WorldWideScience

Sample records for oxide-coated composite adsorbent

  1. Bioactive plasma electrolytic oxidation coatings--the role of the composition, microstructure, and electrochemical stability.

    Science.gov (United States)

    Mohedano, M; Guzman, R; Arrabal, R; Lpez Lacomba, J-L; Matykina, E

    2013-11-01

    A Plasma electrolytic oxidation (PEO) process was used to produce bioactive coatings on Ti. PEO coatings with Ca/P atomic ratio of 1.7 and 4.0 were fabricated and characterized with respect to their morphology, composition, and microstructure. AC and DC electrochemical tests were used to evaluate the effect of (i) organic additives (amino acids, proteins, vitamins, and antibiotics) in alpha-minimum essential medium (?-MEM) on electrochemical stability of noncoated and PEO-coated Ti and (ii) coating composition, microstructure, and corrosion behavior on the cell response in ?-MEM. PEO-coated Ti showed higher corrosion resistance than the noncoated Ti in MEM with and without organic additives by an order of magnitude. The corrosion resistance in ?-MEM decreased with time for nonmodified Ti and increased for PEO-coated Ti; the latter was because of the adsorption of the proteins in the coating pores which increased the diffusion resistance. The presence of Ca and P in titanium oxide coating at the Ca/P ratio exceeding that of any stoichiometric Ca-P-O and Ca-P-O-H compounds facilitates faster osteoblast cell adhesion. PMID:23744783

  2. Simple and Efficient Synthesis of Iron Oxide-Coated Silica Gel Adsorbents for Arsenic Removal: Adsorption Isotherms and Kinetic Study

    Energy Technology Data Exchange (ETDEWEB)

    Arifin, Eric; Lee, Jiukyu [Interdisciplinary Program in Nanoscience and Technology, Virginia (United States); Cha, Jinmyung [Seoul National Univ., Seoul (Korea, Republic of)

    2013-08-15

    Iron oxide (ferrihydrite, hematite, and magnetite) coated silica gels were prepared using a low-cost, easily-scalable and straightforward method as the adsorbent material for arsenic removal application. Adsorption of the anionic form of arsenic oxyacids, arsenite (AsO{sup 2-}) and arsenate (AsO{sub 4}{sup -3}), onto hematite coated silica gel was fitted against non-linear 3-parameter-model Sips isotherm and 2-parameter-model Langmuir and Freundlich isotherm. Adsorption kinetics of arsenic could be well described by pseudo-second-order kinetic model and value of adsorption energy derived from non-linear Dubinin-Radushkevich isotherm suggests chemical adsorption. Although arsenic adsorption process was not affected by the presence of sulfate, chloride, and nitrate anions, as expected, bicarbonate and silicate gave moderate negative effects while the presence of phosphate anions significantly inhibited adsorption process of both arsenite and arsenate. When the actual efficiency to remove arsenic was tested against 1 L of artificial arsenic-contaminated groundwater (0.6 mg/L) in the presence competing anions, the reasonable amount (20 g) of hematite coated silica gel could reduce arsenic concentration to below the WHO permissible safety limit of drinking water of 10 ?g/L without adjusting pH and temperature, which would be highly advantageous for practical field application.

  3. Structure and Properties of Microarc Oxidation Coatings on SiCP/AZ31 Magnesium Matrix Composite

    Directory of Open Access Journals (Sweden)

    XUE Wen-Bin,JIN Qian,ZHU Qing-Zhen,MA Yue-Yu

    2009-05-01

    Full Text Available The protective ceramic coatings were prepared on SiC particle reinforced magnesium matrix composite by microarc oxidation (MAO surface treatment technique. The surface morphology, cross-sectional microstructure and phase constituent of ceramic coatings were analyzed. And the microhardness profile, thermal shock resistance and electrochemical corrosion behavior of the coatings were measured. The ceramic coating consists of MgO, Mg2SiO4 and a few phases related to the electrolyte elements. Furthermore, a few residual SiC reinforced particles are also remained in the coatings. The maximum hardness of the coating is about HV800, which is at least five times higher than that of the uncoated composite substrate. The coatings do not detach from composite substrate after the coated samples undergo 100 thermal shocks, heating the sample to 500?nd then quenching into water, which displays a good thermal shock resistance for the MAO coatings on SiCP/AZ31 composite. In addition, after MAO surface treatment, the corrosion resistance of the SiCP/AZ31 composite is greatly improved.

  4. Preparation and electromagnetic wave absorption properties of Fe-doped zinc oxide coated barium ferrite composites

    International Nuclear Information System (INIS)

    Fe-doped zinc oxide (ZnO) coated barium ferrite composite particles were prepared by a heterogeneous precipitation and thermal treatment process. The prepared composite particles were characterized with X-ray diffraction (XRD) and transmission electron microscopy (TEM). The complex relative permittivity and permeability of ZnO/barium ferrite composites were measured in the frequency range of 2-12 GHz. The results show that the coverage of ZnO has a great influence on microwave response of barium ferrite particles. The formation of a ZnO thin layer on the surface of a barium ferrite particle changes the character of the frequency dispersion of the complex relative permittivity and permeability. By changing the thickness of ZnO coverage, the frequency dependence of the microwave electromagnetic and absorbing properties could be adjusted, which provides us an opportunity for the synthesis of tailored particles

  5. Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells

    Science.gov (United States)

    Lee, Jong Ho; Shin, Yong Cheol; Jin, Oh Seong; Kang, Seok Hee; Hwang, Yu-Shik; Park, Jong-Chul; Hong, Suck Won; Han, Dong-Wook

    2015-07-01

    Human mesenchymal stem cells (hMSCs) have great potential as cell sources for bone tissue engineering and regeneration, but the control and induction of their specific differentiation into bone cells remain challenging. Graphene-based nanomaterials are considered attractive candidates for biomedical applications such as scaffolds in tissue engineering, substrates for SC differentiation and components of implantable devices, due to their biocompatible and bioactive properties. Despite the potential biomedical applications of graphene and its derivatives, only limited information is available regarding their osteogenic activity. This study concentrates upon the effects of reduced graphene oxide (rGO)-coated hydroxyapatite (HAp) composites on osteogenic differentiation of hMSCs. The average particle sizes of HAp and rGO were 1270 +/- 476 nm and 438 +/- 180 nm, respectively. When coated on HAp particulates, rGO synergistically enhanced spontaneous osteogenic differentiation of hMSCs, without hampering their proliferation. This result was confirmed by determining alkaline phosphatase activity and mineralization of calcium and phosphate as early and late stage markers of osteogenic differentiation. It is suggested that rGO-coated HAp composites can be effectively utilized as dental and orthopedic bone fillers since these graphene-based particulate materials have potent effects on stimulating the spontaneous differentiation of MSCs and show superior bioactivity and osteoinductive potential.Human mesenchymal stem cells (hMSCs) have great potential as cell sources for bone tissue engineering and regeneration, but the control and induction of their specific differentiation into bone cells remain challenging. Graphene-based nanomaterials are considered attractive candidates for biomedical applications such as scaffolds in tissue engineering, substrates for SC differentiation and components of implantable devices, due to their biocompatible and bioactive properties. Despite the potential biomedical applications of graphene and its derivatives, only limited information is available regarding their osteogenic activity. This study concentrates upon the effects of reduced graphene oxide (rGO)-coated hydroxyapatite (HAp) composites on osteogenic differentiation of hMSCs. The average particle sizes of HAp and rGO were 1270 +/- 476 nm and 438 +/- 180 nm, respectively. When coated on HAp particulates, rGO synergistically enhanced spontaneous osteogenic differentiation of hMSCs, without hampering their proliferation. This result was confirmed by determining alkaline phosphatase activity and mineralization of calcium and phosphate as early and late stage markers of osteogenic differentiation. It is suggested that rGO-coated HAp composites can be effectively utilized as dental and orthopedic bone fillers since these graphene-based particulate materials have potent effects on stimulating the spontaneous differentiation of MSCs and show superior bioactivity and osteoinductive potential. Electronic supplementary information (ESI) available: Additional figures. See DOI: 10.1039/c5nr01580d

  6. Arsenic Removal from Water Using Various Adsorbents: Magnetic Ion Exchange Resins, Hydrous Ion Oxide Particles, Granular Ferric Hydroxide, Activated Alumina, Sulfur Modified Iron, and Iron Oxide-Coated Microsand

    KAUST Repository

    Sinha, Shahnawaz

    2011-09-30

    The equilibrium and kinetic adsorption of arsenic on six different adsorbents were investigated with one synthetic and four natural types (two surface and two ground) of water. The adsorbents tested included magnetic ion exchange resins (MIEX), hydrous ion oxide particles (HIOPs), granular ferric hydroxide (GFH), activated alumina (AA), sulfur modified iron (SMI), and iron oxide-coated mic - rosand (IOC-M), which have different physicochemical properties (shape, charge, surface area, size, and metal content). The results showed that adsorption equilibriums were achieved within a contact period of 20 min. The optimal doses of adsorbents determined for a given equilibrium concentration of C eq = 10 μg/L were 500 mg/L for AA and GFH, 520–1,300 mg/L for MIEX, 1,200 mg/L for HIOPs, 2,500 mg/L for SMI, and 7,500 mg/L for IOC-M at a contact time of 60 min. At these optimal doses, the rate constants of the adsorbents were 3.9, 2.6, 2.5, 1.9, 1.8, and 1.6 1/hr for HIOPs, AA, GFH, MIEX, SMI, and IOC-M, respectively. The presence of silicate significantly reduced the arsenic removal efficiency of HIOPs, AA, and GFH, presumably due to the decrease in chemical binding affinity of arsenic in the presence of silicate. Additional experiments with natural types of water showed that, with the exception of IOC-M, the adsorbents had lower adsorption capacities in ground water than with surface and deionized water, in which the adsorption capacities decreased by approximately 60–95 % .

  7. Dependence of optical properties of composite materials with nanosize oxide coatings on the properties of film-forming sols: II. Effect of the sol component concentration

    Science.gov (United States)

    Shemanin, V. G.; Atkarskaya, A. B.

    2015-07-01

    We consider the effect of the component structure of a sol on optical characteristics (microscopic structure, refractive index and thickness of coating, reflectance, transmittance, and optical loss in composites of the type of a glass substrate + a nanosize oxide coating of the CuO-TiO2 system) of composite materials with nanosize coatings, which are obtained in accordance with the sol-gel technology. It is shown that the chemical composition of precursors considerably affects the maturing of alcosols, the structure of coatings, and optical characteristics of composites. It is proposed that the dispersed phase represented by nanotubes facilitates a closer packing of particles into a layer as compared to the pseudospherical phase.

  8. The influences of microdischarge types and silicate on the morphologies and phase compositions of plasma electrolytic oxidation coatings on Zircaloy-2

    International Nuclear Information System (INIS)

    Highlights: ? ZrO2 coatings are grown on Zircaloy-2 by plasma electrolytic oxidation. ? Characteristic solidification structures are formed on the coatings. ? This structure has not been found on the PEO coatings of other valve metals. ? Very low thermal conductivity of zirconia helps the formation of the structure. - Abstract: Plasma electrolytic oxidation coatings were formed in alkaline silicate electrolyte on Zircaloy-2. The evolution of the types of discharges, the microstructures, phase compositions and the corrosion resistance of the coatings were studied by real time imaging, SEM, XRD, and electrochemical tests. Characteristic solidification structures were revealed in the PEO coatings, the formation of the solidification structures is related to the long lasting discharges during the PEO process and the very low thermal conductivity of zirconium oxide. Thermal effect in the coatings and silicate content in the electrolyte affect the phase compositions of the coatings.

  9. Effect of current density on the structure, composition and corrosion resistance of plasma electrolytic oxidation coatings on Mg-Li alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhijun [Key Laboratory of Superlight Materials and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Yuan, Yi, E-mail: yi.yuan@hrbeu.edu.cn [Key Laboratory of Superlight Materials and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Jing, Xiaoyan [Key Laboratory of Superlight Materials and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The PEO coatings exhibit tunable characteristics by controlling the current density. Black-Right-Pointing-Pointer The coating formed at 5 A/dm{sup 2} exhibits the highest corrosion resistance. Black-Right-Pointing-Pointer Anti-corrosion properties of PEO coatings are related to coating surface composition. - Abstract: The effect of current density on the oxidation process, morphology, composition and anti-corrosion properties of coatings are elucidated. X-ray photoelectron spectroscopy and X-ray diffraction analysis of coatings show that coatings prepared at different current densities are composed of MgO and {gamma}-Mg{sub 2}SiO{sub 4} and {alpha}-Mg{sub 2}SiO{sub 4} phase. The chemical composition of PEO coatings varies from surface to the interior of the oxide coating. The PEO coatings exhibit tunable thickness, composition ratio, and porosity by controlling the current density, which ultimately affects film morphology and anti-corrosion properties. The superior corrosion resistance of coating obtained at 5 A/dm{sup 2} is attributed to the compactness of the barrier layer and the highest MgO/Mg{sub 2}SiO{sub 4} ratio.

  10. Effect of current density on the structure, composition and corrosion resistance of plasma electrolytic oxidation coatings on MgLi alloy

    International Nuclear Information System (INIS)

    Highlights: ? The PEO coatings exhibit tunable characteristics by controlling the current density. ? The coating formed at 5 A/dm2 exhibits the highest corrosion resistance. ? Anti-corrosion properties of PEO coatings are related to coating surface composition. - Abstract: The effect of current density on the oxidation process, morphology, composition and anti-corrosion properties of coatings are elucidated. X-ray photoelectron spectroscopy and X-ray diffraction analysis of coatings show that coatings prepared at different current densities are composed of MgO and ?-Mg2SiO4 and ?-Mg2SiO4 phase. The chemical composition of PEO coatings varies from surface to the interior of the oxide coating. The PEO coatings exhibit tunable thickness, composition ratio, and porosity by controlling the current density, which ultimately affects film morphology and anti-corrosion properties. The superior corrosion resistance of coating obtained at 5 A/dm2 is attributed to the compactness of the barrier layer and the highest MgO/Mg2SiO4 ratio.

  11. Dual-protection of a graphene-sulfur composite by a compact graphene skin and an atomic layer deposited oxide coating for a lithium-sulfur battery.

    Science.gov (United States)

    Yu, Mingpeng; Wang, Aiji; Tian, Fuyang; Song, Hongquan; Wang, Yinshu; Li, Chun; Hong, Jong-Dal; Shi, Gaoquan

    2015-03-12

    A reduced graphene oxide (rGO)-sulfur composite aerogel with a compact self-assembled rGO skin was further modified by an atomic layer deposition (ALD) of ZnO or MgO layer, and used as a free-standing electrode material of a lithium-sulfur (Li-S) battery. The rGO skin and ALD-oxide coating worked as natural and artificial barriers to constrain the polysulfides within the cathode region. As a result, the Li-S battery based on this electrode material exhibited superior cycling stability, good rate capability and high coulombic efficiency. Furthermore, ALD-ZnO coating was tested for performance improvement and found to be more effective than ALD-MgO coating. The ZnO modified G-S electrode with 55 wt% sulfur loading delivered a maximum discharge capacity of 998 mA h g(-1) at a current density of 0.2 C. A high capacity of 846 mA h g(-1) was achieved after charging/discharging for 100 cycles with a coulombic efficiency of over 92%. In the case of using LiNO3 as a shuttle inhibitor, this electrode showed an initial discharge capacity of 796 mA h g(-1) and a capacity retention of 81% after 250 cycles at a current density of 1 C with an average coulombic efficiency higher than 99.7%. PMID:25721407

  12. Isothermal composite adsorbent. Part I: Thermal characterisation

    International Nuclear Information System (INIS)

    Adsorption and desorption are respectively exo and endothermic phenomena leading to significant temperature changes in adsorption columns. Enhanced efficiency of a sorption process could be obtained under isothermal conditions, either for gas storage, purification or separation applications. The heat transfer within the adsorbent beds can be managed in situ, using thermal energy storage material: a phase change materials (PCM) for example. The thermal behaviour of a mixture of activated carbon and PCM during CO2 adsorption has been studied. The thermal characteristics of the involved materials have been determined and experiments carried out to highlight the positive effect of the PCM to reduce the CO2 adsorption heat effects on an activated carbon bed. Calorimetry was the technique used for all the thermal characterisations. It appears that the heat effects induced by CO2 adsorption are reduced by the presence of the PCM together with the adsorbent. The endothermic effect of fusion balances the heat effect of adsorption and significantly reduces the temperature changes

  13. A note on chemical composition and origin of ferromanganese oxide coated and uncoated pumice samples from central Indian Ocean basin

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.; Parthiban, G.; Moraes, C.; Rajalakshmi, R.; Lekshmi, S.; Athira, S.; JaiSankar, S.

    composition. Both coated and uncoated pumice samples are rhyoliteand medium K calc-alkaline series. Major, trace, rare earth elements (SigmaREE) concentration and chondrite-normalized REE patterns of both coated and uncoated pumice are nearly similar to each...

  14. REVIEW: USE of COMPOSITE ADSORBENTS in ADSORPTION REFRIGERATION

    Directory of Open Access Journals (Sweden)

    Satishchandra V. Joshi

    2012-01-01

    Full Text Available The urbanization across the world has resulted in increased demand for refrigeration and air conditioning. The main disadvantage with the conventional method i.e. vapor compression system is environment pollution. Another problem faced during urbanization is energy crisis. The adsorption refrigeration system is one of the solutions to this problem. The advantages of this system are environment friendly, less noise, use of waste heat or solar energy. But the disadvantage with adsorption system is low coefficient of performance (COP and bulkiness. Researchers across the world are working on this issue to make adsorption system a viable alternative to the compression systems. Since the last two decades considerable work is being done on the use of composite adsorbents to improve the heat and mass transfer performance. This kind of adsorbent is usually obtained by the combination of a chemical adsorbents and physical adsorbents.

  15. Adsorption Characterization of Strontium on PAN/Zeolite Composite Adsorbent

    OpenAIRE

    Sabriye Yusan; Sema Erenturk

    2011-01-01

    This work reports the adsorption of strontium from aqueous solutions onto PAN/zeolite composite. The strontium adsorption on the composite adsorbent was studied as a function of initial strontium concentration, pH of the solution, contact time and temperature. Adsorption isotherms like Langmuir, Freundlich,DubininRadushkevich (DR) and Temkin were used to analyze the equilibrium data at the different concentrations.Adsorption process well fitted to Temkin isotherm model. Thermodynamic parame...

  16. Oxide coating development

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.

    1995-06-01

    Monolithic SiC heat exchangers and fiber-reinforced SiC-matrix composite heat exchangers and filters are susceptible to corrosion by alkali metals at elevated temperatures. Protective coatings are currently being developed to isolate the SiC materials from the corrodants. Unfortunately, these coatings typically crack and spall when applied to SiC substrates. The purpose of this task is to determine the feasibility of using a compliant material between the protective coating and the substrate. The low-modulus compliant layer could absorb stresses and eliminate cracking and spalling of the protective coatings.

  17. Electrochemical niobium oxide coating in molten NaNO3-KNO3

    International Nuclear Information System (INIS)

    Kinetics of anodic oxide film growth on niobium in molten NaNO3-KNO3 (50 mol %) is studied in galvanostatic and potentiostatic conditions. Basic kinetic parameters of the oxide-coating process are determined. Chemical composition of the oxide coatings is established

  18. Design and performance prediction of a new generation adsorption chiller using composite adsorbent

    International Nuclear Information System (INIS)

    Research highlights: ? Composite adsorbent 'employing lithium chloride in silica gel' and water as working pair. ? A new type adsorbent bed is used to accommodate the composite adsorbent. ? A dynamic model of the adsorption chiller is built. ? The coefficient of performance (COP) and the cooling capacity will be improved. -- Abstract: This paper presents a novel adsorption chiller using composite adsorbent 'employing lithium chloride in silica gel' as adsorbent and water as adsorbate. A new type adsorbent bed is used to accommodate the composite adsorbent. The mass recovery between two adsorbent beds usually results in the adsorbate unbalance. So a novel auto water makeup unite is used to solve the problem. A dynamic model of the adsorption chiller is built based on the adsorption isotherms to predict the performance. The simulation result shows that the coefficient of performance (COP) and the cooling capacity will increase by using this new composite adsorbent. When the temperatures of hot water inlet, cooling water inlet, and chilled water inlet are 363, 303 and 293 K, COP will be 0.43, and the cooling capacity will be 5.295 kW. Also operation strategy is optimized. Different temperatures of hot water inlet, cooling water inlet and chilling water inlet will result in different COP and cooling capacity.

  19. Characterization of oxide coatings formed on tantalum by plasma electrolytic oxidation in 12-tungstosilicic acid

    International Nuclear Information System (INIS)

    Oxide coatings were formed on tantalum by plasma electrolytic oxidation (PEO) process in 12-tungstosilicic acid. The PEO process can be divided into three stages with respect to change of the voltage-time response. The contribution of electron current density in total current density during anodization results in the transformation of the slope of voltage-time curve. The surface morphology, chemical and phase composition of oxide coatings were investigated by AFM, SEM-EDX, XRD and Raman spectroscopy. Oxide coating morphology is strongly dependent of PEO time. The elemental components of PEO coatings are Ta, O, Si and W. The oxide coatings are partly crystallized and mainly composed of WO3, Ta2O5 and SiO2. Raman spectroscopy showed that the outer layer of oxide coatings formed during the PEO process is silicate tungsten bronze.

  20. Characterization of oxide coatings formed on tantalum by plasma electrolytic oxidation in 12-tungstosilicic acid

    Science.gov (United States)

    Petkovi?, M.; Stojadinovi?, S.; Vasili?, R.; Zekovi?, Lj.

    2011-10-01

    Oxide coatings were formed on tantalum by plasma electrolytic oxidation (PEO) process in 12-tungstosilicic acid. The PEO process can be divided into three stages with respect to change of the voltage-time response. The contribution of electron current density in total current density during anodization results in the transformation of the slope of voltage-time curve. The surface morphology, chemical and phase composition of oxide coatings were investigated by AFM, SEM-EDX, XRD and Raman spectroscopy. Oxide coating morphology is strongly dependent of PEO time. The elemental components of PEO coatings are Ta, O, Si and W. The oxide coatings are partly crystallized and mainly composed of WO 3, Ta 2O 5 and SiO 2. Raman spectroscopy showed that the outer layer of oxide coatings formed during the PEO process is silicate tungsten bronze.

  1. Effective thermal conductivity of expanded graphite-CaCl2 composite adsorbent for chemical adsorption chillers

    International Nuclear Information System (INIS)

    This paper presents experimental data on the thermal conductivity for three types of adsorbent, namely, pure CaCl2 powder, simple composite adsorbent and consolidated composite adsorbent. The thermal conductivities were measured by the 'hot wire method' at a fixed pressure and temperature under an ammonia atmosphere. Effective thermal conductivities of the expanded graphite-CaCl2 . nNH3 (n = 2, 4, 8) consolidated composite adsorbent are in the range of 7.05-9.2 W m-1 K-1, which are significant higher values than those of the powders bed of 0.3-0.4 W m-1 K-1. The obtained results show that the composite adsorbent thermal conductivity ? has a strong dependence on the bulk density, the weight fraction of expanded graphite and the ammoniated state of CaCl2

  2. Evaluation of oxide-coated iridium-rhenium chambers

    Science.gov (United States)

    Reed, Brian D.

    1994-01-01

    Iridium-coated rhenium (Ir-Re) provides long life operation of radiation-cooled rockets at temperatures up to 2200 C. Ceramic oxide coatings could be used to increase Ir-Re rocket lifetimes and allow operation in highly oxidizing environments. Ceramic oxide coatings promise to serve as both thermal and diffusion barriers for the iridium layer. Seven ceramic oxide-coated Ir-Re, 22-N rocket chambers were tested with gaseous hydrogen/gaseous oxygen (GHz/G02) propellants. Five chambers had thick (over 10 mils), monolithic coatings of either hafnia (HfO2) or zirconia (ZrO2). Two chambers had coatings with thicknesses less than 5 mils. One of these chambers had a thin-walled coating of ZrO2 infiltrated with sol gel HfO2. The other chamber had a coating composed of an Ir-oxide composite. The purpose of this test program was to assess the ability of the oxide coatings to withstand the thermal shock of combustion initiation, adhere under repeated thermal cycling, and operate in aggressively oxidizing environments. All of the coatings survived the thermal shock of combustion and demonstrated operation at mixture ratios up to 11. Testing the Ir-oxide composite-coated chamber included over 29 min at mixture ratio 16. The thicker walled coatings provided the larger temperature drops across the oxide layer (up to 570 C), but were susceptible to macrocracking and eventual chipping at a stress concentrator. The cracks apparently resealed during firing, under compression of the oxide layer. The thinner walled coatings did not experience the macrocracking and chipping of the chambers that was seen with the thick, monolithic coatings. However, burn-throughs in the throat region did occur in both of the thin-walled chambers at mixture ratios well above stoichiometric. The burn-throughs were probably the result of oxygen diffusion through the oxide coating that allowed the underlying Ir and Re layers to be oxidized. The results of this test program indicated that the thin-walled oxide coatings are better suited for repeated thermal cycling than the thick-walled coating, while thicker coatings may be required for operation in aggressively oxidizing environments.

  3. Effect of sandblasting intensity on microstructures and properties of pure titanium micro-arc oxidation coatings in an optimized composite technique

    Science.gov (United States)

    Wang, Hong-Yuan; Zhu, Rui-Fu; Lu, Yu-Peng; Xiao, Gui-Yong; He, Kun; Yuan, Y. F.; Ma, Xiao-Ni; Li, Ying

    2014-02-01

    Sandblasting is one of the most effective methods to modify a metal surface and improve its properties for application. Micro-arc oxidation (MAO) could produce a ceramic coating on a dental implant, facilitating cellular differentiation and osseocomposite on it. This study aims to deposit bioceramic Ca- and P-containing coatings on sandblasted commercially pure titanium by an optimum composite technique to improve the bioactive performance. The effect of sandblasting intensity on microstructures and properties of the implant coatings is examined, and the modified surfaces are characterized in terms of their topography, phase, chemical composition, mechanical properties and hydroxyapatite (HA)-inducing ability. The results show that a moderate sandblasting micromachines the substrate in favorable combination of rough and residual stresses; its MAO coating deposits nano-hydroxyapatite after immersion in simulated body fluid (SBF) for 5 days exhibiting better bioactivity. The further improvement of the implant surface performance is attributed to an optimized composite technique.

  4. Effect of pulse frequency on the microstructure, phase composition and corrosion performance of a phosphate-based plasma electrolytic oxidation coated AM50 magnesium alloy

    International Nuclear Information System (INIS)

    An AM50 magnesium alloy was plasma electrolytic oxidation treated using a pulsed DC power supply at three different pulse frequencies viz., 10 Hz, 100 Hz and 1000 Hz with a constant pulse ratio for 15 min in an alkaline phosphate electrolyte. The resultant coatings were characterized by X-ray diffraction, energy dispersive spectroscopy and scanning electron microscopy for their phase composition and microstructural features. The 10 Hz condition yielded relatively thick and rough coatings, which was attributed to the higher energy input per individual pulse during the PEO processing. The phase composition was also found to be influenced by the processing frequency. Electrochemical impedance spectroscopy studies performed in 0.1 M NaCl solutions revealed that the coatings produced at 10 Hz condition had a better corrosion resistance, which was attributed to the higher thickness, more compact microstructural features and a relatively stable phase composition.

  5. Preparation and Property of SiC/(ZrB2-SiC/SiC4 Anti-oxidation Coatings for Cf/SiC Composites

    Directory of Open Access Journals (Sweden)

    WU Ding-Xing,DONG Shao-Ming,DING Yu-Sheng,ZHANG Xiang-Yu,WANG Zheng,ZHOU Hai-Jun

    2009-07-01

    Full Text Available A SiC/(ZrB2-SiC/SiC4 coating was prepared by slurry painting and pulse CVD. The composition and structure of the coating were studied by using XRD,SEM and EDS analysis, then the anti-oxidation property of the coating was investigated. The results show that the thickness of obtained coating is about 100?, ZrB2-SiC layer and Pulse CVD SiC layer are bonded to each other alternately. After oxidation at 1500?n air for 25h, the weight loss of the Pulse CVD coating is 5.1%, while weight gain of the SiC/(ZrB2-SiC/SiC4 coating is about 2.5%. The SiC/(ZrB2-SiC/SiC4 coating shows excellent antioxidation property.

  6. In situ toughened SiC ceramics with Al-B-C additions and oxide-coated SiC platelet/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Cao, J. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering]|[Lawrence Berkeley National Lab., CA (United States). Materials Sciences Div.

    1996-12-01

    This work aimed at fabrication and characterization of high toughness SiC ceramics through the applications of in situ toughening and SiC platelet reinforcement. The processing-microstructure-property relations of hot pressed SiC with Al, B, and C additions (designated as ABC-SiC) were investigated. Through a liquid phase sintering mechanism, dense SiC was obtained by hot pressing at a temperature as low as 1,700 C with 3 wt% Al, 0.6 wt% B, and 2 wt% C additions. These sintering aids also enhanced the {beta}-to-{alpha} (3C-to-4H) phase transformation, which promoted SiC grains to grow into plate-like shapes. Under optimal processing conditions, the microstructure exhibited high-aspect-ratio plate-shaped grains with a thin (< 1 nm) Al-containing amorphous grain boundary film. The mechanical properties of the toughened SiC and the composites were evaluated in comparison with a commercial Hexoloy SiC under identical test conditions. The C-curve behavior was examined using the strength-indentation load relationship and compared with that directly measured using precracked compact tension specimens. The in situ toughened ABC-SiC exhibited much improved flaw tolerance and a significantly rising R-curve behavior. A steady-state toughness in excess of 9 MPam{sup 1/2} was recorded for the ABC-SiC in comparison to a single valued toughness below 3 MPam{sup 1/2} for the Hexoloy. Toughening in the ABC-SiC was mainly attributed to grain bridging and subsequent pullout of the plate-shaped grains. The high toughness ABC-SiC exhibited a bend strength of 650 MPa with a Weibull modulus of 19; in comparison, the commercial SiC showed a bend strength of 400 MPa with a Weibull modulus of 6. Higher fracture toughness was also achieved by the reinforcement of SiC platelets, encapsulated with alumina, yttria, or silica, in a SiC matrix.

  7. Properties and uranium adsorptive property of the granulated titanium-activated carbon composite adsorbent with polyacrylic acid hydrazide (PAH)

    International Nuclear Information System (INIS)

    Granulation of the composite adsorbent which consisted of hydrous titanium oxide and activated carbon was studied with PAH as a binder and the adsorptive property for uranium from sea water was examined. The strength of the granulated composite adsorbent with PAH increased as the degree of hydrazidation and amount of addition of PAH increased. The strength of the granulated composite adsorbent in break-down test by shaking method showed 98% at 10% added PAH with the degree of hydrazidation of 73%. PAH as the binder in the granulated composite adsorbent did not inhibited the adsorption of uranium from sea water, whereas the inhibitory effect of polyvinyl alcohol as a binder was found after formalization. The rate of adsorption of uranium on the granulated composite adsorbent was inversely proportional to the radius of granular. The granulated composite adsorbent was not disintegrated in elution process of uranium with acid or alkali carbonate solutions. (author)

  8. Phosphorylated cellulose triacetate-silica composite adsorbent for recovery of heavy metal ion.

    Science.gov (United States)

    Srivastava, Niharika; Thakur, Amit K; Shahi, Vinod K

    2016-01-20

    Phosphorylated cellulose triacetate (CTA)/silica composite adsorbent was prepared by acid catalyzed sol-gel method using an inorganic precursor (3-aminopropyl triethoxysilane (APTEOS)). Reported composite adsorbent showed comparatively high adsorption capacity for Ni(II) in compare with different heavy metal ions (Cu(2+), Ni(2+), Cd(2+) and Pb(2+)). For Ni(II) adsorption, effect of time, temperature, pH, adsorbent dose and adsorbate concentration were investigated; different kinetic models were also evaluated. Thermodynamic parameters such as ?G, ?H and ?S were also estimated and equilibrium adsorption obeyed Langmuir and Freundlich isotherms. Developed adsorbent exhibited about 78.8% Ni(II) adsorption at pH: 6 and a suitable candidate for the removal of Ni(II) ions from wastewater. Further, about 65.5% recovery of adsorbed Ni(II) using EDTA solution was demonstrated, which suggested effective recycling of the functionalized beads would enable it to be used in the treatment of contaminated water in industry. PMID:26572476

  9. Studies on broad spectrum corrosion resistant oxide coatings

    Indian Academy of Sciences (India)

    Someswar Datta

    2001-12-01

    The corrosion resistant oxide coatings, developed and applied by the conventional vitreous enamelling techniques, showed superior resistance to a range of mineral acids at various strengths and temperatures, alkaline solutions, boiling water and chrome plating solutions. These coatings possess considerable abrasion and impact resistance as well as high thermal shock resistance. The properties of the coating system have been studied in detail and found to be strongly dependent on composition and processing parameters. These coatings have been characterized by X-ray diffraction analysis and SEM studies. Some of the coating materials have been found to be biocompatible.

  10. Desorption of uranium from titanium-activated carbon composite adsorbent with acidic eluent, 2

    International Nuclear Information System (INIS)

    The desorption of uranium from the granular titanium-activated carbon composite adsorbent (concentration of uranium: 25.5 mg/1-Ad), which adsorbed uranium from natural sea water, was examined by the column process with acidic eluent at room temperature. The column operation was able to be carried out without destruction of the granular adsorbent by the generation of the carbon dioxide, and free from disturbance of the eluent flow by precipitate of calcium sulfate dihydrate with sulfuric acid eluent. The amount of acid consumption by the adsorbent was 0.87 eq/1-Ad. The alkaline earth metals were eluted in the range of elution volume below 2 1/1-Ad, whereas uranium, iron, and titanium were eluted above 2 1/1-Ad. Therefore, uranium was separable from the alkaline earth metals which were adsorbed in the most quantity in the adsorbent. In the range of elution volume 2 to 12 1/1-Ad, the percentage of desorbed uranium and the concentration ratio of uranium were 80 %, 680 with 0.5 N sulfuric acid, and 59 %, 490 with 0.5 N hydrochloric acid, respectively. The percentage of dissolved titanium (DTI) was 0.3 % with 0.5 N sulfuric acid, 0.26 % with 0.5 N hydrochloric acid in the same range. (author)

  11. ADSORPTION OF Cr(VI FROM AQUEOUS SOLUTION USING CARBON-MICROSILICA COMPOSITE ADSORBENT

    Directory of Open Access Journals (Sweden)

    DEYI ZHANG

    2012-03-01

    Full Text Available In this work, Microsilica, one kind of industry solid waste material, was utilized firstly to prepare a carbon-Microsilica composite adsorbent from a partial carbonization, mixture and sulfoxidation process and was proposed for the removal of Cr(VI from solutions. The surface chemistry characteristics of the prepared adsorbent were analysis by XPS and FT-IR. The characterization results indicated that an abundant of oxygen functional groups, such as hydroxyl, carboxyl and sulfonic groups, were introduced into the surface of the prepared composite adsorbent. Meanwhile, the adsorption characteristics of Cr(VI onto the adsorbent in aqueous solutions was studied as a function of solution pH, ionic strength, contact time, and temperature. The results showed that Cr(VI adsorption onto the adsorbent is strongly dependent on pH and, to a lesser extent, ionic strength. Kinetics data were found to follow the pseudo-second-order kinetic model while the adsorption data corresponded to L-shape adsorption isotherm which corresponds to the classification of Giles. Activation thermodynamic parameters, such as activation enthalpy (?H*, activation entropy (?S*, activation Gibbs free energy (?G* and activation energy (E, have been evaluated and the possible adsorption mechanism also was suggested.

  12. ADSORPTION OF Cr(VI) FROM AQUEOUS SOLUTION USING CARBON-MICROSILICA COMPOSITE ADSORBENT

    Scientific Electronic Library Online (English)

    DEYI, ZHANG; YING, MA; HUIXIA, FENG; YUAN, HAO.

    2012-03-01

    Full Text Available In this work, Microsilica, one kind of industry solid waste material, was utilized firstly to prepare a carbon-Microsilica composite adsorbent from a partial carbonization, mixture and sulfoxidation process and was proposed for the removal of Cr(VI) from solutions. The surface chemistry characterist [...] ics of the prepared adsorbent were analysis by XPS and FT-IR. The characterization results indicated that an abundant of oxygen functional groups, such as hydroxyl, carboxyl and sulfonic groups, were introduced into the surface of the prepared composite adsorbent. Meanwhile, the adsorption characteristics of Cr(VI) onto the adsorbent in aqueous solutions was studied as a function of solution pH, ionic strength, contact time, and temperature. The results showed that Cr(VI) adsorption onto the adsorbent is strongly dependent on pH and, to a lesser extent, ionic strength. Kinetics data were found to follow the pseudo-second-order kinetic model while the adsorption data corresponded to L-shape adsorption isotherm which corresponds to the classification of Giles. Activation thermodynamic parameters, such as activation enthalpy (?H*), activation entropy (?S*), activation Gibbs free energy (?G*) and activation energy (E), have been evaluated and the possible adsorption mechanism also was suggested.

  13. Biocompatibility of Ir/Ti-oxide coatings: Interaction with platelets, endothelial and smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Habibzadeh, Sajjad [Department of Chemical Engineering, McGill University, Montreal, QC (Canada); Li, Ling [Department of Anatomy and Cell Biology, McGill University, Montreal, QC (Canada); Omanovic, Sasha [Department of Chemical Engineering, McGill University, Montreal, QC (Canada); Shum-Tim, Dominique [Divisions of Cardiac Surgery and Surgical Research, Department of Surgery, McGill University, Montreal, QC (Canada); Davis, Elaine C., E-mail: elaine.davis@mcgill.ca [Department of Anatomy and Cell Biology, McGill University, Montreal, QC (Canada)

    2014-05-01

    Graphical abstract: - Highlights: Ir/Ti-oxide coated surfaces are characterized by the so-called cracked-mud morphology. 40% Ir in the coating material results in a morphologically uniform coating. ECs and SMCs showed a desirable response to the Ir/Ti-oxide coated surfaces. Ir/Ti-oxide coated surfaces are more bio/hemocompatible than the untreated 316L stainless steel. - Abstract: Applying surface coatings on a biomedical implant is a promising modification technique which can enhance the implant's biocompatibility via controlling blood constituents- or/and cell-surface interaction. In this study, the influence of composition of Ir{sub x}Ti{sub 1?x}-oxide coatings (x = 0, 0.2, 0.4, 0.6, 0.8, 1) formed on a titanium (Ti) substrate on the responses of platelets, endothelial cells (ECs) and smooth muscle cells (SMCs) was investigated. The results showed that a significant decrease in platelet adhesion and activation was obtained on Ir{sub 0.2}Ti{sub 0.8}-oxide and Ir{sub 0.4}Ti{sub 0.6}-oxide coatings, rendering the surfaces more blood compatible, in comparison to the control (316L stainless steel, 316L-SS) and other coating compositions. Further, a substantial increase in the EC/SMC surface count ratio after 4 h of cell attachment to the Ir{sub 0.2}Ti{sub 0.8}-oxide and Ir{sub 0.4}Ti{sub 0.6}-oxide coatings, relative to the 316L-SS control and the other coating compositions, indicated high potential of these coatings for the enhancement of surface endothelialization. This indicates the capability of the corresponding coating compositions to promote EC proliferation on the surface, while inhibiting that of SMCs, which is important in cardiovascular stents applications.

  14. Biocompatibility of Ir/Ti-oxide coatings: Interaction with platelets, endothelial and smooth muscle cells

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: Ir/Ti-oxide coated surfaces are characterized by the so-called cracked-mud morphology. 40% Ir in the coating material results in a morphologically uniform coating. ECs and SMCs showed a desirable response to the Ir/Ti-oxide coated surfaces. Ir/Ti-oxide coated surfaces are more bio/hemocompatible than the untreated 316L stainless steel. - Abstract: Applying surface coatings on a biomedical implant is a promising modification technique which can enhance the implant's biocompatibility via controlling blood constituents- or/and cell-surface interaction. In this study, the influence of composition of IrxTi1?x-oxide coatings (x = 0, 0.2, 0.4, 0.6, 0.8, 1) formed on a titanium (Ti) substrate on the responses of platelets, endothelial cells (ECs) and smooth muscle cells (SMCs) was investigated. The results showed that a significant decrease in platelet adhesion and activation was obtained on Ir0.2Ti0.8-oxide and Ir0.4Ti0.6-oxide coatings, rendering the surfaces more blood compatible, in comparison to the control (316L stainless steel, 316L-SS) and other coating compositions. Further, a substantial increase in the EC/SMC surface count ratio after 4 h of cell attachment to the Ir0.2Ti0.8-oxide and Ir0.4Ti0.6-oxide coatings, relative to the 316L-SS control and the other coating compositions, indicated high potential of these coatings for the enhancement of surface endothelialization. This indicates the capability of the corresponding coating compositions to promote EC proliferation on the surface, while inhibiting that of SMCs, which is important in cardiovascular stents applications

  15. Preparation and characterization of aluminium oxide coatings

    International Nuclear Information System (INIS)

    Due to the importance of aluminium oxide coatings in industry and fusion reactor programme, its properties have been studied after depositing it on different substrates by electron beam evaporation method. Characterization of the coatings have been carried out using X-ray diffraction, scanning electron microscopy, Auger electron spectroscopy and Rutherford backscattering analysis. Coating adhesion is quite good (typically, the value 725 Kg/cm2 on monel-400). Results have been analysed and discussed. (author). 14 refs., 3 figures

  16. Modeling of fixed-bed column studies for the adsorption of cadmium onto novel polymer-clay composite adsorbent

    International Nuclear Information System (INIS)

    Kaolinite clay was treated with polyvinyl alcohol to produce a novel water-stable composite called polymer-clay composite adsorbent. The modified adsorbent was found to have a maximum adsorption capacity of 20,400 13 mg/L (1236 mg/g) and a maximum adsorption rate constant of ?7.45 x 10-3 0.0002 L/(min mg) at 50% breakthrough. Increase in bed height increased both the breakpoint and exhaustion point of the polymer-clay composite adsorbent. The time for the movement of the Mass Transfer Zone (?) down the column was found to increase with increasing bed height. The presence of preadsorbed electrolyte and regeneration were found to reduce this time. Increased initial Cd2+ concentration, presence of preadsorbed electrolyte, and regeneration of polymer-clay composite adsorbent reduced the volume of effluent treated. Premodification of polymer-clay composite adsorbent with Ca- and Na-electrolytes reduced the rate of adsorption of Cd2+ onto polymer-clay composite and lowered the breakthrough time of the adsorbent. Regeneration and re-adsorption studies on the polymer-clay composite adsorbent presented a decrease in the bed volume treated at both the breakpoint and exhaustion points of the regenerated bed. Experimental data were observed to show stronger fits to the Bed Depth Service Time (BDST) model than the Thomas model.

  17. Synthesis and properties of a magnetic core-shell composite nano-adsorbent for fluoride removal from drinking water

    Science.gov (United States)

    Zhang, Chang; Chen, Lin; Wang, Ting-Jie; Su, Chao-Li; Jin, Yong

    2014-10-01

    An adsorbent for fluoride removal from drinking water was prepared by coating Fe-Ti bimetallic oxide on magnetic Fe3O4 particles by co-precipitation. The adsorbent was a nanosized composite with a core-shell structure comprising a magnetic Fe3O4 core of 10-20 nm in diameter and an amorphous adsorbent shell of several nanometer thickness. The synthesis parameters were optimized to give high adsorption capacity and high magnetization. The optimized mass ratio of the Fe-Ti bimetallic oxide shell to Fe3O4 core was 2.72. The adsorption isotherm was well fitted with the Langmuir isotherm and the saturation adsorption capacity 57.22 mg/g adsorbent. Adsorption was fast and reached equilibrium within 2 min. The nano-adsorbent was superparamagnetic with a saturation magnetization of 18.4 emu/g, which allowed rapid separation of the adsorbent from the water solution by an external magnet.

  18. Bio sorption process for uranium (VI) by using algae-yeast-silica gel composite adsorbent

    International Nuclear Information System (INIS)

    Many yeast, algae, bacteria and various aquatic flora are known to be capable of concentrating metal species from dilute aqueous solution. Many researcher have found that non-living biomaterials can be used to accumulate metal ions from environment. In recent studies, mainly two process are used in biosorption experiments. These are the use of free cells and the use of immobilized cells on a solid support. A variety of inert supports have been used to immobilize biomaterials either by adsorption or physical entrapment. This uptake is often considerable and frequently selective, and occurs via a variety of mechanisms including active transport, ion exchange or complexation, and adsorption or inorganic precipitation. Biosorbent may be used as an ion exchange material. Adsorption occurs through interaction of the metal ions with functional groups that are found in the cell wall biopolymers of either living or dead organisms. In this study, the algae-yeast-silica gel composite adsorbent was tested for its ability to recover U(VI) from diluted aqueous solutions. Macro marine algae (Jania rubens.), yeast (Saccharomyces cerevisiae) and silica gel were used to prepare composite adsorbent. The ability of the composite biosorbent to adsorb uranium (VI) from aqueous solution has been studied at different optimized conditions of pH, concentration of U(VI), temperature, contact time and matrix ion effect was also investigated. The adsorption patterns of uranium on the composite biosorbent were investigated by the Langmuir, Freundlich and Dubinin-Radushkhevic isotherms. The thermodynamic parameters such as variation of enthalpy ?H, variation of entropy ?S and variation of Gibbs free energy ?G were calculated. The results suggested that the macro algae-yeast-silica gel composite sorbent is suitable as a new biosorbent material for removal of uranium ions from aqueous solutions

  19. Photocatalytic Iron Oxide Coatings Produced by Thermal Spraying Process

    Science.gov (United States)

    Navidpour, A. H.; Salehi, M.; Amirnasr, M.; Salimijazi, H. R.; Azarpour Siahkali, M.; Kalantari, Y.; Mohammadnezhad, M.

    2015-12-01

    Recently, hematite coatings with semiconductor properties have received attention for photocatalytic applications. In this study, plasma and flame spraying techniques were used for hematite deposition on 316 stainless steel plates. X-ray diffraction was used for phase composition analysis, and methylene blue was used as an organic pollutant to evaluate the photocatalytic activity of thermally sprayed coatings. The results showed that all these coatings could act under visible-light irradiation but the one deposited by flame spraying at 20 cm stand-off distance showed the highest photocatalytic activity. The results showed that wavelength of the light source and pH of the solution affected the photocatalytic activity significantly. It was also shown that thermally sprayed iron oxide coatings could have a high photo-absorption ability, which could positively affect the photocatalytic activity.

  20. Photocatalytic Iron Oxide Coatings Produced by Thermal Spraying Process

    Science.gov (United States)

    Navidpour, A. H.; Salehi, M.; Amirnasr, M.; Salimijazi, H. R.; Azarpour Siahkali, M.; Kalantari, Y.; Mohammadnezhad, M.

    2015-10-01

    Recently, hematite coatings with semiconductor properties have received attention for photocatalytic applications. In this study, plasma and flame spraying techniques were used for hematite deposition on 316 stainless steel plates. X-ray diffraction was used for phase composition analysis, and methylene blue was used as an organic pollutant to evaluate the photocatalytic activity of thermally sprayed coatings. The results showed that all these coatings could act under visible-light irradiation but the one deposited by flame spraying at 20 cm stand-off distance showed the highest photocatalytic activity. The results showed that wavelength of the light source and pH of the solution affected the photocatalytic activity significantly. It was also shown that thermally sprayed iron oxide coatings could have a high photo-absorption ability, which could positively affect the photocatalytic activity.

  1. Boron Removal from Aqueous Solutions using Composite Adsorbent Based on Carbon-Mineral

    International Nuclear Information System (INIS)

    Boron removal from aqueous solutions by adsorption was investigated using composite adsorbent that combine zeolite, limestone, activated carbon and rice husk charcoal waste. In this study, the optimum parameters such as pH, optimal contact time and adsorbent dosage were observed. In addition, adsorption isotherm studies and adsorption kinetics were made. In this study, the maximum boron removal was obtained at pH 5 and the optimum contact time was 120 min. The optimal dose of composite adsorbent to remove boron in aqueous solutions is about 280 g/ L which can remove about 50.49 %. In the isotherm studies, Langmuir and Freundlich isotherm models were applied and it was determined that the experimental data conformed to Langmuir isotherm model (R2 = 0.8792). The adsorption capacity (qm) obtained from Langmuir isotherm model was 1.8985 mg/ g. Kinetics studies were performed to understand the mechanistic steps of the adsorption process and the rate kinetics for the adsorption of boron was best fitted with the second-order kinetic model. The correlation coefficients obtained for second-order kinetic model was 0.9929. It is suggested that the boron adsorption is likely influenced by the chemical process. (author)

  2. Synthesis of bio-active titanium oxide coatings stimulated by electron-beam plasma

    Directory of Open Access Journals (Sweden)

    Vasilieva Tatiana

    2014-11-01

    Full Text Available Advantages of the electron-beam plasma (EBP for production of bioactive titanium oxide coatings were experimentally studied. The coatings were synthesized in EBP of oxygen on the surface of plane titanium substrates. A number of analytical techniques were used to characterize morphology, chemical composition, and structure of the synthesized titanium oxide. The analysis showed the titanium oxide (IV in the rutile form to predominate in the coatings composition.

  3. Extraction of uranium from sea water with the granular composite adsorbent by using the fixed bed

    International Nuclear Information System (INIS)

    To clarify the technical problems existing in the extraction process of uranium from sea water, uranium was extracted from natural sea water, with the granulated C-Ti-OH composite adsorbent. The adsorption of uranium from sea water was carried out by using the fixed bed that had been designed in our laboratory. The uranium recovery from the sea water was 13.9% in the adsorption process of 56 d. The adsorbed uranium was eluted from the adsorbent with 0.5 N NaHCO3-0.5N Na2CO3 soln. at 700C. The elution recovery was 97.4% for 35 h. The uranium contained in the eluate was concentrated twenty times as much as in the anion exchange process, and then 100 times in the solvent extraction process with oxine-chloroform and TOA-kerosene. About 0.7 g of yellow cake was prepared from natural sea water, and it was identified to be pure 2UO2.NH3.3H2O by X-ray diffraction method and X-ray fluorometry. (author)

  4. Extraction of uranium from sea water with the granular composite adsorbent by using the fixed bed

    International Nuclear Information System (INIS)

    To clarify the technical problems existing in the extraction process of uranium from sea water, uranium was extracted from natural sea water, with the granulated C-Ti-OH composite adsorbent. The adsorption of uranium from sea water was carried out by using the fixed bed that had been designed in our laboratory. The uranium recovery from the sea water was 13.9 % in the adsorption process of 56sub(d). The adsorbed uranium was eluted from the adsorbent with 0.5 sub(N) NaHCO3-0.5 sub(N) Na2CO3 soln. at 700C. The elution recovery was 97.4 % after 35 h. The uranium contained in the eluate was concentrated in the anion exchange process to 20 times as much as in the eluate, and then 100 times in the solvent extraction process with oxine-chloroform and TOA- kerosene. About 0.7 g of yellow cake was prepared from natural sea water, and it was identified to be 2UO2.NH3.3H2O by X-ray diffraction method and X-ray fluorometry. (author)

  5. Porosity in plasma electrolytic oxide coatings

    International Nuclear Information System (INIS)

    Plasma electrolytic oxide coatings are generally assumed to be almost fully dense. However, evidence is presented here for the presence of sub-micrometre, surface-connected porosity in such coatings, on aluminium alloys, at levels of the order of 20%. This evidence comes from densitometry, mercury porosimetry, helium pycnometry, BET adsorption measurements and high-resolution scanning electron microscopy. The very fine scale of the porosity (pore diameter ?10 to 100 nm), coupled with severe difficulties in making unambiguous microstructural observations, may account for the failure to detect this feature previously. It is pointed out that various measured properties, such as Young's modulus and thermal conductivity, are consistent with the presence of these relatively high porosity levels. Various other observed characteristics can also be explained on this basis. Finally, a possible mechanistic origin for the porosity is proposed

  6. A pH- and Temperature-Responsive Magnetic Composite Adsorbent for Targeted Removal of Nonylphenol.

    Science.gov (United States)

    Zhen, Yang; Ning, Zhuo; Shaopeng, Zhang; Yayi, Dong; Xuntong, Zhang; Jiachun, Shen; Weiben, Yang; Yuping, Wang; Jianqiang, Chen

    2015-11-11

    A pH- and temperature-responsive magnetic adsorbent [poly(N-isopropylacrylamide) grafted chitosan/Fe3O4 composite particles, CN-MCP], was synthesized for the removal of the endocrine-disrupting chemical nonylphenol. According to the structural characteristics (changeable surface-charge and hydrophilic/hydrophobic properties) of the targeted contaminant, CN-MCP was designed owning special structure (pH- and temperature-responsiveness for the changeable surface-charge and adjustable hydrophilic/hydrophobic properties, respectively). Compared to chitosan magnetic composite particles without grafting modification (CS-MCP) and several other reported adsorbents, CN-MCP exhibited relatively high adsorption capacity for nonylphenol under corresponding optimal conditions (123 mg/g at pH 9 and 20 C; 116 mg/g at pH 5 and 40 C). Meanwhile, high selectivity of the novel adsorbent in selective adsorption of nonylphenol from bisolute solution of nonylphenol and phenol was found. Effects of grafting ratio of the grafted polymer branches and coexisting inorganic salts on the adsorption were systematically investigated. Moreover, CN-MCP demonstrated desired reusability during 20 times of adsorption-desorption recycling. The high adsorption capacity, high selectivity, and desired reusability aforementioned revealed the significant application potential of CN-MCP in the removal of NP. On the basis of the adsorption behaviors, isotherms equilibrium, thermodynamics and kinetics studies, and instrumental analyses including X-ray photoelectron spectroscopy, BET specific surface area, zeta potential, and static water contact angle measurements, distinct adsorption mechanisms were found under various conditions: charge attraction between CN-MCP and the contaminant, as well as binding between polymeric branches of CN-MCP and nonyls, contributed to the adsorption at pH 9 and 20 C; whereas hydrophobic interaction between CN-MCP and nonylphenol played a dominant role at pH 5 and 40 C. The current study provided a strategy for the structural design of adsorbents according to the features of targeted emerging contaminants, and the continuity of the work was discussed and proposed. PMID:26492983

  7. Testing and evaluation of oxide-coated iridium/rhenium chambers

    Science.gov (United States)

    Reed, Brian D.

    1993-01-01

    Iridium-coated rhenium provides long life operation of radiation-cooled rockets at temperatures up to 2200 C. Ceramic oxide coatings could be used to increase iridium/rhenium rocket lifetimes and allow operation in highly oxidizing environments. Ceramic oxide coatings promise to serve as both thermal and diffusion barriers for the iridium layer. Seven ceramic oxide-coated iridium/rhenium, 22 N rocket chambers were tested on gaseous hydrogen/gaseous oxygen propellants. Five chambers had thick (over 10 mils), monolithic coatings of either hafnia or zirconia. Two chambers had coatings with thicknesses less than 5 mils. One of these chambers had a thin-walled coating of zirconia infiltrated with sol gel hafnia. The other chamber had a coating composed of an iridium/oxide composite. The purpose of this test program was to assess the ability of the oxide coatings to withstand the thermal shock of combustion initiation, adhere under repeated thermal cycling, and operate in aggressively oxidizing environments. All of the coatings survived the thermal shock of combustion and demonstrated operation at mixture ratios up to 11. The iridium/oxide composite coated chamber included testing for over 29 minutes at mixture ratio 16. The thicker-walled coatings provided the larger temperature drops across the oxide layer (up to 570 C), but were susceptible to macrocracking and eventual chipping at a stress concentrator. The cracks apparently resealed during firing, under compression of the oxide layer. The thinner-walled coatings did not experience the macrocracking and chipping of the chambers seen with the thick, monolithic coatings. However, burnthroughs in the throat region did occur in both of the thin-walled chambers at mixture ratios well above stochiometric. The burn-throughs were probably the result of oxygen-diffusion through the oxide coating that allowed the underlying iridium and rhenium layers to be oxidized. The results of this test program indicated that the thin-walled oxide coatings are better suited for repeated thermal cycling than the thick-walled coating, while thicker coatings may be required for operation in aggressively oxidizing environments.

  8. Bacterial adhesion on amorphous and crystalline metal oxide coatings.

    Science.gov (United States)

    Almaguer-Flores, Argelia; Silva-Bermudez, Phaedra; Galicia, Rey; Rodil, Sandra E

    2015-12-01

    Several studies have demonstrated the influence of surface properties (surface energy, composition and topography) of biocompatible materials on the adhesion of cells/bacteria on solid substrates; however, few have provided information about the effect of the atomic arrangement or crystallinity. Using magnetron sputtering deposition, we produced amorphous and crystalline TiO2 and ZrO2 coatings with controlled micro and nanoscale morphology. The effect of the structure on the physical-chemical surface properties was carefully analyzed. Then, we studied how these parameters affect the adhesion of Escherichia coli and Staphylococcus aureus. Our findings demonstrated that the nano-topography and the surface energy were significantly influenced by the coating structure. Bacterial adhesion at micro-rough (2.6 ?m) surfaces was independent of the surface composition and structure, contrary to the observation in sub-micron (0.5 ?m) rough surfaces, where the crystalline oxides (TiO2>ZrO2) surfaces exhibited higher numbers of attached bacteria. Particularly, crystalline TiO2, which presented a predominant acidic nature, was more attractive for the adhesion of the negatively charged bacteria. The information provided by this study, where surface modifications are introduced by means of the deposition of amorphous or crystalline oxide coatings, offers a route for the rational design of implant surfaces to control or inhibit bacterial adhesion. PMID:26354243

  9. Efficient removal of Eu(III) from aqueous solutions using super-adsorbent of bentonite-polyacrylamide composites

    International Nuclear Information System (INIS)

    The bentonite has been studied extensively to preconcentrate radionuclides from aqueous solutions, however, the low sorption capacity limits it application in real work. Herein, bentonite embedded in the polyacrylamide (PAAm) gels is synthesized and used as a novel adsorbent for the removal of Eu(III) from aqueous solutions. The bentonite-PAAm composites show much higher sorption capacity for Eu(III) preconcentration than bare bentonite. The bentonite-PAAm composites can be used as super-adsorbent for the removal of Eu(III) from aqueous solution in radioactive pollution cleanup. (author)

  10. Long Life Testing of Oxide-Coated Iridium/Rhenium Rockets

    Science.gov (United States)

    Reed, Brian D.

    1995-01-01

    22-N class rockets, composed of a rhenium (Re) substrate, an iridium (Ir) coating, and an additional composite coating consisting of Ir and a ceramic oxide, were tested on gaseous oxygen/gaseous hydrogen (GO2/GH2) propellants. Two rockets were tested, one for nearly 39 hours at a nominal mixture ratio (MR) of 4.6 and chamber pressure (Pc) of 469 kPa, and the other for over 13 hours at a nominal MR of 5.8 and 621 kPa Pc. Four additional Ir/Re rockets, with a composite Ir-oxide coating fabricated using a modified process, were also tested, including one for 1.3 hours at a nominal MR of 16.7 and Pc of 503 kPa. The long lifetimes demonstrated on low MR GO2/GH2 suggest greatly extended chamber lifetimes (tens of hours) in the relatively low oxidizing combustion environments of Earth storable propellants. The oxide coatings could also serve as a protective coating in the near injector region, where a still-mixing flowfield may cause degradation of the Ir layer. Operation at MR close to 17 suggests that oxide-coated Ir/Re rockets could be used in severely oxidizing combustion environments, such as high MR GO2/GH2, oxygen/hydrocarbon, and liquid gun propellants.

  11. Bacteriophage PRD1 and silica colloid transport and recovery in an iron oxide-coated sand aquifer

    Science.gov (United States)

    Ryan, J.N.; Elimelech, M.; Ard, R.A.; Harvey, R.W.; Johnson, P.R.

    1999-01-01

    Bacteriophage PRD1 and silica colloids were co-injected into sewage- contaminated and uncontaminated zones of an iron oxide-coated sand aquifer on Cape Cod, MA, and their transport was monitored over distances up to 6 m in three arrays. After deposition, the attached PRD1 and silica colloids were mobilized by three different chemical perturbations (elevated pH, anionic surfactant, and reductant). PRD1 and silica colloids experienced less attenuation in the contaminated zone where adsorbed organic matter and phosphate may be hindering attachment of PRD1 and silica colloids to the iron oxide coatings. The PRD1 collision efficiencies agree well with collision efficiencies predicted by assuming favorable PRD1 deposition on iron oxide coatings for which the surface area coverage was measured by microprobe analysis of sediment thin sections. ?? potentials of the PRD1, silica colloids, and aquifer grains corroborated the transport results, indicating that electrostatic forces dominated the attachment of PRD1 and silica colloids. Elevated pH was the chemical perturbation most effective at mobilizing the attached PRD1 and silica colloids. Elevated surfactant concentration mobilized the attached PRD1 and silica colloids more effectively in the contaminated zone than in the uncontaminated zone.Bacteriophage PRD1 and silica colloids were co-injected into sewage-contaminated and uncontaminated zones of an iron oxide-coated sand aquifer on Cape Cod, MA, and their transport was monitored over distances up to 6 m in three arrays. After deposition, the attached PRD1 and silica colloids were mobilized by three different chemical perturbations (elevated pH, anionic surfactant, and reductant). PRD1 and silica colloids experienced less attenuation in the contaminated zone where adsorbed organic matter and phosphate may be hindering attachment of PRD1 and silica colloids to the iron oxide coatings. The PRD1 collision efficiencies agree well with collision efficiencies predicted by assuming favorable PRD1 deposition on iron oxide coatings for which the surface area coverage was measured by microprobe analysis of sediment thin sections. ?? potentials of the PRD1, silica colloids, and aquifer grains corroborated the transport results, indicating that electrostatic forces dominated the attachment of PRD1 and silica colloids. Elevated pH was the chemical perturbation most effective at mobilizing the attached PRD1 and silica colloids. Elevated surfactant concentration mobilized the attached PRD1 and silica colloids more effectively in the contaminated zone than in the uncontaminated zone.

  12. Bacterial adhesion on amorphous and crystalline metal oxide coatings

    International Nuclear Information System (INIS)

    Several studies have demonstrated the influence of surface properties (surface energy, composition and topography) of biocompatible materials on the adhesion of cells/bacteria on solid substrates; however, few have provided information about the effect of the atomic arrangement or crystallinity. Using magnetron sputtering deposition, we produced amorphous and crystalline TiO2 and ZrO2 coatings with controlled micro and nanoscale morphology. The effect of the structure on the physical–chemical surface properties was carefully analyzed. Then, we studied how these parameters affect the adhesion of Escherichia coli and Staphylococcus aureus. Our findings demonstrated that the nano-topography and the surface energy were significantly influenced by the coating structure. Bacterial adhesion at micro-rough (2.6 μm) surfaces was independent of the surface composition and structure, contrary to the observation in sub-micron (0.5 μm) rough surfaces, where the crystalline oxides (TiO2 > ZrO2) surfaces exhibited higher numbers of attached bacteria. Particularly, crystalline TiO2, which presented a predominant acidic nature, was more attractive for the adhesion of the negatively charged bacteria. The information provided by this study, where surface modifications are introduced by means of the deposition of amorphous or crystalline oxide coatings, offers a route for the rational design of implant surfaces to control or inhibit bacterial adhesion. - Highlights: • Amorphous (a) and crystalline (c) TiO2 and ZrO2 coatings were deposited. • The atomic ordering influences the coatings surface charge and nano-topography. • The atomic ordering modifies the bacterial adhesion for the same surface chemistry. • S. aureus adhesion was lower on a-TiO2 and a-ZrO2 than on their c-oxide counterpart. • E. coli adhesion on a-TiO2 was lower than on the c-TiO2

  13. Effects of temperature and adsorbates on the composition profile of Pt-Rh nanocatalysts A comparative study

    CERN Document Server

    De Sarkar, A; Sarkar, Abir De; Khanra, Badal C.

    2001-01-01

    Monte-Carlo simulation technique has been used to investigate the effect of temperature and adsorbed gases on the composition profile of unsupported Pt-Rh nanocatalysts. For a 2406 atom fcc cubo-octahedral Pt$_{\\rm{}50}$Rh$_{\\rm{}50}$ nanocatalyst the shell-wise composition for all the eight shells has been simulated. For the temperatures 700 K, 1000 K and 1300 K, the top shell of clean Pt-Rh nanocatalysts is found to be mildly Pt-enriched, while the second shell is Pt-depleted. The Pt concentration of the top shell shows a maximum at T = 1000 K. In presence of a quarter monolayer of adsorbed oxygen the top shell shows Rh enrichment, while all the other shells show Pt-enrichment. This is true for all the three temperatures for which the composition profiles have been studied.

  14. Application of Carbon Composite Adsorbents Prepared from Coffee Waste and Clay for the Removal of Reactive Dyes from Aqueous Solutions

    Scientific Electronic Library Online (English)

    Davis C. dos, Santos; Matthew A., Adebayo; Eder C., Lima; Simone F. P., Pereira; Renato, Catalua; Caroline, Saucier; Pascal S., Thue; Fernando M., Machado.

