinois as well as in the preferred channels. Information campaigns aimed to increase awareness and education regarding the use of miscanthus as an energy crop in Illinois, should specifically address these regional information needs and channel them through preferred media. (author)

  20. Development of a Rapid Throughput Assay for Identification of hNav1.7 Antagonist Using Unique Efficacious Sodium Channel Agonist, Antillatoxin

    Directory of Open Access Journals (Sweden)

    Fang Zhao

    2016-02-01

    Full Text Available Voltage-gated sodium channels (VGSCs are responsible for the generation of the action potential. Among nine classified VGSC subtypes (Nav1.1–Nav1.9, Nav1.7 is primarily expressed in the sensory neurons, contributing to the nociception transmission. Therefore Nav1.7 becomes a promising target for analgesic drug development. In this study, we compared the influence of an array of VGSC agonists including veratridine, BmK NT1, brevetoxin-2, deltamethrin and antillatoxin (ATX on membrane depolarization which was detected by Fluorescence Imaging Plate Reader (FLIPR membrane potential (FMP blue dye. In HEK-293 cells heterologously expressing hNav1.7 α-subunit, ATX produced a robust membrane depolarization with an EC50 value of 7.8 ± 2.9 nM whereas veratridine, BmK NT1, and deltamethrin produced marginal response. Brevetoxin-2 was without effect on membrane potential change. The ATX response was completely inhibited by tetrodotoxin suggesting that the ATX response was solely derived from hNav1.7 activation, which was consistent with the results where ATX produced a negligible response in null HEK-293 cells. Six VGSC antagonists including lidocaine, lamotrigine, phenytoin, carbamazepine, riluzole, and 2-amino-6-trifluoromethylthiobenzothiazole all concentration-dependently inhibited ATX response with IC50 values comparable to that reported from patch-clamp experiments. Considered together, we demonstrate that ATX is a unique efficacious hNav1.7 activator which offers a useful probe to develop a rapid throughput screening assay to identify hNav1.7 antagonists.

  1. Development of a Rapid Throughput Assay for Identification of hNav1.7 Antagonist Using Unique Efficacious Sodium Channel Agonist, Antillatoxin.

    Science.gov (United States)

    Zhao, Fang; Li, Xichun; Jin, Liang; Zhang, Fan; Inoue, Masayuki; Yu, Boyang; Cao, Zhengyu

    2016-02-16

    Voltage-gated sodium channels (VGSCs) are responsible for the generation of the action potential. Among nine classified VGSC subtypes (Nav1.1-Nav1.9), Nav1.7 is primarily expressed in the sensory neurons, contributing to the nociception transmission. Therefore Nav1.7 becomes a promising target for analgesic drug development. In this study, we compared the influence of an array of VGSC agonists including veratridine, BmK NT1, brevetoxin-2, deltamethrin and antillatoxin (ATX) on membrane depolarization which was detected by Fluorescence Imaging Plate Reader (FLIPR) membrane potential (FMP) blue dye. In HEK-293 cells heterologously expressing hNav1.7 α-subunit, ATX produced a robust membrane depolarization with an EC50 value of 7.8 ± 2.9 nM whereas veratridine, BmK NT1, and deltamethrin produced marginal response. Brevetoxin-2 was without effect on membrane potential change. The ATX response was completely inhibited by tetrodotoxin suggesting that the ATX response was solely derived from hNav1.7 activation, which was consistent with the results where ATX produced a negligible response in null HEK-293 cells. Six VGSC antagonists including lidocaine, lamotrigine, phenytoin, carbamazepine, riluzole, and 2-amino-6-trifluoromethylthiobenzothiazole all concentration-dependently inhibited ATX response with IC50 values comparable to that reported from patch-clamp experiments. Considered together, we demonstrate that ATX is a unique efficacious hNav1.7 activator which offers a useful probe to develop a rapid throughput screening assay to identify hNav1.7 antagonists.

  2. A quantitative and comparative study of the effects of a synthetic ciguatoxin CTX3C on the kinetic properties of voltage-dependent sodium channels

    Science.gov (United States)

    Yamaoka, Kaoru; Inoue, Masayuki; Miyahara, Hidemichi; Miyazaki, Keisuke; Hirama, Masahiro

    2004-01-01

    Ciguatoxins (CTXs) are known to bind to receptor site 5 of the voltage-dependent Na channel, but the toxin's physiological effects are poorly understood. In this study, we investigated the effects of a ciguatoxin congener (CTX3C) on three different Na-channel isoforms, rNav1.2, rNav1.4, and rNav1.5, which were transiently expressed in HEK293 cells. The toxin (1.0 μmol l−1) shifted the activation potential (V1/2 of activation curve) in the negative direction by 4–9 mV and increased the slope factor (k) from 8 mV to between 9 and 12 mV (indicative of decreased steepness of the activation curve), thereby resulting in a hyperpolarizing shift of the threshold potential by 30 mV for all Na channel isoforms. The toxin (1.0 μmol l−1) significantly accelerated the time-to-peak current from 0.62 to 0.52 ms in isoform rNav1.2. Higher doses of the toxin (3–10 μmol l−1) additionally decreased time-to-peak current in rNav1.4 and rNav1.5. A toxin effect on decay of INa at −20 mV was either absent or marginal even at relatively high doses of CTX3C. The toxin (1 μmol l−1) shifted the inactivation potential (V1/2 of inactivation curve) in the negative direction by 15–18 mV in all isoforms. INa maxima of the I–V curve (at −20 mV) were suppressed by application of 1.0 μmol l−1 CTX3C to a similar extent (80–85% of the control) in all the three isoforms. Higher doses of CTX3C up to 10 μmol l−1 further suppressed INa to 61–72% of the control. Recovery from slow inactivation induced by a depolarizing prepulse of intermediate duration (500 ms) was dramatically delayed in the presence of 1.0 μmol l−1 CTX3C, as time constants describing the monoexponential recovery were increased from 38±8 to 588±151 ms (n=5), 53±6 to 338±85 ms (n=4), and 23±3 to 232±117 ms (n=3) in rNav1.2, rNav1.4, and rNav1.5, respectively. CTX3C exerted multimodal effects on sodium channels, with simultaneous stimulatory and inhibitory aspects, probably due to the large

  3. Ion channels in glioblastoma.

    Science.gov (United States)

    Molenaar, Remco J

    2011-01-01

    Glioblastoma is the most common primary brain tumor with the most dismal prognosis. It is characterized by extensive invasion, migration, and angiogenesis. Median survival is only 15 months due to this behavior, rendering focal surgical resection ineffective and adequate radiotherapy impossible. At this moment, several ion channels have been implicated in glioblastoma proliferation, migration, and invasion. This paper summarizes studies on potassium, sodium, chloride, and calcium channels of glioblastoma. It provides an up-to-date overview of the literature that could ultimately lead to new therapeutic targets.

  4. Interaction of a dinoflagellate neurotoxin with voltage-activated ion channels in a marine diatom.

    Science.gov (United States)

    Kitchen, Sheila A; Bourdelais, Andrea J; Taylor, Alison R

    2018-01-01

    The potent neurotoxins produced by the harmful algal bloom species Karenia brevis are activators of sodium voltage-gated channels (VGC) in animals, resulting in altered channel kinetics and membrane hyperexcitability. Recent biophysical and genomic evidence supports widespread presence of homologous sodium (Na + ) and calcium (Ca 2+ ) permeable VGCs in unicellular algae, including marine phytoplankton. We therefore hypothesized that VGCs of these phytoplankton may be an allelopathic target for waterborne neurotoxins produced by K. brevis blooms that could lead to ion channel dysfunction and disruption of signaling in a similar manner to animal Na + VGCs. We examined the interaction of brevetoxin-3 (PbTx-3), a K. brevis neurotoxin, with the Na + /Ca 2+ VGC of the non-toxic diatom Odontella sinensi s using electrophysiology. Single electrode current- and voltage- clamp recordings from O. sinensis in the presence of PbTx-3 were used to examine the toxin's effect on voltage gated Na + /Ca 2+ currents. In silico analysis was used to identify the putative PbTx binding site in the diatoms. We identified Na + /Ca 2+ VCG homologs from the transcriptomes and genomes of 12 diatoms, including three transcripts from O. sinensis and aligned them with site-5 of Na + VGCs, previously identified as the PbTx binding site in animals. Up to 1 µM PbTx had no effect on diatom resting membrane potential or membrane excitability. The kinetics of fast inward Na + /Ca 2+ currents that underlie diatom action potentials were also unaffected. However, the peak inward current was inhibited by 33%, delayed outward current was inhibited by 25%, and reversal potential of the currents shifted positive, indicating a change in permeability of the underlying channels. Sequence analysis showed a lack of conservation of the PbTx binding site in diatom VGC homologs, many of which share molecular features more similar to single-domain bacterial Na + /Ca 2+ VGCs than the 4-domain eukaryote channels

  5. Transient receptor potential channel polymorphisms are associated with the somatosensory function in neuropathic pain patients.

    Directory of Open Access Journals (Sweden)

    Andreas Binder

    Full Text Available Transient receptor potential channels are important mediators of thermal and mechanical stimuli and play an important role in neuropathic pain. The contribution of hereditary variants in the genes of transient receptor potential channels to neuropathic pain is unknown. We investigated the frequency of transient receptor potential ankyrin 1, transient receptor potential melastin 8 and transient receptor potential vanilloid 1 single nucleotide polymorphisms and their impact on somatosensory abnormalities in neuropathic pain patients. Within the German Research Network on Neuropathic Pain (Deutscher Forscbungsverbund Neuropathischer Schmerz 371 neuropathic pain patients were phenotypically characterized using standardized quantitative sensory testing. Pyrosequencing was employed to determine a total of eleven single nucleotide polymorphisms in transient receptor potential channel genes of the neuropathic pain patients and a cohort of 253 German healthy volunteers. Associations of quantitative sensory testing parameters and single nucleotide polymorphisms between and within groups and subgroups, based on sensory phenotypes, were analyzed. Single nucleotide polymorphisms frequencies did not differ between both the cohorts. However, in neuropathic pain patients transient receptor potential ankyrin 1 710G>A (rs920829, E179K was associated with the presence of paradoxical heat sensation (p = 0.03, and transient receptor potential vanilloid 1 1911A>G (rs8065080, I585V with cold hypoalgesia (p = 0.0035. Two main subgroups characterized by preserved (1 and impaired (2 sensory function were identified. In subgroup 1 transient receptor potential vanilloid 1 1911A>G led to significantly less heat hyperalgesia, pinprick hyperalgesia and mechanical hypaesthesia (p = 0.006, p = 0.005 and pG (rs222747, M315I to cold hypaesthesia (p = 0.002, but there was absence of associations in subgroup 2. In this study we found no evidence that genetic

  6. Soluble adenylyl cyclase in vascular endothelium: gene expression control of epithelial sodium channel-α, Na+/K+-ATPase-α/β, and mineralocorticoid receptor.

    Science.gov (United States)

    Schmitz, Boris; Nedele, Johanna; Guske, Katrin; Maase, Martina; Lenders, Malte; Schelleckes, Michael; Kusche-Vihrog, Kristina; Brand, Stefan-Martin; Brand, Eva

    2014-04-01

    The Ca(2+)- and bicarbonate-activated soluble adenylyl cyclase (sAC) has been identified recently as an important mediator of aldosterone signaling in the kidney. Nuclear sAC has been reported to stimulate cAMP response element-binding protein 1 phosphorylation via protein kinase A, suggesting an alternative cAMP pathway in the nucleus. In this study, we analyzed the sAC as a potential modulator of endothelial stiffness in the vascular endothelium. We determined the contribution of sAC to cAMP response element-mediated transcriptional activation in vascular endothelial cells and kidney collecting duct cells. Inhibition of sAC by the specific inhibitor KH7 significantly reduced cAMP response element-mediated promoter activity and affected cAMP response element-binding protein 1 phosphorylation. Furthermore, KH7 and anti-sAC small interfering RNA significantly decreased mRNA and protein levels of epithelial sodium channel-α and Na(+)/K(+)-ATPase-α. Using atomic force microscopy, a nano-technique that measures stiffness and deformability of living cells, we detected significant endothelial cell softening after sAC inhibition. Our results suggest that the sAC is a regulator of gene expression involved in aldosterone signaling and an important regulator of endothelial stiffness. Additional studies are warranted to investigate the protective action of sAC inhibitors in humans for potential clinical use.

  7. Assessing the nutritional potential of sodium in combination with ...

    African Journals Online (AJOL)

    The role of sodium (Na) in combination with potassium (K) in the growth and yield of tomato (Lycopersicon esculentum L.) was studied in soil culture. Sodium was applied at 0, 5, 10, 20 mg / kg soil as NaCl and K at 0, 20, 40, 80 mg / kg soil as KCl. Records of components of growth and mineral nutrient uptake and ...

  8. Review article: transient receptor potential channels as possible therapeutic targets in irritable bowel syndrome.

    Science.gov (United States)

    Beckers, A B; Weerts, Z Z R M; Helyes, Z; Masclee, A A M; Keszthelyi, D

    2017-11-01

    Abdominal pain in irritable bowel syndrome (IBS) remains challenging to treat effectively. Researchers have attempted to elucidate visceral nociceptive processes in order to guide treatment development. Transient receptor potential (TRP) channels have been implied in the generation (TRPV1, TRPV4, TRPA1) and inhibition (TRPM8) of visceral pain signals. Pathological changes in their functioning have been demonstrated in inflammatory conditions, and appear to be present in IBS as well. To provide a comprehensive review of the current literature on TRP channels involved in visceral nociception. In particular, we emphasise the clinical implications of these nociceptors in the treatment of IBS. Evidence to support this review was obtained from an electronic database search via PubMed using the search terms "visceral nociception," "visceral hypersensitivity," "irritable bowel syndrome" and "transient receptor potential channels." After screening the abstracts the articles deemed relevant were cross-referenced for additional manuscripts. Recent studies have resulted in significant advances in our understanding of TRP channel mediated visceral nociception. The diversity of TRP channel sensitization pathways is increasingly recognised. Endogenous TRP agonists, including poly-unsaturated fatty acid metabolites and hydrogen sulphide, have been implied in augmented visceral pain generation in IBS. New potential targets for treatment development have been identified (TRPA1 and TRPV4,) and alternative means of affecting TRP channel signalling (partial antagonists, downstream targeting and RNA-based therapy) are currently being explored. The improved understanding of mechanisms involved in visceral nociception provides a solid basis for the development of new treatment strategies for abdominal pain in IBS. © 2017 John Wiley & Sons Ltd.

  9. Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes

    Science.gov (United States)

    Balagopal, Shekar; Malhotra, Vinod; Pendleton, Justin; Reid, Kathy Jo

    2012-09-18

    An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from the anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.

  10. Single K ATP channel opening in response to action potential firing in mouse dentate granule neurons.

    Science.gov (United States)

    Tanner, Geoffrey R; Lutas, Andrew; Martínez-François, Juan Ramón; Yellen, Gary

    2011-06-08

    ATP-sensitive potassium channels (K(ATP) channels) are important sensors of cellular metabolic state that link metabolism and excitability in neuroendocrine cells, but their role in nonglucosensing central neurons is less well understood. To examine a possible role for K(ATP) channels in modulating excitability in hippocampal circuits, we recorded the activity of single K(ATP) channels in cell-attached patches of granule cells in the mouse dentate gyrus during bursts of action potentials generated by antidromic stimulation of the mossy fibers. Ensemble averages of the open probability (p(open)) of single K(ATP) channels over repeated trials of stimulated spike activity showed a transient increase in p(open) in response to action potential firing. Channel currents were identified as K(ATP) channels through blockade with glibenclamide and by comparison with recordings from Kir6.2 knock-out mice. The transient elevation in K(ATP) p(open) may arise from submembrane ATP depletion by the Na(+)-K(+) ATPase, as the pump blocker strophanthidin reduced the magnitude of the elevation. Both the steady-state and stimulus-elevated p(open) of the recorded channels were higher in the presence of the ketone body R-β-hydroxybutyrate, consistent with earlier findings that ketone bodies can affect K(ATP) activity. Using perforated-patch recording, we also found that K(ATP) channels contribute to the slow afterhyperpolarization following an evoked burst of action potentials. We propose that activity-dependent opening of K(ATP) channels may help granule cells act as a seizure gate in the hippocampus and that ketone-body-mediated augmentation of the activity-dependent opening could in part explain the effect of the ketogenic diet in reducing epileptic seizures.

  11. Voltage-Gated Potassium Channels Kv1.3--Potentially New Molecular Target in Cancer Diagnostics and Therapy.

    Science.gov (United States)

    Teisseyre, Andrzej; Gąsiorowska, Justyna; Michalak, Krystyna

    2015-01-01

    Voltage-gated potassium channels, Kv1.3, which were discovered in 1984, are integral membrane proteins which are activated ("open") upon change of the cell membrane potential, enabling a passive flux of potassium ions across the cell membrane. The channels are expressed in many different tissues, both normal and cancer. Since 2005 it has been known that the channels are expressed not only in the plasma membrane, but also in the inner mitochondrial membrane. The activity of Kv1.3 channels plays an important role, among others, in setting the cell resting membrane potential, cell proliferation, apoptosis and volume regulation. For some years, these channels have been considered a potentially new molecular target in both the diagnostics and therapy of some cancer diseases. This review article focuses on: 1) changes of expression of the channels in cancer disorders with special regard to correlations between the channels' expression and stage of the disease, 2) influence of inhibitors of Kv1.3 channels on proliferation and apoptosis of cancer cells, 3) possible future applications of Kv1.3 channels' inhibitors in therapy of some cancer diseases. In the last section, the results of studies performed in our Laboratory of Bioelectricity on the influence of selected biologically active plant-derived compounds from the groups of flavonoids and stilbenes and their natural and synthetic derivatives on the activity of Kv1.3 channels in normal and cancer cells are reviewed. A possible application of some compounds from these groups to support therapy of cancer diseases, such as breast, colon and lymph node cancer, and melanoma or chronic lymphocytic leukemia (B-CLL), is announced.

  12. Theoretical Study of Sodium-Water Surface Reaction Mechanism

    Science.gov (United States)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki; Hashimoto, Kenro

    Computational study of the sodium-water reaction at the gas (water) - liquid (sodium) interface has been carried out using the ab initio (first-principle) method. A possible reaction channel has been identified for the stepwise OH bond dissociations of a single water molecule. The energetics including the binding energy of a water molecule on the sodium surface, the activation energies of the bond cleavages, and the reaction energies, have been evaluated, and the rate constants of the first and second OH bond-breakings have been compared. It was found that the estimated rate constant of the former was much larger than the latter. The results are the basis for constructing the chemical reaction model used in a multi-dimensional sodium-water reaction code, SERAPHIM, being developed by Japan Atomic Energy Agency (JAEA) toward the safety assessment of the steam generator (SG) in a sodium-cooled fast reactor (SFR).

  13. Theoretical study of sodium-water surface reaction mechanism

    International Nuclear Information System (INIS)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki; Hashimoto, Kenro

    2012-01-01

    Computational study of the sodium-water reaction at the gas (water) - liquid (sodium) interface has been carried out using the ab initio (first-principle) method. A possible reaction channel has been identified for the stepwise OH bond dissociations of a single water molecule. The energetics including the binding energy of a water molecule on the sodium surface, the activation energies of the bond cleavages, and the reaction energies, have been evaluated, and the rate constants of the first and second OH bond-breakings have been compared. It was found that the estimated rate constant of the former was much larger than the latter. The results are the basis for constructing the chemical reaction model used in a multi-dimensional sodium-water reaction code, SERAPHIM, being developed by Japan Atomic Energy Agency (JAEA) toward the safety assessment of the steam generator (SG) in a sodium-cooled fast reactor (SFR). (author)

  14. Tarantula huwentoxin-IV inhibits neuronal sodium channels by binding to receptor site 4 and trapping the domain ii voltage sensor in the closed configuration.

    Science.gov (United States)

    Xiao, Yucheng; Bingham, Jon-Paul; Zhu, Weiguo; Moczydlowski, Edward; Liang, Songping; Cummins, Theodore R

    2008-10-03

    Peptide toxins with high affinity, divergent pharmacological functions, and isoform-specific selectivity are powerful tools for investigating the structure-function relationships of voltage-gated sodium channels (VGSCs). Although a number of interesting inhibitors have been reported from tarantula venoms, little is known about the mechanism for their interaction with VGSCs. We show that huwentoxin-IV (HWTX-IV), a 35-residue peptide from tarantula Ornithoctonus huwena venom, preferentially inhibits neuronal VGSC subtypes rNav1.2, rNav1.3, and hNav1.7 compared with muscle subtypes rNav1.4 and hNav1.5. Of the five VGSCs examined, hNav1.7 was most sensitive to HWTX-IV (IC(50) approximately 26 nM). Following application of 1 microm HWTX-IV, hNav1.7 currents could only be elicited with extreme depolarizations (>+100 mV). Recovery of hNav1.7 channels from HWTX-IV inhibition could be induced by extreme depolarizations or moderate depolarizations lasting several minutes. Site-directed mutagenesis analysis indicated that the toxin docked at neurotoxin receptor site 4 located at the extracellular S3-S4 linker of domain II. Mutations E818Q and D816N in hNav1.7 decreased toxin affinity for hNav1.7 by approximately 300-fold, whereas the reverse mutations in rNav1.4 (N655D/Q657E) and the corresponding mutations in hNav1.5 (R812D/S814E) greatly increased the sensitivity of the muscle VGSCs to HWTX-IV. Our data identify a novel mechanism for sodium channel inhibition by tarantula toxins involving binding to neurotoxin receptor site 4. In contrast to scorpion beta-toxins that trap the IIS4 voltage sensor in an outward configuration, we propose that HWTX-IV traps the voltage sensor of domain II in the inward, closed configuration.

  15. Maitotoxin Is a Potential Selective Activator of the Endogenous Transient Receptor Potential Canonical Type 1 Channel in Xenopus laevis Oocytes

    Directory of Open Access Journals (Sweden)

    Pedro L. Flores

    2017-06-01

    Full Text Available Maitotoxin (MTX is the most potent marine toxin known to date. It is responsible for a particular human intoxication syndrome called ciguatera fish poisoning (CFP. Several reports indicate that MTX is an activator of non-selective cation channels (NSCC in different cell types. The molecular identity of these channels is still an unresolved topic, and it has been proposed that the transient receptor potential (TRP channels are involved in this effect. In Xenopus laevis oocytes, MTX at picomolar (pM concentrations induces the activation of NSCC with functional and pharmacological properties that resemble the activity of TRP channels. The purpose of this study was to characterize the molecular identity of the TRP channel involved in the MTX response, using the small interference RNA (siRNA approach and the two-electrode voltage-clamp technique (TEVC. The injection of a specifically designed siRNA to silence the transient receptor potential canonical type 1 (TRPC1 protein expression abolished the MTX response. MTX had no effect on oocytes, even at doses 20-fold higher compared to cells without injection. Total mRNA and protein levels of TRPC1 were notably diminished. The TRPC4 siRNA did not change the MTX effect, even though it was important to note that the protein level was reduced by the silencing of TRPC4. Our results suggest that MTX could be a selective activator of TRPC1 channels in X. laevis oocytes and a useful pharmacological tool for further studies on these TRP channels.

  16. A novel toxin from Haplopelma lividum selectively inhibits the NAV1.8 channel and possesses potent analgesic efficacy

    DEFF Research Database (Denmark)

    Meng, Ping; Huang, Honggang; Wang, Gan

    2017-01-01

    Spider venoms are a complex mixture of peptides with a large number of neurotoxins targeting ion channels. Although thousands of peptide toxins have been identified from venoms of numerous species of spiders, many unknown species urgently need to be investigated. In this study, a novel sodium...... channel inhibitor, μ-TRTX-Hl1a, was identified from the venom of Haplopelma lividum. It contained eight cysteines and formed a conserved cysteine pattern of ICK motif. μ-TRTX-Hl1a inhibited the TTX-resistant (TTX-r) sodium channel current rather than the TTX-sensitive (TTX-s) sodium channel current...

  17. Novel Mutations in the Voltage-Gated Sodium Channel of Pyrethroid-Resistant Varroa destructor Populations from the Southeastern USA.

    Directory of Open Access Journals (Sweden)

    Joel González-Cabrera

    Full Text Available The parasitic mite Varroa destructor has a significant worldwide impact on bee colony health. In the absence of control measures, parasitized colonies invariably collapse within 3 years. The synthetic pyrethroids tau-fluvalinate and flumethrin have proven very effective at managing this mite within apiaries, but intensive control programs based mainly on one active ingredient have led to many reports of pyrethroid resistance. In Europe, a modification of leucine to valine at position 925 (L925V of the V. destructor voltage-gated sodium channel was correlated with resistance, the mutation being found at high frequency exclusively in hives with a recent history of pyrethroid treatment. Here, we identify two novel mutations, L925M and L925I, in tau-fluvalinate resistant V. destructor collected at seven sites across Florida and Georgia in the Southeastern region of the USA. Using a multiplexed TaqMan® allelic discrimination assay, these mutations were found to be present in 98% of the mites surviving tau-fluvalinate treatment. The mutations were also found in 45% of the non-treated mites, suggesting a high potential for resistance evolution if selection pressure is applied. The results from a more extensive monitoring programme, using the Taqman® assay described here, would clearly help beekeepers with their decision making as to when to include or exclude pyrethroid control products and thereby facilitate more effective mite management programmes.

  18. Endocochlear potential depends on Cl− channels: mechanism underlying deafness in Bartter syndrome IV

    Science.gov (United States)

    Rickheit, Gesa; Maier, Hannes; Strenzke, Nicola; Andreescu, Corina E; De Zeeuw, Chris I; Muenscher, Adrian; Zdebik, Anselm A; Jentsch, Thomas J

    2008-01-01

    Human Bartter syndrome IV is an autosomal recessive disorder characterized by congenital deafness and severe renal salt and fluid loss. It is caused by mutations in BSND, which encodes barttin, a β-subunit of ClC-Ka and ClC-Kb chloride channels. Inner-ear-specific disruption of Bsnd in mice now reveals that the positive potential, but not the high potassium concentration, of the scala media depends on the presence of these channels in the epithelium of the stria vascularis. The reduced driving force for K+-entry through mechanosensitive channels into sensory hair cells entails a profound congenital hearing loss and subtle vestibular symptoms. Although retaining all cell types and intact tight junctions, the thickness of the stria is reduced early on. Cochlear outer hair cells degenerate over several months. A collapse of endolymphatic space was seen when mice had additionally renal salt and fluid loss due to partial barttin deletion in the kidney. Bsnd−/− mice thus demonstrate a novel function of Cl− channels in generating the endocochlear potential and reveal the mechanism leading to deafness in human Bartter syndrome IV. PMID:18833191

  19. Discovery of Point Mutations in the Voltage-Gated Sodium Channel from African Aedes aegypti Populations: Potential Phylogenetic Reasons for Gene Introgression

    Science.gov (United States)

    Muranami, Yuto; Kawashima, Emiko; Osei, Joseph H. N.; Sakyi, Kojo Yirenkyi; Dadzie, Samuel; de Souza, Dziedzom K.; Appawu, Maxwell; Ohta, Nobuo; Minakawa, Noboru

    2016-01-01

    Background Yellow fever is endemic in some countries in Africa, and Aedes aegpyti is one of the most important vectors implicated in the outbreak. The mapping of the nation-wide distribution and the detection of insecticide resistance of vector mosquitoes will provide the beneficial information for forecasting of dengue and yellow fever outbreaks and effective control measures. Methodology/Principal Findings High resistance to DDT was observed in all mosquito colonies collected in Ghana. The resistance and the possible existence of resistance or tolerance to permethrin were suspected in some colonies. High frequencies of point mutations at the voltage-gated sodium channel (F1534C) and one heterozygote of the other mutation (V1016I) were detected, and this is the first detection on the African continent. The frequency of F1534C allele and the ratio of F1534C homozygotes in Ae. aegypti aegypti (Aaa) were significantly higher than those in Ae. aegypti formosus (Aaf). We could detect the two types of introns between exon 20 and 21, and the F1534C mutations were strongly linked with one type of intron, which was commonly found in South East Asian and South and Central American countries, suggesting the possibility that this mutation was introduced from other continents or convergently selected after the introgression of Aaa genes from the above area. Conclusions/Significance The worldwide eradication programs in 1940s and 1950s might have caused high selection pressure on the mosquito populations and expanded the distribution of insecticide-resistant Ae. aegypti populations. Selection of the F1534C point mutation could be hypothesized to have taken place during this period. The selection of the resistant population of Ae. aegypti with the point mutation of F1534C, and the worldwide transportation of vector mosquitoes in accordance with human activity such as trading of used tires, might result in the widespread distribution of F1534C point mutation in tropical countries

  20. Potential risk and sodium content of children's ready-to-eat foods distributed at major amusement parks in Korea.

    Science.gov (United States)

    Lee, N-Y; Park, S-Y; Lee, Y-M; Choi, S-Y; Jeong, S-H; Chung, M-S; Chang, Y-S; Choi, S-H; Bae, D-H; Ha, S-D

    2013-01-01

    This study was conducted to help better understand the current sodium intake of Korean children and to establish children's good eating habits through investigation of the sodium content of ready-to-eat foods collected from nine major amusement parks in Korea. The sodium content of a total of 322 products was analysed by using ICP and then the potential risk based on the recommended daily intake of sodium as described in the Korean dietary reference intakes was determined. The results showed that sodium content was the lowest in muffins (245 mg/100 g) and the highest in seasoned dried filefish (1825 mg/100 g). The average amounts of sodium per serving of seasoned dried filefish, tteokbokki and fish paste were 1150, 1248 and 1097 mg, respectively. The values were above 50% of the daily intake of sodium recommended by the Korean dietary reference intake. The ready-to-eat foods were also classified into high, medium and low sodium content on the basis of standards recommended by the Korean Food and Drug Administration. Most snacks were classified as high sodium foods because they exceeded "300 mg (84.5% of the total daily allowance)". Furthermore, the meal substitution foods such as kimbab, tteokbokki, mandus, sandwiches and hamburgers exceeded "600 mg (90.3% of the total daily allowance)" and were also classified as high sodium foods. In addition, ready-to-eat foods in amusement parks are similar to foods eaten on streets and foods around school zones, which contain high sodium content; thus, the intake frequency might be high, which would induce high risk to children health. Koreans already consume a high amount of sodium daily via their usual diets. So, the sodium content in snacks and substitution foods needs to be reduced. Consequently, this study noted that parents and guardians should carefully consider their children's consumption of ready-to-eat foods from Korean amusement parks.

  1. Calcium Homeostasis Modulator 1-Like Currents in Rat Fungiform Taste Cells Expressing Amiloride-Sensitive Sodium Currents.

    Science.gov (United States)

    Bigiani, Albertino

    2017-05-01

    Salt reception by taste cells is still the less understood transduction process occurring in taste buds, the peripheral sensory organs for the detection of food chemicals. Although there is evidence suggesting that the epithelial sodium channel (ENaC) works as sodium receptor, yet it is not clear how salt-detecting cells signal the relevant information to nerve endings. Taste cells responding to sweet, bitter, and umami substances release ATP as neurotransmitter through a nonvesicular mechanism. Three different channel proteins have been proposed as conduit for ATP secretion: pannexin channels, connexin hemichannels, and calcium homeostasis modulator 1 (CALHM1) channels. In heterologous expression systems, these channels mediate outwardly rectifying membrane currents with distinct biophysical and pharmacological properties. I therefore tested whether also salt-detecting taste cells were endowed with these currents. To this aim, I applied the patch-clamp techniques to single cells in isolated taste buds from rat fungiform papillae. Salt-detecting cells were functionally identified by exploiting the effect of amiloride, which induces a current response by shutting down ENaCs. I looked for the presence of outwardly rectifying currents by using appropriate voltage-clamp protocols and specific pharmacological tools. I found that indeed salt-detecting cells possessed these currents with properties consistent with the presence, at least in part, of CALHM1 channels. Unexpectedly, CALHM1-like currents in taste cells were potentiated by known blockers of pannexin, suggesting a possible inhibitory action of this protein on CALMH1. These findings indicate that communication between salt-detecting cells and nerve endings might involve ATP release by CALMH1 channels. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Expression-dependent pharmacology of transient receptor potential vanilloid subtype 1 channels in Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Rivera-Acevedo, Ricardo E; Pless, Stephan Alexander; Schwarz, Stephan K W

    2013-01-01

    Transient receptor potential vanilloid subfamily member 1 channels are polymodal sensors of noxious stimuli and integral players in thermosensation, inflammation and pain signaling. It has been shown previously that under prolonged stimulation, these channels show dynamic pore dilation, providing...

  3. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: A study to assess the drug's cardiac ion channel profile

    International Nuclear Information System (INIS)

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K.; Lukacs, Peter; Gawali, Vaibhavkumar S.; Todt, Hannes; Hilber, Karlheinz; Sandtner, Walter

    2013-01-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licenced as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Na v 1.5 sodium and Ca v 1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. - Highlights: • We study effects of anti-addiction drug ibogaine on ionic currents in cardiomyocytes. • We assess the cardiac ion channel profile of ibogaine. • Ibogaine inhibits hERG potassium, sodium and calcium channels. • Ibogaine’s effects on ion channels are a potential

  4. Role played by acid-sensitive ion channels in evoking the exercise pressor reflex.

    Science.gov (United States)

    Hayes, Shawn G; McCord, Jennifer L; Rainier, Jon; Liu, Zhuqing; Kaufman, Marc P

    2008-10-01

    The exercise pressor reflex arises from contracting skeletal muscle and is believed to play a role in evoking the cardiovascular responses to static exercise, effects that include increases in arterial pressure and heart rate. This reflex is believed to be evoked by the metabolic and mechanical stimulation of thin fiber muscle afferents. Lactic acid is known to be an important metabolic stimulus evoking the reflex. Until recently, the only antagonist for acid-sensitive ion channels (ASICs), the receptors to lactic acid, was amiloride, a substance that is also a potent antagonist for both epithelial sodium channels as well as voltage-gated sodium channels. Recently, a second compound, A-317567, has been shown to be an effective and selective antagonist to ASICs in vitro. Consequently, we measured the pressor responses to the static contraction of the triceps surae muscles in decerebrate cats before and after a popliteal arterial injection of A-317567 (10 mM solution; 0.5 ml). We found that this ASIC antagonist significantly attenuated by half (Pacid injection into the popliteal artery. In contrast, A-317567 had no effect on the pressor responses to tendon stretch, a pure mechanical stimulus, and to a popliteal arterial injection of capsaicin, which stimulated transient receptor potential vanilloid type 1 channels. We conclude that ASICs on thin fiber muscle afferents play a substantial role in evoking the metabolic component of the exercise pressor reflex.

  5. Investigation of the transient receptor potential vanilloid 1 (TRPV1) ion channel

    OpenAIRE

    Winter Zoltán

    2013-01-01

    The aims of this research were to determine sensory modalities that may be lost after the RTX treatment of newborn or adult mice, to dissect potential side-effect(s) of molecular neurosurgery, to gather information about the structure and function of the channel by investigating the effects of M2+ on the TRPV1 and by collecting the literature data on the functionally important point mutations of the channel for prospective in silico modeling. The findings of the research work can be summa...

  6. Chloride and sodium uptake potential over an entire rotation of Populus irrigated with landfill leachate

    Science.gov (United States)

    Jill A. Zalesny; Ronald S., Jr. Zalesny

    2009-01-01

    There is a need for information about the response of Populus genotypes to repeated application of high-salinity water and nutrient sources throughout an entire rotation. We have combined establishment biomass and uptake data with mid- and full-rotation growth data to project potential chloride (Cl−) and sodium (Na...

  7. Static and dynamic polarizabilities of Na- within a variationally stable coupled-channel hyperspherical method

    International Nuclear Information System (INIS)

    Masili, Mauro; Groote, J.J. de

    2004-01-01

    Using a model potential representation combined with a variationally stable method, we present a precise calculation of the electric dipole polarizabilities of the sodium negative ion (Na - ). The effective two-electron eigensolutions for Na - are obtained from a hyperspherical coupled-channel calculation. This approach allows efficient error control and insight into the system's properties through one-dimensional potential curves. Our result of 1018.3 a.u. for the static dipole polarizability is in agreement with previous calculations and supports our results for the dynamic polarizability, which has scarcely been investigated hitherto

  8. The role of entropic potential in voltage activation and K+ transport through Kv 1.2 channels

    Science.gov (United States)

    Wawrzkiewicz-Jałowiecka, Agata; Grzywna, Zbigniew J.

    2018-03-01

    We analyze the entropic effects of inner pore geometry changes of Kv 1.2 channel during membrane depolarization and their implications for the rate of transmembrane transport of potassium ions. We base this on the idea that spatial confinements within the channel pore give rise to entropic barriers which can both effectively affect the stability of open macroconformation and influence channel's ability to conduct the potassium ions through the membrane. First, we calculate the differences in entropy between voltage-activated and resting states of the channel. As a template, we take a set of structures of channel pore in an open state at different membrane potentials generated in our previous research. The obtained results indicate that tendency to occupy open states at membrane depolarization is entropy facilitated. Second, we describe the differences in rates of K+ transport through the channel pore at different voltages based on the results of appropriate random walk simulations in entropic and electric potentials. The simulated single channel currents (I) suggest that the geometry changes during membrane depolarization are an important factor contributing to the observed flow of potassium ions through the channel. Nevertheless, the charge distribution within the channel pore (especially at the extracellular entrance) seems most prominent for the observed I/Imax relation at a qualitative level at analyzed voltages.

  9. Do cysteine residues regulate transient receptor potential canonical type 6 (TRPC6) channel protein expression?

    DEFF Research Database (Denmark)

    Thilo, Florian; Liu, Ying; Krueger, Katharina

    2012-01-01

    The regulation of calcium influx through transient receptor potential canonical type 6 channel is mandatory for the activity of human monocytes. We submit the first evidence that cysteine residues of homocysteine or acetylcysteine affect TRPC6 expression in human monocytes. We observed that patie......The regulation of calcium influx through transient receptor potential canonical type 6 channel is mandatory for the activity of human monocytes. We submit the first evidence that cysteine residues of homocysteine or acetylcysteine affect TRPC6 expression in human monocytes. We observed...... that patients with chronic renal failure had significantly elevated homocysteine levels and TRPC6 mRNA expression levels in monocytes compared to control subjects. We further observed that administration of homocysteine or acetylcysteine significantly increased TRPC6 channel protein expression compared...... to control conditions. We therefore hypothesize that cysteine residues increase TRPC6 channel protein expression in humans....

  10. Multidrug resistance in epilepsy and polymorphisms in the voltage-gated sodium channel genes SCN1A, SCN2A, and SCN3A: correlation among phenotype, genotype, and mRNA expression.

    Science.gov (United States)

    Kwan, Patrick; Poon, Wai Sang; Ng, Ho-Keung; Kang, David E; Wong, Virginia; Ng, Ping Wing; Lui, Colin H T; Sin, Ngai Chuen; Wong, Ka S; Baum, Larry

    2008-11-01

    Many antiepileptic drugs (AEDs) prevent seizures by blocking voltage-gated brain sodium channels. However, treatment is ineffective in 30% of epilepsy patients, which might, at least in part, result from polymorphisms of the sodium channel genes. We investigated the association of AED responsiveness with genetic polymorphisms and correlated any association with mRNA expression of the neuronal sodium channels. We performed genotyping of tagging and candidate single nucleotide polymorphisms (SNPs) of SCN1A, 2A, and 3A in 471 Chinese epilepsy patients (272 drug responsive and 199 drug resistant). A total of 27 SNPs were selected based on the HapMap database. Genotype distributions in drug-responsive and drug-resistant patients were compared. SCN2A mRNA was quantified by real-time PCR in 24 brain and 57 blood samples. Its level was compared between patients with different genotypes of an SCN2A SNP found to be associated with drug responsiveness. SCN2A IVS7-32A>G (rs2304016) A alleles were associated with drug resistance (odds ratio = 2.1, 95% confidence interval: 1.2-3.7, P=0.007). Haplotypes containing the IVS7-32A>G allele A were also associated with drug resistance. IVS7-32A>G is located within the putative splicing branch site for splicing exons 7 and 9. PCR of reverse-transcribed RNA from blood or brain of patients with different IVS7-32A>G genotypes using primers in exons 7 and 9 showed no skipping of exon 8, and real-time PCR showed no difference in SCN2A mRNA levels among genotypes. Results of this study suggest an association between SCN2A IVS7-32A>G and AED responsiveness, without evidence of an effect on splicing or mRNA expression.

  11. Acid solution is a suitable medium for introducing QX-314 into nociceptors through TRPV1 channels to produce sensory-specific analgesic effects.

    Directory of Open Access Journals (Sweden)

    He Liu

    Full Text Available BACKGROUND: Previous studies have demonstrated that QX-314, an intracellular sodium channel blocker, can enter into nociceptors through capsaicin-activated TRPV1 or permeation of the membrane by chemical enhancers to produce a sensory-selective blockade. However, the obvious side effects of these combinations limit the application of QX-314. A new strategy for targeting delivery of QX-314 into nociceptors needs further investigation. The aim of this study is to test whether acidic QX-314, when dissolves in acidic solution directly, can enter into nociceptors through acid-activated TRPV1 and block sodium channels from the intracellular side to produce a sensory-specific analgesic effect. METHODOLOGY/PRINCIPAL FINDINGS: Acidic solution or noradrenaline was injected intraplantarly to induce acute pain behavior in mice. A chronic constrictive injury model was performed to induce chronic neuropathic pain. A sciatic nerve blockade model was used to evaluate the sensory-specific analgesic effects of acidic QX-314. Thermal and mechanical hyperalgesia were measured by using radiant heat and electronic von Frey filaments test. Spinal Fos protein expression was determined by immunohistochemistry. The expression of p-ERK was detected by western blot assay. Whole cell clamp recording was performed to measure action potentials and total sodium current in rats DRG neurons. We found that pH 5.0 PBS solution induced behavioral hyperalgesia accompanied with the increased expression of spinal Fos protein and p-ERK. Pretreatment with pH 5.0 QX-314, and not pH 7.4 QX-314, alleviated pain behavior, inhibited the increased spinal Fos protein and p-ERK expression induced by pH 5.0 PBS or norepinephrine, blocked sodium currents and abolished the production of action potentials evoked by current injection. The above effects were prevented by TRPV1 channel inhibitor SB366791, but not by ASIC channel inhibitor amiloride. Furthermore, acidic QX-314 employed adjacent to the

  12. A survey of pyrethroid-resistant populations of Meligethes aeneus F. in Poland indicates the incidence of numerous substitutions in the pyrethroid target site of voltage-sensitive sodium channels in individual beetles.

    Science.gov (United States)

    Wrzesińska, B; Czerwoniec, A; Wieczorek, P; Węgorek, P; Zamojska, J; Obrępalska-Stęplowska, A

    2014-10-01

    The pollen beetle (Meligethes aeneus F.) is the most devastating pest of oilseed rape (Brassica napus) and is controlled by pyrethroid insecticides. However, resistance to pyrethroids in Europe is becoming widespread and predominant. Pyrethroids target the voltage-sensitive sodium channel (VSSC), and mutations in VSSC may be responsible for pyrethroid insensitivity. Here, we analysed individual beetles that were resistant to esfenvalerate, a pyrethroid, from 14 populations that were collected from oilseed rape fields in Poland. We screened the VSSC domains that were presumed to directly interact with pyrethroids. We identified 18 heterozygous nucleic acid substitutions, amongst which six caused an amino acid change: N912S, G926S, I936V, R957G, F1538L and E1553G. Our analysis of the three-dimensional structure of these domains in VSSC revealed that some of these changes may slightly influence the protein structure and hence the docking efficiency of esfenvalerate. Therefore, these mutations may impact the susceptibility of the sodium channel to the action of this insecticide. © 2014 The Royal Entomological Society.

  13. The natural scorpion peptide, BmK NT1 activates voltage-gated sodium channels and produces neurotoxicity in primary cultured cerebellar granule cells.

    Science.gov (United States)

    Zou, Xiaohan; He, Yuwei; Qiao, Jinping; Zhang, Chunlei; Cao, Zhengyu

    2016-01-01

    The scorpion Buthus martensii Karsch has been used in Traditional Chinese Medicine to treat neuronal diseases such as neuropathic pain, paralysis and epilepsy for thousands of years. Studies have demonstrated that scorpion venom is the primary active component. Although scorpion venom can effectively attenuate pain in the clinic, it also produces neurotoxic response. In this study, toxicity guided purification led to identify a mammalian toxin termed BmK NT1 comprising of 65 amino acid residues and an amidated C-terminus, a mature peptide encoded by the nucleotide sequence (GenBank No. AF464898). In contract to the recombinant product of the same nucleotide sequence, BmK AGAP, which displayed analgesic and anti-tumor effect, intravenous injection (i.v.) of BmK NT1 produced acute toxicity in mice with an LD50 value of 1.36 mg/kg. In primary cultured cerebellar granule cells, BmK NT1 produced a concentration-dependent cell death with an IC50 value of 0.65 μM (0.41-1.03 μM, 95% Confidence Intervals, 95% CI) which was abolished by TTX, a voltage-gated sodium channel (VGSC) blocker. We also demonstrated that BmK NT1 produced modest sodium influx in cerebellar granule cell cultures with an EC50 value of 2.19 μM (0.76-6.40 μM, 95% CI), an effect similar to VGSC agonist, veratridine. The sodium influx response was abolished by TTX suggesting that BmK NT1-induced sodium influx is solely through activation of VGSC. Considered these data together, we demonstrated that BmK NT1 activated VGSC and produced neurotoxicity in cerebellar granule cell cultures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Increased migration of monocytes in essential hypertension is associated with increased transient receptor potential channel canonical type 3 channels

    DEFF Research Database (Denmark)

    Zhao, Zhigang; Ni, Yinxing; Chen, Jing

    2012-01-01

    Increased transient receptor potential canonical type 3 (TRPC3) channels have been observed in patients with essential hypertension. In the present study we tested the hypothesis that increased monocyte migration is associated with increased TRPC3 expression. Monocyte migration assay was performe...

  15. Convergent Substitutions in a Sodium Channel Suggest Multiple Origins of Toxin Resistance in Poison Frogs.

    Science.gov (United States)

    Tarvin, Rebecca D; Santos, Juan C; O'Connell, Lauren A; Zakon, Harold H; Cannatella, David C

    2016-04-01

    Complex phenotypes typically have a correspondingly multifaceted genetic component. However, the genotype-phenotype association between chemical defense and resistance is often simple: genetic changes in the binding site of a toxin alter how it affects its target. Some toxic organisms, such as poison frogs (Anura: Dendrobatidae), have defensive alkaloids that disrupt the function of ion channels, proteins that are crucial for nerve and muscle activity. Using protein-docking models, we predict that three major classes of poison frog alkaloids (histrionicotoxins, pumiliotoxins, and batrachotoxins) bind to similar sites in the highly conserved inner pore of the muscle voltage-gated sodium channel, Nav1.4. We predict that poison frogs are somewhat resistant to these compounds because they have six types of amino acid replacements in the Nav1.4 inner pore that are absent in all other frogs except for a distantly related alkaloid-defended frog from Madagascar, Mantella aurantiaca. Protein-docking models and comparative phylogenetics support the role of these replacements in alkaloid resistance. Taking into account the four independent origins of chemical defense in Dendrobatidae, phylogenetic patterns of the amino acid replacements suggest that 1) alkaloid resistance in Nav1.4 evolved independently at least seven times in these frogs, 2) variation in resistance-conferring replacements is likely a result of differences in alkaloid exposure across species, and 3) functional constraint shapes the evolution of the Nav1.4 inner pore. Our study is the first to demonstrate the genetic basis of autoresistance in frogs with alkaloid defenses. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. The human transient receptor potential vanilloid 3 channel is sensitized via the ERK pathway

    Czech Academy of Sciences Publication Activity Database

    Vyklická, Lenka; Boukalová, Štěpána; Mačíková, Lucie; Chvojka, Štěpán; Vlachová, Viktorie

    2017-01-01

    Roč. 292, č. 51 (2017), s. 21083-21091 ISSN 0021-9258 R&D Projects: GA ČR(CZ) GA15-15839S Institutional support: RVO:67985823 Keywords : epidermal growth factor receptor (EGFR) * extracellular-signal-regulated kinase (ERK) * keratinocyte * phosphorylation * transient receptor potential channels * TRP channels Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 4.125, year: 2016

  17. Loss of Transient Receptor Potential Ankyrin 1 Channel Deregulates Emotion, Learning and Memory, Cognition, and Social Behavior in Mice.

    Science.gov (United States)

    Lee, Kuan-I; Lin, Hui-Ching; Lee, Hsueh-Te; Tsai, Feng-Chuan; Lee, Tzong-Shyuan

    2017-07-01

    The transient receptor potential ankyrin 1 (TRPA1) channel is a non-selective cation channel that helps regulate inflammatory pain sensation and nociception and the development of inflammatory diseases. However, the potential role of the TRPA1 channel and the underlying mechanism in brain functions are not fully resolved. In this study, we demonstrated that genetic deletion of the TRPA1 channel in mice or pharmacological inhibition of its activity increased neurite outgrowth. In vivo study in mice provided evidence of the TRPA1 channel as a negative regulator in hippocampal functions; functional ablation of the TRPA1 channel in mice enhanced hippocampal functions, as evidenced by less anxiety-like behavior, and enhanced fear-related or spatial learning and memory, and novel location recognition as well as social interactions. However, the TRPA1 channel appears to be a prerequisite for motor function; functional loss of the TRPA1 channel in mice led to axonal bundle fragmentation, downregulation of myelin basic protein, and decreased mature oligodendrocyte population in the brain, for impaired motor function. The TRPA1 channel may play a crucial role in neuronal development and oligodendrocyte maturation and be a potential regulator in emotion, cognition, learning and memory, and social behavior.

  18. Coupling between the voltage-sensing and pore domains in a voltage-gated potassium channel.

    Science.gov (United States)

    Schow, Eric V; Freites, J Alfredo; Nizkorodov, Alex; White, Stephen H; Tobias, Douglas J

    2012-07-01

    Voltage-dependent potassium (Kv), sodium (Nav), and calcium channels open and close in response to changes in transmembrane (TM) potential, thus regulating cell excitability by controlling ion flow across the membrane. An outstanding question concerning voltage gating is how voltage-induced conformational changes of the channel voltage-sensing domains (VSDs) are coupled through the S4-S5 interfacial linking helices to the opening and closing of the pore domain (PD). To investigate the coupling between the VSDs and the PD, we generated a closed Kv channel configuration from Aeropyrum pernix (KvAP) using atomistic simulations with experiment-based restraints on the VSDs. Full closure of the channel required, in addition to the experimentally determined TM displacement, that the VSDs be displaced both inwardly and laterally around the PD. This twisting motion generates a tight hydrophobic interface between the S4-S5 linkers and the C-terminal ends of the pore domain S6 helices in agreement with available experimental evidence.

  19. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: A study to assess the drug's cardiac ion channel profile

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K.; Lukacs, Peter; Gawali, Vaibhavkumar S.; Todt, Hannes [Center for Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, 1090 Vienna (Austria); Hilber, Karlheinz, E-mail: karlheinz.hilber@meduniwien.ac.at [Center for Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, 1090 Vienna (Austria); Sandtner, Walter [Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna (Austria)

    2013-12-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licenced as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Na{sub v}1.5 sodium and Ca{sub v}1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. - Highlights: • We study effects of anti-addiction drug ibogaine on ionic currents in cardiomyocytes. • We assess the cardiac ion channel profile of ibogaine. • Ibogaine inhibits hERG potassium, sodium and calcium channels. • Ibogaine’s effects on

  20. Modular organization of α-toxins from scorpion venom mirrors domain structure of their targets, sodium channels.

    Science.gov (United States)

    Chugunov, Anton O; Koromyslova, Anna D; Berkut, Antonina A; Peigneur, Steve; Tytgat, Jan; Polyansky, Anton A; Pentkovsky, Vladimir M; Vassilevski, Alexander A; Grishin, Eugene V; Efremov, Roman G

    2013-06-28

    To gain success in the evolutionary "arms race," venomous animals such as scorpions produce diverse neurotoxins selected to hit targets in the nervous system of prey. Scorpion α-toxins affect insect and/or mammalian voltage-gated sodium channels (Na(v)s) and thereby modify the excitability of muscle and nerve cells. Although more than 100 α-toxins are known and a number of them have been studied into detail, the molecular mechanism of their interaction with Na(v)s is still poorly understood. Here, we employ extensive molecular dynamics simulations and spatial mapping of hydrophobic/hydrophilic properties distributed over the molecular surface of α-toxins. It is revealed that despite the small size and relatively rigid structure, these toxins possess modular organization from structural, functional, and evolutionary perspectives. The more conserved and rigid "core module" is supplemented with the "specificity module" (SM) that is comparatively flexible and variable and determines the taxon (mammal versus insect) specificity of α-toxin activity. We further show that SMs in mammal toxins are more flexible and hydrophilic than in insect toxins. Concomitant sequence-based analysis of the extracellular loops of Na(v)s suggests that α-toxins recognize the channels using both modules. We propose that the core module binds to the voltage-sensing domain IV, whereas the more versatile SM interacts with the pore domain in repeat I of Na(v)s. These findings corroborate and expand the hypothesis on different functional epitopes of toxins that has been reported previously. In effect, we propose that the modular structure in toxins evolved to match the domain architecture of Na(v)s.

  1. Sodium-23 MRI of whole spine at 3 Tesla using a 5-channel receive-only phased-array and a whole-body transmit resonator

    Energy Technology Data Exchange (ETDEWEB)

    Malzacher, Matthias; Kalayciyan, Raffi; Konstandin, Simon; Schad, Lothar R. [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Haneder, Stefan [Heidelberg Univ., Mannheim (Germany). Clinical Radiology and Nuclear Medicine; University Hospital of Cologne, Koeln (Germany). Dept. of Radiology

    2016-05-01

    Sodium magnetic resonance imaging ({sup 23}Na MRI) is a unique and non-invasive imaging technique which provides important information on cellular level about the tissue of the human body. Several applications for {sup 23}Na MRI were investigated with regard to the examination of the tissue viability and functionality for example in the brain, the heart or the breast. The {sup 23}Na MRI technique can also be integrated as a potential monitoring instrument after radiotherapy or chemotherapy. The main contribution in this work was the adaptation of {sup 23}Na MRI for spine imaging, which can provide essential information on the integrity of the intervertebral disks with respect to the early detection of disk degeneration. In this work, a transmit-only receive-only dual resonator system was designed and developed to cover the whole human spine using {sup 23}Na MRI and increase the receive sensitivity. The resonator system consisted of an already presented {sup 23}Na whole-body resonator and a newly developed 5-channel receive-only phased-array. The resonator system was first validated using bench top and phantom measurements. A threefold SNR improvement at the depth of the spine (∝7 cm) over the whole-body resonator was achieved using the spine array. {sup 23}Na MR measurements of the human spine using the transmit-only receive-only resonator system were performed on a healthy volunteer within an acquisition time of 10 minutes. A density adapted 3D radial sequence was chosen with 6 mm isotropic resolution, 49 ms repetition time and a short echo time of 540 μs. Furthermore, it was possible to quantify the tissue sodium concentration in the intervertebral discs in the lumbar region (120 ms repetition time) using this setup.

  2. BK channels regulate spontaneous action potential rhythmicity in the suprachiasmatic nucleus.

    Directory of Open Access Journals (Sweden)

    Jack Kent

    Full Text Available BACKGROUND: Circadian ( approximately 24 hr rhythms are generated by the central pacemaker localized to the suprachiasmatic nucleus (SCN of the hypothalamus. Although the basis for intrinsic rhythmicity is generally understood to rely on transcription factors encoded by "clock genes", less is known about the daily regulation of SCN neuronal activity patterns that communicate a circadian time signal to downstream behaviors and physiological systems. Action potentials in the SCN are necessary for the circadian timing of behavior, and individual SCN neurons modulate their spontaneous firing rate (SFR over the daily cycle, suggesting that the circadian patterning of neuronal activity is necessary for normal behavioral rhythm expression. The BK K(+ channel plays an important role in suppressing spontaneous firing at night in SCN neurons. Deletion of the Kcnma1 gene, encoding the BK channel, causes degradation of circadian behavioral and physiological rhythms. METHODOLOGY/PRINCIPAL FINDINGS: To test the hypothesis that loss of robust behavioral rhythmicity in Kcnma1(-/- mice is due to the disruption of SFR rhythms in the SCN, we used multi-electrode arrays to record extracellular action potentials from acute wild-type (WT and Kcnma1(-/- slices. Patterns of activity in the SCN were tracked simultaneously for up to 3 days, and the phase, period, and synchronization of SFR rhythms were examined. Loss of BK channels increased arrhythmicity but also altered the amplitude and period of rhythmic activity. Unexpectedly, Kcnma1(-/- SCNs showed increased variability in the timing of the daily SFR peak. CONCLUSIONS/SIGNIFICANCE: These results suggest that BK channels regulate multiple aspects of the circadian patterning of neuronal activity in the SCN. In addition, these data illustrate the characteristics of a disrupted SCN rhythm downstream of clock gene-mediated timekeeping and its relationship to behavioral rhythms.

  3. Urine exosomes from healthy and hypertensive pregnancies display elevated level of - α-subunit and cleaved - α- and γ-subunits of the epithelial sodium channel--ENaC

    DEFF Research Database (Denmark)

    Nielsen, Maria Ravn; Frederiksen-Møller, Britta; Langkilde, Rikke Zachar

    2017-01-01

    Preeclampsia is characterized by hypertension, proteinuria, suppression of plasma renin-angiotensin-aldosterone, and impaired urine sodium excretion. Aberrantly filtered plasmin in urine may activate proteolytically the γ-subunit of the epithelial sodium channel (ENaC) and promote Na+ reabsorption...... aldosterone was higher in pregnancy compared to non-pregnancy, and the urine Na/K ratio was lower in preeclampsia compared to healthy pregnancy. Exosome markers ALIX and AQP-2 were stably associated with exosomes across groups. Exosomal α-ENaC-subunit migrated at 75 kDa and dominantly at 50 k......Da and was significantly elevated in pregnancy. In human kidney cortex tissue and two of four pelvis catheter urine, ~90-100 kDa full-length γ-ENaC was detected while no full-length γ-ENaC but 75, 60, and 37 kDa variants dominated in voided urine exosomes. There was no difference in γ-ENaC protein abundances between...