    2015-05-01

    Full Text Available A novel carbon composite was prepared from a mixture of coffee waste and clay with inorganic:organic ratio of 1.3 (CC-1.3). The mixture was pyrolysed at 700 C. Considering the application of this adsorbent for removal of anionic dyes, the CC-1.3 was treated with a 6molL-1 HCl for 24 h to obtain A [...] CC-1.3. Fourier transform infrared (FTIR), N2 adsorption/desorption curves, scanning electron microscope (SEM) and powder X-ray diffractometry (XRD) were used for characterisation of CC-1.3 and ACC-1.3 carbon adsorbents. The adsorbents were effectively utilised for removal of reactive blue 19 (RB-19) and reactive violet 5 (RV-5) textile dyes from aqueous solutions. The maximum amounts of RB-19 dye adsorbed at 25 C are 63.59 (CC-1.3) and 110.6mg g-1 (ACC-1.3), and 54.34 (CC-1.3) and 94.32 mg g-1 (ACC-1.3) for RV-5 dye. Four simulated dye-house effluents were used to test the application of the adsorbents for treatment of effluents.

  15. Comparative Study on Kinetics of Chlorine Evolution Reaction for Ru-La-O Oxide Coatings

    Directory of Open Access Journals (Sweden)

    LONG Ping, XU Li-Kun, CUI Xiu-Fang, JIN Guo

    2015-05-01

    Full Text Available The Ti/RuO2 and Ti/Ru-La-O oxide coatings were prepared by thermal decomposition of the metal chlorides in the precursor solution. The specific adsorption of Cl? on coatings, the effect of La on the chlorine evolution reactions (ClER and the kinetic mechanism were investigated by using differential capacity (DC and polarization curves (PC. Results show that the coating surface exhibits significantly specific adsorption of Cl? in NaCl neutral solution, which has an influence on the kinetics of the chlorine evolution process, resulting in an increase of the Tafel slope and a decrease of the reaction order. The addition of lanthanum reduces the overpotential of Ti/RuO2 coating and enhances the exchange current density, which improves the chlorine evolution reaction of the coatings. Both kinetic mechanisms of recombination and electrochemical desorption of adsorbed intermediate species for the coatings are comparatively studied. It is confirmed that the Chlorine evolution reaction on Ru-La-O oxide coatings in NaCl neutral solution is controlled by the process of.

  16. Kinetics and mechanism of arsenate removal by nanosized iron oxide-coated perlite.

    Science.gov (United States)

    Mostafa, M G; Chen, Yen-Hua; Jean, Jiin-Shuh; Liu, Chia-Chuan; Lee, Yao-Chang

    2011-03-15

    This study discussed the adsorption kinetics of As(V) onto nanosized iron oxide-coated perlite. The effects of pH, initial concentration of As(V) and common anions on the adsorption efficiency were also investigated. It was observed that a 100% As(V) adsorption was achieved at pH value of 4-8 from the initial concentration containing 1.0 mg-As(V)L(-1) and the adsorption percentage depended on the initial concentration; the phosphate and silicate ions would not interfere with the adsorption efficiency. Furthermore, nanosized iron oxide-coated perlite (IOCP) has been shown to be an effective adsorbent for the removal of arsenate from water. The adsorption kinetics were studied using pseudo-first- and pseudo-second-order models, and the experimental data fitted well with the pseudo-second-order model. Moreover, it suggests that the Langmuir isotherm is more adequate than the Freundlich isotherm in simulating the adsorption isotherm of As(V). The adsorption rate constant is 44.84 L mg(-1) and the maximum adsorption capacity is 0.39 mg g(-1). These findings indicate that the adsorption property of IOCP gives the compound a great potential for applications in environmental remediation. PMID:21282000

  17. Electrochemical combustion of indigo at ternary oxide coated titanium anodes

    Directory of Open Access Journals (Sweden)

    María I. León

    2014-12-01

    Full Text Available The film of iridium and tin dioxides doped with antimony (IrO2-SnO2–Sb2O5 deposited on a Ti substrate (mesh obtained by Pechini method was used for the formation of ·OH radicals by water discharge. Detection of ·OH radicals was followed by the use of the N,N-dimethyl-p-nitrosoaniline (RNO as a spin trap. The electrode surface morphology and composition was characterized by SEM-EDS. The ternary oxide coating was used for the electrochemical combustion of indigo textile dye as a model organic compound in chloride medium. Bulk electrolyses were then carried out at different volumetric flow rates under galvanostatic conditions using a filter-press flow cell. The galvanostatic tests using RNO confirmed that Ti/IrO2-SnO2-Sb2O5 favor the hydroxyl radical formation at current densities between 5 and 7 mA cm-2, while at current density of 10 mA cm-2 the oxygen evolution reaction occurs. The indigo was totally decolorized and mineralized via reactive oxygen species, such as (·OH, H2O2, O3 and active chlorine formed in-situ at the Ti/IrO2-SnO2-Sb2O5 surface at volumetric flow rates between 0.1-0.4 L min-1 and at fixed current density of 7 mA cm-2. The mineralization of indigo carried out at 0.2 L min-1 achieved values of 100 %, with current efficiencies of 80 % and energy consumption of 1.78 KWh m-3.

  18. Co-precipitation synthesis of nano-composites consists of zinc and tin oxides coatings on glass with enhanced photocatalytic activity on degradation of Reactive Blue 160 KE2B

    Science.gov (United States)

    Habibi, Mohammad Hossein; Mardani, Maryam

    2015-02-01

    Nano-composite containing zinc oxide-tin oxide was obtained by a facile co-precipitation route using tin chloride tetrahydrate and zinc chloride as precursors and coated on glass by Doctor Blade deposition. The crystalline structure and morphology of composites were evaluated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The XRD results showed peaks relative to zinc oxide with hexagonal wurtzite structure and tin oxide with tetragonal structure. FESEM observations showed that the nano-composite consisted of aggregates of particles with an average particle size of 18 nm. The photocatalytic activity of the pure SnO2, pure ZnO, ZnSnO3-Zn2SnO4 and ZnO-SnO2 nano-structure thin films was examined using the degradation of a textile dye Reactive Blue 160 (KE2B). ZnO-SnO2 nano-composite showed enhanced photo-catalytic activity than the pure zinc oxide and tin oxide. The enhanced photo-catalytic activity of the nano-composite was ascribed to an improved charge separation of the photo-generated electron-hole pairs.

  19. An efficient removal of methyl orange dye from aqueous solution by adsorption onto chitosan/MgO composite: A novel reusable adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Haldorai, Yuvaraj; Shim, Jae-Jin, E-mail: jjshim@yu.ac.kr

    2014-02-15

    We report a novel multi-functional magnesium oxide (MgO) immobilized chitosan (CS) composite was prepared by chemical precipitation method. The CSMgO composite was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy and zeta potential. The composite was applied as a novel adsorbent for removal of methyl orange model dye and the effect of adsorbent dosage, pH and contact time were studied. The adsorption kinetics followed a pseudo second order reaction. The adsorbent efficiency was unaltered even after five cycles of reuse. In addition, the composite exhibited a superior antibacterial efficacy of 93% within 24 h against Escherichia coli as measured by colony forming units. Based on the data of present investigation the composite being a biocompatible, eco-friendly and low-cost adsorbent with antibacterial activity could find potential applications in variety of fields and in particular environmental applications.

  20. An efficient removal of methyl orange dye from aqueous solution by adsorption onto chitosan/MgO composite: A novel reusable adsorbent

    Science.gov (United States)

    Haldorai, Yuvaraj; Shim, Jae-Jin

    2014-02-01

    We report a novel multi-functional magnesium oxide (MgO) immobilized chitosan (CS) composite was prepared by chemical precipitation method. The CS-MgO composite was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy and zeta potential. The composite was applied as a novel adsorbent for removal of methyl orange model dye and the effect of adsorbent dosage, pH and contact time were studied. The adsorption kinetics followed a pseudo second order reaction. The adsorbent efficiency was unaltered even after five cycles of reuse. In addition, the composite exhibited a superior antibacterial efficacy of 93% within 24 h against Escherichia coli as measured by colony forming units. Based on the data of present investigation the composite being a biocompatible, eco-friendly and low-cost adsorbent with antibacterial activity could find potential applications in variety of fields and in particular environmental applications.

  1. An efficient removal of methyl orange dye from aqueous solution by adsorption onto chitosan/MgO composite: A novel reusable adsorbent

    International Nuclear Information System (INIS)

    We report a novel multi-functional magnesium oxide (MgO) immobilized chitosan (CS) composite was prepared by chemical precipitation method. The CSMgO composite was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy and zeta potential. The composite was applied as a novel adsorbent for removal of methyl orange model dye and the effect of adsorbent dosage, pH and contact time were studied. The adsorption kinetics followed a pseudo second order reaction. The adsorbent efficiency was unaltered even after five cycles of reuse. In addition, the composite exhibited a superior antibacterial efficacy of 93% within 24 h against Escherichia coli as measured by colony forming units. Based on the data of present investigation the composite being a biocompatible, eco-friendly and low-cost adsorbent with antibacterial activity could find potential applications in variety of fields and in particular environmental applications.

  2. Versatile wet deposition techniques for functional oxide coatings

    OpenAIRE

    Aegerter, Michel A.; Ptz, Jrg; Gasparro, Guido; Al-Dahoudi, Naji

    2004-01-01

    Functional oxide coatings are essential components in a variety of today's technical products and developments, but often applications are limited by the low flexibility and the high cost of the vapor phase deposition techniques used at present. Wet chemical processes based on the sol-gel and nanoparticle approaches can provide desired alternatives for a large number of such applications. This is shown for the high temperature sol-gel processing and the low-temperature nanoparticle approach w...

  3. Antibacterial activity of zinc oxide-coated nanoporous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Skoog, S.A. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Bayati, M.R. [Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States); Petrochenko, P.E. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Division of Biology, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993 (United States); Stafslien, S.; Daniels, J.; Cilz, N. [Center for Nanoscale Science and Engineering, North Dakota State University, 1805 Research Park Drive, Fargo, ND 58102 (United States); Comstock, D.J.; Elam, J.W. [Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Narayan, R.J., E-mail: roger_narayan@msn.com [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Atomic layer deposition was used to deposit ZnO on nanoporous alumina membranes. Black-Right-Pointing-Pointer Scanning electron microscopy showed continuous coatings of zinc oxide nanocrystals. Black-Right-Pointing-Pointer Activity against B. subtilis, E. coli, S. aureus, and S. epidermidis was shown. - Abstract: Nanoporous alumina membranes, also known as anodized aluminum oxide membranes, are being investigated for use in treatment of burn injuries and other skin wounds. In this study, atomic layer deposition was used for coating the surfaces of nanoporous alumina membranes with zinc oxide. Agar diffusion assays were used to show activity of zinc oxide-coated nanoporous alumina membranes against several bacteria found on the skin surface, including Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis. On the other hand, zinc oxide-coated nanoporous alumina membranes did not show activity against Pseudomonas aeruginosa, Enterococcus faecalis, and Candida albicans. These results suggest that zinc oxide-coated nanoporous alumina membranes have activity against some Gram-positive and Gram-negative bacteria that are associated with skin colonization and skin infection.

  4. Antibacterial activity of zinc oxide-coated nanoporous alumina

    International Nuclear Information System (INIS)

    Highlights: ? Atomic layer deposition was used to deposit ZnO on nanoporous alumina membranes. ? Scanning electron microscopy showed continuous coatings of zinc oxide nanocrystals. ? Activity against B. subtilis, E. coli, S. aureus, and S. epidermidis was shown. - Abstract: Nanoporous alumina membranes, also known as anodized aluminum oxide membranes, are being investigated for use in treatment of burn injuries and other skin wounds. In this study, atomic layer deposition was used for coating the surfaces of nanoporous alumina membranes with zinc oxide. Agar diffusion assays were used to show activity of zinc oxide-coated nanoporous alumina membranes against several bacteria found on the skin surface, including Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis. On the other hand, zinc oxide-coated nanoporous alumina membranes did not show activity against Pseudomonas aeruginosa, Enterococcus faecalis, and Candida albicans. These results suggest that zinc oxide-coated nanoporous alumina membranes have activity against some Gram-positive and Gram-negative bacteria that are associated with skin colonization and skin infection.

  5. X-ray Diffraction Studies of the Structure and Thermochemistry of Alkaline-Earth Oxide-Coated Thermionic Cathodes

    Science.gov (United States)

    Karikari, E. K.; Bassey, E.; Wintucky, Edwin G.

    1998-01-01

    NASA LeRC has a broad, active cathode technology development program in which both experimental and theoretical studies are being employed to further development of thermionic cathodes for use as electron sources in vacuum devices for communications and other space applications. One important type of thermionic cathode under development is the alkaline-earth oxide-coated (BaO, SrO, CaO) cathode. Significant improvements in the emission characteristics of this cathode have been obtained through modification of the chemical composition and morphology of the oxide coating, with the best result thus far coming from the addition of In2O3 and Sc2O3. Whereas the In2O3 produces a finer, more uniform particle structure, the exact chemical state and role of the Sc2O3 in the emission enhancement is unknown. The purpose of this cooperative agreement is to combine the studies of the surface chemistry and electron emission at NASA LeRC of chemically modified oxide coatings with a study of the thermochemistry and crystal structure using X-ray diffraction equipment and expertise at Clark Atlanta University (CAU). The study at CAU is intended to provide the description and understanding of the structure and thermochemistry needed for further improvement and optimization of the modified coatings. A description of the experimental procedure, preliminary X-ray diffraction test results, together with the design of an ultrahigh vacuum chamber necessary for high temperature thermochemistry studies will be presented.

  6. Electrochemical properties of inorganic nanoporous oxide coated electrodes

    Science.gov (United States)

    Leonard, Kevin C.

    The ability to produce clean water and produce and store clean energy is essential to society. Hence, technologies that facilitate clean energy and clean water are of great importance. This study focused on utilizing nanoporous insulating oxide materials to alter the chemistry at the electrode/electrolyte interface to improve the performance of a number of clean energy and clean water technologies. Here we have shown that applying a thin-film of SiO2 nanoparticles to an electrochemical capacitor electrode can increase the energy storage capacity by up to 50% at high power ratings. We have developed a geometric model to describe the coating of the porous electrode to explain the increased performance at high power ratings. We have also shown that the coated electrochemical capacitor exhibits a higher capacitance when normalized to BET surface area, suggesting that the coated surface is behaving fundamentally differently than the uncoated surface. We attribute the increase in capacitance to the inherent surface potential of the oxide coating and have shown that if we alter the surface potential of the oxide, we can in turn alter the electrochemical capacitance. In addition, we have determined that when used in capacitive deionization systems, these coatings can increase ion removal and accelerate regeneration, allowing for higher efficiency and less waste water. We have demonstrated that a nanoporous oxide coating can increase the gas production rate and lower the overpotential of the hydrogen evolution reaction via water electrolysis on both stainless steel and carbon electrodes. In addition, this work presents data on utilizing nanoporous oxide coatings on Li-Ion battery cathodes to improve high temperature capacity fade. We also introduce a novel thin-film battery/electrochemical capacitor hybrid device, which can improve the performance of simple thin-film batteries.

  7. Metal oxide-coated anodes in wastewater treatment.

    Science.gov (United States)

    Subba Rao, Anantha N; Venkatarangaiah, Venkatesha T

    2014-03-01

    Electrochemical oxidation is an effective wastewater treatment method. Metal oxide-coated substrates are commonly used as anodes in this process. This article compiles the developments in the fabrication, application, and performance of metal oxide anodes in wastewater treatment. It summarizes the preparative methods and mechanism of oxidation of organics on the metal oxide anodes. The discussion is focused on the application of SnO2, PbO2, IrO2, and RuO2 metal oxide anodes and their effectiveness in wastewater treatment process. PMID:24293296

  8. Investigation of anodic oxide coatings on zirconium after heat treatment

    Science.gov (United States)

    Sowa, Maciej; Dercz, Grzegorz; Suchanek, Katarzyna; Simka, Wojciech

    2015-08-01

    Herein, results of heat treatment of zirconium anodised under plasma electrolytic oxidation (PEO) conditions at 500-800 C are presented. The obtained oxide films were investigated by means of SEM, XRD and Raman spectroscopy. The corrosion resistance of the zirconium specimens was evaluated in Ringer's solution. A bilayer oxide coatings generated in the course of PEO of zirconium were not observed after the heat treatment. The resulting oxide layers contained a new sublayer located at the metal/oxide interface is suggested to originate from the thermal oxidation of zirconium. The corrosion resistance of the anodised metal was improved after the heat treatment.

  9. The oxidation resistance of the oxide-coated nicalon trademark fibers

    Energy Technology Data Exchange (ETDEWEB)

    Baklanova, N.; Zima, T. [Inst. of Solid State Chemistry and Mechanochemistry SB RAS, Novosibirsk (Russian Federation); Titov, A. [General Inst. of Geology, Geophysics and Mineralogy SB RAS, Novosibirsk (Russian Federation)

    2005-07-01

    The behavior of nicalon trademark fibers with sol-gel derived alumina, zirconia, yttria stabilized zirconia and alumina/zirconia interfacial coatings exposed to air at 1000 C was studied. Kinetic measurements of the oxidation rates of nicalon trademark fibers with coatings derived from different routes, morphology, texture and composition of oxide-coated nicalon trademark fibers after exposition were studied using SEM, EDS, XRD, micro raman and XPS analysis. In all cases the oxidation is satisfactorily described by the oxygen diffusion-controlled mechanism. Some peculiarities of behavior of oxide interfacial coatings in dependence on type oxides and their prehistory are discussed. The oxide-based interfacial coatings can be considered as promising ones but their properties must be optimized to increase the oxidation resistance of nicalon trademark fibers. (orig.)

  10. Measurement of hydrogen isotope concentration in erbium oxide coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Ryuju, E-mail: sato.ryuju@nuclear.jp [The University of Tokyo, Tokyo (Japan); Chikada, Takumi; Matsuzaki, Hiroyuki; Suzuki, Akihiro; Terai, Takayuki [The University of Tokyo, Tokyo (Japan); Sugiyama, Kazuyoshi [Max-Planck-Institut fr Plasmaphysik, EURATOM Association, Garching (Germany)

    2014-10-15

    Highlights: We measure hydrogen isotope concentration in erbium oxide coatings. Hydrogen isotope adsorption on the coating is observed. Deuterium forms a chemical bond with carbon in sample fabricated by metal organic decomposition. High grain-boundary area density increases deuterium concentration. Deuterium concentrates in particular place which seems grain-boundary. - Abstract: Hydrogen isotope concentrations in erbium oxide coatings fabricated by filtered arc deposition and metalorganic decomposition have been investigated using nuclear reaction analysis and secondary ion mass spectroscopy. It was found that the deuterium concentration in the coatings fabricated by filtered arc deposition was 300500 atomic parts per million, whereas the deuterium concentration in the coating fabricated by metalorganic decomposition was approximately 2.0 10{sup 4} atomic parts per million due to hydrogen trapping by carbon impurities. Deuterium concentrations in the coatings fabricated by filtered arc deposition increased with increasing depth in accordance with the increase of grain boundary area density. An in-plane deuterium distribution of the coating by secondary ion mass spectroscopy proved segregation with a net-like structure, indicating that the deuterium diffused through the grain boundaries.

  11. Molecular and isotopic compositions of gases adsorbed to near surface sediments at Starunia palaeontological site and vicinity (Carpathian region, Ukraine

    Directory of Open Access Journals (Sweden)

    Marek DZIENIEWICZ

    2009-01-01

    Full Text Available The near-surface geochemical survey of gases desorbed from sediment samples was carried out in the area of an abandoned ozokerite mine in Starunia, where remnants of mammoth and three woolly rhinoceroses and one almost completely preserved rhinoceros carcass were discovered in 1907 and 1929. Numerous hydrocarbon seeps (gas and oil "eyes" occur on the surface of the study area. Analyses of molecular and stable carbon isotope compositions of adsorbed gases were carried out in two variants. The first included sampling of cuttings from 30 auger boreholes at depths of 4.8, 5.6 and 6.4 m. In total, 88 samples were collected. In the second variant core samples were collected from 17 selected boreholes. In total, 78 samples were taken from various depths to 12 m. The results of molecular composition analyses of desorbed gases indicated high saturation of near-surface sediments with the oil. The highest concentrations of alkanes were detected in Miocene strata. Hydrocarbon migration from deep accumulations to the surface was relatively fast and proceeded along the faults, fractures and cracks. In the near-surface zone hydrocarbons were subjected to oxidation and dehydrogenation, which resulted in generation of unsaturated hydrocarbons and hydrogen. These processes were most intensive in the Pleistocene sediments and in the mine dumps. Increased concentrations of hydrogen may also originate from water radiolysis in the presence of hydrocarbons. Concentrations of carbon dioxide in the adsorbed gases show the higher values in comparison with the analysed gaseous compounds. However, a slight increase in CO2 concentration was detected in the mine dump, which may indicate conditions more favourable for hydrocarbon oxidation. Carbon dioxide from the analysed adsorbed gases is of thermogenic origin. Occasionally, insignificant influence of secondary hydrocarbon oxidation and/or Quaternary organic matter can be observed. Concentrations of alkanes, alkenes and carbon dioxide in the gas derived from desorption of rock samples are lower and the concentration of hydrogen is higher than those measured in free gases. This indicates that additional effects from recent (e.g. microbial processes are absent.

  12. Adsorbent compositions for the removal of hydrogen sulfide from fluid streams

    International Nuclear Information System (INIS)

    This patent describes a sorbent composition effective in the removal of hydrogen sulfide from gaseous streams comprising zinc oxide and a Group IIA metal silicate wherein the concentration of the zinc oxide is in the range of from about 10 weight percent to about 95 weight percent based on the total combined weight of the zinc oxide and the Group IIA metal silicate

  13. Nano copper oxide-incorporated mesoporous carbon composite as multimode adsorbent for selective isolation of hemoglobin.

    Science.gov (United States)

    Zhang, Yang; Xing, Li-Gang; Chen, Xu-Wei; Wang, Jian-Hua

    2015-03-11

    Assembly of nano-objects with tunable size, morphology and function into integrated nanostructures is critical for the development of a novel nanosystem in adsorption, sensing and drug/gene delivery. We demonstrate herein the fabrication of ordered mesoporous carbon by assembling uniform and highly dispersed copper-oxide (CuxOy) nanoparticles into the mesopores via evaporation of solvent from the mixture of triblock copolymer, carbon source and metal nitrate hydrate. The ordered 2D hexagonal mesoporous carbon composite possesses a large surface area of 580.8 cm(2)/g, a uniform pore size of 5.4 nm, a large pore volume of 0.64 cm(3)/g and a high metal content of 3.32 wt %. The mesoporous composite exhibits excellent adsorption selectivity and high adsorption capacity to hemoglobin (Hb) under the synergistic effect of hydrophobic and metal-affinity interactions as well as size exclusion. This facilitates multimode adsorption of hemoglobin fitting Langmuir adsorption model and offers an adsorption capacity of 1666.7 mg g(-1) for hemoglobin. The mesoporous composite is used for the isolation of hemoglobin from human whole blood with high purity. It demonstrates the potential of the copper-oxide nanoparticle-embedded mesoporous carbon composite in selective isolation/removal of specific protein species from biological sample matrixes. PMID:25692225

  14. Carbon and functionalized graphene oxide coated vanadium oxide electrodes for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Reddy Channu, V.S., E-mail: chinares02@gmail.com [Texas Biochemicals, Inc, College Station, TX 77840 (United States); Ravichandran, D. [Texas Biochemicals, Inc, College Station, TX 77840 (United States); Rambabu, B. [Solid State Ionics and Surface Sciences Lab, Department of Physics, Southern University and A and M College, Baton Rouge, LA 70813 (United States); Holze, Rudolf [Institut fr Chemie, AG Elektrochemie, Technische Universitt Chemnitz, Chemnitz D-09107 (Germany)

    2014-06-01

    Carbon- and graphene oxide-coated vanadium oxide nanomaterials were synthesized from a VOSO{sub 4} sol using a hydrothermal method to prepare electrodes for lithium ion batteries. The synthesized materials were characterized using x-ray diffraction, scanning electron microscopy and transmission electron microscopy. Electrochemical results show that graphene oxide coated vanadium oxide electrodes have higher capacity than the carbon coated ones.

  15. Carbon and functionalized graphene oxide coated vanadium oxide electrodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Carbon- and graphene oxide-coated vanadium oxide nanomaterials were synthesized from a VOSO4 sol using a hydrothermal method to prepare electrodes for lithium ion batteries. The synthesized materials were characterized using x-ray diffraction, scanning electron microscopy and transmission electron microscopy. Electrochemical results show that graphene oxide coated vanadium oxide electrodes have higher capacity than the carbon coated ones.

  16. Oxide coatings on flexible substrates for electrochromic applications

    Science.gov (United States)

    Aleksandrova, M.

    2014-11-01

    One of the most studied classes of materials in the modern microelectronic devices are the metal oxides. There are different metal oxide films, such as electrodes, charge injecting and electrochromic coatings for displays or "smart" windows applications. This paper aims to describe the recent achievements for oxide coating deposition for flexible electrochromic displays. Although many deposition methods for production of such films have been developed, some of the achievements in the field of RF sputtering of transparent electrodes from indium-tin oxide on low-cost polyethyleneterephthalate substrate are presented. Attention is paid on some critical issues, such as films electro-optical parameters (sheet resistance, transparency in the visible range), adhesion, degradation due to stress and patterning ability.

  17. Method of forming oxide coatings. [for solar collector heating panels

    Science.gov (United States)

    Mcdonald, G. E. (inventor)

    1983-01-01

    This invention is concerned with an improved plating process for covering a substrate with a black metal oxide film. The invention is particularly directed to making a heating panel for a solar collector. A compound is electrodeposited from an aqueous solution containing cobalt metal salts onto a metal substrate. This compound is converted during plating into a black, highly absorbing oxide coating which contains hydrated oxides. This is achieved by the inclusion of an oxidizing agent in the plating bath. The inclusion of an oxidizing agent in the plating bath is contrary to standard electroplating practice. The hydrated oxides are converted to oxides by treatment in a hot bath, such as boiling water. An oxidizing agent may be added to the hot liquid treating bath.

  18. Development of RF sputtered chromium oxide coating for wear application

    Science.gov (United States)

    Bhushan, B.

    1979-01-01

    The radio frequency sputtering technique was used to deposite a hard refractory, chromium oxide coating on an Inconel X-750 foil 0.1 mm thick. Optimized sputtering parameters for a smooth and adherent coating were found to be as follows: target-to-substrate spacing, 41.3 mm; argon pressure, 5-10 mTorr; total power to the sputtering module, 400 W (voltage at the target, 1600 V), and a water-cooled substrate. The coating on the annealed foil was more adherent than that on the heat-treated foil. Substrate biasing during the sputter deposition of Cr2O3 adversely affected adherence by removing naturally occurring interfacial oxide layers. The deposited coatings were amorphous and oxygen deficient. Since amorphous materials are extremely hard, the structure was considered to be desirable.

  19. Preparation of Surface Adsorbed and Impregnated Multi-walled Carbon Nanotube/Nylon-6 Nanofiber Composites and Investigation of their Gas Sensing Ability

    OpenAIRE

    Velmurugan Thavasi; Neeta L. Lala; Seeram Ramakrishna

    2009-01-01

    We have prepared electrospun Nylon-6 nanofibers via electrospinning, and adsorbed multi-walled carbon nanotubes (MWCNTs) onto the surface of Nylon-6 fibers using Triton® X-100 to form a MWCNTs/Nylon-6 nanofiber composite. The dispersed MWCNTs have been found to be stable in hexafluoroisopropanol for several months without precipitation. A MWCNTs/Nylon-6 nanofiber composite based chemical sensor has demonstrated its responsiveness towards a wide range of solvent vapours at room temperature ...

  20. Neutron reflectivity of adsorbed water-soluble block copolymers at the air/water interface: The effects of composition and molecular weight

    OpenAIRE

    An, SW; Thomas, RK; Baines, FL; Billingham, NC; Armes, SP; Penfold, J.

    1998-01-01

    We have used neutron reflection to follow the effects of composition and molecular weight on the structure of layers of poly(2-(dimethylamino)ethyl methacrylate-block-methyl methacrylate copolymer (poly(DMAEMA-b-MMA)) adsorbed at the air/water interface. We had previously shown that for a 70% DMAEMA copolymer of Mn about 10K at a pH of 7.5 there is a surface phase transition from a layer about 20 thick to one about 40 thick and that the adsorbed layer at the higher concentration has a lay...

  1. Effect of fly ash addition on the removal of hydrogen sulfide from biogas and air on sewage sludge-based composite adsorbents.

    Science.gov (United States)

    Seredych, Mykola; Strydom, Christien; Bandosz, Teresa J

    2008-01-01

    Desulfurization adsorbents were prepared from the mixtures of various compositions of New York City sewage sludge and fly ashes from SASOL, South Africa, by pyrolysis at 950 degrees C. The resulting materials were used as adsorbents of hydrogen sulfide from simulated dry digester gas mixture or moist air. The adsorbents before and after H(2)S removal were characterized using adsorption of nitrogen, elemental analysis, pH measurements, XRF, XRD, and thermal analysis. It was found that the addition of fly ash decreases the desulfurization capacity in comparison with the sewage sludge-based materials. The extent of this decrease depends on the type of ash, its content and the composition of challenging gas. Although the presence of CO(2) deactivates some adsorption sites to various degrees depending on the sample composition, the addition of ashes has a more detrimental effect when the adsorbents are used to remove hydrogen sulfide from air. This is likely the result of hydrophobicity of ashes since the H(2)S removal capacity was found to be strongly dependent on the reactivity towards water/water adsorption. On the other hand, the addition of ashes strongly decreases the porosity of materials where sulfur, as a product of hydrogen sulfide oxidation, can be stored. PMID:17935967

  2. An electrochemical approach to graphene oxide coated sulfur for long cycle life

    Science.gov (United States)

    Moon, Joonhee; Park, Jungjin; Jeon, Cheolho; Lee, Jouhahn; Jo, Insu; Yu, Seung-Ho; Cho, Sung-Pyo; Sung, Yung-Eun; Hong, Byung Hee

    2015-07-01

    Owing to the possibilities of achieving high theoretical energy density and gravimetric capacity, sulfur has been considered as a promising cathode material for rechargeable lithium batteries. However, sulfur shows rapid capacity fading due to the irreversible loss of soluble polysulfides and the decrease in active sites needed for conducting agents. Furthermore, the low electrical conductivity of sulfur hampers the full utilization of active materials. Here we report that graphene oxide coated sulfur composites (GO-S/CB) exhibit improved electrochemical stability as well as enhanced rate performance, evidenced by various electrochemical analyses. The cyclic voltammetry and the galvanostatic cycling analysis revealed that the GO plays key roles in homogenizing the nanocomposite structures of the electrodes, in improving the electrochemical contact, and in minimizing the loss of soluble polysulfide intermediates. An electrochemical impedance spectroscopy analysis also confirms the enhanced structural stability of the GO-S/CB composites after battery operation. As a result, the GO-S/CB exhibited excellent cycle stability and specific capacity as high as ~723.7 mA h g-1 even after 100 cycles at 0.5 C.Owing to the possibilities of achieving high theoretical energy density and gravimetric capacity, sulfur has been considered as a promising cathode material for rechargeable lithium batteries. However, sulfur shows rapid capacity fading due to the irreversible loss of soluble polysulfides and the decrease in active sites needed for conducting agents. Furthermore, the low electrical conductivity of sulfur hampers the full utilization of active materials. Here we report that graphene oxide coated sulfur composites (GO-S/CB) exhibit improved electrochemical stability as well as enhanced rate performance, evidenced by various electrochemical analyses. The cyclic voltammetry and the galvanostatic cycling analysis revealed that the GO plays key roles in homogenizing the nanocomposite structures of the electrodes, in improving the electrochemical contact, and in minimizing the loss of soluble polysulfide intermediates. An electrochemical impedance spectroscopy analysis also confirms the enhanced structural stability of the GO-S/CB composites after battery operation. As a result, the GO-S/CB exhibited excellent cycle stability and specific capacity as high as ~723.7 mA h g-1 even after 100 cycles at 0.5 C. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01951f

  3. Preparation and properties of cobalt oxides coated carbon fibers as microwave-absorbing materials

    International Nuclear Information System (INIS)

    Cobalt oxides/carbon fibers (CoOx/CFs) composites were synthesized by thermal oxidation of cobalt coated carbon fibers (Co/CFs). The scanning electron microscopy images and X-ray diffraction pattern indicate that the layers are about 0.7 ?m and composed of Co3O4 and CoO (CoOx), the preferred condition for preparation of CoOx/CFs composites is to anneal Co/CFs precursors at 350 deg. C for 3 h in air. The coercivity, saturation magnetization and residual magnetization of the CoOx/CFs composites are 464.8 Oe, 10.62 emu/g and 2.21 emu/g, respectively. The reflectivity of cobalt oxides coated carbon fibers (1.11-5.12 mm in thickness) is less than -10 dB over the working frequency range of 4.04-18.00 GHz and less than -20 dB over 11.54-14.77 GHz. The lowest reflectivity is -45.16 dB at 13.41 GHz when the thickness is 1.50 mm.

  4. Laccase Immobilized on a PAN/Adsorbents Composite Nanofibrous Membrane for Catechol Treatment by a Biocatalysis/Adsorption Process

    Directory of Open Access Journals (Sweden)

    Qingqing Wang

    2014-03-01

    Full Text Available The treatment of catechol via biocatalysis and adsorption with a commercial laccase immobilized on polyacrylonitrile/montmorillonite/graphene oxide (PAN/MMT/GO composite nanofibers was evaluated with a homemade nanofibrous membrane reactor. The properties in this process of the immobilized laccase on PAN, PAN/MMT as well as PAN/MMT/GO with different weight ratios of MMT and GO were investigated. These membranes were successfully applied for removal of catechol from an aqueous solution. Scanning electron microscope images revealed different morphologies of the enzyme aggregates on different supports. After incorporation of MMT or MMT/GO, the optimum pH showed an alkaline shift to 4, compared to 3.5 for laccase immobilized on pure PAN nanofibers. The optimum temperature was at 55 °C for all the immobilized enzymes. Besides, the addition of GO improved the operational stability and storage stability. A 39% ± 2.23% chemical oxygen demand (COD removal from the catechol aqueous solution was achieved. Experimental results suggested that laccase, PAN, adsorbent nanoparticles (MMT/GO can be combined together for catechol treatment in industrial applications.

  5. Novel transparent conducting sol-gel oxide coatings

    International Nuclear Information System (INIS)

    This work focuses on the preparation of novel ternary transparent conducting oxide coatings on glass by the sol-gel method. The coatings were deposited by spin-coating from solutions of appropriate metal precursors and heat-treated at different heat-treatment procedures. An increase in electrical conductivity was achieved by a final forming gas treatment. Best electrical and optical properties have been obtained for coatings of crystalline Zn2SnO4, Zn3In2O6 and Zn5In2O8 and X-ray amorphous ZnSnO3 with resistivities in the order of 10-2-10-1 ? cm, an average transmission in the visible of 85% and an average surface roughness of ? 1 nm. ZnGa2O4 and GaSbO4 coatings showed no electrical conductivity. For Zn2SnO4 coatings, a restricted crystallite growth was observed probably due to phase segregation effects. Electrical properties of coatings in the system ZnO-In2O3 were interpreted on the basis of the percolation theory

  6. Metal oxide-coated three-dimensional graphene prepared by the use of metal-organic frameworks as precursors.

    Science.gov (United States)

    Cao, Xiehong; Zheng, Bing; Rui, Xianhong; Shi, Wenhui; Yan, Qingyu; Zhang, Hua

    2014-01-27

    A simple method for the preparation of metal-oxide-coated three-dimensional (3D) graphene composites was developed. The metal-organic frameworks (MOFs) that served as the precursors of the metal oxides were first synthesized on the 3D graphene networks (3DGNs). The desired metal oxide/3DGN composites were then obtained by a two-step annealing process. As a proof-of-concept application, the obtained ZnO/3DGN and Fe2 O3 /3DGN materials were used in a photocatalytic reaction and a lithium-ion battery, respectively. We believe this method could be extended to the synthesis of other metal oxide/3DGN composites with 3D structures simply through the appropriate choice of specific MOFs as precursors. PMID:24459058

  7. An electrochemical approach to graphene oxide coated sulfur for long cycle life.

    Science.gov (United States)

    Moon, Joonhee; Park, Jungjin; Jeon, Cheolho; Lee, Jouhahn; Jo, Insu; Yu, Seung-Ho; Cho, Sung-Pyo; Sung, Yung-Eun; Hong, Byung Hee

    2015-08-21

    Owing to the possibilities of achieving high theoretical energy density and gravimetric capacity, sulfur has been considered as a promising cathode material for rechargeable lithium batteries. However, sulfur shows rapid capacity fading due to the irreversible loss of soluble polysulfides and the decrease in active sites needed for conducting agents. Furthermore, the low electrical conductivity of sulfur hampers the full utilization of active materials. Here we report that graphene oxide coated sulfur composites (GO-S/CB) exhibit improved electrochemical stability as well as enhanced rate performance, evidenced by various electrochemical analyses. The cyclic voltammetry and the galvanostatic cycling analysis revealed that the GO plays key roles in homogenizing the nanocomposite structures of the electrodes, in improving the electrochemical contact, and in minimizing the loss of soluble polysulfide intermediates. An electrochemical impedance spectroscopy analysis also confirms the enhanced structural stability of the GO-S/CB composites after battery operation. As a result, the GO-S/CB exhibited excellent cycle stability and specific capacity as high as ?723.7 mA h g(-1) even after 100 cycles at 0.5 C. PMID:26196857

  8. Nanocellulose/nanobentonite composite anchored with multi-carboxyl functional groups as an adsorbent for the effective removal of Cobalt(II) from nuclear industry wastewater samples.

    Science.gov (United States)

    Anirudhan, T S; Deepa, J R; Christa, J

    2016-04-01

    A novel adsorbent, poly(itaconic acid/methacrylic acid)-grafted-nanocellulose/nanobentonite composite [P(IA/MAA)-g-NC/NB] with multi carboxyl functional groups for the effective removal of Cobalt(II) [Co(II)] from aqueous solutions. The adsorbent was characterized using FTIR, XRD, SEM-EDS, AFM and potentiometric titrations before and after adsorption of Co(II) ions. FTIR spectra revealed that Co(II) adsorption on to the polymer may be due to the involvement of COOH groups. The surface morphological changes were observed by the SEM images. The pH was optimized as 6.0. An adsorbent dose of 2.0g/L found to be sufficient for the complete removal of Co(II) from 100mg/L at room temperature. Pseudo-first-order and pseudo-second-order models were tested to describe kinetic data and adsorption of Co(II) follows pseudo-second-order model. The equilibrium attained at 120min. Isotherm studies were conducted and data were analyzed using Langmuir, Freundlich and Sips isotherm models and best fit was Sips model. Thermodynamic study confirmed endothermic and physical nature of adsorption of the Co(II) onto the adsorbent. Desorption experiments were done with 0.1MHCl proved that without significant loss in performance adsorbent could be reused for six cycles. The practical efficacy and effectiveness of the adsorbent were tested using nuclear industrial wastewater. A double stage batch adsorption system was designed from the adsorption isotherm data of Co(II) by constructing operating lines. PMID:26844393

  9. The utilization of welding technologies in the treatment of ZrO2-based oxide coatings - the phase and structural aspects of remelting

    International Nuclear Information System (INIS)

    Improving the method of remelting plasma-sprayed oxide coatings is done chiefly based on laser technologies, which is indicated by numerous studies published in both domestic and foreign specialist magazines. In the case of present study, an alternative method of remelting has been applied, which uses welding sources of heat. Because of thermophysical and electrical properties of oxide compositions used, a modification of the welding stand turned out to be necessary, which involved primarily equipping it with an additional, independent electrode and nozzle unit. The application of the above solution provided a capability of using the thermal energy of the arc, without engaging the coating in the process of arc generation and stabilization. The structural and phase effects of remelting oxide coatings by using the developed unit is presented in this article. (author)

  10. Kinetics and Properties of Micro Arc Oxidation Coatings Deposited on Commercial Al Alloys

    Science.gov (United States)

    Krishna, L. Rama; Purnima, A. Sudha; Wasekar, Nitin P.; Sundararajan, G.

    2007-02-01

    The micro arc oxidation (MAO) technique is being increasingly recognized as a novel and ecofriendly means of depositing dense ceramic oxide coatings on Al and its alloys. In the present study, the deposition kinetics, surface roughness, morphology, phase distribution and the microhardness of the MAO coatings deposited on ten different commercially available Al substrates having widely differing chemical composition has been investigated. Further, the tribological properties of the coatings obtained on different Al alloys in comparison with the bare substrates have also been evaluated using dry sand abrasion, solid-particle erosion and pin-on-disc dry sliding wear tests. The results clearly demonstrate that the alloying elements added to the Al substrate substantially influence the MAO coating deposition kinetics and coating properties. In the case of Al-Si alloys, the coating deposition kinetics is non-linear and the Al6Si2O13 (mullite) is observed to form. With increasing Si content, the corresponding mullite phase also increases. Increasing mullite content in the coating adversely affects the tribological performance. Excepting Al-Si alloys, all other alloys investigated including commercial purity Al exhibit linear coating deposition kinetics. Of all the alloys investigated, Al-Li alloy exhibits the highest coating deposition rate and the 6061 T6 Al alloy exhibits the best coating properties.

  11. Structure and apatite induction of a microarc-oxidized coating on a biomedical titanium alloy

    Science.gov (United States)

    Zhao, G. L.; Li, X.; Xia, L.; Wen, G.; Song, L.; Wang, X. Y.; Wu, K.

    2010-12-01

    An oxide coating with nanostructure was prepared by micro-arc oxidation (MAO) on a biomedical Ti-24Nb-4Zr-7.9Sn alloy. Chemical composition of the coating mainly includes O, Ti, Nb, Ca, P, Na, Zr and Sn, where the ratio of Ca/P is about 1.6. Ti, Nb, Zr and Sn participate in the oxidation to form TO 2, Nb 2O 5, ZrO 2 and SnO 2 nanocrystals, while Ca, P and Na are present in the form of amorphous phases. After alkali treatment, the surface of the MAO coating becomes rough, and Na concentration increases remarkably while P disappears basically. The alkali treated coating shows better apatite forming ability than the untreated one, as evidenced by apatite formation after SBF immersion for 7 days. The improvement of apatite forming ability of the modified coating is attributed to the formation of a sodium titanate layer and numbers of submicron-scale network flakes. The enhancement of the surface wettability of the alkali treated coating also plays an important role in promoting the apatite forming ability.

  12. Characterization of water exposed plasma sprayed oxide coating materials using XPS

    International Nuclear Information System (INIS)

    The surface compositions and oxidation states of non-exposed and water exposed plasma sprayed oxide coatings were studied using X-ray photoelectron spectroscopy (XPS). Coating materials were TiO2, Al2O3 and Cr2O3 and their mixtures. Water exposures were performed for free standing coating disks at mild electrolyte (1 mmol NaCl solution) at pH 4, 7 and 9. The exposure time was two weeks. It was observed that pure plasma sprayed TiO2 material was chemically stable over whole experiment pH range and only slight surface hydroxylation was observed for this material. In case of plasma sprayed Al2O3 materials the surface O/Al ratio increased considerably during water exposure especially at exposure pH 7. This was probably result of surface conversion to hydrous form. No surface oxidation state changes were observed for this material. The non-exposed Cr2O3 materials contained both Cr(III) and Cr(VI) oxides. The water exposures increased the surface oxygen and Cr(VI) contents at the expense of Cr(III). The most probable reason for that was the dissolution of surface Cr(VI) oxide phase during water exposures and the (re)adsorption of dissolved Cr(VI) species back to the surface

  13. Lead isotopes in iron and manganese oxide coatings and their use as an exploration guide for concealed mineralization

    Science.gov (United States)

    Gulson, B.L.; Church, S.E.; Mizon, K.J.; Meier, A.L.

    1992-01-01

    Lead isotopes from Fe and Mn oxides that coat stream pebbles from around the Mount Emmons porphyry molybdenum deposit in Colorado were studied to assess the feasibility of using Pb isotopes to detect concealed mineral deposits. The Fe/Mn oxide coatings were analyzed to determine their elemental concentrations using ICP-AES. The Pb isotope compositions of solutions from a selected suite of samples were measured, using both thermal ionization and ICP mass spectrometry, to compare results determined by the two analytical methods. Heavy mineral concentrates from the same sites were also analyzed to compare the Pb isotope compositions of the Fe/Mn coatings with those found in panned concentrates. The Fe/Mn and 206Pb/204Pb ratios of the oxide coatings are related to the lithology of the host rocks; Fe/Mn oxide coatings on pebbles of black shale have higher Fe/Mn values than do the coatings on either sandstone or igneous rocks. The shale host rocks have a more radiogenic signature (e.g. higher 206Pb/ 204Pb) than the sandstone or igneous host rocks. The Pb isotope data from sandstone and igneous hosts can detect concealed mineralized rock on both a regional and local scale, even though there are contributions from: (1) metals from the main-stage molybdenite ore deposit; (2) metals from the phyllic alteration zone which has a more radiogenic Pb isotope signature reflecting hydrothermal leaching of Pb from the Mancos Shale; (3) Pb-rich base metal veins with a highly variable Pb isotope signature; and (4) sedimentary country rocks which have a more radiogenic Pb isotope signature. An investigation of within-stream variation shows that the Pb isotope signature of the molybdenite ore zone is retained in the Fe/Mn oxide coatings and is not camouflaged by contributions from Pb-rich base-metal veins that crop out upstream. In another traverse, the Pb isotope data from Fe/Mn oxide coatings reflect a complex mixing of Pb from the molybdenite ore zone and its hornfels margin, Pb-rich base-metal veins, and sedimentary country rocks. Stream-sediment anomalies detected using oxalic acid leaches can be evaluated using Pb isotope analysesof selected geochemical anomalies. Such an evaluation procedure, given regional target Pb isotope signatures for concealed mineralization, can greatly reduce the cost of exploration for undiscovered ore deposits concealed beneath barren overburden. Lead isotope measurements on aliquots of the same solutions showed that ICP-MS determinations are of low precision and vary non-systematically when compared with the Pb isotope values of the higher precision thermal ionization method. These variations and lower precision of the ICP-MS measurements are attributed to matrix effects. ?? 1992.

  14. Mechanism of formation of humus coatings on mineral surfaces 3. Composition of adsorbed organic acids from compost leachate on alumina by solid-state 13C NMR

    Science.gov (United States)

    Wershaw, R.L.; Llaguno, E.C.; Leenheer, J.A.

    1996-01-01

    The adsorption of compost leachate DOC on alumina is used as a model for elucidation of the mechanism of formation of natural organic coatings on hydrous metal oxide surfaces in soils and sediments. Compost leachate DOC is composed mainly of organic acid molecules. The solid-state 13C NMR spectra of these organic acids indicate that they are very similar in composition to aquatic humic substances. Changes in the solid-state 13C NMR spectra of compost leachate DOC fractions adsorbed on alumina indicate that the DOC molecules are most likely adsorbed on metal oxide surfaces through a combination of polar and hydrophobic interaction mechanisms. This combination of polar and hydrophobic mechanism leads to the formation of bilayer coatings of the leachate molecules on the oxide surfaces.

  15. Performance comparison of dye-sensitized solar cells by using different metal oxide- coated TiO2 as the photoanode

    OpenAIRE

    Sun Xuhui; Chang Xinglan; Tuo Wanquan; Wang Dong; Li Kefei

    2014-01-01

    In order to increase the conversion efficiency of dye-sensitized solar cells, TiO2 photoanode surface is often covered with a metal oxide layer to form a core-shell composite structure. Different metal oxide coating on TiO2 as composite photoanodes can affect the cell efficiency variously. However, there still lacks the crosswise comparison among the effects of different metal oxides on TiO2 photoanode. In this study, TiO2 was coated with Al2O3, CaO, ZnO, MgO, Fe2O3 or Bi2O3 separately by liq...

  16. Corrosion evaluation of zirconium doped oxide coatings on aluminum formed by plasma electrolytic oxidation.

    Science.gov (United States)

    Bajat, Jelena; Mikovi?-Stankovi?, Vesna; Vasili?, Rastko; Stojadinovi?, Stevan

    2014-01-01

    The plasma electrolytic oxidation (PEO) of aluminum in sodium tungstate (Na(2)WO(4) (2)H(2)O) and Na(2)WO(4) (2)H(2)O doped with Zr was analyzed in order to obtain oxide coatings with improved corrosion resistance. The influence of current density in PEO process and anodization time was investigated, as well as the influence of Zr, with the aim to find out how they affect the chemical content, morphology, surface roughness, and corrosion stability of oxide coatings. It was shown that the presence of Zr increases the corrosion stability of oxide coatings for all investigated PEO times. Evolution of EIS spectra during the exposure to 3% NaCl, as a strong corrosive agent, indicated the highest corrosion stability for PEO coating formed on aluminum at 70 mA/cm(2) for 2 min in a zirconium containing electrolyte. PMID:25125114

  17. Synthesis and electrochemical characterization of porous niobium oxide coated 316L SS for orthopedic applications

    International Nuclear Information System (INIS)

    Niobium oxide was prepared using sol-gel process and coated on 316L stainless steel (SS) substrate via dip-coating technique. The surface characterization results after a thermal treatment revealed that the coated surface was porous, uniform and well crystalline on the substrate. The corrosion resistance and bioactivity of the porous niobium oxide coated 316L SS in simulated body fluid (SBF) solution was evaluated. The in vitro test revealed a layer of carbonate-containing apatite formation over the coated porous surface. The results indicated that the porous niobium oxide coated 316L SS exhibited a high corrosion resistance and an enhanced biocompatibility in SBF solution.

  18. Sol-gel prepared active ternary oxide coating on titanium in cathodic protection

    OpenAIRE

    VLADIMIR V. PANIC; BRANISLAV Z. NIKOLIC

    2007-01-01

    The characteristics of a ternary oxide coating, on titanium, which consisted of TiO2, RuO2 and IrO2 in the molar ratio 0.6:0.3:0.1, calculated on the metal atom, were investigated for potential application for cathodic protection in a seawater environment. The oxide coatings on titanium were prepared by the sol gel procedure from a mixture of inorganic oxide sols, which were obtained by forced hydrolysis of metal chlorides. The morphology of the coating was examined by scanning electron micro...

  19. Negative pressures and melting point depression in oxide-coated liquid metal droplets

    Science.gov (United States)

    Spaepen, F.; Turnbull, D.

    1979-01-01

    Negative pressures and melting point depression in oxide-coated liquid metal droplets are studied. The calculation presented show the existence of large negative pressures when the oxide coating is thick enough. The change in the melting point caused by these negative pressures should be considered in studies of homogeneous crystal nucleation. Furthermore, since the negative pressure raises the entropy of the melt, it increases the entropy loss at the crystal-melt interface; the resulting increase of the surface tension could have a large effect on the homogeneous nucleation frequency.

  20. Scandium oxide coated polycrystalline tungsten studied using emission microscopy and photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Thermionic electron emission from 200 to 500 nm thick coatings of scandium oxide on tungsten foil have been examined in thermionic emission microscopy, spectroscopic photoelectron microcopy, synchrotron radiation and ultraviolet photoelectron spectroscopy (UPS). A clear dependence of the scandium oxide-W electron yield on the grain orientation of the polycrystalline tungsten is observed in thermionic emission and photoelectron emission. -- Highlights: ? Polycrystalline tungsten imaged with spectroscopic thermionic emission microcopy. ? Scandium oxide coated tungsten grains observed during thermionic emission. ? Direct visualization of the surface electron yield due to oxide coatings. ? Findings related to thermionic cathodes.

  1. Continuous adsorption of Pb(II) and methylene blue by engineered graphite oxide coated sand in fixed-bed column

    Science.gov (United States)

    Gong, Ji-Lai; Zhang, Yong-Liang; Jiang, Yan; Zeng, Guang-Ming; Cui, Zhi-Hui; Liu, Ke; Deng, Can-Hui; Niu, Qiu-Ya; Deng, Jiu-Hua; Huan, Shuang-Yan

    2015-03-01

    The mixture of several effluents, caused by the improper handling and management of effluents, generated multi-component wastewater containing both metals and dyes, leading to the complicated treatment process. In this study, a continuous adsorption of Pb(II) and methylene blue (MB) has been studied in single and binary solutions by using graphite oxide coated sand (GO-sand) as an adsorbent in a fixed-bed column. GO-sand was analyzed by X-ray photoelectron spectroscopy before and after analyte adsorption. Compared with sand filter, adsorption quantity and capacity for Pb(II) and MB by GO-sand filter were greatly increased. In Pb(II) and MB single solutions, the experimental parameters were investigated in detail including initial concentration, flow rate, bed depth and pH. Exhaustion time decreased with increasing initial concentration and flow rate, and increased with increasing bed depth and pH. In the Pb(II)-MB binary solution, exhaustion time significantly decreased for Pb(II) adsorption, but increased for MB adsorption. The reason was explained that the more favorable adsorption for MB onto the surface of GO-sand than that for Pb(II), which was derived from ?-? interaction between MB and GO on sand surface in packed filter. The Yoon-Nelson model was applied at different concentration of Pb(II) and MB to predict the breakthrough curves. The experimental data were well fit with the model indicating that it was suitable for this column design.

  2. Preparation of Surface Adsorbed and Impregnated Multi-walled Carbon Nanotube/Nylon-6 Nanofiber Composites and Investigation of their Gas Sensing Ability

    Science.gov (United States)

    Lala, Neeta L.; Thavasi, Velmurugan; Ramakrishna, Seeram

    2009-01-01

    We have prepared electrospun Nylon-6 nanofibers via electrospinning, and adsorbed multi-walled carbon nanotubes (MWCNTs) onto the surface of Nylon-6 fibers using Triton X-100 to form a MWCNTs/Nylon-6 nanofiber composite. The dispersed MWCNTs have been found to be stable in hexafluoroisopropanol for several months without precipitation. A MWCNTs/Nylon-6 nanofiber composite based chemical sensor has demonstrated its responsiveness towards a wide range of solvent vapours at room temperature and only mg quantities of MWCNTs were expended. The large surface area and porous nature of the electrospun Nylon-6/MWCNT nanofibers facilitates greater analyte permeability. The experimental analysis has indicated that the dipole moment, functional group and vapour pressure of the analytes determine the magnitude of the responsiveness. PMID:22389589

  3. Preparation of Surface Adsorbed and Impregnated Multi-walled Carbon Nanotube/Nylon-6 Nanofiber Composites and Investigation of their Gas Sensing Ability

    Directory of Open Access Journals (Sweden)

    Velmurugan Thavasi

    2009-01-01

    Full Text Available We have prepared electrospun Nylon-6 nanofibers via electrospinning, and adsorbed multi-walled carbon nanotubes (MWCNTs onto the surface of Nylon-6 fibers using Triton® X-100 to form a MWCNTs/Nylon-6 nanofiber composite. The dispersed MWCNTs have been found to be stable in hexafluoroisopropanol for several months without precipitation. A MWCNTs/Nylon-6 nanofiber composite based chemical sensor has demonstrated its responsiveness towards a wide range of solvent vapours at room temperature and only mg quantities of MWCNTs were expended. The large surface area and porous nature of the electrospun Nylon-6/MWCNT nanofibers facilitates greater analyte permeability. The experimental analysis has indicated that the dipole moment, functional group and vapour pressure of the analytes determine the magnitude of the responsiveness.

  4. Tungsten bronze-based nuclear waste form ceramics. Part 2: Conversion of granular microporous tungstate polyacrylonitrile (PAN) composite adsorbents to leach resistant ceramics

    Science.gov (United States)

    Griffith, Christopher S.; Sebesta, Ferdinand; Hanna, John V.; Yee, Patrick; Drabarek, Elizabeth; Smith, Mark E.; Luca, Vittorio

    2006-11-01

    Conversion of a granular molybdenum-doped, hexagonal tungsten bronze (MoW-HTB)-polyacrylonitrile (PAN) composite adsorbent to a leach resistant ceramic waste form capable of immobilizing adsorbed Cs + and Sr 2+ has been achieved by heating in air at temperatures in the range 600-1200 C. Thermal treatment of the Cs- and Sr-loaded composite material at 1000 C was sufficient to invoke a 60% reduction in volume of the composite while still retaining its spherical morphology. Cs-133 MAS NMR studies of this sample suite at 9.4 T and 14.1 T showed that multiple Cs sites are present throughout the entire thermal treatment range. Scanning electron microscopy investigations of the phase assemblages resulting from thermal treatment demonstrated that the full complement of Cs, and the majority of Sr, partitions into HTB phases (A 0.16-0.3MO 3; A = Cs +, Sr 2+ and Na +; M = Mo, W). The potentially reducing conditions resulting from the removal of the PAN matrix or the presence of high concentrations of Na + relative to either Cs + or Sr 2+ does not retard the formation of the high temperature HTB phases. The fraction of Cs + and Sr 2+ leached from the tungstate phase assemblages was superior or comparable with cesium hollandite (Cs 0.8Ba 0.4Ti 8O 18; f = ?8 10 -5; rate = leaching conditions were employed (0.1 M HNO 3; 150 C; 4 days), the tungstate phase assemblages displayed leach resistance almost two orders of magnitude greater than the reference phases.

  5. Adsorption of drinking water fluoride on a micron-sized magnetic Fe3O4@Fe-Ti composite adsorbent

    Science.gov (United States)

    Zhang, Chang; Li, Yingzhen; Wang, Ting-Jie; Jiang, Yanping; Wang, Haifeng

    2016-02-01

    A micron-sized magnetic adsorbent (MMA) for fluoride removal from drinking water was prepared by spray drying and subsequent calcination of a magnetic Fe3O4@Fe-Ti core-shell nanoparticle slurry. The MMA granules had high mechanical strength and stability against water scouring, can be easily separated from the water by a magnet, and had a high selectivity for fluoride versus common co-existing ions and high fluoride removal efficiency in a wide range of initial pH of 3-11. Abundant hydroxyl groups on the MMA surface acted as the active sites for fluoride adsorption, which resulted in a high affinity of the MMA for fluoride. The pH in the adsorption process affected the adsorption significantly. At neutral initial pH, the adsorption isotherm was well fitted with the Langmuir model, and the maximum adsorption capacity reached a high value of 41.8 mg/g. At a constant pH of 3, multilayer adsorption of fluoride occurred due to the abundant positive surface charges on the MMA, and the adsorption isotherm was well fitted with the Freundlich model. The MMA had a fast adsorption rate, and adsorption equilibrium was achieved within 2 min. The adsorption kinetics followed a quasi-second order model. The regeneration of the MMA was easy and fast, and can be completed within 2 min. After 10 recycles, the fluoride removal efficiency of the MMA still remained high. These properties showed that the MMA is a promising adsorbent for fluoride removal.

  6. Plasma spray deposited superconducting Y-Ba-Cu-oxide coatings

    International Nuclear Information System (INIS)

    The properties of YBa2Cu3O6+x thick films, deposited by plasma spraying of reacted powders in Ar atmosphere, are determined as a function of powder properties, conditions of post-annealing process and substrate materials. The relations between the electrical resistivity near critical temperature, the chemical composition and structure of the films in their as-sprayed and annealed states are investigated by X-ray diffraction, scanning electron microscopy, electron probe microanalysis and metallography

  7. A New Adsorbent Composite Material Based on Metal Fiber Technology and Its Application in Adsorption Heat Exchangers

    Directory of Open Access Journals (Sweden)

    Ursula Wittstadt

    2015-08-01

    Full Text Available In order to achieve process intensification for adsorption chillers and heat pumps, a new composite material was developed based on sintered aluminum fibers from a melt-extraction process and a dense layer of silico-aluminophosphate (SAPO-34 on the fiber surfaces. The SAPO-34 layer was obtained through a partial support transformation (PST process. Preparation of a composite sample is described and its characteristic pore size distribution and heat conductivity are presented. Water adsorption data obtained under conditions of a large pressure jump are given. In the next step, preparation of the composite was scaled up to larger samples which were fixed on a small adsorption heat exchanger. Adsorption measurements on this heat exchanger element that confirm the achieved process intensification are presented. The specific cooling power for the adsorption step per volume of composite is found to exceed 500 kW/m3 under specified conditions.

  8. Biogas from MSW landfill: Composition and determination of chlorine content with the AOX (adsorbable organically bound halogens) technique

    International Nuclear Information System (INIS)

    An exhaustive characterization of the biogas from some waste disposal facilities has been carried out. The analysis includes the main components (methane, carbon dioxide, nitrogen and oxygen) as well as trace components such as hydrogen sulphide, ammonia and VOCs (volatile organic compounds) including siloxanes and halogenated compounds. VOCs were measured by GC/MS (Gas Chromatography/Mass Spectrometry) using two different procedures: thermal desorption of the Tenax TA and Carbotrap 349 tubes and SPME (Solid Phase Micro-Extraction). A method has been established to measure the total halogen content of the biogas with the AOX (adsorbable organically bound halogens) technique. The equipment used to analyze the samples was a Total Organic Halogen Analyzer (TOX-100). Similar results were obtained when comparing the TOX (Total Organic Halogen) values with those obtained by GC/MS. The halogen content in all the samples was under 22 mg Cl/Nm3 which is below the limit of 150 mg/Nm3 proposed in the Spanish Regulations for any use of the biogas. The low chlorine content in the biogas studied, as well as the low content of other trace compounds, makes it suitable for use as a fuel for electricity generating engines

  9. Entropy and enthalpy of adsorption of gaseous element chlorides and oxychlorides on quartz glass as function of adsorbate composition

    International Nuclear Information System (INIS)

    Adsorption of Cs, Au, Tb, Tm, Pb, Zr, Hf, Sb, Bi, Nb chlorides as well as of oxychlorides of some of these elements in quartz thermochromatographic column with SOCl3 as a chlorinating component of a gas-carrier is studied using radionuclide microamounts. Enthalpy and entropy variations at adsorption are determined on the basis of temperature dependence of volume and surface concentration ratio for some compounds. It turned out that ?Sa0 values fall within rather narrow range and their correlation with m number of atoms in sorbate molecule is detected. On this basis one obtained a simplified equation that may be used to estimate ?Ha0 if there is a value of adsorption constant measured under one given temperature only: ?Ha0 (kJ/mole) = [(8.50.2)m-(1843)-RlnKa0]T. The reproduced values of ?Ha0 are obtained under high degree of chloride modification of quartz surface. In this case ?Ha0 as rule is approximately equal to evaporation enthalpy of the adsorbate. 34 refs., 6 figs., 4 tabs

  10. A Comparative Study of Natural Fiber and Glass Fiber Fabrics Properties with Metal or Oxide Coatings

    Science.gov (United States)

    Lusis, Andrej; Pentjuss, Evalds; Bajars, Gunars; Sidorovicha, Uljana; Strazds, Guntis

    2015-03-01

    Rapidly growing global demand for technical textiles industries is stimulated to develop new materials based on hybrid materials (yarns, fabrics) made from natural and glass fibres. The influence of moisture on the electrical properties of metal and metal oxide coated bast (flax, hemp) fibre and glass fibre fabrics are studied by electrical impedance spectroscopy and thermogravimetry. The bast fibre and glass fiber fabrics are characterized with electrical sheet resistance. The method for description of electrical sheet resistance of the metal and metal oxide coated technical textile is discussed. The method can be used by designers to estimate the influence of moisture on technical data of new metal coated hybrid technical textile materials and products.

  11. Structures and magnetic properties of iron- and cobalt-containing oxide coatings on an aluminum alloy formed in electrolytes via plasma electrolytic oxidation

    Science.gov (United States)

    Rudnev, V. S.; Morozova, V. P.; Lukiyanchuk, I. V.; Adigamova, M. V.; Tkachenko, I. A.; Ustinov, A. Yu.; Kharitonskii, P. V.; Frolov, A. M.

    2014-05-01

    The effect of the nature of the supporting electrolyte in the composition of electrolytic suspensions containing dispersed particles of Fe(III) and Co(II) hydroxides, and of anodic and bipolar anodic-cathodic polarization on features of the formation, composition, and magnetic characteristics of oxide coatings is studied. In all cases, iron and cobalt are incorporated into the coatings and are concentrated predominantly in pores. The pores of the coatings include particles consisting of the reduced metals, presumably surrounded by oxide or hydroxide shells. The electrolyte composition affects the concentration and ratio of the metals in the particles. A correlation is observed between the ferro- or ferrimagnetism of the coatings and the content and ratio of cobalt and iron in the pores.

  12. Preparation and properties of poly(vinylidene fluoride) nanocomposites blended with graphene oxide coated silica hybrids

    OpenAIRE

    Q. Fu; Wang, J.C.; Chen, P.; Chen, L.; Wang, K; Deng, H; Chen, F.; Q. Zhang

    2012-01-01

    Graphene oxide coated silica hybirds (SiO2-GO) were fabricated through electrostatic assembly in this work, then blended with poly(vinylidene fluoride) (PVDF) by solution mixing to make PVDF nanocomposites. The interfacial interaction was investigated by scanning electron microscopy (SEM), polarized optical microscopy (POM) and Fourier transform infrared spectroscopy (FTIR). The results showed that the interfacial interaction was enhanced by adding of SiO2-GO and strong hydrogen bonds were ob...