  4. Properties of the intracellular transient receptor potential (TRP) channel in yeast, Yvc1.

    Science.gov (United States)

    Chang, Yiming; Schlenstedt, Gabriel; Flockerzi, Veit; Beck, Andreas

    2010-05-17

    Transient receptor potential (TRP) channels are found among mammals, flies, worms, ciliates, Chlamydomonas, and yeast but are absent in plants. These channels are believed to be tetramers of proteins containing six transmembrane domains (TMs). Their primary structures are diverse with sequence similarities only in some short amino acid sequence motifs mainly within sequences covering TM5, TM6, and adjacent domains. In the yeast genome, there is one gene encoding a TRP-like sequence. This protein forms an ion channel in the vacuolar membrane and is therefore called Yvc1 for yeast vacuolar conductance 1. In the following we summarize its prominent features. Copyright 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system

    Science.gov (United States)

    Holzer, Peter

    2011-01-01

    Approximately 20 of the 30 mammalian transient receptor potential (TRP) channel subunits are expressed by specific neurons and cells within the alimentary canal. They subserve important roles in taste, chemesthesis, mechanosensation, pain and hyperalgesia and contribute to the regulation of gastrointestinal motility, absorptive and secretory processes, blood flow, and mucosal homeostasis. In a cellular perspective, TRP channels operate either as primary detectors of chemical and physical stimuli, as secondary transducers of ionotropic or metabotropic receptors, or as ion transport channels. The polymodal sensory function of TRPA1, TRPM5, TRPM8, TRPP2, TRPV1, TRPV3 and TRPV4 enables the digestive system to survey its physical and chemical environment, which is relevant to all processes of digestion. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 contribute to the absorption of Ca2+ and Mg2+, respectively. TRPM7 participates in intestinal pacemaker activity, and TRPC4 transduces muscarinic acetylcholine receptor activation to smooth muscle contraction. Changes in TRP channel expression or function are associated with a variety of diseases/disorders of the digestive system, notably gastro-esophageal reflux disease, inflammatory bowel disease, pain and hyperalgesia in heartburn, functional dyspepsia and irritable bowel syndrome, cholera, hypomagnesemia with secondary hypocalcemia, infantile hypertrophic pyloric stenosis, esophageal, gastrointestinal and pancreatic cancer, and polycystic liver disease. These implications identify TRP channels as promising drug targets for the management of a number of gastrointestinal pathologies. As a result, major efforts are put into the development of selective TRP channel agonists and antagonists and the assessment of their therapeutic potential. PMID:21420431

  6. Efficacy of sodium channel blockers in SCN2A early infantile epileptic encephalopathy.

    Science.gov (United States)

    Dilena, Robertino; Striano, Pasquale; Gennaro, Elena; Bassi, Laura; Olivotto, Sara; Tadini, Laura; Mosca, Fabio; Barbieri, Sergio; Zara, Federico; Fumagalli, Monica

    2017-04-01

    Recent clinical evidence supports a targeted therapeutic approach for genetic epileptic encephalopathies based on the molecular dysfunction. A 2-day-old male infant presented with epileptic encephalopathy characterized by burst-suppression EEG background and tonic-clonic migrating partial seizures. The condition was refractory to phenobarbital, pyridoxine, pyridoxal phosphate and levetiracetam, but a dramatic response to an intravenous loading dose of phenytoin was documented by video-EEG monitoring. Over weeks phenytoin was successfully switched to carbamazepine to prevent seizure relapses associated with difficulty in maintaining proper blood levels of phenytoin. Genetic analysis identified a novel de novo heterozygous mutation (c.[4633A>G]p.[Met1545Val]) in SCN2A. At two years and three months of age the patient is still seizure-free on carbamazepine, although a developmental delay is evident. Sodium channel blockers represent the first-line treatment for confirmed or suspected SCN2A-related epileptic encephalopathies. In severe cases with compatible electro-clinical features we propose a treatment algorithm based on a test trial with high dose intravenous phenytoin followed in case of a positive response by carbamazepine, more suitable for long-term maintenance treatment. Because of their rarity, collaborative studies are needed to delineate shared therapeutic protocols for EIEE based on the electro-clinical features and the presumed underlying genetic substrate. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  7. Sodium Carbonate is Saltier Than Sodium Chloride to Sodium-Depleted Rats.

    Science.gov (United States)

    St John, Steven J; McBrayer, Anya M; Krauskopf, Erin E

    2017-10-01

    In a series of behavioral experiments in the 1960s, G.R. Morrison identified several unique features of the taste of Na2CO3 to rats; namely, it is 1) considerably more intense than NaCl at isomolar concentrations, 2) avoided at 10 times lower concentrations than NaCl to thirsty rats, 3) preferred at 10 times lower concentrations than NaCl in sodium-depleted rats. He also demonstrated its qualitatively similarity to NaCl. In Experiment 1, we confirmed and extended many of Morrison's observations. Rats were injected with furosemide on 3 occasions to stimulate a sodium appetite. After each depletion, rats were given a brief-access taste test in a lickometer presenting, in random order, water and 7 concentrations of salt. One test used NaCl (0.028-0.89 M, quarter log steps), another used Na2CO3, and the third used Na2CO3, but at a tenfold lower concentration range (0.0028-0.089 M). Rats licked NaCl in an inverted-U shaped concentration-response function peaking at 0.158-0.281 M. As Morrison's results predicted, rats licked Na2CO3 in nearly identical fashion, but at a tenfold lower concentration range (peak at 0.0158-0.028 M). In a second experiment, furosemide-treated rats were repeatedly tested with the lower Na2CO3 range but mixed in the epithelial sodium channel blocker amiloride at various concentrations (3-300 μM, half log steps). Amiloride reduced licking for Na2CO3 and shifted the peak response rightward up to about half a log unit. Thus, this "super-saltiness" of Na2CO3 to rats is at least partly amiloride-dependent. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Potential role of melastatin-related transient receptor potential cation channel subfamily M gene expression in the pathogenesis of urinary bladder cancer.

    Science.gov (United States)

    Ceylan, Gülay Güleç; Önalan, Ebru Etem; Kuloğlu, Tuncay; Aydoğ, Gülten; Keleş, İbrahim; Tonyali, Şenol; Ceylan, Cavit

    2016-12-01

    Urinary bladder cancer is one of the most common malignancies of the urinary tract. Ion channels and calcium homeostasis are involved in almost all basic cellular mechanisms. The transient receptor potential cation channel subfamily M (TRPM) takes its name from the melastatin protein, which is classified as potential tumor suppressor. To the best of our knowledge, there have been no previous studies in the literature investigating the role of these ion channels in bladder cancer. The present study aimed to determine whether bladder cancer is associated with mRNA expression levels of TRPM ion channel genes, and whether there is the potential to conduct further studies to establish novel treatment modalities. The present study included a total of 47 subjects, of whom 40 were bladder cancer patients and 7 were controls. Following the histopathological evaluation for bladder carcinoma, the mRNA and protein expression of TRPM were examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry in tumor and normal tissues, in order to determine whether there is a difference in the expression of these channels in tumor and normal tissues. Immunoreactivity for TRPM2, TRPM4, TRPM7 and TRPM8 was observed in epithelial bladder cells in the two groups. RT-qPCR revealed a significant increase in TRPM7 expression in bladder cancer tissue compared to the controls (healthy bladder tissue), whereas no differences in TRPM2 or TRPM4 expression levels were observed. There were significant reductions in the expression levels of TRPM5 and TRPM8 in bladder cancer tissues. In the present study, the effects of TRP ion channels on the formation of bladder cancer was investigated. This study is instructive for TRPM2, TRPM4, TRPM5, TRPM7 and TRPM8 and their therapeutic role in bladder cancer. The results support the fact that these gens can be novel targets and can also be tested for during the treatment of bladder cancer.

  9. Small-conductance calcium-activated potassium (SK) channels contribute to action potential repolarization in human atria

    DEFF Research Database (Denmark)

    Skibsbye, Lasse; Poulet, Claire; Diness, Jonas Goldin

    2014-01-01

    (+) currents by ∼15% and prolonged action potential duration (APD), but no effect was observed in myocytes from AF patients. In trabeculae muscle strips from right atrial appendages of SR patients, both compounds increased APD and effective refractory period, and depolarized the resting membrane potential......, while only NS8593 induced these effects in tissue from AF patients. SK channel inhibition did not alter any electrophysiological parameter in human interventricular septum tissue. CONCLUSIONS: SK channels are present in human atria where they participate in repolarization. SK2 and SK3 were down...

  10. Modeling removal of accumulated potassium from T-tubules by inward rectifier potassium channels

    NARCIS (Netherlands)

    Wallinga, W.; Vliek, M.; Wienk, E.D.; Alberink, M.J.; Ypey, D.L.; Ypey, D.L.

    1996-01-01

    The membrane models of Cannon et al. (1993) and Alberink et al. (1995) for mammalian skeletal muscle fibers are based upon Hodgkin-Huxley descriptions of sodium, potassium delayed rectifier and leak conductances and the capacitive current taking into account fast inactivation of sodium channels. Now

  11. 1. Detection of sodium leakages in sodium circuits. 2. Actions in case of potentially dangerous situations. 3. Actual case histories

    International Nuclear Information System (INIS)

    Jansing, W.Th.

    1971-01-01

    It is of fundamental importance for sodium circuits to detect leakages as fast as possible. This is necessary both for small and large leakages. In case of large leakages the level of the free sodium surfaces will decrease quickly. Sodium vapour as well as Na 2 O and NaOH aerosols will cause an alarm of the intallated smoke detectors. With the exception of a leak in an oil-fired sodium heater we never had a large leak due to a rupture of a tube. It seems to us that small leakages, caused by pinholes or a crack are as dangerous for a sodium circuit as large leakage. Small leakages may remain undiscovered for a long time as practice has shown. During that time severe corrosion can occur even in a nitrogen atmosphere which has only a small concentration of oxygen and humidity. Simultaneously an increasing deterioriation by nitriding of the material which is in contact with the sodium vapour will happen probably. As a consequence of nitriding hardness and tensile strength will incease and elongation will be reduced. As observed, a complete rupture of the structural materil in the region of the leak is possible, due to the above-mentioned reasons. We have published some interesting observations we made after dismantling of the KNK steam generator prototype for post-operational metallurgical examinations. The detection of small leakages which may possibly remain unobserved within the thermal insulation during a longer period of time is of high importance with respect to safety of sodium circuits

  12. Under sodium ultrasonic imaging system for PFBR

    International Nuclear Information System (INIS)

    Patankar, V.H.; Lalwani, S.K.; Agashe, A.A.

    2014-01-01

    Under Sodium UltraSonic Scanner (USUSS) has been developed to detect the growth and protrusion of fuel sub-assemblies of PFBR, submerged in liquid sodium by using the ultrasonic imaging technique during reactor shut-down when liquid sodium is at 180 ℃. The imaging is carried out prior to every Fuel handling operation. Electronics Division, BARC has designed and developed an 8-Channel Ultrasonic Imaging System (UIS) which consists of 4 downward viewing and 4 side viewing ultrasonic transducers alongwith pulser-receiver, signal processing electronics hardware and software. An automated mechanical scanner developed by IGCAR houses sodium immersible transducers to image the fuel sub assemblies. The system has been successfully tested with dummy protruding and grown FSAs, submerged under liquid sodium. Such ultrasonic imaging systems are not available to India from international market. The USUSS developed indigenously has all the features available in similar systems developed by other countries. After every imaging campaign, the mechanical scanner containing ultrasonic transducers is stored in the Argon filled storage-pit. Before every campaign of USUSS, it is necessary to check the healthiness of the sodium immersible and contaminated ultrasonic transducers, as the under-sodium scanner is decontaminated once in five years. For this purpose, a novel Non Contact Ultrasonic Inspection System (NCUIS) has been designed and developed by Electronics Division, BARC to check the functionality of the high-temperature and contaminated transducers of USUSS, using air-coupled ultrasonic technique. (author)

  13. Is there a potential consumer market for low-sodium fermented sausages?

    Science.gov (United States)

    Dos Santos, Bibiana A; Campagnol, Paulo C B; da Cruz, Adriano G; Morgano, Marcelo A; Wagner, Roger; Pollonio, Marise A R

    2015-05-01

    The NaCl levels in dry fermented sausages were reduced by 50% or were substituted with KCl, CaCl2 , or a blend of KCl and CaCl2 (1:1). The quality, safety, and the potential consumer market of dry fermented sausages were assessed. Neither 50% reduction of the NaCl content nor the substitution of 50% of the NaCl with KCl influenced the fermentation and maturation process. However, when CaCl2 was used as the substitute salt (50%), there was a significant decrease in pH, an increase in the water activity, and a decrease in lactic acid and micrococcus bacterial counts. Overall, the sensory acceptance decreased in dry fermented sausages with reduced sodium content. However, cluster analysis and internal preference mapping revealed potential for commercialization of samples with 50% of the NaCl content substituted with KCl or with a mixture of KCl and CaCl2 (1:1). © 2015 Institute of Food Technologists®

  14. Homogeneous distribution of large-conductance calcium-dependent potassium channels on soma and apical dendrite of rat neocortical layer 5 pyramidal neurons.

    Science.gov (United States)

    Benhassine, Narimane; Berger, Thomas

    2005-02-01

    Voltage-gated conductances on dendrites of layer 5 pyramidal neurons participate in synaptic integration and output generation. We investigated the properties and the distribution of large-conductance calcium-activated potassium channels (BK channels) in this cell type using excised patches in acute slice preparations of rat somatosensory cortex. BK channels were characterized by their large conductance and sensitivity to the specific blockers paxilline and iberiotoxin. BK channels showed a pronounced calcium-dependence with a maximal opening probability of 0.69 at 10 microm and 0.42 at 3 microm free calcium. Their opening probability and transition time constants between open and closed states are voltage-dependent. At depolarized potentials, BK channel gating is described by two open and one closed states. Depolarization increases the opening probability due to a prolongation of the open time constant and a shortening of the closed time constant. Calcium-dependence and biophysical properties of somatic and dendritic BK channels were identical. The presence of BK channels on the apical dendrite of layer 5 pyramidal neurons was shown by immunofluorescence. Patch-clamp recordings revealed a homogeneous density of BK channels on the soma and along the apical dendrite up to 850 microm with a mean density of 1.9 channels per microm(2). BK channels are expressed either isolated or in clusters containing up to four channels. This study shows the presence of BK channels on dendrites. Their activation might modulate the shape of sodium and calcium action potentials, their propagation along the dendrite, and thereby the electrotonic distance between the somatic and dendritic action potential initiation zones.

  15. Sodium selectivity of Reissner's membrane epithelial cells

    Directory of Open Access Journals (Sweden)

    Kim Kyunghee X

    2011-02-01

    Full Text Available Abstract Background Sodium absorption by Reissner's membrane is thought to contribute to the homeostasis of the volume of cochlear endolymph. It was previously shown that the absorptive transepithelial current was blocked by amiloride and benzamil. The most commonly-observed target of these drugs is the epithelial sodium channel (ENaC, which is composed of the three subunits α-,β- and γ-ENaC. However, other less-selective cation channels have also been observed to be sensitive to benzamil and amiloride. The aim of this study was to determine whether Reissner's membrane epithelial cells could support parasensory K+ absorption via amiloride- and benzamil-sensitive electrogenic pathways. Results We determined the molecular and functional expression of candidate cation channels with gene array (GEO GSE6196, RT-PCR, and whole-cell patch clamp. Transcript expression analysis of Reissner's membrane detected no amiloride-sensitive acid-sensing ion channels (ASIC1a, ASIC2a, ASIC2b nor amiloride-sensitive cyclic-nucleotide gated channels (CNGA1, CNGA2, CNGA4, CNGB3. By contrast, α-,β- and γ-ENaC were all previously reported as present in Reissner's membrane. The selectivity of the benzamil-sensitive cation currents was observed in whole-cell patch clamp recordings under Cl--free conditions where cations were the only permeant species. The currents were carried by Na+ but not K+, and the permeability of Li+ was greater than that of Na+ in Reissner's membrane. Complete replacement of bath Na+ with the inpermeable cation NMDG+ led to the same inward current as with benzamil in a Na+ bath. Conclusions These results are consistent with the amiloride/benzamil-sensitive absorptive flux of Reissner's membrane mediated by a highly Na+-selective channel that has several key characteristics in common with αβγ-ENaC. The amiloride-sensitive pathway therefore absorbs only Na+ in this epithelium and does not provide a parasensory K+ efflux route from scala

  16. The sea anemone Bunodosoma caissarum toxin BcIII modulates the sodium current kinetics of rat dorsal root ganglia neurons and is displaced in a voltage-dependent manner.

    Science.gov (United States)

    Salceda, Emilio; López, Omar; Zaharenko, André J; Garateix, Anoland; Soto, Enrique

    2010-03-01

    Sea anemone toxins bind to site 3 of the sodium channels, which is partially formed by the extracellular linker connecting S3 and S4 segments of domain IV, slowing down the inactivation process. In this work we have characterized the actions of BcIII, a sea anemone polypeptide toxin isolated from Bunodosoma caissarum, on neuronal sodium currents using the patch clamp technique. Neurons of the dorsal root ganglia of Wistar rats (P5-9) in primary culture were used for this study (n=65). The main effects of BcIII were a concentration-dependent increase in the sodium current inactivation time course (IC(50)=2.8 microM) as well as an increase in the current peak amplitude. BcIII did not modify the voltage at which 50% of the channels are activated or inactivated, nor the reversal potential of sodium current. BcIII shows a voltage-dependent action. A progressive acceleration of sodium current fast inactivation with longer conditioning pulses was observed, which was steeper as more depolarizing were the prepulses. The same was observed for other two anemone toxins (CgNa, from Condylactis gigantea and ATX-II, from Anemonia viridis). These results suggest that the binding affinity of sea anemone toxins may be reduced in a voltage-dependent manner, as has been described for alpha-scorpion toxins. (c) 2009 Elsevier Inc. All rights reserved.

  17. Prediction of sodium critical heat flux (CHF) in annular channel using grey systems theory

    International Nuclear Information System (INIS)

    Zhou Tao; Su Guanghui; Zhang Weizhong; Qiu Suizheng; Jia Dounan

    2001-01-01

    Using grey systems theory and experimental data obtained from sodium boiling test loop in China, the grey mutual analysis of some parameters influencing sodium CHF is carried out, and the CHF values are predicted by GM(1, 1) model. The GM(1, h) model is established for CHF prediction, and the predicted CHF values are good agreement with the experimental data

  18. TRPV1 channels in human skeletal muscle feed arteries: implications for vascular function.

    Science.gov (United States)

    Ives, Stephen J; Park, Song Young; Kwon, Oh Sung; Gifford, Jayson R; Andtbacka, Robert H I; Hyngstrom, John R; Richardson, Russell S

    2017-09-01

    What is the central question of this study? We sought to determine whether human skeletal muscle feed arteries (SFMAs) express TRPV 1 channels and what role they play in modulating vascular function. What is the main finding and its importance? Human SMFAs do express functional TRPV 1 channels that modulate vascular function, specifically opposing α-adrenergic receptor-mediated vasocontraction and potentiating vasorelaxation, in an endothelium-dependent manner, as evidenced by the α 1 -receptor-mediated responses. Thus, the vasodilatory role of TRPV 1 channels, and their ligand capsaicin, could be a potential therapeutic target for improving vascular function. Additionally, given the 'sympatholytic' effect of TRPV 1 activation and known endogenous activators (anandamide, reactive oxygen species, H + , etc.), TRPV 1 channels might contribute to functional sympatholysis during exercise. To examine the role of the transient receptor potential vanilloid type 1 (TRPV 1 ) ion channel in the vascular function of human skeletal muscle feed arteries (SMFAs) and whether activation of this heat-sensitive receptor could be involved in modulating vascular function, SMFAs from 16 humans (63 ± 5 years old, range 41-89 years) were studied using wire myography with capsaicin (TRPV 1 agonist) and without (control). Specifically, phenylephrine (α 1 -adrenergic receptor agonist), dexmedetomidine (α 2 -adrenergic receptor agonist), ACh and sodium nitroprusside concentration-response curves were established to assess the role of TRPV 1 channels in α-receptor-mediated vasocontraction as well as endothelium-dependent and -independent vasorelaxation, respectively. Compared with control conditions, capsaicin significantly attenuated maximal vasocontraction in response to phenylephrine [control, 52 ± 8% length-tension max (LT max ) and capsaicin, 21 ± 5%LT max ] and dexmedetomidine (control, 29 ± 12%LT max and capsaicin, 2 ± 3%LT max ), while robustly enhancing maximal

  19. Length dependence of staircase potentiation: interactions with caffeine and dantrolene sodium.

    Science.gov (United States)

    Rassier, D E; MacIntosh, B R

    2000-04-01

    In skeletal muscle, there is a length dependence of staircase potentiation for which the mechanism is unclear. In this study we tested the hypothesis that abolition of this length dependence by caffeine is effected by a mechanism independent of enhanced Ca2+ release. To test this hypothesis we have used caffeine, which abolishes length dependence of potentiation, and dantrolene sodium, which inhibits Ca2+ release. In situ isometric twitch contractions of rat gastrocnemius muscle before and after 20 s of repetitive stimulation at 5 Hz were analyzed at optimal length (Lo), Lo - 10%, and Lo + 10%. Potentiation was observed to be length dependent, with an increase in developed tension (DT) of 78 +/- 12, 51 +/- 5, and 34 +/- 9% (mean +/- SEM), at Lo - 10%, Lo, and Lo + 10%, respectively. Caffeine diminished the length dependence of activation and suppressed the length dependence of staircase potentiation, giving increases in DT of 65+/-13, 53 +/- 11, and 45 +/- 12% for Lo - 10%, Lo, and Lo + 10%, respectively. Dantrolene administered after caffeine did not reverse this effect. Dantrolene alone depressed the potentiation response, but did not affect the length dependence of staircase potentiation, with increases in DT of 58 +/- 17, 26 +/- 8, and 18 +/- 7%, respectively. This study confirms that there is a length dependence of staircase potentiation in mammalian skeletal muscle which is suppressed by caffeine. Since dantrolene did not alter this suppression of the length dependence of potentiation by caffeine, it is apparently not directly modulated by Ca2+ availability in the myoplasm.

  20. The use of microelectrode array (MEA) to study the protective effects of potassium channel openers on metabolically compromised HL-1 cardiomyocytes

    International Nuclear Information System (INIS)

    Law, J K Y; Chan, M; Yeung, C K; Rudd, J A; Hofmann, B; Ingebrandt, S; Offenhäusser, A

    2009-01-01

    The microelectrode array (MEA) was used to evaluate the cardioprotective effects of adenosine triphosphate sensitive potassium (K ATP ) channel activation using potassium channel openers (KCOs) on HL-1 cardiomyocytes subjected to acute chemically induced metabolic inhibition. Beat frequency and extracellular action potential (exAP) amplitude were measured in the presence of metabolic inhibitors (sodium azide (NaN 3 ) or 2-deoxyglucose (2-DG)) or KCOs (pinacidil (PIN, a cyanoguanidine derivative, activates sarcolemmal K ATP channels) or SDZ PCO400 (SDZ, a benzopyran derivative, activates mitochondrial K ATP channels)). The protective effects of these KCOs on metabolically inhibited HL-1 cells were subsequently investigated. Signal shapes indicated that NaN 3 and 2-DG reduced the rate of the sodium (Na + ) influx signal as reflected by a reduction in beat frequency. PIN and SDZ appeared to reduce both rate of depolarization and extent of the Na + influx signals. Pre-treating cardiomyocytes with PIN (0.1 mM), but not SDZ, prevented the reduction of beat frequency associated with NaN 3 - or 2-DG-induced metabolic inhibition. The exAP amplitude was not affected by either KCO. The cardioprotective effect of PIN relative to SDZ may be due to the opening of different K ATP channels. This metabolic inhibition model on the MEA may provide a stable platform for the study of cardiac pathophysiology in the future

  1. Docking Simulation of the Binding Interactions of Saxitoxin Analogs Produced by the Marine Dinoflagellate Gymnodinium catenatum to the Voltage-Gated Sodium Channel Nav1.4

    Directory of Open Access Journals (Sweden)

    Lorena M. Durán-Riveroll

    2016-05-01

    Full Text Available Saxitoxin (STX and its analogs are paralytic alkaloid neurotoxins that block the voltage-gated sodium channel pore (Nav, impeding passage of Na+ ions into the intracellular space, and thereby preventing the action potential in the peripheral nervous system and skeletal muscle. The marine dinoflagellate Gymnodinium catenatum produces an array of such toxins, including the recently discovered benzoyl analogs, for which the mammalian toxicities are essentially unknown. We subjected STX and its analogs to a theoretical docking simulation based upon two alternative tri-dimensional models of the Nav1.4 to find a relationship between the binding properties and the known mammalian toxicity of selected STX analogs. We inferred hypothetical toxicities for the benzoyl analogs from the modeled values. We demonstrate that these toxins exhibit different binding modes with similar free binding energies and that these alternative binding modes are equally probable. We propose that the principal binding that governs ligand recognition is mediated by electrostatic interactions. Our simulation constitutes the first in silico modeling study on benzoyl-type paralytic toxins and provides an approach towards a better understanding of the mode of action of STX and its analogs.

  2. Docking Simulation of the Binding Interactions of Saxitoxin Analogs Produced by the Marine Dinoflagellate Gymnodinium catenatum to the Voltage-Gated Sodium Channel Nav1.4.

    Science.gov (United States)

    Durán-Riveroll, Lorena M; Cembella, Allan D; Band-Schmidt, Christine J; Bustillos-Guzmán, José J; Correa-Basurto, José

    2016-05-06

    Saxitoxin (STX) and its analogs are paralytic alkaloid neurotoxins that block the voltage-gated sodium channel pore (Nav), impeding passage of Na⁺ ions into the intracellular space, and thereby preventing the action potential in the peripheral nervous system and skeletal muscle. The marine dinoflagellate Gymnodinium catenatum produces an array of such toxins, including the recently discovered benzoyl analogs, for which the mammalian toxicities are essentially unknown. We subjected STX and its analogs to a theoretical docking simulation based upon two alternative tri-dimensional models of the Nav1.4 to find a relationship between the binding properties and the known mammalian toxicity of selected STX analogs. We inferred hypothetical toxicities for the benzoyl analogs from the modeled values. We demonstrate that these toxins exhibit different binding modes with similar free binding energies and that these alternative binding modes are equally probable. We propose that the principal binding that governs ligand recognition is mediated by electrostatic interactions. Our simulation constitutes the first in silico modeling study on benzoyl-type paralytic toxins and provides an approach towards a better understanding of the mode of action of STX and its analogs.

  3. Citral Sensing by TRANSient Receptor Potential Channels in Dorsal Root Ganglion Neurons

    Science.gov (United States)

    Stotz, Stephanie C.; Vriens, Joris; Martyn, Derek; Clardy, Jon; Clapham, David E.

    2008-01-01

    Transient receptor potential (TRP) ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1), and produces long-lasting inhibition of TRPV1–3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol) each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate), consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin. PMID:18461159

  4. Mechanism of electromechanical coupling in voltage-gated potassium channels

    Directory of Open Access Journals (Sweden)

    Rikard eBlunck

    2012-09-01

    Full Text Available Voltage-gated ion channels play a central role in the generation of action potentials in the nervous system. They are selective for one type of ion – sodium, calcium or potassium. Voltage-gated ion channels are composed of a central pore that allows ions to pass through the membrane and four peripheral voltage sensing domains that respond to changes in the membrane potential. Upon depolarization, voltage sensors in voltage-gated potassium channels (Kv undergo conformational changes driven by positive charges in the S4 segment and aided by pairwise electrostatic interactions with the surrounding voltage sensor. Structure-function relations of Kv channels have been investigated in detail, and the resulting models on the movement of the voltage sensors now converge to a consensus; the S4 segment undergoes a combined movement of rotation, tilt and vertical displacement in order to bring 3-4 e+ each through the electric field focused in this region. Nevertheless, the mechanism by which the voltage sensor movement leads to pore opening, the electromechanical coupling, is still not fully understood. Thus, recently, electromechanical coupling in different Kv channels has been investigated with a multitude of techniques including electrophysiology, 3D crystal structures, fluorescence spectroscopy and molecular dynamics simulations. Evidently, the S4-S5 linker, the covalent link between the voltage sensor and pore, plays a crucial role. The linker transfers the energy from the voltage sensor movement to the pore domain via an interaction with the S6 C-termini, which are pulled open during gating. In addition, other contact regions have been proposed. This review aims to provide (i an in-depth comparison of the molecular mechanisms of electromechanical coupling in different Kv channels; (ii insight as to how the voltage sensor and pore domain influence one another; and (iii theoretical predictions on the movement of the cytosolic face of the KV channels

  5. Changes in urinary excretion of water and sodium transporters during amiloride and bendroflumethiazide treatment

    DEFF Research Database (Denmark)

    Jensen, Janni M; Mose, Frank H; Kulik, Anna-Ewa O

    2015-01-01

    AIM: To quantify changes in urinary excretion of aquaporin2 water channels (u-AQP2), the sodium-potassium-chloride co-transporter (u-NKCC2) and the epithelial sodium channels (u-ENaC) during treatment with bendroflumethiazide (BFTZ), amiloride and placebo. METHODS: In a randomized, double....... General linear model with repeated measures or related samples Friedman's two-way analysis was used to compare differences. Post hoc Bonferroni correction was used for multiple comparisons of post infusion periods to baseline within each treatment group. RESULTS: At baseline there were no differences in u...... by the constant infusion clearance technique with (51)Cr-EDTA as reference substance. To estimate the changes in water transport via AQP2 and sodium transport via NKCC2 and ENaC, u-NKCC2, the gamma fraction of ENaC (u-ENaCγ), and u-AQP2 were measured at baseline and after infusion with 3% hypertonic saline. U...

  6. Investigations of the Navβ1b sodium channel subunit in human ventricle; functional characterization of the H162P Brugada Syndrome mutant

    DEFF Research Database (Denmark)

    Yuan, Lei; Koivumaki, Jussi; Liang, Bo

    2014-01-01

    Brugada Syndrome (BrS) is a rare inherited disease which can give rise to ventricular arrhythmia and ultimately sudden cardiac death. Numerous loss-of-function mutations in the cardiac sodium channel Nav1.5 have been associated with BrS. However, few mutations in the auxiliary Navβ1-4 subunits ha...... density was reduced by 48 % (-645±151 vs - 334±71 pA/pF), V1/2 steady-state inactivation shifted by -6.7 mV (-70.3±1.5 vs. -77.0±2.8 mV), and time-dependent recovery from inactivation slowed by more than 50% as compared to co-expression with Navβ1b WT. Computer simulations revealed...

  7. Volume Regulated Channels

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjær

    of volume perturbations evolution have developed system of channels and transporters to tightly control volume homeostasis. In the past decades evidence has been mounting, that the importance of these volume regulated channels and transporters are not restricted to the defense of cellular volume...... but are also essential for a number of physiological processes such as proliferation, controlled cell death, migration and endocrinology. The thesis have been focusing on two Channels, namely the swelling activated Cl- channel (ICl, swell) and the transient receptor potential Vanilloid (TRPV4) channel. I: Cl......- serves a multitude of functions in the mammalian cell, regulating the membrane potential (Em), cell volume, protein activity and the driving force for facilitated transporters giving Cl- and Cl- channels a major potential of regulating cellular function. These functions include control of the cell cycle...

  8. Transient receptor potential canonical type 3 channels and blood pressure in humans

    DEFF Research Database (Denmark)

    Thilo, Florian; Baumunk, Daniel; Krause, Hans

    2009-01-01

    There is evidence that transient receptor potential canonical type 3 (TRPC3) cation channels are involved in the regulation of blood pressure, but this has not been studied using human renal tissue. We tested the hypothesis that the expression of TRPC3 in human renal tissue is associated with blood...

  9. Theory and simulation of ion conduction in the pentameric GLIC channel.

    Science.gov (United States)

    Zhu, Fangqiang; Hummer, Gerhard

    2012-10-09

    GLIC is a bacterial member of the large family of pentameric ligand-gated ion channels. To study ion conduction through GLIC and other membrane channels, we combine the one-dimensional potential of mean force for ion passage with a Smoluchowski diffusion model, making it possible to calculate single-channel conductance in the regime of low ion concentrations from all-atom molecular dynamics (MD) simulations. We then perform MD simulations to examine sodium ion conduction through the GLIC transmembrane pore in two systems with different bulk ion concentrations. The ion potentials of mean force, calculated from umbrella sampling simulations with Hamiltonian replica exchange, reveal a major barrier at the hydrophobic constriction of the pore. The relevance of this barrier for ion transport is confirmed by a committor function that rises sharply in the barrier region. From the free evolution of Na(+) ions starting at the barrier top, we estimate the effective diffusion coefficient in the barrier region, and subsequently calculate the conductance of the pore. The resulting diffusivity compares well with the position-dependent ion diffusion coefficient obtained from restrained simulations. The ion conductance obtained from the diffusion model agrees with the value determined via a reactive-flux rate calculation. Our results show that the conformation in the GLIC crystal structure, with an estimated conductance of ~1 picosiemens at 140 mM ion concentration, is consistent with a physiologically open state of the channel.

  10. Arctigenin, a Potential Anti-Arrhythmic Agent, Inhibits Aconitine-Induced Arrhythmia by Regulating Multi-Ion Channels

    Directory of Open Access Journals (Sweden)

    Zhenying Zhao

    2013-11-01

    Full Text Available Background/Aims: Arctigenin possesses biological activities, but its underlying mechanisms at the cellular and ion channel levels are not completely understood. Therefore, the present study was designed to identify the anti-arrhythmia effect of arctigenin in vivo, as well as its cellular targets and mechanisms. Methods: A rat arrhythmia model was established via continuous aconitine infusion, and the onset times of ventricular premature contraction, ventricular tachycardia and death were recorded. The Action Potential Duration (APD, sodium current (INa, L-type calcium current (ICa, L and transient outward potassium current (Ito were measured and analysed using a patch-clamp recording technique in normal rat cardiomyocytes and myocytes of arrhythmia aconitine-induced by. Results: Arctigenin significantly delayed the arrhythmia onset in the aconitine-induced rat model. The 50% and 90% repolarisations (APD50 and APD90 were shortened by 100 µM arctigenin; the arctigenin dose also inhibited the prolongation of APD50 and APD90 caused by 1 µM aconitine. Arctigenin inhibited INa and ICa,L and attenuated the aconitine-increased INa and ICa,L by accelerating the activation process and delaying the inactivation process. Arctigenin enhanced Ito by facilitating the activation process and delaying the inactivation process, and recoverd the decreased Ito induced by aconitine. Conclusions: Arctigenin has displayed anti-arrhythmia effects, both in vivo and in vitro. In the context of electrophysiology, INa, ICa, L, and Ito may be multiple targets of arctigenin, leading to its antiarrhythmic effect.

  11. Formation of a sodium bicarbonate cluster in the structure of sodium-substituted hydroxyapatite

    Science.gov (United States)

    Tkachenko, M. V.; Kamzin, A. S.

    2015-02-01

    Ceramic sodium-substituted carbonated hydroxyapatite has been synthesized using the method of the solid-phase reaction in the temperature range of 640-820°C in water vapor. It has been established that substitutions of Ca2+ ions in the cation and anion subsystems with Na+ ions and the PO{4/3-} and OH- groups with CO{3/2-} ions lead to a considerable acceleration of the shrinkage and synthesis of dense ceramics at substantially lower temperatures than in the case of unsubstituted hydroxyapatite. Sintering in water vapor leads to densification of carbonate groups in channel positions, which induces the appearance of orderings of A2 and B2 types (bands with wave numbers 867 and 865 cm-1 in IR spectra, respectively) as well as the protonation of carbonate groups both in A and B sites and the formation of sodium bicarbonate clusters (856 and 859 cm-1) in addition to carbonate ordering of A1 and B1 types (879 and 872 cm-1).

  12. Canonical Transient Receptor Potential Channels and Their Link with Cardio/Cerebro-Vascular Diseases.

    Science.gov (United States)

    Xiao, Xiong; Liu, Hui-Xia; Shen, Kuo; Cao, Wei; Li, Xiao-Qiang

    2017-09-01

    The canonical transient receptor potential channels (TRPCs) constitute a series of nonselective cation channels with variable degrees of Ca 2+ selectivity. TRPCs consist of seven mammalian members, TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7, which are further divided into four subtypes, TRPC1, TRPC2, TRPC4/5, and TRPC3/6/7. These channels take charge of various essential cell functions such as contraction, relaxation, proliferation, and dysfunction. This review, organized into seven main sections, will provide an overview of current knowledge about the underlying pathogenesis of TRPCs in cardio/cerebrovascular diseases, including hypertension, pulmonary arterial hypertension, cardiac hypertrophy, atherosclerosis, arrhythmia, and cerebrovascular ischemia reperfusion injury. Collectively, TRPCs could become a group of drug targets with important physiological functions for the therapy of human cardio/cerebro-vascular diseases.

  13. Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation and Recycle of Sodium Hydroxide and Sodium Nitrate

    International Nuclear Information System (INIS)

    Moyer, Bruce A.; Marchand, Alan P.; Bonnesen, Peter V.; Bryan, Jeffrey C.; Haverlock, Tamara J.

    2004-01-01

    This research was intended to provide the scientific foundation upon which the feasibility of liquid-liquid extraction chemistry for bulk reduction of the volume of high-activity tank waste can be evaluated. Primary focus has been on sodium hydroxide separation, with potential Hanford application. Value in sodium hydroxide separation can potentially be found in alternative flowsheets for treatment and disposal of low-activity salt waste. Additional value can be expected in recycle of sodium hydroxide for use in waste retrieval and sludge washing, whereupon additions of fresh sodium hydroxide to the waste can be avoided. Potential savings are large both because of the huge cost of vitrification of the low-activity waste stream and because volume reduction of high-activity wastes could obviate construction of costly new tanks. Toward these ends, the conceptual development begun in the original proposal was extended with the formulation of eight fundamental approaches that could be undertaken for extraction of sodium hydroxide

  14. Reaction channel coupling effects for nucleons on 16O: Induced undularity and proton-neutron potential differences

    Science.gov (United States)

    Keeley, N.; Mackintosh, R. S.

    2018-01-01

    Background: Precise fitting of scattering observables suggests that the nucleon-nucleus interaction is l dependent. Such l dependence has been shown to be S -matrix equivalent to an undulatory l -independent potential. The undulations include radial regions where the imaginary term is emissive. Purpose: To study the dynamical polarization potential (DPP) generated in proton-16O and neutron-16O interaction potentials by coupling to pickup channels. Undulatory features occurring in these DPPs can be compared with corresponding features of empirical optical model potentials (OMPs). Furthermore, the additional inclusion of coupling to vibrational states of the target will provide evidence for dynamically generated nonlocality. Methods: The fresco code provides the elastic channel S -matrix Sl j for chosen channel couplings. Inversion, Sl j→V (r ) +l .s VSO(r ) , followed by subtraction of the bare potential, yields an l -independent and local representation of the DPP due to the chosen couplings. Results: The DPPs have strongly undulatory features, including radial regions of emissivity. Certain features of empirical DPPs appear, e.g., the full inverted potential has emissive regions. The DPPs for different collective states are additive except near the nuclear center, whereas the collective and reaction channel DPPs are distinctly nonadditive over a considerable radial range, indicating dynamical nonlocality. Substantial differences between the DPPs due to pickup coupling for protons and neutrons occur; these imply a greater difference between proton and neutron OMPs than the standard phenomenological prescription. Conclusions: The onus is on those who object to undularity in the local and l -independent representation of nucleon elastic scattering to show why such undulations do not occur. This work suggests that it is not legitimate to halt model-independent fits to high-quality data at the appearance of undularity.

  15. [Channels: a new way to revisit pathology].

    Science.gov (United States)

    Fournier, Emmanuel

    2014-02-01

    Many "essential" diseases that manifest themselves in the form of crises or fits (epilepsies, episodic ataxia, periodic paralyses, myotonia, heart rhythm disorders, etc.) are due to ionic channel dysfunction and are thus referred to as "channelopathies". Some of these disorders are congenital, due to mutations of genes encoding channel subunits, while others result from toxic, immune or hormonal disturbances affecting channelfunction. Channelopathies take on a wide variety of clinical forms, depending on the type of channel (sodium, potassium, calcium, chloride...) and the type of dysfunction (loss or gain of function). Some apparently unrelated diseases affecting distinct organs are due to a similar dysfunction of the same channel, revealing unsuspected relationships between organs and between medical specialties. In addition, a given syndrome can be caused by distinct channel dysfunctions. This provides new opportunities for diferential diagnosis and specific correction of the causal defects, although some treatments find applications across multiple medical specialties.

  16. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin

    DEFF Research Database (Denmark)

    Fuchs, W; Larsen, Erik Hviid; Lindemann, B

    1977-01-01

    1. The inward facing membranes of in vitro frog skin epithelium were depolarized with solutions of high K concentration. The electrical properties of the epithelium are then expected to be governed by the outward facing, Na-selective membrane.2. In this state, the transepithelial voltage (V...... was recorded. This procedure was repeated after blocking the Na channels with amiloride to obtain the current-voltage curve of transmembrane and paracellular shunt pathways. The current-voltage curve of the Na channels was computed by subtracting the shunt current from the total current.4. The instantaneous I...... of the inward facing membranes but reflects the true behaviour of P(Na).6. The steady-state P(Na) at a given (Na)(o) is smaller than the transient P(Na) observed right after a stepwise increase of (Na)(o) to this value. The time constant of P(Na)-relaxation is in the order of seconds.7. In conclusion, Na...

  17. Increased transient receptor potential canonical type 3 channels in vasculature from hypertensive rats

    DEFF Research Database (Denmark)

    Liu, Daoyan; Yang, Dachun; He, Hongbo

    2009-01-01

    We tested the hypothesis that transient receptor potential canonical type 3 (TRPC3) channels are increased in vascular smooth muscle cells and aortic tissue from spontaneously hypertensive rats (SHR) compared with normotensive Wistar Kyoto rats. Expression of TRPC3 was analyzed by immunohistochem...

  18. NS309 decreases rat detrusor smooth muscle membrane potential and phasic contractions by activating SK3 channels

    Science.gov (United States)

    Parajuli, Shankar P; Hristov, Kiril L; Soder, Rupal P; Kellett, Whitney F; Petkov, Georgi V

    2013-01-01

    Background and Purpose Overactive bladder (OAB) is often associated with abnormally increased detrusor smooth muscle (DSM) contractions. We used NS309, a selective and potent opener of the small or intermediate conductance Ca2+-activated K+ (SK or IK, respectively) channels, to evaluate how SK/IK channel activation modulates DSM function. Experimental Approach We employed single-cell RT-PCR, immunocytochemistry, whole cell patch-clamp in freshly isolated rat DSM cells and isometric tension recordings of isolated DSM strips to explore how the pharmacological activation of SK/IK channels with NS309 modulates DSM function. Key Results We detected SK3 but not SK1, SK2 or IK channels expression at both mRNA and protein levels by RT-PCR and immunocytochemistry in DSM single cells. NS309 (10 μM) significantly increased the whole cell SK currents and hyperpolarized DSM cell resting membrane potential. The NS309 hyperpolarizing effect was blocked by apamin, a selective SK channel inhibitor. NS309 inhibited the spontaneous phasic contraction amplitude, force, frequency, duration and tone of isolated DSM strips in a concentration-dependent manner. The inhibitory effect of NS309 on spontaneous phasic contractions was blocked by apamin but not by TRAM-34, indicating no functional role of the IK channels in rat DSM. NS309 also significantly inhibited the pharmacologically and electrical field stimulation-induced DSM contractions. Conclusions and Implications Our data reveal that SK3 channel is the main SK/IK subtype in rat DSM. Pharmacological activation of SK3 channels with NS309 decreases rat DSM cell excitability and contractility, suggesting that SK3 channels might be potential therapeutic targets to control OAB associated with detrusor overactivity. PMID:23145946

  19. Pharmacogenetic diversification by alternative translation initiation: background channels to the fore.

    Science.gov (United States)

    Abbott, G W

    2014-02-15

    Unanticipated complexity of drug-target interactions creates a headache for those attempting to rationalize and create simple models of antiarrhythmic action, but can also introduce opportunities for increased drug specificity, or for potentially advantageous spatial and temporal variation in drug effects. The newest findings reported by Kisselbach et al. in this issue are a case in point. Building upon previous pioneering work demonstrating that neuronal K 2P 2.1 potassium-selective "background" channels can become permeable to sodium ions depending upon alternative translation initiation (ATI) (Thomas et al., 2008), the Thomas lab now shows that ATI of K 2P 2.1 and K 2P 10.1, which are also expressed in the heart, can cause a fivefold shift in sensitivity to block by the β-receptor (and potassium channel) antagonist, carvedilol (Kisselbach et al., 2014). This article is protected by copyright. All rights reserved.

  20. Spontaneous calcium transients in human neural progenitor cells mediated by transient receptor potential channels.

    Science.gov (United States)

    Morgan, Peter J; Hübner, Rayk; Rolfs, Arndt; Frech, Moritz J

    2013-09-15

    Calcium signals affect many developmental processes, including proliferation, migration, survival, and apoptosis, processes that are of particular importance in stem cells intended for cell replacement therapies. The mechanisms underlying Ca(2+) signals, therefore, have a role in determining how stem cells respond to their environment, and how these responses might be controlled in vitro. In this study, we examined the spontaneous Ca(2+) activity in human neural progenitor cells during proliferation and differentiation. Pharmacological characterization indicates that in proliferating cells, most activity is the result of transient receptor potential (TRP) channels that are sensitive to Gd(3+) and La(3+), with the more subtype selective antagonist Ruthenium red also reducing activity, suggesting the involvement of transient receptor potential vanilloid (TRPV) channels. In differentiating cells, Gd(3+) and La(3+)-sensitive TRP channels also appear to underlie the spontaneous activity; however, no sub-type-specific antagonists had any effect. Protein levels of TRPV2 and TRPV3 decreased in differentiated cells, which is demonstrated by western blot. Thus, it appears that TRP channels represent the main route of Ca(2+) entry in human neural progenitor cells (hNPCs), but the responsible channel types are subject to substitution under differentiating conditions. The level of spontaneous activity could be increased and decreased by lowering and raising the extracellular K(+) concentration. Proliferating cells in low K(+) slowed the cell cycle, with a disproportionate increased percentage of cells in G1 phase and a reduction in S phase. Taken together, these results suggest a link between external K(+) concentration, spontaneous Ca(2+) transients, and cell cycle distribution, which is able to influence the fate of stem and progenitor cells.

  1. Activation of Mechanosensitive Transient Receptor Potential/Piezo Channels in Odontoblasts Generates Action Potentials in Cocultured Isolectin B4-negative Medium-sized Trigeminal Ganglion Neurons.

    Science.gov (United States)

    Sato, Masaki; Ogura, Kazuhiro; Kimura, Maki; Nishi, Koichi; Ando, Masayuki; Tazaki, Masakazu; Shibukawa, Yoshiyuki

    2018-04-27

    Various stimuli to the dentin surface elicit dentinal pain by inducing dentinal fluid movement causing cellular deformation in odontoblasts. Although odontoblasts detect deformation by the activation of mechanosensitive ionic channels, it is still unclear whether odontoblasts are capable of establishing neurotransmission with myelinated A delta (Aδ) neurons. Additionally, it is still unclear whether these neurons evoke action potentials by neurotransmitters from odontoblasts to mediate sensory transduction in dentin. Thus, we investigated evoked inward currents and evoked action potentials form trigeminal ganglion (TG) neurons after odontoblast mechanical stimulation. We used patch clamp recordings to identify electrophysiological properties and record evoked responses in TG neurons. We classified TG cells into small-sized and medium-sized neurons. In both types of neurons, we observed voltage-dependent inward currents. The currents from medium-sized neurons showed fast inactivation kinetics. When mechanical stimuli were applied to odontoblasts, evoked inward currents were recorded from medium-sized neurons. Antagonists for the ionotropic adenosine triphosphate receptor (P2X 3 ), transient receptor potential channel subfamilies, and Piezo1 channel significantly inhibited these inward currents. Mechanical stimulation to odontoblasts also generated action potentials in the isolectin B 4 -negative medium-sized neurons. Action potentials in these isolectin B 4 -negative medium-sized neurons showed a short duration. Overall, electrophysiological properties of neurons indicate that the TG neurons with recorded evoked responses after odontoblast mechanical stimulation were myelinated Aδ neurons. Odontoblasts established neurotransmission with myelinated Aδ neurons via P2X 3 receptor activation. The results also indicated that mechanosensitive TRP/Piezo1 channels were functionally expressed in odontoblasts. The activation of P2X 3 receptors induced an action potential

  2. Mineralocorticoid-induced sodium appetite and renal salt retention: Evidence for common signaling and effector mechanisms

    Science.gov (United States)

    Fu, Yiling; Vallon, Volker

    2014-01-01

    An increase in renal sodium chloride (salt) retention and an increase in sodium appetite is the body's response to salt restriction or depletion in order to restore salt balance. Renal salt retention and increased sodium appetite can also be maladaptive and sustain the pathophysiology in conditions like salt-sensitive hypertension and chronic heart failure. Here we review the central role of the mineralocorticoid aldosterone in both the increase in renal salt reabsorption and sodium appetite. We discuss the working hypothesis that aldosterone activates similar signaling and effector mechanisms in the kidney and brain, including the mineralocorticoid receptor, the serum-and-glucocorticoid-induced kinase SGK1, the ubiquitin ligase NEDD4-2, and the epithelial sodium channel ENaC. The latter also mediates the gustatory salt sensing in the tongue, which is required for the manifestation of increased salt intake. Effects of aldosterone on both brain and kidney synergize with the effects of angiotensin II. Thus, mineralocorticoids appear to induce similar molecular pathways in the kidney, brain, and possibly tongue, which could provide opportunities for more effective therapeutic interventions. Inhibition of renal salt reabsorption is compensated by stimulation of salt appetite and vice versa; targeting both mechanisms should be more effective. Inhibiting the arousal to consume salty food may improve a patient's compliance to reducing salt intake. While a better understanding of the molecular mechanisms is needed and will provide new options, current pharmacological interventions that target both salt retention and sodium appetite include mineralocorticoid receptor antagonists and potentially inhibitors of angiotensin II and ENaC. PMID:25376899

  3. Citral sensing by Transient [corrected] receptor potential channels in dorsal root ganglion neurons.

    Science.gov (United States)

    Stotz, Stephanie C; Vriens, Joris; Martyn, Derek; Clardy, Jon; Clapham, David E

    2008-05-07

    Transient receptor potential (TRP) ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1), and produces long-lasting inhibition of TRPV1-3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol) each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate), consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin.

  4. Ion Channels of Pituitary Gonadotrophs and Their Roles in Signaling and Secretion

    Directory of Open Access Journals (Sweden)

    Stanko S. Stojilkovic

    2017-06-01

    Full Text Available Gonadotrophs are basophilic cells of the anterior pituitary gland specialized to secrete gonadotropins in response to elevation in intracellular calcium concentration. These cells fire action potentials (APs spontaneously, coupled with voltage-gated calcium influx of insufficient amplitude to trigger gonadotropin release. The spontaneous excitability of gonadotrophs reflects the expression of voltage-gated sodium, calcium, potassium, non-selective cation-conducting, and chloride channels at their plasma membrane (PM. These cells also express the hyperpolarization-activated and cyclic nucleotide-gated cation channels at the PM, as well as GABAA, nicotinic, and purinergic P2X channels gated by γ-aminobutyric acid (GABA, acetylcholine (ACh, and ATP, respectively. Activation of these channels leads to initiation or amplification of the pacemaking activity, facilitation of calcium influx, and activation of the exocytic pathway. Gonadotrophs also express calcium-conducting channels at the endoplasmic reticulum membranes gated by inositol trisphosphate and intracellular calcium. These channels are activated potently by hypothalamic gonadotropin-releasing hormone (GnRH and less potently by several paracrine calcium-mobilizing agonists, including pituitary adenylate cyclase-activating peptides, endothelins, ACh, vasopressin, and oxytocin. Activation of these channels causes oscillatory calcium release and a rapid gonadotropin release, accompanied with a shift from tonic firing of single APs to periodic bursting type of electrical activity, which accounts for a sustained calcium signaling and gonadotropin secretion. This review summarizes our current understanding of ion channels as signaling molecules in gonadotrophs, the role of GnRH and paracrine agonists in their gating, and the cross talk among channels.

  5. A study of atomic interaction between suspended nanoparticles and sodium atoms in liquid sodium

    International Nuclear Information System (INIS)

    Saito, Jun-ichi; Ara, Kuniaki

    2010-01-01

    A feasibility study of suppression of the chemical reactivity of sodium itself using an atomic interaction between nanoparticles and sodium atoms has been carried out. We expected that the atomic interaction strengthens when the nanoparticle metal is the transition element which has a major difference in electronegativity from sodium. We also calculated the atomic interaction between nanoparticle and sodium atoms. It became clear that the atomic bond between the nanoparticle atom and the sodium atom is larger than that between sodium atoms, and the charge transfer takes place to the nanoparticle atom from the sodium atom. Using sodium with suspended nanoparticles, the fundamental physical properties related to the atomic interaction were investigated to verify the atomic bond. The surface tension of sodium with suspended nanoparticles increased, and the evaporation rate of sodium with suspended nanoparticles also decreased compared with that of sodium. Therefore the presence of the atomic interaction between nanoparticles and sodium was verified from these experiments. Because the fundamental physical property changes by the atomic interaction, we expected changes in the chemical reactivity characteristics. The chemical reaction properties of sodium with suspended nanoparticles with water were investigated experimentally. The released reaction heat and the reaction rate of sodium with suspended nanoparticles were reduced than those of sodium. The influence of the charge state of nanoparticle on the chemical process with water was theoretically investigated to speculate on the cause of reaction suppression. The potential energy in both primary and side reactions changed by the charge transfer, and the free energy of activation of the reaction with water increased. Accordingly, the reaction barrier also increased. This suggests there is a possibility of the reduction in the reaction of sodium by the suspension of nanoparticles. Consequently the possibility of the

  6. Nanosecond pulsed electric fields depolarize transmembrane potential via voltage-gated K+, Ca2+ and TRPM8 channels in U87 glioblastoma cells.

    Science.gov (United States)

    Burke, Ryan C; Bardet, Sylvia M; Carr, Lynn; Romanenko, Sergii; Arnaud-Cormos, Delia; Leveque, Philippe; O'Connor, Rodney P

    2017-10-01

    Nanosecond pulsed electric fields (nsPEFs) have a variety of applications in the biomedical and biotechnology industries. Cancer treatment has been at the forefront of investigations thus far as nsPEFs permeabilize cellular and intracellular membranes leading to apoptosis and necrosis. nsPEFs may also influence ion channel gating and have the potential to modulate cell physiology without poration of the membrane. This phenomenon was explored using live cell imaging and a sensitive fluorescent probe of transmembrane voltage in the human glioblastoma cell line, U87 MG, known to express a number of voltage-gated ion channels. The specific ion channels involved in the nsPEF response were screened using a membrane potential imaging approach and a combination of pharmacological antagonists and ion substitutions. It was found that a single 10ns pulsed electric field of 34kV/cm depolarizes the transmembrane potential of cells by acting on specific voltage-sensitive ion channels; namely the voltage and Ca2 + gated BK potassium channel, L- and T-type calcium channels, and the TRPM8 transient receptor potential channel. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Differential Regulation of Action Potential Shape and Burst-Frequency Firing by BK and Kv2 Channels in Substantia Nigra Dopaminergic Neurons.

    Science.gov (United States)

    Kimm, Tilia; Khaliq, Zayd M; Bean, Bruce P

    2015-12-16

    Little is known about the voltage-dependent potassium currents underlying spike repolarization in midbrain dopaminergic neurons. Studying mouse substantia nigra pars compacta dopaminergic neurons both in brain slice and after acute dissociation, we found that BK calcium-activated potassium channels and Kv2 channels both make major contributions to the depolarization-activated potassium current. Inhibiting Kv2 or BK channels had very different effects on spike shape and evoked firing. Inhibiting Kv2 channels increased spike width and decreased the afterhyperpolarization, as expected for loss of an action potential-activated potassium conductance. BK inhibition also increased spike width but paradoxically increased the afterhyperpolarization. Kv2 channel inhibition steeply increased the slope of the frequency-current (f-I) relationship, whereas BK channel inhibition had little effect on the f-I slope or decreased it, sometimes resulting in slowed firing. Action potential clamp experiments showed that both BK and Kv2 current flow during spike repolarization but with very different kinetics, with Kv2 current activating later and deactivating more slowly. Further experiments revealed that inhibiting either BK or Kv2 alone leads to recruitment of additional current through the other channel type during the action potential as a consequence of changes in spike shape. Enhancement of slowly deactivating Kv2 current can account for the increased afterhyperpolarization produced by BK inhibition and likely underlies the very different effects on the f-I relationship. The cross-regulation of BK and Kv2 activation illustrates that the functional role of a channel cannot be defined in isolation but depends critically on the context of the other conductances in the cell. This work shows that BK calcium-activated potassium channels and Kv2 voltage-activated potassium channels both regulate action potentials in dopamine neurons of the substantia nigra pars compacta. Although both

  8. A thermodynamic framework for understanding temperature sensing by transient receptor potential (TRP) channels.

    Science.gov (United States)

    Clapham, David E; Miller, Christopher

    2011-12-06

    The exceptionally high temperature sensitivity of certain transient receptor potential (TRP) family ion channels is the molecular basis of hot and cold sensation in sensory neurons. The laws of thermodynamics dictate that opening of these specialized TRP channels must involve an unusually large conformational standard-state enthalpy, ΔH(o): positive ΔH(o) for heat-activated and negative ΔH(o) for cold-activated TRPs. However, the molecular source of such high-enthalpy changes has eluded neurobiologists and biophysicists. Here we offer a general, unifying mechanism for both hot and cold activation that recalls long-appreciated principles of protein folding. We suggest that TRP channel gating is accompanied by large changes in molar heat capacity, ΔC(P). This postulate, along with the laws of thermodynamics and independent of mechanistic detail, leads to the conclusion that hot- and cold-sensing TRPs operate by identical conformational changes.

  9. High variability of the heterogeneous ice nucleation potential of oxalic acid dihydrate and sodium oxalate

    OpenAIRE

    R. Wagner; O. Möhler; H. Saathoff; M. Schnaiter; T. Leisner

    2010-01-01

    The heterogeneous ice nucleation potential of airborne oxalic acid dihydrate and sodium oxalate particles in the deposition and condensation mode has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 244 and 228 K. Previous laboratory studies have highlighted the particular role of oxalic acid dihydrate as the only species amongst a variety of other investigated dicarboxylic acids to ...