  13. Adsorption and Desorption Mechanisms of Methylene Blue Removal with Iron-Oxide Coated Porous Ceramic Filter

    OpenAIRE

    Songjiang MA; Wu, Xiaoai; Fangwen LI; Zhongjian XU; Liu, Wenhua; LIU, FEN

    2009-01-01

    Adsorption and desorption mechanisms of methylene blue (MB) removal with iron-oxide coated porous ce-ramics filter (IOCPCF) were investigated in batch and column mode. The results revealed that MB removal mechanisms included physical adsorption and chemical adsorption, of which chemical adsorption by surface ligand complex reaction played a dominant role after infrared spectrum analysis. Recycling agents were se-lected from dilute nitric acid (pH=3), sodium hydroxide solution (pH=12) and dist...

  14. Rare earth elements and neodymium isotopes in ferromanganese oxide coatings of Cenozoic foraminifera from the Atlantic Ocean

    International Nuclear Information System (INIS)

    An evaluation has been made of the method of establishing the REE contents and patterns and Nd isotopic compositions of sea water over Cenozoic time from their record in the FeMn-oxide coatings of foraminiferal calcite. Using 0-60 Ma samples from the Rio Grande Rise (DSDP Site 357) it has been established that the REE contents of the coatings are generally similar to those of recent samples. However, in the Cenozoic samples the surface coatings have been diagenetically modified under suboxic conditions resulting in a distinctly different REE pattern although the original 143Nd/144Nd ratios appear to have been preserved. The Nd isotopic curve for Cenozoic sea water in the S. Atlantic shows clear temporal trends, although these are not so extreme as to show 143Nd/144Nd ratios outside the range observed in modern sea water. With the principal exception of the oldest samples there is an approximate inverse relationship between the Nd and Sr isotopic compositions of foraminifera. The Nd isotopic curve appears to be a potentially useful tracer of ocean palaeochemistry. (author)

  15. Continuous adsorption of Pb(II) and methylene blue by engineered graphite oxide coated sand in fixed-bed column

    International Nuclear Information System (INIS)

    Highlights: • GO-sand was prepared by coating GO on the surface of sand. • Pb(II) and MB were efficiently removed by GO-sand filter in column. • The removal of MB was enhanced with the presence of Pb(II). • GO-sand is low-cost and convenient for its application as packed bed filter. - Abstract: The mixture of several effluents, caused by the improper handling and management of effluents, generated multi-component wastewater containing both metals and dyes, leading to the complicated treatment process. In this study, a continuous adsorption of Pb(II) and methylene blue (MB) has been studied in single and binary solutions by using graphite oxide coated sand (GO-sand) as an adsorbent in a fixed-bed column. GO-sand was analyzed by X-ray photoelectron spectroscopy before and after analyte adsorption. Compared with sand filter, adsorption quantity and capacity for Pb(II) and MB by GO-sand filter were greatly increased. In Pb(II) and MB single solutions, the experimental parameters were investigated in detail including initial concentration, flow rate, bed depth and pH. Exhaustion time decreased with increasing initial concentration and flow rate, and increased with increasing bed depth and pH. In the Pb(II)-MB binary solution, exhaustion time significantly decreased for Pb(II) adsorption, but increased for MB adsorption. The reason was explained that the more favorable adsorption for MB onto the surface of GO-sand than that for Pb(II), which was derived from π–π interaction between MB and GO on sand surface in packed filter. The Yoon–Nelson model was applied at different concentration of Pb(II) and MB to predict the breakthrough curves. The experimental data were well fit with the model indicating that it was suitable for this column design

  16. Aluminum oxide coating for post-growth photo emission wavelength tuning of indium phosphide nanowire networks

    Science.gov (United States)

    Fryauf, David M.; Zhang, Junce; Norris, Kate J.; Diaz Leon, Juan; Kobayashi, Nobuhiko P.

    2013-09-01

    Semiconductor-oxide nanostructure devices can be a very intriguing material platform if optoelectronic properties of the original semiconductor nanostructures can be tuned by explicitly controlling properties of the oxide coating. This paper describes our finding that optical properties of semiconductor nanowires can be tuned by depositing a thin layer of metal oxide. In this experiment, indium phosphide nanowires were grown by metal organic chemical vapor deposition on silicon substrates with gold catalyst. The nanowires formed three-dimensional nanowire networks from which collective optical properties were obtained. The nanowire network was coated with an aluminum oxide thin film deposited by plasma-enhanced atomic layer deposition. We studied the dependence of the peak wavelength of photoluminescence spectra on the thickness of the oxide coatings. We observed continuous blue shift in photoluminescence spectra when the thickness of the oxide coating was increased. The observed blue shift is attributed to the Burstein-Moss effect due to increased carrier concentration in the nanowire cores caused by repulsion from an intrinsic negative fixed charge from the oxide surface. Samples were further characterized by scanning electron microscopy, transmission electron microscopy, and selective area diffractometry in an attempt to explain the physical mechanisms for the blue shift.

  17. Rare earth oxide coatings to decrease high temperature degradation of chromia forming alloys

    Directory of Open Access Journals (Sweden)

    Stela Maria de Carvalho Fernandes

    2004-03-01

    Full Text Available The addition of small quantities of reactive elements such as rare earths (RE to chromia or alumina forming alloys improves the high temperature oxidation resistance. Traditionally, these elements are alloying additions or are added as oxides to form a dispersion. The alloys can also be coated with RE oxides. Several methods can be used to coat alloy substrates with RE oxides and the sol-gel process is considered to be quite efficient, as it generates the very small oxide particles. This paper presents the influence of surface coatings of Ce, La, Pr, and Y oxide gels on the oxidation behavior of an Fe-20Cr alloy at 1000 C. The morphology of the rare earth (RE oxide coatings varied with the nature of RE. The oxidation rate of RE oxide coated Fe-20Cr was significantly less than that of the uncoated alloy. The extent of influence the RE oxide coating exercised on the oxidation rate decreased in the following order: La, Ce, Pr, Y. The scale formed in the presence of RE oxide was very thin, fine grained and adherent chromia. A direct correlation between rare earth ion radius and the extent of influence on chromia growth rate at 1000 C was observed.

  18. Design, analysis, and fabrication of oxide-coated iridium/rhenium combustion chambers

    Science.gov (United States)

    Jang, Q.; Tuffias, R. H.; Laferla, R.; Ghoniem, N. M.

    1993-01-01

    Iridium-coated rhenium (Ir/Re) combustion chambers provide high temperature, oxidation-resistant operation for radiation-cooled liquid-fueled rocket engines. A 22-N (5-lb(sub f)) chamber has been operated for 15 hours at 2200 C (4000 F) using nitrogen tetroxide/monomethyl hydrazine (NTO/MMH) propellant, with negligible internal erosion. The oxidation resistance of these chambers could be further increased by the addition of refractory oxide coatings, providing longer life and/or operation in more oxidizing and higher temperature environments. The oxide coatings would serve as a thermal and diffusion barrier for the iridium coating, lowering the temperature of the iridium layer while also preventing the ingress of oxygen and egress of iridium oxides. This would serve to slow the failure mechanisms of Ir/Re chambers, namely the diffusion of rhenium to the inner surface and the oxidation of iridium. Such protection could extend chamber lifetimes by tens or perhaps hundreds of hours, and allow chamber operation on stoichiometric or higher mixture ratio oxygen/hydrogen (O2/H2) propellant. Extensive thermomechanical, thermochemical, and mass transport modeling was performed as a key material/structure design tool. Based on the results of these analyses, several 22-N oxide-coated Ir/Re chambers were fabricated and delivered to NASA Lewis Research Center for hot-fire testing.

  19. Cavitation erosion resistance of microarc oxidation coating on aluminium alloy

    International Nuclear Information System (INIS)

    Two ceramic coatings are prepared on 2124 aluminum alloy by microarc oxidation (MAO) technology. To explore the cavitation erosion resistance of the MAO coating, cavitation tests were performed by using a rotating-disk test rig. The mass losses, surface morphologies, chemical compositions and the phase constituents of the samples after cavitation tests were examined by using digital balance, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The results indicate that the MAO coatings can extend the incubation period of aluminum alloy, and thus enhance the cavitation erosion resistance as compared to the untreated aluminum alloy samples. After duration of 63 h cavitation test, a lot of erosion pits and the particles in various shapes can be observed on the surfaces of the aluminum alloy samples, while only a few erosion pits are observed on the MAO coatings. Moreover, the mean depths of erosion on the MAO coatings are lower in the first 30 h and are independent on erosion time. The results show that the cavitation erosion of MAO coating is governed by water mechanical impaction, resulting from the effects of brittle fracture of the MAO coating.

  20. Cavitation erosion resistance of microarc oxidation coating on aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Feng [School of Mechanical Engineering, Southeast University, Nanjing, 211189 (China); Jiang, Shuyun, E-mail: jiangshy@seu.edu.cn [School of Mechanical Engineering, Southeast University, Nanjing, 211189 (China); Liang, Jun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China)

    2013-09-01

    Two ceramic coatings are prepared on 2124 aluminum alloy by microarc oxidation (MAO) technology. To explore the cavitation erosion resistance of the MAO coating, cavitation tests were performed by using a rotating-disk test rig. The mass losses, surface morphologies, chemical compositions and the phase constituents of the samples after cavitation tests were examined by using digital balance, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The results indicate that the MAO coatings can extend the incubation period of aluminum alloy, and thus enhance the cavitation erosion resistance as compared to the untreated aluminum alloy samples. After duration of 63 h cavitation test, a lot of erosion pits and the particles in various shapes can be observed on the surfaces of the aluminum alloy samples, while only a few erosion pits are observed on the MAO coatings. Moreover, the mean depths of erosion on the MAO coatings are lower in the first 30 h and are independent on erosion time. The results show that the cavitation erosion of MAO coating is governed by water mechanical impaction, resulting from the effects of brittle fracture of the MAO coating.

  1. [Adsorption of the TiO2 @ yeast composite microspheres for adsorbing Fluorescent Whitening Agent-VBL in fixed bed].

    Science.gov (United States)

    Wu, Fei; Zhang, Kai-Qiang; Bai, Bo; Wang, Hong-Lun; Suo, You-Rui

    2015-02-01

    In this work, the adsorption potential of TiO2@ yeast composite microspheres to remove Fluorescent Whitening Agent-VBL (FWA-VBL) from aqueous solution was investigated using fixed-bed adsorption column. The effects of pH(2.0-8.0), bed height (1-3 cm), inlet concentration (20-80 mg x L(-1)) and feed flow rate (5-11 mL x min(-1)) on the breakthrough characteristics of the adsorption system were determined. The results showed that the highest bed capacity of 223.80 mg x g(-1) was obtained under the condition of pH 2.0, 80 mg x L(-1) inlet dye concentration, 1.0 cm bed height and 5 mL x min(-1) flow rate. The adsorption data were fitted to three well-established fixed-bed adsorption models, namely, BDST model, Thomas model and Yoon-Nelson model. The results fitted well to the three models with coefficients of correlation R2 > 0.980 in different conditions. The TiO2 @ yeast composite microspheres have desired regeneration ability and could be reused for four times. PMID:26031081

  2. Characteristics of element composition of aerosols adsorbed on leaves by radioactivation analysis and their effects on plants

    Energy Technology Data Exchange (ETDEWEB)

    Takamatsu, Takejiro; Koshikawa, Masami [National Inst. for Environmental Studies, Tsukuba, Ibaraki (Japan); Sase, Hiroyuki; Masuzawa, Toshiyuki; Kawashima, Munetsugu; Takada, Jitsuya; Matsushita, Rokuji

    1999-01-01

    Aerosol deposits on leaves of various trees, especially cedar in different regions of Japan were collected to characterize the elemental composition using neutron activation analysis, ICP-AES, etc. and also investigate the effects of deposit aerosols on plants and the efficacy as an indicator for air pollution. Compared with the elemental composition of the soil, Se, Cr, Au, Br, As, Sb, Ag, etc. were more abundant in aerosols on cedar leaves. Especially, Sb is thought to be mostly derived from combustion of fossil fuels (exhaust gas from cars, etc.). Since Sb was accumulated on leaves at high levels and the analytical precision for Sb by neutron radioactivation was very high, the element was thought useful as an indicator for air pollution. If the amounts of Sb on the leaves of cedar and pine trees, which are widely distributed in Japan are determined, the degrees of pollution in all regions of Japan would be determined. In cedar trees of Saitama Prefecture where the deposit amounts of aerosols were comparatively larger, 42% of stoma was covered with the deposits, resulting that the rate of cuticular transpiration was increased and the amounts of basic elements leached from the leave surface was also increased. Thus, it was suggested that these changes might be the cause of recent declining of cedars in Japanese urban regions. (M.N.)

  3. Characteristics of element composition of aerosols adsorbed on leaves by radioactivation analysis and their effects on plants

    International Nuclear Information System (INIS)

    Aerosol deposits on leaves of various trees, especially cedar in different regions of Japan were collected to characterize the elemental composition using neutron activation analysis, ICP-AES, etc. and also investigate the effects of deposit aerosols on plants and the efficacy as an indicator for air pollution. Compared with the elemental composition of the soil, Se, Cr, Au, Br, As, Sb, Ag, etc. were more abundant in aerosols on cedar leaves. Especially, Sb is thought to be mostly derived from combustion of fossil fuels (exhaust gas from cars, etc.). Since Sb was accumulated on leaves at high levels and the analytical precision for Sb by neutron radioactivation was very high, the element was thought useful as an indicator for air pollution. If the amounts of Sb on the leaves of cedar and pine trees, which are widely distributed in Japan are determined, the degrees of pollution in all regions of Japan would be determined. In cedar trees of Saitama Prefecture where the deposit amounts of aerosols were comparatively larger, 42% of stoma was covered with the deposits, resulting that the rate of cuticular transpiration was increased and the amounts of basic elements leached from the leave surface was also increased. Thus, it was suggested that these changes might be the cause of recent declining of cedars in Japanese urban regions. (M.N.)

  4. One pot synthesis of magnetic graphene/carbon nanotube composites as magnetic dispersive solid-phase extraction adsorbent for rapid determination of oxytetracycline in sewage water.

    Science.gov (United States)

    Sun, Yunyun; Tian, Jing; Wang, Lu; Yan, Hongyuan; Qiao, Fengxia; Qiao, Xiaoqiang

    2015-11-27

    A simple and time-saving one pot synthesis of magnetic graphene/carbon nanotube composites (M-G/CNTs) was developed that could avoid the tedious drying process of graphite oxide, and G/CNTs were modified by Fe3O4 nanoparticles in the reduction procedure. It contributed to a shorten duration of the synthesis process of M-G/CNTs. The obtained M-G/CNTs were characterized and the results indicated that CNTs and Fe3O4 nanoparticles were served as spacer distributing to the layers of graphene, which was beneficial for enlarging surface area and improving extraction efficiency. Moreover, M-G/CNTs showed good magnetic property and outstanding thermal stability. Then M-G/CNTs were applied as adsorbent of magnetic dispersive solid-phase extraction for rapid extraction and determination of oxytetracycline in sewage water. Under the optimum conditions, good linearity was obtained in the range of 20-800ngmL(-1) and the recoveries were ranged from 95.5% to 112.5% with relative standard deviations less than 5.8%. PMID:26518491

  5. Adsorption of Th{sup 4+}, U{sup 6+}, Cd{sup 2+}, and Ni{sup 2+} from aqueous solution by a novel modified polyacrylonitrile composite nanofiber adsorbent prepared by electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Dastbaz, Abolfazl [Department of Chemical engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Keshtkar, Ali Reza, E-mail: akeshtkar@aeoi.org.ir [Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of)

    2014-02-28

    In this study, SiO{sub 2} nanoparticles were modified by 3-aminopropyltriethoxysilane (APTES) and then applied to prepare a novel polyacrylonitrile (PAN) composite nanofiber adsorbent by the electrospinning method. In addition, the adsorbent was characterized by SEM, BET, and FTIR analyses. Then the effects of pH, SiO{sub 2} and APTES content, adsorbent dosage, contact time and temperature were investigated. Moreover, adsorption experiments were carried out with initial concentrations in the range of 30500 mg L{sup ?1} and the adsorbent affinity for metal ions was in order of Th{sup 4+} > U{sup 6+} > Cd{sup 2+} > Ni{sup 2+}. Furthermore, it was observed that the optimum pH for adsorption was different for each metal. Some isotherm and kinetic models were applied to analyze the experimental data, among which the Langmuir and pseudo-second order models were better than the others. The regeneration study showed that the adsorbent could be used for industrial processes repeatedly without any significant reduction in its adsorption capacity. Based on the Langmuir model, the maximum adsorption capacity of Th{sup 4+}, U{sup 6+}, Cd{sup 2+}, and Ni{sup 2+} at 45 C was 249.4, 193.1, 69.5 and 138.7 mg g{sup ?1}, respectively. Besides, the calculated thermodynamic parameters showed an endothermic as well as chemical nature through the adsorption process.

  6. Tunable Adsorbate-Adsorbate Interactions on Graphene

    OpenAIRE

    Solenov, Dmitry; Junkermeier, Chad; Reinecke, Thomas L.; Velizhanin, Kirill A.

    2013-01-01

    We propose a mechanism to control the interaction between adsorbates on graphene. The interaction between a pair of adsorbates---the change in adsorption energy of one adsorbate in the presence of another---is dominated by the interaction mediated by graphene's pi-electrons and has two distinct regimes. Ab initio density functional, numerical tight-binding, and analytical calculations are used to develop the theory. We demonstrate that the interaction can be tuned in a wide ...

  7. Synthesis of linear low-density polyethylene-g-poly (acrylic acid)-co-starch/organo-montmorillonite hydrogel composite as an adsorbent for removal of Pb(??) from aqueous solutions.

    Science.gov (United States)

    Irani, Maryam; Ismail, Hanafi; Ahmad, Zulkifli; Fan, Maohong

    2015-01-01

    The purpose of this work is to remove Pb(II) from the aqueous solution using a type of hydrogel composite. A hydrogel composite consisting of waste linear low density polyethylene, acrylic acid, starch, and organo-montmorillonite was prepared through emulsion polymerization method. Fourier transform infrared spectroscopy (FTIR), Solid carbon nuclear magnetic resonance spectroscopy (CNMR)), silicon(-29) nuclear magnetic resonance spectroscopy (Si NMR)), and X-ray diffraction spectroscope ((XRD) were applied to characterize the hydrogel composite. The hydrogel composite was then employed as an adsorbent for the removal of Pb(II) from the aqueous solution. The Pb(II)-loaded hydrogel composite was characterized using Fourier transform infrared spectroscopy (FTIR)), scanning electron microscopy (SEM)), and X-ray photoelectron spectroscopy ((XPS)). From XPS results, it was found that the carboxyl and hydroxyl groups of the hydrogel composite participated in the removal of Pb(II). Kinetic studies indicated that the adsorption of Pb(II) followed the pseudo-second-order equation. It was also found that the Langmuir model described the adsorption isotherm better than the Freundlich isotherm. The maximum removal capacity of the hydrogel composite for Pb(II) ions was 430mg/g. Thus, the waste linear low-density polyethylene-g-poly (acrylic acid)-co-starch/organo-montmorillonite hydrogel composite could be a promising Pb(II) adsorbent. PMID:25597658

  8. Preparation and properties of poly(vinylidene fluoride nanocomposites blended with graphene oxide coated silica hybrids

    Directory of Open Access Journals (Sweden)

    Q. Fu

    2012-04-01

    Full Text Available Graphene oxide coated silica hybirds (SiO2-GO were fabricated through electrostatic assembly in this work, then blended with poly(vinylidene fluoride (PVDF by solution mixing to make PVDF nanocomposites. The interfacial interaction was investigated by scanning electron microscopy (SEM, polarized optical microscopy (POM and Fourier transform infrared spectroscopy (FTIR. The results showed that the interfacial interaction was enhanced by adding of SiO2-GO and strong hydrogen bonds were observed. The as-made nanocomposites were investigated using standard tensile test and dynamic mechanical analysis (DMA measurements, mechanical properties of PVDF with SiO2-GO hybrids showed limited improvement.

  9. Selection of a Commercial Anode Oxide Coating for Electro-oxidation of Cyanide

    Directory of Open Access Journals (Sweden)

    Lanza Marcos Roberto V.

    2002-01-01

    Full Text Available This paper presents a study of the performance of two commercial dimensionally stable anode (DSA oxide coatings in the electrochemical process for cyanide oxidation. The coatings studied were 70TiO2/30RuO2 and 55Ta2O5/45IrO2, on Ti substrate. The efficiency of both materials in the electro-oxidation of free cyanide was compared using linear voltammetry and electrolysis at constant potential. The 70TiO2/30RuO2 electrode shows a better performance in the electro-oxidation of free cyanide.

  10. Selection of a Commercial Anode Oxide Coating for Electro-oxidation of Cyanide

    OpenAIRE

    Lanza Marcos Roberto V.; Bertazzoli Rodnei

    2002-01-01

    This paper presents a study of the performance of two commercial dimensionally stable anode (DSA) oxide coatings in the electrochemical process for cyanide oxidation. The coatings studied were 70TiO2/30RuO2 and 55Ta2O5/45IrO2, on Ti substrate. The efficiency of both materials in the electro-oxidation of free cyanide was compared using linear voltammetry and electrolysis at constant potential. The 70TiO2/30RuO2 electrode shows a better performance in the electro-oxidation of free cyanide.

  11. The effect of oxide coating on the performance of the Al hollow cathode discharge

    International Nuclear Information System (INIS)

    The measurements show quantitatively the strong change in Al line radiation due to the removal of the oxide coating from the aluminium surface. This fact should be taken into consideration not only in case of hollow cathode lasers but also using Al hollow cathode lamps for atomic absorption and atomic fluorescence spectroscopy. Even with factory made hollow cathode lamps, the performance of the lamp can be improved by running the discharge for several hours if it were not used for a long time. (author)

  12. Photoluminescence blue shift of indium phosphide nanowire networks with aluminum oxide coating

    Energy Technology Data Exchange (ETDEWEB)

    Fryauf, David M.; Zhang, Junce; Norris, Kate J.; Diaz Leon, Juan J.; Oye, Michael M.; Kobayashi, Nobuhiko P. [Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, University of California, Santa Cruz, CA (United States); Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA (United States); NASA Ames Research Center, Moffett Field, CA (United States); Wei, Min [Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA (United States); School of Micro-Electronics and Solid-Electronics, University of Electronic Science and Technology of China, Chengdu (China)

    2014-07-15

    This paper describes our finding that optical properties of semiconductor nanowires were modified by depositing a thin layer of metal oxide. Indium phosphide nanowires were grown by metal organic chemical vapor deposition on silicon substrates with gold catalyst resulting in three-dimensional nanowire networks, and optical properties were obtained from the collective nanowire networks. The networks were coated with an aluminum oxide thin film deposited by plasma-enhanced atomic layer deposition. We studied the dependence of the peak wavelength of photoluminescence spectra on the thickness of the oxide coatings. A continuous blue shift in photoluminescence spectra was observed when the thickness of the oxide coating was increased. The observed blue shift is attributed to the Burstein-Moss effect due to increased carrier concentration in the nanowire cores caused by repulsion from intrinsic negative fixed charges located at the inner oxide surface. Samples were further characterized by scanning electron microscopy, Raman spectroscopy, transmission electron microscopy, and selective area diffractometry to better understand the physical mechanisms for the blue shift. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Sol-gel prepared active ternary oxide coating on titanium in cathodic protection

    Directory of Open Access Journals (Sweden)

    VLADIMIR V. PANIC

    2007-12-01

    Full Text Available The characteristics of a ternary oxide coating, on titanium, which consisted of TiO2, RuO2 and IrO2 in the molar ratio 0.6:0.3:0.1, calculated on the metal atom, were investigated for potential application for cathodic protection in a seawater environment. The oxide coatings on titanium were prepared by the sol gel procedure from a mixture of inorganic oxide sols, which were obtained by forced hydrolysis of metal chlorides. The morphology of the coating was examined by scanning electron microscopy. The electrochemical properties of activated titanium anodes were investigated by cyclic voltammetry and polarization measurements in a H2SO4- and NaCl-containing electrolyte, as well as in seawater sampled on the Adriatic coast in Tivat, Montenegro. The anode stability during operation in seawater was investigated by the galvanostatic accelerated corrosion stability test. The morphology and electrochemical characteristics of the ternary coating are compared to that of a sol-gel-prepared binary Ti0.6Ru0.4O2 coating. The activity of the ternary coating was similar to that of the binary Ti0.6Ru0.4O2 coating in the investigated solutions. However, the corrosion stability in seawater is found to be considerably greater for the ternary coating.

  14. Structure and composition of adsorbed layers formed by sequential exposure of Pt(100) and Pt(111) to pairs of compounds: Solvents and electrolytic substances

    Science.gov (United States)

    Katekaru, James Y.; Garwood, Gerald A.; Hershberger, John F.; Hubbard, Arthur T.

    1982-10-01

    Studies are reported of the interaction of vapor of typical polar solvents and electrolytes at electrodes having Pt(111) or Pt(100) single-crystal surfaces: water, pyridine, acetonitrile, dimethyl-sulfoxide, hydrogen bromide, iodine, sulfur dioxide, acrylic acid, and ammonia. Exposure was extended from low pressures (about 10 -5 Torr) to pressures approaching the vapor pressure of the pure liquid. The results indicate that these typical electrochemical materials adsorb strongly to the clean Pt surface but once adsorbed tend not to react with each other. However, analysis of LEED patterns and Auger intensities suggests that exposure of an adsorbed layer of solvents such as dimethylsulfoxide to iodine results in adsorption of the halogen and molecular re-orientation of the adsorbed solvent.

  15. Removal of dissolved heavy metals from pre-settled stormwater runoff by iron-oxide coated sand (IOCS)

    DEFF Research Database (Denmark)

    Mller, J.; Ledin, Anna

    2002-01-01

    Sorption to iron-oxide coated sand (IOCS) is a promosing technology for removal of the dissolved heavy metal fraction in stormwater runoff. The development of a new technology is necessary since studies of stormwater runoff from traffic areas indicate that an oil separator and detention pond may not guarantee that emission limit values set by the Danish EPA are satisfied. Runoff water was sampled from an urban highway, allowed to settle for 24 hours to simulate the effect of a detention pond, and finally spiked with metals to ensure concentration levels similar to high levels reported in the leterature (Pb=20, Cu=40, Zn=110, and Cr=15 ppb). Column experiments were conducted to test the influence of the infiltration rate (1 or 3 m/h) and the type of iron(hydr)oxide mineral (amorphous ferrihydrite and goethite coated sand). The results show that at least 90% of lead, copper and zinc can be removed by IOCS after 480 pore volumes. Control columns with uncoated filter sand show that lead, copper and zinc were removed with >95%, 35% and 5%, respectively. The removal of the negative metaloxy-ion, CrO4-3 was insignificant in both IOCS and sand columns at pH=7.7. Destruction of the columns after the experiments showed, that Pb, Cu and Zn penetrated to different depths in the columns. No saturation of lead was found in the first cm of the column after 1696 pore volumes of teated water. Copper showed a curved adsorption front, indicating that an infiltration speed of 3 m/h is sligtly too fast for the equilibrium between water phase and IOCS to be reached. The column with ferrihydrite was fully saturated with regard to zinc after 1696 pore volumes. In general the coating of goethite is found to be at least twice as effective as ferrihydrite with respect to the adsorption capacity of copper and zinc. Furthermore, desorption of metals from the IOCS by soaking in weak acid (pH=2.25) showed that 20%, 58% and 75% of the adsorbed Pb, Cu and Zn was recovered. Reuse of the IOCS after soaking in weak acis is possible, but it is likely to lower the adsorption capacities found in this study.

  16. Interface control of atomic layer deposited oxide coatings by filtered cathodic arc deposited sublayers for improved corrosion protection

    International Nuclear Information System (INIS)

    Sublayers grown with filtered cathodic arc deposition (FCAD) were added under atomic layer deposited (ALD) oxide coatings for interface control and improved corrosion protection of low alloy steel. The FCAD sublayer was either Ta:O or Cr:OTa:O nanolaminate, and the ALD layer was Al2O3Ta2O5 nanolaminate, AlxTayOz mixture or graded mixture. The total thicknesses of the FCAD/ALD duplex coatings were between 65 and 120nm. Thorough analysis of the coatings was conducted to gain insight into the influence of the FCAD sublayer on the overall coating performance. Similar characteristics as with single FCAD and ALD coatings on steel were found in the morphology and composition of the duplex coatings. However, the FCAD process allowed better control of the interface with the steel by reducing the native oxide and preventing its regrowth during the initial stages of the ALD process. Residual hydrocarbon impurities were buried in the interface between the FCAD layer and steel. This enabled growth of ALD layers with improved electrochemical sealing properties, inhibiting the development of localized corrosion by pitting during immersion in acidic NaCl and enhancing durability in neutral salt spray testing. - Highlights: Corrosion protection properties of ALD coatings were improved by FCAD sublayers. The FCAD sublayer enabled control of the coating-substrate interface. The duplex coatings offered improved sealing properties and durability in NSS. The protective properties were maintained during immersion in a corrosive solution. The improvements were due to a more ideal ALD growth on the homogeneous FCAD oxide

  17. Interface control of atomic layer deposited oxide coatings by filtered cathodic arc deposited sublayers for improved corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Härkönen, Emma, E-mail: emma.harkonen@helsinki.fi [Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland); Tervakangas, Sanna; Kolehmainen, Jukka [DIARC-Technology Inc., Espoo (Finland); Díaz, Belén; Światowska, Jolanta; Maurice, Vincent; Seyeux, Antoine; Marcus, Philippe [Laboratoire de Physico-Chimie des Surfaces, CNRS (UMR 7075) – Chimie ParisTech (ENSCP), F-75005 Paris (France); Fenker, Martin [FEM Research Institute, Precious Metals and Metals Chemistry, D-73525 Schwäbisch Gmünd (Germany); Tóth, Lajos; Radnóczi, György [Research Centre for Natural Sciences HAS, (MTA TKK), Budapest (Hungary); Ritala, Mikko [Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland)

    2014-10-15

    Sublayers grown with filtered cathodic arc deposition (FCAD) were added under atomic layer deposited (ALD) oxide coatings for interface control and improved corrosion protection of low alloy steel. The FCAD sublayer was either Ta:O or Cr:O–Ta:O nanolaminate, and the ALD layer was Al{sub 2}O{sub 3}–Ta{sub 2}O{sub 5} nanolaminate, Al{sub x}Ta{sub y}O{sub z} mixture or graded mixture. The total thicknesses of the FCAD/ALD duplex coatings were between 65 and 120 nm. Thorough analysis of the coatings was conducted to gain insight into the influence of the FCAD sublayer on the overall coating performance. Similar characteristics as with single FCAD and ALD coatings on steel were found in the morphology and composition of the duplex coatings. However, the FCAD process allowed better control of the interface with the steel by reducing the native oxide and preventing its regrowth during the initial stages of the ALD process. Residual hydrocarbon impurities were buried in the interface between the FCAD layer and steel. This enabled growth of ALD layers with improved electrochemical sealing properties, inhibiting the development of localized corrosion by pitting during immersion in acidic NaCl and enhancing durability in neutral salt spray testing. - Highlights: • Corrosion protection properties of ALD coatings were improved by FCAD sublayers. • The FCAD sublayer enabled control of the coating-substrate interface. • The duplex coatings offered improved sealing properties and durability in NSS. • The protective properties were maintained during immersion in a corrosive solution. • The improvements were due to a more ideal ALD growth on the homogeneous FCAD oxide.

  18. Long-term corrosion inhibition mechanism of microarc oxidation coated AZ31 Mg alloys for biomedical applications

    International Nuclear Information System (INIS)

    Highlights: ► The corrosion behavior is significantly affected by the long-term immersion. ► The degradation is inhibited due to the corrosion product layer. ► The corrosion resistance is enhanced by optimized MAO electrolyte concentrations. ► The corrosion inhibition mechanism is presented by a Flash animation. - Abstract: This paper addresses the long-term corrosion behavior of microarc oxidation coated Mg alloys immersed in simulated body fluid for 28 days. The coatings on AZ31 Mg alloys were produced in the electrolyte of sodium phosphate (Na3PO4) at the concentration of 20 g/L, 30 g/L and 40 g/L, respectively. Scanning electron microscope (SEM) and optical micrograph were used to observe the microstructure of the samples before and after corrosion. The composition of the MAO coating and corrosion products were determined by X-Ray Diffraction (XRD). Corrosion product identification showed that hydroxyapatite (HA) was formed on the surface of the corroded samples. The ratio of Ca/P in HA determined by the X-ray Fluorescence (XRF) technique showed that HA is an acceptable biocompatible implant material. The potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were employed to characterize the corrosion rate and the electrochemical impedance. The corrosion resistance of the coated Mg alloys can be enhanced by optimizing the electrolyte concentrations for fabricating samples, and is enhanced after immersing the coated samples in simulated body fluid for more than 14 days. The enhanced corrosion resistance after long-term immersion is attributed to a corrosion product layer formed on the sample surface. The inhibition mechanism of the corrosion process is discussed and presented with an animation

  19. A spectroscopic and microstructural study of oxide coatings produced on a Ti6Al4V alloy by plasma electrolytic oxidation

    International Nuclear Information System (INIS)

    Highlights: ? PEO (plasma electrolytic oxidation) for production of oxide coatings on a Ti6Al4V alloy. ? Two different current modes namely pulsed unipolar and bipolar was used. ? Optical emission spectroscopy (OES) was used to characterize the PEO plasma. ? This is the first attempt to characterize spectroscopically the PEO plasma of Ti and its alloys. ? The discharge behavior effect on the formation and structure of the coating was determined. - Abstract: In this study, we have used PEO (plasma electrolytic oxidation) for the production of oxide coatings on a Ti6Al4V alloy at two different current modes, namely pulsed unipolar and bipolar. Optical emission spectroscopy (OES) in the visible and near UV band (280800 nm) was used to characterize the PEO plasma. The emission spectra were recorded and the plasma temperature profile versus processing time was constructed using a line intensity ratios method. The aim of this work was to study the effect of the process parameters, including current mode and pulse duration time, on the plasma characteristics, surface morphology and microstructure and corrosion resistance of oxides grown on Ti6Al4V by PEO process. Scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDS) and X-ray diffraction (XRD) were used to study the coating microstructure, morphology and phase composition. The corrosion resistance of the coated and uncoated samples was examined by potentiodynamic polarization in a 3.5% NaCl solution. It was found that the plasma temperature profiles are significantly influenced by changing the current mode from unipolar to bipolar. The strongest discharges that are initiated at the interface between the substrate and the coating can be reduced or eliminated by using a bipolar current mode. This produces a thinner, denser and more corrosion-resistant coating.

  20. A spectroscopic and microstructural study of oxide coatings produced on a Ti-6Al-4V alloy by plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, R.O., E-mail: husseinr@uwindsor.ca [Department of Mechanical, Automotive and Materials Engineering, University of Windsor, Windsor, ON, N9B 3P4 (Canada); Nie, X. [Department of Mechanical, Automotive and Materials Engineering, University of Windsor, Windsor, ON, N9B 3P4 (Canada); Northwood, D.O., E-mail: dnorthwo@uwindsor.ca [Department of Mechanical, Automotive and Materials Engineering, University of Windsor, Windsor, ON, N9B 3P4 (Canada)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer PEO (plasma electrolytic oxidation) for production of oxide coatings on a Ti-6Al-4V alloy. Black-Right-Pointing-Pointer Two different current modes namely pulsed unipolar and bipolar was used. Black-Right-Pointing-Pointer Optical emission spectroscopy (OES) was used to characterize the PEO plasma. Black-Right-Pointing-Pointer This is the first attempt to characterize spectroscopically the PEO plasma of Ti and its alloys. Black-Right-Pointing-Pointer The discharge behavior effect on the formation and structure of the coating was determined. - Abstract: In this study, we have used PEO (plasma electrolytic oxidation) for the production of oxide coatings on a Ti-6Al-4V alloy at two different current modes, namely pulsed unipolar and bipolar. Optical emission spectroscopy (OES) in the visible and near UV band (280-800 nm) was used to characterize the PEO plasma. The emission spectra were recorded and the plasma temperature profile versus processing time was constructed using a line intensity ratios method. The aim of this work was to study the effect of the process parameters, including current mode and pulse duration time, on the plasma characteristics, surface morphology and microstructure and corrosion resistance of oxides grown on Ti-6Al-4V by PEO process. Scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDS) and X-ray diffraction (XRD) were used to study the coating microstructure, morphology and phase composition. The corrosion resistance of the coated and uncoated samples was examined by potentiodynamic polarization in a 3.5% NaCl solution. It was found that the plasma temperature profiles are significantly influenced by changing the current mode from unipolar to bipolar. The strongest discharges that are initiated at the interface between the substrate and the coating can be reduced or eliminated by using a bipolar current mode. This produces a thinner, denser and more corrosion-resistant coating.

  1. Properties and structure of oxidized coatings deposited onto Al-Cu and Al-Mg alloys

    Science.gov (United States)

    Pogrebnyak, A. D.; Kylyshkanov, M. K.; Tyurin, Yu. N.; Kaverina, A. Sh.; Yakushchenko, I. V.; Borisenko, A. A.; Postol'ny, B. A.; Kulik, I. A.

    2012-06-01

    The results of new studies of creating protective oxide coatings based on Al2O3 (Si, Mn) and deposited onto aluminum alloys using electrolyte-plasma oxidation are presented. An analysis is performed by scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), X-ray diffraction, Rutherford backscattering of 4He+ and protons, nanoindentation, scratching, friction coefficient measurements, and acoustic emission measurements. The results demonstrate that the deposited coatings have a high quality, hardness, and wear resistance and a low thermal diffusivity. Apart from Al2O3, the coatings are found to have Si, Mn, C, and Ca. The stoichiometry of the coatings is determined. The density and hardness of the coatings are close to those of ?-Al2O3 in the coating on an Al-Cu (D-16) substrate, and these values of the coating on an Al-Mg (S006) are lower by a factor of 1.5.

  2. Indium tin oxide coatings properties as a function of the deposition atmosphere

    International Nuclear Information System (INIS)

    Indium tin oxide coatings were deposited by magnetron sputtering physical vapour deposition under different atmospheres. Microstructural, electrical, and optical properties were measured, finding a correlation among properties and process parameters. Texture analyses carried out by X-ray diffraction showed that films microstructure depended by the oxygen content in the deposition vessel: high values of the oxygen content (e.g., 5%) caused the film to grow along the orientation; under pure Ar, the grains grew along the orientation. Intermediate values of the oxygen content caused the growth of two families of grains, respectively oriented along the and the directions. - Highlights: ? Correlation between deposition atmosphere and indium tin oxide films properties ? Resistivity and transmittance depended by the O2 content in the deposition vessel. ? At high oxygen content, the films grew along the direction. ? At low oxygen content, the films grew along the direction. ? Intermediate oxygen contents allowed the growth of both the orientations.

  3. Antibacterial properties and cytocompatibility of tantalum oxide coatings with different silver content

    International Nuclear Information System (INIS)

    Tantalum (Ta) oxides and their coatings have been proved to increase their applications in the biomedical fields by improving osseointegration and wear resistance. In this study, Ta oxide coatings containing different proportions of Ag are deposited on SS304 materials. A twin-gun magnetron sputtering system is used to deposit the tantalum oxide-Ag coating. In this study, Staphylococcus aureus, which exhibits physiological commensalism on the human skin, nares, and mucosal and oral areas, is chosen as the model for in vitro antibacterial analyses via a fluorescence staining method using Syto9. The cytocompatibility and adhesive morphology of human skin fibroblast cells (CCD-966SK) on the coatings are also determined by using the microculture tetrazolium assay. This study shows that Ta2O5 and Ta2O5-Ag coatings with 12.5 at. % of Ag exhibit improved antibacterial effects against S. aureus and have good skin fibroblast cell cellular biocompatibility

  4. Surface chemistry of metal oxide coated lithium manganese nickel oxide thin film cathodes studied by XPS

    International Nuclear Information System (INIS)

    Highlights: ? LiMn1.5Ni0.5O4 spinel thin films were prepared by RF magnetron sputtering. ? The effect of thin metal oxide coatings on cycling and surface chemistry has been studied upon cycling by X-ray photoelectron spectroscopy. ? ZrO2 limits the available storage capacity. ZnO dissolves at potentials larger than 4.7 V vs. Li/Li+. Al2O3 is stable upon long cycling. ? Ethers, esters, LiF and LixPOyFz are the main constituents of the CEI surface layer. -- Abstract: The effect of coating the high voltage spinel cathode LiMn1.5Ni0.5O4 with three metal oxide thin layers is discussed. Instead of the typical powder electrodes with poorly defined surface coatings, thin film electrodes were prepared with well-defined oxide coating thicknesses to investigate the influence of coating on surface reactivity via X-ray photoelectron spectroscopy (XPS). ZnO is found to decompose during the first charge whereas Al2O3 and ZrO2 are stable for more than 100 cycles. ZrO2, however, importantly limits the available Li storage capacity of the electrochemical reaction due to poorer kinetics. Al2O3 offers the best results in term of capacity retention. Upon cycling, the evidence of a signal at 75.4 eV in the Al2p binding energy spectrum indicates the partial fluorination of Al2O3 into, perhaps, Al2O2F2. Moreover, the continuous formation of ethers, esters and LixPOyFz compounds on the surface of the electrodes is found for all coating materials

  5. Preparation of yttrium oxide coating by MOCVD as tritium permeation barrier

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yunyi, E-mail: wuyunyi_80@163.com; He, Di; Zhang, Hua; Li, Shuai; Liu, Xiaopeng; Wang, Shumao; Jiang, Lijun

    2015-01-15

    Highlights: Yttrium oxide coating was deposited on 316L substrate as hydrogen permeation barrier. O:Y ratio of the 700 C annealed coating corresponds well to the stoichiometric Y{sub 2}O{sub 3}. The original precursor completely decomposed within the coating annealed at 700 C. The 700 C annealed coating offers efficient inhibition to deuterium permeation. Deuterium permeation of the 700 C annealed coating is controlled by a hybrid regime. - Abstract: Yttrium oxide coatings were deposited on 316L substrate using metal organic chemical vapor deposition (MOCVD) technique with yttrium ?-diketonates organometallic Y(tmhd){sub 3} as precursor. The different microstructures were obtained by annealing coatings at 700 C or as-deposited. The film was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), infrared spectroscopy and X-ray photoelectron spectroscopy (XPS). The hydrogen permeation inhibition performance of films was investigated by deuterium permeation experiment. The crystalline structure of the coatings depended on the post-anneal; the crystallite size of the coating increases and the surface exhibits compact surface morphology for the coatings post-annealed at 700 C. The coating post-annealed at 700 C has the correct oxygen/yttrium ratio corresponding well to the stoichiometric Y2O3, while some concentrations of carbon and hydrogen impurities were found in the as-deposited coating. The impurities are present in the form of unreacted or partially reacted precursor molecules due to the incomplete decomposition of the original precursor. The deuterium permeability of the coating improved obviously after post-anneal and was around 240410 times less than that of the 316L stainless steel, which means efficient inhibition to deuterium permeation.

  6. Superhydrophilicity and antibacterial property of a Cu-dotted oxide coating surface

    Directory of Open Access Journals (Sweden)

    Nie Yining

    2010-09-01

    Full Text Available Abstract Background Aluminum-made settings are widely used in healthcare, schools, public facilities and transit systems. Frequently-touched surfaces of those settings are likely to harbour bacteria and be a potential source of infection. One method to utilize the effectiveness of copper (Cu in eliminating pathogens for these surfaces would be to coat the aluminum (Al items with a Cu coating. However, such a combination of Cu and Al metals is susceptible to galvanic corrosion because of their different electrochemical potentials. Methods In this work, a new approach was proposed in which electrolytic plasma oxidation (EPO of Al was used to form an oxide surface layer followed by electroplating of Cu metal on the top of the oxide layer. The oxide was designed to function as a corrosion protective and biocompatible layer, and the Cu in the form of dots was utilized as an antibacterial material. The antibacterial property enhanced by superhydrophilicity of the Cu-dotted oxide coating was evaluated. Results A superhydrophilic surface was successfully prepared using electrolytic plasma oxidation of aluminum (Al followed by electroplating of copper (Cu in a Cu-dotted form. Both Cu plate and Cu-dotted oxide surfaces had excellent antimicrobial activities against E. coli ATCC 25922, methicillin-resistant Staphylococcus aureus (MRSA ATCC 43300 and vancomycin-resistant Enterococcus faecium (VRE ATCC 51299. However, its Cu-dotted surface morphology allowed the Cu-dotted oxide surface to be more antibacterial than the smooth Cu plate surface. The enhanced antibacterial property was attributed to the superhydrophilic behaviour of the Cu-dotted oxide surface that allowed the bacteria to have a more effective killing contact with Cu due to spreading of the bacterial suspension media. Conclusion The superhydrophilic Cu-dotted oxide coating surface provided an effective method of controlling bacterial growth and survival on contact surfaces and thus reduces the risk of infection and spread of bacteria-related diseases particularly in moist or wet environments.

  7. BACTERIOPHAGE PRD1 AND SILICA COLLOID TRANSPORT AND RECOVERY IN AN IRON OXIDE-COATED SAND AQUIFER. (R826179)

    Science.gov (United States)

    Bacteriophage PRD1 and silica colloids were co-injected into sewage-contaminated and uncontaminated zones of an iron oxide-coated sand aquifer on Cape Cod, MA, and their transport was monitored over distances up to 6 m in three arrays. After deposition, the attache...

  8. Stress controlled gas-barrier oxide coatings on semi-crystalline polymers

    International Nuclear Information System (INIS)

    Thin silicon oxide (SiOx) barrier coatings formed by plasma enhanced chemical vapor deposition on poly(ethylene terephthalate) (PET) substrates were subjected to post-deposition annealing treatments in the temperature range for orientation relaxation of the polymer. The resulting change in coating internal stress state was measured by means of thermo-mechanical analyses, and its effect on the coating cohesive properties and coating/polymer adhesion was determined from the analysis of uniaxial fragmentation tests in situ in a scanning electron microscope, assuming a Weibull-type probability of failure and a perfectly plastic stress transfer at the SiOx/PET interface. The strain to failure and intrinsic fracture toughness of the ultrathin oxide coating were found to be as high as 5.7% and 10 J/m2, respectively, and its interfacial shear strength with PET was found to be close to 100 MPa. Annealing for 10 min at 150 deg. C did not modify the oxygen permeation properties of the SiOx/PET film, which suggests that the defect population of the oxide was not affected by the thermal treatment. In contrast, the coating internal compressive stress resulting from annealing was shown to increase by 40% the apparent coating cohesive properties and adhesion to the polymer

  9. Selection of a Commercial Anode Oxide Coating for Electro-oxidation of Cyanide

    Scientific Electronic Library Online (English)

    Marcos Roberto V., Lanza; Rodnei, Bertazzoli.

    2002-06-01

    Full Text Available Este trabalho apresenta um estudo do desempenho de dois anodos comerciais de xidos de metais nobres (DSA) no processo eletroqumico para a oxidao de cianetos. Os revestimentos estudados foram 70TiO2/30RuO2 e 55Ta2O5/45IrO2, em um substrato de Ti. A eficincia dos dois materiais no processo de el [...] etrooxidao de cianeto livre foi comparada usando a voltametria linear e a eletrlise a potencial constante. O eletrodo 70TiO2/30RuO2 apresentou a melhor eficincia na eletrooxidao de cianetos livres. Abstract in english This paper presents a study of the performance of two commercial dimensionally stable anode (DSA) oxide coatings in the electrochemical process for cyanide oxidation. The coatings studied were 70TiO2/30RuO2 and 55Ta2O5/45IrO2, on Ti substrate. The efficiency of both materials in the electro-oxidati [...] on of free cyanide was compared using linear voltammetry and electrolysis at constant potential. The 70TiO2/30RuO2 electrode shows a better performance in the electro-oxidation of free cyanide.

  10. Antibacterial properties and cytocompatibility of tantalum oxide coatings with different silver content

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Heng-Li [School of Dentistry, China Medical University, Taichung 404, Taiwan (China); Chang, Yin-Yu, E-mail: yinyu@mail2000.com.tw; Chen, Hung-Jui; Chou, Yu-Kai [Department of Mechanical and Computer-Aided Engineering, National Formosa University, Yunlin 632, Taiwan (China); Lai, Chih-Ho [School of Medicine, China Medical University, Taichung 404, Taiwan (China); Chen, Michael Y. C. [Division of Oral and Maxillofacial Surgery, China Medical University Hospital, Taichung 404, Taiwan (China)

    2014-03-15

    Tantalum (Ta) oxides and their coatings have been proved to increase their applications in the biomedical fields by improving osseointegration and wear resistance. In this study, Ta oxide coatings containing different proportions of Ag are deposited on SS304 materials. A twin-gun magnetron sputtering system is used to deposit the tantalum oxide-Ag coating. In this study, Staphylococcus aureus, which exhibits physiological commensalism on the human skin, nares, and mucosal and oral areas, is chosen as the model for in vitro antibacterial analyses via a fluorescence staining method using Syto9. The cytocompatibility and adhesive morphology of human skin fibroblast cells (CCD-966SK) on the coatings are also determined by using the microculture tetrazolium assay. This study shows that Ta{sub 2}O{sub 5} and Ta{sub 2}O{sub 5}-Ag coatings with 12.5 at. % of Ag exhibit improved antibacterial effects against S. aureus and have good skin fibroblast cell cellular biocompatibility.

  11. Corrosion properties of steel protected by nanometre-thick oxide coatings

    International Nuclear Information System (INIS)

    Highlights: 4050 nm mixed aluminatantala coatings were grown by atomic layer deposition. Effects of substrate surface finish and oxide mix were analysed. Nanolaminate stacks are better resistant to breakdown. Localised corrosion occurs at pre-existing coating defects exposing substrate sites. Substrate brushing and H2Ar plasma pre-treatment hinder pit initiation. - Abstract: A comprehensive study of the corrosion properties of low alloy steel protected by 4050 nm aluminium and tantalum mixed oxide coatings grown by atomic layer deposition is reported. Electrochemical and surface analysis was performed to address the effect of substrate surface finish and whether an oxide mixture or nanolaminate was used. There was no dissolution or breakdown for nanolaminate alumina/tantala stacks in acidic NaCl solution. Localised corrosion (pitting) took place when defects exposing the substrate pre-existed in the coating. Substrate pre-treatment by brushing and H2Ar plasma was instrumental to block or slow down pit initiation by reducing the defect dimensions

  12. Reconstruction mechanisms of tantalum oxide coatings with low concentrations of silver for high temperature tribological applications

    International Nuclear Information System (INIS)

    Silver tantalate (AgTaO3) coatings have been found to exhibit outstanding tribological properties at elevated temperatures. To understand the mechanisms involved in the tribological behavior of the Ag-Ta-O system, tantalum oxide coatings with a small content of silver were produced to investigate the metastable nature of this self-lubricating material. The coatings were produced by unbalanced magnetron sputtering, ball-on-disk wear tested at 750?C, and subsequently characterized by X-ray diffraction, Scanning Auger Nanoprobe, cross-sectional Scanning Electron Microscopy, and Transmission Electron Microscopy. Complementary molecular dynamic simulations were carried out to investigate changes in the chemical and structural properties at the interface due to sliding for films with varying silver content. Both the experimental characterization and the theoretical modeling showed that silver content affects friction and wear, through the role of silver in film reconstruction during sliding. The results suggest that the relative amount of silver may be used to tune film performance for a given application

  13. Novel concept of functional oxide coatings providing enhanced oxidation resistance to Ni-based superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Pedraza, F., E-mail: fpedraza@univ-lr.fr; Balmain, J., E-mail: jbalmain@univ-lr.fr; Bonnet, G., E-mail: gbonnet@univ-lr.fr; Bouchaud, B., E-mail: baptiste.bouchaud01@univ-lr.fr

    2014-01-01

    Graphical abstract: - Highlights: New concept for providing extended oxidation resistance to Ni-based superalloys. Oxygen-defective nanostructured oxide coatings reduce the oxygen partial pressure at the substrate interface. Pre-oxidation of the substrate during annealing with the formation of alpha-alumina. Growth of CeAlO{sub 3} perovskite enhancing the adherence of the ceria top coat. Microstructural stability of the coating system with no SRZ formation upon exposure. - Abstract: Aluminide-coated Ni-based superalloys are prone to microstructural instabilities during long-term exposure at high temperature with the growth of a secondary reaction zone (SRZ) detrimental from a mechanical viewpoint. This has been since overcome by the use of thermodynamically stable coatings (?-Ni/??-Ni{sub 3}Al). However, additions of Pt and Hf are required to provide the formation of an exclusive ?-Al{sub 2}O{sub 3} scale and improved oxidation resistance in cyclic and isothermal regimes. The present work proposes a new coating system that relies on the use of a superficial nanostructured functional oxide providing the establishment of a stable alumina while avoiding SRZ formation. Tailored oxygen-defective and multi-cracked coatings were designed for 2nd generation Ni-based superalloys and generated by electrosynthesis using a water-based solution. Cyclic oxidation tests were carried out at 1100 C in air and the oxidation properties and the microstructural stability of the coating system were demonstrated.

  14. Zn sorption mechanisms onto sheathed Leptothrix discophora and the impact of the nanoparticulate biogenic Mn oxide coating.

    Science.gov (United States)

    Boonfueng, Thipnakarin; Axe, Lisa; Yee, Nathan; Hahn, Dittmar; Ndiba, Peter K

    2009-05-15

    Zinc sorption on sheathed Leptothrix discophora bacterium, the isolated extracellular polymeric substances (EPS) sheath, and Mn oxide-coated bacteria was investigated with macroscopic and spectroscopic techniques. Complexation with L. discophora was dominated by the outer membrane phosphoryl groups of the phospholipid bilayer while sorption to isolated EPS was dominated by carboxyl groups. Precipitation of nanoparticulate Mn oxide coatings on the cell surface increased site capacity by over twenty times with significant increase in metal sorption. XAS analysis of Zn sorption in the coated system showed Mn oxide phase contributions of 18 to 43% through mononuclear inner-sphere complexes. The coordination environments in coprecipitation samples were identical to those of sorption samples, indicating that, even in coprecipitation, Zn is not incorporated into the Mn oxide structure. Rather, through enzymatic oxidation by L. discophora, Mn(II) is oxidized and precipitated onto the biofilm providing a large surface for metal sequestration. The nanoparticulate Mn oxide coating exhibited significant microporosity (75%) suggesting contributions from intraparticle diffusion. Transient studies conducted over 7 months revealed a 170% increase in Zn loading. However, the intraparticle diffusivity of 10(-19) cm(2) s(-1) is two orders of magnitude smaller than that for abiotic Mn oxide which we attribute to morphological changes such as reduced pore sizes in the nanoparticulate oxide. Our results demonstrate that the cell-bound Mn oxide particles can sorb significant amounts of Zn over long periods of time representing an important surface for sequestration of metal contaminants. PMID:19268965

  15. Zn Sorption Mechanisms onto Sheathed Leptothrix Discophora and the Impact of the Nanoparticulate Biogenic Mn Oxide Coating

    Energy Technology Data Exchange (ETDEWEB)

    Boonfueng, T.; Axe, L; Yee, N; Hahn, D; Ndiba, P

    2009-01-01

    Zinc sorption on sheathed Leptothrix discophora bacterium, the isolated extracellular polymeric substances (EPS) sheath, and Mn oxide-coated bacteria was investigated with macroscopic and spectroscopic techniques. Complexation with L. discophora was dominated by the outer membrane phosphoryl groups of the phospholipid bilayer while sorption to isolated EPS was dominated by carboxyl groups. Precipitation of nanoparticulate Mn oxide coatings on the cell surface increased site capacity by over twenty times with significant increase in metal sorption. XAS analysis of Zn sorption in the coated system showed Mn oxide phase contributions of 18 to 43% through mononuclear inner-sphere complexes. The coordination environments in coprecipitation samples were identical to those of sorption samples, indicating that, even in coprecipitation, Zn is not incorporated into the Mn oxide structure. Rather, through enzymatic oxidation by L. discophora, Mn(II) is oxidized and precipitated onto the biofilm providing a large surface for metal sequestration. The nanoparticulate Mn oxide coating exhibited significant microporosity (75%) suggesting contributions from intraparticle diffusion. Transient studies conducted over 7 months revealed a 170% increase in Zn loading. However, the intraparticle diffusivity of 10{sup -19} cm{sup 2} s{sup -1} is two orders of magnitude smaller than that for abiotic Mn oxide which we attribute to morphological changes such as reduced pore sizes in the nanoparticulate oxide. Our results demonstrate that the cell-bound Mn oxide particles can sorb significant amounts of Zn over long periods of time representing an important surface for sequestration of metal contaminants.

  16. Mechanisms of LiCoO2 Cathode Degradation by Reaction with HF and Protection by Thin Oxide Coatings.

    Science.gov (United States)

    Tebbe, Jonathon L; Holder, Aaron M; Musgrave, Charles B

    2015-11-01

    Reactions of HF with uncoated and Al and Zn oxide-coated surfaces of LiCoO2 cathodes were studied using density functional theory. Cathode degradation caused by reaction of HF with the hydroxylated (101?4) LiCoO2 surface is dominated by formation of H2O and a LiF precipitate via a barrierless reaction that is exothermic by 1.53 eV. We present a detailed mechanism where HF reacts at the alumina coating to create a partially fluorinated alumina surface rather than forming AlF3 and H2O and thus alumina films reduce cathode degradation by scavenging HF and avoiding H2O formation. In contrast, we find that HF etches monolayer zinc oxide coatings, which thus fail to prevent capacity fading. However, thicker zinc oxide films mitigate capacity loss by reacting with HF to form a partially fluorinated zinc oxide surface. Metal oxide coatings that react with HF to form hydroxyl groups over H2O, like the alumina monolayer, will significantly reduce cathode degradation. PMID:26455367

  17. Molecular Adsorber Coating

    Science.gov (United States)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  18. PENGARUH KOMPOSOSI LAPISAN PADA PERMUKAAN GLOBULA MINYAK EMULSI SEBELUM PENGERINGAN SEMPROT TERHADAP SIFAT-SIFAT MIKROKAMSUL TRIGLISERIDA KAYA ASAM LEMAK W-3 [The Effect of the Composition of Adsorbed Layer at Globule Interface of ?-3 Fatty Acids Enriched Triglyceride Prior to Spray Drying on its Microcapsule Properties

    Directory of Open Access Journals (Sweden)

    Moch Adnan2

    2005-04-01

    Full Text Available Emulsification is the critical factor in microencapsulation by spray drying method. Sodium caseinate is a protein with good emulsifying properties. The properties could be improved by phospholipids addition in the emulsification. Phospholipids addition which stabilized oil globule might change the composition of adsorbed layer.This research was conducted to analyze the changes in composition at oil globule interface by analyzing emulsion systems of triglyceride enriched by ?-3 fatty acids at 5% (w/v stabilized by sodium caseinate (10% w/v and addition of phospholipids at 0; 0,5; 1,0; 1,5; 2,0; and 2,5% (w/v. The changes in composition of adsorbed layer could be determined from the changes in phospholipids and adsorbed protein concentrations at oil globule interface. Analyses were done to measure the possibility of casein-phospholipids complex, phospholipids and protein adsorption concentration at interface, and adsorbed protein.The increase of phospholipids concentration in the emulsions stabilized by sodium caseinate changed the composition of adsorbed layer at interface. There was phospholipids increase and adsorbed protein decrease at oil globule interface. These changes were caused by casein-phospholipids complex which that decreased surface activity and displacement protein by phospholipids that was adsorbed at oil globule interface.Changes of composition of casein-phospholipids at oil globule prior to microcapsulation process caused changes in the properties of microcapsule produced. The increasing phospholipids and decreasing casein concentrations at oil globule interface decreased the quality of the microcapsule, including decreasing in microencapsulation efficiency, in oxidative stability, and decreasing in EPA+DHA content.

  19. Electrolytic trichloroethene degradation using mixed metal oxide coated titanium mesh electrodes.

    Science.gov (United States)

    Petersen, Matthew A; Sale, Thomas C; Reardon, Kenneth F

    2007-04-01

    Electrochemical systems provide a low cost, versatile, and controllable platform to potentially treat contaminants in water, including chlorinated solvents. Relative to bare metal or noble metal amended materials, dimensionally stable electrode materials such as mixed metal oxide coated titanium (Ti/MMO) have advantages in terms of stability and cost, important factors for sustainable remediation solutions. Here, we report the use of Ti/MMO as an effective cathode substrate for treatment of trichloroethene (TCE). TCE degradation in a batch reactor was measured as the decrease of TCE concentration over time and the corresponding evolution of chloride; notably, this occurred without the formation of commonly encountered chlorinated intermediates. The reaction was initiated when Ti/MMO cathode potentials were less than -0.8 V vs. the standard hydrogen electrode, and the rate of TCE degradation increased linearly with progressively more negative potentials. The maximum pseudo-first-order heterogeneous rate constant was approximately 0.05 cm min(-1), which is comparable to more commonly used cathode materials such as nickel. In laboratory-scale flow-though column reactors designed to simulate permeable reactive barriers (PRBs), TCE concentrations were reduced by 80-90%. The extent of TCE flux reduction increased with the applied potential difference across the electrodes and was largely insensitive to the spacing distance between the electrodes. This is the first report of the electrochemical reduction of a chlorinated organic contaminant at a Ti/MMO cathode, and these results support the use of this material in PRBs as a possible approach to manage TCE plume migration. PMID:17234239

  20. Nanostructured hydrophobic DC sputtered inorganic oxide coating for outdoor glass insulators

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Deposition of contamination on outdoor glass insulators and its physical and economical consequences were discussed. • Synthesis of nanostructured hydrophobic HfO2 film on glass as a remedial measure by varying DC sputtering power. • Investigated and correlated structural, optical, electrical and hydrophobic properties of HfO2 films with respect to power. • Optimum results were obtained at a 50 W DC sputtering power. - Abstract: We report the structural, optical and electrical properties of nanostructured hydrophobic inorganic hafnium oxide coating for outdoor glass insulator using DC sputtering technique to combat contamination problem. The properties were studied as a function of DC power. The characterization of the films was done using X-ray diffraction, EDS, surface profilometer, AFM, impedance analyser and water contact angle measurement system. The DC power was varied from 30 to 60 W and found to have a great impact on the properties of hafnium oxide. All the deposited samples were polycrystalline with nanostructured hydrophobic surfaces. The intensity of crystallinity of the film was found to be dependent on sputtering power and hydrophobicity was correlated to the nanoscale roughness of the films. The optical property reveals 80% average transmission for all the samples. The refractive index was found in the range of 1.85–1.92, near to the bulk value. The band gap calculated from transmission data was >5.3 eV for all deposited samples ensuring dielectric nature of the films. Surface energy calculated by two methods was found minimum for the film deposited at 50 W sputtering power. The resistivity was also high enough (∼104 Ω cm) to hinder the flow of leakage current through the film. The dielectric constant (ε) was found to be thickness dependent and also high enough (εmax = 23.12) to bear the large electric field of outdoor insulators

  1. Structural, electrochemical and optical comparisons of tungsten oxide coatings derived from tungsten powder-based sols

    Energy Technology Data Exchange (ETDEWEB)

    Isik, Dilek, E-mail: e145342@metu.edu.t [Department of Metallurgical and Materials Engineering, METU, 06531 Ankara (Turkey); Ak, Metin, E-mail: metinak@pamukkale.edu.t [Department of Chemistry, Pamukkale University, 20017 Denizli (Turkey); Durucan, Caner, E-mail: cdurucan@metu.edu.t [Department of Metallurgical and Materials Engineering, METU, 06531 Ankara (Turkey)

    2009-11-02

    Tungsten trioxide (WO{sub 3}) electrochromic coatings have been formed on indium tin oxide-coated glass substrates by aqueous routes. Coating sols are obtained by dissolving tungsten powder in acetylated (APTA) or plain peroxotungstic acid (PTA) solutions. The structural evolution and electrochromic performance of the coatings as a function of calcination temperature (250 {sup o}C and 400 {sup o}C) have been reported. Differential scanning calorimetry and X-ray diffraction have shown that amorphous WO{sub 3} films are formed after calcination at 250 {sup o}C for both processing routes; however, the coatings that calcined at 400 {sup o}C were crystalline in both cases. The calcination temperature-dependent crystallinity of the coatings results in differences in optical properties of the coatings. Higher coloration efficiencies can be achieved with amorphous coatings than could be seen in the crystalline coatings. The transmittance values (at 800 nm) in the colored state are 35% and 56% for 250 {sup o}C and 400 {sup o}C-calcined coatings, respectively. The electrochemical properties are more significantly influenced by the method of sol preparation. The ion storage capacities designating the electrochemical properties are found in the range of 1.62-2.74 x 10{sup -3} (mC cm{sup -2}) for APTA coatings; and 0.35-1.62 x 10{sup -3} (mC cm{sup -2}) for PTA coatings. As a result, a correlation between the microstructure and the electrochromic performance has been established.