  10. Fragile X mental retardation protein controls ion channel expression and activity.

    Science.gov (United States)

    Ferron, Laurent

    2016-10-15

    Fragile X-associated disorders are a family of genetic conditions resulting from the partial or complete loss of fragile X mental retardation protein (FMRP). Among these disorders is fragile X syndrome, the most common cause of inherited intellectual disability and autism. FMRP is an RNA-binding protein involved in the control of local translation, which has pleiotropic effects, in particular on synaptic function. Analysis of the brain FMRP transcriptome has revealed hundreds of potential mRNA targets encoding postsynaptic and presynaptic proteins, including a number of ion channels. FMRP has been confirmed to bind voltage-gated potassium channels (K v 3.1 and K v 4.2) mRNAs and regulates their expression in somatodendritic compartments of neurons. Recent studies have uncovered a number of additional roles for FMRP besides RNA regulation. FMRP was shown to directly interact with, and modulate, a number of ion channel complexes. The sodium-activated potassium (Slack) channel was the first ion channel shown to directly interact with FMRP; this interaction alters the single-channel properties of the Slack channel. FMRP was also shown to interact with the auxiliary β4 subunit of the calcium-activated potassium (BK) channel; this interaction increases calcium-dependent activation of the BK channel. More recently, FMRP was shown to directly interact with the voltage-gated calcium channel, Ca v 2.2, and reduce its trafficking to the plasma membrane. Studies performed on animal models of fragile X syndrome have revealed links between modifications of ion channel activity and changes in neuronal excitability, suggesting that these modifications could contribute to the phenotypes observed in patients with fragile X-associated disorders. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  11. Analyte preconcentration in nanofluidic channels with nonuniform zeta potential

    Science.gov (United States)

    Eden, A.; McCallum, C.; Storey, B. D.; Pennathur, S.; Meinhart, C. D.

    2017-12-01

    It is well known that charged analytes in the presence of nonuniform electric fields concentrate at locations where the relevant driving forces balance, and a wide range of ionic stacking and focusing methods are commonly employed to leverage these physical mechanisms in order to improve signal levels in biosensing applications. In particular, nanofluidic channels with spatially varying conductivity distributions have been shown to provide increased preconcentration of charged analytes due to the existence of a finite electric double layer (EDL), in which electrostatic attraction and repulsion from charged surfaces produce nonuniform transverse ion distributions. In this work, we use numerical simulations to show that one can achieve greater levels of sample accumulation by using field-effect control via wall-embedded electrodes to tailor the surface potential heterogeneity in a nanochannel with overlapped EDLs. In addition to previously demonstrated stacking and focusing mechanisms, we find that the coupling between two-dimensional ion distributions and the axial electric field under overlapped EDL conditions can generate an ion concentration polarization interface in the middle of the channel. Under an applied electric field, this interface can be used to concentrate sample ions between two stationary regions of different surface potential and charge density. Our numerical model uses the Poisson-Nernst-Planck system of equations coupled with the Stokes equation to demonstrate the phenomenon, and we discuss in detail the driving forces behind the predicted sample enhancement. The numerical velocity and salt concentration profiles exhibit good agreement with analytical results from a simplified one-dimensional area-averaged model for several limiting cases, and we show predicted amplification ratios of up to 105.

  12. Enteric-coated mycophenolate sodium.

    Science.gov (United States)

    Gabardi, Steven; Tran, Jennifer L; Clarkson, Michael R

    2003-11-01

    To review the pharmacology, pharmacokinetics, efficacy, and safety of mycophenolate sodium. Primary literature was obtained via a MEDLINE search (1966-June 2003). Abstracts were obtained from the manufacturer and included in the analysis. All studies and abstracts evaluating mycophenolate sodium in solid organ transplantation were considered for inclusion. English-language studies and abstracts were selected for inclusion, but were limited to those consisting of human subjects. Mycophenolate sodium, a mycophenolic acid prodrug, is an inhibitor of T-lymphocyte proliferation. Mycophenolic acid reduces the incidence of acute rejection in renal transplantation. Mycophenolate sodium is enteric coated and has been suggested as a potential method to reduce the gastrointestinal adverse events seen with mycophenolate mofetil. Both mycophenolate mofetil and mycophenolate sodium have been shown to be therapeutically equivalent at decreasing the incidence of allograft rejection and loss. The frequency of adverse events is similar between both compounds, with the most common events being diarrhea and leukopenia. Mycophenolate sodium is effective in preventing acute rejection in renal transplant recipients. At doses of 720 mg twice daily, the efficacy and safety profiles are similar to those of mycophenolate mofetil 1000 mg twice daily. Mycophenolate sodium has been approved in Switzerland; approval in the US is pending.

  13. Educating restaurant owners and cooks to lower their own sodium intake is a potential strategy for reducing the sodium contents of restaurant foods: a small-scale pilot study in South Korea.

    Science.gov (United States)

    Park, Sohyun; Lee, Heeseung; Seo, Dong-Il; Oh, Kwang-Hwan; Hwang, Taik Gun; Choi, Bo Youl

    2016-12-01

    This study was conducted to evaluate the feasibility of a sodium reduction program at local restaurants through nutrition education and examination of the health of restaurant owners and cooks. The study was a single-arm pilot intervention using a pre-post design in one business district with densely populated restaurants in Seoul, South Korea. The intervention focused on improving nutrition behaviors and psychosocial factors through education, health examination, and counseling of restaurant personnel. Forty-eight restaurant owners and cooks completed the baseline survey and participated in the intervention. Forty participants completed the post-intervention survey. The overweight and obesity prevalences were 25.6% and 39.5%, respectively, and 74.4% of participants had elevated blood pressure. After health examination, counseling, and nutrition education, several nutrition behaviors related to sodium intake showed improvement. In addition, those who consumed less salt in their baseline diet (measured with urine dipsticks) were more likely to agree that providing healthy foods to their customers is necessary. This study demonstrated the potential to reduce the sodium contents of restaurant foods by improving restaurant owners' and cooks' psychological factors and their own health behaviors. This small pilot study demonstrated that working with restaurant owners and cooks to improve their own health and sodium intake may have an effect on participation in restaurant-based sodium reduction initiatives. Future intervention studies with a larger sample size and comparison group can focus on improving the health and perceptions of restaurant personnel in order to increase the feasibility and efficacy of restaurant-based sodium reduction programs and policies.

  14. Supersymmetry discovery potential in the 2 leptons channel with ATLAS

    CERN Document Server

    De Sanctis, U

    2008-01-01

    The main argument of the PhD thesis is the evaluation of the ATLAS detector potential to discover Supersymmetry and to estimate the masses of the supersymmetric particles produced in events with two isolated leptons (electrons or muons) in the final state. The Supersymmetry (SUSY) is one of the most credited theories to extend the Standard Model (SM). This theory foresees a new class of particles that can be detected reconstructing their decay chains. Under some basic assumptions that define the mSUGRA model, all these chains finish with the Lightest SUSY Particle (LSP) that is stable, neutral and weakly interacting: a good candidate for the Cold Dark Matter. The LSP escapes the detection originating a large amount of missing energy in the detector. Within the mSUGRA model, this channel is then characterised by the presence of two isolated leptons, missing energy and energetic jets. A strategy to estimate the SM background in this channel using only real data has been developed allowing the discovery of SUSY ...

  15. Solubilities of sodium nitrate, sodium nitrite, and sodium aluminate in simulated nuclear waste

    International Nuclear Information System (INIS)

    Reynolds, D.A.; Herting, D.L.

    1984-09-01

    Solubilities were determined for sodium nitrate, sodium nitrite, and sodium aluminate in synthetic nuclear waste liquor. Solubilities were determined as a function of temperature and solution composition (concentrations of sodium hydroxide, sodium nitrate, sodium nitrite, and sodium aluminate). Temperature had the greatest effect on the solubilities of sodium nitrate and sodium nitrite and a somewhat lesser effect on sodium aluminate solubility. Hydroxide had a great effect on the solubilities of all three salts. Other solution components had minor effects. 2 references, 8 figures, 11 tables

  16. Hg/HgO electrode and hydrogen evolution potentials in aqueous sodium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Nickell, Ryan A.; Zhu, Wenhua H.; Payne, Robert U.; Cahela, Donald R.; Tatarchuk, Bruce J. [Center for Microfibrous Materials Manufacturing, Department of Chemical Engineering, 230 Ross Hall, Auburn University, Auburn, AL 36849 (United States)

    2006-10-27

    The Hg/HgO electrode is usually utilized as a reference electrode in alkaline solution such as for development of an alkaline hydrogen electrode. The reference electrode provides a suitable reference point but is available from few commercial vendors and suffers from inadequate documentation on potential in varying electrolytes. A new numerical method uses activity, activity coefficients, and a few correlated empirical equations to determine the potential values in both dilute and concentrated sodium hydroxide solutions at temperatures of 0-90{sup o}C and at concentrations of 0.100-12.8mol kg{sub H{sub 2}O}{sup -1}. The computed potentials of the Hg/HgO electrodes versus a normal hydrogen electrode (NHE) at 25{sup o}C and 1atm are 0.1634V for 0.100m, 0.1077V for 1.00m, and 0.0976V for 1.45m NaOH solutions. The Hg/HgO reduction potential further changes to -0.0751V versus NHE and hydrogen evolution potential changes to -0.9916V versus NHE in a solution of 30.0wt.% NaOH at 80{sup o}C. The calculated values are compared with the measured data at 25 and 75{sup o}C. The experimental data agree well with the numerical values computed from the theoretical and empirical equations. (author)

  17. Numerical study of the underexpanded nitrogen jets submerged into liquid sodium in the frame of Sodium-cooled Fast Reactor (SFRs)

    International Nuclear Information System (INIS)

    Chen, F.; Allou, A.; Parisse, J.D.

    2017-01-01

    The study of the consequences of a gas leakage in the secondary/ tertiary heat exchangers is one of the essential points in the safety analysis of Sodium-cooled Fast nuclear Reactors (SFRs). This work is in the frame of the technology of the Compact plates Sodium-Gas heat Exchangers (ECSG) which is an alternative to conventional steam Rankine cycles. The overpressure of the tertiary nitrogen loop causes the formation of underexpanded gas jets submerged in the liquid sodium. In order to establish a safety evaluation, it would be an asset to be able to estimate the leakage. The gas leak detection by the acoustic method based on the bubbles field has been proposed. It requires then a delicate knowledge of the bubble field. This work contributes to development a numerical tool and its validation to model the transport and the production of bubbles in the downstream of underexpanded gas jets. The code CANOP modeling bi-phasic compressible flow is investigated under the actual condition of the underexpanded nitrogen jets submerged in the liquid sodium in an ECSG channel. Expensive computational cost is limited by using an Adaptive Mesh Refinement. (author)

  18. Citral sensing by Transient [corrected] receptor potential channels in dorsal root ganglion neurons.

    Directory of Open Access Journals (Sweden)

    Stephanie C Stotz

    2008-05-01

    Full Text Available Transient receptor potential (TRP ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1, and produces long-lasting inhibition of TRPV1-3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate, consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin.

  19. Influence of Pyrethroid Insecticides on Sodium and Calcium Influx in Neocortical Neurons

    Science.gov (United States)

    Pyrethroid insecticides bind to voltage-gated sodium channels and modify their gating kinetics, thereby disrupting neuronal function. Using murine neocortical neurons in primary culture, we have compared the ability of 11 structurally diverse pyrethroid insecticides to evoke Na+ ...

  20. Dirac potentials in a coupled channel approach to inelastic scattering

    International Nuclear Information System (INIS)

    Mishra, V.K.; Clark, B.C.; Cooper, E.D.; Mercer, R.L.

    1990-01-01

    It has been shown that there exist transformations that can be used to change the Lorentz transformation character of potentials, which appear in the Dirac equation for elastic scattering. We consider the situation for inelastic scattering described by coupled channel Dirac equations. We examine a two-level problem where both the ground and excited states are assumed to have zero spin. Even in this simple case we have not found an appropriate transformation. However, if the excited state has zero excitation energy it is possible to find a transformation

  1. Sodium concrete reaction - Structural considerations

    International Nuclear Information System (INIS)

    Ferskakis, G.N.

    1984-01-01

    An overview of the sodium concrete reaction phenomenon, with emphasis on structural considerations, is presented. Available test results for limestone, basalt, and magnetite concrete with various test article configurations are reviewed. Generally, tests indicate reaction is self limiting before all sodium is used. Uncertainties, however, concerning the mechanism for penetration of sodium into concrete have resulted in different theories about a reaction model. Structural behavior may be significant in the progression of the reaction due to thermal-structuralchemical interactions involving tensile cracking, compressive crushing, or general deterioration of concrete and the exposure of fresh concrete surfaces to react with sodium. Structural behavior of test articles and potential factors that could enhance the progression of the reaction are discussed

  2. Channel Width Change as a Potential Sediment Source, Minnesota River Basin

    Science.gov (United States)

    Lauer, J. W.; Echterling, C.; Lenhart, C. F.; Rausch, R.; Belmont, P.

    2017-12-01

    Turbidity and suspended sediment are important management considerations along the Minnesota River. The system has experience large and relatively consistent increases in both discharge and channel width over the past century. Here we consider the potential role of channel cross section enlargement as a sediment source. Reach-average channel width was digitized from aerial images dated between 1937 and 2015 along multiple sub-reaches of the Minnesota River and its major tributaries. Many of the sub-reaches include several actively migrating bends. The analysis shows relatively consistent increases in width over time, with average increase rates of 0.4 percent per year. Extrapolation to the river network using a regional relationship for cross-sectional area vs. drainage area indicates that large tributaries and main-stem reaches account for most of the bankfull cross-sectional volume in the basin. Larger tributaries and the main stem thus appear more important for widening related sediment production than small tributaries. On a basin-wide basis, widening could be responsible for a gross supply of more sediment than has been gaged at several main-stem sites, indicating that there may be important sinks for both sand and silt/clay size material distributed throughout the system. Sediment storage is probably largest along the lowest-slope reaches of the main stem. While channel width appears to have adjusted relatively quickly in response to discharge and other hydraulic modifications, net storage of sediment in floodplains probably occurs sufficiently slowly that depth adjustment will lag width adjustment significantly. Detailed analysis of the lower Minnesota River using a river segmenting approach allows for a more detailed assessment of reach-scale processes. Away from channel cutoffs, elongation of the channel at eroding bends is consistent with rates observed on other actively migrating rivers. However, the sinuosity increase has been more than compensated by

  3. Molecular modelling studies of kdr mutations in voltage gated sodium channel revealed significant conformational variations contributing to insecticide resistance.

    Science.gov (United States)

    Yellapu, Nanda Kumar; Gopal, Jeyakodi; Kasinathan, Gunasekaran; Purushothaman, Jambulingam

    2018-06-01

    Voltage gated sodium channels (VGSC) of mosquito vectors are the primary targets of dichlorodiphenyltrichloroethane (DDT) and other synthetic pyrethroids used in public health programmes. The knockdown resistant (kdr) mutations in VGSC are associated with the insecticide resistance especially in Anophelines. The present study is aimed to emphasize and demarcate the impact of three kdr-mutations such as L1014S, L1014F and L1014H on insecticide resistance. The membrane model of sodium transport domain of VGSC (STD-VGSC) was constructed using de novo approach based on domain and trans-membrane predictions. The comparative molecular modelling studies of wild type and mutant models of STD-VGSC revealed that L1014F mutant was observed to be near native to the wild type model in all the respects, but, L1014S and L1014H mutations showed drastic variations in the energy levels, root mean square fluctuations (RMSF) that resulted in conformational variations. The predicted binding sites also showed variable cavity volumes and RMSF in L1014S and L1014H mutants. Further, DDT also found be bound in near native manner to wild type in L1014F mutant and with variable orientation and affinities in L1014S and L1014H mutants. The variations and fluctuations observed in mutant structures explained that each mutation has its specific impact on the conformation of VGSC and its binding with DDT. The study provides new insights into the structure-function-correlations of mutant STD-VGSC structures and demonstrates the role and effects of kdr mutations on insecticide resistance in mosquito vectors.

  4. Distinct roles of the DmNav and DSC1 channels in the action of DDT and pyrethroids.

    Science.gov (United States)

    Rinkevich, Frank D; Du, Yuzhe; Tolinski, Josh; Ueda, Atsushi; Wu, Chun-Fang; Zhorov, Boris S; Dong, Ke

    2015-03-01

    Voltage-gated sodium channels (Nav channels) are critical for electrical signaling in the nervous system and are the primary targets of the insecticides DDT and pyrethroids. In Drosophila melanogaster, besides the canonical Nav channel, Para (also called DmNav), there is a sodium channel-like cation channel called DSC1 (Drosophila sodium channel 1). Temperature-sensitive paralytic mutations in DmNav (para(ts)) confer resistance to DDT and pyrethroids, whereas DSC1 knockout flies exhibit enhanced sensitivity to pyrethroids. To further define the roles and interaction of DmNav and DSC1 channels in DDT and pyrethroid neurotoxicology, we generated a DmNav/DSC1 double mutant line by introducing a para(ts1) allele (carrying the I265N mutation) into a DSC1 knockout line. We confirmed that the I265N mutation reduced the sensitivity to two pyrethroids, permethrin and deltamethrin of a DmNav variant expressed in Xenopus oocytes. Computer modeling predicts that the I265N mutation confers pyrethroid resistance by allosterically altering the second pyrethroid receptor site on the DmNav channel. Furthermore, we found that I265N-mediated pyrethroid resistance in para(ts1) mutant flies was almost completely abolished in para(ts1);DSC1(-/-) double mutant flies. Unexpectedly, however, the DSC1 knockout flies were less sensitive to DDT, compared to the control flies (w(1118A)), and the para(ts1);DSC1(-/-) double mutant flies were even more resistant to DDT compared to the DSC1 knockout or para(ts1) mutant. Our findings revealed distinct roles of the DmNav and DSC1 channels in the neurotoxicology of DDT vs. pyrethroids and implicate the exciting possibility of using DSC1 channel blockers or modifiers in the management of pyrethroid resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Lane fuzzy collision in channel with potential deformation by photon-phonon-electron excitation and sub-atomic control

    International Nuclear Information System (INIS)

    Shen Jing

    1998-01-01

    Collision between μ + and the μ - beams in the crystal are forbidden due to the two beams having different ''lanes'' in a channel. A laser pulse of ps-fs shocks lattice kernel vibration and dilates lattice electron distribution. It deforms the Lindhard's potential which is then expressed in a quantized form as the Huang-Zhu's potential[1]. The dynamic lanes can be made to overlap in a channel to allow collision without ductile fracture. This raises a new technology of sub-atomic information and control, which has been raised by T. D. Lee

  6. Incorporating Born solvation energy into the three-dimensional Poisson-Nernst-Planck model to study ion selectivity in KcsA K+ channels

    Science.gov (United States)

    Liu, Xuejiao; Lu, Benzhuo

    2017-12-01

    Potassium channels are much more permeable to potassium than sodium ions, although potassium ions are larger and both carry the same positive charge. This puzzle cannot be solved based on the traditional Poisson-Nernst-Planck (PNP) theory of electrodiffusion because the PNP model treats all ions as point charges, does not incorporate ion size information, and therefore cannot discriminate potassium from sodium ions. The PNP model can qualitatively capture some macroscopic properties of certain channel systems such as current-voltage characteristics, conductance rectification, and inverse membrane potential. However, the traditional PNP model is a continuum mean-field model and has no or underestimates the discrete ion effects, in particular the ion solvation or self-energy (which can be described by Born model). It is known that the dehydration effect (closely related to ion size) is crucial to selective permeation in potassium channels. Therefore, we incorporated Born solvation energy into the PNP model to account for ion hydration and dehydration effects when passing through inhomogeneous dielectric channel environments. A variational approach was adopted to derive a Born-energy-modified PNP (BPNP) model. The model was applied to study a cylindrical nanopore and a realistic KcsA channel, and three-dimensional finite element simulations were performed. The BPNP model can distinguish different ion species by ion radius and predict selectivity for K+ over Na+ in KcsA channels. Furthermore, ion current rectification in the KcsA channel was observed by both the PNP and BPNP models. The I -V curve of the BPNP model for the KcsA channel indicated an inward rectifier effect for K+ (rectification ratio of ˜3 /2 ) but indicated an outward rectifier effect for Na+ (rectification ratio of ˜1 /6 ) .

  7. Ion channel recordings on an injection-molded polymer chip.

    Science.gov (United States)

    Tanzi, Simone; Matteucci, Marco; Christiansen, Thomas Lehrmann; Friis, Søren; Christensen, Mette Thylstrup; Garnaes, Joergen; Wilson, Sandra; Kutchinsky, Jonatan; Taboryski, Rafael

    2013-12-21

    In this paper, we demonstrate recordings of the ion channel activity across the cell membrane in a biological cell by employing the so-called patch clamping technique on an injection-molded polymer microfluidic device. The findings will allow direct recordings of ion channel activity to be made using the cheapest materials and production platform to date and with the potential for very high throughput. The employment of cornered apertures for cell capture allowed the fabrication of devices without through holes and via a scheme comprising master origination by dry etching in a silicon substrate, electroplating in nickel and injection molding of the final part. The most critical device parameters were identified as the length of the patching capillary and the very low surface roughness on the inside of the capillary. The cross-sectional shape of the orifice was found to be less critical, as both rectangular and semicircular profiles seemed to have almost the same ability to form tight seals with cells with negligible leak currents. The devices were functionally tested using human embryonic kidney cells expressing voltage-gated sodium channels (Nav1.7) and benchmarked against a commercial state-of-the-art system for automated ion channel recordings. These experiments considered current-voltage (IV) relationships for activation and inactivation of the Nav1.7 channels and their sensitivity to a local anesthetic, lidocaine. Both IVs and lidocaine dose-response curves obtained from the injection-molded polymer device were in good agreement with data obtained from the commercial system.

  8. Mechanisms of Sodium Transport in Plants—Progresses and Challenges

    Directory of Open Access Journals (Sweden)

    Monika Keisham

    2018-02-01

    Full Text Available Understanding the mechanisms of sodium (Na+ influx, effective compartmentalization, and efflux in higher plants is crucial to manipulate Na+ accumulation and assure the maintenance of low Na+ concentration in the cytosol and, hence, plant tolerance to salt stress. Na+ influx across the plasma membrane in the roots occur mainly via nonselective cation channels (NSCCs. Na+ is compartmentalized into vacuoles by Na+/H+ exchangers (NHXs. Na+ efflux from the plant roots is mediated by the activity of Na+/H+ antiporters catalyzed by the salt overly sensitive 1 (SOS1 protein. In animals, ouabain (OU-sensitive Na+, K+-ATPase (a P-type ATPase mediates sodium efflux. The evolution of P-type ATPases in higher plants does not exclude the possibility of sodium efflux mechanisms similar to the Na+, K+-ATPase-dependent mechanisms characteristic of animal cells. Using novel fluorescence imaging and spectrofluorometric methodologies, an OU-sensitive sodium efflux system has recently been reported to be physiologically active in roots. This review summarizes and analyzes the current knowledge on Na+ influx, compartmentalization, and efflux in higher plants in response to salt stress.

  9. Sodium channel blockade with QRS widening after an escitalopram overdose.

    Science.gov (United States)

    Schreffler, Susan M; Marraffa, Jeanna M; Stork, Christine M; Mackey, Jennifer

    2013-09-01

    Escitalopram is rarely associated with prolongation of the QTc interval; however, there are no reported cases of QRS complex widening associated with escitalopram overdose. We report a case of a patient who presented with both QRS complex widening and QTc interval prolongation after an escitalopram overdose. A 16-year-old girl presented to the emergency department after ingestion of escitalopram, tramadol/acetaminophen, and hydrocodone/acetaminophen. Laboratory results were significant for 4-hour acetaminophen 21.1 μg/mL. Serum electrolytes including potassium, magnesium, and calcium were all normal. Initial electrocardiogram (ECG) revealed a widened QRS with an incomplete right bundle branch pattern. After administration of 100-mEq sodium bicarbonate, a repeat ECG revealed narrowing of the QRS complex and a prolonged QTc interval. Magnesium sulfate 2 g intravenous and sodium bicarbonate drip were initiated. A repeat ECG, 1 hour after the second, revealed normalization of the QRS complex and QTc interval. Prolongation of the QTc interval is an expected effect of escitalopram. Both escitalopram and citalopram are metabolized to the cardiotoxic metabolite S-didesmethylcitalopram and didesmethylcitalopram, respectively, which have been implicated in numerous cardiac abnormalities including widening of the QRS complex. Although never previously described with escitalopram, this mechanism provides a reasonable explanation for the QRS complex widening and incomplete right bundle branch block that occurred in our patient. Both QRS complex widening and QTc interval prolongation should be monitored in cases of escitalopram and citalopram overdoses.

  10. Arctigenin, a potential anti-arrhythmic agent, inhibits aconitine-induced arrhythmia by regulating multi-ion channels.

    Science.gov (United States)

    Zhao, Zhenying; Yin, Yongqiang; Wu, Hong; Jiang, Min; Lou, Jianshi; Bai, Gang; Luo, Guo'an

    2013-01-01

    Arctigenin possesses biological activities, but its underlying mechanisms at the cellular and ion channel levels are not completely understood. Therefore, the present study was designed to identify the anti-arrhythmia effect of arctigenin in vivo, as well as its cellular targets and mechanisms. A rat arrhythmia model was established via continuous aconitine infusion, and the onset times of ventricular premature contraction, ventricular tachycardia and death were recorded. The Action Potential Duration (APD), sodium current (I(Na)), L-type calcium current (I(Ca, L)) and transient outward potassium current (I(to)) were measured and analysed using a patch-clamp recording technique in normal rat cardiomyocytes and myocytes of arrhythmia aconitine-induced by. Arctigenin significantly delayed the arrhythmia onset in the aconitine-induced rat model. The 50% and 90% repolarisations (APD50 and APD90) were shortened by 100 µM arctigenin; the arctigenin dose also inhibited the prolongation of APD50 and APD90 caused by 1 µM aconitine. Arctigenin inhibited I(Na) and I(Ca,L) and attenuated the aconitine-increased I(Na) and I(Ca,L) by accelerating the activation process and delaying the inactivation process. Arctigenin enhanced Ito by facilitating the activation process and delaying the inactivation process, and recoverd the decreased Ito induced by aconitine. Arctigenin has displayed anti-arrhythmia effects, both in vivo and in vitro. In the context of electrophysiology, I(Na), I(Ca, L), and I(to) may be multiple targets of arctigenin, leading to its antiarrhythmic effect. © 2013 S. Karger AG, Basel.

  11. Prompt burst energetics experiments: fresh oxide/sodium series

    International Nuclear Information System (INIS)

    Reil, K.O.; Young, M.F.

    1978-08-01

    A series of in-pile experiments has been performed to provide information on thermal energy to work conversion under prompt burst excursion (PBE) conditions. These consisted of single pin tests using fresh uranium oxide or uranium carbide fuel in a capsule geometry, with either stagnant sodium or helium in the coolant channel. The experiments were irradiated with single or double pulses in the Annular Core Pulse Reactor (ACPR) to provide energy depositions up to 2900 J/g. This report covers the seven single and five double pulse UO 2 sodium-in tests. Experimental data includes pressure and linear motion transducer histories, measured work-energy conversion efficiencies, and post-irradiation examination. Analysis includes derived work-energy conversion efficiencies (up to 0.54%), pin failure modeling, hydrodynamic analysis of pressure pulse propagation in the channel, and piston stopping effects. Initial pressure events in the single pulse experiments appear to be dominated by fuel vapor pressure. Definite fuel-coolant interactions were observed in several experiments, including some that were coincident with stopping of the linear motion transducer piston, suggesting a possible triggering effect by the deceleration pressure

  12. Ion Channel Genes and Epilepsy: Functional Alteration, Pathogenic Potential, and Mechanism of Epilepsy.

    Science.gov (United States)

    Wei, Feng; Yan, Li-Min; Su, Tao; He, Na; Lin, Zhi-Jian; Wang, Jie; Shi, Yi-Wu; Yi, Yong-Hong; Liao, Wei-Ping

    2017-08-01

    Ion channels are crucial in the generation and modulation of excitability in the nervous system and have been implicated in human epilepsy. Forty-one epilepsy-associated ion channel genes and their mutations are systematically reviewed. In this paper, we analyzed the genotypes, functional alterations (funotypes), and phenotypes of these mutations. Eleven genes featured loss-of-function mutations and six had gain-of-function mutations. Nine genes displayed diversified funotypes, among which a distinct funotype-phenotype correlation was found in SCN1A. These data suggest that the funotype is an essential consideration in evaluating the pathogenicity of mutations and a distinct funotype or funotype-phenotype correlation helps to define the pathogenic potential of a gene.

  13. Dietary sodium in chronic kidney disease: a comprehensive approach.

    Science.gov (United States)

    Wright, Julie A; Cavanaugh, Kerri L

    2010-01-01

    Despite existing guidelines, dietary sodium intake among people worldwide often exceeds recommended limits. Research evidence is growing in both animal and human studies showing indirect and direct adverse consequences of high dietary sodium on the kidney. In patients with kidney disease, dietary sodium may have important effects on proteinuria, efficacy of antiproteinuric pharmacologic therapy, hypertension control, maintaining an optimal volume status, and immunosuppressant therapy. Dietary sodium intake is an important consideration in patients with all stages of chronic kidney disease, including those receiving dialysis therapy or those who have received a kidney transplant. We review in detail the dietary sodium recommendations suggested by various organizations for patients with kidney disease. Potential barriers to successfully translating current sodium intake guidelines into practice include poor knowledge about the sodium content of food among both patients and providers, complex labeling information, patient preferences related to taste, and limited support for modifications in public policy. Finally, we offer existing and potential solutions that may assist providers in educating and empowering patients to effectively manage their dietary sodium intake.

  14. 43. Calmodulin regulating calcium sensitivity of Na channels

    Directory of Open Access Journals (Sweden)

    R. Vegiraju

    2016-07-01

    Full Text Available By extrapolating information from existing research and observing previous assumptions regarding the structure of the Na Channel, this experiment was conducted under the hypothesis that the Na Channel is in part regulated by the calmodulin protein, as a result proving calcium sensitivity of the Na Channel. Furthermore, we assume that there is a one to one stoichiometry between the Na Channel and the Calmodulin. There has been extensive research into the functionality and structure of sodium ion channels (Na channels, as several diseases are associated with the lack of regulation of sodium ions, that is caused by the disfunction of these Na channels. However, one highly controversial matter in the field is the importance of the protein calmodulin (CaM and calcium in Na channel function. Calmodulin is a protein that is well known for its role as a calcium binding messenger protein, and that association is believed to play an indirect role in regulating the Na channel through the Na channel’s supposed calcium sensitivity. While there are proponents for both sides, there has been relatively little research that provides strong evidence for either case. In this experiment, the effect of calmodulin on NaV 1.5 is tested by preparing a set of cardiac cells (of the human specie with the NaV 1.5 C-Termini and CaM protein, which were then to be placed in solutions with varying concentrations of calcium. We took special care to test multiple concentrations of calcium, as previous studies have tested very low concentrations, with Manu Ben-Johny’s team from the John Hopkins laboratory in particular testing up to a meager 50 micromolar, despite producing a well-respected paper (By comparison, the average Na channel can naturally sustain a concentration of almost 1-2 millimolar and on some occasions, reaching even higher concentrations. After using light scattering and observing the signals given off by the calcium interacting with these Nav1.5/Ca

  15. Polymodal Transient Receptor Potential Vanilloid (TRPV Ion Channels in Chondrogenic Cells

    Directory of Open Access Journals (Sweden)

    Csilla Szűcs Somogyi

    2015-08-01

    Full Text Available Mature and developing chondrocytes exist in a microenvironment where mechanical load, changes of temperature, osmolarity and acidic pH may influence cellular metabolism. Polymodal Transient Receptor Potential Vanilloid (TRPV receptors are environmental sensors mediating responses through activation of linked intracellular signalling pathways. In chondrogenic high density cultures established from limb buds of chicken and mouse embryos, we identified TRPV1, TRPV2, TRPV3, TRPV4 and TRPV6 mRNA expression with RT-PCR. In both cultures, a switch in the expression pattern of TRPVs was observed during cartilage formation. The inhibition of TRPVs with the non-selective calcium channel blocker ruthenium red diminished chondrogenesis and caused significant inhibition of proliferation. Incubating cell cultures at 41 °C elevated the expression of TRPV1, and increased cartilage matrix production. When chondrogenic cells were exposed to mechanical load at the time of their differentiation into matrix producing chondrocytes, we detected increased mRNA levels of TRPV3. Our results demonstrate that developing chondrocytes express a full palette of TRPV channels and the switch in the expression pattern suggests differentiation stage-dependent roles of TRPVs during cartilage formation. As TRPV1 and TRPV3 expression was altered by thermal and mechanical stimuli, respectively, these are candidate channels that contribute to the transduction of environmental stimuli in chondrogenic cells.

  16. An effective method to screen sodium-based layered materials for sodium ion batteries

    Science.gov (United States)

    Zhang, Xu; Zhang, Zihe; Yao, Sai; Chen, An; Zhao, Xudong; Zhou, Zhen

    2018-03-01

    Due to the high cost and insufficient resource of lithium, sodium-ion batteries are widely investigated for large-scale applications. Typically, insertion-type materials possess better cyclic stability than alloy-type and conversion-type ones. Therefore, in this work, we proposed a facile and effective method to screen sodium-based layered materials based on Materials Project database as potential candidate insertion-type materials for sodium ion batteries. The obtained Na-based layered materials contains 38 kinds of space group, which reveals that the credibility of our screening approach would not be affected by the space group. Then, some important indexes of the representative materials, including the average voltage, volume change and sodium ion mobility, were further studied by means of density functional theory computations. Some materials with extremely low volume changes and Na diffusion barriers are promising candidates for sodium ion batteries. We believe that our classification algorithm could also be used to search for other alkali and multivalent ion-based layered materials, to accelerate the development of battery materials.

  17. Transient mixed convection in a cavity. Comparison between water and sodium

    International Nuclear Information System (INIS)

    Garnier, J.

    1983-01-01

    The basic problem studied is the interaction between a vortex and a thermal stratification. The experiments are done in a parallelepipedic cavity which bottom communicates with a rectangular channel. A forced flow in this channel induces a recirculating flow in the cavity. The transient condition is a decrease (step wise or slope) of the inlet temperature at a constant flowrate. This problem is studied with two different approaches: experiments in water or in sodium. In the sodium experiments, the dimension of the cavity ensures large values of the Peclet number (about 10 4 ) and a wide range of values for the Richardson number (from 0.1 to 3). With these experiment, all the regimes of mixed convection, from forced convection to complete stratification can be covered. These results are compared with the other approach using a water model. This comparison is very helpful for studies on the thermalhydraulic behavior of Liquid Metal Fast Breeder Reactors. (author)

  18. The transient receptor potential, TRP4, cation channel is a novel member of the family of calmodulin binding proteins.

    OpenAIRE

    Trost, C; Bergs, C; Himmerkus, N; Flockerzi, V

    2001-01-01

    The mammalian gene products, transient receptor potential (trp)1 to trp7, are related to the Drosophila TRP and TRP-like ion channels, and are candidate proteins underlying agonist-activated Ca(2+)-permeable ion channels. Recently, the TRP4 protein has been shown to be part of native store-operated Ca(2+)-permeable channels. These channels, most likely, are composed of other proteins in addition to TRP4. In the present paper we report the direct interaction of TRP4 and calmodulin (CaM) by: (1...

  19. Dialysate sodium and sodium gradient in maintenance hemodialysis: a neglected sodium restriction approach?

    OpenAIRE

    Munoz Mendoza, Jair; Sun, Sumi; Chertow, Glenn M.; Moran, John; Doss, Sheila; Schiller, Brigitte

    2011-01-01

    Background. A higher sodium gradient (dialysate sodium minus pre-dialysis plasma sodium) during hemodialysis (HD) has been associated with sodium loading; however, its role is not well studied. We hypothesized that a sodium dialysate prescription resulting in a higher sodium gradient is associated with increases in interdialytic weight gain (IDWG), blood pressure (BP) and thirst.

  20. Differential expression of the Kv1 voltage-gated potassium channel family in the rat nephron.

    Science.gov (United States)

    Carrisoza-Gaytán, Rolando; Salvador, Carolina; Diaz-Bello, Beatriz; Escobar, Laura I

    2014-10-01

    Several potassium (K(+)) channels contribute to maintaining the resting membrane potential of renal epithelial cells. Apart from buffering the cell membrane potential and cell volume, K(+) channels allow sodium reabsorption in the proximal tubule (PT), K(+) recycling and K(+) reabsorption in the thick ascending limb (TAL) and K(+) secretion and K(+) reabsorption in the distal convoluted tubule (DCT), connecting tubule (CNT) and collecting duct. Previously, we identified Kv.1.1, Kv1.3 and Kv1.6 channels in collecting ducts of the rat inner medulla. We also detected intracellular Kv1.3 channel in the acid secretory intercalated cells, which is trafficked to the apical membrane in response to dietary K(+) to function as a secretory K(+) channel. In this work we sought to characterize the expression of all members of the Kv1 family in the rat nephron. mRNA and protein expression were detected for all Kv1 channels. Immunoblots identified differential expression of each Kv1 in the cortex, outer and inner medulla. Immunofluorescence labeling detected Kv1.5 in Bowman´s capsule and endothelial cells and Kv1.7 in podocytes, endothelial cells and macula densa in glomeruli; Kv1.4, Kv1.5 and Kv1.7 in PT; Kv1.2, Kv1.4 and Kv1.6 in TAL; Kv1.1, Kv1.4 and Kv1.6 in DCT and CNT and Kv1.3 in DCT, and all the Kv1 family in the cortical and medullary collecting ducts. Recently, some hereditary renal syndromes have been attributed to mutations in K(+) channels. Our results expand the repertoire of K(+) channels that contribute to K(+) homeostasis to include the Kv1 family.

  1. Reaction path analysis of sodium-water reaction phenomena in support of chemical reaction model development

    International Nuclear Information System (INIS)

    Kikuchi, Shin; Ohshima, Hiroyuki; Hashimoto, Kenro

    2011-01-01

    Computational study of the sodium-water reaction at the gas (water) - liquid (sodium) interface has been carried out using ab initio (first-principle) method. A possible reaction channel has been identified for the stepwise OH bond dissociations of a single water molecule. The energetics including the binding energy of a water molecule to the sodium surface, the activation energies of the bond cleavages, and the reaction energies, have been evaluated, and the rate constants of the first and second OH bond-breakings have been compared. The results are used as the basis for constructing the chemical reaction model used in a multi-dimensional sodium-water reaction code, SERAPHIM, being developed by JAEA toward the safety assessment of the steam generator (SG) in a sodium-cooled fast reactor (SFR). (author)

  2. Temperature and Voltage Coupling to Channel Opening in Transient Receptor Potential Melastatin 8 (TRPM8)*♦

    Science.gov (United States)

    Raddatz, Natalia; Castillo, Juan P.; Gonzalez, Carlos; Alvarez, Osvaldo; Latorre, Ramon

    2014-01-01

    Expressed in somatosensory neurons of the dorsal root and trigeminal ganglion, the transient receptor potential melastatin 8 (TRPM8) channel is a Ca2+-permeable cation channel activated by cold, voltage, phosphatidylinositol 4,5-bisphosphate, and menthol. Although TRPM8 channel gating has been characterized at the single channel and macroscopic current levels, there is currently no consensus regarding the extent to which temperature and voltage sensors couple to the conduction gate. In this study, we extended the range of voltages where TRPM8-induced ionic currents were measured and made careful measurements of the maximum open probability the channel can attain at different temperatures by means of fluctuation analysis. The first direct measurements of TRPM8 channel temperature-driven conformational rearrangements provided here suggest that temperature alone is able to open the channel and that the opening reaction is voltage-independent. Voltage is a partial activator of TRPM8 channels, because absolute open probability values measured with fully activated voltage sensors are less than 1, and they decrease as temperature rises. By unveiling the fast temperature-dependent deactivation process, we show that TRPM8 channel deactivation is well described by a double exponential time course. The fast and slow deactivation processes are temperature-dependent with enthalpy changes of 27.2 and 30.8 kcal mol−1. The overall Q10 for the closing reaction is about 33. A three-tiered allosteric model containing four voltage sensors and four temperature sensors can account for the complex deactivation kinetics and coupling between voltage and temperature sensor activation and channel opening. PMID:25352597

  3. EEG Channel Selection Using Particle Swarm Optimization for the Classification of Auditory Event-Related Potentials

    Directory of Open Access Journals (Sweden)

    Alejandro Gonzalez

    2014-01-01

    Full Text Available Brain-machine interfaces (BMI rely on the accurate classification of event-related potentials (ERPs and their performance greatly depends on the appropriate selection of classifier parameters and features from dense-array electroencephalography (EEG signals. Moreover, in order to achieve a portable and more compact BMI for practical applications, it is also desirable to use a system capable of accurate classification using information from as few EEG channels as possible. In the present work, we propose a method for classifying P300 ERPs using a combination of Fisher Discriminant Analysis (FDA and a multiobjective hybrid real-binary Particle Swarm Optimization (MHPSO algorithm. Specifically, the algorithm searches for the set of EEG channels and classifier parameters that simultaneously maximize the classification accuracy and minimize the number of used channels. The performance of the method is assessed through offline analyses on datasets of auditory ERPs from sound discrimination experiments. The proposed method achieved a higher classification accuracy than that achieved by traditional methods while also using fewer channels. It was also found that the number of channels used for classification can be significantly reduced without greatly compromising the classification accuracy.

  4. Effect of Skeletal Muscle Na+ Channel Delivered Via a Cell Platform on Cardiac Conduction and Arrhythmia Induction

    NARCIS (Netherlands)

    Boink, Gerard J. J.; Lu, Jia; Driessen, Helen E.; Duan, Lian; Sosunov, Eugene A.; Anyukhovsky, Evgeny P.; Shlapakova, Iryna N.; Lau, David H.; Rosen, Tove S.; Danilo, Peter; Jia, Zhiheng; Ozgen, Nazira; Bobkov, Yevgeniy; Guo, Yuanjian; Brink, Peter R.; Kryukova, Yelena; Robinson, Richard B.; Entcheva, Emilia; Cohen, Ira S.; Rosen, Michael R.

    2012-01-01

    Background-In depolarized myocardial infarct epicardial border zones, the cardiac sodium channel is largely inactivated, contributing to slow conduction and reentry. We have demonstrated that adenoviral delivery of the skeletal muscle Na+ channel (SkM1) to epicardial border zones normalizes

  5. Glioblastoma cancer stem cell lines express functional acid sensing ion channels ASIC1a and ASIC3

    DEFF Research Database (Denmark)

    Tian, Yuemin; Bresenitz, Pia; Reska, Anna

    2017-01-01

    Acidic microenvironment is commonly observed in tumour tissues, including glioblastoma (GBM), the most aggressive and lethal brain tumour in adults. Acid sensing ion channels (ASICs) are neuronal voltage-insensitive sodium channels, which are sensors of extracellular protons. Here we studied...

  6. Overexpression of the Large-Conductance, Ca2+-Activated K+ (BK) Channel Shortens Action Potential Duration in HL-1 Cardiomyocytes.

    Science.gov (United States)

    Stimers, Joseph R; Song, Li; Rusch, Nancy J; Rhee, Sung W

    2015-01-01

    Long QT syndrome is characterized by a prolongation of the interval between the Q wave and the T wave on the electrocardiogram. This abnormality reflects a prolongation of the ventricular action potential caused by a number of genetic mutations or a variety of drugs. Since effective treatments are unavailable, we explored the possibility of using cardiac expression of the large-conductance, Ca2+-activated K+ (BK) channel to shorten action potential duration (APD). We hypothesized that expression of the pore-forming α subunit of human BK channels (hBKα) in HL-1 cells would shorten action potential duration in this mouse atrial cell line. Expression of hBKα had minimal effects on expression levels of other ion channels with the exception of a small but significant reduction in Kv11.1. Patch-clamped hBKα expressing HL-1 cells exhibited an outward voltage- and Ca2+-sensitive K+ current, which was inhibited by the BK channel blocker iberiotoxin (100 nM). This BK current phenotype was not detected in untransfected HL-1 cells or in HL-1 null cells sham-transfected with an empty vector. Importantly, APD in hBKα-expressing HL-1 cells averaged 14.3 ± 2.8 ms (n = 10), which represented a 53% reduction in APD compared to HL-1 null cells lacking BKα expression. APD in the latter cells averaged 31.0 ± 5.1 ms (n = 13). The shortened APD in hBKα-expressing cells was restored to normal duration by 100 nM iberiotoxin, suggesting that a repolarizing K+ current attributed to BK channels accounted for action potential shortening. These findings provide initial proof-of-concept that the introduction of hBKα channels into a cardiac cell line can shorten APD, and raise the possibility that gene-based interventions to increase hBKα channels in cardiac cells may hold promise as a therapeutic strategy for long QT syndrome.

  7. Saltatory conduction in unmyelinated axons: Clustering of Na+ channels on lipid rafts allows micro-saltatory conduction in C-fibers

    Directory of Open Access Journals (Sweden)

    Ali eNeishabouri

    2014-10-01

    Full Text Available The action potential (AP, the fundamental signal of the nervous system, is carried by two types of axons: unmyelinated and myelinated fibers. In the former the action potential propagates continuously along the axon as established in large-diameter fibers. In the latter axons the AP jumps along the Nodes of Ranvier – discrete, anatomically specialized regions which contain very high densities of sodium ion (Na + channels. Therefore saltatory conduction is thought as the hallmark of myelinated axons, which enables faster and more reliable propagation of signals than in unmyelinated axons of same outer diameter.Recent molecular anatomy showed that in C-fibers, the very thin (0.1 μm diameter axons of the peripheral nervous system, Nav1.8 channels are clustered together on lipid rafts that float in the cell membrane. This localized concentration of Na+ channels resembles in structure the ion channel organization at the Nodes of Ranvier, yet it is currently unknown whether this translates into equivalent phenomenon of saltatory conduction or related-functional benefits and efficiencies. Therefore, we modeled biophysically realistic unmyelinated axons with both conventional and lipid-raft based organization of Na+ channels. We find that action potentials are reliably conducted in a micro-saltatory fashion along lipid rafts.Comparing APs in unmyelinated fibers with and without lipid rafts did not reveal any significant difference in either the metabolic cost or AP propagation velocity. By investigating the efficiency of AP propagation over Nav1.8 channels, we find however that the specific inactivation properties of these channels significantly increase the metabolic cost of signaling in C-fibers.

  8. Sodium Channel Voltage-Gated Beta 2 Plays a Vital Role in Brain Aging Associated with Synaptic Plasticity and Expression of COX5A and FGF-2.

    Science.gov (United States)

    XiYang, Yan-Bin; Wang, You-Cui; Zhao, Ya; Ru, Jin; Lu, Bing-Tuan; Zhang, Yue-Ning; Wang, Nai-Chao; Hu, Wei-Yan; Liu, Jia; Yang, Jin-Wei; Wang, Zhao-Jun; Hao, Chun-Guang; Feng, Zhong-Tang; Xiao, Zhi-Cheng; Dong, Wei; Quan, Xiong-Zhi; Zhang, Lian-Feng; Wang, Ting-Hua

    2016-03-01

    The role of sodium channel voltage-gated beta 2 (SCN2B) in brain aging is largely unknown. The present study was therefore designed to determine the role of SCN2B in brain aging by using the senescence-accelerated mice prone 8 (SAMP8), a brain senescence-accelerated animal model, together with the SCN2B transgenic mice. The results showed that SAMP8 exhibited impaired learning and memory functions, assessed by the Morris water maze test, as early as 8 months of age. The messenger RNA (mRNA) and protein expressions of SCN2B were also upregulated in the prefrontal cortex at this age. Treatment with traditional Chinese anti-aging medicine Xueshuangtong (Panax notoginseng saponins, PNS) significantly reversed the SCN2B expressions in the prefrontal cortex, resulting in improved learning and memory. Moreover, SCN2B knockdown transgenic mice were generated and bred to determine the roles of SCN2B in brain senescence. A reduction in the SCN2B level by 60.68% resulted in improvement in the hippocampus-dependent spatial recognition memory and long-term potential (LTP) slope of field excitatory postsynaptic potential (fEPSP), followed by an upregulation of COX5A mRNA levels and downregulation of fibroblast growth factor-2 (FGF-2) mRNA expression. Together, the present findings indicated that SCN2B could play an important role in the aging-related cognitive deterioration, which is associated with the regulations of COX5A and FGF-2. These findings could provide the potential strategy of candidate target to develop antisenescence drugs for the treatment of brain aging.

  9. The effects of thermal motion of neutrals on the non-potential instabilities in a weakly sodium plasma

    International Nuclear Information System (INIS)

    Zigman, V.J.; Milic, B.S.

    1982-01-01

    The results of recent experimental measurements of the differential cross-section for elastic scattering of electrons on sodium atoms are used to evaluate the electron steady-state distribution function in a weakly ionized, uniform and non-magnetized sodium plasma placed in a d.c. electric field. The field is assumed to be of moderate intensity, so that the thermal motion of the neutrals has to be taken into account in the evaluation of the distribution function. The resulting 'modified Druyvesteinian function' is applied to study the non-potential instabilities arising from the presence of the field in this particular plasma. Threshold drifts for both very slow and slow modes are obtained and the conditions for the onset of instabilities are discussed. It is shown that the thermal motion of the neutrals affects both critical drifts and the angles of propagation. (author)

  10. Coarse architecture of the transient receptor potential vanilloid 1 (TRPV1) ion channel determined by fluorescence resonance energy transfer.

    Science.gov (United States)

    De-la-Rosa, Víctor; Rangel-Yescas, Gisela E; Ladrón-de-Guevara, Ernesto; Rosenbaum, Tamara; Islas, León D

    2013-10-11

    The transient receptor potential vanilloid 1 ion channel is responsible for the perception of high temperatures and low extracellular pH, and it is also involved in the response to some pungent compounds. Importantly, it is also associated with the perception of pain and noxious stimuli. Here, we attempt to discern the molecular organization and location of the N and C termini of the transient receptor potential vanilloid 1 ion channel by measuring FRET between genetically attached enhanced yellow and cyan fluorescent protein to the N or C terminus of the channel protein, expressed in transfected HEK 293 cells or Xenopus laevis oocytes. The static measurements of the domain organization were mapped into an available cryo-electron microscopy density of the channel with good agreement. These measurements also provide novel insights into the organization of terminal domains and their proximity to the plasma membrane.

  11. The tarantula toxins ProTx-II and huwentoxin-IV differentially interact with human Nav1.7 voltage sensors to inhibit channel activation and inactivation.

    Science.gov (United States)

    Xiao, Yucheng; Blumenthal, Kenneth; Jackson, James O; Liang, Songping; Cummins, Theodore R

    2010-12-01

    The voltage-gated sodium channel Na(v)1.7 plays a crucial role in pain, and drugs that inhibit hNa(v)1.7 may have tremendous therapeutic potential. ProTx-II and huwentoxin-IV (HWTX-IV), cystine knot peptides from tarantula venoms, preferentially block hNa(v)1.7. Understanding the interactions of these toxins with sodium channels could aid the development of novel pain therapeutics. Whereas both ProTx-II and HWTX-IV have been proposed to preferentially block hNa(v)1.7 activation by trapping the domain II voltage-sensor in the resting configuration, we show that specific residues in the voltage-sensor paddle of domain II play substantially different roles in determining the affinities of these toxins to hNa(v)1.7. The mutation E818C increases ProTx-II's and HWTX-IV's IC(50) for block of hNa(v)1.7 currents by 4- and 400-fold, respectively. In contrast, the mutation F813G decreases ProTx-II affinity by 9-fold but has no effect on HWTX-IV affinity. It is noteworthy that we also show that ProTx-II, but not HWTX-IV, preferentially interacts with hNa(v)1.7 to impede fast inactivation by trapping the domain IV voltage-sensor in the resting configuration. Mutations E1589Q and T1590K in domain IV each decreased ProTx-II's IC(50) for impairment of fast inactivation by ~6-fold. In contrast mutations D1586A and F1592A in domain-IV increased ProTx-II's IC(50) for impairment of fast inactivation by ~4-fold. Our results show that whereas ProTx-II and HWTX-IV binding determinants on domain-II may overlap, domain II plays a much more crucial role for HWTX-IV, and contrary to what has been proposed to be a guiding principle of sodium channel pharmacology, molecules do not have to exclusively target the domain IV voltage-sensor to influence sodium channel inactivation.

  12. Mapping the interaction site for the tarantula toxin hainantoxin-IV (β-TRTX-Hn2a) in the voltage sensor module of domain II of voltage-gated sodium channels.

    Science.gov (United States)

    Cai, Tianfu; Luo, Ji; Meng, Er; Ding, Jiuping; Liang, Songping; Wang, Sheng; Liu, Zhonghua

    2015-06-01

    Peptide toxins often have pharmacological applications and are powerful tools for investigating the structure-function relationships of voltage-gated sodium channels (VGSCs). Although a group of potential VGSC inhibitors have been reported from tarantula venoms, little is known about the mechanism of their interaction with VGSCs. In this study, we showed that hainantoxin-IV (β-TRTX-Hn2a, HNTX-IV in brief), a 35-residue peptide from Ornithoctonus hainana venom, preferentially inhibited rNav1.2, rNav1.3 and hNav1.7 compared with rNav1.4 and hNav1.5. hNav1.7 was the most sensitive to HNTX-IV (IC50∼21nM). In contrast to many other tarantula toxins that affect VGSCs, HNTX-IV at subsaturating concentrations did not alter activation and inactivation kinetics in the physiological range of voltages, while very large depolarization above +70mV could partially activate toxin-bound hNav1.7 channel, indicating that HNTX-IV acts as a gating modifier rather than a pore blocker. Site-directed mutagenesis indicated that the toxin bound to site 4, which was located on the extracellular S3-S4 linker of hNav1.7 domain II. Mutants E753Q, D816N and E818Q of hNav1.7 decreased toxin affinity for hNav1.7 by 2.0-, 3.3- and 130-fold, respectively. In silico docking indicated that a three-toed claw substructure formed by residues with close contacts in the interface between HNTX-IV and hNav1.7 domain II stabilized the toxin-channel complex, impeding movement of the domain II voltage sensor and inhibiting hNav1.7 activation. Our data provide structural details for structure-based drug design and a useful template for the design of highly selective inhibitors of a specific subtype of VGSCs. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Kv2 Channel Regulation of Action Potential Repolarization and Firing Patterns in Superior Cervical Ganglion Neurons and Hippocampal CA1 Pyramidal Neurons

    Science.gov (United States)

    Liu, Pin W.

    2014-01-01

    Kv2 family “delayed-rectifier” potassium channels are widely expressed in mammalian neurons. Kv2 channels activate relatively slowly and their contribution to action potential repolarization under physiological conditions has been unclear. We explored the function of Kv2 channels using a Kv2-selective blocker, Guangxitoxin-1E (GxTX-1E). Using acutely isolated neurons, mixed voltage-clamp and current-clamp experiments were done at 37°C to study the physiological kinetics of channel gating and action potentials. In both rat superior cervical ganglion (SCG) neurons and mouse hippocampal CA1 pyramidal neurons, 100 nm GxTX-1E produced near-saturating block of a component of current typically constituting ∼60–80% of the total delayed-rectifier current. GxTX-1E also reduced A-type potassium current (IA), but much more weakly. In SCG neurons, 100 nm GxTX-1E broadened spikes and voltage clamp experiments using action potential waveforms showed that Kv2 channels carry ∼55% of the total outward current during action potential repolarization despite activating relatively late in the spike. In CA1 neurons, 100 nm GxTX-1E broadened spikes evoked from −70 mV, but not −80 mV, likely reflecting a greater role of Kv2 when other potassium channels were partially inactivated at −70 mV. In both CA1 and SCG neurons, inhibition of Kv2 channels produced dramatic depolarization of interspike voltages during repetitive firing. In CA1 neurons and some SCG neurons, this was associated with increased initial firing frequency. In all neurons, inhibition of Kv2 channels depressed maintained firing because neurons entered depolarization block more readily. Therefore, Kv2 channels can either decrease or increase neuronal excitability depending on the time scale of excitation. PMID:24695716

  14. Contribution of chloride channel permease to fluoride resistance in Streptococcus mutans.

    Science.gov (United States)

    Murata, Takatoshi; Hanada, Nobuhiro

    2016-06-01

    Genes encoding fluoride transporters have been identified in bacterial and archaeal species. The genome sequence of the cariogenic Streptococcus mutans bacteria suggests the presence of a putative fluoride transporter, which is referred to as a chloride channel permease. Two homologues of this gene (GenBank locus tags SMU_1290c and SMU_1289c) reside in tandem in the genome of S. mutans The aim of this study was to determine whether the chloride channel permeases contribute to fluoride resistance. We constructed SMU_1290c- and SMU_1289c-knockout S. mutans UA159 strains. We also constructed a double-knockout strain lacking both genes. SMU_1290c or SMU_1289c was transformed into a fluoride transporter- disrupted Escherichia coli strain. All bacterial strains were cultured under appropriate conditions with or without sodium fluoride, and fluoride resistance was evaluated. All three gene-knockout S. mutans strains showed lower resistance to sodium fluoride than did the wild-type strain. No significant changes in resistance to other sodium halides were recognized between the wild-type and double-knockout strains. Both SMU_1290c and SMU_1289c transformation rescued fluoride transporter-disrupted E. coli cell from fluoride toxicity. We conclude that the chloride channel permeases contribute to fluoride resistance in S. mutans. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Sodium restriction potentiates the renoprotective effects of combined vitamin D receptor activation and angiotensin-converting enzyme inhibition in established proteinuric nephropathy.

    NARCIS (Netherlands)

    Mirkovic, K.; Frenay, A.S.; Born, J. van den; Goor, H van; Navis, G.; Borst, M.H. de; Bindels, R.J.M.; Hoenderop, J.G.J.; Hillebrands, J.L.