  2. Electrochemical oxidation of 2,4,5-trichlorophenoxyacetic acid by metal-oxide-coated Ti electrodes.

    Science.gov (United States)

    Maharana, Dusmant; Xu, Zesheng; Niu, Junfeng; Rao, Neti Nageswara

    2015-10-01

    Electrochemical oxidation of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) over metal-oxide-coated Ti anodes, i.e., Ti/SnO2-Sb/Ce-PbO2, Ti/SnO2-Sb and Ti/RuO2, was examined. The degradation efficiency of over 90% was attained at 20 min at different initial concentrations (0.5-20 mg L(-1)) and initial pH values (3.1-11.2). The degradation efficiencies of 2,4,5-T on Ti/SnO2-Sb/Ce-PbO2, Ti/SnO2-Sb and Ti/RuO2 anodes were higher than 99.9%, 97.2% and 91.5% at 30 min, respectively, and the respective total organic carbon removal ratios were 65.7%, 54.6% and 37.2%. The electrochemical degradation of 2,4,5-T in aqueous solution followed pseudo-first-order kinetics. The compounds, i.e., 2,5-dichlorohydroquinone and 2,5-dihydroxy-p-benzoquinone, have been identified as the main aromatic intermediates by liquid chromatography-mass spectrometry. The results showed that the energy efficiencies of 2,4,5-T (20 mg L(-1)) degradation with Ti/SnO2-Sb/Ce-PbO2 anode at the optimal current densities from 2 to 16 mA cm(-2) ranged from 8.21 to 18.73 kWh m(-3). PMID:25981800

  3. UV protective zinc oxide coating for biaxially oriented polypropylene packaging film by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, Kimmo, E-mail: kimmo.lahtinen@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Kääriäinen, Tommi, E-mail: tommi.kaariainen@colorado.edu [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Johansson, Petri, E-mail: petri.johansson@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Kotkamo, Sami, E-mail: sami.kotkamo@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Maydannik, Philipp, E-mail: philipp.maydannik@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Seppänen, Tarja, E-mail: tarja.seppanen@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Kuusipalo, Jurkka, E-mail: jurkka.kuusipalo@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Cameron, David C., E-mail: david.cameron@miktech.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland)

    2014-11-03

    Biaxially oriented polypropylene (BOPP) packaging film was coated with zinc oxide (ZnO) coatings by atomic layer deposition (ALD) in order to protect the film from UV degradation. The coatings were made at a process temperature of 100 °C using diethylzinc and water as zinc and oxygen precursors, respectively. The UV protective properties of the coatings were tested by using UV–VIS and infrared spectrometry, differential scanning calorimetry (DSC) and a mechanical strength tester, which characterised the tensile and elastic properties of the film. The results obtained with 36 and 67 nm ZnO coatings showed that the ZnO UV protective layer is able to provide a significant decrease in photodegradation of the BOPP film under UV exposure. While the uncoated BOPP film suffered a complete degradation after a 4-week UV exposure, the 67 nm ZnO coated BOPP film was able to preserve half of its original tensile strength and 1/3 of its elongation at break after a 6-week exposure period. The infrared analysis and DSC measurements further proved the UV protection of the ZnO coatings. The results show that a nanometre scale ZnO coating deposited by ALD is a promising option when a transparent UV protection layer is sought for polymer substrates. - Highlights: • Atomic layer deposited zinc oxide coatings were used as UV protection layers. • Biaxially oriented polypropylene (BOPP) film was well protected against UV light. • Formation of UV degradation products in BOPP was significantly reduced. • Mechanical properties of the UV exposed BOPP film were significantly improved.

  4. UV protective zinc oxide coating for biaxially oriented polypropylene packaging film by atomic layer deposition

    International Nuclear Information System (INIS)

    Biaxially oriented polypropylene (BOPP) packaging film was coated with zinc oxide (ZnO) coatings by atomic layer deposition (ALD) in order to protect the film from UV degradation. The coatings were made at a process temperature of 100 C using diethylzinc and water as zinc and oxygen precursors, respectively. The UV protective properties of the coatings were tested by using UVVIS and infrared spectrometry, differential scanning calorimetry (DSC) and a mechanical strength tester, which characterised the tensile and elastic properties of the film. The results obtained with 36 and 67 nm ZnO coatings showed that the ZnO UV protective layer is able to provide a significant decrease in photodegradation of the BOPP film under UV exposure. While the uncoated BOPP film suffered a complete degradation after a 4-week UV exposure, the 67 nm ZnO coated BOPP film was able to preserve half of its original tensile strength and 1/3 of its elongation at break after a 6-week exposure period. The infrared analysis and DSC measurements further proved the UV protection of the ZnO coatings. The results show that a nanometre scale ZnO coating deposited by ALD is a promising option when a transparent UV protection layer is sought for polymer substrates. - Highlights: Atomic layer deposited zinc oxide coatings were used as UV protection layers. Biaxially oriented polypropylene (BOPP) film was well protected against UV light. Formation of UV degradation products in BOPP was significantly reduced. Mechanical properties of the UV exposed BOPP film were significantly improved

  5. Extraction of methocarbamol from human plasma with a polypyrrole/multiwalled carbon nanotubes composite decorated with magnetic nanoparticles as an adsorbent followed by electrospray ionization ion mobility spectrometry detection.

    Science.gov (United States)

    Saraji, Mohammad; Khayamian, Taghi; Hashemian, Zahra

    2014-12-01

    In this work, a polypyrrole/multiwalled carbon nanotubes composite decorated with Fe3 O4 nanoparticles was chemically synthesized and applied as a novel adsorbent for the extraction of methocarbamol from human plasma. Electrospray ionization ion mobility spectrometry was used for the determination of the analyte. The properties of the magnetic-modified adsorbent were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform IR spectroscopy, and X-ray diffraction. The effects of experimental parameters on the extraction efficiency of the sorbent were investigated. Under the optimized conditions, the linear dynamic range was found to be 2-150 ng/mL with the detection limit of 0.9 ng/mL. The relative standard deviation was 5.3% for three replicate measurements of methocarbamol in plasma sample. The extraction efficiency of the sorbent for the determination of different drugs with various polarities was also compared to that of Fe3 O4 -polypyrrole and Fe3 O4 -multiwalled carbon nanotubes sorbents. Finally, the method was used for the determination of methocarbamol in blood samples. PMID:25243817

  6. Polyethylene glycol/graphene oxide coated solid-phase microextraction fiber for analysis of phenols and phthalate esters coupled with gas chromatography.

    Science.gov (United States)

    Hou, Xiudan; Yu, Hui; Guo, Yong; Liang, Xiaojing; Wang, Shuai; Wang, Licheng; Liu, Xia

    2015-08-01

    A new polyethylene glycol/graphene oxide composite material bonded on the surface of a stainless-steel wire was used for solid-phase microextraction. The layer-by-layer structure increased the adsorption sites of the novel fiber, which could facilitate the extraction of trace compounds. The polyethylene glycol/graphene oxide was characterized by Fourier transform infrared spectroscopy and elemental analysis, which verified that polyethylene glycol was successfully grafted onto the surface of graphene oxide. The performance of the polyethylene glycol/graphene oxide coated fiber was investigated for phenols and phthalate esters coupled with gas chromatography with flame ionization detection under the optimal extraction and desorption conditions, and the proposed method exhibited an excellent extraction capacity and high thermal stability. Wide linear ranges were obtained for the analytes with good correlation coefficients in the range of 0.9966-0.9994, and the detection limits of model compounds ranged from 0.003 to 0.025 ?g/L. Furthermore, the as-prepared fiber was used to determine the model compounds in the water and soil samples and satisfactory results were obtained. PMID:26012698

  7. Effect of fulvic acid on adsorptive removal of Cr(VI) and As(V) from groundwater by iron oxide-based adsorbents

    KAUST Repository

    Uwamariya, V.

    2015-05-15

    Abstract Natural contamination has become a challenging problem in drinking water production due to metal contamination of groundwater throughout the world, and arsenic and chromium are well-known toxic elements. In this study, iron oxide-coated sand (IOCS) and granular ferric hydroxide (GFH) were used to study the effects of fulvic acid (FA) on the adsorptive removal of Cr(VI) and As(V) from synthetic groundwater. IOCS and GFH were characterized by SEM/EDS, and experiments were performed at different pH levels (6, 7, and 8). The surface of IOCS and GFH showed a high content of Fe and O (75 and 60 % of the atomic composition, respectively), suggesting that they can highly effectively adsorb Cr(VI) and As(V). Adsorption tests with the simultaneous presence of As(V) and FA, on the one hand, and Cr(VI) with FA, on the other hand, revealed that the role of FA on chromate and arsenate adsorption was insignificant at almost all pH values investigated with both adsorbents. A small influence as a result of FA was only observed for the removal of As(V) by IOCS at pH 6 with a decrease of 13 and 23 % when 2 and 5 mg/l were added to the synthetic water, respectively. It was also found that organic matter (OM) was leached from the IOCS during batch adsorption experiments. The use of FEEM revealed that humic-like, fulvic-like, and protein-like organic matter fractions are present on the IOCS surface. © 2015 Springer International Publishing Switzerland.

  8. Regenerative adsorbent heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  9. Bacterial removal in flow-through columns packed with iron-manganese bimetallic oxide-coated sand.

    Science.gov (United States)

    Park, Seong-Jik; Lee, Chang-Gu; Kim, Song-Bae; Chang, Yoon-Young; Yang, Jae-Kyu

    2012-01-01

    The objective of this study was to investigate the performance of iron-manganese bimetallic oxide-coated sand (IMCS) in the removal of bacteria (Escherichia coli ATCC 11105) using small-scale (length = 20 cm, inner diameter = 2.5 cm) and 30-day long-term (length = 50 cm, inner diameter = 2.5 cm) column experiments. Results indicated that the bacterial removal capacity of IMCS (q(eq) = 0.66 g/g) was slightly lower than that of iron oxide-coated sand (ICS) (q(eq) = 0.69 g/g) but about two times greater than those of manganese oxide-coated sand (MCS, q(eq) = 0.30 g/g) and dual media containing ICS and MCS (q(eq) = 0.35 g/g). In IMCS, increasing the flow rate from 0.5 to 3.0 mL/min decreased the removal capacity from 1.14 to 0.64 g/g. Nitrate showed an enhancement effect on the removal capacity of IMCS at 1 and 10 mM, while phosphate and bicarbonate had both hindrance (1 mM) and enhancement (10 mM) effects, depending on their concentrations. The long-term column experiment (bacterial injection conc. = 4.2 10(6) CFU/mL) showed that IMCS could remove more than 99.9 % of bacteria within 13 days (effluent conc. = 1.6 10(2) CFU/mL). This study demonstrated that IMCS could be used as an adsorptive filter medium for bacterial removal in water treatment. PMID:22571524

  10. Transporting method for adsorbing tower and the adsorbing tower

    International Nuclear Information System (INIS)

    A cylindrical plastic bag is disposed to the upper surface of an adsorbing tower so as to surround a suspending piece. One opening of the bag is sealed, and other opening is secured in a sealed state to a bag holding portion disposed to glove box at a gate for the adsorbing tower box. The adsorbing tower is transported into the glove box, and after the completion of the operation of the adsorbing tower, the adsorbing tower is taken out in a state that the bag is restricted and sealed at a portion below the adsorbing tower. The bag may be made of a vinyl plastic, the bag holding portion may be a short-cylindrical protrusion, and may have an O-ring groove at the outer surface. Even if the adsorbing tower is heavy, the adsorbing tower can be carried out easily in a state where it is sealed gas tightly. (N.H.)

  11. Ionogenic adsorbents based on local raw materials for radiation protection

    International Nuclear Information System (INIS)

    The successful management of uranium wastes and creating the conditions for effective rehabilitation activities require special adsorbents capable of holding on the surface complexes, including radioactive elements. Currently tested and have shown promising synthetic adsorbents based pitted apricot fruits and other fruit plants. This report presents data for the establishment of ionic type available adsorbents based on Tajikistan coal. As the base for the creation of this type of adsorbent were taken the coal of the 'Ziddi' deposits. As follows from our data on the chemical composition, the studied coals contain more than 20% of the ash. According to the available literature theses ashes contains various minerals compositions that can form the adsorbent's active surface. Thus, the model for this type of activated carbon can serve as a mixture of zeolite, ion exchange resins and activated carbon itself.

  12. Microstructure control and deuterium permeability of erbium oxide coating on ferritic/martensitic steels by metal-organic decomposition

    International Nuclear Information System (INIS)

    The development of a tritium permeation barrier is essential for building a tritium recovery system in fusion power plants. Toward realizing this application, the fabrication of erbium oxide coatings by metal-organic decomposition has been carried out on reduced activation ferritic/martensitic steels. The coated samples exhibit different surface structures after they are heat-treated under different conditions. A sample that is heat-treated in high-purity argon produces an oxide layer between the erbium oxide coating and the substrate. It is believed that the presence of this oxide layer causes defects in the coating and degradation of the samples during deuterium permeation measurements. The sample heat-treated in high-purity hydrogen with moisture exhibits a thinner oxide layer and improved stability during measurements. A 0.3-?m-thick coating yields a permeation reduction factor of 500-700 at 773-973 K, which is comparable to the coating deposited by the physical vapor deposition technique.

  13. Influence of adsorbed polar molecules on the electronic transport in a composite material Li(1.1)V3O8-PMMA for lithium batteries.

    Science.gov (United States)

    Badot, J C; Ligneel, E; Dubrunfaut, O; Gaubicher, J; Guyomard, D; Lestriez, B

    2012-07-14

    The broadband dielectric spectroscopy (BDS) technique (40 to 10(10) Hz) is used here to measure the electronic transport across all observed size scales of a Li(1.1)V(3)O(8)-polymer-gel composite material for lithium batteries. Different electrical relaxations are evidenced, resulting from the polarizations at the different scales of the architecture: (i) atomic lattice (small-polaron hopping), (ii) particles, (iii) clusters of particles, and finally (iv) sample-current collector interface. A very good agreement with dc-conductivity measurements on a single macro-crystal [M. Onoda and I. Amemiya, J. Phys.: Condens. Matter, 2003, 15, 3079.] shows that the BDS technique does allow probing the bulk (intrinsic) electrical properties of a material in the form of a network of particles separated by boundaries in a composite. Moreover, this study highlights a lowering of the surface electronic conductivity of Li(1.1)V(3)O(8) particles upon adsorption of polar ethylene carbonate (EC) and propylene carbonate (PC) that trap surface polarons. This result is meaningful as EC and PC are typical constituents of a liquid electrolyte of lithium batteries. It is thus suggested that interactions between active material particles and the liquid electrolyte play a role in the electronic transport within composite electrodes used in a lithium battery. PMID:22652605

  14. Effect of Oxide Coating on Performance of Copper-Zinc Oxide-Based Catalyst for Methanol Synthesis via Hydrogenation of Carbon Dioxide

    OpenAIRE

    Tetsuo Umegaki; Yoshiyuki Kojima; Kohji Omata

    2015-01-01

    The effect of oxide coating on the activity of a copper-zinc oxidebased catalyst for methanol synthesis via the hydrogenation of carbon dioxide was investigated. A commercial catalyst was coated with various oxides by a sol-gel method. The influence of the types of promoters used in the sol-gel reaction was investigated. Temperature-programmed reduction-thermogravimetric analysis revealed that the reduction peak assigned to the copper species in the oxide-coated catalysts prepared using ammo...

  15. Screening the toxicity of phosphorous-removal adsorbents using a bioluminescence inhibition test.

    Science.gov (United States)

    Duranceau, Steven J; Biscardi, Paul G; Barnhill, Danielle K

    2016-04-01

    When found in excess, phosphorus (P) has been linked to surface water eutrophication. As a result, adsorbents are now used in P remediation efforts. However, possible secondary toxicological impacts on the use of new materials for P removal from surface water have not been reported. This study evaluated the toxicity of adsorbent materials used in the removal of P from surface water including: fly ash, bottom ash, alum sludge, a proprietary mix of adsorbents, and a proprietary engineered material. Toxicity screening was conducted by performing solid-liquid extractions (SLEs) followed by the bacterial bioluminescence inhibition test with a Microtox® M500. Of the materials tested, the samples extracted at lower pH levels demonstrated higher toxicity. The material exhibiting the most toxic response was the iron and aluminum oxide coated engineered material registering a 66-67% 15-min EC50 level for pH 4 and 5 SLEs, respectively. However, for SLEs prepared at pH 7, toxic effects were not detected for this engineered material. Fly ash and bottom ash demonstrated between 82 and 84% 15-min EC50 level, respectively, for pH 4 SLE conditions. Dried alum sludge and the proprietary mix of adsorbents were classified as having little to no toxicity. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 489-495, 2016. PMID:25348491

  16. Adsorption of phosphoric acid on niobium oxide coated cellulose fiber: preparation, characterization and ion exchange property

    Scientific Electronic Library Online (English)

    Flvio A., Pavan; Maria Suzana P., Francisco; Richard, Landers; Yoshitaka, Gushikem.

    2005-08-01

    Full Text Available Os procedimentos para a preparao do hbrido orgnico-inorgnico celulose-xido de nibio (Cel/Nb2O5) e o seu derivado, Cel/Nb2O5/fosfato, so descritos. O reagente precursor do xido metlico foi o composto oxalato de nibio, NH4[NbO(C2O4)2)(H 2O)2].nH2 O, muito conveniente por ser solvel em gua [...] . O on fostato foi adsorvido sobre o Cel/Nb2O5 pela imerso deste slido em uma soluo de acido fosfrico. As anlises de textura efetuadas usando a microscopia eletrnica de varredura (MEV) conectada a um detector de energia dispersiva (EDS) revelaram que as partculas do xido de nibio, dentro da resoluo utilizada, so uniformemente dispersas na superfcie da matriz de celulose. O cido fosfrico adsorvido sobre a superfcie do material atravs da formao da ligao Nb-O-P. Os espectros de fotoeltrons de raios-X e de ressonncia magntica nuclear de 31P mostraram que o fosfato adsorvido na superfcie a espcie H2PO4-. As isotermas de troca inica obtidas utilizando-se o material mostraram uma boa afinidade na reteno de Na+, K+ e Ca2+ quando em contacto com estes ons em soluo aquosa. Abstract in english The preparation procedures for a hybrid organic-inorganic cellulose-niobium oxide (Cel/Nb2O5) and its derivative, Cel/Nb2O5/phosphate, are described. The precursor reagent of the metal oxide was the very convenient water soluble niobium oxalate compound, NH4[NbO(C2O4)2)(H 2O)2].nH2 O. Phosphate ion [...] was adsorbed on the Cel/Nb2O5 by immersing this solid in an aqueous solution of phosphoric acid. Textural analyses carried out by using scanning electron microscopy (SEM) connected to an energy dispersive detector (EDS) revealed that the niobium oxide particles are, within the magnification used, uniformly dispersed on the cellulose matrix surface. Phosphoric acid is adsorbed on the material surface through the Nb-O-P linkage. The X-ray photoelectron and 31P NMR spectra showed that the adsorbed phosphate on the surface is the (H2PO4)- species. The ion exchange isotherms obtained using the material Cel/Nb2O5/H2PO4- showed good affinity for retaining Na+, K+ and Ca2+ when in contact with these ions in an aqueous solution.

  17. Plasma electrolytic oxide coatings on valve metals and their activity in CO oxidation

    Science.gov (United States)

    Lukiyanchuk, I. V.; Rudnev, V. S.; Tyrina, L. M.; Chernykh, I. V.

    2014-10-01

    Two approaches have been examined for obtaining titanium- or aluminum-supported catalysts with transition and noble metals using the plasma electrolytic oxidation (PEO) technique. Elemental compositions, distribution of active elements and catalytic activity in CO oxidation have been compared for composites formed by one-stage PEO technique and those obtained as a result of modification of PEO coatings by impregnation.

  18. Influence of albumin and inorganic ions on electrochemical corrosion behavior of plasma electrolytic oxidation coated magnesium for surgical implants

    Science.gov (United States)

    Wan, Peng; Lin, Xiao; Tan, LiLi; Li, Lugee; Li, WeiRong; Yang, Ke

    2013-10-01

    Magnesium and its alloys are of great interest for biodegradable metallic devices. However, the degradation behavior and mechanisms of magnesium treated with coating in physiological environment in the presence of organic compound such as albumin have not been elucidated. In this study, the plasma electrolytic oxidation coated magnesium immersed in four different simulated body fluids: NaCl, PBS and with the addition of albumin to investigate the influence of protein and inorganic ions on degradation behavior by electrochemical methods. The results of electrochemical tests showed that aggressive corrosion took place in 0.9 wt.% NaCl solution; whereas albumin can act as an inhibitor, its adsorption impeded further dissolution of the coating. The mechanism was attributed to the synergistic effect of protein adsorption and precipitation of insoluble salts.

  19. Electron-microscopic imaging of electrolytic oxide coatings on AA2214; Elektronenmikroskopische Darstellung elektrolytischer Oxidschichten auf AA2214

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Michael [Fraunhofer-Institut fuer Keramische Technologien und Systeme (IKTS), Dresden (Germany); Kuebel, Christian; Yezerska, Olga [Fraunhofer Institut fuer Fertigungstechnik und Angewandte Materialforschung (IFAM), Bremen (Germany); Viola, Alain; Augros, Myriam [Messier-Bugatti, Molsheim (France). Div. Freinage Aeronautic

    2009-05-15

    The alloy AA2214 is one of the medium to high-strength age-hardening forging alloys which play an important role as structural materials in the aircraft industry. For purposes of protection against corrosion and wear these alloys are very often anodized. Transmission electron microscopic studies on coatings anodized by sulfuric acid have clearly shown the effect of anodizing voltage on pore size. Intermetallic phases occurring in the microstructures of such materials were shown to be largely broken up during the anodizing process. Small proportions of alloy elements were, however, still detectable in the oxide. During the subsequent sealing process these open pores are closed and after only 15 minutes the process is substantially completed, revealing no significant gradation of density throughout the thickness of the oxide coating. (orig.)

  20. Alloy Films Deposited by Electroplating as Precursors for Protective Oxide Coatings on Solid Oxide Fuel Cells Metallic Interconnect Materials

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christopher; Gemmen, R.S.; Cross, Caleb

    2006-10-01

    The successful development of stainless steel interconnects for intermediate temperature solid oxide fuel cells (SOFC) may be the materials breakthrough that makes SOFC technology truly commercial. Many of the ferritic stainless steels, however, suffer from a relatively high area specific resistance (ASR) after long exposure times at temperature and the Cr in the native oxide can evaporate and contaminate other cell components. Conductive coatings that resist oxide scale growth and chromium evaporation may prevent both of these problems. In the present study electrochemical deposition of binary alloys followed by oxidation of the alloy to form protective and conductive oxide layers is examined. Results are presented for the deposition of Mn/Co and Fe/Ni alloys via electroplating to form a precursor for spinel oxide coating formation. Analysis of the alloy coatings is done by SEM, EDS and XRD.

  1. Fabrication of mesoporous metal oxide coated-nanocarbon hybrid materials via a polyol-mediated self-assembly process

    Science.gov (United States)

    Feng, Bingmei; Wang, Huixin; Wang, Dongniu; Yu, Huilong; Chu, Yi; Fang, Hai-Tao

    2014-11-01

    After clarifying the formation mechanism of a typical metal glycolate precipitate, Ti glycolate, in a polyol-mediated synthesis using acetone as a precipitation medium, we describe a simple template-free approach based on an ethylene glycol-mediated synthesis to fabricate mesoporous metal oxide coated-nanocarbon hybrid materials including TiO2 coated-carbon nanotube (CNT), SnO2 coated-CNT, Cu2O/CuO coated-CNT and TiO2 coated-graphene sheet (GS). In the approach, metal oxide precursors, metal glycolates, were first deposited on CNTs or GSs, and subsequently transformed to the metal oxide coatings by pyrolysis or hydrolysis. By a comparison between the characterization of two TiO2-CNT hybrid materials using carboxylated CNTs and pristine CNTs without carboxyl groups, the driving force for initiating the deposition of metal glycolates on the carboxylated CNTs is confirmed to be the hydrogen bonding between the carboxyl groups and the polymer chains in metal glycolate sols. The electrochemical performances of the mesoporous TiO2 coated-carboxylated CNTs and TiO2-pristine CNT hybrid materials were investigated. The results show that the mesoporous TiO2 coated-carboxylated CNT with a uniform core-shell nanostructure exhibits substantial improvement in the rate performance in comparison with its counterpart from 0.5 C to 100 C because of its higher electronic conductivity and shorter diffusion path for the lithium ion. At the extremely high rate of 100 C, the specific capacity of TiO2 of the former reaches 85 mA h g-1, twice as high as that of the latter.After clarifying the formation mechanism of a typical metal glycolate precipitate, Ti glycolate, in a polyol-mediated synthesis using acetone as a precipitation medium, we describe a simple template-free approach based on an ethylene glycol-mediated synthesis to fabricate mesoporous metal oxide coated-nanocarbon hybrid materials including TiO2 coated-carbon nanotube (CNT), SnO2 coated-CNT, Cu2O/CuO coated-CNT and TiO2 coated-graphene sheet (GS). In the approach, metal oxide precursors, metal glycolates, were first deposited on CNTs or GSs, and subsequently transformed to the metal oxide coatings by pyrolysis or hydrolysis. By a comparison between the characterization of two TiO2-CNT hybrid materials using carboxylated CNTs and pristine CNTs without carboxyl groups, the driving force for initiating the deposition of metal glycolates on the carboxylated CNTs is confirmed to be the hydrogen bonding between the carboxyl groups and the polymer chains in metal glycolate sols. The electrochemical performances of the mesoporous TiO2 coated-carboxylated CNTs and TiO2-pristine CNT hybrid materials were investigated. The results show that the mesoporous TiO2 coated-carboxylated CNT with a uniform core-shell nanostructure exhibits substantial improvement in the rate performance in comparison with its counterpart from 0.5 C to 100 C because of its higher electronic conductivity and shorter diffusion path for the lithium ion. At the extremely high rate of 100 C, the specific capacity of TiO2 of the former reaches 85 mA h g-1, twice as high as that of the latter. Electronic supplementary information (ESI) available. See DOI: 10.1039/C4NR04254A

  2. Fixed-bed modeling of arsenic (III) adsorption from water by Sulfate Modified Iron Oxide Coated Sand (SMIOCS)

    Science.gov (United States)

    Vaishya, R. C.; Gupta, S. K.; Agarwal, I. C.

    2003-05-01

    A medium known as sulfate modified iron oxide coated sand (SMIOCS) was evaluated for the removal of As (III) from synthetic water with ionic strength of 0.01 M NaNO3 employing fixed bed mode. The medium was characterised for BET surface area; alkali and acid resistance; and presence of iron, barium and sulfur on sand surface. The particle size of media shown significant impact on bed volume treated with similar expcrimental protocol. A theoretical model, Wolborska model, has shown good correlation with observed experimental data generated during depth variation studies at flow rate of 1.56 m^3/m^2/hr with influent As (III) concentration of 1.0 mg/L. Regeneration studies using 0.2 M NaOH as regenerant resulted in nearly 83% recove of As (III) during up flow mode.

  3. High performance Mo adsorbent PZC

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1998-10-01

    We have developed Mo adsorbents for natural Mo(n, {gamma}){sup 99}Mo-{sup 99m}Tc generator. Among them, we called the highest performance adsorbent PZC that could adsorb about 250 mg-Mo/g. In this report, we will show the structure, adsorption mechanism of Mo, and the other useful properties of PZC when you carry out the examination of Mo adsorption and elution of {sup 99m}Tc. (author)

  4. Self-assembly of graphene oxide coated soft magnetic carbonyl iron particles and their magnetorheology

    International Nuclear Information System (INIS)

    The surface of carbonyl iron (CI) microspheres was modified with graphene oxide (GO) as a coating material using 4-aminobenzoic acid as the grafting agent. The morphology, elemental composition, and magnetic properties of the GO-coated CI (GO/CI) particles were examined by scanning electron microscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometry, respectively, confirming their composite formation. The magnetorheological (MR) performance of the GO/CI particle-based suspension was examined using a rotational rheometer connected to a magnetic field supply. The GO/CI particles suspension exhibited typical MR properties with increasing shear stress and viscosity depending on the applied magnetic field strength

  5. Self-assembly of graphene oxide coated soft magnetic carbonyl iron particles and their magnetorheology

    Science.gov (United States)

    Zhang, W. L.; Choi, H. J.

    2014-05-01

    The surface of carbonyl iron (CI) microspheres was modified with graphene oxide (GO) as a coating material using 4-aminobenzoic acid as the grafting agent. The morphology, elemental composition, and magnetic properties of the GO-coated CI (GO/CI) particles were examined by scanning electron microscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometry, respectively, confirming their composite formation. The magnetorheological (MR) performance of the GO/CI particle-based suspension was examined using a rotational rheometer connected to a magnetic field supply. The GO/CI particles suspension exhibited typical MR properties with increasing shear stress and viscosity depending on the applied magnetic field strength.

  6. Positronium chemistry in porous adsorbents

    International Nuclear Information System (INIS)

    Kinetic studies on the annihilation of orthopositronium in porous adsorbents have been performed using lifetime spectroscopy. The positron source applied was 22Na with 0.2 MBq activity. The adsorbents investigated were silica gels of different particle size and pore structure. The appearance of the long-lived component in the lifetime spectra can be explained by the diffusion of the orthopositronium into the pores affected by the particle size and the pore size of the adsorbent, the coverage on it and the chemical nature of the adsorbate. The long-term aim of the work is to determine and to explain these effects. (author)

  7. Thermal behavior of Ni- and Cu-containing plasma electrolytic oxide coatings on titanium

    Science.gov (United States)

    Rudnev, V. S.; Wybornov, S.; Lukiyanchuk, I. V.; Staedler, T.; Jiang, X.; Ustinov, A. Yu.; Vasilyeva, M. S.

    2012-09-01

    In this work the effect of thermal annealing on the surface composition, structure and catalytic activity in CO oxidation of NiO + CuO/TiO2/Ti composites is studied. The composites have been obtained by a plasma electrolytic oxidation (PEO) technique, followed by impregnation in a solution of nickel (II) and copper (II) salts and air annealing. The structures contain 20 at% Ni and 12 at% Cu. It has been shown that the additional air annealing of such structures at temperature above 750 C results in phosphate crystallization in the coatings and decreasing of Cu concentration in the surface layers. A growth of filiform nanocrystals containing mainly oxygen compounds of nickel and titanium on the coating surface takes place at the temperatures above 700 C. The nanocrystals have a diameter of 50-200 nm and lengths below 10 ?m. Such changes result in decreasing of catalytic activity of the composites in CO oxidation. At the same time the ascertained regularities may be of interest for obtaining the Ni-containing oxide catalysts with an extended surface, perspective for usage in organic catalysis or for preparing oxide nanofibers.

  8. Green Adsorbents for Wastewaters: A Critical Review

    Directory of Open Access Journals (Sweden)

    George Z. Kyzas

    2014-01-01

    Full Text Available One of the most serious environmental problems is the existence of hazardous and toxic pollutants in industrial wastewaters. The major hindrance is the simultaneous existence of many/different types of pollutants as (i dyes; (ii heavy metals; (iii phenols; (iv pesticides and (v pharmaceuticals. Adsorption is considered to be one of the most promising techniques for wastewater treatment over the last decades. The economic crisis of the 2000s led researchers to turn their interest in adsorbent materials with lower cost. In this review article, a new term will be introduced, which is called green adsorption. Under this term, it is meant the low-cost materials originated from: (i agricultural sources and by-products (fruits, vegetables, foods; (ii agricultural residues and wastes; (iii low-cost sources from which most complex adsorbents will be produced (i.e., activated carbons after pyrolysis of agricultural sources. These green adsorbents are expected to be inferior (regarding their adsorption capacity to the super-adsorbents of previous literature (complex materials as modified chitosans, activated carbons, structurally-complex inorganic composite materials etc., but their cost-potential makes them competitive. This review is a critical approach to green adsorption, discussing many different (maybe in some occasions doubtful topics such as: (i adsorption capacity; (ii kinetic modeling (given the ultimate target to scale up the batch experimental data to fixed-bed column calculations for designing/optimizing commercial processes and (iii critical techno-economical data of green adsorption processes in order to scale-up experiments (from lab to industry with economic analysis and perspectives of the use of green adsorbents.

  9. Arsenic remediation of drinking water using iron-oxide coated coal bottom ash

    Energy Technology Data Exchange (ETDEWEB)

    MATHIEU, JOHANNA L.; GADGIL, ASHOK J.; ADDY, SUSAN E.A.; KOWOLIK, KRISTIN

    2010-06-01

    We describe laboratory and field results of a novel arsenic removal adsorbent called 'Arsenic Removal Using Bottom Ash' (ARUBA). ARUBA is prepared by coating particles of coal bottom ash, a waste material from coal fired power plants, with iron (hydr)oxide. The coating process is simple and conducted at room temperature and atmospheric pressure. Material costs for ARUBA are estimated to be low (~;;$0.08 per kg) and arsenic remediation with ARUBA has the potential to be affordable to resource-constrained communities. ARUBA is used for removing arsenic via a dispersal-and-removal process, and we envision that ARUBA would be used in community-scale water treatment centers. We show that ARUBA is able to reduce arsenic concentrations in contaminated Bangladesh groundwater to below the Bangladesh standard of 50 ppb. Using the Langmuir isotherm (R2 = 0.77) ARUBA's adsorption capacity in treating real groundwater is 2.6x10-6 mol/g (0.20 mg/g). Time-to-90percent (defined as the time interval for ARUBA to remove 90percent of the total amount of arsenic that is removed at equilibrium) is less than one hour. Reaction rates (pseudo-second-order kinetic model, R2>_ 0.99) increase from 2.4x105 to 7.2x105 g mol-1 min-1 as the groundwater arsenic concentration decreases from 560 to 170 ppb. We show that ARUBA's arsenic adsorption density (AAD), defined as the milligrams of arsenic removed at equilibrium per gram of ARUBA added, is linearly dependent on the initial arsenic concentration of the groundwater sample, for initial arsenic concentrations of up to 1600 ppb and an ARUBA dose of 4.0 g/L. This makes it easy to determine the amount of ARUBA required to treat a groundwater source when its arsenic concentration is known and less than 1600 ppb. Storing contaminated groundwater for two to three days before treatment is seen to significantly increase ARUBA's AAD. ARUBA can be separated from treated water by coagulation and clarification, which is expected to be less expensive than filtration of micron-scale particles, further contributing to the affordability of a community-scale water treatment center.

  10. Plasma electrolytic oxidation coatings on ?TiAl alloy for potential biomedical applications.

    Science.gov (United States)

    Lara Rodriguez, L; Sundaram, P A; Rosim-Fachini, E; Padovani, A M; Diffoot-Carlo, N

    2014-07-01

    In an attempt to enhance the potential of gamma titanium aluminide intermetallic alloy as a biomaterial, its surface characteristics were successfully modified using a calcium and phosphorous rich electrolyte through the application of plasma electrolytic oxidation. Scanning electron microscopy and atomic force microscopy were used to characterize the morphology and topographical features of the resulting coating while X-ray diffraction and energy dispersive spectroscopy were used to determine the surface oxide composition. The mechanical properties of the surface coating were characterized by nanoindentation studies. The results observed show the formation of a submicron scale porous structure and a concomitant increase in the surface roughness. The surface oxide was composed of rutile and anatase phases. Composition gradients of Ca and P were also present which can possibly enhance the biomaterial application potential of this treated surface. Nanoindentation measurements indicate the formation of a fairly compact oxide during the process. PMID:24259371

  11. Surface-initiated growth of thin oxide coatings for Li-sulfur battery cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyu Tae; Black, Robert; Yim, Taeeun; Ji, Xiulei; Nazar, Linda F. [University of Waterloo, Department of Chemistry, Waterloo, ON (Canada)

    2012-12-15

    The concept of surface-initiated growth of oxides on functionalized carbons is introduced as a method to inhibit the dissolution of polysulfide ions in Li-S battery cathode materials. MO{sub x} (M: Si, V) thin layers are homogeneously coated on nanostructured carbon-sulfur composites. The coating significantly inhibits the dissolution of polysulfides on cycling, resulting in enhanced cycle performance and coulombic efficiency of the Li-S battery. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Introduce, research and testing of type ? adsorber

    International Nuclear Information System (INIS)

    Introduce the theory and function of Type ? Adsorber. Briefly describe the Type ? Adsorber designed by Shanghai Nuclear Engineering and Design Institute, and its testing to prove that the Type ? Adsorber has the advantages comparing with Type ? and ? Adsorbers. Also prove that the Type ? Adsorber designed by Shanghai Nuclear Engineering and Design Institute can be used in AP1000 and other nuclear power plants. (authors)

  13. Characterization of calcium containing plasma electrolytic oxidation coatings on AM50 magnesium alloy

    Science.gov (United States)

    Srinivasan, P. Bala; Liang, J.; Blawert, C.; Strmer, M.; Dietzel, W.

    2010-04-01

    An attempt was made to produce calcium containing plasma electrolytic oxidation (PEO) coatings on AM50 magnesium alloy using an alkaline electrolyte. This study was performed in three alkaline electrolytes containing calcium hydroxide and sodium phosphate with three different mass ratios viz., 1:2.5, 1:5 and 1:7.5. All the three coatings produced were found to contain Ca and P in appreciable amounts. The concentration of P was found to be higher in the coatings obtained in the electrolytes with higher concentration of phosphate ions. Even though all the three coatings were found to be constituted with magnesium oxide and magnesium phosphate phases, X-ray diffraction analyses revealed that the phase composition was influenced by the phosphate ion concentration/conductivity of the electrolyte. Further, the PEO coating obtained in the 1:7.5 ratio electrolyte was found to contain di-calcium phosphate (monetite) and calcium peroxide phases, which were absent in the other two coatings. Potentiodynamic polarization studies performed in 0.1 M NaCl solution showed that the coatings obtained from the 1:5 ratio electrolyte possessed a superior corrosion resistance, which is attributed to the combined effect of thickness, compactness and phase/chemical composition of this coating.

  14. Characterization of calcium containing plasma electrolytic oxidation coatings on AM50 magnesium alloy

    International Nuclear Information System (INIS)

    An attempt was made to produce calcium containing plasma electrolytic oxidation (PEO) coatings on AM50 magnesium alloy using an alkaline electrolyte. This study was performed in three alkaline electrolytes containing calcium hydroxide and sodium phosphate with three different mass ratios viz., 1:2.5, 1:5 and 1:7.5. All the three coatings produced were found to contain Ca and P in appreciable amounts. The concentration of P was found to be higher in the coatings obtained in the electrolytes with higher concentration of phosphate ions. Even though all the three coatings were found to be constituted with magnesium oxide and magnesium phosphate phases, X-ray diffraction analyses revealed that the phase composition was influenced by the phosphate ion concentration/conductivity of the electrolyte. Further, the PEO coating obtained in the 1:7.5 ratio electrolyte was found to contain di-calcium phosphate (monetite) and calcium peroxide phases, which were absent in the other two coatings. Potentiodynamic polarization studies performed in 0.1 M NaCl solution showed that the coatings obtained from the 1:5 ratio electrolyte possessed a superior corrosion resistance, which is attributed to the combined effect of thickness, compactness and phase/chemical composition of this coating.

  15. Preparation and properties of plasma electrolytic oxidation coating on sandblasted pure titanium by a combination treatment.

    Science.gov (United States)

    Wang, Hong-Yuan; Zhu, Rui-Fu; Lu, Yu-Peng; Xiao, Gui-Yong; Zhao, Xing-Chuan; He, Kun; Yuan, Y F; Li, Ying; Ma, Xiao-Ni

    2014-09-01

    Plasma electrolytic oxidation (PEO) is one of the most applicable methods to produce bioceramic coating on a dental implant and sandblasting is a primary technique to modify metal surface properties. This study aims to deposit bioceramic Ca- and P-containing coatings on sandblasted commercially pure titanium by PEO technique to improve its bioactive performance. The time-dependent modified surfaces are characterized in terms of their microstructure, phase, chemical composition, mechanical properties and bioactivities. The results show that the combination-treated coating exhibits better properties than the PEO-treated one, especially in bioactivities, as evidenced by the HA formation after immersion in simulated body fluid (SBF) for 5 days and the cell viability after seeding for 1 or 3 days. The enhancement of the modified surface is attributed to a combination of the mechanical sandblasting and the microplasma oxidation. PMID:25063166

  16. Antimony doped tin oxide coating of muscovite clays by the Pechini route

    Energy Technology Data Exchange (ETDEWEB)

    Sladkevich, Sergey; Kyi, Nilar; Gun, Jenny; Prikhodchenko, Petr; Ischuk, Sergey; Lev, Ovadia, E-mail: Ovadia@vms.huji.ac.il

    2011-10-31

    The preparation of antimony doped tin oxide (ATO) conductive thin films on mica (muscovite) clays is described. ATO coating solution was prepared from ethylene glycol monomer, citric acid ligand, SbCl{sub 3} and SnCl{sub 2} precursors in alcohol solution. Muscovite thin film coating was prepared by gradual addition of the precursor solution to a water-muscovite clay dispersion. Under appropriate precursor concentrations and temperature, aggregation of the clays and ATO particles was prevented, and the ATO film grew exclusively on the clay substrate. Heat treatment of the coated mica resulted in semi transparent and conductive clays which could be used for composite film formation. Whereas the Pechini route is widely used for dip coating of ATO films, here we extend the approach for coating particulate matter. The films were characterized by electronic microscopy, X-ray photoelectron spectroscopy, powder diffraction, and thermal analysis and the dependence of conductivity on calcination temperature and precursor concentrations are described.

  17. Enhanced mechanical and electrical properties of antimony-doped tin oxide coatings

    International Nuclear Information System (INIS)

    Multi-walled carbon nanotubes (MWNTs) dispersed in surfactants were investigated as additional conductive elements in an antimony-doped tin oxide (ATO) matrix. Dispersion of MWNTs in a cationic surfactant was more efficient than in anionic or non-ionic surfactants. Precursor solutions as well as coatings of ATO and ATO/MWNT composites were characterized. The effect of the addition of MWNTs on the optical, electrical and mechanical properties of the original ATO coatings was demonstrated. Low concentrations of MWNTs are sufficient to decrease the resistivity of conducting ATO films by a factor of 16, with preserved transparency (90%) in the visible range. Fewer ATO nanoparticles and lower sintering temperatures than those presented in the literature lead to films with comparable resistivities and even higher transparency, with reduced manufacturing costs. The addition of MWNTs has also increased the hardness of the ATO coatings from HB to 2H4H, depending on the MWNT concentration employed

  18. Kinetic modeling of pH-dependent antimony (V) sorption and transport in iron oxide-coated sand.

    Science.gov (United States)

    Cai, Yongbing; Li, Lulu; Zhang, Hua

    2015-11-01

    Understanding the mechanisms and kinetics controlling the retention and transport of antimony (Sb) is prerequisite for evaluating the risk of groundwater contamination by the toxic element. In this study, kinetic batch and saturated miscible displacement experiments were performed to investigate effects of protonation-deprotonation reactions on sorption-desorption and transport of Sb(V) in iron oxide-coated sand (IOCS). Results clearly demonstrated that Sb(V) sorption was highly nonlinear and time dependent, where both sorption capacity and kinetic rates decreased with increasing solution pH. Breakthrough curves (BTCs) obtained at different solution pH exhibited that mobility of Sb(V) were higher under neutral to alkaline condition than under acidic condition. Because of the nonlinear and non-equilibrium nature of Sb(V) retention and transport, multi-reaction models (MRM) with equilibrium and kinetic sorption expressions were utilized successfully to simulate the experiment data. Equilibrium distribution coefficient (Ke) and reversible kinetic retention parameters (k1 and k2) of both kinetic sorption and transport experiment showed marked decrease as pH increased from 4.0 to 7.5. Surface complexation is suggested as the dominant mechanism for the observed pH-dependent phenomena, which need to be incorporated into the kinetic models to accurately simulate the reactive transport of Sb(V) in vadose zone and aquifers. PMID:26291756

  19. Adsorption-dissolution reactions affecting the distribution and stability of CoIIEDTA in ion oxide-coated sand

    International Nuclear Information System (INIS)

    The time-variant chemical behavior of CoIIEDTA (and other metal-EDTA complexes) was investigated in suspensions of iron oxide-coated sand to identify equilibrium and kinetic reactions that control the mobility of MeII-EDTA complexes in subsurface environments. Batch experiments were conducted to evaluate the adsorption as a function of pH, concentration, and time and to quantify the rate-controlling step(s) of dissolution of the iron oxide by EDTA complexes. Ionic Co2+ exhibited typical cation-like adsorption, whereas MeIIEDTA adsorption was ligand-like, increasing with decreasing pH. Adsorption isotherms for all reactive species exhibited Langmuir behavior, with site saturation occurring at molar values of tot. The adsorption of MeIIEDTA enhanced the apparent solubility of the iron oxide phase, which destabilized the CoIIEDTA complex, liberating Co2+ and FeIIIEDTA. The dissolution rate was an order of magnitude slower at pH 6.5 than at pH 4.5 and was influenced by the re-adsorption of solubilized FeIIIEDTA. Two multireaction kinetic models were developed that each included Langmuir adsorption for Co2+ and metal-EDTA species but differed in their depiction of the dissolution mechanism (i.e., ligand-versus proton-promoted dissolution). 45 refs., 8 figs., 6 tabs

  20. Improved electrochemical performance of zinc oxide coated lithium manganese silicate electrode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Highlights: ZnO-coated Li2MnSiO4/C cathode materials have been successfully prepared via solgel method for the first time. The electrochemical performance of the pure Li2MnSiO4/C has been significantly improved after coating 1 wt% ZnO. The better electrochemical performance can be attributed to the improvement of electrochemical kinetics by coating ZnO. - Abstract: ZnO-coated Li2MnSiO4/C composites have been successfully prepared by a preliminary formation of Li2MnSiO4/C by facile solgel method and a following coating process with ZnO via a wet chemical process. Phase compositions and morphology of the products have been investigated by XRD, SEM, TEM and EDX. The physical characterizations manifest that nano-layer ZnO has been successfully coated on the Li2MnSiO4 particle surface. Among the samples, 1 wt% ZnO coated Li2MnSiO4/C shows the best performance with an initial discharge capacity of 183 mAh g?1 at 0.1C rate and the specific capacities of 142 and 134 mAh g?1 at the high rate of 0.5C and 1C, respectively, which is much better than Li2MnSiO4/C without coating ZnO. The better electrochemical performance can be attributed to the significantly decrease of the charge transfer resistance and improvement of lithium ion diffusion coefficient after coating ZnO, which is beneficial for the rapid insertion/extraction of lithium ions

  1. Spectral and optical performance of electrochromic poly(3,4-ethylenedioxythiophene) (PEDOT) deposited on transparent conducting oxide coated glass and polymer substrates

    International Nuclear Information System (INIS)

    Electrochromic devices utilizing conjugated polymers as electrochromic layers have gained increasing attention owing to their optical properties, fast switching times and contrast ratios. Polyethylenedioxythiophene (PEDOT) is an excellent material from its electrochromic properties, high conductivity and high stability in the doped form. Aqueous dispersions of PEDOT were either spin coated or electro-polymerized on transparent conducting oxide coated glass and polyethylene tetraphthalate (PET) film substrates. The spectro- and opto-electrochemical studies of the films on transparent conducting oxide coated glass/PET substrates were performed. These films have application in the fabrication of electrochromic windows (smart windows). Smart window devices having excellent switching characteristics over wide range of temperature are used for glazing applications. The aerospace industry is interested in the development of visors and windows that can control glare for pilots and passengers, especially if the coatings can be made on curved surfaces and electrically conducting

  2. Spectral and optical performance of electrochromic poly(3,4-ethylenedioxythiophene) (PEDOT) deposited on transparent conducting oxide coated glass and polymer substrates

    Energy Technology Data Exchange (ETDEWEB)

    Sindhu, S. [Dept. of Instrumentation, Indian Institute of Science, Bangalore 560012 (India)]. E-mail: sindhu@isu.iisc.ernet.in; Narasimha Rao, K. [Dept. of Instrumentation, Indian Institute of Science, Bangalore 560012 (India); Ahuja, Sharath [Dept. of Instrumentation, Indian Institute of Science, Bangalore 560012 (India); Kumar, Anil [Dept. of Chemistry, Indian Institute of Technology, Bombay 400 076 (India); Gopal, E.S.R. [Dept. of Physics, Indian Institute of Science, Bangalore 560012 (India)

    2006-07-25

    Electrochromic devices utilizing conjugated polymers as electrochromic layers have gained increasing attention owing to their optical properties, fast switching times and contrast ratios. Polyethylenedioxythiophene (PEDOT) is an excellent material from its electrochromic properties, high conductivity and high stability in the doped form. Aqueous dispersions of PEDOT were either spin coated or electro-polymerized on transparent conducting oxide coated glass and polyethylene tetraphthalate (PET) film substrates. The spectro- and opto-electrochemical studies of the films on transparent conducting oxide coated glass/PET substrates were performed. These films have application in the fabrication of electrochromic windows (smart windows). Smart window devices having excellent switching characteristics over wide range of temperature are used for glazing applications. The aerospace industry is interested in the development of visors and windows that can control glare for pilots and passengers, especially if the coatings can be made on curved surfaces and electrically conducting.

  3. Heterogeneous oligonucleotide-hybridization assay based on hot electron-induced electrochemiluminescence of a rhodamine label at oxide-coated aluminum and silicon electrodes

    International Nuclear Information System (INIS)

    This paper describes a heterogeneous oligonucleotide-hybridization assay based on hot electron-induced electrochemiluminescence (HECL) of a rhodamine label. Thin oxide-film coated aluminum and silicon electrodes were modified with an aminosilane layer and derivatized with short, 15-mer oligonucleotides via diisothiocyanate coupling. Target oligonucleotides were conjugated with tetramethylrhodamine (TAMRA) dye at their amino modified 5' end and hybridization was detected using HECL of TAMRA. Preliminary results indicate sensitivity down to picomolar level and low nonspecific adsorption. The sensitivity was better on oxide-coated silicon compared to oxide-coated aluminum electrodes and two-base pair mismatched hybrids were successfully discriminated. The experimental results presented here might be useful for the design of disposable electrochemiluminescent DNA biosensors

  4. Heterogeneous oligonucleotide-hybridization assay based on hot electron-induced electrochemiluminescence of a rhodamine label at oxide-coated aluminum and silicon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Spehar-Deleze, Anna-Maria [Laboratory of Sensors, Actuators and Microsystems, Institute of Microtechnology, University of Neuchatel, Rue Jaquet-Droz 1, CH-2007 Neuchatel (Switzerland) and Laboratory of Inorganic and Analytical Chemistry, Helsinki University of Technology, Kemistintie 1, FIN-02015 HUT (Finland)]. E-mail: anna-maria.spehar@unine.ch; Suomi, Johanna [Laboratory of Inorganic and Analytical Chemistry, Helsinki University of Technology, Kemistintie 1, FIN-02015 HUT (Finland); Jiang Qinghong [Laboratory of Inorganic and Analytical Chemistry, Helsinki University of Technology, Kemistintie 1, FIN-02015 HUT (Finland); Rooij, Nico de [Laboratory of Sensors, Actuators and Microsystems, Institute of Microtechnology, University of Neuchatel, Rue Jaquet-Droz 1, CH-2007 Neuchatel (Switzerland); Koudelka-Hep, Milena [Laboratory of Sensors, Actuators and Microsystems, Institute of Microtechnology, University of Neuchatel, Rue Jaquet-Droz 1, CH-2007 Neuchatel (Switzerland); Kulmala, Sakari [Laboratory of Inorganic and Analytical Chemistry, Helsinki University of Technology, Kemistintie 1, FIN-02015 HUT (Finland)

    2006-07-28

    This paper describes a heterogeneous oligonucleotide-hybridization assay based on hot electron-induced electrochemiluminescence (HECL) of a rhodamine label. Thin oxide-film coated aluminum and silicon electrodes were modified with an aminosilane layer and derivatized with short, 15-mer oligonucleotides via diisothiocyanate coupling. Target oligonucleotides were conjugated with tetramethylrhodamine (TAMRA) dye at their amino modified 5' end and hybridization was detected using HECL of TAMRA. Preliminary results indicate sensitivity down to picomolar level and low nonspecific adsorption. The sensitivity was better on oxide-coated silicon compared to oxide-coated aluminum electrodes and two-base pair mismatched hybrids were successfully discriminated. The experimental results presented here might be useful for the design of disposable electrochemiluminescent DNA biosensors.

  5. Carbon adsorbents from petroleum residues

    International Nuclear Information System (INIS)

    Data are presented on utilizing petroleum asphaltite as an addition to the charge and as a binder when producing adsorbents and also on the products of their thermal and chemical modification. Highly effective microporous adsorbents have been produced whose sorption indices are higher than industrial ones. They may be used as carriers of hemosorbents, clarifying carbons, and for selective isolation of the noble metals from multicomponent solutions. The new adsorbents may be useful for air purification in rooms, for keeping the required temperature in food storage, as well as for cleaning nuclear power plant gas effluents. (Author)

  6. Iridium Oxide Coatings with Templated Porosity as Highly Active Oxygen Evolution Catalysts: Structure-Activity Relationships.

    Science.gov (United States)

    Bernicke, Michael; Ortel, Erik; Reier, Tobias; Bergmann, Arno; Ferreira de Araujo, Jorge; Strasser, Peter; Kraehnert, Ralph

    2015-06-01

    Iridium oxide is the catalytic material with the highest stability in the oxygen evolution reaction (OER) performed under acidic conditions. However, its high cost and limited availability demand that IrO2 is utilized as efficiently as possible. We report the synthesis and OER performance of highly active mesoporous IrO2 catalysts with optimized surface area, intrinsic activity, and pore accessibility. Catalytic layers with controlled pore size were obtained by soft-templating with micelles formed from amphiphilic block copolymers poly(ethylene oxide)-b-poly(butadiene)-b-poly(ethylene oxide). A systematic study on the influence of the calcination temperature and film thickness on the morphology, phase composition, accessible surface area, and OER activity reveals that the catalytic performance is controlled by at least two independent factors, that is, accessible surface area and intrinsic activity per accessible site. Catalysts with lower crystallinity show higher intrinsic activity. The catalyst surface area increases linearly with film thickness. As a result of the templated mesopores, the pore surface remains fully active and accessible even for thick IrO2 films. Even the most active multilayer catalyst does not show signs of transport limitations at current densities as high as 75?mA?cm(-2) . PMID:25958795

  7. Dry sliding wear behaviour of magnesium oxide and zirconium oxide plasma electrolytic oxidation coated magnesium alloy

    International Nuclear Information System (INIS)

    Two types of PEO coatings, one consisting of magnesium oxide (MgO) and the other comprising zirconium oxide (ZrO2) as the main phase composition were produced on AM50 magnesium alloy from alkaline and acidic electrolytes, respectively. The ZrO2 coating was found to be spongy and thicker with a higher roughness, whilst the relatively more compact MgO coating was having contrasting features. In the dry sliding oscillating wear tests under two different loads viz., 2 N and 5 N, the ZrO2 coating exhibited a very poor wear resistance. The MgO coating showed an excellent resistance to sliding wear under 2 N load; however, the load bearing capacity of the coating was found to be insufficient to resist the wear damage under 5 N load. The higher specific wear rates of the MgO coating under 5 N load and that of the ZrO2 coating under 2 N and 5 N loads were attributed to the poor load bearing capacity and a three-body-abrasive wear mechanism.

  8. Stability of plasma electrolytic oxidation coating on titanium in artificial saliva.

    Science.gov (United States)

    Matykina, E; Arrabal, R; Mohedano, M; Pardo, A; Merino, M C; Rivero, E

    2013-01-01

    Bioactive PEO coating on titanium with high Ca/P ratio was fabricated and characterized with respect to its morphology, composition and microstructure. Long-term electrochemical stability of the coating and Ti(4+) ion release was evaluated in artificial saliva. Influence of the lactic acid and fluoride ions on corrosion protection mechanism of the coated titanium was assessed using AC and DC electrochemical tests. The PEO-treated titanium maintained high passivity in the broad range of potentials up to 2.5 V (Ag/AgCl) for up to 8 weeks of immersion in unmodified saliva and exhibited Ti(4+) ion release <0.002 g cm(-2) days(-1). The high corrosion resistance of the coating is determined by diffusion of reacting species through the coating and resistance of the inner dense part of the coating adjacent to the substrate. Acidification of saliva in the absence of fluoride ions does not affect the surface passivity, but the presence of 0.1 % of fluoride ions at pH ?4.0 causes loss of adhesion of the coating due to inwards migration of fluoride ions and their adsorption at the substrate/coating interface in the presence of polarisation. PMID:23073838

  9. Enhanced capacitive performance of TiO? nanotubes with molybdenum oxide coating

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Dongsheng; Gao, Xianfeng; Li, Jianyang; Yuan, Chris, E-mail: cyuan@uwm.edu

    2014-05-01

    Highlights: MoO? was firstly deposited on TiO? nanotubes for better supercapacitive behaviors. Coated TiO? nanotubes showed much higher capacitance than pure TiO? or MoO? films. Deposition cycles were optimized to gain the best capacitance of MoO?/TiO? hybrids. - Abstract: Alpha-phase MoO? is electrochemically deposited on well-aligned TiO? nanotubes which are synthesized by anodic oxidation. The morphology, composition and electrochemical behaviors of MoO?-coated and bare TiO? nanotubes are studied. The former deliver greatly higher capacitance than the latter and their performance can be readily optimized by varying MoO? deposition cycles. The large areal capacitance of 209.6 mF cm? at a scan rate of 5 mV s? is firstly achieved for TiO? nanotube array electrode. In addition, the coated TiO? nanotubes show significantly more capacitance than a dense MoO? film. For example, they exhibit a capacitance up to 74.9 F g? at 5 mV s? in 1 M KCl solution, while the dense film only shows a capacitance of 32.3 F g? under same conditions. Such improvement is found ascribed to MoO? with high pseudocapacity and TiO? nanotubes with large surface area allowing efficient MoO? nanoparticle loading and rapid charge transfer. This nanostructured electrode with features of facile synthesis and excellent performance is believed as a potential candidate for supercapacitor applications.

  10. Enhanced capacitive performance of TiO2 nanotubes with molybdenum oxide coating

    International Nuclear Information System (INIS)

    Highlights: MoO3 was firstly deposited on TiO2 nanotubes for better supercapacitive behaviors. Coated TiO2 nanotubes showed much higher capacitance than pure TiO2 or MoO3 films. Deposition cycles were optimized to gain the best capacitance of MoO3/TiO2 hybrids. - Abstract: Alpha-phase MoO3 is electrochemically deposited on well-aligned TiO2 nanotubes which are synthesized by anodic oxidation. The morphology, composition and electrochemical behaviors of MoO3-coated and bare TiO2 nanotubes are studied. The former deliver greatly higher capacitance than the latter and their performance can be readily optimized by varying MoO3 deposition cycles. The large areal capacitance of 209.6 mF cm?2 at a scan rate of 5 mV s?1 is firstly achieved for TiO2 nanotube array electrode. In addition, the coated TiO2 nanotubes show significantly more capacitance than a dense MoO3 film. For example, they exhibit a capacitance up to 74.9 F g?1 at 5 mV s?1 in 1 M KCl solution, while the dense film only shows a capacitance of 32.3 F g?1 under same conditions. Such improvement is found ascribed to MoO3 with high pseudocapacity and TiO2 nanotubes with large surface area allowing efficient MoO3 nanoparticle loading and rapid charge transfer. This nanostructured electrode with features of facile synthesis and excellent performance is believed as a potential candidate for supercapacitor applications

  11. Lubricating Properties of Some Bonded Fluoride and Oxide Coatings for Temperature to 1500 F

    Science.gov (United States)

    Sliney, Harold E.

    1960-01-01

    The lubricating properties of some experimental ceramic coatings, diffusion-bonded fluoride coatings, and ceramic-bonded fluoride coatings were determined. The experiments were conducted in an air atmosphere at a sliding velocity of 430 feet per minute and at temperatures from 75 to 1500 F. Several ceramic coatings provided substantial reductions in friction coefficient and rider wear (compared with the unlubricated metals). For example, a cobaltous oxide (CoO) base coating gave friction coefficients of 0.24 to 0.36 within the temperature range of 75 to 1400 F; serious galling and welding of the metal surfaces were prevented. The friction coefficients were higher than the arbitrary maximum (0.2) usually considered for effective boundary lubrication. However, when a moderately high friction coefficient can be tolerated, this type of coating may be a useful antiwear composition. Diffusion-bonded calcium fluoride (CaF2) on Haynes Stellite 21 and on Inconel X gave friction coefficients of 0.1 to 0.2 at 1500 F. Endurance life was dependent on the thermal history of the coating; life improved with increased exposure time at elevated temperatures prior to running. Promising results were obtained with ceramic-bonded CaF2 on Inconel X. Effective lubrication and good adherence were obtained with a 3 to 1 ratio of CaF2 to ceramic. A very thin sintered and burnished film of CaF2 applied to the surface of this coating further improved lubrication, particularly above 1350 F. The friction coefficient was 0.2 at 500 F and decreased with increasing temperature to 0.06-at 1500 F. It was 0.25 at 75 F and 0.22 at 250 F.

  12. Study on silicon oxide coated on silver nanocrystal to enhance fluorescence intensity of rare earth complexes

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Yan-rong; Lin, Xue-mei; Wang, Ai-ling; Wang, Zhong-xia; Kang, Jie; Chu, Hai-bin, E-mail: binghai99@gmail.com; Zhao, Yong-liang, E-mail: hxzhaoyl@163.com

    2014-10-15

    Twelve kinds of rare earth complexes were synthesized using halo-benzoic acid as anion ligand and Sm{sup 3+} and Dy{sup 3+} as central ions, respectively. The complexes were characterized by elemental analysis, rare earth coordination titration and electrospray ionization mass spectra, from which the compositions of the complexes were confirmed to be RE(p-FBA){sub 3}H{sub 2}O, RE(p-ClBA){sub 3}2H{sub 2}O, RE(p-BrBA){sub 3}H{sub 2}O, RE(o-FBA){sub 3}2H{sub 2}O, RE(o-ClBA){sub 3}H{sub 2}O, RE(o-BrBA){sub 3}H{sub 2}O (RE=Sm{sup 3+}, Dy{sup 3+}). Besides, IR spectra and UVvisible absorption spectroscopy indicated that the carboxyl oxygen atoms of ligands coordinated to the rare earth ions. Moreover, Ag@SiO{sub 2} coreshell nanoparticles (NPs) were prepared via a modified Stber method. The average diameters of silver cores were typically between 60 nm and 70 nm, and the thicknesses of the SiO{sub 2} shells were around 10 nm, 15 nm and 25 nm, respectively. The influence of Ag@SiO{sub 2} NPs on the luminescence properties of the rare earth complexes showed that the luminescence intensities of rare earth complexes were enhanced remarkably. As the thickness of SiO{sub 2} shell increases in the range of 1025 nm, the effect of metal-enhanced fluorescence become obvious. The mechanism of the changes of the fluorescence intensity is also discussed. - Highlights: Among 1025 nm, the thicker the shell thickness, the better the fluorescence effect. The strong the intensity of the pure complexes, the smaller the multiple enhanced. The intensity of Sm(p-BrBA){sub 3}H{sub 2}O is the strongest among Sm(p-XBA){sub 3}nH{sub 2}O complexes. The intensity of Dy(p-ClBA){sub 3}2H{sub 2}O is the strongest among Dy(p-XBA){sub 3}nH{sub 2}O complexes. When halogen is in o-position, the intensity of RE(o-ClBA){sub 3}H{sub 2}O is the strongest.

  13. Preparation of metal adsorbents from chitin/chitosan by radiation technology

    International Nuclear Information System (INIS)

    The methods of preparation of metal adsorbents basing on chitin/chitosan were developed. That include the adsorbent from chitin grafted with acrylic acid by different irradiation doses; the clinging chitosan gel beads; the coagulable solution and the chitosan composite filter. The process of metal adsorption for each adsorbent was studied as adsorption kinetic, isothermal adsorption. The results have been applied for removal of some elements as Hg, Pb, Cd, U, Cu, ect. in the wastewater. (NHA)

  14. Validation of In-Situ Iron-Manganese Oxide Coated Stream Pebbles as Sensors for Arsenic Source Monitoring

    Science.gov (United States)

    Blake, J.; Peters, S. C.; Casteel, A.

    2013-12-01

    Locating nonpoint source contaminant fluxes can be challenging due to the inherent heterogeneity of source and of the subsurface. Contaminants such as arsenic are a concern for drinking water quality and ecosystem health. Arsenic contamination can be the result of several natural and anthropogenic sources, and therefore it can be difficult to trace and identify major areas of arsenic in natural systems. Identifying a useful source indicator for arsenic is a crucial step for environmental remediation efforts. Previous studies have found iron-manganese oxide coated streambed pebbles as useful source indicators due to their high attraction for heavy metals in water. In this study, pebbles, surface water at baseflow and nearby rocks were sampled from the Pennypack Creek and its tributaries, in southwestern Pennsylvania, to test the ability of coated streambed pebbles as environmental source indicators for arsenic. Quartz pebbles, 5-7 cm in diameter, were sampled to minimize elemental contamination from rock chemistry. In addition, quartz provides an excellent substrate for iron and manganese coatings to form. These coatings were leached from pebbles using 4M nitric acid with 0.1% concentrated hydrochloric acid. Following sample processing, analyses were performed using an ICP-MS and the resulting data were spatially organized using ArcGIS software. Arsenic, iron and manganese concentrations in the leachate are normalized to pebble surface area and each location is reported as a ratio of arsenic to iron and manganese. Results suggest that iron-manganese coated stream pebbles are useful indicators of arsenic location within a watershed.