    2017-01-01

    BACKGROUND: Renin-angiotensin-aldosterone system (RAAS) blockade provides renoprotective effects in chronic kidney disease (CKD); yet progressive renal function loss remains common. Dietary sodium restriction potentiates the renoprotective effects of RAAS blockade. Vitamin D receptor activator

  16. Neuroplastic alteration of TTX-resistant sodium channel with visceral pain and morphine-induced hyperalgesia

    Directory of Open Access Journals (Sweden)

    Chen J

    2012-11-01

    Full Text Available Jinghong Chen,1,2,4 Ze-hui Gong,4 Hao Yan,2 Zhijun Qiao,3 Bo-yi Qin41Department of Internal Medicine, Neuroscience Program, The University of Texas Medical Branch, Galveston, TX, USA; 2The Divisions of Pharmacy, Pharmacology core lab, MD Anderson Cancer Center, Houston, TX, USA; 3University of Texas-Pan American, Edinburg, TX, USA; 4Beijing Institute of Pharmacology and Toxicology, Beijing, China Abstract: The discovery of the tetrodotoxin-resistant (TTX-R Na+ channel in nociceptive neurons has provided a special target for analgesic intervention. In a previous study we found that both morphine tolerance and persistent visceral inflammation resulted in visceral hyperalgesia. It has also been suggested that hyperexcitability of sensory neurons due to altered TTX-R Na+ channel properties and expression contributes to hyperalgesia; however, we do not know if some TTX-R Na+ channel property changes can be triggered by visceral hyperalgesia and morphine tolerance, or whether there are similar molecular or channel mechanisms in both situations. To evaluate the effects of morphine tolerance and visceral inflammation on the channel, we investigated the dorsal root ganglia (DRG neuronal change following these chronic treatments. Using whole-cell patch clamp recording, we recorded TTX-R Na+ currents in isolated adult rat lumbar and sacral (L6-S2 DRG neurons from normal and pathologic rats with colon inflammatory pain or chronic morphine treatment. We found that the amplitudes of TTX-R Na+ currents were signiflcantly increased in small-diameter DRG neurons with either morphine tolerance or visceral inflammatory pain. Meanwhile, the result also showed that those treatments altered the kinetics properties of the electrical current (ie, the activating and inactivating speed of the channel was accelerated. Our current results suggested that in both models, visceral chronic inflammatory pain and morphine tolerance causes electrophysiological changes in voltage

  17. A complicated complex: Ion channels, voltage sensing, cell membranes and peptide inhibitors.

    Science.gov (United States)

    Zhang, Alan H; Sharma, Gagan; Undheim, Eivind A B; Jia, Xinying; Mobli, Mehdi

    2018-04-21

    Voltage-gated ion channels (VGICs) are specialised ion channels that have a voltage dependent mode of action, where ion conduction, or gating, is controlled by a voltage-sensing mechanism. VGICs are critical for electrical signalling and are therefore important pharmacological targets. Among these, voltage-gated sodium channels (Na V s) have attracted particular attention as potential analgesic targets. Na V s, however, comprise several structurally similar subtypes with unique localisations and distinct functions, ranging from amplification of action potentials in nociception (e.g. Na V 1.7) to controlling electrical signalling in cardiac function (Na V 1.5). Understanding the structural basis of Na V function is therefore of great significance, both to our knowledge of electrical signalling and in development of subtype and state selective drugs. An important tool in this pursuit has been the use of peptides from animal venoms as selective Na V modulators. In this review, we look at peptides, particularly from spider venoms, that inhibit Na V s by binding to the voltage sensing domain (VSD) of this channel, known as gating modifier toxins (GMT). In the first part of the review, we look at the structural determinants of voltage sensing in VGICs, the gating cycle and the conformational changes that accompany VSD movement. Next, the modulation of the analgesic target Na V 1.7 by GMTs is reviewed to develop bioinformatic tools that, based on sequence information alone, can identify toxins that are likely to inhibit this channel. The same approach is also used to define VSD sequences, other than that from Na V 1.7, which are likely to be sensitive to this class of toxins. The final section of the review focuses on the important role of the cellular membrane in channel modulation and also how the lipid composition affects measurements of peptide-channel interactions both in binding kinetics measurements in solution and in cell-based functional assays. Copyright © 2018

  18. Block of voltage-gated potassium channels by Pacific ciguatoxin-1 contributes to increased neuronal excitability in rat sensory neurons

    International Nuclear Information System (INIS)

    Birinyi-Strachan, Liesl C.; Gunning, Simon J.; Lewis, Richard J.; Nicholson, Graham M.

    2005-01-01

    The present study investigated the actions of the polyether marine toxin Pacific ciguatoxin-1 (P-CTX-1) on neuronal excitability in rat dorsal root ganglion (DRG) neurons using patch-clamp recording techniques. Under current-clamp conditions, bath application of 2-20 nM P-CTX-1 caused a rapid, concentration-dependent depolarization of the resting membrane potential in neurons expressing tetrodotoxin (TTX)-sensitive voltage-gated sodium (Na v ) channels. This action was completely suppressed by the addition of 200 nM TTX to the external solution, indicating that this effect was mediated through TTX-sensitive Na v channels. In addition, P-CTX-1 also prolonged action potential and afterhyperpolarization (AHP) duration. In a subpopulation of neurons, P-CTX-1 also produced tonic action potential firing, an effect that was not accompanied by significant oscillation of the resting membrane potential. Conversely, in neurons expressing TTX-resistant Na v currents, P-CTX-1 failed to alter any parameter of neuronal excitability examined in this study. Under voltage-clamp conditions in rat DRG neurons, P-CTX-1 inhibited both delayed-rectifier and 'A-type' potassium currents in a dose-dependent manner, actions that occurred in the absence of alterations to the voltage dependence of activation. These actions appear to underlie the prolongation of the action potential and AHP, and contribute to repetitive firing. These data indicate that a block of potassium channels contributes to the increase in neuronal excitability, associated with a modulation of Na v channel gating, observed clinically in response to ciguatera poisoning

  19. A high-capacity, low-cost layered sodium manganese oxide material as cathode for sodium-ion batteries.

    Science.gov (United States)

    Guo, Shaohua; Yu, Haijun; Jian, Zelang; Liu, Pan; Zhu, Yanbei; Guo, Xianwei; Chen, Mingwei; Ishida, Masayoshi; Zhou, Haoshen

    2014-08-01

    A layered sodium manganese oxide material (NaMn3 O5 ) is introduced as a novel cathode materials for sodium-ion batteries. Structural characterizations reveal a typical Birnessite structure with lamellar stacking of the synthetic nanosheets. Electrochemical tests reveal a particularly large discharge capacity of 219 mAh g(-1) in the voltage rang of 1.5-4.7 V vs. Na/Na(+) . With an average potential of 2.75 V versus sodium metal, layered NaMn3 O5 exhibits a high energy density of 602 Wh kg(-1) , and also presents good rate capability. Furthermore, the diffusion coefficient of sodium ions in the layered NaMn3 O5 electrode is investigated by using the galvanostatic intermittent titration technique. The results greatly contribute to the development of room-temperature sodium-ion batteries based on earth-abundant elements. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Sodium Chloride Dihydrate - A Potential Cause of Slippery Accidents

    DEFF Research Database (Denmark)

    Mejlholm, Morten; Thomsen, Kaj; Rasmussen, Peter

    From a thermodynamic point of view, it can be expected that sodium chloride dihydrate (hydrohalite, NaCl2H2O) will form on winter roads under certain conditions at temperatures below 0.1¢®C. In order to elucidate whether or not the formation of hydrohalite on the pavement can explain the phenomenon...

  1. Slack sodium-activated potassium channel membrane expression requires p38 mitogen-activated protein kinase phosphorylation.

    Science.gov (United States)

    Gururaj, Sushmitha; Fleites, John; Bhattacharjee, Arin

    2016-04-01

    p38 MAPK has long been understood as an inducible kinase under conditions of cellular stress, but there is now increasing evidence to support its role in the regulation of neuronal function. Several phosphorylation targets have been identified, an appreciable number of which are ion channels, implicating the possible involvement of p38 MAPK in neuronal excitability. The KNa channel Slack is an important protein to be studied as it is highly and ubiquitously expressed in DRG neurons and is important in the maintenance of their firing accommodation. We sought to examine if the Slack channel could be a substrate of p38 MAPK activity. First, we found that the Slack C-terminus contains two putative p38 MAPK phosphorylation sites that are highly conserved across species. Second, we show via electrophysiology experiments that KNa currents and further, Slack currents, are subject to tonic modulation by p38 MAPK. Third, biochemical approaches revealed that Slack channel regulation by p38 MAPK occurs through direct phosphorylation at the two putative sites of interaction, and mutating both sites prevented surface expression of Slack channels. Based on these results, we conclude that p38 MAPK is an obligate regulator of Slack channel function via the trafficking of channels into the membrane. The present study identifies Slack KNa channels as p38 MAPK substrates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. A comparative study of the effect of ciguatoxins on voltage-dependent Na+ and K+ channels in cerebellar neurons.

    Science.gov (United States)

    Pérez, Sheila; Vale, Carmen; Alonso, Eva; Alfonso, Carmen; Rodríguez, Paula; Otero, Paz; Alfonso, Amparo; Vale, Paulo; Hirama, Masahiro; Vieytes, Mercedes R; Botana, Luis M

    2011-04-18

    Ciguatera is a global disease caused by the consumption of certain warm-water fish (ciguateric fish) that have accumulated orally effective levels of sodium channel activator toxins (ciguatoxins) through the marine food chain. The effect of ciguatoxin standards and contaminated ciguatoxin samples was evaluated by electrophysiological recordings in cultured cerebellar neurons. The toxins affected both voltage-gated sodium (Nav) and potassium channels (Kv) although with different potencies. CTX 3C was the most active toxin blocking the peak inward sodium currents, followed by P-CTX 1B and 51-OH CTX 3C. In contrast, P-CTX 1B was more effective in blocking potassium currents. The analysis of six different samples of contaminated fish, in which a ciguatoxin analogue of mass 1040.6, not identical with the standard 51-OH CTX 3C, was the most prevalent compound, indicated an additive effect of the different ciguatoxins present in the samples. The results presented here constitute the first comparison of the potencies of three different purified ciguatoxins on sodium and potassium channels in the same neuronal preparation and indicate that electrophysiological recordings from cultured cerebellar neurons may provide a valuable tool to detect and quantify ciguatoxins in the very low nanomolar range.

  3. Localization of transient receptor potential ion channels in primary and motile cilia of the female murine reproductive organs

    DEFF Research Database (Denmark)

    Teilmann, Stefan C.; Byskov, Anne Grete; Pedersen, Per Amstrup

    2005-01-01

    We have examined the subcellular localization of transient receptor potential (TRP) ion channels and the potential sensory role of cilia in murine female reproductive organs using confocal laser scanning microscopy analysis on ovary and oviduct tissue sections as well as on primary cultures...... of follicular granulosa cells. We show that the Ca2+ permeable cation channel, polycystin-2, as well as polycystin-1, a receptor that forms a functional protein complex with polycystin 2, distinctively localize to primary cilia emerging from granulosa cells of antral follicles in vivo and in vitro. Both...... polycystins are localized to motile oviduct cilia and this localization is greatly increased upon ovulatory gonadotropic stimulation. Further, the Ca2+ permeable cation channel, TRP vaniloid 4 (TRPV4), localizes to a sub-population of motile cilia on the epithelial cells of the ampulla and isthmus with high...

  4. Comparative study of the distribution of the alpha-subunits of voltage-gated sodium channels in normal and axotomized rat dorsal root ganglion neurons.

    Science.gov (United States)

    Fukuoka, Tetsuo; Kobayashi, Kimiko; Yamanaka, Hiroki; Obata, Koichi; Dai, Yi; Noguchi, Koichi

    2008-09-10

    We compared the distribution of the alpha-subunit mRNAs of voltage-gated sodium channels Nav1.1-1.3 and Nav1.6-1.9 and a related channel, Nax, in histochemically identified neuronal subpopulations of the rat dorsal root ganglia (DRG). In the naïve DRG, the expression of Nav1.1 and Nav1.6 was restricted to A-fiber neurons, and they were preferentially expressed by TrkC neurons, suggesting that proprioceptive neurons possess these channels. Nav1.7, -1.8, and -1.9 mRNAs were more abundant in C-fiber neurons compared with A-fiber ones. Nax was evenly expressed in both populations. Although Nav1.8 and -1.9 were preferentially expressed by TrkA neurons, other alpha-subunits were expressed independently of TrkA expression. Actually, all IB4(+) neurons expressed both Nav1.8 and -1.9, and relatively limited subpopulations of IB4(+) neurons (3% and 12%, respectively) expressed Nav1.1 and/or Nav1.6. These findings provide useful information in interpreting the electrophysiological characteristics of some neuronal subpopulations of naïve DRG. After L5 spinal nerve ligation, Nav1.3 mRNA was up-regulated mainly in A-fiber neurons in the ipsilateral L5 DRG. Although previous studies demonstrated that nerve growth factor (NGF) and glial cell-derived neurotrophic factor (GDNF) reversed this up-regulation, the Nav1.3 induction was independent of either TrkA or GFRalpha1 expression, suggesting that the induction of Nav1.3 may be one of the common responses of axotomized DRG neurons without a direct relationship to NGF/GDNF supply. (c) 2008 Wiley-Liss, Inc.

  5. Size effects on the transport coefficient of liquid lithium, sodium and potassium using a soft sphere potential

    International Nuclear Information System (INIS)

    Adebayo, G.A.; Anusionwu, B.C.

    2004-08-01

    The dependence of the self diffusion coefficient of atoms in liquid Lithium, Sodium and Potassium, interacting through a soft sphere potential, on the number of atoms have been investigated using Molecular Dynamics Simulation at various temperatures. Our calculations predict non-linear relationship between the diffusion coefficient and the number of particles at high densities and medium or low temperatures. The radial distribution function obtained agrees well with experiment. (author)

  6. The Proteoglycan Syndecan 4 Regulates Transient Receptor Potential Canonical 6 Channels via RhoA/ROCK Signaling

    DEFF Research Database (Denmark)

    Liu, Ying; Echtermeyer, Frank; Thilo, Florian

    2012-01-01

    OBJECTIVE: Syndecan 4 (Sdc4) modulates signal transduction and regulates activity of protein channels. Sdc4 is essential for the regulation of cellular permeability. We hypothesized that Sdc4 may regulate transient receptor potential canonical 6 (TRPC6) channels, a determinant of glomerular perme...... permeability, in a RhoA/ROCK-dependent manner. METHODS AND RESULTS: Sdc4 knockout (Sdc4(-/-)) mice showed increased glomerular filtration rate and ameliorated albuminuria under baseline conditions and after bovine serum albumin overload (each P...

  7. Modulation of voltage-gated channel currents by harmaline and harmane.

    Science.gov (United States)

    Splettstoesser, Frank; Bonnet, Udo; Wiemann, Martin; Bingmann, Dieter; Büsselberg, Dietrich

    2005-01-01

    Harmala alkaloids are endogenous substances, which are involved in neurodegenerative disorders such as M. Parkinson, but some of them also have neuroprotective effects in the nervous system. While several sites of action at the cellular level (e.g. benzodiazepine receptors, 5-HT and GABA(A) receptors) have been identified, there is no report on how harmala alkaloids interact with voltage-gated membrane channels. The aim of this study was to investigate the effects of harmaline and harmane on voltage-activated calcium- (I(Ca(V))), sodium- (I(Na(V))) and potassium (I(K(V)))-channel currents, using the whole-cell patch-clamp method with cultured dorsal root ganglion neurones of 3-week-old rats. Currents were elicited by voltage steps from the holding potential to different command potentials. Harmaline and harmane reduced I(Ca(V)), I(Na(V)) and I(K(V)) concentration-dependent (10-500 microM) over the voltage range tested. I(Ca(V)) was reduced with an IC(50) of 100.6 microM for harmaline and by a significantly lower concentration of 75.8 microM (P<0.001, t-test) for harmane. The Hill coefficient was close to 1. Threshold concentration was around 10 microM for both substances. The steady state of inhibition of I(Ca(V)) by harmaline or harmane was reached within several minutes. The action was not use-dependent and at least partly reversible. It was mainly due to a reduction in the sustained calcium channel current (I(Ca(L+N))), while the transient voltage-gated calcium channel current (I(Ca(T))) was only partially affected. We conclude that harmaline and harmane are modulators of I(Ca(V)) in vitro. This might be related to their neuroprotective effects.

  8. Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy

    NARCIS (Netherlands)

    Kole, Maarten H. P.; Letzkus, Johannes J.; Stuart, Greg J.

    2007-01-01

    Action potentials are binary signals that transmit information via their rate and temporal pattern. In this context, the axon is thought of as a transmission line, devoid of a role in neuronal computation. Here, we show a highly localized role of axonal Kv1 potassium channels in shaping the action

  9. Effects of curcumin on TTX-R sodium currents of dorsal root ganglion neurons in type 2 diabetic rats with diabetic neuropathic pain.

    Science.gov (United States)

    Meng, Bo; Shen, Lu-Lu; Shi, Xiao-Ting; Gong, Yong-Sheng; Fan, Xiao-Fang; Li, Jun; Cao, Hong

    2015-09-25

    Type 2 diabetic mellitus (T2DM) has reached pandemic status and shows no signs of abatement. Diabetic neuropathic pain (DNP) is generally considered to be one of the most common complications of T2DM, which is also recognized as one of the most difficult types of pain to treat. As one kind of peripheral neuropathic pain, DNP manifests typical chronic neuralgia symptoms, including hyperalgesia, allodynia, autotomy, and so on. The injured dorsal root ganglion (DRG) is considered as the first stage of the sensory pathway impairment, whose neurons display increased frequency of action potential generation and increased spontaneous activities. These are mainly due to the changed properties of voltage-gated sodium channels (VGSCs) and the increased sodium currents, especially TTX-R sodium currents. Curcumin, one of the most important phytochemicals from turmeric, has been demonstrated to effectively prevent and/or ameliorate diabetic mellitus and its complications including DNP. The present study demonstrates that the TTX-R sodium currents of small-sized DRG neurons isolated from DNP rats are significantly increased. Such abnormality can be efficaciously ameliorated by curcumin. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Reduced Dietary Sodium Intake Increases Heart Rate

    DEFF Research Database (Denmark)

    Graudal, Niels A; Hubeck-Graudal, Thorbjørn; Jürgens, Gesche

    2016-01-01

    Reduced dietary sodium intake (sodium reduction) increases heart rate in some studies of animals and humans. As heart rate is independently associated with the development of heart failure and increased risk of premature death a potential increase in heart rate could be a harmful side......-effect of sodium reduction. The purpose of the present meta-analysis was to investigate the effect of sodium reduction on heart rate. Relevant studies were retrieved from an updated pool of 176 randomized controlled trials (RCTs) published in the period 1973-2014. Sixty-three of the RCTs including 72 study...... populations reported data on heart rate. In a meta-analysis of these data sodium reduction increased heart rate with 1.65 beats per minute [95% CI: 1.19, 2.11], p heart rate. This effect was independent of baseline blood pressure. In conclusion sodium reduction...

  11. Potential of nisin-incorporated sodium caseinate films to control Listeria in artificially contaminated cheese.

    Science.gov (United States)

    Cao-Hoang, Lan; Chaine, Aline; Grégoire, Lydie; Waché, Yves

    2010-10-01

    A sodium caseinate film containing nisin (1000 IU/cm(2)) was produced and used to control Listeria innocua in an artificially contaminated cheese. Mini red Babybel cheese was chosen as a model semi-soft cheese. L. innocua was both surface- and in-depth inoculated to investigate the effectiveness of the antimicrobial film as a function of the distance from the surface in contact with the film. The presence of the active film resulted in a 1.1 log CFU/g reduction in L. innocua counts in surface-inoculated cheese samples after one week of storage at 4 degrees C as compared to control samples. With regard to in-depth inoculated cheese samples, antimicrobial efficiency was found to be dependent on the distance from the surface in contact with the active films to the cheese matrix. The inactivation rates obtained were 1.1, 0.9 and 0.25 log CFU/g for distances from the contact surface of 1 mm, 2 mm and 3 mm, respectively. Our study demonstrates the potential application of sodium caseinate films containing nisin as a promising method to overcome problems associated with post-process contamination, thereby extending the shelf life and possibly enhancing the microbial safety of cheeses. 2010 Elsevier Ltd. All rights reserved.

  12. Veratridine activates a silent sodium-channel in rat isolated aorta

    NARCIS (Netherlands)

    WERMELSKIRCHEN, D; WILFFERT, B; NEBEL, U; LEIDIG, A; WIRTH, A; Peters, Thies

    1992-01-01

    To investigate the existence of silent Na+ channels, isolated rat aorta was treated with veratridine (0.1 mM) and the resulting Ca2+ uptake was determined. After 30-min incubation the total tissue uptake of Ca2+ and Ca2+ uptake increased from 2.325 +/- 0.017 to 2.614 +/- 0.080 nmol/mg wet weight

  13. Crystal structure of the sodium-potassium pump

    DEFF Research Database (Denmark)

    Morth, J Preben; Pedersen, Bjørn Panyella; Toustrup-Jensen, Mads S

    2007-01-01

    The Na+,K+-ATPase generates electrochemical gradients for sodium and potassium that are vital to animal cells, exchanging three sodium ions for two potassium ions across the plasma membrane during each cycle of ATP hydrolysis. Here we present the X-ray crystal structure at 3.5 A resolution......-subunit is contained within a pocket between transmembrane helices and seems to be a novel regulatory element controlling sodium affinity, possibly influenced by the membrane potential. Udgivelsesdato: 2007-Dec-13...

  14. Effect of Sodium Nitrite and Sodium Nitrate on Botulinal Toxin Production and Nitrosamine Formation in Wieners

    Science.gov (United States)

    Hustad, Gerald O.; Cerveny, John G.; Trenk, Hugh; Deibel, Robert H.; Kautter, Donald A.; Fazio, Thomas; Johnston, Ralph W.; Kolari, Olaf E.

    1973-01-01

    Wieners were formulated and processed approximating commercial conditions as closely as possible. Twenty-four batches of product were made with the addition of six levels of sodium nitrite (0, 50, 100, 150, 200, and 300 μg/g), four levels of sodium nitrate (0, 50, 150, and 450 μg/g), and two levels of Clostridium botulinum (0 and 620 spores/g). After formulation, processing, and vacuum packaging, portions of each batch were incubated at 27 C or held for 21 days at 7 C followed by incubation at 27 C for 56 days. The latter storage condition approximated distribution of product through commercial channels and potential temperature abuse at the consumer level. Samples were analyzed for botulinal toxin, nitrite, and nitrate levels after 3, 7, 14, 21, 28, and 56 days of incubation. When nitrite was not added, toxic samples were detected after 14 days of incubation at 27 C. At the lowest level of nitrite added (50 μg/g), no toxic samples were observed until 56 days of incubation. Higher levels of nitrite completely inhibited toxin production throughout the incubation period. Nine uninoculated samples, representing various levels and combinations of nitrite and nitrate, were evaluated organoleptically. The flavor quality of wieners made with nitrite was judged significantly higher (P = 0.05) than of wieners made without nitrite. The nine samples were negative for 14 volatile nitrosamines at a sensitivity level of 10 ng/g. The results indicated that nitrite effectively inhibited botulinal toxin formation at commercially employed levels in wieners and that detectable quantities of nitrosamines were not produced during preparation and processing of the product for consumption. PMID:4580194

  15. Heavy-ion fusion: Channel-coupling effects, the barrier penetration model, and the threshold anomaly for heavy-ion potentials

    International Nuclear Information System (INIS)

    Satchler, G.R.; Nagarajan, M.A.; Lilley, J.S.; Thompson, I.J.

    1987-01-01

    We study the formal structure of the influence of channel coupling on near- and sub-barrier fusion. The reduction to a one-channel description is studied, with emphasis on the channel-coupling effects being manifest primarily as an energy dependence (the ''threshold anomaly'') of the real nuclear potential. The relation to the barrier penetration model is examined critically. The results of large-scale coupled-channel calculations are used as ''data'' to illustrate the discussion. Particular emphasis is placed on the importance of reproducing correctly the partial-wave (or ''spin'') distributions. The simple barrier penetration model is found to be adequate to exhibit the strong enhancements due to channel couplings when the threshold anomaly is taken into account, although there may be important corrections due to the long-ranged peripheral absorption, especially from Coulomb excitation. copyright 1987 Academic Press, Inc

  16. The Anion Paradox in Sodium Taste Reception: Resolution by Voltage-Clamp Studies

    Science.gov (United States)

    Ye, Qing; Heck, Gerard L.; Desimone, John A.

    1991-11-01

    Sodium salts are potent taste stimuli, but their effectiveness is markedly dependent on the anion, with chloride yielding the greatest response. The cellular mechanisms that mediate this phenomenon are not known. This "anion paradox" has been resolved by considering the field potential that is generated by restricted electrodiffusion of the anion through paracellular shunts between taste-bud cells. Neural responses to sodium chloride, sodium acetate, and sodium gluconate were studied while the field potential was voltage-clamped. Clamping at electronegative values eliminated the anion effect, whereas clamping at electropositive potentials exaggerated it. Thus, field potentials across the lingual epithelium modulate taste reception, indicating that the functional unit of taste reception includes the taste cell and its paracellular microenvironment.

  17. Urinary Sodium Excretion and Dietary Sources of Sodium Intake in Chinese Postmenopausal Women with Prehypertension

    Science.gov (United States)

    Liu, Zhao-min; Ho, Suzanne C.; Tang, Nelson; Chan, Ruth; Chen, Yu-ming; Woo, Jean

    2014-01-01

    Background Reducing salt intake in communities is one of the most effective and affordable public health strategies to prevent hypertension, stroke and renal disease. The present study aimed to determine the sodium intake in Hong Kong Chinese postmenopausal women and identify the major food sources contributing to sodium intake and urine excretion. Methods This was a cross-sectional study among 655 Chinese postmenopausal women with prehypertension who were screened for a randomized controlled trial. Data collection included 24 h urine collection for the measurement of sodium, potassium and creatinine, 3-day dietary records, anthropometric measures and questionnaire survey on demographic data and dietary habits. Results The average salt intake estimated from urinary excretion was 7.8±3.2 g/d with 82.1% women above WHO recommendation of 5 g/day. Food groups as soup (21.6%), rice and noodles (13.5%), baked cereals (12.3%), salted/preserved foods (10.8%), Chinese dim sum (10.2%) and sea foods (10.1%) were the major contributors of non-discretionary salt. Discretionary salt use in cooking made a modest contribution to overall intake. Vegetable and fruit intake, age, sodium intake from salted foods, sea foods and soup were the independent determinants of urinary sodium excretion. Conclusions Our data revealed a significant room for reduction of the sodium intake. Efforts to reduce sodium from diets in Hong Kong Chinese postmenopausal women should focus on both processed foods and discretionary salt during cooking. Sodium reduction in soup and increase in fruit intake would be potentially effective strategy for reducing sodium. PMID:25083775

  18. Effectiveness of Chlorinated Water, Sodium Hypochlorite, Sodium ...

    African Journals Online (AJOL)

    This study evaluated the efficacy of chlorinated water, sodium hypochlorite solution, sodium chloride solution and sterile distilled water in eliminating pathogenic bacteria on the surfaces of raw vegetables. Lettuce vegetables were dipped in different concentrations of chlorinated water, sodium hypochlorite solution, sodium ...

  19. Sodium Flux Growth of Bulk Gallium Nitride

    Science.gov (United States)

    Von Dollen, Paul Martin

    This dissertation focused on development of a novel apparatus and techniques for crystal growth of bulk gallium nitride (GaN) using the sodium flux method. Though several methods exist to produce bulk GaN, none have been commercialized on an industrial scale. The sodium flux method offers potentially lower cost production due to relatively mild process conditions while maintaining high crystal quality. But the current equipment and methods for sodium flux growth of bulk GaN are generally not amenable to large-scale crystal growth or in situ investigation of growth processes, which has hampered progress. A key task was to prevent sodium loss or migration from the sodium-gallium growth melt while permitting N2 gas to access the growing crystal, which was accomplished by implementing a reflux condensing stem along with a reusable sealed capsule. The reflux condensing stem also enabled direct monitoring and control of the melt temperature, which has not been previously reported for the sodium flux method. Molybdenum-based materials were identified from a corrosion study as candidates for direct containment of the corrosive sodium-gallium melt. Successful introduction of these materials allowed implementation of a crucible-free containment system, which improved process control and can potentially reduce crystal impurity levels. Using the new growth system, the (0001) Ga face (+c plane) growth rate was >50 mum/hr, which is the highest bulk GaN growth rate reported for the sodium flux method. Omega X-ray rocking curve (?-XRC) measurements indicated the presence of multiple grains, though full width at half maximum (FWHM) values for individual peaks were 1020 atoms/cm3, possibly due to reactor cleaning and handling procedures. This dissertation also introduced an in situ technique to correlate changes in N2 pressure with dissolution of nitrogen and precipitation of GaN from the sodium-gallium melt. Different stages of N2 pressure decay were identified and linked to

  20. cAMP-dependent kinase does not modulate the Slack sodium-activated potassium channel.

    Science.gov (United States)

    Nuwer, Megan O; Picchione, Kelly E; Bhattacharjee, Arin

    2009-09-01

    The Slack gene encodes a Na(+)-activated K(+) channel and is expressed in many different types of neurons. Like the prokaryotic Ca(2+)-gated K(+) channel MthK, Slack contains two 'regulator of K(+) conductance' (RCK) domains within its carboxy terminal, domains likely involved in Na(+) binding and channel gating. It also contains multiple consensus protein kinase C (PKC) and protein kinase A (PKA) phosphorylation sites and although regulated by protein kinase C (PKC) phosphorylation, modulation by PKA has not been determined. To test if PKA directly regulates Slack, nystatin-perforated patch whole-cell currents were recorded from a human embryonic kidney (HEK-293) cell line stably expressing Slack. Bath application of forskolin, an adenylate cyclase activator, caused a rapid and complete inhibition of Slack currents however, the inactive homolog of forskolin, 1,9-dideoxyforskolin caused a similar effect. In contrast, bath application of 8-bromo-cAMP did not affect the amplitude nor the activation kinetics of Slack currents. In excised inside-out patch recordings, direct application of the PKA catalytic subunit to patches did not affect the open probability of Slack channels nor was open probability affected by direct application of protein phosphatase 2B. Preincubation of cells with the protein kinase A inhibitor KT5720 also did not change current density. Finally, mutating the consensus phosphorylation site located between RCK domain 1 and domain 2 from serine to glutamate did not affect current activation kinetics. We conclude that unlike PKC, phosphorylation by PKA does not acutely modulate the function and gating activation kinetics of Slack channels.