  15. Nano-Structured Magnesium Oxide Coated Iron Ore: Its Application to the Remediation of Wastewater Containing Lead.

    Science.gov (United States)

    Nagarajah, Ranjini; Jang, Min; Pichiah, Saravanan; Cho, Jongman; Snyder, Shane A

    2015-12-01

    Magnetically separable nano-structured magnesium oxide coated iron ore (IO(MgO)) was prepared using environmentally benign chemicals, such as iron ore (IO), magnesium(II) nitrate hexahydrate [Mg(NO3)2 x 6H2O] and urea; via an easy and fast preparation method. The lO(MgO) was characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) and alternating gradient magnetometer (AGM) analyses. The isotherm and kinetic studies indicated that lO(MgO) has a comparably higher Langmuir constant (K(L), 1.69 L mg(-1)) and maximum sorption capacity (33.9 mg g(-1)) for lead (Pb) than other inorganic media. Based on MgO amount, the removal capacity of Pb by IO(MgO) was 2,724 mg Pb (g MgO)(-1), which was higher than that (1,980 mg g(-1)) for flowerlike magnesium oxide nanostructures reported by Cao et al. The kinetics, FE-SEM, elemental mapping and XRD results revealed that the substitution followed by precipitation was identified as the mechanism of Pb removal and plumbophyllite (Pb2Si4O10 x H2O) was the precipitated phase of Pb. A leaching test revealed that IOMgO) had negligible concentrations of leached Fe at pH 4-9. Since the base material, IO, is cheap and easily available, lO(MgO) could be produced in massive amounts and used for remediation of wastewater containing heavy metals, applying simple and fast magnetic separation. PMID:26682385

  16. Treatment of heavy metals by iron oxide coated and natural gravel media in Sustainable urban Drainage Systems.

    Science.gov (United States)

    Norris, M J; Pulford, I D; Haynes, H; Dorea, C C; Phoenix, V R

    2013-01-01

    Sustainable urban Drainage Systems (SuDS) filter drains are simple, low-cost systems utilized as a first defence to treat road runoff by employing biogeochemical processes to reduce pollutants. However, the mechanisms involved in pollution attenuation are poorly understood. This work aims to develop a better understanding of these mechanisms to facilitate improved SuDS design. Since heavy metals are a large fraction of pollution in road runoff, this study aimed to enhance heavy metal removal of filter drain gravel with an iron oxide mineral amendment to increase surface area for heavy metal scavenging. Experiments showed that amendment-coated and uncoated (control) gravel removed similar quantities of heavy metals. Moreover, when normalized to surface area, iron oxide coated gravels (IOCGs) showed poorer metal removal capacities than uncoated gravel. Inspection of the uncoated microgabbro gravel indicated that clay particulates on the surface (a natural product of weathering of this material) augmented heavy metal removal, generating metal sequestration capacities that were competitive compared with IOCGs. Furthermore, when the weathered surface was scrubbed and removed, metal removal capacities were reduced by 20%. When compared with other lithologies, adsorption of heavy metals by microgabbro was 10-70% higher, indicating that both the lithology of the gravel, and the presence of a weathered surface, considerably influence its ability to immobilize heavy metals. These results contradict previous assumptions which suggest that gravel lithology is not a significant factor in SuDS design. Based upon these results, weathered microgabbro is suggested to be an ideal lithology for use in SuDS. PMID:23925197

  17. Nanosize electropositive fibrous adsorbent

    Science.gov (United States)

    Tepper, Frederick; Kaledin, Leonid

    2005-01-04

    Aluminum hydroxide fibers approximately 2 nanometers in diameter and with surface areas ranging from 200 to 650 m.sup.2 /g have been fount to be highly electropositive. When dispersed in water they are able to attach to and retain electronegative particles. When combined into a composite filter with other fibers or particles they can filter bacteria and nano size particulates such as viruses and colloidal particles at high flux through the filter. Such filters can be used for purification and sterilization of water, biological, medical and pharmaceutical fluids, and as a collector/concentrator for detection and assay of mirobes and viruses. The alumina fibers are also capable of filtering sub-micron inorganic and metallic particles to produce ultra pure water. The fibers are suitable as a substrate for growth of cells. Macromolicules such as proteins may be separated from each other based on their electronegative charges.

  18. Influence of C3H8O3 in the electrolyte on characteristics and corrosion resistance of the microarc oxidation coatings formed on AZ91D magnesium alloy surface

    International Nuclear Information System (INIS)

    Ceramic coatings were fabricated on AZ91D Mg-alloy substrate by microarc oxidation in Na2SiO3-NaOH-Na2EDTA electrolytes with and without C3H8O3 addition. The effects of different concentrations of C3H8O3 contained in the electrolyte on coatings thickness were investigated. The surface morphologies, RMS roughness, phase compositions and corrosion resistance property of the ceramic coatings were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and electrochemical corrosion test respectively. It is found that the addition of C3H8O3 into silicate electrolyte leads to increase of the unit-area adsorptive capacity of the negative ions at anode-electrolyte interface and thus improves the compactness and corrosion resistance of the MAO coating. The coating thickness decreases gradually with the increase of concentrations of C3H8O3 in the electrolyte. The oxide coating formed in base electrolyte containing 4 mL/L C3H8O3 exhibits the best surface appearance, the lowest surface RMS roughness (174 nm) and highest corrosion resistance. In addition, both ceramic coatings treated in base electrolyte with and without C3H8O3 are mainly composed of periclase MgO and forsterite Mg2SiO4 phase, but no diffraction peak of Mg phase is found in the patterns.

  19. Rotary adsorbers for continuous bulk separations

    Science.gov (United States)

    Baker, Frederick S. (Oak Ridge, TN)

    2011-11-08

    A rotary adsorber for continuous bulk separations is disclosed. The rotary adsorber includes an adsorption zone in fluid communication with an influent adsorption fluid stream, and a desorption zone in fluid communication with a desorption fluid stream. The fluid streams may be gas streams or liquid streams. The rotary adsorber includes one or more adsorption blocks including adsorbent structure(s). The adsorbent structure adsorbs the target species that is to be separated from the influent fluid stream. The apparatus includes a rotary wheel for moving each adsorption block through the adsorption zone and the desorption zone. A desorption circuit passes an electrical current through the adsorbent structure in the desorption zone to desorb the species from the adsorbent structure. The adsorbent structure may include porous activated carbon fibers aligned with their longitudinal axis essentially parallel to the flow direction of the desorption fluid stream. The adsorbent structure may be an inherently electrically-conductive honeycomb structure.

  20. New adsorbents from oil shales. Preparation, characterization and U, Th isotope adsorption tests

    International Nuclear Information System (INIS)

    New activated adsorbents for radionuclides have been produced from Moroccan oil shales by pyrolysis of the natural material at 550 deg C flowed by a KMnO4 activation. The texture and composition of the native rock and the adsorbents were studied before their use in tests for adsorption of radionuclides from standard solutions prepared from uranylnitrate and thorium nitrate in equilibrium with their daughters. The distribution coefficients between solutions containing U, Th and Ra and the adsorbents were evaluated by means of specific activities, measured by ?-ray spectrometry. The adsorbents were observed to eliminate U, Th, Ra, Ac and Tl from aqueous solutions. (author)

  1. Thermodynamic and kinetic controls on cotransport of Pantoea agglomerans cells and Zn through clean and iron oxide coated sand columns

    OpenAIRE

    Kapetas, Leon; Ngwenya, Bryne T.; MacDonald, Alan; Elphick, Stephen C

    2012-01-01

    Recent observations that subsurface bacteria quickly adsorb metal contaminants raise concerns that they may enhance metal transport, given the high mobility of bacteria themselves. However, metal adsorption to bacteria is also reversible, suggesting that mobility within porous medium will depend on the interplay between adsorption desorption kinetics and thermodynamic driving forces for adsorption. Till now there has been no systematic investigation of these important interactions. This st...

  2. Lotus Dust Mitigation Coating and Molecular Adsorber Coating

    Science.gov (United States)

    O'Connor, Kenneth M.; Abraham, Nithin S.

    2015-01-01

    NASA Goddard Space Flight Center has developed two unique coating formulations that will keep surfaces clean and sanitary and contain contaminants.The Lotus Dust Mitigation Coating, modeled after the self-cleaning, water-repellant lotus leaf, disallows buildup of dust, dirt, water, and more on surfaces. This coating, has been successfully tested on painted, aluminum, glass, silica, and some composite surfaces, could aid in keeping medical assets clean.The Molecular Adsorber Coating is a zeolite-based, sprayable molecular adsorber coating, designed to prevent outgassing in materials in vacuums. The coating works well to adsorb volatiles and contaminates in manufacturing and processing, such as in pharmaceutical production. The addition of a biocide would also aid in controlling bacteria levels.

  3. Study of the Adsorbent-Adsorbate Interactions from Cd(II) and Pb(II) Adsorption on Activated Carbon and Activated Carbon Fiber

    International Nuclear Information System (INIS)

    The adsorption characteristics of Cd(II) and Pb(II) in aqueous solution using granular activated carbon (GAC), activated carbon fiber (ACF), modified ACF (NaACF), and a mixture of GAC and NaACF (GAC/NaACF) have been studied. The surface properties, such as morphology, surface functional groups, and composition of various adsorbents were determined using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The specific surface area, total pore volume, and pore size distribution were investigated using nitrogen adsorption, Brunauer-Emmett-Teller (BET), and Barrett-Joyner-Halenda (BJH) methods. In this study, NaACF showed a high adsorption capacity and rate for heavy metal ions due to the improvement of its ion-exchange capabilities by additional oxygen functional groups. Moreover, the GAC and NaACF mixture was used as an adsorbent to determine the adsorbent-adsorbate interaction in the presence of two competitive adsorbents

  4. Effect of Oxide Coating on Performance of Copper-Zinc Oxide-Based Catalyst for Methanol Synthesis via Hydrogenation of Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Tetsuo Umegaki

    2015-11-01

    Full Text Available The effect of oxide coating on the activity of a copper-zinc oxidebased catalyst for methanol synthesis via the hydrogenation of carbon dioxide was investigated. A commercial catalyst was coated with various oxides by a sol-gel method. The influence of the types of promoters used in the sol-gel reaction was investigated. Temperature-programmed reduction-thermogravimetric analysis revealed that the reduction peak assigned to the copper species in the oxide-coated catalysts prepared using ammonia shifts to lower temperatures than that of the pristine catalyst; in contrast, the reduction peak shifts to higher temperatures for the catalysts prepared using L(+-arginine. These observations indicated that the copper species were weakly bonded with the oxide and were easily reduced by using ammonia. The catalysts prepared using ammonia show higher CO2 conversion than the catalysts prepared using L(+-arginine. Among the catalysts prepared using ammonia, the silica-coated catalyst displayed a high activity at high temperatures, while the zirconia-coated catalyst and titania-coated catalyst had high activity at low temperatures. At high temperature the conversion over the silica-coated catalyst does not significantly change with reaction temperature, while the conversion over the zirconia-coated catalyst and titania-coated catalyst decreases with reaction time. From the results of FTIR, the durability depends on hydrophilicity of the oxides.

  5. Black Sprayable Molecular Adsorber Coating Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This novel molecular adsorber coating would alleviate the size, weight, and complexity issues of traditional molecular adsorber puck.  A flexible tape version...

  6. Protein purification using magnetic adsorbent particles

    DEFF Research Database (Denmark)

    Franzreb, M; Siemann-Herzberg, M.; Hobley, Timothy John; Thomas, O.R.T.

    2006-01-01

    The application of functionalised magnetic adsorbent particles in combination with magnetic separation techniques has received considerable attention in recent years. The magnetically responsive nature of such adsorbent particles permits their selective manipulation and separation in the presence...... current state of development of protein separation using magnetic adsorbent particles and identify the obstacles that must be overcome if protein purification with magnetic adsorbent particles is to find its way into industrial practice....

  7. Development of new molybdenum adsorbent

    International Nuclear Information System (INIS)

    Neutron Irradiation and Testing Reactor Center has developed for production of medical isotope of 99Mo, the parent nuclide of 99mTc by the (n, ?) method use JMTR. The (n, ?) method has an advantage of easy manufacturing process and low radioactive wastes generation. However, the low radioactivity concentration of 99mTc is remaining as an issue. Therefore, PZC was developed as adsorbent of molybdenum. However, PZC has some faults. So, new adsorbent based on titanium (PTC), was developed for getting rid of faults. This time, 99Mo adsorption and 99mTc elution tests with PZC and PTC were carried out. As a result, the 99Mo adsorption performance of the PTC was lower than PZC, on the other hand, 99mTc elution performance of the PTC was higher than PZC. (author)

  8. Uranium Recovery from Seawater: Development of Fiber Adsorbents Prepared via Atom-Transfer Radical Polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Tomonori [ORNL; Brown, Suree [ORNL; Chatterjee, Sabornie [ORNL; Kim, Jungseung [ORNL; Tsouris, Costas [ORNL; Mayes, Richard T [ORNL; Kuo, Li-Jung [Pacific Northwest National Laboratory (PNNL); Gill, Gary [Pacific Northwest National Laboratory (PNNL); Oyola, Yatsandra [ORNL; Janke, Christopher James [ORNL; Dai, Sheng [ORNL

    2014-01-01

    A novel adsorbent preparation method using atom-transfer radical polymerization (ATRP) combined with radiation-induced graft polymerization (RIGP) was developed to synthesize an adsorbent for uranium recovery from seawater. The ATRP method allowed a much higher degree of grafting on the adsorbent fibers (595 2818%) than that allowed by RIGP alone. The adsorbents were prepared with varied composition of amidoxime groups and hydrophilic acrylate groups. The successful preparation revealed that both ligand density and hydrophilicity were critical for optimal performance of the adsorbents. Adsorbents synthesized in this study showed a relatively high performance (141 179 mg/g at 49 62 % adsorption) in laboratory screening tests using a uranium concentration of ~6 ppm. This performance is much higher than that of known commercial adsorbents. However, actual seawater experiment showed impeded performance compared to the recently reported high-surface-area-fiber adsorbents, due to slow adsorption kinetics. The impeded performance motivated an investigation of the effect of hydrophilic block addition on the graft chain terminus. The addition of hydrophilic block on the graft chain terminus nearly doubled the uranium adsorption capacity in seawater, from 1.56 mg/g to 3.02 mg/g. The investigation revealed the importance of polymer chain conformation, in addition to ligand and hydrophilic group ratio, for advanced adsorbent synthesis for uranium recovery from seawater.

  9. pyIAST: Ideal adsorbed solution theory (IAST) Python package

    Science.gov (United States)

    Simon, Cory M.; Smit, Berend; Haranczyk, Maciej

    2016-03-01

    Ideal adsorbed solution theory (IAST) is a widely-used thermodynamic framework to readily predict mixed-gas adsorption isotherms from a set of pure-component adsorption isotherms. We present an open-source, user-friendly Python package, pyIAST, to perform IAST calculations for an arbitrary number of components. pyIAST supports several common analytical models to characterize the pure-component isotherms from experimental or simulated data. Alternatively, pyIAST can use numerical quadrature to compute the spreading pressure for IAST calculations by interpolating the pure-component isotherm data. pyIAST can also perform reverse IAST calculations, where one seeks the required gas phase composition to yield a desired adsorbed phase composition.

  10. Composition

    DEFF Research Database (Denmark)

    Bergstrm-Nielsen, Carl

    2014-01-01

    Cue Rondo is an open composition to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound/video files will in some cases only provide a few minutes' sample, or the visuals will not appear at all...

  11. Composition

    DEFF Research Database (Denmark)

    Bergstrm-Nielsen, Carl

    2011-01-01

    Strategies are open compositions to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them in full...

  12. Composition

    DEFF Research Database (Denmark)

    Bergstrm-Nielsen, Carl

    2010-01-01

    New Year is an open composition to be realised by improvising musicians. It is included in "From the Danish Seasons" (see under this title). See more about my composition practise in the entry "Composition - General Introduction". This work is licensed under a Creative Commons "by-nc" License. You...

  13. Phonons within two adsorbed slabs

    Science.gov (United States)

    Sylla, B.; More, M.; Dobrzynski, L.

    1989-04-01

    The existence of localized phonons within two different slabs adsorbed on a substrate is reported here. A closed form expression giving the frequencies of these phonons as function of the propagation vector parallel to the interfaces was obtained within a simple model. This expression is also a function of the respective force constants and masses and depends on the number of atomic layers present in each slab. A few specific examples illustrate this result. A comparison is made also with the sandwich phonons, localized phonons within a slab situated between two semi-infinite crystals.

  14. Synthesis and Characterization of Adsorbent for Pb(II)-capture by using Glow Discharge Electrolysis Plasma

    International Nuclear Information System (INIS)

    A novel polyacrylamide grafted hydrous ferric oxide adsorbent composite has been synthesized by using glow discharge electrolysis plasma. To optimize the synthesis conditions, the following parameters were examined in detail: applied power, discharge time, post polymerization temperature, post polymerization time, amount of crosslinking agent and hydrous ferric oxide gel added and so on. The adsorbent was characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The removal percentage of the adsorbent in Pb(II) solution was examined and the data obtained showed that the adsorbent composite has a high capacity for lead ion. For the use in wastewater treatment, the thermodynamic and kinetic of Pb(II)-capture were also studied. Results indicated that the adsorption reaction was a spontaneous and an endothermic process, and it seems to be obeyed a pseudo-secondorder rate model. Moreover, the adsorption isotherm of Pb(II)-capture is following the Langmuir and Freundlich isotherm models

  15. A novel fiber-based adsorbent technology

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, T.A. [Chemica Technologies, Inc., Bend, OR (United States)

    1997-10-01

    In this Phase I Small Business Innovation Research program, Chemica Technologies, Inc. is developing an economical, robust, fiber-based adsorbent technology for removal of heavy metals from contaminated water. The key innovation is the development of regenerable adsorbent fibers and adsorbent fiber cloths that have high capacity and selectivity for heavy metals and are chemically robust. The process has the potential for widespread use at DOE facilities, mining operations, and the chemical process industry.

  16. Comparison of Lead Removal by Various Types of Swine Bone Adsorbents

    OpenAIRE

    Sudaratn Lurtwitayapont

    2010-01-01

    The removal capacities of lead by bone adsorbents, prepared in various appropriate types, have been studied in a single component system using agitated batch sorption. The adsorbent characteristics before and after sorption were examined by electron microscopy, surface area analysis (BET), crystalline structure by x-ray diffractometer (XRD), chemical compositions by x-ray fluorescence (XRF) and by Fourier transform infrared (FT-IR). The results showed that the main component of swine bone ads...

  17. Electrochemical corrosion behaviour of plasma electrolytic oxidation coatings on AM50 magnesium alloy formed in silicate and phosphate based electrolytes

    International Nuclear Information System (INIS)

    PEO coatings were produced on AM50 magnesium alloy by plasma electrolytic oxidation process in silicate and phosphate based electrolytes using a pulsed DC power source. The microstructure and composition of the PEO coatings were analyzed by scanning electron microscopy (SEM) and X-ray Diffraction (XRD). The corrosion resistance of the PEO coatings was evaluated using open circuit potential (OCP) measurements, potentiodynamic polarisation tests and electrochemical impedance spectroscopy (EIS) in 0.1 M NaCl solution. It was found that the electrolyte composition has a significant effect on the coating evolution and on the resulting coating characteristics, such as microstructure, composition, coating thickness, roughness and thus on the corrosion behaviour. The corrosion resistance of the PEO coating formed in silicate electrolyte was found to be superior to that formed in phosphate electrolyte in both the short-term and long-term electrochemical corrosion tests.

  18. Electrochemical corrosion behaviour of plasma electrolytic oxidation coatings on AM50 magnesium alloy formed in silicate and phosphate based electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Liang, J. [Institute of Materials Research, GKSS-Forschungszentrum Geesthacht GmbH, D 21502 Geesthacht (Germany); Srinivasan, P. Bala [Institute of Materials Research, GKSS-Forschungszentrum Geesthacht GmbH, D 21502 Geesthacht (Germany)], E-mail: bala.srinivasan@gkss.de; Blawert, C.; Stoermer, M.; Dietzel, W. [Institute of Materials Research, GKSS-Forschungszentrum Geesthacht GmbH, D 21502 Geesthacht (Germany)

    2009-05-30

    PEO coatings were produced on AM50 magnesium alloy by plasma electrolytic oxidation process in silicate and phosphate based electrolytes using a pulsed DC power source. The microstructure and composition of the PEO coatings were analyzed by scanning electron microscopy (SEM) and X-ray Diffraction (XRD). The corrosion resistance of the PEO coatings was evaluated using open circuit potential (OCP) measurements, potentiodynamic polarisation tests and electrochemical impedance spectroscopy (EIS) in 0.1 M NaCl solution. It was found that the electrolyte composition has a significant effect on the coating evolution and on the resulting coating characteristics, such as microstructure, composition, coating thickness, roughness and thus on the corrosion behaviour. The corrosion resistance of the PEO coating formed in silicate electrolyte was found to be superior to that formed in phosphate electrolyte in both the short-term and long-term electrochemical corrosion tests.

  19. Filter-adsorber aging assessment

    International Nuclear Information System (INIS)

    An aging assessment of high-efficiency particulate (HEPA) air filters and activated carbon gas adsorption units was performed by the Pacific Northwest Laboratory as part of the U.S. Nuclear Regulatory Commission's (USNRC) Nuclear Plant Aging Research (NPAR) Program. This evaluation of the general process in which characteristics of these two components gradually change with time or use included the compilation of information concerning failure experience, stressors, aging mechanisms and effects, and inspection, surveillance, and monitoring methods (ISMM). Stressors, the agents or stimuli that can produce aging degradation, include heat, radiation, volatile contaminants, and even normal concentrations of aerosol particles and gasses. In an experimental evaluation of degradation in terms of the tensile breaking strength of aged filter media specimens, over forty percent of the samples did not meet specifications for new material. Chemical and physical reactions can gradually embrittle sealants and gaskets as well as filter media. Mechanisms that can lead to impaired adsorber performance are associated with the loss of potentially available active sites as a result of the exposure of the carbon to airborne moisture or volatile organic compounds. Inspection, surveillance, and monitoring methods have been established to observe filter pressure drop buildup, check HEPA filters and adsorbers for bypass, and determine the retention effectiveness of aged carbon. These evaluations of installed filters do not reveal degradation in terms of reduced media strength but that under normal conditions aged media can continue to effectively retain particles. However, this degradation may be important when considering the likelihood of moisture, steam, and higher particle loadings during severe accidents and the fact it is probable that the filters have been in use for an extended period

  20. Microporous carbonaceous adsorbents for CO2 separation via selective adsorption

    KAUST Repository

    Zhao, Yunfeng

    2015-01-01

    Selective adsorption of CO2 has important implications for many energy and environment-related processes, which require the separation of CO2 from other gases (e.g. N2 and CH4) with high uptakes and selectivity. The development of high-performance adsorbents is one of the most promising solutions to the success of these processes. The present review is focused on the state-of-the-art of carbon-based (carbonaceous) adsorbents, covering microporous inorganic carbons and microporous organic polymers, with emphasis on the correlation between their textural and compositional properties and their CO2 adsorption/separation performance. Special attention is given to the most recently developed materials that were not covered in previous reviews. We summarize various effective strategies (N-doping, surface functionalization, extra-framework ions, molecular design, and pore size engineering) for enhancing the CO2 adsorption capacity and selectivity of carbonaceous adsorbents. Our discussion focuses on CO2/N2 separation and CO2/CH4 separation, while including an introduction to the methods and criteria used for evaluating the performance of the adsorbents. Critical issues and challenges regarding the development of high-performance adsorbents as well as some overlooked facts and misconceptions are also discussed, with the aim of providing important insights into the design of novel carbonaceous porous materials for various selective adsorption based applications. This journal is © The Royal Society of Chemistry.

  1. Complete braided adsorbent for marine testing to demonstrate 3g-U/kg-adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Chris [ORNL; Yatsandra, Oyola [ORNL; Mayes, Richard [ORNL; none,; Gill, Gary [PNNL; Li-Jung, Kuo [PNNL; Wood, Jordana [PNNL; Sadananda, Das [ORNL

    2014-04-30

    ORNL has manufactured four braided adsorbents that successfully demonstrated uranium adsorption capacities ranging from 3.0-3.6 g-U/kg-adsorbent in marine testing at PNNL. Four new braided and leno woven fabric adsorbents have also been prepared by ORNL and are currently undergoing marine testing at PNNL.

  2. Nanoalloy electrocatalysis: simulating cyclic voltammetry from configurational thermodynamics with adsorbates.

    Science.gov (United States)

    Wang, Lin-Lin; Tan, Teck L; Johnson, Duane D

    2015-11-14

    We simulate the adsorption isotherms for alloyed nanoparticles (nanoalloys) with adsorbates to determine cyclic voltammetry (CV) during electrocatalysis. The effect of alloying on nanoparticle adsorption isotherms is provided by a hybrid-ensemble Monte Carlo simulation that uses the cluster expansion method extended to non-exchangeable coupled lattices for nanoalloys with adsorbates. Exemplified here for the hydrogen evolution reaction, a 2-dimensional CV is mapped for Pd-Pt nanoalloys as a function of both electrochemical potential and the global Pt composition, and shows a highly non-linear alloying effect on CV. Detailed features in CV arise from the interplay among the H-adsorption in multiple sites that is closely correlated with alloy configurations, which are in turn affected by the H-coverage. The origins of specific features in CV curves are assigned. The method provides a more complete means to design nanoalloys for electrocatalysis. PMID:25766277

  3. First-principles configurational thermodynamics of alloyed nanoparticles with adsorbates

    Science.gov (United States)

    Wang, Lin-Lin; Tan, Teck L.; Johnson, Duane D.

    2014-03-01

    Transition-metal, alloyed nanoparticles (NPs) are key components in current and emerging energy technologies because they are found to improve catalytic activity and selectivity for many energy-conversion processes. However, thermodynamic investigations of the compositional profile of alloyed nanoparticles, which determines their catalytic properties, have been limited mostly to NP core-shell preference without the presence of adsorbates. Here, by extending cluster expansion methods to treat both alloyed nanoparticles and adsorbates, we study the configurational thermodynamics of bimetallic NPs under chemically reactive conditions, using databases from density functional theory calculations. With a few examples, we show that such simulations can provide information needed for rational design of NP catalysts. DOE/BES under DE-FG02-03ER15476 (Catalysis) and DE-AC02-07CH11358 at the Ames Laboratory.

  4. Extra adsorption and adsorbate superlattice formation in metal-organic frameworks.

    Science.gov (United States)

    Sung Cho, Hae; Deng, Hexiang; Miyasaka, Keiichi; Dong, Zhiyue; Cho, Minhyung; Neimark, Alexander V; Ku Kang, Jeung; Yaghi, Omar M; Terasaki, Osamu

    2015-11-26

    Metal-organic frameworks (MOFs) have a high internal surface area and widely tunable composition, which make them useful for applications involving adsorption, such as hydrogen, methane or carbon dioxide storage. The selectivity and uptake capacity of the adsorption process are determined by interactions involving the adsorbates and their porous host materials. But, although the interactions of adsorbate molecules with the internal MOF surface and also amongst themselves within individual pores have been extensively studied, adsorbate-adsorbate interactions across pore walls have not been explored. Here we show that local strain in the MOF, induced by pore filling, can give rise to collective and long-range adsorbate-adsorbate interactions and the formation of adsorbate superlattices that extend beyond an original MOF unit cell. Specifically, we use in situ small-angle X-ray scattering to track and map the distribution and ordering of adsorbate molecules in five members of the mesoporous MOF-74 series along entire adsorption-desorption isotherms. We find in all cases that the capillary condensation that fills the pores gives rise to the formation of 'extra adsorption domains'-that is, domains spanning several neighbouring pores, which have a higher adsorbate density than non-domain pores. In the case of one MOF, IRMOF-74-V-hex, these domains form a superlattice structure that is difficult to reconcile with the prevailing view of pore-filling as a stochastic process. The visualization of the adsorption process provided by our data, with clear evidence for initial adsorbate aggregation in distinct domains and ordering before an even distribution is finally reached, should help to improve our understanding of this process and may thereby improve our ability to exploit it practically. PMID:26550825

  5. Radiolysis of substances adsorbed on oxides surface

    International Nuclear Information System (INIS)

    Experimental results of investigation into radiolysis of water molecules and nitrate anions on the surface of oxides powders are given. Effect of oxide nature, degree of its dispersity and presence of impurities on efficiency of adsorbate radiolysis is considered. Regularities of adsorbed substance radiolysis and possible mechanisms of processes are discussed

  6. Influence of Electrolyte Chemistry on Morphology and Corrosion Resistance of Micro Arc Oxidation Coatings Deposited on Magnesium

    Science.gov (United States)

    Rama Krishna, L.; Poshal, G.; Sundararajan, G.

    2010-12-01

    In the present work, micro arc oxidation (MAO) coatings were synthesized on magnesium substrate employing 11 different electrolyte compositions containing systematically varied concentrations of sodium silicate (Na2SiO3), potassium hydroxide (KOH), and sodium aluminate (NaAlO2). The resultant coatings were subjected to coating thickness measurement, energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), image analysis, and three-dimensional (3-D) optical profilometry. The corrosion performance of the coatings was evaluated by conducting potentiodynamic polarization tests in 3.5 wt pct NaCl solution. The inter-relationships between the electrolyte chemistry and the resulting chemistry and porosity of the coating, on one hand, and with the aqueous corrosion behavior of the coating, on the other, were studied. The changes in pore morphology and pore distribution in the coatings were found to be significantly influenced by the electrolyte composition. The coatings can have either through-thickness pores or pores in the near surface region alone depending on the electrolyte composition. The deleterious role of KOH especially when its concentration is >20 pct of total electrolyte constituents promoting the formation of large and deep pores in the coating was demonstrated. A reasonable correlation indicating the increasing pore volume implying the increased corrosion was noticed.

  7. Database of Novel and Emerging Adsorbent Materials

    Science.gov (United States)

    SRD 205 NIST/ARPA-E Database of Novel and Emerging Adsorbent Materials (Web, free access) The NIST/ARPA-E Database of Novel and Emerging Adsorbent Materials is a free, web-based catalog of adsorbent materials and measured adsorption properties of numerous materials obtained from article entries from the scientific literature. Search fields for the database include adsorbent material, adsorbate gas, experimental conditions (pressure, temperature), and bibliographic information (author, title, journal), and results from queries are provided as a list of articles matching the search parameters. The database also contains adsorption isotherms digitized from the cataloged articles, which can be compared visually online in the web application or exported for offline analysis.

  8. Separation of the attractive and repulsive contributions to the adsorbate-adsorbate interactions of polar adsorbates on Si(100)

    Science.gov (United States)

    Lin, Ying-Hsiu; Jeng, Horng-Tay; Lin, Deng-Sung

    2015-11-01

    Dissociative adsorption of H2O, NH3, CH3OH and CH3NH2 polar molecules on the Si(100) surface results in a 1:1 mixture of two adsorbates (H and multi-atomic fragment A = OH, NH2, CH3O, CH3NH, respectively) on the surface. By using density functional theory (DFT) calculations, the adsorption geometry, the total energies and the charge densities for various possible ordered structures of the mixed adsorbate layer have been found. Analyzing the systematic trends in the total energies unveils concurrently the nearest-neighbor interactions ENN and the next nearest-neighbor interactions ENNN between two polar adsorbates A. In going from small to large polar adsorbates, ENN's exhibit an attractive-to-repulsive crossover behavior, indicating that they include competing attractive and repulsive contributions. Exploration of the charge density distributions allows the estimation of the degree of charge overlapping between immediately neighboring A's, the resulting contribution of the steric repulsions, and that of the attractive interactions to the corresponding ENN's. The attractive contributions to nearest neighboring adsorbate-adsorbate interactions between the polar adsorbates under study are shown to result from hydrogen bonds or dipole-dipole interactions.

  9. Inorganic chemically active adsorbents (ICAAs)

    Energy Technology Data Exchange (ETDEWEB)

    Ally, M.R. [Oak Ridge National Lab., TN (United States); Tavlarides, L.

    1997-10-01

    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  10. Fabrication and Characterization of Antimony―doped Tin Oxide Coating Diatomite Conductive Material with Microporous Structure

    Directory of Open Access Journals (Sweden)

    DU Yu-Cheng, YAN Jing, MENG Qi, LI Yang, DAI Hong-Xing

    2011-10-01

    Full Text Available Porous and conductive diatomite composite materials were prepared via the calcination of the Sb―SnO2―coated diatomite precursor derived from the co―precipitation route with diatomite as the substrate. Conductivity of the samples was influenced by the Sb―SnO2 coating ratio. Calcination temperature had an impact on the crystal lattice parameters and grain sizes, hence altering the conductivity and resistivity of the composite materials. The samples were characterized by means of X―ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy―dispersive X―ray spectrometry (EDS), N2 adsorption―desorption measurement (BET), and Fourier transform infrared spectrometry (FT―IR). The conductive performance of the samples was determined using a Four―Point Probe Meter apparatus. It is shown that the mesoporous (pore diameter = 6 nm) sample with n(Sn)/n(Sb)=8/1 and a Sb―SnO2 coating ratio of 25.8wt% derived from calcination at 700?xhibited the lowest resistivity of 22 ?cm.

  11. Site blocking effects on adsorbed polyacrylamide conformation

    Science.gov (United States)

    Brotherson, Brett A.

    The use of polymers as flocculating additives is a common practice in many manufacturing environments. However, exactly how these polymers interact with surfaces is relatively unknown. One specific topic which is thought to be very important to flocculation is an adsorbed polymer's conformation. Substantial amounts of previous work, mainly using simulations, have been performed to elucidate the theory surrounding adsorbed polymer conformations. Yet, there is little experimental work which directly verifies current theory. In order to optimize the use of polymer flocculants in industrial applications, a better understanding of an adsorbed polymer's conformation on a surface beyond theoretical simulations is necessary. This work looks specifically at site blocking, which has a broad impact on flocculation, adsorption, and surface modification, and investigated its effects on the resulting adsorbed polymer conformation. Experimental methods which would allow direct determination of adsorbed polymer conformational details and be comparable with previous experimental results were first determined or developed. Characterization of an adsorbed polymer's conformation was then evaluated using dynamic light scattering, a currently accepted experimental technique to examine this. This commonly used technique was performed to allow the comparison of this works results with past literature. Next, a new technique using atomic force microscopy was developed, building on previous experimental techniques, to allow the direct determination of an adsorbed polymer's loop lengths. This method also was able to quantify changes in the length of adsorbed polymer tails. Finally, mesoscopic simulation was attempted using dissipative particle dynamics. In order to determine more information about an adsorbed polymer's conformation, three different environmental factors were analyzed: an adsorbed polymer on a surface in water, an adsorbed polymer on a surface in aqueous solutions of varying ionic strength, and an adsorbed polymer on a surface functionalized with site blocking additives. This work investigated these scenarios using a low charge density high molecular weight cationic polyacrylamide. Three different substrates, for polymer adsorption were analyzed: mica, anionic latex, and glass. It was determined that, similar to previous studies, the adsorbed polymer layer thickness in water is relatively small even for high molecular weight polymers, on the order of tens of nanometers. The loop length distribution of a single polymer, experimentally verified for the first time, revealed a broad span of loop lengths as high as 1.5 microns. However, the bulk of the distribution was found between 40 and 260 nanometers. For the first time, previous theoretical predictions regarding the salt effect on adsorbed polymer conformation were confirmed experimentally. It was determined that the adsorbed polymer layer thickness expanded with increasing ionic strength of the solvent. Using atomic force microscopy, it was determined that the adsorbed polymer loop lengths and tail lengths increased with increasing ionic strength, supporting the results found using dynamic light scattering. The effect of the addition of site blocking additives on a single polymer's conformation was investigated for the first time. It was determined that the addition of site blocking additives caused strikingly similar results as the addition of salt to the medium. The changes in adsorbed polymer's loop lengths was found to be inconsistent and minimal. However, the changes in an adsorbed polymer's free tail length was found to increase with increasing site blocking additive levels. These results were obtained using either PDADMAC or cationic nanosilica as site blocking additives.

  12. Effects of cathodic voltages on structure and wear resistance of plasma electrolytic oxidation coatings formed on aluminium alloy

    Science.gov (United States)

    Li, Qingbiao; Liang, Jun; Liu, Baixing; Peng, Zhenjun; Wang, Qing

    2014-04-01

    Plasma electrolytic oxidation (PEO) coatings were prepared on aluminium alloy using pulsed bipolar power supply at constant anodic voltage and different cathodic voltages. The samples were prepared to attain the same coating thickness by adjusting the processing time. The scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and tribometer were employed to investigate the microstructure, element content, phase composition and wear resistance of the coatings respectively. It was found that the coating growth rate enhanced obviously and the coatings exhibited a more compact structure with thicker inner layer and lower surface roughness when the cathodic voltage increased. The coatings were mainly composed of crystalline ?-Al2O3 and amorphous silicate oxides and their relative content changed with the cathodic voltage. The wear resistance of the coatings improved significantly with the increase of cathodic voltage.

  13. EMISSION REDUCTION FROM A DIESEL ENGINE FUELED BY CERIUM OXIDE NANO-ADDITIVES USING SCR WITH DIFFERENT METAL OXIDES COATED CATALYTIC CONVERTER

    Directory of Open Access Journals (Sweden)

    B. JOTHI THIRUMAL

    2015-11-01

    Full Text Available This paper reports the results of experimental investigations on the influence of the addition of cerium oxide in nanoparticle form on the major physiochemical properties and the performance of diesel. The fuel is modified by dispersing the catalytic nanoparticle by ultrasonic agitation. The physiochemical properties of sole diesel fuel and modified fuel are tested with ASTM standard procedures. The effects of the additive nanoparticles on the individual fuel properties, the engine performance, and emissions are studied, and the dosing level of the additive is optimized. Cerium oxide acts as an oxygen-donating catalyst and provides oxygen for the oxidation of CO during combustion. The active energy of cerium oxide acts to burn off carbon deposits within the engine cylinder at the wall temperature and prevents the deposition of non-polar compounds on the cylinder wall which results in reduction in HC emission by 56.5%. Furthermore, a low-cost metal oxide coated SCR (selective catalyst reduction, using urea as a reducing agent, along with different types of CC (catalytic converter, has been implemented in the exhaust pipe to reduce NOx. It was observed that a reduction in NOx emission is 5060%. The tests revealed that cerium oxide nanoparticles can be used as an additive in diesel to improve complete combustion of the fuel and reduce the exhaust emissions significantly.

  14. Composite

    Science.gov (United States)

    Kim, Su-Hyeon; Cho, Young-Hee; Lee, Jung-Moo

    2014-06-01

    Particle distribution and hot workability of an in situ Al-TiCp composite were investigated. The composite was fabricated by an in situ casting method using the self-propagating high-temperature synthesis of an Al-Ti-C system. Hot-compression tests were carried out, and power dissipation maps were constructed using a dynamic material model. Small globular TiC particles were not themselves fractured, but the clustering and grain boundary segregation of the particles contributed to the cracking of the matrix by causing the debonding of matrix/particle interfaces and providing a crack propagation path. The efficiency of power dissipation increased with increasing temperature and strain rate, and the maximum efficiency was obtained at a temperature of 723 K (450 C) and a strain rate of 1/s. The microstructural mechanism occurring in the maximum efficiency domain was dynamic recrystallization. The role of particles in the plastic flow and the microstructure evolution were discussed.

  15. Composites

    Science.gov (United States)

    Taylor, John G.

    The Composites market is arguably the most challenging and profitable market for phenolic resins aside from electronics. The variety of products and processes encountered creates the challenges, and the demand for high performance in critical operations brings value. Phenolic composite materials are rendered into a wide range of components to supply a diverse and fragmented commercial base that includes customers in aerospace (Space Shuttle), aircraft (interiors and brakes), mass transit (interiors), defense (blast protection), marine, mine ducting, off-shore (ducts and grating) and infrastructure (architectural) to name a few. For example, phenolic resin is a critical adhesive in the manufacture of honeycomb sandwich panels. Various solvent and water based resins are described along with resin characteristics and the role of metal ions for enhanced thermal stability of the resin used to coat the honeycomb. Featured new developments include pultrusion of phenolic grating, success in RTM/VARTM fabricated parts, new ballistic developments for military vehicles and high char yield carbon-carbon composites along with many others. Additionally, global regional market resin volumes and sales are presented and compared with other thermosetting resin systems.

  16. Spherical Adsorbers and Catalysts from Aluminium Oxides

    International Science & Technology Center (ISTC)

    Development of Multiaimed Low-Waste Technology of Production of Spherical Aluminium Oxide and Catalysts and Adsorbents on its Base which Allows to Solve Urgent Ecological Problems in Various Branches of Industry

  17. Adsorbate interactions and poisoning on Cr(110)

    International Nuclear Information System (INIS)

    Spectroscopic studies of carbon monoxide and oxygen chemisorption on Cr(110) below 150K have revealed direct quantitative evidence of co-adsorbate interactions which affect molecular dissociation pathways

  18. Method of recovering uranium from adsorbents

    International Nuclear Information System (INIS)

    Purpose: To efficiently recover uranium from adsorbents reacted with gaseous uranium hexafluoride. Method: Gases containing gaseous ammonia and steams are passed through the NaF filled layers reacted with UF6 gas, then the surface of the NaF adsorbents is washed with water in order to recover the uranium compounds at the surface of the adsorbents. The cleaning liquids containing the uranium compounds are evaporated, deposits of the uranium compounds are thermally decomposed and then hydrogen reduction is performed to obtain UO2. On the other hand, the NaF adsorbents after the cleaning are dried for re-use. The addition amount of the gas mixture composed of steams and ammonia is adjusted such that the temperature of the adsorption layers does not exceeds 500 deg C (as not causing sintering). (Horiuchi, T.)

  19. Scattering studies of pluronics adsorbed on laponite

    International Nuclear Information System (INIS)

    Full text: The synthetic clay laponite is a versatile product in the colloid industry. It can form gel structures at low concentrations, which give rise to technologically interesting rheological properties, hence its use as a thickener in paint, emulsifying agents, etc. However these properties may be modified by the addition of adsorbing polymers. In this study we examined the effects of adsorbed Pluronic triblock copolymers [(poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)] layers on the structure and interactions of a laponite dispersion. Contrast variation small-angle neutron scattering (SANS) measurements were used to characterise the layer size and the amount of adsorbed polymer. These experiments show that polymer is present not only on the face of the clay particle, but extends or 'wraps' over the edge as well. Moreover, the trends in layer size and adsorbed amount are consistent with Marques and Joannys scaling theory for block copolymer adsorption

  20. Effects of cathodic voltages on structure and wear resistance of plasma electrolytic oxidation coatings formed on aluminium alloy

    International Nuclear Information System (INIS)

    Highlights: The PEO coating growth rate increased with the cathodic voltage increasing. Higher cathodic voltage resulted in more compact coating structure. The compact structure led to low surface roughness and high wear resistance. - Abstract: Plasma electrolytic oxidation (PEO) coatings were prepared on aluminium alloy using pulsed bipolar power supply at constant anodic voltage and different cathodic voltages. The samples were prepared to attain the same coating thickness by adjusting the processing time. The scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and tribometer were employed to investigate the microstructure, element content, phase composition and wear resistance of the coatings respectively. It was found that the coating growth rate enhanced obviously and the coatings exhibited a more compact structure with thicker inner layer and lower surface roughness when the cathodic voltage increased. The coatings were mainly composed of crystalline ?-Al2O3 and amorphous silicate oxides and their relative content changed with the cathodic voltage. The wear resistance of the coatings improved significantly with the increase of cathodic voltage

  1. Effects of cathodic voltages on structure and wear resistance of plasma electrolytic oxidation coatings formed on aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qingbiao [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); School of Science, Lanzhou University of Technology, Lanzhou 730050 (China); Liang, Jun, E-mail: jliang@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Liu, Baixing; Peng, Zhenjun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Qing [School of Science, Lanzhou University of Technology, Lanzhou 730050 (China)

    2014-04-01

    Highlights: The PEO coating growth rate increased with the cathodic voltage increasing. Higher cathodic voltage resulted in more compact coating structure. The compact structure led to low surface roughness and high wear resistance. - Abstract: Plasma electrolytic oxidation (PEO) coatings were prepared on aluminium alloy using pulsed bipolar power supply at constant anodic voltage and different cathodic voltages. The samples were prepared to attain the same coating thickness by adjusting the processing time. The scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and tribometer were employed to investigate the microstructure, element content, phase composition and wear resistance of the coatings respectively. It was found that the coating growth rate enhanced obviously and the coatings exhibited a more compact structure with thicker inner layer and lower surface roughness when the cathodic voltage increased. The coatings were mainly composed of crystalline ?-Al{sub 2}O{sub 3} and amorphous silicate oxides and their relative content changed with the cathodic voltage. The wear resistance of the coatings improved significantly with the increase of cathodic voltage.

  2. Superparamagnetic iron oxide coated on the surface of cellulose nanospheres for the rapid removal of textile dye under mild condition

    Science.gov (United States)

    Qin, Yunfeng; Qin, Zongyi; Liu, Yannan; Cheng, Miao; Qian, Pengfei; Wang, Qian; Zhu, Meifang

    2015-12-01

    Magnetic composite nanoparticles (MNPs) were prepared by anchoring iron oxide (Fe3O4) on the surface of carboxyl cellulose nanospheres through a facile chemical co-precipitation method. The as-prepared MNPs were characterized by atomic force microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, wide-angle X-ray diffraction measurement, thermal gravity analysis and vibrating sample magnetometry. These MNPs were of a generally spherical shape with a narrow size distribution, and exhibited superparamagnetic behaviors with high saturation magnetization. High efficient removal of Navy blue in aqueous solution was demonstrated at room temperature in a Fenton-like system containing the MNPs and H2O2, which benefited from small particle size, large surface area, high chemical activity, and good dispersibility of the MNPs. The removal efficiency of Navy blue induced by the MNPs prepared at a weight ratio of cellulose to iron of 1:2 were 90.6% at the first minute of the degradation reaction, and 98.0% for 5 min. Furthermore, these MNPs could be efficiently recycled and reused by using an external magnetic field. The approach presented in this paper promotes the use of renewable natural resources as templates for the preparation and stabilization of various inorganic nanomaterials for the purpose of catalysis, magnetic resonance imaging, biomedical and other potential applications.

  3. The Dynamics and Structures of Adsorbed Surfaces

    DEFF Research Database (Denmark)

    Nielsen, M; Ellenson, W. D.; McTague, J. P.

    1978-01-01

    Reviews neutron scattering work performed on films of simple gas atoms and molecules adsorbed primarily on graphite surfaces. Exfoliated graphite substrates such as Grafoil were first used in this kind of measurements about five years ago and new results have been reported at an increasing pace. Elastic neutron diffraction measurements, determining the two-dimensional structural ordering of the adsorbed films, have been performed on layers of N2, Ar, H2, D2, O2, Kr, and He. Measurements on layer...

  4. Protein purification using magnetic adsorbent particles

    DEFF Research Database (Denmark)

    Franzreb, M; Siemann-Herzberg, M.; Hobley, Timothy John; Thomas, O.R.T.

    2006-01-01

    The application of functionalised magnetic adsorbent particles in combination with magnetic separation techniques has received considerable attention in recent years. The magnetically responsive nature of such adsorbent particles permits their selective manipulation and separation in the presence of other suspended solids. Thus, it becomes possible to magnetically separate selected target species directly out of crude biological process liquors (e.g. fermentation broths, cell disruptates, plasma...

  5. Mesoporous Silica: A Suitable Adsorbent for Amines

    Directory of Open Access Journals (Sweden)

    Abdollahzadeh-Ghom Sara

    2009-01-01

    Full Text Available Abstract Mesoporous silica with KIT-6 structure was investigated as a preconcentrating material in chromatographic systems for ammonia and trimethylamine. Its adsorption capacity was compared to that of existing commercial materials, showing its increased adsorption power. In addition, KIT-6 mesoporous silica efficiently adsorbs both gases, while none of the employed commercial adsorbents did. This means that KIT-6 Mesoporous silica may be a good choice for integrated chromatography/gas sensing micro-devices.

  6. Dissolved Air Flotation of arsenic adsorbent particles

    Directory of Open Access Journals (Sweden)

    M. Santander

    2015-04-01

    Full Text Available The removal of arsenic from synthetic effluent was studied using the adsorbent particle flotation technique (APF and dissolved air flotation (DAF. A sample of an iron mineral was used as adsorbent particles of arsenic, ferric chloride as coagulant, cationic polyacrylamide (NALCO 9808 as flocculants, and sodium oleate as collector. Adsorption studies to determine the pH influence, contact time, and adsorbent particles concentration on the adsorption of arsenic were carried out along with flotation studies to determine the removal efficiency of adsorbents particles. The results achieved indicate that the adsorption kinetic of arsenic is very rapid and that in range of pH’s from 2 to 7 the adsorption percentages remain constant. The equilibrium conditions were achieved in 60 minutes and about 95% of arsenic was adsorbed when used an adsorbent concentration of 2 g/L and pH 6.3. The maximum adsorption capacity of adsorbent particles was 4.96 mg/g. The mean free energy of adsorption (E was found to be 2.63 kJ/mol, which suggests physisorption. The results of the flotation studies demonstrated that when synthetic effluents with 8.9 mg/L of arsenic were treated under the following experimental conditions; 2 g/L of adsorbent particles, 120 mg/L of Fe(III, 2 mg/L of Nalco 9808, 20 mg/L of sodium oleate, and 40% of recycle ratio in the DAF, it was possible to reach 98% of arsenic removal and 6.3 NTU of residual turbidity in clarified synthetic effluent.

  7. Nanofiber adsorbents for high productivity downstream processing.

    Science.gov (United States)

    Hardick, Oliver; Dods, Stewart; Stevens, Bob; Bracewell, Daniel G

    2013-04-01

    Electrospun polymeric nanofiber adsorbents offer an alternative ligand support surface for bioseparations. Their non-woven fiber structure with diameters in the sub-micron range creates a remarkably high surface area. To improve the purification productivity of biological molecules by chromatography, cellulose nanofiber adsorbents were fabricated and assembled into a cartridge and filter holder format with a volume of 0.15 mL, a bed height of 0.3 mm and diameter of 25 mm. The present study investigated the performance of diethylaminoethyl (DEAE) derivatized regenerated cellulose nanofiber adsorbents based on criteria including mass transfer and flow properties, binding capacity, and fouling effects. Our results show that nanofibers offer higher flow and mass transfer properties. The non-optimized DEAE-nanofiber adsorbents indicate a binding capacity of 10% that of packed bed systems with BSA as a single component system. However, they operate reproducibly at flowrates of a hundred times that of packed beds, resulting in a potential productivity increase of 10-fold. Lifetime studies showed that this novel adsorbent material operated reproducibly with complex feed material (centrifuged and 0.45 m filtered yeast homogenate) and harsh cleaning-in-place conditions over multiple cycles. DEAE nanofibers showed superior operating performance in permeability and fouling over conventional adsorbents indicating their potential for bioseparation applications. PMID:23097054

  8. Electro-Mechanical Coupling of Indium Tin Oxide Coated Polyethylene Terephthalate ITO/PET for Flexible Solar Cells

    KAUST Repository

    Saleh, Mohamed A.

    2013-05-15

    Indium tin oxide (ITO) is the most widely used transparent electrode in flexible solar cells because of its high transparency and conductivity. But still, cracking of ITO on PET substrates due to tensile loading is not fully understood and it affects the functionality of the solar cell tremendously as ITO loses its conductivity. Here, we investigate the cracking evolution in ITO/PET exposed to two categories of tests. Monotonous tensile testing is done in order to trace the crack propagation in ITO coating as well as determining a loading range to focus on during our study. Five cycles test is also conducted to check the crack closure effect on the resistance variation of ITO. Analytical model for the damage in ITO layer is implemented using the homogenization concept as in laminated composites for transverse cracking. The homogenization technique is done twice on COMSOL to determine the mechanical and electrical degradation of ITO due to applied loading. Finally, this damage evolution is used for a simulation to predict the degradation of ITO as function in the applied load and correlate this degradation with the resistance variation. Experimental results showed that during unloading, crack closure results in recovery of conductivity and decrease in the overall resistance of the cracked ITO. Also, statistics about the crack spacing showed that the cracking pattern is not perfectly periodical however it has a positively skewed distribution. The higher the applied load, the less the discrepancy in the crack spacing data. It was found that the cracking mechanism of ITO starts with transverse cracking with local delamination at the crack tip unlike the mechanism proposed in the literature of having only cracking pattern without any local delamination. This is the actual mechanism that leads to the high increase in ITO resistance. The analytical code simulates the damage evolution in the ITO layer as function in the applied strain. This will be extended further to correlate the damage to the resistance variation in following studies.

  9. Composites

    Science.gov (United States)

    Chmielewski, M.; Nosewicz, S.; Pietrzak, K.; Rojek, J.; Strojny-N?dza, A.; Mackiewicz, S.; Dutkiewicz, J.

    2014-11-01

    It is commonly known that the properties of sintered materials are strongly related to technological conditions of the densification process. This paper shows the sintering behavior of a NiAl-Al2O3 composite, and its individual components sintered separately. Each kind of material was processed via the powder metallurgy route (hot pressing). The progress of sintering at different stages of the process was tested. Changes in the microstructure were examined using scanning and transmission electron microscopy. Metal-ceramics interface was clean and no additional phases were detected. Correlation between the microstructure, density, and mechanical properties of the sintered materials was analyzed. The values of elastic constants of NiAl/Al2O3 were close to intermetallic ones due to the volume content of the NiAl phase particularly at low densities, where small alumina particles had no impact on the composite's stiffness. The influence of the external pressure of 30 MPa seemed crucial for obtaining satisfactory stiffness for three kinds of the studied materials which were characterized by a high dense microstructure with a low number of isolated spherical pores.

  10. Novel Fiber-Based Adsorbent Technology; FINAL

    International Nuclear Information System (INIS)

    The overall of this Department of Energy (DOE) Phase II SBIR program was to develop a new class of highly robust fiber-based adsorbents for recovery of heavy metals from aqueous waste-streams. The fiber-based adsorbents,when commercialized,will be used for clean up metals in aqueous waste-streams emanating from DOE facilities,industry,mining,and groundwater-cleanup operations.The amount of toxic waste released by these streams is of great significance.The U.S.Environment Protection Agency (EPA) reports that in 1990 alone,4.8 billion pounds of toxic chemicals were released into the environment.Of this waste,the metals-containing waste was the second largest contributor,representing 569 million pounds. This report presents the results of the Phase II program,which successfully synthesized noval fiber-based adsorbents for the removal of Group 12 metals(i.e.mercury),Group 14 metals (lead),and Group 10 metals(platinum and palladium) from contaminated groundwater and industrial waste streams.These fiber-based adsorbents are ideally suited for the recovery of metal ions from aqueous waste streams presently not treatable due to the degrading nature of corrosive chemicals or radioactive components in the feed stream. The adsorbents developed in this program rely on chemically resistant and robust carbon fibers and fabrics as supports for metal-ion selective ligands.These adsorbents demonstrate loading capacities and selectivities for metal ions exceeding those of conventional ion-exchange resins.The adsorbents were also used to construct filter modules that demonstrate minimal fouling,minimal compaction,chemical and physical robustness,and regeneration of metal loading capacity without loss of performance

  11. Black molecular adsorber coatings for spaceflight applications

    Science.gov (United States)

    Abraham, Nithin S.; Hasegawa, Mark M.; Straka, Sharon A.

    2014-09-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  12. Protein purification using magnetic adsorbent particles

    DEFF Research Database (Denmark)

    Franzreb, M; Siemann-Herzberg, M.

    2006-01-01

    The application of functionalised magnetic adsorbent particles in combination with magnetic separation techniques has received considerable attention in recent years. The magnetically responsive nature of such adsorbent particles permits their selective manipulation and separation in the presence of other suspended solids. Thus, it becomes possible to magnetically separate selected target species directly out of crude biological process liquors (e.g. fermentation broths, cell disruptates, plasma, milk, whey and plant extracts) simply by binding them on magnetic adsorbents before application of a magnetic field. By using magnetic separation in this way, the several stages of sample pretreatment (especially centrifugation, filtration and membrane separation) that are normally necessary to condition an extract before its application on packed bed chromatography columns, may be eliminated. Magnetic separations are fast, gentle, scaleable, easily automated, can achieve separations that would be impossible or impractical to achieve by other techniques, and have demonstrated credibility in a wide range of disciplines, including minerals processing, wastewater treatment, molecular biology, cell sorting and clinical diagnostics. However, despite the highly attractive qualities of magnetic methods on a process scale, with the exception of wastewater treatment, few attempts to scale up magnetic operations in biotechnology have been reported thus far. The purpose of this review is to summarise the current state of development of protein separation using magnetic adsorbent particles and identify the obstacles that must be overcome if protein purification with magnetic adsorbent particles is to find its way into industrial practice.

  13. Black Molecular Adsorber Coatings for Spaceflight Applications

    Science.gov (United States)

    Abraham, Nithin Susan; Hasegawa, Mark Makoto; Straka, Sharon A.

    2014-01-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  14. NMR study of nanophase Al/Al-oxide powder and consolidated composites

    International Nuclear Information System (INIS)

    27Al Nuclear Magnetic Resonance (NMR) measurements from aluminum powders and consolidated nanophase aluminum made from those powders are presented. The signals from the metal and surface oxidation are easily separated and are compared before and after consolidation. The results presented indicate that the oxide coating becomes the interface region within the nanophase composite material and that during consolidation the metal has undergone a deformation equivalent to that seen for bulk material under a compressive strain of between 4% and 8%

  15. Properties of adsorbed hydrogen films in nanospaces

    Science.gov (United States)

    Dohnke, Elmar; Gillespie, Andrew; Pfeifer, Peter

    2015-03-01

    Various high surface area materials were evaluated for their gas storage properties. From supercritical hydrogen isotherms at 77 Kelvin, we estimated the adsorbed film densities, film thicknesses and intrapore gas densities. Intrapore gas density is a measurement of the average hydrogen density within a pore. Furthermore, we investigated the correlation between the isosteric heat of adsorption, surface chemistry, and pore size distribution with an adsorbed film. In most of the samples both saturated film densities and intrapore gas densites exceed the liquid hydrogen density at 1 bar and 20 Kelvin. The saturated film density surpassed it even by 40%. The adsorbed film seems to be independent of the isosteric heat of adsorption or the samples pore size distribution. They behave like a universal constant for all carbon-based surfaces.

  16. Removal of radioactive iodine from water using Ag{sub 2}O grafted titanate nanolamina as efficient adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Bo, Arixin; Sarina, Sarina; Zheng, Zhanfeng [School of Chemistry, Physics, Mechanical Engineering, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001 (Australia); Yang, Dongjiang [College of Chemistry, Chemical and Environmental Engineering, Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Liu, Hongwei [School of Chemistry, Physics, Mechanical Engineering, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001 (Australia); Zhu, Huaiyong, E-mail: hy.zhu@qut.edu.au [School of Chemistry, Physics, Mechanical Engineering, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001 (Australia)

    2013-02-15

    Highlights: ? Ag{sub 2}O nanocrystals were deposited on titanate nanolamina prepared from TiOSO{sub 4}. ? The composite is efficient adsorbent for removal of radioactive Iodine from water. ? The adsorbent exhibited a high capacity of 3.4 mmol of iodine per gram of adsorbent in 1 h. ? Ag{sub 2}O nanocrystals are firmly anchored on the surface of the titanate lamina by coherent interface. ? The adsorbent can be recovered easily for safe disposal and suitable for column adsorption-bed. -- Abstract: Emergency treatment of radioactive material leakage and safety disposal of nuclear waste is a constant concern all along with the development of radioactive materials applications. To provide a solution, titanate with large surface area (143 m{sup 2} g{sup ?1}) and a lamina morphology (the thickness of the lamina is in range of tens of nanometers) was prepared from inorganic titanium compounds by hydrothermal reactions at 433 K. Ag{sub 2}O nanocrystals (530 nm) were deposited onto the titanate lamina. The surface of the titanate lamina has crystallographic similarity to that of Ag{sub 2}O nanocrystals. Hence, the deposited Ag{sub 2}O nanocrystals and titanate substrate join together at these surfaces, forming a well-matched phase coherent interface between them. Such coherence between the two phases reduces the overall energy by minimizing surface energy and anchors the Ag{sub 2}O nanocrystals firmly on the external surface of the titanate structure. The composite thus obtained was applied as efficient adsorbent to remove radioactive iodine from water (one gram adsorbent can capture up to 3.4 mmol of I{sup ?} anions). The composite adsorbent can be recovered easily for safe disposal. The structure changes of the titanate lamina and the composite adsorbent were monitored by various techniques. The isotherm and kinetics of iodine adsorption, competitive adsorption and column adsorption using the adsorbent were studied to assess its iodine removal abilities. The adsorbent exhibited a capacity as high as 3.4 mmol of iodine per gram of adsorbent in 1 h. Therefore, Ag{sub 2}O deposited titanate lamina is an effective adsorbent for removing radioactive iodine from water.

  17. Preparation and tribological properties of self-lubricating TiO{sub 2}/graphite composite coating on Ti6Al4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Ming [The Ministry of Education Key Laboratory, Conveyance Tools and Equipment, East China Jiaotong University, Nanchang 330013 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhou, Xinjian, E-mail: zhouxj63@126.com [The Ministry of Education Key Laboratory, Conveyance Tools and Equipment, East China Jiaotong University, Nanchang 330013 (China); Xiao, Qian [The Ministry of Education Key Laboratory, Conveyance Tools and Equipment, East China Jiaotong University, Nanchang 330013 (China); Liang, Jun, E-mail: jliang@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Huo, Xiaodi [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer A TiO{sub 2}/graphite composite coating is produced on Ti alloy by one-step PEO process. Black-Right-Pointing-Pointer The TiO{sub 2}/graphite composite coating exhibits excellent self-lubricating behavior. Black-Right-Pointing-Pointer The self-lubricating composite coating improves the wear resistance by comparison to the conventional PEO coating. - Abstract: One-step plasma electrolytic oxidation (PEO) process in a graphite-dispersed phosphate electrolyte was used to prepare a graphite-containing oxide composite coating on Ti6Al4V alloy. The composition and microstructure of the oxide coatings produced in the phosphate electrolytes with and without addition of graphite were analyzed by X-ray diffractometer (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The tribological properties of the uncoated Ti6Al4V alloy and oxide coatings were evaluated using a reciprocating ball-on-disk tribometer. Results showed that the graphite-containing oxide composite coating can be successfully produced on Ti6Al4V alloy in the graphite-dispersed phosphate electrolyte using PEO process. The graphite-containing oxide composite coating registered much lower friction coefficient and wear rate than the uncoated Ti6Al4V alloy and the oxide coating without graphite under dry sliding condition, exhibiting excellent self-lubricating property.

  18. Stability constants for silicate adsorbed to ferrihydrite

    DEFF Research Database (Denmark)

    Hansen, Hans Christian Bruun; Wetche, T.P.; Raulund-Rasmussen, Karsten; Borggaard, Ole Kragholm

    1994-01-01

    calculated by using the FITEQL optimization routine. Use of the specific surface area actually measured (269 m2 g-1) gave a poorer fit of the experimental data. Due to the slow adsorption of silicate and hence long shaking times, changes in the surface characteristics of the ferrihydrite seem to take place......, probably a decrease in the concentration of surface sites. Adsorption isotherms calculated using the derived equilibrium constants showed that approximately twice the amount of silicate was adsorbed at pH 5 compared with pH 3. Infrared spectroscopy of silica adsorbed to ferrihydrite showed Si-O stretching...

  19. Lutetium Oxide Coatings by PVD

    Science.gov (United States)

    Topping, Stephen G; Park, CH; Rangan, SK; Sarin, VK

    2009-01-01

    Due to its high density and cubic structure, Lutetium oxide (Lu2O3) has been extensively researched for scintillating applications. Present manufacturing methods, such as hot pressing and sintering, do not provide adequate resolution due to light scattering of polycrystalline materials. Vapor deposition has been investigated as an alternative manufacturing method. Lutetium oxide transparent optical coatings by magnetron sputtering offer a means of tailoring the coating for optimum scintillation and resolution. Sputter deposited coatings typically have inherent stress and defects that adversely affect transparency and emission. The effect of process parameters on the coating properties is being investigated via x-ray diffraction (XRD), scanning electron microscopy (SEM) and emission spectroscopy, and will be presented and discussed. PMID:20390046

  20. Lutetium Oxide Coatings by PVD

    OpenAIRE

    Topping, Stephen G.; Park, CH.; Rangan, SK; Sarin, VK

    2007-01-01

    Due to its high density and cubic structure, Lutetium oxide (Lu2O3) has been extensively researched for scintillating applications. Present manufacturing methods, such as hot pressing and sintering, do not provide adequate resolution due to light scattering of polycrystalline materials. Vapor deposition has been investigated as an alternative manufacturing method. Lutetium oxide transparent optical coatings by magnetron sputtering offer a means of tailoring the coating for optimum scintillati...

  1. Electrochemical behavior of LiFePO4 cathode materials in the presence of anion adsorbents

    International Nuclear Information System (INIS)

    The poor rate capability is a major problem of olivine-structured lithium iron phosphate (LFP) cathode material in lithium-ion batteries due to its low electric conductivity and sluggish lithium diffusion. Other than the custom strategies to solve this problem like carbon coating and nano-size treatment, we simply mixed LFP with some anion adsorbents, which can store anions from the electrolytes swiftly. The effect of anion adsorbents on the performance of LFP composite electrode has been investigated by cyclic voltammetric tests and the corresponding apparent lithium diffusion coefficients have been measured

  2. Theoretical Insight of Physical Adsorption for a Single Component Adsorbent + Adsorbate System: II. The Henry Region

    KAUST Repository

    Chakraborty, Anutosh

    2009-07-07

    The Henry coefficients of a single component adsorbent + adsorbate system are calculated from experimentally measured adsorption isotherm data, from which the heat of adsorption at zero coverage is evaluated. The first part of the papers relates to the development of thermodynamic property surfaces for a single-component adsorbent + adsorbate system1 (Chakraborty, A.; Saha, B. B.; Ng, K. C.; Koyama, S.; Srinivasan, K. Langmuir 2009, 25, 2204). A thermodynamic framework is presented to capture the relationship between the specific surface area (Ai) and the energy factor, and the surface structural and the surface energy heterogeneity distribution factors are analyzed. Using the outlined approach, the maximum possible amount of adsorbate uptake has been evaluated and compared with experimental data. It is found that the adsorbents with higher specific surface areas tend to possess lower heat of adsorption (ΔH°) at the Henry regime. In this paper, we have established the definitive relation between Ai and ΔH° for (i) carbonaceous materials, metal organic frameworks (MOFs), carbon nanotubes, zeolites + hydrogen, and (ii) activated carbons + methane systems. The proposed theoretical framework of At and AH0 provides valuable guides for researchers in developing advanced porous adsorbents for methane and hydrogen uptake. © 2009 American Chemical Society.

  3. A theoretical study of adsorbate-adsorbate interactions on Ru(0001)

    DEFF Research Database (Denmark)

    Mortensen, Jens Jrgen; Hammer, Bjrk; Nrskov, Jens Kehlet

    1998-01-01

    Using density functional theory we study the effect of pre-adsorbed atoms on the dissociation of N(2) and the adsorption of N, N(2), and CO on Ru(0001). We have done calculations for pre-adsorbed Na, Cs, and S, and find that alkali atoms adsorbed close to a dissociating N(2) molecule will lower the barrier for dissociation, whereas S will increase it. The interaction with alkali atoms is mainly of an electrostatic nature. The poisoning by S is due to two kinds of repulsive interactions: a Pauli ...

  4. Antiferromagnets Structure in Adsorbed O2 Monolayers

    DEFF Research Database (Denmark)

    Nielsen, Mourits; McTague, J. P.

    1977-01-01

    Neutron diffraction from monolayers of O2 adsorbed on graphite shows structural arrangements similar to the dense planes of bulk O2. At monolayer completion and above, a magnetic superlattice reflection shows well-developed antiferromagnetic order for T ? 10 K. The submonolayer phase also shows signs of antiferromagnetic correlations at low temperature.

  5. NUCLEAR MAGNETISM OF ADSORBED 3He

    OpenAIRE

    Godfrin, H.; Ruel, R.; Osheroff, D.

    1988-01-01

    The nuclear magnetism of atomic layers of 3He adsorbed on graphite has been studied by NMR measurements of the magnetization, line shifts and thermal time constants. The properties of this novel system are well described by the two-dimensional ferromagnetic Heisenberg Hamiltonian.

  6. Magnetically supported zeolite adsorbents for effluent treatment

    International Nuclear Information System (INIS)

    An attempt was made to remove heavy metal ions from metallurgical effluents by means of magnetically supported fluidized bed column employing zeolite-magnetite complexes as adsorbents. The natural sorptive properties of acid modified clinoptilolite were used instead of synthetic beads. X-ray diffraction and DTA studies on the raw material confirmed that the main zeolite mineral was clinoptilolite. (author)

  7. Antiferromagnets Structure in Adsorbed O2 Monolayers

    DEFF Research Database (Denmark)

    Nielsen, Mourits; McTague, J. P.

    1977-01-01

    Neutron diffraction from monolayers of O2 adsorbed on graphite shows structural arrangements similar to the dense planes of bulk O2. At monolayer completion and above, a magnetic superlattice reflection shows well-developed antiferromagnetic order for T ? 10 K. The submonolayer phase also shows...

  8. Development and Testing of Molecular Adsorber Coatings

    Science.gov (United States)

    Abraham, Nithin; Hasegawa, Mark; Straka, Sharon

    2012-01-01

    The effect of on-orbit molecular contamination has the potential to degrade the performance of spaceflight hardware and diminish the lifetime of the spacecraft. For example, sensitive surfaces, such as optical surfaces, electronics, detectors, and thermal control surfaces, are vulnerable to the damaging effects of contamination from outgassed materials. The current solution to protect these surfaces is through the use of zeolite coated ceramic adsorber pucks. However, these pucks and its additional complex mounting hardware requirements result in several disadvantages, such as size, weight, and cost related concerns, that impact the spacecraft design and the integration and test schedule. As a result, a new innovative molecular adsorber coating was developed as a sprayable alternative to mitigate the risk of on-orbit molecular contamination. In this study, the formulation for molecular adsorber coatings was optimized using various binders, pigment treatment methods, binder to pigment ratios, thicknesses, and spray application techniques. The formulations that passed coating adhesion and vacuum thermal cycling tests were further tested for its adsorptive capacity. Accelerated molecular capacitance tests were performed in an innovatively designed multi-unit system containing idealized contaminant sources. This novel system significantly increased the productivity of the testing phase for the various formulations that were developed. Work performed during the development and testing phases has demonstrated successful application of molecular adsorber coatings onto metallic substrates, as well as, very promising results for the adhesion performance and the molecular capacitance of the coating. Continued testing will assist in the qualification of molecular adsorber coatings for use on future contamination sensitive spaceflight missions.

  9. Development and testing of molecular adsorber coatings

    Science.gov (United States)

    Abraham, Nithin S.; Hasegawa, Mark M.; Straka, Sharon A.

    2012-10-01

    The effect of on-orbit molecular contamination has the potential to degrade the performance of spaceflight hardware and diminish the lifetime of the spacecraft. For example, sensitive surfaces, such as optical surfaces, electronics, detectors, and thermal control surfaces, are vulnerable to the damaging effects of contamination from outgassed materials. The current solution to protect these surfaces is through the use of zeolite coated ceramic adsorber pucks. However, these pucks and its additional complex mounting hardware requirements result in several disadvantages, such as size, weight, and cost related concerns, that impact the spacecraft design and the integration and test schedule. As a result, a new innovative molecular adsorber coating was developed as a sprayable alternative to mitigate the risk of on-orbit molecular contamination. In this study, the formulation for molecular adsorber coatings was optimized using various binders, pigment treatment methods, binder to pigment ratios, thicknesses, and spray application techniques. The formulas that passed coating adhesion and vacuum thermal cycling were further tested for its adsorptive capacity. Accelerated molecular capacitance tests were performed in an innovatively designed multi-unit system containing idealized contaminant sources. This novel system significantly increased the productivity of the testing phase for the various formulations that were developed. Work performed during the development and testing phases has demonstrated successful application of molecular adsorber coatings onto metallic substrates, as well as, very promising results for the adhesion performance and the molecular capacitance of the coating. Continued testing will assist in the qualification of molecular adsorber coatings for use on future contamination sensitive spaceflight missions.

  10. Fly ash adsorbents for multi-cation wastewater treatment

    International Nuclear Information System (INIS)

    Class F fly ash (FA), collected from the Central Heat and Power (CHP) Plant Brasov (Romania), with oxides composition SiO2/Al2O3 over 2.4 proved good adsorbent properties, and was further used for obtaining a new substrate with good adsorption capacity for heavy metals from multi-cation wastewater treatment. Firstly, the new adsorbent was characterized by AFM, XRD, DSC, FTIR and the surface energy was evaluated by contact angle measurements. The experimental data suggested that the new type of substrate is predominant crystalline with highly polar surface. The substrate was used for removing the Pb2+, Cd2+ and Zn2+ cations from mixed solutions. The results show high efficiency and selective adsorption the Pb2+ and Zn2+ cations. The optimized adsorption parameters were further used in thermodynamic and kinetic studies of the adsorption processes. The Langmuir and Freundlich models were used to describe the processes. The pseudo-second order kinetics could well model all the processes, indicating a surface concentration of the adsorption sites with the same order of magnitude as the cation concentrations.

  11. Binary chromatographic data and estimation of adsorbent porosities. [data for system n-heptane/n-pentane

    Science.gov (United States)

    Meisch, A. J.

    1972-01-01

    Data for the system n-pentane/n-heptane on porous Chromosorb-102 adsorbent were obtained at 150, 175, and 200 C for mixtures containing zero to 100% n-pentane by weight. Prior results showing limitations on superposition of pure component data to predict multicomponent chromatograms were verified. The thermodynamic parameter MR0 was found to be a linear function of sample composition. A nonporous adsorbent failed to separate the system because of large input sample dispersions. A proposed automated data processing scheme involving magnetic tape recording of the detector signals and processing by a minicomputer was rejected because of resolution limitations of the available a/d converters. Preliminary data on porosity and pore size distributions of the adsorbents were obtained.

  12. Induced rupture of vesicles adsorbed on glass by pore formation at the surface-bilayer interface.

    Science.gov (United States)

    Kataoka-Hamai, Chiho; Yamazaki, Tomohiko

    2015-02-01

    Supported lipid bilayers (SLBs) are often formed by spontaneous vesicle rupture and fusion on a solid surface. A well-characterized rupture mechanism for isolated vesicles is pore nucleation and expansion in the solution-exposed nonadsorbed area. In contrast, pore formation in the adsorbed bilayer region has not been investigated to date. In this work, we studied the detailed mechanisms of asymmetric rupture of giant unilamellar vesicles (GUVs) adsorbed on glass using fluorescence microscopy. Asymmetric rupture is the pathway where a rupture pore forms in a GUV near the edge of the glass-bilayer interface with high curvature and then expansion of the pore yields a planar bilayer patch. We show that asymmetric rupture occasionally resulted in SLB patches bearing a defect pore. The defect formation probability depended on lipid composition, salt concentration, and pH. Approximately 40% of negatively charged GUVs under physiological conditions formed pore-containing SLB patches, while negatively charged GUVs at low salt concentration or pH 4.0 and positively charged GUVs exhibited a low probability of defect inclusion. The edge of the defect pore was either in contact with (on-edge) or away from (off-edge) the edge of the planar bilayer. On-edge pores were predominantly formed over off-edge defects. Pores initially formed in the glass-adsorbed region before rupture, most frequently in close contact with the edge of the adsorbed region. When a pore formed near the edge of the adsorbed area or when the edge of a pore reached that of the adsorbed area by pore expansion, asymmetric rupture was induced from the defect site. These induced rupture mechanisms yielded SLB patches with an on-edge pore. In contrast, off-edge pores were produced when defect pore generation and subsequent vesicle rupture were uncoupled. The current results demonstrate that pore formation in the surface-adsorbed region of GUVs is not a negligible event. PMID:25575280

  13. Tailoring fly ash activated with bentonite as adsorbent for complex wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Visa, Maria, E-mail: maria.visa@unitbv.ro [Transilvania University of Brasov, Department Renewable Energy Systems and Recycling, Eroilor 29, 500036 Brasov (Romania)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer The spent adsorbent annealed at 500 Degree-Sign C can be a suggestion for padding in stone blocks. Black-Right-Pointing-Pointer The cations can be adsorbent by the silanol group (Si-OH) of the layers from bentonite Black-Right-Pointing-Pointer Copper has a higher affinity for the active sites on adsorbent FAw + B than cadmium. Black-Right-Pointing-Pointer This substrate can be recommended for simultaneous removal of heavy metals and MB. Black-Right-Pointing-Pointer FAw + B is recommended for wastewater treatment resulted in the dyes finishing industry. - Abstract: Used as adsorbent, alkali fly ash represents a low cost solution for advanced wastewater treatment. The alkali treatment raises sustainability issues therefore, in this research we aim to replace alkali fly ash with washed fly ash (FAw). For improving the adsorption capacity of washed fly ash, bentonite powder (B) was added, as a natural adsorbent with a composition almost identical to the fly ash. The new adsorbent was characterized by AFM, XRD, FTIR, SEM, EDS and the surface energy was evaluated by contact angle measurements. For understanding the complex adsorption process on this mixed substrate, preliminary tests were developed on synthetic wastewaters containing a single pollutant system (heavy metal), binary (two-heavy metals) and ternary (dye and two heavy metals) systems. Experiments were done on synthetic wastewaters containing methylene blue, cadmium and copper, using FAw, B and their powder mixtures. The pseudo-second order kinetics could well model all the processes, indicating a good adsorbent material which can be used for the pollutants removal from wastewater. After adsorption the substrates loaded with pollutants, annealed at 500 Degree-Sign C can be reused for padding in stone blocks.

  14. The adsorber loop concept for the contact between seawater and adsorber granulate

    International Nuclear Information System (INIS)

    The present paper deals with the so-called ''adsorber loop concept'' in which the adsorber granulate is carried along with the seawater to be processed in a loop-like configuration and is separated again from the depleted water before this is leaving the adsorption unit. This concept enables high seawater velocities thus reducing the required bed area. Theoretical considerations are presented together with experimental results from field tests. (orig.)

  15. Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Baiyang [Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan); Fugetsu, Bunshi, E-mail: hu@ees.hokudai.ac.jp [Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan); Yu, Hongwen [Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan); Abe, Yoshiteru [Kyoei Engineering Corporation, Niigata 959-1961 (Japan)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer Prussian blue was sealed in cavities of diatomite using carbon nanotubes. Black-Right-Pointing-Pointer The caged Prussian blue after being permanently immobilized in polyurethane spongy showed a 167 mg/g capability for absorbing cesium. Black-Right-Pointing-Pointer Cesium elimination was accomplished by simply adding the Prussian-blue based spongiform adsorbent to radioactive water. - Abstract: We developed a spongiform adsorbent that contains Prussian blue, which showed a high capacity for eliminating cesium. An in situ synthesizing approach was used to synthesize Prussian blue inside diatomite cavities. Highly dispersed carbon nanotubes (CNTs) were used to form CNT networks that coated the diatomite to seal in the Prussian blue particles. These ternary (CNT/diatomite/Prussian-blue) composites were mixed with polyurethane (PU) prepolymers to produce a quaternary (PU/CNT/diatomite/Prussian-blue), spongiform adsorbent with an in situ foaming procedure. Prussian blue was permanently immobilized in the cell walls of the spongiform matrix and preferentially adsorbed cesium with a theoretical capacity of 167 mg/g cesium. Cesium was absorbed primarily by an ion-exchange mechanism, and the absorption was accomplished by self-uptake of radioactive water by the quaternary spongiform adsorbent.

  16. Interplay of adsorbate-adsorbate and adsorbate-substrate interactions in self-assembled molecular surface nanostructures

    DEFF Research Database (Denmark)

    Schnadt, Joachim; Xu, Wei

    2010-01-01

    The adsorption of 2,6-naphthalenedicarboxylic acid (NDCA) molecules on the Ag(110), Cu(110), and Ag(111) surfaces at room temperature has been studied by means of scanning tunnelling microscopy (STM). Further supporting results were obtained using X-ray photoelectron spectroscopy (XPS) and soft X-ray absorption spectroscopy (XAS). On the Ag(110) support, which had an average terrace width of only 15 nm, the NDCA molecules form extended one-dimensional (1-D) assemblies, which are oriented perpendicular to the step edges and have lengths of several hundred nanometres. This shows that the assemblies have a large tolerance to monatomic surface steps on the Ag(110) surface. The observed behaviour is explained in terms of strong intermolecular hydrogen bonding and a strong surface-mediated directionality, assisted by a sufficient degree of molecular backbone flexibility. In contrast, the same kind of step-edge crossing is not observed when the molecules are adsorbed on the isotropic Ag(111) or more reactive Cu(110)surfaces. On Ag(111), similar 1-D assemblies are formed to those on Ag(110), but they are oriented along the step edges. On Cu(110), the carboxylic groups of NDCA are deprotonated and form covalent bonds to the surface, a situation which is also achieved on Ag(110) by annealing to 200 degrees C. These results show that the formation of particular self-assembled molecular nanostructures depends significantly on a subtle balance between the adsorbate-adsorbate and adsorbate-substrate interactions and that kinetic factors play an important role.

  17. Computer simulations of adsorbed liquid crystal films

    Science.gov (United States)

    Wall, Greg D.; Cleaver, Douglas J.

    2003-01-01

    The structures adopted by adsorbed thin films of Gay-Berne particles in the presence of a coexisting vapour phase are investigated by molecular dynamics simulation. The films are adsorbed at a flat substrate which favours planar anchoring, whereas the nematic-vapour interface favours normal alignment. On cooling, a system with a high molecule-substrate interaction strength exhibits substrate-induced planar orientational ordering and considerable stratification is observed in the density profiles. In contrast, a system with weak molecule-substrate coupling adopts a director orientation orthogonal to the substrate plane, owing to the increased influence of the nematic-vapour interface. There are significant differences between the structures adopted at the two interfaces, in contrast with the predictions of density functional treatments of such systems.

  18. Zeolites as alcohol adsorbents from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Cekova Blagica

    2006-01-01

    Full Text Available The potential usage of zeolites as adsorbents for the removal of organic molecules from water was investigated in a series of experiments with aqueous solutions of lower alcohols. This could represent a simple solution to the problem of cleaning up industrial wastewater as well as recovering valuable chemicals at relatively low costs. Adsorption isotherms of the Langmuir type were applied, and calculations showed that the amount of propanol adsorbed on silicalite corresponded to approximately 70% of the pore volume. The adsorption process is simple, and recovery of the more concentrated products is easily done by heat treatment and/or at lowered pressures. Adsorption experiments with aqueous acetone showed that silicalite had approximately the same adsorption capacity for acetone as for n-propanol. Heats of adsorption were determined calorimetrically.

  19. Nonlinear optics of surfaces and adsorbates

    Science.gov (United States)

    Heinz, T. F.

    1982-11-01

    In any material possessing a center of inversion, the process of optical second-harmonic generation (SHG) is forbidden within the electric-dipole approximation. As a consequence, the second-harmonic (SH) radiation produced by the excitation of two adjoining centrosymmetric media can arise largely from the few atomic layers of the interfacial region where the symmetry prevailing in the bulk is broken. A series of experiments exploring the influence of molecular adsorbates on SHG from such interfaces and evaluating the potential of this process as a surface-specific optical probe are discussed. Studies were conducted on adsorption onto both metallic and insulating substrates. Formation of the first monolayer of AgCl on a silver electrode induced a 20-fold increase in SH output. Similar results were observed for adsorbed pyridine and pyrazine molecules. In situ measurements of the equilibrium and transient behavior of pyridine adsorption on silver in an electrochemical environment were by means of SHG.

  20. Gas storage using fullerene based adsorbents

    Science.gov (United States)

    Loutfy, Raouf O. (Inventor); Lu, Xiao-Chun (Inventor); Li, Weijiong (Inventor); Mikhael, Michael G. (Inventor)

    2000-01-01

    This invention is directed to the synthesis of high bulk density high gas absorption capacity adsorbents for gas storage applications. Specifically, this invention is concerned with novel gas absorbents with high gravimetric and volumetric gas adsorption capacities which are made from fullerene-based materials. By pressing fullerene powder into pellet form using a conventional press, then polymerizing it by subjecting the fullerene to high temperature and high inert gas pressure, the resulting fullerene-based materials have high bulk densities and high gas adsorption capacities. By pre-chemical modification or post-polymerization activation processes, the gas adsorption capacities of the fullerene-based adsorbents can be further enhanced. These materials are suitable for low pressure gas storage applications, such as oxygen storage for home oxygen therapy uses or on-board vehicle natural gas storage. They are also suitable for storing gases and vapors such as hydrogen, nitrogen, carbon dioxide, and water vapor.

  1. Study on the gamma-ray irradiation behavior of mesoporous silica adsorbents functionalized with phosphine oxide and phosphonic acid ligands

    International Nuclear Information System (INIS)

    The resistance of mesoporous silica adsorbents bearing phosphine oxide (SBA-P(O)Pr2) and phosphonic acid (SBA-P(O)(OH)2) to gamma-ray irradiation (in air and 2 mol/ L HNO3 solution) was systematically evaluated. The change in the composition, structure and (U(VI)) adsorption ability of the adsorbents was examined. Both the organophosphorus ligands functionalized adsorbents exhibited remarkable durability under gamma-ray irradiation up to a total dose of 5 x 105 Gy. The mesoporous silica framework and the two classes of organophosphorus ligands were well-reserved without irradiation damage. Moreover, after irradiation, the adsorbents still maintained an effective adsorption of U(VI) in high acidic or pH range solutions. (author)

  2. Curvature Elasticity of an Adsorbed Polymer Layer

    OpenAIRE

    Clement, F.; Joanny, J.-F.

    1997-01-01

    We study theoretically the change of the curvature moduli of a surfactant membrane due to the adsorption of a polymer solution. Using a mean field theory of polymer adsorption, we study both cases of reversible and irreversible polymer adsorption in good and ? solvents. The curvature moduli of the adsorbed polymer layers axe dominated by the short loops that the polymer forms on the membrane. The polymer contribution to the membrane bending modulus is always negative and the polymer contribut...

  3. Effects of adsorbates on submonolayer epitaxial growth.

    Czech Academy of Sciences Publication Activity Database

    Kotrla, Miroslav

    Plze? : Zpado?esk universita, 2002, s. 369-375. ISBN 80-7082-907-9. [Conference of the Czech and Slovak Physicists /14./. Plze? (CZ), 09.09.2002-12.09.2002] R&D Projects: GA ?R GA202/01/0928 Institutional research plan: CEZ:AV0Z1010914 Keywords : submonolayer growth * adsorbates * Monte Carlo simulation Subject RIV: BM - Solid Matter Physics ; Magnetism

  4. Adsorbent density impact on gas storage capacities

    OpenAIRE

    Kunowsky, Mirko; Surez Garca, Fabin; Linares Solano, ngel

    2013-01-01

    In the literature, different approaches, terminologies, concepts and equations are used for calculating gas storage capacities. Very often, these approaches are not well defined, used and/or determined, giving rise to significant misconceptions. Even more, some of these approaches, very much associated with the type of adsorbent material used (e.g., porous carbons or new materials such as COFs and MOFs), impede a suitable comparison of their performances for gas storage applications. We revie...

  5. ?-radiolysis of methane adsorbed on ?-alumina

    International Nuclear Information System (INIS)

    The influence of surface sites on the transfer of ?-radiation energy between ?-alumina and adsorbed methane has been studied by analysing the yields and desorption temperatures of radiolysis products as a function of the ?-alumina pretreatment temperature. On ?-alumina outgassed below 570 K irradiation causes surface hydration to decompose but direct energy transfer to methane does not occur. On ?-alumina outgassed above 570 K however methane is effectively radiolysed to products subsequently desorbable as C2 and C3 alkanes and alkenes together with hydrogen. As the outgassing temperature rises above 750 K the yields of the higher hydrocarbon products decline although the quantity of methane becoming strongly adsorbed continues to increase. Methane also undergoes a slow reaction with ?-alumina in the absence of radiation, and changes in reactivity and product selectivity similar to those in irradiated experiments are observed at the same two outgassing temperatures. Both 570 and 750 K moreover correspond to regions of particularly rapid weight loss during outgassing. These results are used to derive a coherent model of the successive stages in dehydration of the ?-alumina surface and to deduce the main mechanistic features of the radiolysis of adsorbed methane. (author)

  6. Osmotic repulsion force due to adsorbed surfactants.

    Science.gov (United States)

    Babchin, Alexander J; Schramm, Laurier L

    2012-03-01

    When considering interaction forces in surfactant-stabilized colloidal dispersions a factor that has been rarely discussed is the possible effect of osmotic force due to overlapping adsorbed surfactant monolayers. In the present work, the osmotic repulsion force is built-in on the basis of DLVO mechanics and based on Fischer's consideration of the analogous situation for adsorbed polymer layers on solid surfaces [E.W. Fischer, Kolloid Zeitschrift 160 (1958) 120-141] and on Langmuir's earlier concept of osmotic pressure excess due to overlapping adsorption layers [I. Langmuir, J. Chem. Phys. 6 (1938) 873-896]. The advanced method for calculation of the net repulsion force in overlapping surfactant monolayers is developed and applied to real adsorbed surfactant systems. We show that the value of disjoining pressure can reach values as high as 8 MPa for the condition of fully overlapping surfactant adsorption layers, based on the calculation of the first virial term of the general expression for osmotic pressure. Thus, we have shown that osmotic forces can be substantial at distances of close interfacial approach, and that they can easily be of the same or greater order of magnitude than the forces that have been more conventionally considered. PMID:22104401

  7. Development of Eco-adsorbent Based on Solid Waste of Paper Industry to Adsorb Cadmium Ion in Water

    Directory of Open Access Journals (Sweden)

    Eko Siswoyo

    2013-07-01

    Full Text Available Eco-adsorbent prepared from paper sludge, a solid waste of paper industry, was studied to adsorb cadmium ion in water. Some parameters such as mass of the adsorbent, pH of solution, and shaking time were investigated in order to know the adsorption ability of the adsorbent. The presence of carboxyl and phenolic hydroxyl functional groups in this adsorbent were important in the process of adsorption. It was found that pH 6 to 8 of solution and 60 minutes of shaking time was a suitable condition for this adsorbent in adsorbing cadmium ion. Langmuir isotherm adsorption model was fit for this adsorbent and the adsorption capacity for Cd(II was 5.21 mg/g.

  8. Understanding Trends in Catalytic Activity: The Effect of Adsorbate-Adsorbate Interactions for CO Oxidation Over Transition Metals

    DEFF Research Database (Denmark)

    Grabow, Lars; Larsen, Britt Hvolbk; Nrskov, Jens Kehlet

    2010-01-01

    Using high temperature CO oxidation as the example, trends in the reactivity of transition metals are discussed on the basis of density functional theory (DFT) calculations. Volcano type relations between the catalytic rate and adsorption energies of important intermediates are introduced and the effect of adsorbate-adsorbate interaction on the trends is discussed. We find that adsorbate-adsorbate interactions significantly increase the activity of strong binding metals (left side of the volcano...

  9. Preparation and tribological properties of self-lubricating TiO2/graphite composite coating on Ti6Al4V alloy

    Science.gov (United States)

    Mu, Ming; Zhou, Xinjian; Xiao, Qian; Liang, Jun; Huo, Xiaodi

    2012-09-01

    One-step plasma electrolytic oxidation (PEO) process in a graphite-dispersed phosphate electrolyte was used to prepare a graphite-containing oxide composite coating on Ti6Al4V alloy. The composition and microstructure of the oxide coatings produced in the phosphate electrolytes with and without addition of graphite were analyzed by X-ray diffractometer (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The tribological properties of the uncoated Ti6Al4V alloy and oxide coatings were evaluated using a reciprocating ball-on-disk tribometer. Results showed that the graphite-containing oxide composite coating can be successfully produced on Ti6Al4V alloy in the graphite-dispersed phosphate electrolyte using PEO process. The graphite-containing oxide composite coating registered much lower friction coefficient and wear rate than the uncoated Ti6Al4V alloy and the oxide coating without graphite under dry sliding condition, exhibiting excellent self-lubricating property.

  10. Study on radiation-induced polymerization of vinyl monomers adsorbed on inorganic substances. I. Radiation-induced polymerization of styrene adsorbed on several inorganic substances

    International Nuclear Information System (INIS)

    The radiation-induced polymerization of styrene adsorbed on silica gel, white carbon, silicic acid anhydride, zeolite, and activated alumina was carried out to elucidate the effect of properties of inorganic substances on the polymerization. The rate of adsorbed state polymerization on these inorganic substances was very fast in comparison with that of bulk-state polymerization. The amount of unextractable polymer depends on the specific surface area and chemical compositions of these inorganic substances. Inorganic substances which contain aluminum as a component element are more likely to be grafted than those which consist of SiO2 alone. The molecular weight and molecular weight distribution of unextractable polymer and extractable polymer differ from one another in each inorganic substance. In case of silicic acid anhydride, unextractable polymer has smaller molecular weight than extractable polymer. These results suggest that unextractable polymer cannot be extracted due to chemical bonds with the inorganic surface

  11. ?-radiolysis of methane adsorbed on ?-alumina

    International Nuclear Information System (INIS)

    Previous studies showed that methane adsorbed on ?-alumina undergoes radiolysis to form chemisorbed precursor species. These decompose when heated to give C1-C3 alkane and alkene products together with hydrogen. The present study uses nitric oxide, nitrous oxide, sulphur hexafluoride, oxygen and carbon dioxide as additives to interfere with product formation, and so allows probable structures to be deduced for each precursor. Both alkane and alkene precursors involve alkylaluminium groups which decompose by homolytic fission of the Al-C bond. The alkane precursor has an accessible hydroxide ion from which a hydrogen atom can be extracted during desorption, whereas the alkene precursor does not. (author)

  12. Spectroscopy and dynamics of orientationally structured adsorbates

    CERN Document Server

    Rozenbaum, V M

    2002-01-01

    This book provides a detailed and rigorous presentation of the spectroscopy and dynamics of orientationally structured adsorbates. It is intended largely for specialists and graduate students in solid state theory and surface physics. To make the book readable also for beginners in surface science, a lucid style is used and a wealth of references on orientational surface structures and vibrational excitations in them is offered. The book is supplemented with two indices (alphabetical listing of subjects and authors, as well as cross-references) which will enable the reader to easily access the

  13. Development of adsorbents for recovery of uranium from seawater

    International Nuclear Information System (INIS)

    The largest subject for putting the extraction of uranium from seawater in practical use is the development of high performance adsorbents for uranium. In this paper, the way of thinking about the development of adsorbents for extracting uranium from seawater and the recent reports on this subject are described. Next, the research on the adsorbing capacity and adsorbing rate of the adsorbents developed so far is summarized, and the way of thinking about the evaluation of adsorbent performance which is the base of the design of a system for extracting uranium from seawater is explained, taking amidoxime type adsorbent as the example. For Japan where energy resources are scant, the uranium contained in seawater, which is estimated to be about 4.2 billion t, is the most luring important element. Uranium is contained in seawater is very low concentration of 3 ppb, and exists as anion complex salt. In 1960s, the Harwell Atomic Energy Research Establishment in UK found out that titanium oxide hydrate is the most promising as the adsorbent. Also a number of organic absorbents have been developed. In order to bring adsorbents in contact with seawater, pumping, ocean current and wave force are utilized. Adsorbents are in spherical, fiber and film forms, and held as fixed beds and fluidized beds. (Kako, I.) 48 refs

  14. Hexavalent chromium removal using indigenously developed adsorbents

    International Nuclear Information System (INIS)

    Present study is based on the usage of natural waste material i.e. two types of tree leaves (ficus Religiosa and Pongamia Pinnata) for the adsorption of Cr(VI). Hexavalent chromium removal efficiency of developed sorbents is determined experimentally. Effect of different variables like shaking time, shaking speed, initial metal ion concentration, adsorbent dose, pH, and of temperature was studied. Both adsorbents showed almost complete chromium removal at pH value of 2.0 and adsorption is shown to be endothermic in nature for pongamia pinnata leaves. Optimum values obtained in this study are, pH 2.0, shaking speed 200 rpm, shaking time 45 minutes, temperature of 50 degree C. Adsorption capacities obtained at optimum conditions are 17.5 and 15.7 mg/g for ficus religiosa and Pongamia Pinnata leaves respectively. Adsorption data follow Langmuir model. Predominant adsorption phenomenon on leaves seems to be surface adsorption but other binding mechanism like ion exchange may also be a contributing factor. (author)

  15. Detecting Adsorbed Sulfate and Phosphate on Nanophase Weathering Products on Mars

    Science.gov (United States)

    Rampe, E. B.; Morris, R. V.

    2012-12-01

    Characterizing the mineralogy and chemistry of aqueous alteration phases on the martian surface is essential for understanding past aqueous processes because the types of secondary phases present and their chemical compositions tell us about the environments in which they formed. Orbital mid-infrared data and in-situ mineralogical and chemical data from the martian surface indicate that Si/Al- and Fe-bearing nanophase weathering products are widespread, including allophane and nanophase ferric oxide (npOx), which includes any combination of superparamagnetic hematite and goethite, ferrihydrite, schwertmannite, akaganeite, iddingsite, and palagonite (altered basaltic glass) [Morris et al., 2006; Michalski et al., 2006; Rampe et al., in press]. These weathering products have larger surface areas and variable surface charge and can adsorb anions and cations onto their surfaces. Some anions, such as sulfate and phosphate, specifically chemically adsorb onto mineral/mineraloid surfaces so that these complexes are covalently bonded and form ligands. Nanophase weathering products on Earth can specifically adsorb up to a few weight percent to a few tens of weight percent phosphate and sulfate, respectively [Parfitt and Smart, 1978; Jara et al., 2006]. Phosphate and sulfate have been identified in martian rocks and soils in abundances of up to ~5 wt.% and ~30 wt.%, respectively [Gellert et al., 2006; Ming et al., 2006], and it has been suggested that phosphate and sulfate ions may be adsorbed on nanophase weathering products on the martian surface [Greenwood and Blake, 2006; Morris et al., 2006]. What is relatively unknown is how to use in-situ and orbital instruments on Mars to determine if these ions are present as discrete minerals or adsorbed onto the surfaces of weathering products. We adsorbed phosphate and sulfate onto allophane surfaces in the laboratory. Here, we present laboratory measurements of phosphate- and sulfate-adsorbed allophane to compare to in-situ observations from CheMin and SAM on Mars Science Laboratory and remote observations from OMEGA, CRISM, and TES. CheMin- and OMEGA/CRISM-relevant laboratory measurements reveal minor differences between ion-free and ion-adsorbed allophane that would not be detectable by those instruments. However, SAM-relevant evolved gas analyses of sulfate-adsorbed allophane show a high-temperature (>950 C) release related to SO2 gas. The release at high temperatures suggests that sulfate was strongly bonded to the allophane surface. TES-relevant thermal-infrared emission spectra of phosphate- and sulfate-adsorbed allophane display broad absorptions near 1000 cm-1 from P-O and S-O vibrations. Our laboratory measurements suggest that ions adsorbed onto weathering product surfaces may be recognized on Mars with in-situ measurements by SAM on MSL and with orbital measurements from TES. Future experiments will include similar laboratory measurements of phosphate- and sulfate-adsorbed nanophase ferric oxides.

  16. Investigation of drug-porous adsorbent interactions in drug mixtures with selected porous adsorbents.

    Science.gov (United States)

    Madieh, Shadi; Simone, Michael; Wilson, Wendy; Mehra, Dev; Augsburger, Larry

    2007-04-01

    The adsorption of drugs onto porous substrates may prove to be a convenient method by which to enhance the dissolution rate of certain poorly water-soluble drugs in body fluids. The purpose of this research is to provide a better understanding of the type of interactions occurring between drugs and certain pharmaceutically acceptable porous adsorbents that leads to enhanced drug dissolution rates. The interactions between ibuprofen (acidic drug), acetaminophen (acidic drug), dipyridamole (basic drug), and the porous adsorbents used (calcium silicate and silica gel) were investigated using differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier Transform infrared spectroscopy (FTIR). DSC and PXRD results indicated a significant loss of crystallinity of both ibuprofen and acetaminophen but not dipyridamole. In the case of ibuprofen, FTIR results indicated the ionization of the carboxylic group based on the shift in the FTIR carboxylic band. Dissolution of ibuprofen from its mixtures with porous adsorbents was found to be significantly higher compared to the neat drug, whereas dipyridamole dissolution from its mixtures with porous adsorbents was not significantly different from that of the neat drug. PMID:17221849

  17. Heat capacity measurements of atoms and molecules adsorbed on evaporated metal films

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, T.W.

    1989-05-01

    Investigations of the properties of absorbed monolayers have received great experimental and theoretical attention recently, both because of the importance of surface processes in practical applications such as catalysis, and the importance of such systems to the understanding of the fundamentals of thermodynamics in two dimensions. We have adapted the composite bolometer technology to the construction of microcalorimeters. For these calorimeters, the adsorption substrate is an evaporated film deposited on one surface of an optically polished sapphire wafer. This approach has allowed us to make the first measurements of the heat capacity of submonolayer films of /sup 4/He adsorbed on metallic films. In contrast to measurements of /sup 4/He adsorbed on all other insulating substrates, we have shown that /sup 4/He on silver films occupies a two-dimensional gas phase over a broad range of coverages and temperatures. Our apparatus has been used to study the heat capacity of Indium flakes. CO multilayers, /sup 4/He adsorbed on sapphire and on Ag films and H/sub 2/ adsorbed on Ag films. The results are compared with appropriate theories. 68 refs., 19 figs.

  18. Heat capacity measurements of atoms and molecules adsorbed on evaporated metal films

    International Nuclear Information System (INIS)

    Investigations of the properties of absorbed monolayers have received great experimental and theoretical attention recently, both because of the importance of surface processes in practical applications such as catalysis, and the importance of such systems to the understanding of the fundamentals of thermodynamics in two dimensions. We have adapted the composite bolometer technology to the construction of microcalorimeters. For these calorimeters, the adsorption substrate is an evaporated film deposited on one surface of an optically polished sapphire wafer. This approach has allowed us to make the first measurements of the heat capacity of submonolayer films of 4He adsorbed on metallic films. In contrast to measurements of 4He adsorbed on all other insulating substrates, we have shown that 4He on silver films occupies a two-dimensional gas phase over a broad range of coverages and temperatures. Our apparatus has been used to study the heat capacity of Indium flakes. CO multilayers, 4He adsorbed on sapphire and on Ag films and H2 adsorbed on Ag films. The results are compared with appropriate theories. 68 refs., 19 figs

  19. A novel magnetic 4A zeolite adsorbent synthesised from kaolinite type pyrite cinder (KTPC)

    Science.gov (United States)

    Wang, Weiqing; Feng, Qiming; Liu, Kun; Zhang, Guofan; Liu, Jing; Huang, Yang

    2015-01-01

    As a solid waste, kaolinite type pyrite cinder (KTPC) is a special pyrite cinder, its mineral components include metakaolin and magnetite, and the chemical compositions of these minerals include SiO2, Al2O3, FeO and Fe2O3. In this study, a novel magnetic 4A zeolite adsorbent was synthesised from KTPC using the hydrothermal method, and the optimum hydrothermal synthesis conditions were investigated using X-ray diffraction (XRD) and by determining the specific surface area (SSA) and the saturated cation exchange adsorption capacity (SCEAC) to Cs+. Under the optimum hydrothermal synthesis conditions, the magnetic 4A zeolite adsorbent can be synthesised with high crystallinity, and the SSA and SCEAC to Cs+ are 24.49 m2/g and 106.63 mg/g, respectively. The further characterisations of pore size distribution, scanning electron microscopy (SEM), energy dispersive X-ray (EDX), thermogravimetry-derivative thermogravimetry-differential thermal analysis (TG-DTG-DTA), Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM) were performed. The results revealed that magnetic particles are coated onto the zeolite surface and further form magnetic aggregates, and the existing magnetic particles in KTPC do not change their crystal structure and do not affect the synthesis of the 4A zeolite. In addition, the synthesised 4A zeolite adsorbent can be used as a magnetic adsorbent in wastewater treatment with high magnetic sensitivity and is thermally stable up to approximately 900 C.

  20. Comparison of Lead Removal by Various Types of Swine Bone Adsorbents

    Directory of Open Access Journals (Sweden)

    Sudaratn Lurtwitayapont

    2010-01-01

    Full Text Available The removal capacities of lead by bone adsorbents, prepared in various appropriate types, have been studied in a single component system using agitated batch sorption. The adsorbent characteristics before and after sorption were examined by electron microscopy, surface area analysis (BET, crystalline structure by x-ray diffractometer (XRD, chemical compositions by x-ray fluorescence (XRF and by Fourier transform infrared (FT-IR. The results showed that the main component of swine bone adsorbents is calcium hydroxylapatite with Ca/P ratio is 1.70; the calcium ion and the range of mesopores of the appropriate pore sizes are the important factors for the ion-exchange process and the sorption process. The effects of carbonization, activation, initial metal ion solution concentration, contact time and quantities of bone adsorbent mass were studied. The capacity removal of lead onto bone powder, bone char and activated bone char were 417, 1828 and 690 mg/g, respectively, for 10 mg/L and pH 50.1 of the initial lead ion solution concentration, with an agitation speed 175 rpm. The sorption isotherm was also studied and indicated that the Langmuir isotherm model closely fits the sorbtion of lead onto bone char.

  1. Influence of superconductor film composition on adhesion strength of coated conductors

    Science.gov (United States)

    Kesgin, Ibrahim; Khatri, Narayan; Liu, Yuhao; Delgado, Louis; Galstyan, Eduard; Selvamanickam, Venkat

    2016-01-01

    The effect of high temperature superconductor (HTS) film composition on the adhesion strength of rare-earth barium copper oxide coated conductors (CCs) has been studied. It has been found that the mechanical integrity of the superconductor layer is very susceptible to the defects especially those along the ab plane, probably due to the weak interfaces between the defects and the matrix. Gd and Y in the standard composition were substituted with Sm and the number of in-plane defects was drastically reduced. Consequently, a four-fold increase in adhesion or peeling strength in Sm-based CCs was achieved compared to the standard GdYBCO samples.

  2. Interplay of adsorbate-adsorbate and adsorbate-substrate interactions in self-assembled molecular surface nanostructures

    DEFF Research Database (Denmark)

    Schnadt, Joachim; Xu, Wei; Vang, Ronnie Thorbjørn; Knudsen, Jan; Li, Zheshen; Lægsgaard, Erik; Besenbacher, Flemming

    2010-01-01

    The adsorption of 2,6-naphthalenedicarboxylic acid (NDCA) molecules on the Ag(110), Cu(110), and Ag(111) surfaces at room temperature has been studied by means of scanning tunnelling microscopy (STM). Further supporting results were obtained using X-ray photoelectron spectroscopy (XPS) and soft X......-ray absorption spectroscopy (XAS). On the Ag(110) support, which had an average terrace width of only 15 nm, the NDCA molecules form extended one-dimensional (1-D) assemblies, which are oriented perpendicular to the step edges and have lengths of several hundred nanometres. This shows that the assemblies have a......-edge crossing is not observed when the molecules are adsorbed on the isotropic Ag(111) or more reactive Cu(110) surfaces. On Ag(111), similar 1-D assemblies are formed to those on Ag(110), but they are oriented along the step edges. On Cu(110), the carboxylic groups of NDCA are deprotonated and form covalent...

  3. New type of amidoxime-group-containing adsorbent for the recovery of uranium from seawater. III. Recycle use of adsorbent

    International Nuclear Information System (INIS)

    An amidoxime-group adsorbent for recovering uranium from seawater was made by radiation-induced graft polymerization of acrylonitrile onto polymeric fiber, followed by amidoximation. Uranium adsorption of the adsorbent contacted with seawater in a column increased with the increase in flow rate, then leveled off. The relationship between uranium adsorption in a batch process and the ratio of the amount of seawater to that of adsorbent was found to be effective in evaluating adsorbent contacted with any amount of seawater. The conditioning of the adsorbent with an alkaline solution at higher temperature (?800C) after the acid desorption recovered the adsorption ability to the original level. This made it possible to apply the adsorbent to recycle use. On the other hand, the adsorbent conditioned at room temperature or that without conditioning lost adsorption ability during recycle use. The increase in water uptake was observed as one of the physical changes produced during recycle use of the alkaline-conditioned adsorbent, while the decrease in water uptake was observed with the unconditioned adsorbent. The IR spectra of the adsorbent showed a probability of reactions of amidoxime groups with acid and alkaline solutions, which can explain the change in uranium adsorption during the adsorption-desorption cycle

  4. Synthesis of Nanocomposite Adsorbent on the Base of Polypropylene Fabric with Copper Ferrocyanide Grains

    Directory of Open Access Journals (Sweden)

    Bondar I.V.

    2012-08-01

    Full Text Available Composite adsorbents based on polypropylene fibers with chemically bound nanopartices of copper ferrocyanide were synthesized by two-stage experiment: radiation-induced graft polymerization of acrylic acid onto non-woven polypropylene fabric followed by in-situ formation of copper ferrocyanize nanoparticles and their stabilization on the fabric surface within the grafted layer. Scanning electron microscope investigations revealed a homogeneous compact layer of copper ferrocynide nanosized aggregates (65-70 nm. The synthesized composite material was stable in the base solutions (pH ? 10.5 and exhibited high efficiency for cesium adsorption.

  5. The adsorption of water isotopomers on carbon adsorbents

    International Nuclear Information System (INIS)

    Adsorption isotherms in the range 50-80 Deg C were measured by gas chromatography, and isosteric adsorption heats of isotopomers of water were calculated in the range of low fillings at two activated carbons (Norit and FAS) with close volume of micropores (0.38 and 0.37 cm3/g), but various surface chemistry (AC Norit with hydrophilic surface and AC FAS with hydrophobic one). Adsorption of H2O and D2O at AC Norit exceeds adsorption at AC FAS at all equilibrium pressures. Adsorption isotherms of H2O and D2O at every adsorbents are close, but some excess of isotherms and adsorption heats of D2O as compared with H2O ones observes. It is connected with the differences in adsorbate-adsorbent and adsorbate-adsorbate interactions as well as with the structure of molecules of adsorbates

  6. Transmission of a gaseous radioactive isotope through an adsorber bed

    International Nuclear Information System (INIS)

    The time-dependent and steady-state solutions for the transmission of a gaseous radioactive isotope through an adsorber bed are derived. Based on the mathematical results, criteria are given for the design of adsorber beds for decreasing the concentration of a radioactive contaminant. An example illustrates the possibility of reducing the radioactivity of short-lived xenon isotopes in a carrier gas flowing through adsorber beds. 12 refs

  7. WGS-Adsorbent Reaction Studies at Laboratory Scale

    International Nuclear Information System (INIS)

    This document reports the most significant results obtained during the experimental work performed under task WGS adsorbent experimental studies within CAPHIGAS project (National Research Plan 2008-2011, ref: ENE2009-08002). The behavior of the binary adsorbent-catalyst system which will be used in the hybrid system is described in this document. Main results reported here were used during the design and development of the hybrid system adsorbent catalyst- membrane proposed in the CAPHIGAS project. The influence of main operating parameters and the optimized volume ratio adsorbent-catalyst are also presented in this report. (Author)

  8. Multitubular option in adsorbent carbon filter unit design

    International Nuclear Information System (INIS)

    The design and performance characteristics are calculated and compared for monotubular, multitubular, and flat-bed adsorbent carbon filter units. A pentatubular unit appears to have outstanding characteristics

  9. Theoretical Insight of Physical Adsorption for a Single-Component Adsorbent + Adsorbate System: I. Thermodynamic Property Surfaces

    KAUST Repository

    Chakraborty, Anutosh

    2009-02-17

    Thermodynamic property surfaces for a single-component adsorbent + adsorbate system are derived and developed from the viewpoint of classical thermodynamics, thermodynamic requirements of chemical equilibrium, Gibbs law, and Maxwell relations. They enable us to compute the entropy and enthalpy of the adsorbed phase, the isosteric heat of adsorption, specific heat capacity, and the adsorbed phase volume thoroughly. These equations are very simple and easy to handle for calculating the energetic performances of any adsorption system. We have shown here that the derived thermodynamic formulations fill up the information gap with respect to the state of adsorbed phase to dispel the confusion as to what is the actual state of the adsorbed phase. We have also discussed and established the temperature-entropy diagrams of (i) CaCl 2-in-silica gel + water system for cooling applications, and (ii) activated carbon (Maxsorb III) + methane system for gas storage. © Copyright 2009 American Chemical Society.

  10. Nanopatterned monolayers of an adsorbed chromophore

    Energy Technology Data Exchange (ETDEWEB)

    Frederich, N; Nysten, B; Jonas, A M [Unite de Physique et de Chimie des hauts Polymeres, Universite Catholique de Louvain, Croix du Sud 1, B-1348 Louvain-la-Neuve (Belgium); Duwez, A-S [NanoChemistry and Molecular Systems, Department of Chemistry, University of Liege, B6a Sart-Tilman, B-4000 Liege (Belgium); Muls, B; Habib-Jiwan, J-L [Unite de Chimie des Materiaux Organiques et Inorganiques, Universite Catholique de Louvain, Place Louis Pasteur 1, B-1348 Louvain-la-Neuve (Belgium); Hofkens, J [Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Heverlee (Belgium)

    2008-08-20

    A simple lift-off process was developed to rapidly fabricate nanopatterned photofunctional surfaces. Dye molecules of a perylene derivative (PDID) were adsorbed irreversibly on clean silicon through the holes of an electron-beam lithographied polymer mask. The subsequent removal of the mask in a proper solvent results in PDID nanosized regions of width as small as 30 nm for stripes and of diameter as small as 120 nm for dots. Numerical analyses of atomic force microscopy and laser-scanning confocal microscopy images show that the dye molecules are confined to the regions defined by the lithographic process, with the integrated fluorescence intensity being essentially proportional to the size of the nanofeatures. This demonstrates that a simple organic lift-off process compatible with clean-room technology, and not involving any chemical step, is able to produce photofunctional nanopatterned surfaces, even though the dye is not chemically bonded to the silicon surface.

  11. The condensation of water on adsorbed viruses.

    Science.gov (United States)

    Alonso, José María; Tatti, Francesco; Chuvilin, Andrey; Mam, Keriya; Ondarçuhu, Thierry; Bittner, Alexander M

    2013-11-26

    The wetting and dewetting behavior of biological nanostructures and to a greater degree single molecules is not well-known even though their contact with water is the basis for all biology. Here, we show that environmental electron microscopy (EM) can be applied as a means of imaging the condensation of water onto viruses. We captured the formation of submicrometer water droplets and filaments on single viral particles by environmental EM and by environmental transmission EM. The condensate structures are compatible with capillary condensation between adsorbed virus particles and with known droplet shapes on patterned surfaces. Our results confirm that such droplets exist down to condensation/evaporation cycle as expected from their stability in air and water. Moreover we developed procedures that overcome problems of beam damage and of resolving structures with a low atomic number. PMID:24160759

  12. Trends in adsorbate induced core level shifts

    Science.gov (United States)

    Nilsson, Viktor; Van den Bossche, Maxime; Hellman, Anders; Grnbeck, Henrik

    2015-10-01

    Photoelectron core level spectroscopy is commonly used to monitor atomic and molecular adsorption on metal surfaces. As changes in the electron binding energies are convoluted measures with different origins, calculations are often used to facilitate the decoding of experimental signatures. The interpretation could in this sense benefit from knowledge on trends in surface core level shifts for different metals and adsorbates. Here, density functional theory calculations have been used to systematically evaluate core level shifts for (111) and (100) surfaces of 3d, 4d, and 5d transition metals upon CO, H, O and S adsorption. The results reveal trends and several non-intuitive cases. Moreover, the difficulties correlating core level shifts with charging and d-band shifts are underlined.

  13. Desorption of uranium from amidoxime fiber adsorbent

    International Nuclear Information System (INIS)

    An amidoxime fibrous adsorbent is contacted with uranium-enriched seawater (10 ppm); about 10 mg uranium is loaded per 1 g dry fiber. Then the rate and yield of uranium desorption from the fiber are determined with various eluents. Acid solutions are superior to alkali carbonate solutions as eluents. With a 0.1 molL-1 HCl solution, desorption is completed in 2 hours regardless of the presence of uranium in the leaching solution up to 15 ppm (?6 x 10-5molL-1). Serial operation of the adsorption-desorption cycle four times does not affect desorption efficiency, but the addition of heavy metal ions to the eluent at a level of 1.8 x 10-3molL-1 significantly decreases desorption efficiency. 13 refs., 5 figs., 1 tab

  14. Limited Range Fractality of Randomly Adsorbed Rods

    CERN Document Server

    Lidar, D A; Avnir, D; Lidar, Daniel A.; Biham, Ofer; Avnir, David

    1997-01-01

    Multiple resolution analysis of two dimensional structures composed of randomly adsorbed penetrable rods, for densities below the percolation threshold, has been carried out using box-counting functions. It is found that at relevant resolutions, for box-sizes, $r$, between cutoffs given by the average rod length $$ and the average inter-rod distance $r_1$, these systems exhibit apparent fractal behavior. It is shown that unlike the case of randomly distributed isotropic objects, the upper cutoff $r_1$ is not only a function of the coverage but also depends on the excluded volume, averaged over the orientational distribution. Moreover, the apparent fractal dimension also depends on the orientational distributions of the rods and decreases as it becomes more anisotropic. For box sizes smaller than $$ the box counting function is determined by the internal structure of the rods, whether simple or itself fractal. Two examples are considered - one of regular rods of one dimensional structure and rods which are tri...

  15. NOxRemoval and Effect of Adsorbate-Adsorbate Interactions

    DEFF Research Database (Denmark)

    Khan, Tuhin Suvra

    2013-01-01

    Heterogeneous catalysis is immensely important to modern and future society. It forms the foundation of chemical industry, supplying essential chemicals and commodities for transport, food production, and pharmaceuticals, and is also a cornerstone in current and future energy platforms. If the long-standing dream of an environmentally sustainable energy sector is to be fulfilled, heterogeneous catalysts aiding production, storage, and use of energy from sustainable sources, e.g. sunlight, wind, and biomass, are expected to be essential. New catalysts improving the efficiency of existing chemical processes, such as ammonia synthesis and sulphur removal in refining, may also contribute to improving future society at large. However, developing the catalysts of tomorrow presents a wealth of scientific challenges. Understanding surface science has always been essential for development and improvement of industrial chemical processes, nano-science and nano-technology, in general any process where a solid surface interacts with any surrounding liquid or gas-phase species. Computational approaches play an increasingly important role in modern surface science, and density functional theory (DFT) in particular. Indeed, several recent developments in our understanding of important aspects of heterogeneous catalysis derive from electronic structure calculations based on DFT. However, there are still many challenges and lots of scope for improvement in the density functional approach to surface science. To mention a few, to improve the accuracy of electronic structure calculations, accuracy of the physical model, completeness of kinetic models for chemical reactions, figuring out the exact state of catalysts under reaction conditions, and also reducing the complexity of our physical models. In this thesis I have analyzed these challenges systematically and have developed some new methods and models to counter those challenges and obtain some general understanding of the catalytic process. I have developed an adsorbate-adsorbate interaction model to include the coverage dependency of the adsorption energy in kinetic models to obtain more accurate catalytic rates than with the commonly used non-interacting mean field model. I then applied the proposed adsorbate-adsorbate interaction model to three important catalytic reactions, the direct NO decomposition, CO methanation, and steam reforming of methane, and analyzed the effect of adsorbate-adsorbate interactions on their catalytic rates. An alloy screening method has also been developed to screen for the industrially most promising alloy catalysts for any catalytic reaction. I have also studied the structure sensitivity of the rates of catalytic direct NO decomposition on different low-index metal surfaces. Furthermore, I have used DFT calculated adsorption and transition state energies coupled with a microkinetic model to study two industrially important catalytic reactions, NH3 oxidation and selective catalytic reduction of NOx, to obtain the catalytic trends and understand the reaction mechanisms.

  16. Preparation and characterization of adsorbents for treatment of water associated with oil production

    KAUST Repository

    Sueyoshi, Mark

    2012-09-01

    Two sets of adsorbents were prepared from locally available raw materials, characterized and tested. The first set consists of crushed natural attapulgite and crushed attapulgite mixed with petroleum tank-bottom sludge and carbonized at 650 °C. Another set was prepared using trunk of date palm tree (Phoenix dactylifera) activated at 700 and 800°C. Both sets were characterized using BET surface area and pore distributions, FTIR, XRD, SEM and TEM. Natural attapulgite and attapulgite/sludge composite exhibited different characteristics and adsorptive capacities for oil removal from oily water. Adsorptive capacities were calculated from the breakthrough curves of a column test. An oily water solution of about 500 mg-oil/L was passed through both the attapulgite and attapulgite/sludge columns until the column effluent concentration exceeded a reference limit of 10 mg-oil/L. Uptake was calculated at this limit at 155 and 405 mg-oil/g-adsorbent, respectively. This was lower than the performance of a commercial activated carbon sample (uptake calculated at 730 mg-oil/g-adsorbent). Relatively, the date palm, carbonaceous-based adsorbent samples showed less significant differences in both bulk and surface properties. Uptake significantly improved to 1330-1425 mg-oil/g-adsorbent. Attempt was made to associate this performance with the difference in the surface areas between the two sets. However, other factors are found to be important as the second set has a range of surface area less than that of the commercial sample. As evidenced by FTIR, XRD and TEM, the activated carbonaceous materials developed porous structures which form defective graphitic sheet ensembles that serve as additional adsorption sites in the sample. © 2012 Elsevier B.V.

  17. Understanding Trends in Catalytic Activity: The Effect of Adsorbate-Adsorbate Interactions for CO Oxidation Over Transition Metals

    DEFF Research Database (Denmark)

    Grabow, Lars; Larsen, Britt Hvolbk

    2010-01-01

    Using high temperature CO oxidation as the example, trends in the reactivity of transition metals are discussed on the basis of density functional theory (DFT) calculations. Volcano type relations between the catalytic rate and adsorption energies of important intermediates are introduced and the effect of adsorbate-adsorbate interaction on the trends is discussed. We find that adsorbate-adsorbate interactions significantly increase the activity of strong binding metals (left side of the volcano) but the interactions do not change the relative activity of different metals and have a very small influence on the position of the top of the volcano, that is, on which metal is the best catalyst.

  18. Thermodynamic study of fatty acids adsorption on different adsorbents

    International Nuclear Information System (INIS)

    This work has as objective the study about the adsorption behavior of fatty acids (acetic, propionic, and butyric) on activated carbon and on modified and unmodified montmorillonite clays as a function of temperature and initial concentration of the adsorbate, through adsorption isotherms and their thermodynamic parameters (ΔG, ΔH, and ΔS). The activated carbon presented a higher adsorption capacity due to its relatively large surface area, compared to others adsorbents. The polar characteristic of fatty acids decreased with the increase in the length of non-polar hydrocarbon chain, improving the affinity between the activated carbon (non-polar adsorbent) and the acids. The adsorption capacity of modified montmorillonite (polar adsorbent) was favored due to the presence of the organic cation among its layers, which make the surface more hydrophobic and organophilic when compared to the unmodified montmorillonite surface. The amount of fatty acids adsorbed in the adsorbents surface increased with the concentration, at constant temperature, and decreased with the increase of temperature, at constant concentration. The amount of fatty acids adsorbed in the three adsorbents was related to the surface area and polarity of the adsorbent, concentration and solubility of the adsorbate and temperature of the solution. The negative values of ΔG and ΔH showed that the adsorption on activated carbon and on modified and unmodified montmorillonite clays was a spontaneous and an exothermic process. The decrease in the values of ΔG, with the increase of temperature, demonstrated that the adsorption was benefited by the high temperature and the positive values of ΔS showed that the fatty acids molecules were in a more randomic condition in the adsorbed state than in solution. The experimental results obtained at the temperatures of (298, 303, 313, and 323) K showed that experimental data were well represented by the Langmuir and Freundlich isotherms models

  19. NOx Removal and Effect of Adsorbate-Adsorbate Interactions

    DEFF Research Database (Denmark)

    Khan, Tuhin Suvra

    Heterogeneous catalysis is immensely important to modern and future society. It forms the foundation of chemical industry, supplying essential chemicals and commodities for transport, food production, and pharmaceuticals, and is also a cornerstone in current and future energy platforms. If the long......-standing dream of an environmentally sustainable energy sector is to be fulfilled, heterogeneous catalysts aiding production, storage, and use of energy from sustainable sources, e.g. sunlight, wind, and biomass, are expected to be essential. New catalysts improving the efficiency of existing chemical processes...... have analyzed these challenges systematically and have developed some new methods and models to counter those challenges and obtain some general understanding of the catalytic process. I have developed an adsorbate-adsorbate interaction model to include the coverage dependency of the adsorption energy...

  20. Development of ultrafiltration and inorganic adsorbents: January--March 1977

    International Nuclear Information System (INIS)

    Ultrafiltration media with and without the assistance of bone char filters were evaluated to determine their effectiveness in removing radionuclides from contaminated solutions. Precipitants, resin, adsorbents, and inorganic adsorbents were studied to determine their effectiveness in decontaminating solutions. A study of the effects of radiation on ultrafiltration media was initiated. An ultrafiltration media pilot plant was ordered and is being installed

  1. A nuclear standard high-efficiency adsorber for iodine

    International Nuclear Information System (INIS)

    The structure of a nuclear standard high-efficiency adsorber, adsorbent and its performance are introduced. The performance and structure were compared with the same kind product of other firms. The results show that the leakage rate is less than 0.005%

  2. Cell for studying electron-adsorbed gas interactions

    International Nuclear Information System (INIS)

    The geometry and the technology of a cell used for investigations on electron-adsorbed gas interactions are described. The resonance frequencies of the surface ions which are created by the electron impact on the adsorbed gas are predicted by simplified calculations. The experimental data relative to carbon monoxide and neon are in good agreement with these predictions. (authors)

  3. Resilience of gas-phase anharmonicity in the vibrational response of adsorbed carbon monoxide and breakdown under electrical conditions

    CERN Document Server

    Dabo, Ismaila

    2012-01-01

    In surface catalysis, the adsorption of carbon monoxide on transition-metal electrodes represents the prototype of strong chemisorption. Notwithstanding significant changes in the molecular orbitals of adsorbed CO, spectroscopic experiments highlight a close correlation between the adsorbate stretching frequency and equilibrium bond length for a wide range of adsorption geometries and substrate compositions. In this work, we study the origins of this correlation, commonly known as Badger's rule, by deconvoluting and examining contributions from the adsorption environment to the intramolecular potential using first-principles calculations. Noting that intramolecular anharmonicity is preserved upon CO chemisorption, we show that Badger's rule for adsorbed CO can be expressed solely in terms of the tabulated Herzberg spectroscopic constants of isolated CO. Moreover, although it had been previously established using finite-cluster models that Badger's rule is not affected by electrical conditions, we find here th...

  4. Sequestering nickel (ii) ions from aqueous solutions using various adsorbents

    International Nuclear Information System (INIS)

    Adsorption process has proven to be one of the best water treatment technologies around the world and activated carbon is undoubtedly considered as a universal adsorbent for the removal of different types of pollutants from water. However, widespread use of commercial activated carbon is sometimes restricted due to its high cost. Attempts have been made to develop inexpensive adsorbents utilizing numerous agro-industrial and municipal waste materials. Use of agricultural waste materials as low-cost adsorbents is attractive because it reduces the cost of waste disposal, thereby leading to environmental protection. In this review, agricultural, synthetic and other adsorbents used for adsorbing nickel (II) ion from aqueous solutions are reported. Different ways to improve their efficiencies are also discussed. (author)

  5. Flow boundary conditions for chain-end adsorbing polymer blends

    CERN Document Server

    Zhou, X; Site, L D; Kremer, K

    2005-01-01

    Using the phenol-terminated polycarbonate blend as an example, we demonstrate that the hydrodynamic boundary conditions for a flow of an adsorbing polymer melt are extremely sensitive to the structure of the epitaxial layer. Under shear, the adsorbed parts (chain ends) of the polymer melt move along the equipotential lines of the surface potential whereas the adsorbed additives serve as the surface defects. In response to the increase of the number of the adsorbed additives the surface layer becomes thinner and solidifies. This results in a gradual transition from the slip to the no-slip boundary condition for the melt flow, with a non-monotonic dependence of the slip length on the surface concentration of the adsorbed ends.

  6. Noble gas separation with the use of inorganic adsorbents

    International Nuclear Information System (INIS)

    A noble gas separation process is proposed for application to airborne nuclear fuel reprocessing plant effluents. The process involves the use of inorganic adsorbents for the removal of contaminant gases and noble gas separation through selective adsorption. Water and carbon dioxide are removed with selected zeolites that do not appreciably adsorb the noble gases. Xenon is essentially quantitatively removed with a specially developed adsorbent using conventional adsorption-desorption techniques. Oxygen is removed to low ppM levels by the use of a rapid cycle adsorption technique on a special adsorbent leaving a krypton-nitrogen mixture. Krypton is separated from nitrogen with a special adsorbent operated at about -800C. Because the separation process does not require high pressures and oxygen is readily removed to sufficiently limit ozone formation to insignificant levels, appreciable capital and operating cost savings with this process are possible compared with other proposed processes. In addition, the proposed process is safer to operate

  7. Milestone Report - Complete New Adsorbent Materials for Marine Testing to Demonstrate 4.5 g-U/kg Adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Christopher James [ORNL; Das, Sadananda [ORNL; Oyola, Yatsandra [ORNL; Mayes, Richard T. [ORNL; Saito, Tomonori [ORNL; Brown, Suree [ORNL; Gill, Gary [PNNL; Kuo, Li-Jung [PNNL; Wood, Jordana [PNNL

    2014-08-01

    This report describes work on the successful completion of Milestone M2FT-14OR03100115 (8/20/2014) entitled, “Complete new adsorbent materials for marine testing to demonstrate 4.5 g-U/kg adsorbent”. This effort is part of the Seawater Uranium Recovery Program, sponsored by the U.S. Department of Energy, Office of Nuclear Energy, and involved the development of new adsorbent materials at the Oak Ridge National Laboratory (ORNL) and marine testing at the Pacific Northwest National Laboratory (PNNL). ORNL has recently developed two new families of fiber adsorbents that have demonstrated uranium adsorption capacities greater than 4.5 g-U/kg adsorbent after marine testing at PNNL. One adsorbent was synthesized by radiation-induced graft polymerization of itaconic acid and acrylonitrile onto high surface area polyethylene fibers followed by amidoximation and base conditioning. This fiber showed a capacity of 4.6 g-U/kg adsorbent in marine testing at PNNL. The second adsorbent was prepared by atom-transfer radical polymerization of t-butyl acrylate and acrylonitrile onto halide-functionalized round fibers followed by amidoximation and base hydrolysis. This fiber demonstrated uranium adsorption capacity of 5.4 g-U/kg adsorbent in marine testing at PNNL.