  1. Ventricular action potential adaptation to regular exercise: role of β-adrenergic and KATP channel function.

    Science.gov (United States)

    Wang, Xinrui; Fitts, Robert H

    2017-08-01

    Regular exercise training is known to affect the action potential duration (APD) and improve heart function, but involvement of β-adrenergic receptor (β-AR) subtypes and/or the ATP-sensitive K + (K ATP ) channel is unknown. To address this, female and male Sprague-Dawley rats were randomly assigned to voluntary wheel-running or control groups; they were anesthetized after 6-8 wk of training, and myocytes were isolated. Exercise training significantly increased APD of apex and base myocytes at 1 Hz and decreased APD at 10 Hz. Ca 2+ transient durations reflected the changes in APD, while Ca 2+ transient amplitudes were unaffected by wheel running. The nonselective β-AR agonist isoproterenol shortened the myocyte APD, an effect reduced by wheel running. The isoproterenol-induced shortening of APD was largely reversed by the selective β 1 -AR blocker atenolol, but not the β 2 -AR blocker ICI 118,551, providing evidence that wheel running reduced the sensitivity of the β 1 -AR. At 10 Hz, the K ATP channel inhibitor glibenclamide prolonged the myocyte APD more in exercise-trained than control rats, implicating a role for this channel in the exercise-induced APD shortening at 10 Hz. A novel finding of this work was the dual importance of altered β 1 -AR responsiveness and K ATP channel function in the training-induced regulation of APD. Of physiological importance to the beating heart, the reduced response to adrenergic agonists would enhance cardiac contractility at resting rates, where sympathetic drive is low, by prolonging APD and Ca 2+ influx; during exercise, an increase in K ATP channel activity would shorten APD and, thus, protect the heart against Ca 2+ overload or inadequate filling. NEW & NOTEWORTHY Our data demonstrated that regular exercise prolonged the action potential and Ca 2+ transient durations in myocytes isolated from apex and base regions at 1-Hz and shortened both at 10-Hz stimulation. Novel findings were that wheel running shifted the

  2. Prediction of Thorough QT study results using action potential simulations based on ion channel screens.

    Science.gov (United States)

    Mirams, Gary R; Davies, Mark R; Brough, Stephen J; Bridgland-Taylor, Matthew H; Cui, Yi; Gavaghan, David J; Abi-Gerges, Najah

    2014-01-01

    Detection of drug-induced pro-arrhythmic risk is a primary concern for pharmaceutical companies and regulators. Increased risk is linked to prolongation of the QT interval on the body surface ECG. Recent studies have shown that multiple ion channel interactions can be required to predict changes in ventricular repolarisation and therefore QT intervals. In this study we attempt to predict the result of the human clinical Thorough QT (TQT) study, using multiple ion channel screening which is available early in drug development. Ion current reduction was measured, in the presence of marketed drugs which have had a TQT study, for channels encoded by hERG, CaV1.2, NaV1.5, KCNQ1/MinK, and Kv4.3/KChIP2.2. The screen was performed on two platforms - IonWorks Quattro (all 5 channels, 34 compounds), and IonWorks Barracuda (hERG & CaV1.2, 26 compounds). Concentration-effect curves were fitted to the resulting data, and used to calculate a percentage reduction in each current at a given concentration. Action potential simulations were then performed using the ten Tusscher and Panfilov (2006), Grandi et al. (2010) and O'Hara et al. (2011) human ventricular action potential models, pacing at 1Hz and running to steady state, for a range of concentrations. We compared simulated action potential duration predictions with the QT prolongation observed in the TQT studies. At the estimated concentrations, simulations tended to underestimate any observed QT prolongation. When considering a wider range of concentrations, and conventional patch clamp rather than screening data for hERG, prolongation of ≥5ms was predicted with up to 79% sensitivity and 100% specificity. This study provides a proof-of-principle for the prediction of human TQT study results using data available early in drug development. We highlight a number of areas that need refinement to improve the method's predictive power, but the results suggest that such approaches will provide a useful tool in cardiac safety

  3. Na+-H+ exchanger and proton channel in heart failure associated with Becker and Duchenne muscular dystrophies.

    Science.gov (United States)

    Bkaily, Ghassan; Jacques, Danielle

    2017-10-01

    Cardiomyopathy is found in patients with Duchenne (DMD) and Becker (BMD) muscular dystrophies, which are linked muscle diseases caused by mutations in the dystrophin gene. Dystrophin defects are not limited to DMD but are also present in mild BMD. The hereditary cardiomyopathic hamster of the UM-X7.1 strain is a particular experimental model of heart failure (HF) leading to early death in muscular dystrophy (dystrophin deficiency and sarcoglycan mutation) and heart disease (δ-sarcoglycan deficiency and dystrophin mutation) in human DMD. Using this model, our previous work showed a defect in intracellular sodium homeostasis before the appearance of any apparent biochemical and histological defects. This was attributed to the continual presence of the fetal slow sodium channel, which was also found to be active in human DMD. Due to muscular intracellular acidosis, the intracellular sodium overload in DMD and BMD was also due to sodium influx through the sodium-hydrogen exchanger NHE-1. Lifetime treatment with an NHE-1 inhibitor prevented intracellular Na + overload and early death due to HF. Our previous work also showed that another proton transporter, the voltage-gated proton channel (Hv1), exists in many cell types including heart cells and skeletal muscle fibers. The Hv1 could be indirectly implicated in the beneficial effect of blocking NHE-1.

  4. Transcranial Random Noise Stimulation-induced plasticity is NMDA-receptor independent but sodium-channel blocker and benzodiazepines sensitive

    Directory of Open Access Journals (Sweden)

    Leila eChaieb

    2015-04-01

    Full Text Available Background: Application of transcranial random noise stimulation (tRNS between 0.1 and 640 Hz of the primary motor cortex (M1 for 10 minutes induces a persistent excitability increase lasting for at least 60 minutes. However, the mechanism of tRNS-induced cortical excitability alterations is not yet fully understood. Objective: The main aim of this study was to get first efficacy data with regard to the possible neuronal effect of tRNS. Methods: Single-pulse transcranial magnetic stimulation (TMS was used to measure levels of cortical excitability before and after combined application of tRNS at an intensity of 1mA for 10mins stimulation duration and a pharmacological agent (or sham on 8 healthy male participants. Results: The sodium channel blocker carbamazepine showed a tendency towards inhibiting MEPs 5-60 mins poststimulation. The GABAA agonist lorazepam suppressed tRNS-induced cortical excitability increases at 0-20 and 60 min time points. The partial NMDA receptor agonist D-cycloserine, the NMDA receptor antagonist dextromethorphan and the D2/D3 receptor agonist ropinirole had no significant effects on the excitability increases seen with tRNS.Conclusions: In contrast to transcranial direct current stimulation (tDCS, aftereffects of tRNS are seem to be not NMDA receptor dependent and can be suppressed by benzodiazepines suggesting that tDCS and tRNS depend upon different mechanisms.

  5. Endothelial epithelial sodium channel inhibition activates endothelial nitric oxide synthase via phosphoinositide 3-kinase/Akt in small-diameter mesenteric arteries.

    Science.gov (United States)

    Pérez, Francisco R; Venegas, Fabiola; González, Magdalena; Andrés, Sergio; Vallejos, Catalina; Riquelme, Gloria; Sierralta, Jimena; Michea, Luis

    2009-06-01

    Recent studies have shown that the epithelial sodium channel (ENaC) is expressed in vascular tissue. However, the role that ENaC may play in the responses to vasoconstrictors and NO production has yet to be addressed. In this study, the contractile responses of perfused pressurized small-diameter rat mesenteric arteries to phenylephrine and serotonin were reduced by ENaC blockade with amiloride (75.1+/-3.2% and 16.9+/-2.3% of control values, respectively; P<0.01) that was dose dependent (EC(50)=88.9+/-1.6 nmol/L). Incubation with benzamil, another ENaC blocker, had similar effects. alpha, beta, and gamma ENaC were identified in small-diameter rat mesenteric arteries using RT-PCR and Western blot with specific antibodies. In situ hybridization and immunohistochemistry localized ENaC expression to the tunica media and endothelium of small-diameter rat mesenteric arteries. Patch-clamp experiments demonstrated that primary cultures of mesenteric artery endothelial cells expressed amiloride-sensitive sodium currents. Mechanical ablation of the endothelium or inhibition of eNOS with N(omega)-nitro-L-arginine inhibited the reduction in contractility caused by ENaC blockers. ENaC inhibitors increased eNOS phosphorylation (Ser 1177) and Akt phosphorylation (Ser 473). The presence of the phosphoinositide 3-kinase inhibitor LY294002 blunted Akt phosphorylation and eNOS phosphorylation and the decrease in the response to phenylephrine caused by blockers of ENaC, indicating that the phosphoinositide 3-kinase/Akt pathway was activated after ENaC inhibition. Finally, we observed that the effects of blockers of ENaC were flow dependent and that the vasodilatory response to shear stress was enhanced by ENaC blockade. Our results identify a previously unappreciated role for ENaC as a negative modulator of eNOS and NO production in resistance arteries.

  6. Effects of sodium nitrite on renal function and blood pressure in hypertensive vs. healthy study participants

    DEFF Research Database (Denmark)

    Rosenbæk, Jeppe B; Hornstrup, Bodil G; Jørgensen, Andreas N

    2018-01-01

    to determine the effects of NaNO2 on blood pressure (BP) and renal sodium and water regulation in patients with EHT compared with healthy control study participants (CON). METHODS: In a placebo-controlled, crossover study, we infused 240 μg NaNO2/kg/h or isotonic saline for 2 h in 14 EHT and 14 CON. During...... infusion, we measured changes in brachial and central BP, free water clearance, fractional sodium excretion, and urinary excretion rate of γ-subunit of the epithelial sodium channel (U-ENaCγ), and aquaporin-2 (U-AQP2). RESULTS: Placebo-adjusted brachial SBP decreased 18 mmHg (P ... infusion in EHT and 12 mmHg (P fractional sodium excretion, free water clearance, and U...

  7. Multi-channel grouping techniques for conducting reactor safety studies

    International Nuclear Information System (INIS)

    Waltar, A.E.; Wilburn, N.P.

    1975-01-01

    In conducting safety studies for postulated unprotected accidents in an LMFBR system, it is common practice to employ multi-channel coupled neutronics, thermal hydraulics computer programs such as SAS3A or MELT-III. The multichannel feature of such code systems is important if the natural fuel failure incoherencies and the resulting sodium void/fuel motion reactivity feedbacks--which have strong spatial variations--are to be properly modeled. Because of the large amounts of computer time associated with many channel runs, however, there is a strong incentive to conduct parametric studies with as few channels as possible. The paper presented is focused on methods successfully employed to accomplish this end for a study of the hypothetical unprotected transient overpower accident conducted for the FFTF

  8. Prenatal programming of rat cortical collecting tubule sodium transport.

    Science.gov (United States)

    Cheng, Chih-Jen; Lozano, German; Baum, Michel

    2012-03-15

    Prenatal insults have been shown to lead to elevated blood pressure in offspring when they are studied as adults. Prenatal administration of dexamethasone and dietary protein deprivation have demonstrated that there is an increase in transporter abundance for a number of nephron segments but not the subunits of the epithelial sodium channel (ENaC) in the cortical collecting duct. Recent studies have shown that aldosterone is elevated in offspring of protein-deprived mothers when studied as adults, but the physiological importance of the increase in serum aldosterone is unknown. As an indirect measure of ENaC activity, we compared the natriuretic response to benzamil in offspring of mothers who ate a low-protein diet (6%) with those who ate a normal diet (20%) for the last half of pregnancy. The natriuretic response to benzamil was greater in the 6% group (821.1 ± 161.0 μmol/24 h) compared with the 20% group (279.1 ± 137.0 μmol/24 h), consistent with greater ENaC activity in vivo (P sodium transport (-1.9 ± 3.1 pmol·mm(-1)·min(-1)), the offspring of rats that ate a 6% protein diet during the last half of pregnancy had a net sodium flux of 10.7 ± 2.6 pmol·mm(-1)·min(-1) (P = 0.01) in tubules perfused in vitro. Sodium transport was measured using ion-selective electrodes, a novel technique allowing measurement of sodium in nanoliter quantities of fluid. Thus we directly demonstrate that there is prenatal programming of cortical collecting duct sodium transport.

  9. TRPM7 and TRPM8 Ion Channels in Pancreatic Adenocarcinoma: Potential Roles as Cancer Biomarkers and Targets

    Directory of Open Access Journals (Sweden)

    Nelson S. Yee

    2012-01-01

    Full Text Available Transient receptor potential (TRP ion channels are essential for normal functions and health by acting as molecular sensors and transducing various stimuli into cellular and physiological responses. Growing evidence has revealed that TRP ion channels play important roles in a wide range of human diseases, including malignancies. In light of recent discoveries, it has been found that TRP melastatin-subfamily members, TRPM7 and TRPM8, are required for normal and cancerous development of exocrine pancreas. We are currently investigating the mechanisms which mediate the functional roles of TRPM7 and TRPM8 and attempting to develop these ion channels as clinical biomarkers and therapeutic targets for achieving the goal of personalized therapy in pancreatic cancer.

  10. Blockade of persistent sodium currents contributes to the riluzole-induced inhibition of spontaneous activity and oscillations in injured DRG neurons.

    Directory of Open Access Journals (Sweden)

    Rou-Gang Xie

    Full Text Available In addition to a fast activating and immediately inactivating inward sodium current, many types of excitable cells possess a noninactivating or slowly inactivating component: the persistent sodium current (I(NaP. The I(NaP is found in normal primary sensory neurons where it is mediated by tetrodotoxin-sensitive sodium channels. The dorsal root ganglion (DRG is the gateway for ectopic impulses that originate in pathological pain signals from the periphery. However, the role of I(NaP in DRG neurons remains unclear, particularly in neuropathic pain states. Using in vivo recordings from single medium- and large-diameter fibers isolated from the compressed DRG in Sprague-Dawley rats, we show that local application of riluzole, which blocks the I(NaP, also inhibits the spontaneous activity of A-type DRG neurons in a dose-dependent manner. Significantly, riluzole also abolished subthreshold membrane potential oscillations (SMPOs, although DRG neurons still responded to intracellular current injection with a single full-sized spike. In addition, the I(NaP was enhanced in medium- and large-sized neurons of the compressed DRG, while bath-applied riluzole significantly inhibited the I(NaP without affecting the transient sodium current (I(NaT. Taken together, these results demonstrate for the first time that the I(NaP blocker riluzole selectively inhibits I(NaP and thereby blocks SMPOs and the ectopic spontaneous activity of injured A-type DRG neurons. This suggests that the I(NaP of DRG neurons is a potential target for treating neuropathic pain at the peripheral level.

  11. Blockade of persistent sodium currents contributes to the riluzole-induced inhibition of spontaneous activity and oscillations in injured DRG neurons.

    Science.gov (United States)

    Xie, Rou-Gang; Zheng, Da-Wei; Xing, Jun-Ling; Zhang, Xu-Jie; Song, Ying; Xie, Ya-Bin; Kuang, Fang; Dong, Hui; You, Si-Wei; Xu, Hui; Hu, San-Jue

    2011-04-25

    In addition to a fast activating and immediately inactivating inward sodium current, many types of excitable cells possess a noninactivating or slowly inactivating component: the persistent sodium current (I(NaP)). The I(NaP) is found in normal primary sensory neurons where it is mediated by tetrodotoxin-sensitive sodium channels. The dorsal root ganglion (DRG) is the gateway for ectopic impulses that originate in pathological pain signals from the periphery. However, the role of I(NaP) in DRG neurons remains unclear, particularly in neuropathic pain states. Using in vivo recordings from single medium- and large-diameter fibers isolated from the compressed DRG in Sprague-Dawley rats, we show that local application of riluzole, which blocks the I(NaP), also inhibits the spontaneous activity of A-type DRG neurons in a dose-dependent manner. Significantly, riluzole also abolished subthreshold membrane potential oscillations (SMPOs), although DRG neurons still responded to intracellular current injection with a single full-sized spike. In addition, the I(NaP) was enhanced in medium- and large-sized neurons of the compressed DRG, while bath-applied riluzole significantly inhibited the I(NaP) without affecting the transient sodium current (I(NaT)). Taken together, these results demonstrate for the first time that the I(NaP) blocker riluzole selectively inhibits I(NaP) and thereby blocks SMPOs and the ectopic spontaneous activity of injured A-type DRG neurons. This suggests that the I(NaP) of DRG neurons is a potential target for treating neuropathic pain at the peripheral level.

  12. Grey relevant analysis of sodium critical heat flux in annular channel and the establishing of grey model

    International Nuclear Information System (INIS)

    Zhou Tao; Su Guanghui; Liao Yixiang; Zhang Weizhong; Qiu Suizheng; Jia Dounan

    1999-12-01

    Using grey systems theory and experimental data obtained from sodium boiling test loop in China, grey mutual analysis is done to some parameters influencing sodium CHF. The results of CHF are predicted by using GM (1,1) model. The GM(1,h) model is made up for creating CHF model. The results are in good agreement with the experimental data

  13. DNS of turbulent channel flow with conjugate heat transfer at Prandtl number 0.01

    Energy Technology Data Exchange (ETDEWEB)

    Tiselj, Iztok, E-mail: iztok.tiselj@ijs.si [' Jozef Stefan' Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Cizelj, Leon, E-mail: leon.cizelj@ijs.si [' Jozef Stefan' Institute, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer DNS database for turbulent channel flow at Prandtl number 0.01 and various Re{sub {tau}}. Black-Right-Pointing-Pointer Two ideal boundary condition analyzed: non-fluctuating and fluctuating temperature. Black-Right-Pointing-Pointer DNS database with conjugate heat transfer for liquid sodium-steel contact. Black-Right-Pointing-Pointer Penetration of the turbulent temperature fluctuations into the solid wall analyzed. - Abstract: Direct Numerical Simulation (DNS) of the fully developed velocity and temperature fields in a turbulent channel flow coupled with the unsteady conduction in the heated walls was carried out. Simulations were performed with passive scalar approximation at Prandtl number 0.01, which roughly corresponds to the Prandtl number of liquid sodium. DNSs were performed at friction Reynolds numbers 180, 395 and 590. The obtained statistical quantities like mean temperatures, profiles of the root-mean-square (RMS) temperature fluctuations for various thermal properties of wall and fluid, and various wall thicknesses were obtained from a pseudo-spectral channel-flow code. Even for the highest implemented Reynolds number the temperature profile in the fluid does not exhibit log-law region and the near-wall RMS temperature fluctuations show Reynolds number dependence. Conjugate heat transfer simulations of liquid sodium-steel system point to a relatively intensive penetration of turbulent temperature fluctuations into the heated wall. Database containing the results is available in a digital form.

  14. Final report on the safety assessment of potassium silicate, sodium metasilicate, and sodium silicate.

    Science.gov (United States)

    Elmore, Amy R

    2005-01-01

    Metasilicate, and Sodium Silicate ranged from negligible to severe, depending on the species tested and the molar ratio and concentration tested. Sodium Metasilicate was negative in the local lymph node assay (LLNA), but a delayed-type hypersensitivity response was observed in mice. Potassium Silicate was nonirritating in two acute eye irritation studies in rabbits. Sodium Metasilicate (42.4% H2O) was corrosive to the rabbit eye. Sodium Silicate was a severe eye irritant in some eye irritation studies, but was irritating or nonirritating in others. A skin freshener containing Sodium Silicate was nonirritating. Sodium Metasilicate was nonmutagenic in bacterial cells. Rats given Sodium Silicate (600 and 1200 ppm of added silica) in the drinking water in reproductive studies produced a reduced number of offspring: to 67% of controls at 600 ppm and to 80% of controls at 1200 ppm. Three adult rats injected intratesticularly and subcutaneously with 0.8 mM/kg of Sodium Silicate showed no morphological changes in the testes and no effect on the residual spermatozoa in the ductus deferens. Sodium Metasilicate (37% in a detergent) mixed with water was a severe skin irritant when tested on intact and abraded human skin, but 6%, 7%, and 13% Sodium Silicate were negligible skin irritants to intact and abraded human skin. Sodium Silicate (10% of a 40% aqueous solution) was negative in a repeat-insult predictive patch test in humans. The same aqueous solution of Sodium Silicate was considered a mild irritant under normal use conditions in a study of cumulative irritant properties. The Cosmetic Ingredient Review (CIR) Expert Panel recognized the irritation potential of these ingredients, especially in leave-on products. However, because these ingredients have limited dermal absorption and Sodium Metasilicate is a GRAS direct food substance, the Panel deemed the ingredients safe for use in cosmetic products in the practices of use and concentration described in this safety assessment, when

  15. Selective spider toxins reveal a role for Nav1.1 channel in mechanical pain

    Science.gov (United States)

    Osteen, Jeremiah D.; Herzig, Volker; Gilchrist, John; Emrick, Joshua J.; Zhang, Chuchu; Wang, Xidao; Castro, Joel; Garcia-Caraballo, Sonia; Grundy, Luke; Rychkov, Grigori Y.; Weyer, Andy D.; Dekan, Zoltan; Undheim, Eivind A. B.; Alewood, Paul; Stucky, Cheryl L.; Brierley, Stuart M.; Basbaum, Allan I.; Bosmans, Frank; King, Glenn F.; Julius, David

    2016-01-01

    Voltage-gated sodium (Nav) channels initiate action potentials in most neurons, including primary afferent nerve fibers of the pain pathway. Local anesthetics block pain through non-specific actions at all Nav channels, but the discovery of selective modulators would facilitate the analysis of individual subtypes and their contributions to chemical, mechanical, or thermal pain. Here, we identify and characterize spider toxins that selectively activate the Nav1.1 subtype, whose role in nociception and pain has not been explored. We exploit these probes to demonstrate that Nav1.1-expressing fibers are modality-specific nociceptors: their activation elicits robust pain behaviors without neurogenic inflammation and produces profound hypersensitivity to mechanical, but not thermal, stimuli. In the gut, high-threshold mechanosensitive fibers also express Nav1.1 and show enhanced toxin sensitivity in a model of irritable bowel syndrome. Altogether, these findings establish an unexpected role for Nav1.1 in regulating the excitability of sensory nerve fibers that underlie mechanical pain. PMID:27281198

  16. The corrosion of steels by hot sodium melts

    International Nuclear Information System (INIS)

    Currie, R.

    1996-01-01

    Considerable research has been performed by AEA Technology on the corrosion of steels by hot sodium melts containing sodium hydroxide and sodium oxide. This research has principally been in support of understanding the effects of sodium-water reactions on the internals of fast reactor steam generators. The results however have relevance to sodium fires. It has been determined that the rate of corrosion of steels by melts of pure NaOH can be significantly increased by the addition of Na 2 O. In the case of a sodium-water reaction jet created by a leak of steam into sodium, the composition of the jet varies from 100% sodium through to 100% steam, with a full range of concentrations of NaOH and Na 2 O, depending on axial and radial position. The temperature in the jet also varies with position, ranging from bulk sodium temperature on one boundary to expanded steam temperature on the other boundary, with internal temperatures ranging up to 1300 deg. C, depending on the local pre-reaction mole ratio of steam to sodium. In the case of sodium-water reaction jets, it has been possible to develop a model which predicts the composition of the reaction jet and then, using the data generated on the corrosivity of sodium melts, predict the rate of corrosion of a steel target in the path of the jet. In the case of a spray sodium fire, the sodium will initially contain a concentration of NaOH and the combustion process will generate Na 2 O. If there is sufficient humidity, conversion of some of the Na 2 O to NaOH will also occur. There is therefore the potential for aggressive mixtures of NaOH and Na 2 O to exist on the surface of the sodium droplets. It is therefore possible that the rate of corrosion of steels in the path of the spray may be higher than expected on the basis of assuming that only Na and Na 2 O were present. In the case of a pool sodium fire, potentially corrosive mixtures of NaOH and Na 2 O may be formed at some locations on the surface. This could lead to

  17. Salt Sensitive Tet-Off-Like Systems to Knockdown Primordial Germ Cell Genes for Repressible Transgenic Sterilization in Channel Catfish, Ictalurus punctatus.

    Science.gov (United States)

    Li, Hanbo; Su, Baofeng; Qin, Guyu; Ye, Zhi; Alsaqufi, Ahmed; Perera, Dayan A; Shang, Mei; Odin, Ramjie; Vo, Khoi; Drescher, David; Robinson, Dalton; Zhang, Dan; Abass, Nermeen; Dunham, Rex A

    2017-05-31

    Repressible knockdown approaches were investigated for transgenic sterilization in channel catfish, Ictalurus punctatus . Two primordial germ cell (PGC) marker genes, nanos and dead end , were targeted for knockdown, and an off-target gene, vasa , was monitored. Two potentially salt sensitive repressible promoters, zebrafish adenylosuccinate synthase 2 (ADSS) and zebrafish racemase (Rm), were each coupled with four knockdown strategies: ds-sh RNA targeting the 5' end (N1) or 3' end (N2) of channel catfish nanos , full-length cDNA sequence of channel catfish nanos for overexpression (cDNA) and ds-sh RNA targeting channel catfish dead end (DND). Each construct had an untreated group and treated group with sodium chloride as the repressor compound. Spawning rates of full-sibling P₁ fish exposed or not exposed to the constructs as treated and untreated embryos were 93% and 59%, respectively, indicating potential sterilization of fish and repression of the constructs. Although the mRNA expression data of PGC marker genes were inconsistent in P₁ fish, most F₁ individuals were able to downregulate the target genes in untreated groups and repress the knockdown process in treated groups. The results indicate that repressible transgenic sterilization is feasible for reproductive control of fish, but more data from F₂ or F₃ are needed for evaluation.

  18. Ion Channel Trafficking: Control of Ion Channel Density as a Target for Arrhythmias?

    Directory of Open Access Journals (Sweden)

    Elise Balse

    2017-10-01

    Full Text Available The shape of the cardiac action potential (AP is determined by the contributions of numerous ion channels. Any dysfunction in the proper function or expression of these ion channels can result in a change in effective refractory period (ERP and lead to arrhythmia. The processes underlying the correct targeting of ion channels to the plasma membrane are complex, and have not been fully characterized in cardiac myocytes. Emerging evidence highlights ion channel trafficking as a potential causative factor in certain acquired and inherited arrhythmias, and therapies which target trafficking as opposed to pore block are starting to receive attention. In this review we present the current evidence for the mechanisms which underlie precise control of cardiac ion channel trafficking and targeting.

  19. The leaching of trifloxysulfuron-sodium and pyrithiobac-sodium in soil columns as a function of soil liming - doi: 10.4025/actasciagron.v35i2.16349

    Directory of Open Access Journals (Sweden)

    Naiara Guerra

    2012-12-01

    Full Text Available Scarce research has been published concerning the effect of soil pH on the leaching potential of herbicides in tropical soils. Thus, we designed this study to evaluate the influence of soil liming on the leaching of trifloxysulfuron-sodium and pyrithiobac-sodium after simulated rainfall depths in soil columns. In the study, two trials were conducted simultaneously; the first experiment evaluated trifloxysulfuron-sodium (7.5 g ha-1, while the second experiment evaluated pyrithiobac-sodium (70 g ha-1. Both experiments were conducted in a randomized block design with a 2 x 4 x 5 factorial scheme and four replications. The design’s factors corresponded to 2 soil liming conditions (with or without liming, 4 simulated rainfall depths (0, 15, 30, and 45 mm and 5 depths in the soil column (0-5, 5-10, 10-15, 15-20, and 20-25 cm. The trials were repeated, and only the source for the soil neutralization was changed, i.e., dolomitic limestone in Experiment 1 and calcium oxide in Experiment 2. Compared to trifloxysulfuron-sodium, the herbicide pyrithiobac-sodium indicated a greater potential for leaching. With more acidic soils, the leaching potential in limed soils was greater for both herbicides. Only the liming that used calcium oxide provided a significant leaching of trifloxysulfuron-sodium for depths greater than 20 cm. Simulated rainfall ≥ 15 mm provided leaching of pyrithiobac-sodium to a depth of 25 cm at near-neutral soil pH values.

  20. Contribution of two-pore K+ channels to cardiac ventricular action potential revealed using human iPSC-derived cardiomyocytes.

    Science.gov (United States)

    Chai, Sam; Wan, Xiaoping; Nassal, Drew M; Liu, Haiyan; Moravec, Christine S; Ramirez-Navarro, Angelina; Deschênes, Isabelle

    2017-06-01

    Two-pore K + (K 2p ) channels have been described in modulating background conductance as leak channels in different physiological systems. In the heart, the expression of K 2p channels is heterogeneous with equivocation regarding their functional role. Our objective was to determine the K 2p expression profile and their physiological and pathophysiological contribution to cardiac electrophysiology. Induced pluripotent stem cells (iPSCs) generated from humans were differentiated into cardiomyocytes (iPSC-CMs). mRNA was isolated from these cells, commercial iPSC-CM (iCells), control human heart ventricular tissue (cHVT), and ischemic (iHF) and nonischemic heart failure tissues (niHF). We detected 10 K 2p channels in the heart. Comparing quantitative PCR expression of K 2p channels between human heart tissue and iPSC-CMs revealed K 2p 1.1, K 2p 2.1, K 2p 5.1, and K 2p 17.1 to be higher expressed in cHVT, whereas K 2p 3.1 and K 2p 13.1 were higher in iPSC-CMs. Notably, K 2p 17.1 was significantly lower in niHF tissues compared with cHVT. Action potential recordings in iCells after K 2p small interfering RNA knockdown revealed prolongations in action potential depolarization at 90% repolarization for K 2p 2.1, K 2p 3.1, K 2p 6.1, and K 2p 17.1. Here, we report the expression level of 10 human K 2p channels in iPSC-CMs and how they compared with cHVT. Importantly, our functional electrophysiological data in human iPSC-CMs revealed a prominent role in cardiac ventricular repolarization for four of these channels. Finally, we also identified K 2p 17.1 as significantly reduced in niHF tissues and K 2p 4.1 as reduced in niHF compared with iHF. Thus, we advance the notion that K 2p channels are emerging as novel players in cardiac ventricular electrophysiology that could also be remodeled in cardiac pathology and therefore contribute to arrhythmias. NEW & NOTEWORTHY Two-pore K + (K 2p ) channels are traditionally regarded as merely background leak channels in myriad