  8. Adsorbents based on carbon microfibers and carbon nanofibers for the removal of phenol and lead from water.

    Science.gov (United States)

    Chakraborty, Anindita; Deva, Dinesh; Sharma, Ashutosh; Verma, Nishith

    2011-07-01

    This paper describes the production, characteristics, and efficacy of carbon microfibers and carbon nanofibers for the removal of phenol and Pb(2+) from water by adsorption. The first adsorbent produced in the current investigation contained the ammonia (NH(3)) functionalized micron-sized activated carbon fibers (ACF). Alternatively, the second adsorbent consisted of a multiscale web of ACF/CNF, which was prepared by growing carbon nanofibers (CNFs) on activated ACFs via catalytic chemical vapor deposition (CVD) and sonication, which was conducted to remove catalytic particles from the CNF tips and open the pores of the CNFs. The two adsorbents prepared in the present study, ACF and ACF/CNF, were characterized by several analytical techniques, including SEM-EDX and FT-IR. Moreover, the chemical composition, BET surface area, and pore-size distribution of the materials were determined. The hierarchal web of carbon microfibers and nanofibers displayed a greater adsorption capacity for Pb(2+) than ACF. Interestingly, the adsorption capacity of ammonia (NH(3)) functionalized ACFs for phenol was somewhat larger than that of the multiscale ACF/CNF web. Difference in the adsorption capacity of the adsorbents was attributed to differences in the size of the solutes and their reactivity towards ACF and ACF/CNF. The results indicated that ACF-based materials were efficient adsorbents for the removal of inorganic and organic solutes from wastewater. PMID:21507421

  9. Development of Copper-based Adsorbent for the Separation and Recovery of Gaseous Iodine from Fission Mo-99 Production

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Suseung; Lee, Seungkon; Park, Yong Bae; Park, Ul Jae; Yoo, Kwon Mo; Choi, Kang Hyuk; Lee, Jun Sig [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Technetium-99m (Tc-99m) is one of the most important medical isotopes, which has been widely used in the diagnostic imaging technology. It can be easily extracted from the molybdenum-99 (Mo-99), the mother nuclide of Tc-99m, using a generator. In general, Mo-99 has been produced by nuclear fission of U-235 because of its high specific activity. During the Fission Mo-99 process, however, radioactive iodine gas can be inevitably released as the impurity by considerable. Thus, it is necessary to collect the gaseous iodine from the off-gas stream. For the gaseous iodine trapping, common operation using the column with sold adsorbent has been generally utilized. And the various materials such as silver or carbon-based materials have been used as effective adsorbents. In this research, we proposed and developed the copper-based adsorbent which has advantages in cost-effectiveness and high affinity with iodine. In here, we proposed and developed the copper-ceramic composite adsorbent for the collection of gaseous iodine. Micron-size copper particles were utilized as adsorbent material, and oxide-type ceramic material were introduced to prevent the gas flow blockage induced by the agglomeration between iodine-reacted copper particles. It is very simple to prepare and showed high efficiencies to the separation and recovery of gaseous iodine at the column process.

  10. Development of Copper-based Adsorbent for the Separation and Recovery of Gaseous Iodine from Fission Mo-99 Production

    International Nuclear Information System (INIS)

    Technetium-99m (Tc-99m) is one of the most important medical isotopes, which has been widely used in the diagnostic imaging technology. It can be easily extracted from the molybdenum-99 (Mo-99), the mother nuclide of Tc-99m, using a generator. In general, Mo-99 has been produced by nuclear fission of U-235 because of its high specific activity. During the Fission Mo-99 process, however, radioactive iodine gas can be inevitably released as the impurity by considerable. Thus, it is necessary to collect the gaseous iodine from the off-gas stream. For the gaseous iodine trapping, common operation using the column with sold adsorbent has been generally utilized. And the various materials such as silver or carbon-based materials have been used as effective adsorbents. In this research, we proposed and developed the copper-based adsorbent which has advantages in cost-effectiveness and high affinity with iodine. In here, we proposed and developed the copper-ceramic composite adsorbent for the collection of gaseous iodine. Micron-size copper particles were utilized as adsorbent material, and oxide-type ceramic material were introduced to prevent the gas flow blockage induced by the agglomeration between iodine-reacted copper particles. It is very simple to prepare and showed high efficiencies to the separation and recovery of gaseous iodine at the column process

  11. ?-radiolysis of methane adsorbed on ?-alumina

    International Nuclear Information System (INIS)

    An earlier study showed that ?-alumina surfaces outgassed above 570 K contain sites involving exposed lattice ions at which methane is chemisorbed during ?-irradiation. When the species so formed are heated they decompose yielding C1, C2 and C3 alkanes and alkanes together with hydrogen. The present study investigates the kinetics of the reactions occurring during irradiation. These reactions are shown to be the activation of surface sites and the dissociative chemisorption of methane, in accord with the mechanism previously suggested. Overall product yields are chiefly determined by the rate at which excited charge carriers reach the surface, the highest rate observed being G(- CH4) = 2.0 but declining when fewer than approximately 3 x 1015 m-2 chemisorption sites remain unoccupied. A kinetic scheme is proposed to account for the variation in yields with methane coverage, radiation dose and dose rate, and specific surface area of the ?-alumina. It is also shown that the individual products formed when the precursors decompose depend on the configuration of the methane chemisorption sites, and so on the origin of the ?-alumina and the outgassing temperature used. Two subsidiary reactions are identified. The first of these resembles normal radiolysis but occurs at sites less accessible to methane. In the second, however, new surface species are formed when irradiation continues after either the methane or the chemisorption sites have been exhausted. These scavenge part of the adsorbed hydrocarbon material. (author)

  12. Neutron reflectivity study of adsorbed diblock copolymers

    International Nuclear Information System (INIS)

    This paper summarizes our cumulative work on neutron reflectivity studies of polystyrene-poly(vinyl-2-pyridine) (PS-PVP) and polystyrenepolyethylene oxide (PS-PEO) adsorbed at a quartz-solvent interface. Deuterated toluene was chosen as the solvent since it is a good solvent for PS and a poor one for either of the other two blocks. In this case, the polystyrene dangles into the solvent while the other block acts as an anchor. The neutron reflectivity studies reveal that the form of the polymer density profile normal to the substrate may be varied from an extended ''brush'' to a condensed ''mushroom'' conformation by manipulating the ratio of the molecular weights of the two blocks. In addition, we present new data on the PS-PEO system in a poor solvent, deuterated cyclohexane, under conditions of shear flow in Poiseuille geometry. We find that when the PS-PEO diblock is absorbed from cyclohexane and is allowed to relax, the PS chain takes on a ''mushroom'' conformation. However, when the shear is applied, the layer shear thickens due to the PS chains extended to nearly twice their original lengths

  13. Bowl inversion of surface-adsorbed sumanene.

    Science.gov (United States)

    Jaafar, Rached; Pignedoli, Carlo A; Bussi, Giovanni; At-Mansour, Kamel; Groening, Oliver; Amaya, Toru; Hirao, Toshikazu; Fasel, Roman; Ruffieux, Pascal

    2014-10-01

    Bowl-shaped ?-conjugated compounds offer the possibility to study curvature-dependent host-guest interactions and chemical reactivity in ideal model systems. For surface-adsorbed ? bowls, however, only conformations with the bowl opening pointing away from the surface have been observed so far. Here we show for sumanene on Ag(111) that both bowl-up and bowl-down conformations can be stabilized. Analysis of the molecular layer as a function of coverage reveals an unprecedented structural phase transition involving a bowl inversion of one-third of the molecules. On the basis of scanning tunneling microscopy (STM) and complementary atomistic simulations, we develop a model that describes the observed phase transition in terms of a subtle interplay between inversion-dependent adsorption energies and intermolecular interactions. In addition, we explore the coexisting bowl-up and -down conformations with respect to host-guest binding of methane. STM reveals a clear energetic preference for methane binding to the concave face of sumanene. PMID:25181621

  14. Pyrolyzed feather fibers for adsorbent and high temperature applications

    Science.gov (United States)

    Senoz, Erman

    Chicken feather fibers (CFF) are problematic and costly for the poultry industry in terms of managing maintenance and disposal. Considering their great availability, low cost, and unique protein structure, CFF can be an environmentally friendly and bio-renewable candidate to replace petroleum products. CFF's low degradation and melting temperature render them useless at high temperatures. Pyrolysis methods were developed for CFF by using two temperature steps to convert them into high temperature resistant and adsorbent fibers while retaining their original physical appearance and affine dimensions. An intermolecular crosslinking mechanism in the first step of pyrolysis at 215 C for 24 h provided an intact fibrous structure with no subsequent melting. The evidence obtained from the thermal, bulk, and surface analysis techniques was indication of the simultaneous side chain degradation, polypeptide backbone scission, disulfide bond cleavage, and isopeptide crosslinking. The variation in the reaction kinetics of disulfide bond cleavage and isopeptide crosslinking played an important role in the melting transition. Consequently, long-lasting heat treatments below the melting point provided sufficient crosslinks in the protein matrix to keep the fibrous structure intact. Water-insoluble and crosslinked CFF reinforced the triglyceride-fatty acid based composites by providing a 15 fold increase in storage and tensile modulus at room temperature. These thermally stable fibers can be used instead of CFF in composites which may require high temperature compounding and molding processes. The second step of pyrolysis at 400--450 C for 1 h resulted in microporous fibers with a micropore volume of 0.18 cm3/g STP and with a narrower pore size distribution than commercial activated carbons through thermal degradation. Nearly all accessible pores in the microporous pyrolyzed chicken feather fibers (PCFF) had diameters less than 1 nm and therefore, showed a potential to be used in applications such as adsorption, storage, and separation of small gas molecules. The maximum excess H2 storage capacity was 1.5 wt% at 77 K and at pressures below 2 MPa. The notable H2 adsorption of PCFF below 1 MPa can be justified by the abundance of microporosity and the nanopores available for H2 penetration. In the second step of the pyrolysis the protein matrix went through a series of transformations including cyclization and aromatization reactions above the melting point. A partially cyclic carbon-nitrogen framework (carbon/nitrogen ratio=2.38) supported by double and triple bonds and oxygen functionalities is the suggested structural model for the PCFF. The useful fibers and adsorbents produced from CFF in this dissertation can encourage researchers to use high temperature heat treatments on keratin-based fibers. Also, the identified pyrolysis mechanisms can serve as a guide for producing materials with desired properties from protein-based materials, particularly in textile, high performance composite and catalyst industries.

  15. Mercury adsorption properties of sulfur-impregnated adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Hsi, H.C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.G.; Chang, R.

    2002-07-01

    Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg-0 and HgCl{sub 2} gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 {mu}g Hg/g adsorbents. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R-2 {gt} 0.92 between the equilibrium Hg-0/HgCl{sub 2} adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg-0 and HgCl{sub 2}.

  16. One-pot synthesis of a graphene oxide coated with an imprinted sol–gel for use in electrochemical sensing of paracetamole

    International Nuclear Information System (INIS)

    A route is described for the preparation of a composite consisting of graphene oxide and a molecularly imprinted sol–gel polymer (GO/MIPs) through one-pot room temperature polymerization in aqueous solution. The material was obtained by mixing graphene oxide with the monomers (phenyltriethoxysilane and tetramethoxysilane) and the template paracetamole, followed by sol–gel copolymerization and extraction. The monomer and template concentrations and the incubation time were optimized. The composite was characterized by FTIR, TGA, XRD, Raman spectroscopy and SEM. It was then deposited as a thin film acting as a molecular recognition element on a glassy carbon electrode to obtain an electrochemical sensor for paracetamole. The electrode displayed an excellent recognition capacity toward paracetamole compared to its analogs. The peak current is linearly proportional to the concentration of paracetamole in the 0.1 μM to 80 μM range, and the detection limit is 20 nM (at an SNR of 3). Hence, this electrode possesses a wider response range and lower detection limit compared to most previously reported electrochemical sensors for paracetamole. It also exhibits excellent stability and has been successfully used to determine paracetamole in tablets and spiked human urine samples. (author)

  17. Effects of cathode current density on structure and corrosion resistance of plasma electrolytic oxidation coatings formed on ZK60 Mg alloy

    International Nuclear Information System (INIS)

    Current density is a key factor in plasma electrolytic oxidation (PEO) process. The aim of this paper is to study the effects of cathode current density on the composition, morphology, and corrosion resistance of ceramic coatings on ZK60 magnesium alloy prepared through bi-polar plasma electrolytic oxidation in Na3PO4 solution. The phase composition, morphology, and corrosion resistance were studied by X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Electrochemical Impedance Spectroscopy (EIS) and potentiodynamic polarization in 3.5% NaCl solution. It is found that the as-produced coatings are only composed of MgO. The increase of cathode current density made the coatings less porous and more compact. Analysis of EIS and potentiodynamic polarization technique on the samples shows that the corrosion resistance of the coated samples is better than that of ZK60 magnesium alloy, and that a bigger cathode current density can improve the corrosion resistance of as-prepared coatings.

  18. Morphology of adsorbed polymers and solid surface wettability.

    Science.gov (United States)

    Kaggwa, Gillian B; Froebe, Stefanie; Huynh, Le; Ralston, John; Bremmell, Kristen

    2005-05-10

    The adsorption of a polyacrylamide (MW 14600) and two polysaccharides (MW 9260 and 706 x 10(3)) onto model silica surfaces of different hydrophobicities was investigated. In all cases, adsorption adhered to the Freundlich isotherm, reflecting the heterogeneous character of the solid substrates. The latter strongly influenced the character of the adsorbed polymer, with morphologies from chainlike structures to thin films and patches being observed. Surface roughness, polymer type, and molecular weight also play roles in controlling adsorbed polymer morphology. Surface wettability is strongly influenced by the thickness of the adsorbed layer. PMID:16032891

  19. Effects of adsorbents in dairy cow diet on milk quality and cheese-making properties

    Directory of Open Access Journals (Sweden)

    G. Pirlo

    2010-04-01

    Full Text Available The use of adsorbents (clinoptilolite+sepiolite in the diet of cows was evaluated in two trials. A total of 52 Italian Friesian cows were assigned to one of two dietary treatments, control and adsorbent (CON vs. ADS. Individual and bulk milk samples were collected. On individual data, no significant difference was found between treatments in milk yield, milk fat, protein, and lactose concentrations, milk protein yield, pH, and titratable acidity, both in summer and spring. In spring only, there was a trend (P = 0.07 for a higher milk fat yield and a lower somatic cell number in ADS than in CON group. In summer only, milk clotting time was higher in ADS than in CON group (P < 0.05. On bulk milk, no significant differences in components and technological features were found between the CON and ADS groups. The bulk milk contents in total and soluble Ca were 1100 vs. 1108 mg/kg and 378 vs. 369 mg/kg for CON and ADS respectively, proving to be unaffected by treatment and suggesting a lack of interference by ADS on milk Ca availability for cheese-making process.We concluded that, for a period of 12 weeks, the addition of 1% on DM of the diet for lactating cows of non-nutritional adsorbents does not negatively affect milk yield, milk composition, and cheese-making features.

  20. Dipodal Ferrocene-Based Adsorbate Molecules for Self-Assembled Monolayers on Gold

    OpenAIRE

    Weidner, Tobias; Ballav, Nirmalya; Zharnikov, Michael; Priebe, Andreas; Long, Nicholas J.; Maurer, Jrg; Winter, Rainer; Rothenberger, Alexander; Fenske, Dieter; Rother, Dag; Bruhn, Clemens; Fink, Heinrich; Siemeling, Ulrich

    2008-01-01

    1,1?-Difunctionalised ferrocene derivatives have been studied, which contain groups suitable for chemisorption on gold substrates, namely [BOND]NC, [BOND]PR2 as well as a range of sulfur-containing units like [BOND]NCS, [BOND]SR, and thienyl. Thin films on gold have been fabricated from solution with most of these adsorbate species. Film thickness, composition and structure were investigated primarily by X-ray photoelectron and near-edge X-ray absorption fine-structure spectroscopy. The quali...

  1. EFFECT OF KOH ON MICRO-ARC OXIDATION COATINGS OF 2A12 ALUMINUM ALLOYS IN CH3COONa-Na2WO4 ELECTROLYTE

    Science.gov (United States)

    Lin, Zhao Qing; Yu, Hui Jun; He, Si Yu; He, Yi Ning; Chen, Chuan Zhong

    2014-02-01

    The ceramic coatings were prepared on 2A12 alloy by micro-arc oxidation in CH3COONa-Na2WO4 electrolyte system with different concentration of KOH added. The effects of KOH in this electrolyte on micromorphology, phase compositions, adhesion and corrosion resistance of the coatings were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD), scratch test and electrochemistry workstation. The results show that KOH has a significant influence on the surface morphology, which can make the surface smoother. The adhesion of the coating becomes stronger with the increase of KOH in the electrolyte. The corrosion resistance of the coated specimen increases a lot compared with that of the substrate. And the lowest corrosion current density (Icorr) of the coating prepared in the electrolyte with KOH is about three orders of magnitude lower than that of the substrate.

  2. Dynamics of CO 2 Adsorption on Amine Adsorbents. 2. Insights Into Adsorbent Design

    KAUST Repository

    Bollini, Praveen

    2012-11-21

    Packed bed breakthrough experiments are reported for commercial zeolite 13X and 3-aminopropyl-functionalized SBA-15 silica materials with three different amine loadings. Mass and heat transfer dynamics for all four materials are modeled successfully. Amine adsorbents with open pores are found to exhibit faster mass diffusion rates compared to zeolite 13X. When amine loading is increased by coupling aminopropyl groups, premature breakthrough combined with a long tail is observed. Contrary to conventional physisorbants, finite heat losses to the column wall do not explain the long breakthrough tail. A rate model that accounts for heterogeneity in diffusion was found to accurately capture the breakthrough shape of the high loading material. Batch uptake measurements support the hypothesis that slow diffusion through the polymer phase is what hampers adsorption kinetics in the high amine loading adsorbent. The results emphasize the importance of designing materials that are not overloaded with amine sites, as excessive amine loadings can lead to depressed adsorption kinetics and premature column breakthrough. © 2012 American Chemical Society.

  3. Effect of heat-treatment on phase formation and crystallization of sol–gel derived Al2O3, ZrO2–Y2O3, and Ta2O5 oxide coatings

    Directory of Open Access Journals (Sweden)

    Yang-Il Jung

    2015-06-01

    Full Text Available Various oxides of Al2O3, ZrO2–Y2O3, and Ta2O5 were coated on ferritic–martensitic steel for application as an environmental barrier layer. Sol–gel based coating was investigated to form the oxides by varying the coating parameters, such as the concentration of the precursors, the temperature of the curing, cycles of repeated runs, and additional heat-treatment. The obtained coatings revealed nano-sized granular structures. The surface morphologies were rough in alumina and zirconia, but appeared smooth in tantalum oxide. In the case of alumina and tantalum oxide, coated layers were mostly amorphous after pyrolysis at 750 °C. The crystalline phases were obtained after an additional heat-treatment at 950 °C. In the case of zirconia, a desirable oxide phase was formed when the samples were cured at 750 °C during the coating process. In addition to the heat-treatment after the coating, the repeated coatings were effective in crystallizing the coated layers and forming proper oxides.

  4. PHYSICAL CHARACTERIZATION AND DESULFURIZATION OF BIOBRIQUETTE USING CALCIUM-BASED ADSORBENT

    Directory of Open Access Journals (Sweden)

    Khairil

    2011-11-01

    Full Text Available Combustion of coal and co-combustion of their co-fuel contribute to gas emissions. Among the gas emissions are SOx, NOx, CO and CO2. Introduction of calcium based adsorbent is addressed to absorb SO2 that release to the atmosphere during the combustion process. Objective of the research is at first to observe the physical characteristics of biobriquettes as a function of briquette compositions (coal to palm kernel shell ratios and Ca/S ratios (Ca in adsorbent and S in briquette using a natural adsorbent (shellfish waste. The second objective is to investigate desulfurizationcharacteristics as a function of Ca/S ratios and desulfurization temperatures at coal to palm kernel shell ratio of 90:10 (wt %. Ratios of coal to palm kernel shell in this study are 90:10, 80:20, 70:30, 60:40 and 50:50; and Ca/S ratios are 1:1, 1.25:1, 1.5:1, 1.75:1 and 2:1. Binding agent used is the mixture of Jatropha curcas seeds and starch as much as 10% (wt. It was found that introducing the palm kernel shell and adsorbents in the coal briquette affect the water resistant and compressive strength. The highest water resistance and compressive strength were 5,165 second and 34 kg/cm2, respectively. The lowest SO2 level found in this study was 1 ppm for all Ca/S ratios, except for 1:1.

  5. Application of a new adsorbent for fluoride removal from aqueous solutions

    International Nuclear Information System (INIS)

    Highlights: A new adsorbent has been prepared. The adsorbent is non-toxic and easy to synthesize. HBO1 has displayed best capacity for the removal of fluoride. Unlike most adsorbents, HBO1 is suitable for the removal of fluoride from water. The process of removal has been optimized. -- Abstract: Hydrous bismuth oxides (HBOs) have been investigated as a possible adsorbent for fluoride removal from water. Apart from bismuth trioxide (Bi2O3) compound, three additional HBOs, named as HBO1, HBO2, and HBO3 were synthesized in the laboratory and examined for their relative potentials for fluoride removal from aqueous solutions. HBO1 was observed to have highest fluoride removal at 10 mg/L initial concentration in aqueous environment. Among competitive anions, sulfate and chloride affect the fluoride removal by HBO1 more adversely than bicarbonate. Characterization of HBOs using X-ray diffraction (XRD) pattern analyses indicated crystalline structures, and the broad chemical composition of materials showed successive increase of Bi(OH)3 from HBO1 to HBO3, with decrease of BiOCl in the same order. Fourier Transform Infrared (FTIR) spectroscopy analyses indicated presence of Bi-O bond and successively increasing number of peaks corresponding to OH ion from HBO1 to HBO3. Scanning Electron Microscopic (SEM) images of HBOs show rough and porous structure of the materials. Presence of higher proportion of chloride compound in HBO1 with respect to others appears to be the factor responsible for its better performance in fluoride removal from aqueous solutions

  6. Characterization of novel adsorbents for radiostrontium reduction in foods

    International Nuclear Information System (INIS)

    Distribution coefficients, pH dependence, isotherms, kinetics and breakthrough curves of Sr binding have been measured on several types of adsorbents (carbons modified with titanium silicate, crystalline titanium silicate, mixed titanium-manganese oxide, and synthetic zeolites A4 and P) from different water solutions. It is concluded that acid-base properties of the adsorbent is very important for Sr binding. Titanium silicate based adsorbents had reduced chemical stability in an artificial food fluid below pH 2, the mixed titanium manganese oxide below pH 6, zeolite A4 below pH 5 and zeolite P below pH 7. Consideration is given to the feasibility of the adsorbents for food decontamination. (author)

  7. Trace contaminant studies of HSC adsorbent. M.S. Thesis

    Science.gov (United States)

    Yieh, D. T. N.

    1978-01-01

    The adsorption and desorption of fifteen trace contaminants on HSC (polyethylenimine coated acrylic ester) adsorbent were experimentally investigated with the following two objectives: to test the removal potential and the adsorption reversibility of the selected trace contaminants, and to test the effect a preadsorbed trace contaminant has on the CO2 adsorption capacity. The experimental method for acquiring the adsorption equilibrium data used is based on the volumetric (or displacement) concept of vacuum adsorption. From the experimental results, it was found that the HSC adsorbent has good adsorption potential for contaminants of alcohol compounds, esters, and benzene compounds; whereas, adsorption of ketone compounds, oxidizing and reducing agents are detrimental to the adsorbent. In addition, all liquid contaminants reduce the CO2 capacity of HSC adsorbent.

  8. Synthesis and uranium adsorption behavior of alginate-based adsorbents

    International Nuclear Information System (INIS)

    The crosslinked microspheres of alginate were synthesized by inverse suspension polymerization, and the effect of the concentration of sodium alginate solution and stirring speed on the formation of microsphere was studied. Biopolymeric adsorbents with amidocyanogen were synthesized based on alginate polymeric matrixes by chemical modification. The adsorbents were characterized by FTIR and determination of ammonio content. When the concentration of sodium alginate solution was 3%-4% and stirring speed was 250-300 r/min, the crosslinked microsphere had regular morphology and high mechanical strength. Uranium can be removed effectively from low concentration uranium solutions by the alginate-based adsorbent (SATT) modified with triethylenetetreamine, and the removal rate was more than 92%. The adsorbent was expected to use for wastewater treatment in uranium hydrometallurgy. (authors)

  9. TESTING OF CARBONACEOUS ADSORBENTS FOR REMOVAL OF POLLUTANTS FROM WATER

    Directory of Open Access Journals (Sweden)

    RAISA NASTAS

    2012-03-01

    Full Text Available Testing of carbonaceous adsorbents for removal of pollutants from water. Relevant direction for improving of quality of potable water is application of active carbons at various stages of water treatments. This work includes complex research dealing with testing of a broad spectrum of carbonaceous adsorbents for removal of hydrogen sulfide and nitrite ions from water. The role of the surface functional groups of carbonaceous adsorbents, their acid-basic properties, and the influence of the type of impregnated heteroatom (N, O, or metals (Fe, Cu, Ni, on removal of hydrogen sulfide species and nitrite ions have been researched. The efficiency of the catalyst obtained from peach stones by impregnation with Cu2+ ions of oxidized active carbon was established, being recommended for practical purposes to remove the hydrogen sulfide species from the sulfurous ground waters. Comparative analysis of carbonaceous adsorbents reveals the importance of surface chemistry for oxidation of nitrite ions.

  10. Electronic structure of benzene adsorbed on Ni and Cu surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Weinelt, M.; Nilsson, A.; Wassdahl, N. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Benzene has for a long time served as a prototype adsorption system of large molecules. It adsorbs with the molecular plane parallel to the surface. The bonding of benzene to a transition metal is typically viewed to involve the {pi} system. Benzene adsorbs weakly on Cu and strongly on Ni. It is interesting to study how the adsorption strength is reflected in the electronic structure of the adsorbate-substrate complex. The authors have used X-ray Emission (XE) and X-ray Absorption (XA) spectroscopies to selectively study the electronic states localized on the adsorbed benzene molecule. Using XES the occupied states can be studies and with XAS the unoccupied states. The authors have used beamline 8.0 and the Swedish endstation equipped with a grazing incidence x-ray spectrometer and a partial yield absorption detector. The resolution in the XES and XAS were 0.5 eV and 0.05 eV, respectively.

  11. Adsorption of remazol brilliant blue on an orange peel adsorbent

    Directory of Open Access Journals (Sweden)

    M. R. Mafra

    2013-09-01

    Full Text Available A novel orange peel adsorbent developed from an agricultural waste material was characterised and utilised for the removal of Remazol Brilliant Blue from an artificial textile-dye effluent. The adsorption thermodynamics of this dye-adsorbent pair was studied in a series of equilibrium experiments. The time to reach equilibrium was 15 h for the concentration range of 30 mg L-1 to 250 mg L-1. The adsorption capacity decreased with increasing temperature, from 9.7 mg L-1 at 20 C to 5.0 mg L-1 at 60 C. Both the Langmuir and Freundlich isotherm models fitted the adsorption data quite reasonably. The thermodynamic analysis of dye adsorption onto the orange peel adsorbent indicated its endothermic and spontaneous nature. Thus, the application of orange peel adsorbent for the removal of dye from a synthetic textile effluent was successfully demonstrated.

  12. Surface diffusion of adsorbed molecular hydrogen at low temperatures

    International Nuclear Information System (INIS)

    Temperature dependence of surface diffusion coefficient was studied for molecular hydrogen adsorbed on tungsten (110) face at low temperatures (6-10 K). The data testify for tunneling mechanism of hydrogen diffusion

  13. Low Pressure Adsorbent for Recovery & Storage Vented Hydrogen Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A high performance fullerene-based adsorbent is proposed for recovery and storage hydrogen and separating helium via pressure-swing-adsorption (PSA) process....

  14. Belgian experience in operation and testing of gasketless charcoal adsorbers

    International Nuclear Information System (INIS)

    Since the 80's, almost all filtration systems installed in the new Belgian Nuclear Power plants have been equipped with gasketless charcoal adsorbers. Depending on the architect engineers and applications, different options were chosen, using e.g. several bed depth, with or without guard beds, with or without pneumatic loading systems. This paper presents a synthesis of more than 1000 adsorber system-years of experience obtained from the periodic testing of this particular type of filters. The testing method used in Belgium (injection of I-131 tracer in the form of either methyliodide or molecular iodine) allows to gather valuable informations about the behavior of those gasketless adsorbers in actual working conditions. In addition to the particular testing method, an extrapolation technique is used to be able to determine an expected decontamination factor in design operating conditions (higher relative humidities - higher air flow rates). Finally, several testing, design and working problems encountered with those type of adsorbers are discussed

  15. Adsorption of remazol brilliant blue on an orange peel adsorbent

    Scientific Electronic Library Online (English)

    M. R., Mafra; L., Igarashi-Mafra; D. R., Zuim; . C., Vasques; M. A., Ferreira.

    2013-09-01

    Full Text Available A novel orange peel adsorbent developed from an agricultural waste material was characterised and utilised for the removal of Remazol Brilliant Blue from an artificial textile-dye effluent. The adsorption thermodynamics of this dye-adsorbent pair was studied in a series of equilibrium experiments. T [...] he time to reach equilibrium was 15 h for the concentration range of 30 mg L-1 to 250 mg L-1. The adsorption capacity decreased with increasing temperature, from 9.7 mg L-1 at 20 C to 5.0 mg L-1 at 60 C. Both the Langmuir and Freundlich isotherm models fitted the adsorption data quite reasonably. The thermodynamic analysis of dye adsorption onto the orange peel adsorbent indicated its endothermic and spontaneous nature. Thus, the application of orange peel adsorbent for the removal of dye from a synthetic textile effluent was successfully demonstrated. Abstract in english [...

  16. Radiation grafted adsorbents for newly emerging environmental applications

    Science.gov (United States)

    Mahmoud Nasef, Mohamed; Ting, T. M.; Abbasi, Ali; Layeghi-moghaddam, Alireza; Sara Alinezhad, S.; Hashim, Kamaruddin

    2016-01-01

    Radiation induced grafting (RIG) is acquired to prepare a number of adsorbents for newly emerging environmental applications using a single route involving RIG of glycidymethacrylate (GMA) onto polyethylene-polypropylene (PE-PP) non-woven fabric. The grafted fabric was subjected to one of three functionalization reactions to impart desired ionic characters. This included treatment with (1) N-dimethyl-D-glucamine, (2) triethylamine and (3) triethylamine and alkalisation with KOH. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) were used to study the changes in chemical and physical structures of the obtained fibrous adsorbents. The potential applications of the three adsorbents for removal of boron from solutions, capturing CO2 from CO2/N2 mixtures and catalysing transesterification of triacetin/methanol to methyl acetate (biodiesel) were explored. The obtained fibrous adsorbents provide potential alternatives to granular resins for the investigated applications and require further development.

  17. Oil palm biomass as an adsorbent for heavy metals.

    Science.gov (United States)

    Vakili, Mohammadtaghi; Rafatullah, Mohd; Ibrahim, Mahamad Hakimi; Abdullah, Ahmad Zuhairi; Salamatinia, Babak; Gholami, Zahra

    2014-01-01

    Many industries discharge untreated wastewater into the environment. Heavy metals from many industrial processes end up as hazardous pollutants of wastewaters.Heavy metal pollution has increased in recent decades and there is a growing concern for the public health risk they may pose. To remove heavy metal ions from polluted waste streams, adsorption processes are among the most common and effective treatment methods. The adsorbents that are used to remove heavy metal ions from aqueous media have both advantages and disadvantages. Cost and effectiveness are two of the most prominent criteria for choosing adsorbents. Because cost is so important, great effort has been extended to study and find effective lower cost adsorbents.One class of adsorbents that is gaining considerable attention is agricultural wastes. Among many alternatives, palm oil biomasses have shown promise as effective adsorbents for removing heavy metals from wastewater. The palm oil industry has rapidly expanded in recent years, and a large amount of palm oil biomass is available. This biomass is a low-cost agricultural waste that exhibits, either in its raw form or after being processed, the potential for eliminating heavy metal ions from wastewater. In this article, we provide background information on oil palm biomass and describe studies that indicate its potential as an alternative adsorbent for removing heavy metal ions from wastewater. From having reviewed the cogent literature on this topic we are encouraged that low-cost oil-palm-related adsorbents have already demonstrated outstanding removal capabilities for various pollutants.Because cost is so important to those who choose to clean waste streams by using adsorbents, the use of cheap sources of unconventional adsorbents is increasingly being investigated. An adsorbent is considered to be inexpensive when it is readily available, is environmentally friendly, is cost-effective and be effectively used in economical processes. The advantages that oil palm biomass has includes the following:available and exists in abundance, appears to be effective technically, and can be integrated into existing processes. Despite these advantages, oil palm biomasses have disadvantages such as low adsorption capacity, increased COD, BOD and TOC. These disadvantages can be overcome by modifying the biomass either chemically or thermally. Such modification creates a charged surface and increases the heavy metal ion binding capacity of the adsorbent. PMID:24984835

  18. Future of AgX as a radioactive iodine adsorbent

    International Nuclear Information System (INIS)

    AgX as a radioactive iodine adsorbent has been developed. It can be used in nuclear power plant when an emergency occurs. The experimental results show that the adsorbent has excellent adsorption properties even in the harsh gas atmosphere and severe conditions such as high temperature, high humidity and high pressure. In this report, the adsorption properties for methyl iodide will be especially described. (author)

  19. Pulling adsorbed self-avoiding walks from a surface

    OpenAIRE

    Guttmann, Anthony J.; Jensen, Iwan; Whittington, Stu G.

    2013-01-01

    We consider a self-avoiding walk model of polymer adsorption where the adsorbed polymer can be desorbed by the application of a force, concentrating on the case of the square lattice. Using series analysis methods we investigate the behaviour of the free energy of the system when there is an attractive potential $\\epsilon$ with the surface and a force $f$ applied at the last vertex, normal to the surface, and extract the phase boundary between the ballistic and adsorbed phas...

  20. Residence time determination for adsorbent beds of different configurations

    Energy Technology Data Exchange (ETDEWEB)

    Otermat, J.E.; Wikoff, W.O.; Kovach, J.L.

    1995-02-01

    The residence time calculations of ASME AG-1 Code, Section FC, currently specify a screen surface area method, that is technically incorrect. Test data has been obtained on Type II adsorber trays of different configurations to establish residence time in the adsorber trays. These data indicate that the air volume/carbon volume ratio or the average screen area are more appropriate for the calculation of the residence time calculation than the currently used, smallest screen area basis.

  1. Vanadium (4) complexing in phase of adsorbent with benzimidazole groups

    International Nuclear Information System (INIS)

    Equilibrium and kinetic characteristics of V4+ sorption by POLYORGS XI-H adsorbent with benzimidazole groups (BIm) are investigated. Using ESR method it is stated that [VO2+]:[BIm]1:2 complex, where VO2+ is combined with nitrogen atoms of two imidazole groups, is formed in adsorbent phase. The highest distribution factor of 4.7x103 is attained at pH6

  2. Functionalisation of Surfaces: Isomerisation and Chirality of Adsorbed Molecules

    OpenAIRE

    Schmidt-Weber, P.

    2008-01-01

    This thesis deals with the conformational properties of adsorbed molecules. The behavior of molecules with a C=C double bond adsorbed on semiconductor and metal surfaces is investigated and the manifestation of handedness of intrinsically achiral and chiral molecules upon adsorption is reported on. With its two phenyl groups connected via a C=C double bond bridge, stilbene is a prototype molecule for a photochromic "molecular switch". It was investigated mainly using near edge x-ray absor...

  3. Conductivity of graphene with resonant and non-resonant adsorbates

    OpenAIRE

    Trambly De Laissardire, Guy; Mayou, Didier

    2012-01-01

    We propose a unified description of transport in graphene with adsorbates that fully takes into account localization effects and loss of electronic coherence due to inelastic processes. We focus in particular on the role of the scattering properties of the adsorbates and analyze in detail cases with resonant or non resonant scattering. For both models we identify several regimes of conduction depending on the value of the Fermi energy. Sufficiently far from the Dirac energy ...

  4. Distribution of adsorbed molecules in electronic nose sensors

    DEFF Research Database (Denmark)

    Swann, M.J.; Glidle, A.

    2000-01-01

    Neutron reflectivity measurements of thin films of electropolymerised poly(pyrrole) show that swelling of these insoluble polymers does occur following vapour adsorption. The variation in swelling found for different vapours is correlated with corresponding changes in polymer conductivity and mass of adsorbed vapour. This correlation suggests that hydrophobic and hydrophilic vapour species adsorb into regions of the membrane with different solvating environments (C) 2000 Elsevier Science B.V. All rights reserved.

  5. Distribution of adsorbed molecules in electronic nose sensors

    DEFF Research Database (Denmark)

    Swann, M.J.; Glidle, A.; Gadegaard, Nikolaj; Cui, L.; Barker, J.R.; Cooper, J.M.

    2000-01-01

    Neutron reflectivity measurements of thin films of electropolymerised poly(pyrrole) show that swelling of these insoluble polymers does occur following vapour adsorption. The variation in swelling found for different vapours is correlated with corresponding changes in polymer conductivity and mass of adsorbed vapour. This correlation suggests that hydrophobic and hydrophilic vapour species adsorb into regions of the membrane with different solvating environments (C) 2000 Elsevier Science B.V. Al...

  6. Radiolysis of CFC-113 adsorbed on a molecular sieve

    International Nuclear Information System (INIS)

    Molecular sieve 13X adsorbing CFC-113 was irradiated with ?-rays and then was soaked in water. The concentrations of Cl- and F- of the supernatant solutions increased with irradiation time, indicating that both defluorination and dechlorination of CFC-113 occur. The dechlorination proceeds by a chain reaction when 2-propanol is adsorbed on the molecular sieve together with CFC-113. It is suggested that the dehalogenation of CFC-113 is promoted by the molecular sieve. (author)

  7. INFRARED SPECTROSCOPY OF ADSORBED MOLECULES : SOME EXPERIMENTAL ASPECTS

    OpenAIRE

    Ryberg, R.

    1983-01-01

    This paper reviews the experimental situation in infrared spectroscopy of adsorbed molecules, particularly molecules adsorbed on a single crystalline metal surface. The experimental conditions for this kind of study are defined and some special difficulties with infrared spectroscopy are discussed. This is followed by a review of the different experimental setups that have been used in the field. As an example of an infrared spectrometer dedicated for surface physics work an evacuated wavelen...

  8. Plant waste materials from restaurants as the adsorbents for dyes

    OpenAIRE

    Pavlovi? Marija D.; Nikoli? Ivan R.; Milutinovi? Milica D.; Dimitrijevi?-Brankovi? Suzana I.; iler-Marinkovi? Slavica S.; Antonovi? Duan G.

    2015-01-01

    This paper has demonstrated the valorization of inexpensive and readily available restaurant waste containing most consumed food and beverage residues as adsorbents for methylene blue dye. Coffee, tea, lettuce and citrus waste have been utilized without any pre-treatment, thus the adsorption capacities and dye removal efficiency were determined. Coffee waste showed highest adsorbent capacity, followed by tea, lettuce and citrus waste. The dye removal was mo...

  9. Efforts to Consolidate Chalcogels with Adsorbed Iodine

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Pierce, David A.; Chun, Jaehun

    2013-08-28

    This document discusses ongoing work with non-oxide aerogels, called chalcogels, that are under development at the Pacific Northwest National Laboratory as sorbents for gaseous iodine. Work was conducted in fiscal year 2012 to demonstrate the feasibility of converting Sn2S3 chalcogel without iodine into a glass. This current document summarizes the work conducted in fiscal year 2013 to assess the consolidation potential of non-oxide aerogels with adsorbed iodine. The Sn2S3 and Sb13.5Sn5S20 chalcogels were selected for study. The first step in the process for these experiments was to load them with iodine (I2). The I2 uptake was ~68 mass% for Sn2S3 and ~50 mass% for Sb13.5Sn5S20 chalcogels. X-ray diffraction (XRD) of both sets of sorbents showed that metal-iodide complexes were formed during adsorption, i.e., SnI4 for Sn2S3 and SbI3 for Sb13.5Sn5S20. Additionally, metal-sulfide-iodide complexes were formed, i.e., SnSI for Sn2S3 and SbSI for Sb13.5Sn5S20. No XRD evidence for unreacted iodine was found in any of these samples. Once the chalcogels had reached maximum adsorption, the consolidation potential was assessed. Here, the sorbents were heated for consolidation in vacuum-sealed quartz vessels. The Sb13.5Sn5S20 chalcogel was heated both (1) in a glassy carbon crucible within a fused quartz tube and (2) in a single-containment fused quartz tube. The Sn2S3 chalcogel was only heated in a single-containment fused quartz tube. In both cases with the single-containment fused quartz experiments, the material consolidated nicely. However, in both cases, there were small fractions of metal iodides not incorporated into the final product as well as fused quartz particles within the melt due to the sample attacking the quartz wall during the heat treatment. The Sb13.5Sn5S20 did not appear to attack the glassy carbon crucible so, for future experiments, it would be ideal to apply a coating, such as pyrolytic graphite, to the inner walls of the fused quartz vessel to prevent melt attack.

  10. Relaxation and crystallization phenomena of water adsorbed to cellulose

    International Nuclear Information System (INIS)

    Complete text of publication follows. Cellulose, the most abundant biopolymer whose unit is D-anhydroglucose pyranose, has a tendency to adsorb water due to unsaturated hydroxyl groups in low ordered regions. This adsorbed water is present in the temperature range of 200 K < T < 273 K in different modifications. Due to voids and pores within and between the cellulose fibers, water molecules are able to build crystalline aggregations. Beyond that, water is able to penetrate the low ordered regions [1] and it adsorbs to cellulose chains. As introduced earlier in [2], the adsorbed water freezes to an amorphous like ice, while above T = 200 K an onset of relaxational motion on different time-scales (ns, ps) occurs. Recent neutron diffraction and INS data of water adsorbed to amorphous cellulose are shown as a new model system. Together with earlier experiments, the characteristics of relaxational motions are summarized and similarities to a glass transition of adsorbed water are discussed. (author) [1] J.M. Ioelovits and M. Gordeev, Acta Polymer. 45, 121-123 (1994); [2] J.C. Czihak, M. Mueller, H. Schober, L. Heux, G. Vogl, Physica B 266, 878-91. (1999)

  11. Cryogenic adsorber design in a helium refrigeration system

    Science.gov (United States)

    Hu, Zhongjun; Zhang, Ning; Li, Zhengyu; Li, Q.

    2012-06-01

    The cryogenic adsorber is specially designed to eliminate impurities in gaseous helium such as O2, and N2 which is normally difficult to remove, based on the reversible cryotrapping of impurities on an activated carbon bed. The coconut shell activated carbon is adopted because of its developed micropore structure and specific surface area. This activated carbon adsorption is mostly determined by the micropore structure, and the adsorption rate of impurities is inversely proportional to the square of the particle sizes. The active carbon absorber's maximum permissible flow velocity is 0.25 m/s. When the gas flow velocity increases, the adsorption diffusion rate of the adsorbent is reduced, because an increase in the magnitude of the velocity resulted in a reduced amount of heat transfer to a unit volume of impure gas. According to the numerical simulation of N2 adsorption dynamics, the appropriate void tower link speed and the saturated adsorption capacity are determined. Then the diameter and height of the adsorber are designed. The mass transfer length should be taken into account in the adsorber height design. The pressure decrease is also calculated. The important factors that influence the adsorber pressure decrease are the void tower speed, the adsorbed layer height, and the active carbon particle shape and size.

  12. The Effects of Na2SiO3 Concentration on the Properties of Plasma Electrolytic Oxidation Coatings on 6060 Aluminum Alloy

    Science.gov (United States)

    Becerik, D. Alexandre; Ayday, Aysun; Kumruo?lu, L. Cenk; Kurnaz, S. Can; zel, Ahmet

    2012-07-01

    In this study, 6060 aluminum alloy was coated by plasma electrolytic oxidation (PEO) process. The effect of sodium silicate concentration (A solution-7.5 g/LB solution-15 g/L) on various morphological properties and corrosion resistance of the surface was investigated. The correlation between the microwave sintering of 6060 aluminum alloy coated by PEO and non-microwave sintering of 6060 aluminum alloy properties are discussed. Detailed estimation of the quality of the coated metal surface was performed by additional testing of chemical compositions by EDS, crystalline structure of the films was examined using x-ray diffraction (XRD) and scanning electron microscope (SEM). The results showed that the oxidation layer was of typical morphology for the PEO process. The porosity amount of 6060 aluminum sample coated with 15 g/L was obtained higher than that of 7.5 g/L. In addition to, the porosity of all coated samples was decreased with increasing microwave sintering time. The corrosion resistance of coated samples with microwave sintering process was better than non-microwave sintering of 6060 aluminum alloy.

  13. Indiumtin-oxide coatings for applications in photovoltaics and displays deposited using rotary ceramic targets: Recent insights regarding process stability and doping level

    International Nuclear Information System (INIS)

    Several aspects related to high power sputtering with industrial scale sintered ceramic rotary indiumtin-oxide (ITO) targets are presented in the first part of this paper. In particular, the process stability and target integrity upon sputtering with ? 20 kW/m power load and the influence of the gap size between cylindrical segments are discussed. Results show that, in order to avoid nodule formation and deposition rate fluctuations, direct current (DC) power load needs to be limited well below 20 kW/m over long sputter runs. Additional work demonstrates that at a gap size at or below 0.15 mm, strongly adhering deposits form readily between cylindrical segments which are not observed with standard 0.35 mm gaps. The influence of Sn doping level on electro-optical properties of thin films targeting an application such as hetero-junction c-Si solar cells is also investigated. Again, rotary targets operated at high power (10 kW/m) are used, including standard grade ITO containing 10 wt.% SnO2 and another composition with only 3 wt.% SnO2. The influence of H2 and different concentrations of O2 in the sputter gas is analysed for both target materials. Results indicate that although coatings derived from the lower-doped ITO exhibit considerably less absorption in the NIR due to lower carrier concentrations, their resistivity is nearly 30% higher than that from the standard ITO coating

  14. Gold recovery from low concentrations using nanoporous silica adsorbent

    Science.gov (United States)

    Aledresse, Adil

    The development of high capacity adsorbents with uniform porosity denoted 5%MP-HMS (5% Mercaptopropyl-Hexagonal Mesoporous Structure) to extract gold from noncyanide solutions is presented. The preliminary studies from laboratory simulated noncyanide gold solutions show that the adsorption capacities of these materials are among the highest reported. The high adsorption saturation level of these materials, up to 1.9 mmol/g (37% of the adsorbent weight) from gold chloride solutions (potassium tetrachloroaurate) and 2.9 mmol/g (57% of the adsorbent weight) from gold bromide solutions (potassium tetrabromoaurate) at pH = 2, is a noteworthy feature of these materials. This gold loading from [AuC4]- and [AuBr4 ]- solutions corresponds to a relative Au:S molar ratio of 2.5:1 and 3.8:1, respectively. These rates are significantly higher than the usual 1:1 (Au:S) ratio expected for metal ion binding with the material. The additional gold ions loaded have been spontaneously reduced to metallic gold in the mesoporous material. Experimental studies indicated high maximum adsorptions of gold as high as 99.9% recovery. Another promising attribute of these materials is their favourable adsorption kinetics. The MP-HMS reaches equilibrium (saturation) in less than 1 minute of exposure in gold bromide and less than 10 minutes in gold chloride. The MP-HMS materials adsorption is significantly improved by agitation and the adsorption capacity of Au (III) ions increases with the decrease in pH. The recovery of adsorbed gold and the regeneration of spent adsorbent were investigated for MP-HMS adsorbent. The regenerated adsorbent (MP-HMS) maintained its adsorption capacity even after repeated use and all the gold was successfully recovered from the spent adsorbent. For the fist time, a promising adsorbent system has been found that is capable of effectively concentrating gold thiosulphate complexes, whereas conventional carbon-inpulp (CIP) and carbon-in-leach (CIL) systems fail. The gold adsorption shows the high affinity of the mesoporous material to the gold-thiosulphate ([Au (S2O3)2]3- ) ions. A high adsorption saturation level for these materials was found, up to 0.25 mmol (5 mg) Au/g of HMS from gold-thiosulphate solutions. When ammonia was added to the thiosulphate solutions, with or without added copper, the mesoporous material (HMS) achieved the maximum adsorption, 0.24 mmol (47 mg) Au/g of HMS at pH = 7, where as 0.14 mmol (28 mg) Au/g was adsorbed from ammonia-thiosulphate solution at pH > 6. For the fist time, a promising adsorbent system has been found that is capable of effectively concentrating gold thiosulphate complexes, whereas conventional carbon-in-pulp (CIP) and carbon-in-leach (CIL) systems fail. For process design of gold adsorption by HMS particles, certain engineering conditions and practical limitations have to be considered, including particle size of the MP-HMS. Therefore, several experiments have been conducted to enlarge the size of the very fine MP-HMS particles to a size (1--2mm) satisfying the engineering requirements for process design in a real practical and industrial process. The agglomerated mesoporous materials, using sodium metasilicate (Na 2SiO3) binder, adsorbed gold ions in the range of 51%--63% of what the parent HMS powder adsorb. That means the agglomerates can adsorb 19--23% of their own weight (or 190--230 mg Au per one gram of the agglomerated HMS) from [AuCL4]- which is still very satisfactory and acceptable comparing to the current used adsorbents.

  15. On the effect of coverage-dependent adsorbate-adsorbate interactions for CO methanation on transition metal surfaces

    DEFF Research Database (Denmark)

    Lausche, Adam C.; Medford, Andrew J.

    2013-01-01

    Heterogeneously catalyzed reactions involving the dissociation of strongly bonded molecules typically need quite reactive catalysts with high coverages of intermediate molecules. Methanation of carbon monoxide is one example, where CO dissociation has been reported to take place on step sites with a high coverage of CO. At these high coverages, reaction intermediates experience interaction effects that typically reduce their adsorption energies. Herein, the effect of these interactions on the activities of transition metals for CO methanation is investigated. For transition metals that have low coverages of reactants, the effect is minimal. But for materials with high coverages under reaction conditions, rates can change by several orders of magnitude. Nevertheless, the position of the maximum of the activity volcano does not shift significantly, and the rates at the maximum are only slightly perturbed by adsorbate-adsorbate interactions. In order to accurately describe selectivities, however, adsorbate-adsorbate interactions will likely need to be included.

  16. Effect of (NaPO3)6 concentrations on corrosion resistance of plasma electrolytic oxidation coatings formed on AZ91D magnesium alloy

    International Nuclear Information System (INIS)

    Different plasma electrolytic oxidation (PEO) coatings were prepared on AZ91D magnesium alloy in electrolytes containing various concentrations of (NaPO3)6. The morphologies, chemical compositions and corrosion resistance of the PEO coatings were characterized by environmental scanning electron microscopy (ESEM), X-ray diffractometer (XRD), energy dispersive analysis of X-rays (EDAX), potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) test. The results showed that the PEO coatings were mainly composed of MgO, Mg2SiO4, MgAl2O4 and amorphous compounds. As the (NaPO3)6 concentrations increased from 0 to 10 g/l, the thickness and surface roughness of the coatings approximately linearly increased; the MgO and Mg2SiO4 phase increased within the concentration range of 0-3 and 0-5 g/l, and then decreased within the range of 3-10 and 5-10 g/l, respectively, while the MgAl2O4 phase gradually decreased. Moreover, the corrosion resistance of the coatings increased within the range of 0-5 g/l and then decreased within the range of 5-10 g/l. The best corrosion resistance coating was obtained in electrolyte containing 5 g/l (NaPO3)6, it had the most compact microstructure. Besides, a reasonable equivalent circuit was established, and the fitting results were consistent with the results of the EIS test

  17. Electronic Structure Investigation of Surface-Adsorbate and Adsorbate-Adsorbate Interactions in Multilayers of CH4 on MgO(100)

    Energy Technology Data Exchange (ETDEWEB)

    Sumpter, Bobby G [ORNL; Drummond, Michael L [ORNL; Larese, John Z [ORNL; Shelton Jr, William Allison [ORNL

    2007-01-01

    The adsorption of methane on MgO(100) is examined using extensive first-principles DFT methods combined with inelastic neutron scattering. The results provide evidence that the structure of the first adsorbed methane layer is dominated by surface-adsorbate interactions, although adsorbate-adsorbate interactions still play a role. More specifically, the former selects for a structure wherein partially positive hydrogen atoms are oriented towards lattice oxygen sites, whereas the latter effect dictates that each methane molecule is rotated by 90 with respect to its neighbor. The structure of a second added layer is consistent with that predicted solely based on interadsorbate repulsion, although, as this structure is also favored by the electrostatic character of the surface, the roles of each effect can not be entirely evaluated independently. At the third layer, and presumably all higher layers, methane is structures so that the number of close H-H contacts is minimized. Quantum molecular dynamics simulations lend further support to the highly influential role of repulsive interadsorbate interactions in determining structure. Methane rotation at each layer is also studied.

  18. Preparation of a new adsorbent from activated carbon and carbon nanofiber (AC/CNF for manufacturing organic-vacbpour respirator cartridge

    Directory of Open Access Journals (Sweden)

    Forushani Abbas Rahimi

    2013-01-01

    Full Text Available Abstract In this study a composite of activated carbon and carbon nanofiber (AC/CNF was prepared to improve the performance of activated carbon (AC for adsorption of volatile organic compounds (VOCs and its utilization for respirator cartridges. Activated carbon was impregnated with a nickel nitrate catalyst precursor and carbon nanofibers (CNF were deposited directly on the AC surface using catalytic chemical vapor deposition. Deposited CNFs on catalyst particles in AC micropores, were activated by CO2 to recover the surface area and micropores. Surface and textural characterizations of the prepared composites were investigated using Brunauer, Emmett and Tellers (BET technique and electron microscopy respectively. Prepared composite adsorbent was tested for benzene, toluene and xylene (BTX adsorption and then employed in an organic respirator cartridge in granular form. Adsorption studies were conducted by passing air samples through the adsorbents in a glass column at an adjustable flow rate. Finally, any adsorbed species not retained by the adsorbents in the column were trapped in a charcoal sorbent tube and analyzed by gas chromatography. CNFs with a very thin diameter of about 10-20 nm were formed uniformly on the AC/CNF. The breakthrough time for cartridges prepared with CO2 activated AC/CNF was 117 minutes which are significantly longer than for those cartridges prepared with walnut shell- based activated carbon with the same weight of adsorbents. This study showed that a granular form CO2 activated AC/CNF composite could be a very effective alternate adsorbent for respirator cartridges due to its larger adsorption capacities and lower weight.

  19. Preparation of a New Adsorbent from Activated Carbon and Carbon Nanofiber (AC/CNF for Manufacturing Organic-Vacbpour Respirator Cartridge

    Directory of Open Access Journals (Sweden)

    Mehdi Jahangiri

    2013-01-01

    Full Text Available In this study a composite of activated carbon and carbon nanofiber (AC/CNF was prepared to improve the performance of activated carbon (AC for adsorption of volatile organic compounds (VOCs and its utilization for respirator cartridges. Activated carbon was impregnated with a nickel nitrate catalyst precursor and carbonnanofibers (CNF were deposited directly on the AC surface using catalytic chemical vapor deposition. Deposited CNFs on catalyst particles in AC micropores, were activated by CO2 to recover the surface area and micropores.Surface and textural characterizations of the prepared composites were investigated using Brunauer, Emmett andTellers (BET technique and electron microscopy respectively. Prepared composite adsorbent was tested forbenzene, toluene and xylene (BTX adsorption and then employed in an organic respirator cartridge in granularform. Adsorption studies were conducted by passing air samples through the adsorbents in a glass column at an adjustable flow rate. Finally, any adsorbed species not retained by the adsorbents in the column were trapped in a charcoal sorbent tube and analyzed by gas chromatography. CNFs with a very thin diameter of about 10-20 nmwere formed uniformly on the AC/CNF. The breakthrough time for cartridges prepared with CO2 activated AC/CNF was 117 minutes which are significantly longer than for those cartridges prepared with walnut shell- based activated carbon with the same weight of adsorbents. This study showed that a granular form CO2 activated AC/CNF composite could be a very effective alternate adsorbent for respirator cartridges due to its larger adsorption capacities and lower weight.

  20. Preparation of a new adsorbent from activated carbon and carbon nanofiber (AC/CNF) for manufacturing organic-vacbpour respirator cartridge.

    Science.gov (United States)

    Jahangiri, Mehdi; Adl, Javad; Shahtaheri, Seyyed Jamaleddin; Rashidi, Alimorad; Ghorbanali, Amir; Kakooe, Hossein; Forushani, Abbas Rahimi; Ganjali, Mohammad Reza

    2013-01-01

    In this study a composite of activated carbon and carbon nanofiber (AC/CNF) was prepared to improve the performance of activated carbon (AC) for adsorption of volatile organic compounds (VOCs) and its utilization for respirator cartridges. Activated carbon was impregnated with a nickel nitrate catalyst precursor and carbon nanofibers (CNF) were deposited directly on the AC surface using catalytic chemical vapor deposition. Deposited CNFs on catalyst particles in AC micropores, were activated by CO2 to recover the surface area and micropores. Surface and textural characterizations of the prepared composites were investigated using Brunauer, Emmett and Teller's (BET) technique and electron microscopy respectively. Prepared composite adsorbent was tested for benzene, toluene and xylene (BTX) adsorption and then employed in an organic respirator cartridge in granular form. Adsorption studies were conducted by passing air samples through the adsorbents in a glass column at an adjustable flow rate. Finally, any adsorbed species not retained by the adsorbents in the column were trapped in a charcoal sorbent tube and analyzed by gas chromatography. CNFs with a very thin diameter of about 10-20 nm were formed uniformly on the AC/CNF. The breakthrough time for cartridges prepared with CO2 activated AC/CNF was 117 minutes which are significantly longer than for those cartridges prepared with walnut shell- based activated carbon with the same weight of adsorbents. This study showed that a granular form CO2 activated AC/CNF composite could be a very effective alternate adsorbent for respirator cartridges due to its larger adsorption capacities and lower weight. PMID:23369424

  1. Phase transfer of agglomerated nanoparticles: deagglomeration by adsorbing grafted molecules and colloidal stability in polymer solutions

    International Nuclear Information System (INIS)

    A study is presented, where agglomerated magnetite nanoparticles with a crystallite size of 15 nm are transferred from water to an immiscible organic phase and tend to deagglomerate under certain conditions using different types of chemically adsorbing fatty acid. It is shown that the longer fatty acids lead to more stable dispersions and for the longest fatty acids, the functionality of the molecules defines stability with best results for ricinoleic acid. The disjoining force as a function of the brush layer thickness and adsorption density is calculated with a physical model applying the well-established Alexander de Gennes theory. We further investigate the colloidal stability of the transferred and stabilized magnetite nanocrystals in polymer solutions of destabilizing PMMA and stabilizing PVB. A DLVO-like theory presents the governing attractive and repulsive interactions for the case of destabilizing non-adsorbing polymers. The theory can be used to explain the influencing parameters in a mixture of sterically stabilized nanoparticles in an organic solvent based solution of polymer coils. Finally, by spray drying, we produce polymernanoparticle composite microparticles. Based on BET, laser diffraction and backscatter electron SEM measurements, we draw conclusions on the nanoparticle distribution within the composite in correlation with the stability investigations.

  2. Phase transfer of agglomerated nanoparticles: deagglomeration by adsorbing grafted molecules and colloidal stability in polymer solutions

    Energy Technology Data Exchange (ETDEWEB)

    Rudolph, Martin, E-mail: martin.rudolph@mvtat.tu-freiberg.de [Helmholtz-Institute Freiberg for Resource Technology (Germany); Peuker, Urs Alexander [TU Bergakademie Freiberg, Institute of Mechanical Process Engineering and Minerals Processing (Germany)

    2012-07-15

    A study is presented, where agglomerated magnetite nanoparticles with a crystallite size of 15 nm are transferred from water to an immiscible organic phase and tend to deagglomerate under certain conditions using different types of chemically adsorbing fatty acid. It is shown that the longer fatty acids lead to more stable dispersions and for the longest fatty acids, the functionality of the molecules defines stability with best results for ricinoleic acid. The disjoining force as a function of the brush layer thickness and adsorption density is calculated with a physical model applying the well-established Alexander de Gennes theory. We further investigate the colloidal stability of the transferred and stabilized magnetite nanocrystals in polymer solutions of destabilizing PMMA and stabilizing PVB. A DLVO-like theory presents the governing attractive and repulsive interactions for the case of destabilizing non-adsorbing polymers. The theory can be used to explain the influencing parameters in a mixture of sterically stabilized nanoparticles in an organic solvent based solution of polymer coils. Finally, by spray drying, we produce polymer-nanoparticle composite microparticles. Based on BET, laser diffraction and backscatter electron SEM measurements, we draw conclusions on the nanoparticle distribution within the composite in correlation with the stability investigations.

  3. Study of the conformational change of adsorbed proteins on biomaterial surfaces using hydrogen-deuterium exchange with mass spectroscopy.

    Science.gov (United States)

    Kim, Jinku

    2016-05-01

    There is no doubt that protein adsorption plays a crucial role in determining biocompatibility of biomaterials. Despite the information of the identity and composition of blood plasma/serum proteins adsorbed on surfaces of biomaterials to understand which proteins are involved in blood/biomaterial interactions, it still does not provide information about the conformations and orientations of adsorbed protein, which are very important in determining biological responses to biomaterials. Therefore, our laboratory has developed an experimental technology to probe protein conformations on materials that is applicable to mixtures of proteins. Herein, the new application of hydrogen/deuterium (H/D) exchange combined with mass spectrometry was applied to determine conformational changes of adsorbed proteins at biomaterial surfaces. The results suggest that there may be a significant conformational change in adsorbed proteins at 'low' bulk concentrations that leads to a large change in the kinetics of H/D exchange as compared to 'high' bulk concentrations. This technique may eventually be useful for the study of the kinetics of protein conformational changes. PMID:26896658

  4. Novel adsorbent from agricultural waste (cashew NUT shell for methylene blue dye removal: Optimization by response surface methodology

    Directory of Open Access Journals (Sweden)

    Ramalingam Subramaniam

    2015-09-01

    Full Text Available Activated carbon, prepared from an agricultural waste, cashew nut shell (CNS was utilized as an adsorbent for the removal of methylene blue (MB dye from aqueous solution. Batch adsorption study was carried out with variables like pH, adsorbent dose, initial dye concentration and time. The response surface methodology (RSM was applied to design the experiments, model the process and optimize the variable. A 24 full factorial central composite design was successfully employed for experimental design and analysis of the results. The parameters pH, adsorbent dose, initial dye concentration, and time considered for this investigation play an important role in the adsorption studies of methylene blue dye removal. The experimental values were in good agreement with the model predicted values. The optimum values of pH, adsorbent dose, initial dye concentration and time are found to be 10, 2.1846 g/L, 50 mg/L and 63 min for complete removal of MB dye respectively.

  5. Adsorption behavior of lithium from seawater using manganese oxide adsorbent

    International Nuclear Information System (INIS)

    The deuterium-tritium (D-T) fusion reactor system is expected to provide the main source of electricity in the future. Large amounts of lithium will be required, dependent on the reactor design concept, and alternative resources should be found to provide lithium inventories for nuclear fusion plants. Seawater has recently become an attractive source of this element and the separation and recovery of lithium from seawater by co-precipitation, solvent extraction and adsorption have been investigated. Amongst these techniques, the adsorption method is suitable for recovery of lithium from seawater, because certain inorganic ion-exchange materials, especially spinel-type manganese oxides, show extremely high selectivity for the lithium ion. In this study, we prepared a lithium adsorbent (HMn2O4) by elution of spinel-type lithium di-manganese-tetra-oxide (LiMn2O4) and examined the kinetics of the adsorbent for lithium ions in seawater using a pseudo-second-order kinetic model. The intermediate, LiMn2O4, can be synthesized from LiOHH2O and Mn3O4, from which the lithium adsorbent can subsequently be prepared via acid treatment., The adsorption kinetics become faster and the amount of lithium adsorbed on the adsorbent increases with increasing solution temperature. The thermodynamic values, ?G0, ?H0 and ?S0, indicate that adsorption is an endothermic and spontaneous process. (author)

  6. The influence of adsorbent properties on uranium recovery cost

    International Nuclear Information System (INIS)

    The authors made a study as to how the variations of adsorbent properties would affect the unit production cost of uranium when it was extracted from sea water by the pumping and fixed-bed system. The study was conducted on the following assumption : hydrous titanium oxide was used as adsorbent, and the size of a plant was of the production capacity of 1,000 t-U/y. The linear flow rate of sea water, the thickness of the bed, and adsorption time were changed according to the variations of adsorbent properties, and the optimum conditions of plant operation were set up. Taking into consideration of the depression of uranium concentration in sea water along with the direction of water flow in the bed, the amount of uranium adsorbed was calculated by using diffusion equations. The analyses of the system showed that the linear flow rate of sea water was not independent of the bed thickness, and the best combination yielded the minimum uranium cost. The effect of the equilibrated adsorption capacity of adsorbent upon the reduction of the unit production cost was small, but that of the liquid-film mass transfer coefficient kf was pretty large. The optimum adsorption time per cycle was about 25 days. As a result of cost estimations, the unit costs ranged from $289.2/1b to $190.2/1b U3O8 (1976 dollars) were obtained for the plant of the production rate of 1,000 t-U/y. (author)

  7. Toward a detailed characterization of oil adsorbates as "solid liquids".

    Science.gov (United States)

    Kutza, Claudia; Metz, Hendrik; Kutza, Johannes; Syrowatka, Frank; Mder, Karsten

    2013-05-01

    Solid lipid formulation systems are used to overcome oral bioavailability problems of poorly water-soluble drugs. One promising process is the conversion of a liquid lipid system in a free flowing powder by use of adsorbing excipients. The aim of this study was the detailed characterization of solid-liquid interactions in oil adsorbed to Fujicalin and Neusilin which were manufactured by means of dual asymmetric centrifugation or conventional mortar/pestle blending. The adsorption strength of the excipients was investigated by Benchtop-NMR and ESR spectroscopy revealing the highest adsorption power for the Neusilin products. The adsorbate production methods as well as the storage of the excipients impact their adsorption properties. Environmental scanning electron microscopy (ESEM) and confocal laser scanning microscopy (CLSM) show that dual asymmetric centrifugation leads to a smoothing of the particle surface, whereas the mortar/pestle blending results in an uneven surface and particle destruction. The oil distribution at the particles is inhomogeneous for both production methods. The micropolarity of the adsorbed oil was investigated by ESR spectroscopy and multispectral fluorescence imaging. The adsorbing process on Neusilin leads to an increased micropolarity of the oil component. The release of the oil component in aqueous media could be verified by Benchtop-NMR and multispectral fluorescence imaging. PMID:23275113

  8. Electronic and electrochemical doping of graphene by surface adsorbates

    Directory of Open Access Journals (Sweden)

    Hugo Pinto

    2014-10-01

    Full Text Available Many potential applications of graphene require its precise and controllable doping with charge carriers. Being a two-dimensional material graphene is extremely sensitive to surface adsorbates, so its electronic properties can be effectively modified by deposition of different atoms and molecules. In this paper, we review two mechanisms of graphene doping by surface adsorbates, namely electronic and electrochemical doping. Although, electronic doping has been extensively studied and discussed in the literature, much less attention has been paid to electrochemical doping. This mechanism can, however, explain the doping of graphene by adsorbates for which no charge transfer is expected within the electronic doping model. In addition, electrochemical doping is in the origin of the hysteresis effects often observed in graphene-based field effect transistors when operating in the atmospheric environment.

  9. High-performances carbonaceous adsorbents for hydrogen storage

    Science.gov (United States)

    Zhao, Weigang; Fierro, Vanessa; Aylon, E.; Izquierdo, M. T.; Celzard, Alain

    2013-03-01

    Activated carbons (ACs) with controlled microporosity have been prepared and their H2 storage performances have been tested in a gravimetric device. Such adsorbents are natural Chinese anthracites chemically activated with alkaline hydroxides, NaOH or KOH. Outstanding total storage capacities of hydrogen, as high as 6.6wt.% equivalent to excess capacity of 6.2 wt.%, have been obtained at 4MPa for some of these adsorbents. These values of hydrogen adsorption are among the best, if not the highest, ever published so far in the open literature. They are well above those of some commercial materials, e.g. Maxsorb-3, considered as a reference of high-performance adsorbent for hydrogen adsorption. Such exceptional storage capacities may be ascribed to a higher volume of micropores (< 2nm).

  10. Surface stress of clean and adsorbate-covered solids

    International Nuclear Information System (INIS)

    Starting with a simple introduction into the phenomenon of surface stress from a thermodynamic as well as from an atomistic viewpoint, the currently available literature on surface stress of clean and adsorbate-covered surfaces is reviewed. The equations which are used to calculate the adsorbate-induced changes of the surface stress tensor from cantilever bending experiments are derived and their limitations are discussed. It is shown for several examples that charge transfer effects have a pronounced influence on the adsorbate-induced surface stress. The linear relation between surface stress and surface charge which has been observed experimentally at the metal-electrolyte interface is rationalized in the framework of thermodynamics. The role of surface stress as a driving force for surface reconstruction and for the structural organization of surfaces on a mesoscopic scale are discussed for a few selected examples. Novel applications of surface stress effects for sensor and actuator applications are described. (author)

  11. Structure of adsorbed surfactants and polymers studies by neutron reflection

    International Nuclear Information System (INIS)

    Full text: The adsorption of surfactants depends on the chemical nature of the interface as well as the physical and chemical properties of the adsorbate. In this talk the structure of adsorbed layers of non-ionic surfactants on a variety of solid surfaces will be described and characterised by neutron reflection. The substrates include silica, grafted hydrocarbons, alcohols and acids. Further work has explored a range of adsorbates on spun-coated polystyrene films. Recent work looked at co-adsorption of a biopolymer (gelatine) and surfactants. A semi-empirical model to describe the changes in gelatine layers with pH will be presented. The co-adsorption of gelatine and ionic surfactants will also be described

  12. Carbonaceous adsorbents for the protection of the environment

    International Nuclear Information System (INIS)

    Problems of utilization, production and characterization of brown coal carbonaceous adsorbents are included in the contributions. At first, the types of industrial important adsorbents - activated carbon, active coke and carbonaceous molecular sieves - their fields of application and the fundamental principles of their production are described. Four contributions deal with the utilization of active coke for environmental protection. New results of laboratory scale and of technical plants investigations for the waste gas cleaning and for the waste water treatment, respectively are described. Moreover, four contributions deal with the production of active coke and activated carbon under laboratory scale conditions and in an industrial plant, respectively. Problems of the characterization of carbonaceous adsorbents are included in two articles. (orig.)

  13. Metal loaded zeolite adsorbents for hydrogen cyanide removal.

    Science.gov (United States)

    Ning, Ping; Qiu, Juan; Wang, Xueqian; Liu, Wei; Chen, Wei

    2013-04-01

    Metal (Cu, Co, or Zn) loaded ZSM-5 and Y zeolite adsorbents were prepared for the adsorption of hydrogen cyanide (HCN) toxic gas. The results showed that the HCN breakthrough capacity was enhanced significantly when zeolites were loaded with Cu. The physical and chemical properties of the adsorbents that influence the HCN adsorption capacity were analyzed. The maximal HCN breakthrough capacities were about the same for both zeolites at 2.2 mol of HCN/mol of Cu. The Cu2p XPS spectra showed that the possible species present were Cu2O and CuO. The N1s XPS data and FT-IR spectra indicated that CN(-) would be formed in the presence of Cu+/Cu2+ and oxygen gas, and the reaction product could be adsorbed onto Cu/ZSM-5 zeolite more easily than HCN. PMID:23923791

  14. Method of recovering adsorbed liquid compounds from molecular sieve columns

    Science.gov (United States)

    Burkholder, Harvey R. (Ames, IA); Fanslow, Glenn E. (Ames, IA)

    1983-01-01

    Molecularly adsorbed volatile liquid compounds are recovered from molecular sieve adsorbent columns by directionally applying microwave energy to the bed of the adsorbent to produce a mixed liquid-gas effluent. The gas portion of the effluent generates pressure within the bed to promote the discharge of the effluent from the column bottoms. Preferably the discharged liquid-gas effluent is collected in two to three separate fractions, the second or intermediate fraction having a substantially higher concentration of the desorbed compound than the first or third fractions. The desorption does not need to be assisted by passing a carrier gas through the bed or by applying reduced pressure to the outlet from the bed.

  15. Viability of banana pith use as adsorbent for uranium ions

    International Nuclear Information System (INIS)

    In this work banana pith was investigated as adsorbent for uranium ions from nitric solutions. The use of this type of biomaterial reduces environmental impact of two forms, the banana pith that is considered a pollutant, is removed of place where was generated or deposited and contaminated effluents can be treated by this residual biomass. One another important aspect is the reutilization of both biomass and metals adsorbed that can be recovered by desorption processes. It is a natural material of low cost and easy application. Influence of adsorbent size and adsorption kinetic were studied. The studies of adsorption followed both Langmuir and Freundlich models. In concentration range of 0.1 - 4.0 g/L, the adsorption process was described better by Freundlich equation. (author)

  16. Emanation-thermal analysis of basalt fiber adsorbents

    International Nuclear Information System (INIS)

    Complex emanation-thermal analysis is used for investigating structural changes in basalt adsorbents taking place during thermal affects on material. Adsorbent is prepared by two-stage treatment of staple basalt fibers by hydrochloric acid. Isotherms of sorption of liquid nitrogen vapors by new sorbents are measured. Areas of the open surface, porosity and pores size spectra of leached fibers are calculated. It is determined by the method of thermostimulated gassing that adsorbed water is in two energetically different states in porous basalt fiber: basic part of water vapors is desorbed at 90-110 Deg C, remained part -at 300-320 Deg C. Full regeneration of sorbent requires warming up to 550 Deg C

  17. Method for storing krypton-85 using an adsorbent

    International Nuclear Information System (INIS)

    Object: To safely and efficiently store Kr-85 by decreasing a filling pressure of Kr-85 within a storage bomb with the aid of gas adsorption action of adsorbent at room temperature and normal pressure. Structure: A storage bomb is substantially fully filled with molecular sieve or active carbon, which is then heated to exhaust the gases adsorbed on the adsorbent using an exhaust system. A temperature indicating control meter and a temperature detector end are used to control the temperature. Kr-85, collected by a Kr-85 recovery plant, is gathered in a gas reservoir, and the Kr-85 is filled in the storage bomb prepared as described above under atmospheric pressure. The storage bomb is made of lead or iron and has a shielding power. (Kamimura, M.)

  18. A Review of Adsorbents Used for Storm Water Runoff Cleaning

    Directory of Open Access Journals (Sweden)

    Andrius Agintas

    2011-04-01

    Full Text Available Heavy metals, petroleum products, sediments and other pollutants get in the environment with insufficiently cleaned storm water runoff. Contaminated storm water runoff is one of the most significant sources for pollution in rivers, lakes and estuaries. Storm water runoff must be treated using not only simple methods but also using adsorption processes. Adsorbents can be natural organic, natural nonorganic and synthetic. Main adsorption characteristic, way of utilization and storm water runoff inflow rate, quantity and pollution need to be investigated when trying to use adsorbents in reasonably way. It is very important to treat storm water properly during the primary mechanical treatment otherwise adsorbents will act as mechanical filters.Article in Lithuanian

  19. Adsorbent from Pongamia Pinnata Tree Bark for Zinc Adsorption

    Directory of Open Access Journals (Sweden)

    Mamatha M.

    2013-01-01

    Full Text Available AbstractIn the recent years, Pongamia pinnata trees are widely grown at farms for its seeds utilised for biofuel activities. Due to the easy availability of this tree bark, it is used as a viable adsorbent for removing some heavy metals from aqueous and waste water. In this context, the adsorption of Zinc on prepared adsorbent is very effective. In this study, investigations were made for the adsorption of zinc ions from aqueous and waste water. Batch adsorption studies to determine the optimum conditions of zinc ion removal were conducted to know the influence of experimental conditions such as pH of the solution, metal ion concentration, amount of adsorbent and contact time at room temperature. The results obtained show that the optimum pH range for the zinc removal is 5 5.4 and adsorption percent is higher than 95 %. Kinetic study was also made to determine rate constants.

  20. Energetics of adsorbed CH3 on Pt(111) by calorimetry.

    Science.gov (United States)

    Karp, Eric M; Silbaugh, Trent L; Campbell, Charles T

    2013-04-01

    The enthalpy and sticking probability for the dissociative adsorption of methyl iodide were measured on Pt(111) at 320 K and at low coverages (up to 0.04 ML, where 1 ML is equal to one adsorbate molecule for every surface Pt atom) using single crystal adsorption calorimetry (SCAC). At this temperature and in this coverage range, methyl iodide produces adsorbed methyl (CH(3,ad)) plus an iodine adatom (I(ad)). Combining the heat of this reaction with reported energetics for Iad gives the standard heat of formation of adsorbed methyl, ?H(f)(0)(CH3,ad), to be ?53 kJ/mol and a Pt(111)CH3 bond energy of 197 kJ/mol. (The error bar of 20 kJ/mol for both values is limited by the reported heat of formation of I(ad).) This is the first direct measurement of these values for any alkyl fragment on any surface. PMID:23461481

  1. Oil adsorbent produced by the carbonization of rice husks.

    Science.gov (United States)

    Kumagai, Seiji; Noguchi, Yosuke; Kurimoto, Yasuji; Takeda, Koichi

    2007-01-01

    In this study, rice husks considered to be agricultural waste are converted into an adsorbent intended for use in the disposal of oil spills. The raw and refined (defiberized) husks of Japanese Akita Komachi rice were pyrolyzed in a vacuum (500 Pa) at 300-800 degrees C. The amount of A-heavy and B-heavy oils adsorbed on the carbonized rice husk were then evaluated. Oil adsorption is dependent on the type of oil. Rice husks refined and then pyrolyzed at 600-700 degrees C (1.0 g) adsorbed >6.0 g of B-heavy oil and rice husks, rather than their porosity, are closely related to oil adsorption capacity. PMID:16753291

  2. Experimental characterization of adsorbed protein orientation, conformation, and bioactivity.

    Science.gov (United States)

    Thyparambil, Aby A; Wei, Yang; Latour, Robert A

    2015-01-01

    Protein adsorption on material surfaces is a common phenomenon that is of critical importance in many biotechnological applications. The structure and function of adsorbed proteins are tightly interrelated and play a key role in the communication and interaction of the adsorbed proteins with the surrounding environment. Because the bioactive state of a protein on a surface is a function of the orientation, conformation, and accessibility of its bioactive site(s), the isolated determination of just one or two of these factors will typically not be sufficient to understand the structure-function relationships of the adsorbed layer. Rather a combination of methods is needed to address each of these factors in a synergistic manner to provide a complementary dataset to characterize and understand the bioactive state of adsorbed protein. Over the past several years, the authors have focused on the development of such a set of complementary methods to address this need. These methods include adsorbed-state circular dichroism spectropolarimetry to determine adsorption-induced changes in protein secondary structure, amino-acid labeling/mass spectrometry to assess adsorbed protein orientation and tertiary structure by monitoring adsorption-induced changes in residue solvent accessibility, and bioactivity assays to assess adsorption-induced changes in protein bioactivity. In this paper, the authors describe the methods that they have developed and/or adapted for each of these assays. The authors then provide an example of their application to characterize how adsorption-induced changes in protein structure influence the enzymatic activity of hen egg-white lysozyme on fused silica glass, high density polyethylene, and poly(methyl-methacrylate) as a set of model systems. PMID:25708632

  3. SAPO-34 coated adsorbent heat exchanger for adsorption chillers

    International Nuclear Information System (INIS)

    In this work, adsorbent coatings on aluminum surfaces were prepared by dip-coating method starting from a water suspension of SAPO-34 zeolite and a silane-based binder. Silane-zeolite coatings morphology and surface coverage grade were evaluated by scanning electron microscopy. Adhesive and mechanical properties were evaluated by peel, pull-off, impact and micro-hardness tests, confirming the good interaction between metal substrate, binder and zeolite. Adsorption equilibrium and kinetics of water vapour adsorption on the adsorbent coating were studied in the range T=30150C and pH2O=11mbar using a CAHN 2000 thermo-balance. It was found that, in the investigated conditions, the organic binder doesn't affect the water adsorption capacity and adsorption kinetics of the original SAPO-34 zeolite. Subsequently, the zeolite coating was applied on a finned flat-tubes aluminum heat exchanger realizing a full-scale AdHEx with an uniform adsorbent coating 0.1mm thick and a metal/adsorbent mass ratio=6. The cooling capacity of the realized coated AdHEx was measured by a lab-scale adsorption chiller under realistic operating conditions for air conditioning applications. The coated AdHEx produced up to 675W/kgads specific cooling power with a cycle time of 5min. Adsorption stability of the coated adsorber subjected to 600 sorption cycles was successfully verified. - Highlights: Adsorbent coatings on aluminum surfaces were prepared by dip-coating method. Silane-zeolite coatings morphology, and mechanical properties were studied. The zeolite coating was applied on a finned flat-tubes aluminum heat exchanger. The coated AdHEx was tested in a lab scale adsorption chiller

  4. A new adsorbent for boron removal from aqueous solutions.

    Science.gov (United States)

    Kluczka, Joanna; Korolewicz, Teofil; Zo?otajkin, Maria; Simka, Wojciech; Raczek, Malwina

    2013-01-01

    A new adsorbent based on natural clinoptilolite and amorphous zirconium dioxide (ZrO2) was prepared for the uptake of boron from fresh water. The sorption behaviour of this adsorbent for boron was investigated using a batch system and found to obey Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. The ZrO2 loading level, pH, temperature, contact time, initial boron concentration and adsorbent dose, on the removal of boron were studied. It was found that the removal of boron increased while the adsorbent dose increased and the temperature decreased at an optimum pH (pH = 8) and a contact time of 30 min. At optimum conditions, the maximum boron percentage removal was 75%. According to the D-R model, the maximum capacity was estimated to be > 3 mg B/g of the adsorbent. The adsorption energy value (calculated as 9.13 kJ/mol) indicated that the adsorption of boron on clinoptilolite modified with ZrO2 was physical in nature. The parameters of the adsorption models and the pH investigations pointed to the possibility of a chemisorption process. The thermodynamic parameters (standard entropy deltaS degrees, enthalpy deltaH degrees , and free energy deltaG degrees changes) of boron adsorption were also calculated. The negative value of deltaS degrees indicated a decreased randomness at the solid-solution interface during the boron adsorption. Negative values of deltaH degrees showed the exothermic nature of the process. The negative values of deltaG degrees implied that the adsorption of boron on clinoptilolite modified with amorphous ZrO2 at 25 degrees C was spontaneous. It was considered that boron dissolved in water had been adsorbed both physically and chemically on clinoptilolite modified with 30% ZrO2. PMID:24191469

  5. Structure and dynamics of highly adsorbed semiflexible polymer melts

    Science.gov (United States)

    Carrillo, Jan-Michael; Cheng, Shiwang; Kumar, Rajeev; Goswami, Monojoy; Sokolov, Alexie; Sumpter, Bobby

    2015-03-01

    We present a detailed analysis of coarse-grained molecular dynamics simulations of melts of semi-flexible polymer chains in the presence of an adsorbing substrate. For polymer chains located far from the substrate the chain conformations follow the worm-like chain model, in contrast to the reflected Gaussian conformation near the substrate. This is demonstrated in the chain center-of-mass distribution normal to the substrate and the probability of a polymer chain ends to be the closest to the substrate. Both quantities agree with Silberberg's derivation for an ideal chain in the presence of a reflecting wall. We characterized the adsorbed chains and counted the number of loops and tails. For stiff chains, a tail and an adsorbed segment dominate the chain conformation of the adsorbed layer. Also, the mean-square end-to-end distance normal to the substrate is proportional to the normal component of the mean-square end-to-end distance of the tails. The tails do not follow the worm-like chain model and exhibit a stretched conformation. This picture for the adsorbed layer is akin to the ``polydisperse pseudobrush'' envisioned by Guiselin. We probe the dynamics of the segments by calculating the layer (z-)resolved intermediate coherent collective dynamics structure factor, S(q,t,z), for q values equivalent to the bond length. The segment dynamics is slower for stiffer chains. In the adsorbed layer, dynamics is slowed down and can be described by two relaxation times. Department of Energy, Office of Science DE-AC05-00OR227.

  6. Surface characterization of adsorbed asphaltene on a stainless steel surface

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, W.A. [Schlumberger Reservoir Fluids Center, 9450-17 Avenue, Edmonton, Alta., T6N 1M9 (Canada)]. E-mail: wabdallah@slb.com; Taylor, S.D. [Schlumberger Reservoir Fluids Center, 9450-17 Avenue, Edmonton, Alta., T6N 1M9 (Canada)

    2007-05-15

    X-ray photoelectron spectroscopy was used to characterize a single layer of adsorbed asphaltene on a metallic surface. The deposits were created by immersing a stainless steel disc into a dilute asphaltene solution with either toluene or dichloromethane as the solvent, although the toluene solution allowed for better control of the adsorbed asphaltene layer and less atmospheric oxygen contamination. The analyses for C 1s, S 2p{sub 3/2}, N 1s and O 1s photoemission peaks indicated that different functional groups are present in the asphaltene layer including carboxylic, pyrrolic, pyridininc, thiophenic and sulfite, with slight differences in their binding energies.

  7. Surface characterization of adsorbed asphaltene on a stainless steel surface

    International Nuclear Information System (INIS)

    X-ray photoelectron spectroscopy was used to characterize a single layer of adsorbed asphaltene on a metallic surface. The deposits were created by immersing a stainless steel disc into a dilute asphaltene solution with either toluene or dichloromethane as the solvent, although the toluene solution allowed for better control of the adsorbed asphaltene layer and less atmospheric oxygen contamination. The analyses for C 1s, S 2p3/2, N 1s and O 1s photoemission peaks indicated that different functional groups are present in the asphaltene layer including carboxylic, pyrrolic, pyridininc, thiophenic and sulfite, with slight differences in their binding energies

  8. Removal of uranium by the adsorbents produced from coffee residues

    International Nuclear Information System (INIS)

    Large amounts of coffee residues contaminate the environment and reprocessing of them as valuable products such as adsorbents will be a good solution from an environmental and economic point of view. In this study some adsorbents were produced from coffee residues and used for batch removal experiments of uranium from aqueous solutions. The adsorption kinetics was found to follow the Lagergren equation. The adsorption process was described with the Langmuir and Freundlich isotherms. Additionally, the effect of different cations on the adsorption of uranium was studied. (author)

  9. Adsorbent from Pongamia Pinnata Tree Bark for Zinc Adsorption

    OpenAIRE

    Mamatha M.; Aravinda H. B.; Puttaiah E.T.; Manjappa S.

    2013-01-01

    AbstractIn the recent years, Pongamia pinnata trees are widely grown at farms for its seeds utilised for biofuel activities. Due to the easy availability of this tree bark, it is used as a viable adsorbent for removing some heavy metals from aqueous and waste water. In this context, the adsorption of Zinc on prepared adsorbent is very effective. In this study, investigations were made for the adsorption of zinc ions from aqueous and waste water. Batch adsorption studies to determine the opt...

  10. Quartz crystal studies of 4He adsorbed to C60

    International Nuclear Information System (INIS)

    The authors report measurements of the frequency of oscillation of quartz crystals as a function of 4He adsorption for the case of bare quartz crystals and quartz crystals coated with 400 angstrom and 800 angstrom of C60. The superfluid transition is seen in the 4He adsorbed to the C60. A preliminary analysis of the data at T = 1.51 K indicates that no more than 0.24 helium atoms per C60 molecules are adsorbed into the C60 matrix at 1.51 K

  11. Surface modification of chromatography adsorbents by low temperature low pressure plasma

    DEFF Research Database (Denmark)

    Arpanaei, Ayyoob; Winther-Jensen, Bjrn

    2010-01-01

    In this study we show how low temperature glow discharge plasma can be used to prepare bi-layered chromatography adsorbents with non-adsorptive exteriors. The commercial strong anion exchange expanded bed chromatography matrix, Q HyperZ, was treated with plasmas in one of two general ways. Using a purpose-designed rotating reactor, plasmas were employed to either: (i) remove anion exchange ligands at or close to the exterior surface of Q HyperZ, and replace them with polar oxygen containing functions (plasma etching and oxidation); or (ii) bury the same surface exposed ligands beneath thin polymer coatings (plasma polymerization coating) using appropriate monomers (vinyl acetate, vinyl pyrrolidone, safrole) and argon as the carrier gas. X-ray photoelectron spectroscopy analysis (first 10 nm depth) of Q HyperZ before and after the various plasma treatments confirmed that substantial changes to the elemental composition of Q HyperZ's exterior had been inflicted in all cases. The atomic percent changes in carbon, nitrogen, oxygen, yttrium and zirconium observed after being exposed to air plasma etching were entirely consistent with: the removal of pendant Q (trimethylammonium) functions; increased exposure of the underlying yttrium-stabilised zirconia shell; and introduction of hydroxyl and carbonyl functions. Following plasma polymerization treatments (with all three monomers tested), the increased atomic percent levels of carbon and parallel drops in nitrogen, yttrium and zirconium provided clear evidence that thin polymer coats had been created at the exteriors of Q HyperZ adsorbent particles. No changes in adsorbent size and surface morphology, nor any evidence of plasma-induced damage could be discerned from scanning electron micrographs, light micrographs and measurements of particle size distributions following 3 h exposure to air (220 V; 35.8 W L?1) or vinyl acetate/argon (170 V; 16.5 W L?1) plasmas. Losses in bulk chloride exchange capacity before and after exposure to plasmas enabled effective modification depths within hydrated Q HyperZ adsorbent particles to be calculated as 0.21.2 ?m, depending on the conditions applied. The depth of plasma induced alteration was strongly influenced by the power input and size of the treated batch, i.e. dropping the power or increasing the batch size resulted in reduced plasma penetration and therefore shallower modification. The selectivity of surface vs. core modification imparted to Q HyperZ by the various plasma treatments was evaluated in static and dynamic binding studies employing appropriate probes, i.e. plasmid DNA, sonicated calf thymus DNA and bovine serum albumin. In static binding studies performed with adsorbents that had been exposed to plasmas at the 5 g scale (25 g L?1 of plasma reactor), the highest surface/core modification selectivity was observed for Q HyperZ that had been subjected to 3 h of air plasma etching at 220 V (35.8 W L?1). This treatment removed 53% of surface DNA binding at the expense of a 9.3% loss in core protein binding. Even more impressive results were obtained in dynamic expanded bed adsorption studies conducted with Q HyperZ adsorbents that had been treated with air (220 V, 3 h) and vinyl acetate/argon (170 V, 3 h) plasmas at 10.5 g scale (52.5 g L?1 of plasma reactor). Following both plasma treatments: the 10% breakthrough capacities of the modified Q HyperZ adsorbents towards surface binding DNA probes dropped very significantly (3085%); the DNA induced inter-particle cross-linking and contraction of expanded beds observed during application of sonicated DNA on native Q HyperZ was completely eradicated; but the core protein binding performance remained unchanged cf. that of the native Q HyperZ starting material.

  12. Removal of fluoride from groundwater by adsorption onto La(III)- Al(III) loaded scoria adsorbent

    International Nuclear Information System (INIS)

    The La3+-Al3+ loaded scoria (La-Al-Scoria) was prepared as adsorbent for the fluoride removal from groundwater. The connecting time experiment indicated that the fluoride adsorption process reached equilibrium within 5 hours. The kinetics of fluoride ion adsorption onto La-Al-Scoria was followed the pseudo-second order with correlation coefficient value (R2) of 0.997. The isotherm data was well fitted to both of the Freundlich and Langmuir isotherm models, the R2 of Freundlich and Langmuir were 0.98 and 0.97, respectively. Subsequently, the adsorbent was characterized by scanning electron microscope (SEM), Energy dispersive analysis of X-ray (EDX), X-ray diffraction analysis (XRD) and X-ray Photoelectron Spectroscopy (XPS) measurements. SEM visual expressed that the dense canal surface structure of natural scoria appeared a large amount of rod-like composite after modification. The XRD and XPS instrumental studies revealed that the La3+ and Al3+ were loaded on the surface of modified scoria and the fluoride ion was adsorbed on the La-Al-Scoria. The large amount of La-Al-O composite oxide existed onto the surface of La-Al-Scoria was the immanent cause for the excellent adsorption capacity of fluoride ion.

  13. A dual-adsorbent preconcentrator for a portable indoor-VOC microsensor system.

    Science.gov (United States)

    Lu, C J; Zellers, E T

    2001-07-15

    The development and testing of a miniature dual-adsorbent preconcentrator for a microsensor-based analytical system designed to determine complex volatile organic chemical (VOC) mixtures encountered in indoor working environments at low part-per-billion levels is described. Candidate adsorbents were screened for thermal-desorption bandwidth and breakthrough volume against 20 volatile organic vapors and subsets thereof as a function of several relevant variables. A glass capillary (1.1 mm i.d.) packed with 3.4 mg of Carbopack X and 1.2 mg of Carboxen 1000 provides sufficient capacity for a 1-L dry-air sample containing all 20 vapors at concentrations of 100 ppb as well as providing a composite half-height peak width of temperature of 300 degrees C and a flow rate of 4 mL/min. Required adsorbent masses increase to 7.0 and 1.5 mg, respectively, for the same mixture at component concentrations of 1 ppm. Vapor breakthrough volumes for the Carbopack X are unaffected by humidity from 0 to 100%RH, but those for the Carboxen 1000 are significantly reduced, requiring an additional 0.9 mg of the latter to avoid premature breakthrough at the 100 ppb level. Good peak shapes, efficient chromatographic separation of preconcentrated sample mixture components, and detection limits in the low-parts-per-billion range using an integrated surface-acoustic-wave (SAW) sensor are achieved. Preconcentrator design and operating parameters are considered in terms of the vapor bed-residence times and breakthrough volumes in the context of the modified Wheeler equation. PMID:11476247

  14. Cauliflower-like CuI nanostructures: Green synthesis and applications as catalyst and adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Yi [College of Chemistry and Environmental Science, Henan Normal University, Xinxiang, Henan 453007 (China); Gao Shuyan, E-mail: shuyangao@htu.cn [College of Chemistry and Environmental Science, Henan Normal University, Xinxiang, Henan 453007 (China); Li Zhengdao; Jia Xiaoxia; Chen Yanli [College of Chemistry and Environmental Science, Henan Normal University, Xinxiang, Henan 453007 (China)

    2011-08-15

    Highlights: > In this study we report a green, environment-friendly, efficient, and direct one-step process for the preparation of CuI cauliflower. > The as-formed CuI cauliflower shows excellent catalytic activity for coupling reaction between benzylamine and iodobenzene. > The cauliflower-like CuI nanostructures have been successfully demonstrated as adsorbent for Cd (II) with high removal capacity. > To the best of our knowledge, it is the first report that nanostructured CuI acts as catalyst for coupling reaction and adsorbent for heavy metal ion. > It is also a good example for the organic combination of green chemistry and functional materials. - Abstract: Cauliflower-like CuI nanostructures is realized by an ampicillin-assisted clean, nontoxic, environmentally friendly synthesis strategy at room temperature. The morphology, composition, and phase structure of as-prepared powders were characterized by field emission scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The results show that ampicillin plays dual roles, reducing and morphology-directing agents, in the formation of the products. A possible growth mechanism of the cauliflower-like CuI nanostructures is tentatively proposed. The preliminary investigations show that the cauliflower-like CuI structure not only exhibits high catalytic activity with respect to coupling reaction between benzylamine and iodobenzene but also possesses high removal capacity for Cd (II), which may be ascribed to the high specific surface area of the special configuration. To the best of our knowledge, it is the first report that cauliflower-like CuI nanoparticles act as catalyst for coupling reaction and adsorbent for heavy metal ion.

  15. Cauliflower-like CuI nanostructures: Green synthesis and applications as catalyst and adsorbent

    International Nuclear Information System (INIS)

    Highlights: ? In this study we report a green, environment-friendly, efficient, and direct one-step process for the preparation of CuI cauliflower. ? The as-formed CuI cauliflower shows excellent catalytic activity for coupling reaction between benzylamine and iodobenzene. ? The cauliflower-like CuI nanostructures have been successfully demonstrated as adsorbent for Cd (II) with high removal capacity. ? To the best of our knowledge, it is the first report that nanostructured CuI acts as catalyst for coupling reaction and adsorbent for heavy metal ion. ? It is also a good example for the organic combination of green chemistry and functional materials. - Abstract: Cauliflower-like CuI nanostructures is realized by an ampicillin-assisted clean, nontoxic, environmentally friendly synthesis strategy at room temperature. The morphology, composition, and phase structure of as-prepared powders were characterized by field emission scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The results show that ampicillin plays dual roles, reducing and morphology-directing agents, in the formation of the products. A possible growth mechanism of the cauliflower-like CuI nanostructures is tentatively proposed. The preliminary investigations show that the cauliflower-like CuI structure not only exhibits high catalytic activity with respect to coupling reaction between benzylamine and iodobenzene but also possesses high removal capacity for Cd (II), which may be ascribed to the high specific surface area of the special configuration. To the best of our knowledge, it is the first report that cauliflower-like CuI nanoparticles act as catalyst for coupling reaction and adsorbent for heavy metal ion.

  16. Applications of Oxide Coatings in Photovoltaic Devices

    Directory of Open Access Journals (Sweden)

    Sonya Calnan

    2014-03-01

    Full Text Available Metalloid and metal based oxides are an almost unavoidable component in the majority of solar cell technologies used at the time of writing this review. Numerous studies have shown increases of ?1% absolute in solar cell efficiency by simply substituting a given layer in the material stack with an oxide. Depending on the stoichiometry and whether other elements are present, oxides can be used for the purpose of light management, passivation of electrical defects, photo-carrier generation, charge separation, and charge transport in a solar cell. In this review, the most commonly used oxides whose benefits for solar cells have been proven both in a laboratory and industrial environment are discussed. Additionally, developing trends in the use of oxides, as well as newer oxide materials, and deposition technologies for solar cells are reported.

  17. Plasma sprayed basalt/chromium oxide coatings.

    Czech Academy of Sciences Publication Activity Database

    Ageorges, H.; Medarhri, Z.; Ctibor, Pavel; Fauchais, P.

    2007-01-01

    Ro?. 11, ?. 1 (2007), s. 71-82. ISSN 1093-3611 Institutional research plan: CEZ:AV0Z20430508 Keywords : Chromia, basalt * plasma spraying * microstructure * phase analysis Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.268, year: 2007

  18. Synthesis of transparent conducting oxide coatings

    Science.gov (United States)

    Elam, Jeffrey W.; Martinson, Alex B. F.; Pellin, Michael J.; Hupp, Joseph T.

    2010-05-04

    A method and system for preparing a light transmitting and electrically conductive oxide film. The method and system includes providing an atomic layer deposition system, providing a first precursor selected from the group of cyclopentadienyl indium, tetrakis (dimethylamino) tin and mixtures thereof, inputting to the deposition system the first precursor for reaction for a first selected time, providing a purge gas for a selected time, providing a second precursor comprised of an oxidizer, and optionally inputting a second precursor into the deposition system for reaction and alternating for a predetermined number of cycles each of the first precursor, the purge gas and the second precursor to produce the oxide film.

  19. Silicon oxide coatings as protection against corrosion

    International Nuclear Information System (INIS)

    Silicon oxide films (SiOx (0x (xx to form protective SiO2. In the helium environment used, the rate of supply of oxygen was quite low. Stoichiometric SiO2 coatings, however, showed good protective qualities. They protected the Inconcel 617 substrate from carburization and from selective oxidation at 1170 and 1270 K for 200 h. However, some deterioration in the protective effect is expected for longer exposure to this environment at 1270 K. (orig.)

  20. Polarity of an MCM-41 adsorbent surface modified with methyl and phenyl groups based on data from gas chromatography

    Science.gov (United States)

    Sukhareva, D. A.; Gus'kov, V. Yu.; Karpov, S. I.; Kudasheva, F. Kh.; Roessner, F.; Borodina, E. V.

    2016-02-01

    The polarity of an MCM-41 adsorbent surface and organosilylated composites based on it with grafted trimethylsilane and dimethylphenylsilane groups is studied via inverse gas chromatography at infinite dilution. The dispersion and specific components of the value proportional to the Helmholtz adsorption energy are calculated, and a comparative analysis of the surface polarity of MCM-41 and its modified analogs relative to the commercially available C-120 silica gel is performed. The electrostatic and donor-acceptor components of the specific Helmholtz adsorption energy are calculated through linear decomposition of the adsorption energy. It is established that MCM-41 is less polar than C-120. The modification of the initial adsorbent surface leads to a reduction in polarity, due mainly to the weakening of induction and orientation interactions. It is concluded that the surfaces of the modified samples retain the ability to form hydrogen bonds.

  1. Mechanisms of the hydration of A-300 aerosol with adsorbed chlorides of alkali metals in an organic medium

    Science.gov (United States)

    Kravchenko, A. A.; Kuts, V. S.; Tsapko, M. D.; Krupskaya, T. V.; Turov, V. V.

    2015-05-01

    The hydration of systems obtained via the adsorption of alkali metal chlorides on A-300 nanosilica is studied by means of low-temperature 1H NMR spectroscopy. It is shown that in weakly polar organic media, adsorbed water is present in the form of weakly and strongly associated water. A reduction in the differentiation of adsorbed water in the SiO2/NaCl > SiO2/KCl > SiO2/LiCl series of composites is established that could be due to changes in the lattice parameters of SiO2. Quantum-chemical calculations are performed for the 1H NMR spectra of complexes containing clusters of Si8O12(OH)8 and hydrated ion pairs of alkali metal chlorides. These calculations allow us to explain the displacement in the chemical shifts of water protons.

  2. Adsorption of UO2+2 by polyethylene adsorbents with amidoxime, carboxyl, and amidoxime/carboxyl group

    International Nuclear Information System (INIS)

    The polyethylene (PE) adsorbents were prepared by a radiation-induced grafting of acrylonitrile (AN), acrylic acid (AA), and the mixture of AN/AA onto PE film, and by subsequent amidoximation of cyano groups of poly-AN graft chains. With an increase of AA composition in AN/AA monomer mixture, the water uptake of the grafted polyethylene film increased. In AN/AA mixture, the maximum adsorption of UO2+2 was observed in the adsorbent with a ratio of AN/AA (50/50, mol%) in copolymer. The amidoxime, carboxyl, and amidoxime/carboxyl groups onto PE acted as a chelating site for the selected UO2+2. The complex structure of polyethylene with three functional groups and UO2+2 was confirmed by Fourier Transform Infrared (FTIR) spectroscopy. (author)

  3. Adsorption of UO 2+2 by polyethylene adsorbents with amidoxime, carboxyl, and amidoxime/carboxyl group

    Science.gov (United States)

    Choi, Seong-Ho; Nho, Young Chang

    2000-02-01

    The polyethylene (PE) adsorbents were prepared by a radiation-induced grafting of acrylonitrile (AN), acrylic acid (AA), and the mixture of AN/AA onto PE film, and by subsequent amidoximation of cyano groups of poly-AN graft chains. With an increase of AA composition in AN/AA monomer mixture, the water uptake of the grafted polyethylene film increased. In AN/AA mixture, the maximum adsorption of UO 2+2 was observed in the adsorbent with a ratio of AN/AA (50/50, mol%) in copolymer. The amidoxime, carboxyl, and amidoxime/carboxyl groups onto PE acted as a chelating site for the selected UO 2+2. The complex structure of polyethylene with three functional groups and UO 2+2 was confirmed by Fourier Transform Infrared (FTIR) spectroscopy.

  4. Adsorption of UO{sup 2+}{sub 2} by polyethylene adsorbents with amidoxime, carboxyl, and amidoxime/carboxyl group

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seong-Ho; Nho, Young Chang E-mail: ycnho@nanum.kaeri.re.kr

    2000-02-01

    The polyethylene (PE) adsorbents were prepared by a radiation-induced grafting of acrylonitrile (AN), acrylic acid (AA), and the mixture of AN/AA onto PE film, and by subsequent amidoximation of cyano groups of poly-AN graft chains. With an increase of AA composition in AN/AA monomer mixture, the water uptake of the grafted polyethylene film increased. In AN/AA mixture, the maximum adsorption of UO{sup 2+}{sub 2} was observed in the adsorbent with a ratio of AN/AA (50/50, mol%) in copolymer. The amidoxime, carboxyl, and amidoxime/carboxyl groups onto PE acted as a chelating site for the selected UO{sup 2+}{sub 2}. The complex structure of polyethylene with three functional groups and UO{sup 2+}{sub 2} was confirmed by Fourier Transform Infrared (FTIR) spectroscopy. (author)

  5. Cell/adsorbent interactions in expanded bed adsorption of proteins.

    Science.gov (United States)

    Feuser, J; Walter, J; Kula, M R; Thmmes, J

    1999-01-01

    Expanded bed adsorption (EBA) is an integrated technology for the primary recovery of proteins from unclarified feedstock. A method is presented which allows a qualitative and quantitative understanding of the main mechanisms governing the interaction of biomass with fluidized resins. A pulse response technique was used to determine the adsorption of various cell types (yeast, Gram positive and Gram negative bacteria, mammalian cells and yeast homogenate) to a range of commercially available matrices for EBA. Cells and cell debris were found to interact with the ligands of agarose based resins mainly by electrostatic forces. From the adsorbents investigated the anion exchange matrix showed the most severe interactions, while cation exchange and affinity adsorbents appeared to be less affected. Within the range of biologic systems under study E. coli cells had the lowest tendency of binding to all matrices while hybridoma cells attached to all the adsorbents except the protein A affinity matrix. The method presented may be employed for screening of suitable biomass/adsorbent combinations, which yield a robust and reliable initial capture step by expanded bed adsorption from unclarified feedstock. PMID:10734561

  6. Hydraulic properties of adsorbed water films in unsaturated porous media

    Energy Technology Data Exchange (ETDEWEB)

    Tokunaga, Tetsu K.

    2009-03-01

    Adsorbed water films strongly influence residual water saturations and hydraulic conductivities in porous media at low saturations. Hydraulic properties of adsorbed water films in unsaturated porous media were investigated through combining Langmuir's film model with scaling analysis, without use of any adjustable parameters. Diffuse double layer influences are predicted to be important through the strong dependence of adsorbed water film thickness (f) on matric potential ({Psi}) and ion charge (z). Film thickness, film velocity, and unsaturated hydraulic conductivity are predicted to vary with z{sup -1}, z{sup -2}, and z{sup -3}, respectively. In monodisperse granular media, the characteristic grain size ({lambda}) controls film hydraulics through {lambda}{sup -1} scaling of (1) the perimeter length per unit cross sectional area over which films occur, (2) the critical matric potential ({Psi}{sub c}) below which films control flow, and (3) the magnitude of the unsaturated hydraulic conductivity when {Psi} < {Psi}{sub c}. While it is recognized that finer textured sediments have higher unsaturated hydraulic conductivities than coarser sands at intermediate {Psi}, the {lambda}{sup -1} scaling of hydraulic conductivity predicted here extends this understanding to very low saturations where all pores are drained. Extremely low unsaturated hydraulic conductivities are predicted under adsorbed film-controlled conditions (generally < 0.1 mm y{sup -1}). On flat surfaces, the film hydraulic diffusivity is shown to be constant (invariant with respect to {Psi}).

  7. FEASIBILITY OF USING SOLID ADSORBENTS FOR DIOXIN SAMPLING

    Science.gov (United States)

    The report gives results of a determination of the recovery efficiencies from XAD-2 resin (Amberlite) and Florisil of spiked 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), in order to assess the suitability of these adsorbents for sampling. Two spiking methods were used: Met...

  8. Agricultural Waste as Sources for Mercury Adsorbents in Gas Applications

    Science.gov (United States)

    Increased emphasis on reduction of mercury emissions from coal fired electric power plants have resulted in environmental regulations that may in the future require application of activated carbons as mercury sorbents. The sorbents could be injected into the flue gas stream where it adsorbs the mer...

  9. Organobentonites as multifunctional adsorbents of organic and inorganic water pollutants

    Directory of Open Access Journals (Sweden)

    Jovi?-Jovi?i? Nat?a

    2014-01-01

    Full Text Available The aim of this study was to find a low cost, easy to synthesize and efficient adsorbent for the simultaneous adsorption of both organic and inorganic pollutants (including textile dyes, toxic metals etc.. The starting material, domestic bentonite clay from Bogovina was modified with amounts of hexadecyltrimethylammonium cations corresponding to 0.5 and 1.0 times of the value of the cation exchange capacity value. The organobentonites were tested as adsorbents in a three-dye-containing solution, a three-component solution of Pb2+, Cd2+ and Ni2+ and a hexa- component solution containing all investigated dyes and toxic metal cations. The used adsorbents showed the highest affinity toward Acid Yellow 99 and Ni2+ ions. Dye adsorption was enhanced in the presence of toxic metal cations, while the adsorption of all toxic cations from the hexa-component solution was lower than from the three-component solution containing only toxic cations. The synthesized hexadecyltrimethylammonium bentonite could be regarded as an efficient multifunctional adsorbent for the investigated type of water pollutants.

  10. Results of testing various natural gas desulfurization adsorbents

    Science.gov (United States)

    Israelson, Gordon

    2004-06-01

    This article presents the results of testing many commercially available and some experimental sulfur adsorbents. The desired result of our testing was to find an effective method to reduce the quantity of sulfur in natural gas to less than 100 ppb volume (0.1 ppm volume). An amount of 100 ppb sulfur is the maximum limit permitted for Siemens Westinghouse solid oxide fuel cells (SOFCs). The tested adsorbents include some that rely only on physical adsorption such as activated carbon, some that rely on chemisorption such as heated zinc oxide, and some that may use both processes. The testing was performed on an engineering scale with beds larger than those used for typical laboratory tests. All tests were done at about 3.45 barg (50 psig). The natural gas used for testing was from the local pipeline in Pittsburgh and averaged 6 ppm volume total sulfur. The primary sulfur species were dimethyl sulfide (DMS), isopropyl mercaptan, tertiary butyl mercaptan, and tetrahydrothiophene. Some tests required several months to achieve a sulfur breakthrough of the bed. It was found that DMS always came through a desulfurizer bed first, independent of adsorption process. Since the breakthrough of DMS always exceeds the 100 ppb SOFC sulfur limit before other sulfurs were detected, an index was created to rate the adsorbents in units of ppm DMS × absorbent bed volume. This index is useful for calculating the expected adsorbent bed lifetime before sulfur breakthrough when the inlet natural gas DMS content is known. The adsorbents that are included in these reports were obtained from suppliers in the United States, the Netherlands, Japan, and England. Three activated carbons from different suppliers were found to have identical performance in removing DMS. One of these activated carbons was operated at four different space velocities and again showed the same performance. When using activated carbon as the basis of comparison for other adsorbents, three high-performance adsorbents were found that removed about 100 to 150 times as much DMS as activated carbon before breakthrough.

  11. Natural material adsorbed onto a polymer to enhance immune function

    Directory of Open Access Journals (Sweden)

    Reinaque AP

    2012-08-01

    Full Text Available Ana Paula Barcelos Reinaque,1 Eduardo Luzía França,2 Edson Fredulin Scherer,3 Mayra Aparecida Côrtes,1 Francisco José Dutra Souto,4 Adenilda Cristina Honorio-França51Post Graduate Program in Material Science, 2Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, 3Post Graduate Program in Material Science, Institute of Biological and Health Science, Federal University of Mato Grosso, Pontal do Araguaia, 4Faculty of Medical Sciences, Federal University of Mato Grosso, Cuiabá, 5Institute of Biological and Health Science, Federal University of Mato Grosso, Pontal do Araguaia, MT, BrazilBackground: In this study, we produced poly(ethylene glycol (PEG microspheres of different sizes and adsorbing a medicinal plant mixture, and verified their effect in vitro on the viability, superoxide production, and bactericidal activity of phagocytes in the blood.Methods: The medicinal plant mixture was adsorbed onto PEG microspheres and its effects were evaluated by flow cytometry and fluorescence microscopy.Results: Adsorption of the herbal mixture onto the PEG microspheres was achieved and the particles were internalized by phagocytes. PEG microspheres bearing the adsorbed herbal mixture stimulated superoxide release, and activated scavenging and microbicidal activity in phagocytes. No differences in functional activity were observed when the phagocytes were not incubated with PEG microspheres bearing the adsorbed herbal mixture.Conclusion: This system may be useful for the delivery of a variety of medicinal plants and can confer additional protection against infection. The data reported here suggest that a polymer adsorbed with a natural product is a treatment alternative for enhancing immune function.Keywords: natural product, polymer, adsorption, immune function, phagocytes

  12. Adsorbent for p-phenylenediamine adsorption and removal based on graphene oxide functionalized with magnetic cyclodextrin

    Science.gov (United States)

    Wang, Dongxue; Liu, Liangliang; Jiang, Xinyu; Yu, Jingang; Chen, Xiaohong; Chen, Xiaoqing

    2015-02-01

    Recently, graphene oxide (GO) based magnetic nanocomposites have been widely used in an adsorption-based process for the removal of organic pollutants from the water system. In this study, magnetic ?-cyclodextrin-graphene oxide nanocomposites (MCG) were synthesized according to covalent binding of magnetic ?-cyclodextrin nanoparticles onto the GO surface and the as-made nanocomposites were successfully applied as adsorbents for the adsorption and removal of p-phenylenediamines (PPD). The composition and morphology of prepared materials were characterized by Fourier infrared spectrometry (FT-IR), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Effects of pH, temperature, time and reusability on the adsorption of PPD were investigated, as well as the kinetics and isotherms parameters of the adsorbents were determined. The results indicated that the maximum adsorption capacity of MCG was 1102.58 mg/g at 45 C and pH 8. The adsorption capacity remained at 81% after five cycles. Removal rate could reach 98% after three times of adsorption. The adsorption process with PPD was found that fitted pseudo-second-order kinetics equations and the Langmuir adsorption model. The results showed the MCG had a good adsorption ability to remove organic pollutants in wastewater.

  13. Development of long-life-cycle tablet ceramic adsorbent for geosmin removal from water solution

    Science.gov (United States)

    Chen, Rongzhi; Xue, Qiang; Zhang, Zhenya; Sugiura, Norio; Yang, Yingnan; Li, Miao; Chen, Nan; Ying, Zhao; Lei, Zhongfang

    2011-01-01

    In this study, the tablet ceramic adsorbent (TCA), a silica/iron(III) oxide composite material, has been developed for geosmin (GSM) removal from the water solution. The physicochemical characteristics of TCA were examined with XRD, SEM, EDX and BET analyses. The sorption characteristics of GSM on TCA were investigated in a batch system. Attempts have been made to understand the adsorption kinetics, the effect of initial GSM concentration, solution pH, and reaction time. The batch experiments equilibrium data were well fitted to the Lagergren kinetic equation, which indicate the first-order nature adsorption. Over 82% of the GSM was removed by the TCA within 600 min at an initial concentration of 200 ng/L with 20 g/L of TCA dose. The batch and regeneration study indicated that the TCA is a cost-effective GSM adsorbent with sufficient mechanical strength to retain its physical integrity after long-time adsorption, and high regeneration performance for long-life-cycle application. Almost no second contamination (toxic sludge or leached iron) was observed after adsorption, and the gas resultant of thermal regeneration is harmless to atmospheric environment.

  14. Investigation on the adsorption of phosphorus by Fe-loaded ceramic adsorbent.

    Science.gov (United States)

    Wang, Di; Chen, Nan; Yu, Yang; Hu, Weiwu; Feng, Chuanping

    2016-02-15

    This aim of this study was to remove phosphorus from aqueous solution using a Fe-loaded ceramic (Fe-LC) adsorbent prepared by mixing dolomite, montmorillonite, FeSO47H2O and starch. Simplex-centroid mixture design method was used to determine the optimum mixture proportions by evaluating both phosphorus adsorption efficiency and adsorbent hardness. The study found that the optimum adsorption capacity and the strength can be achieved with the composition of 3.87g dolomite, 3.00g starch, 2.13g montmorillonite and 1.00g FeSO47H2O (10g in total). The optimized Fe-LC was evaluated in the batch and the fixed bed experiments. The point of zero charge, pHpzc was found to be 6.0. The adsorption kinetic and isotherm data well agreed with the pseudo-second-order kinetic and the Langmuir isotherm models, respectively. The breakthrough time increased with increasing in the bed depth, whereas inverse relationship was observed with the initial phosphorus concentration in the fixed bed studies. The co-existing anions (SO4(2-), NO3(-) and Cl(-)) had negligible influence on phosphorus removal. The BDST and Thomas model explained the breakthrough behavior for phosphorus removal with a high degree of correlation. PMID:26624533

  15. Phenol removal from wastewater by adsorption on zeolitic composite.

    Science.gov (United States)

    Bizerea Spiridon, Otilia; Preda, Elena; Botez, Alexandru; Pitulice, Laura

    2013-09-01

    It is well known that adsorption is an efficient method of removal of various pollutants from wastewater. The present study examines the phenol removal from water by adsorption on a new material, based on zeolitic volcanic tuff. This compound contains zeolitic tuff and cellulose, another known adsorbent, in a mass ratio of 4 to 1. The performances of the new adsorbent composite were compared with those of a widely used adsorbent material, zeolitic volcanic tuff. The adsorbent properties were tested on batch synthetic solutions containing 1-10mgL(-1) (1-10ppm) phenol, at room temperature without pH adjustment. The influence of the adsorbent dose, pH and contact time on the removal degree of phenol from water was investigated. The experimental data were modeled using the Langmuir, Freundlich, and Temkin adsorption isotherms. The Langmuir model was found to best represent our data revealing a monolayer adsorption with a maximum adsorption capacity between 0.12 and 0.53mgg(-1) at 25C, for 2.00g of adsorbent, depending on the initial phenol concentration. The adsorption kinetic study was performed using a pseudo-first- and pseudo-second-order kinetic models illustrating that phenol adsorption on zeolite composite is well described by pseudo-first kinetic equations. Our results indicated that phenol adsorption on the new adsorbent composite is superior to that on the classic zeolite. PMID:23589237

  16. Adsorption characteristics of water vapor on zeolitic materials for honeycomb-type adsorbent

    International Nuclear Information System (INIS)

    Tritium release in nuclear fusion power plants must be recovered as efficiently as possible in air cleanup system (ACS). In conventional ACS, the tritium gas is oxidized by catalysts, and then tritiated water vapor is collected by adsorbents, whereas which has a problem related to large ventilation force required to overcome high pressure drop in catalyst and adsorbent beds. Honeycomb-type catalyst and adsorbent offer a useful advantage in terms of their low-pressure drop, and honeycomb-type adsorbent using sepiolite-binder is feasible ability for application of ACS. In this study, we examined adsorption characteristics of water vapor on the building material, zeolitic materials using sepiolite-binder, for honeycomb-type adsorbent by changing temperature and concentration of water vapor, in comparison with those for conventional pebble-type adsorbent, and the experimental data were evaluated using Langmuir and Freundlich isotherm models. Each type of adsorbent includes mainly zeolite-4A. Adsorption capacity of zeolitic materials for both adsorbents gradually decreased with decreasing partial pressure of water or increasing temperature, and experimental data are found to fit Langmuir than Freundlich. The maximum adsorption capacity of water vapor on zeolitic material for honeycomb-type adsorbent, which was calculated by Langmuir isotherm model, is comparable to that for pebble-type adsorbent, and heat of water adsorption on zeolitic material for honeycomb-type adsorbent was higher than that for pebble-type adsorbent. These results indicate that honeycomb-type adsorbent using sepiolite-binder is applicable to ACS. (author)

  17. Study of Adsorbents for the Capture of CO2 in Post-combustion. Contribution of CIEMAT to Module 4 of the CENITCO2 Project

    International Nuclear Information System (INIS)

    The main goal of CIEMAT within the CENIT-CO2 project has been the development of a process for CO2 capture from combustion flue gases by physical adsorption. In the first stage, screening studies to select promising adsorbents were carried out at laboratory scale, using simplified gas compositions. After that, pilot plant studies were performed using appropriate configurations of promising adsorbents under realistic conditions. CO2 adsorption cyclic capacity of different adsorbents has been studied. Lastly, for the adsorbent selected as most promising, its cyclic efficiency and selectivity for CO2 adsorption in the presence of other gaseous components (SO2, H2O, NO) of the combustion gas has been determined, as well as its performance along multiple sorption-desorption cycles in the presence of simulated combustion gas. None of the studied adsorbents, though being promising since they all have a capture efficiency of about 90%, seem to be susceptible of direct application to CO2 capture by physical adsorption under conditions representative of gases exiting the desulphurization tower of conventional pulverized coal combustion plants. As an alternative, the development of hybrid and regenerable solid sorbents (physical-chemical adsorption) is proposed or the application of new technologies under development such as the electrochemical promotion in capturing CO2. (Author) 33 refs.

  18. Adsorbate structures and catalytic reactions studied in the torrpressure range by scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Kevin Shao-Lin

    2003-05-23

    High-pressure, high-temperature scanning tunneling microscopy (HPHTSTM) was used to study adsorbate structures and reactions on single crystal model catalytic systems. Studies of the automobile catalytic converter reaction [CO + NO {yields} 1/2 N{sub 2} + CO{sub 2}] on Rh(111) and ethylene hydrogenation [C{sub 2}H{sub 4} + H{sub 2} {yields} C{sub 2}H{sub 6}] on Rh(111) and Pt(111) elucidated information on adsorbate structures in equilibrium with high-pressure gas and the relationship of atomic and molecular mobility to chemistry. STM studies of NO on Rh(111) showed that adsorbed NO forms two high-pressure structures, with the phase transformation from the (2 x 2) structure to the (3 x 3) structure occurring at 0.03 Torr. The (3 x 3) structure only exists when the surface is in equilibrium with the gas phase. The heat of adsorption of this new structure was determined by measuring the pressures and temperatures at which both (2 x 2) and (3 x 3) structures coexisted. The energy barrier between the two structures was calculated by observing the time necessary for the phase transformation to take place. High-pressure STM studies of the coadsorption of CO and NO on Rh(111) showed that CO and NO form a mixed (2 x 2) structure at low NO partial pressures. By comparing surface and gas compositions, the adsorption energy difference between topsite CO and NO was calculated. Occasionally there is exchange between top-site CO and NO, for which we have described a mechanism for. At high NO partial pressures, NO segregates into islands, where the phase transformation to the (3 x 3) structure occurs. The reaction of CO and NO on Rh(111) was monitored by mass spectrometry (MS) and HPHTSTM. From MS studies the apparent activation energy of the catalytic converter reaction was calculated and compared to theory. STM showed that under high-temperature reaction conditions, surface metal atoms become mobile. Ethylene hydrogenation and its poisoning by CO was also studied by STM on Rh(111) and Pt(111). Poisoning was found to coincide with decreased adsorbate mobility. Under ethylene hydrogenation conditions, no order is detected by STM at 300 K, as hydrogen and ethylidyne, the surface species formed by gas-phase ethylene, are too mobile. When CO is introduced, the reaction stops, and ordered structures appear on the surface. For Rh(111), the structure is predominantly a mixed c(4 x 2), though there are some areas of (2 x 2). For Pt(111), the structure is hexagonal and resembles the Moire pattern seen when Pt(111) is exposed to pure CO. From these studies it is concluded that CO poisons by stopping adsorbate mobility. This lack of adsorbate mobility prevents the adsorption of ethylene from the gas phase by hindering the creation of adsorption sites.

  19. Nanofiber adsorbents for high productivity continuous downstream processing.

    Science.gov (United States)

    Hardick, Oliver; Dods, Stewart; Stevens, Bob; Bracewell, Daniel G

    2015-11-10

    An ever increasing focus is being placed on the manufacturing costs of biotherapeutics. The drive towards continuous processing offers one opportunity to address these costs through the advantages it offers. Continuous operation presents opportunities for real-time process monitoring and automated control with potential benefits including predictable product specification, reduced labour costs, and integration with other continuous processes. Specifically to chromatographic operations continuous processing presents an opportunity to use expensive media more efficiently while reducing their size and therefore cost. Here for the first time we show how a new adsorbent material (cellulosic nanofibers) having advantageous convective mass transfer properties can be combined with a high frequency simulated moving bed (SMB) design to provide superior productivity in a simple bioseparation. Electrospun polymeric nanofiber adsorbents offer an alternative ligand support surface for bioseparations. Their non-woven fiber structure with diameters in the sub-micron range creates a remarkably high surface area material that allows for rapid convective flow operations. A proof of concept study demonstrated the performance of an anion exchange nanofiber adsorbent based on criteria including flow and mass transfer properties, binding capacity, reproducibility and life-cycle performance. Binding capacities of the DEAE adsorbents were demonstrated to be 10mg/mL, this is indeed only a fraction of what is achievable from porous bead resins but in combination with a very high flowrate, the productivity of the nanofiber system is shown to be significant. Suitable packing into a flow distribution device has allowed for reproducible bind-elute operations at flowrates of 2,400 cm/h, many times greater than those used in typical beaded systems. These characteristics make them ideal candidates for operation in continuous chromatography systems. A SMB system was developed and optimised to demonstrate the productivity of nanofiber adsorbents through rapid bind-elute cycle times of 7s which resulted in a 15-fold increase in productivity compared with packed bed resins. Reproducible performance of BSA purification was demonstrated using a 2-component protein solution of BSA and cytochrome c. The SMB system exploits the advantageous convective mass transfer properties of nanofiber adsorbents to provide productivities much greater than those achievable with conventional chromatography media. PMID:25784156

  20. Novel adsorbent applicability for decontamination of printing wastewater

    Science.gov (United States)

    Kiurski, Jelena; Oros, Ivana; Ranogajec, Jonjaua; Kecic, Vesna

    2013-04-01

    Adsorption capacity of clayey minerals can be enhanced by replacing the natural exchangeable cations with organic cations, which makes the clay surface more hydrophobic. Different solids such as activated carbon, clay minerals, zeolites, metal oxides and organic polymers have been tested as effective adsorbents. On a global scale, clays have a large applicability for decontamination, purification of urban and industrial residual waters, protection of waste disposal areas, and purification of industrial gases and so on. Clay derivative materials with high adsorption capacities are very attractive from an economical point of view. Due to the economic constraints, a development of cost effective and clean processes is desired. Adsorption processes has proved to be the most effective, especially for effluents with moderate and low heavy metal concentrations, as like as in printing wastewaters. Among several removal technologies, the adsorption of Zn(II) ion onto NZ, B, pure C and C with PEG 600 addition could be of great importance for the printing wastewaters purification. However, the newly designed adsorbent of the defined pore size distribution and phase structure considered as the most suitable material for Zn(II) ion removal. The values of distribution coefficient (Kd) increased with decreasing of the adsorbent amount. The Kd values depend also on the type of used adsorbent, the following increased order is obtained: NZ Langmuir > DKR. The study also showed that the fired clay modified with PEG 600 addition has great potential (up to 93.5%) to remove Zn(II) ion from printing wastewaters. The results showed that fired clay, fired clay modified with polymer addition, natural zeolite and bentonite can be used for Zn(II) ion removal from printing wastewaters by adsorption method in laboratory batch mode. Based on higher affinity to the Zn(II) ion adsorption than fired clay, bentonite and zeolite it was concluded that feasibility of newly designed clayey adsorbent, fired clay with 5 mass% PEG addition is very good. A new designed clayey adsorbent is an effective and economical alternative for the Zn(II) ion removal from printing wastewaters. Acknowledgment: The authors acknowledge the financial support of the Ministry of Education, Science and Technological Development of the Republic of Serbia (Projects No. TR 34014, III 45008 and III 46009).

  1. Evaluation of natural clay Brasgel as adsorbent in removal of lead in synthetic waste water

    International Nuclear Information System (INIS)

    The smectite clays have high adsorption capacity and cation exchange. Due to its chemical and physical characteristics, they can be effectively used as adsorbent of pollutants (such as metal ions). The initial objective of this study was to characterize the clay Brasgel through the techniques of X-Ray Diffraction (XRD), X-Ray Spectrometry by Energy Dispersive (EDX) and nitrogen adsorption (BET method), seeking its use in removing lead (Pb2+) from synthetic effluents. System was used in finite bath to assess the potential removal of lead (Pb2+), following a 22 factorial experimental design with three center point experiments, taking as input variables: pH and initial concentrations of lead (Pb2+). The clay has Brasgel clay in its composition that characterize it as a smectite clay. By having a large surface area, this clay showed great potential on the adsorption of metal ions. (author)

  2. Graphene nanostructures with plasma-polymerized pyrrole as an adsorbent layer for biosensors

    International Nuclear Information System (INIS)

    We report on a novel nanoarchitecture for use in highly bioactive electrochemical biosensors. It consists of multilayers of nanostructured plasma-polymerized pyrrole (ppPY) and nanosheets of electrically conductive graphene. The ppPY films were deposited by plasma-enhanced chemical vapor deposition on a graphene surface to form nanostructured composites (G-ppPY). The G-ppPY films were then coated with protein (BSA as a model) by adsorption, and then with DNA. The adsorption of protein and DNA on the nanocomposite was studied by electrochemical impedance spectroscopy and with a quartz crystal microbalance. Results demonstrated that the adsorption of biomolecules on G-ppPY films causes a higher variation in its electrochemical properties and adsorbed amount than that on a plain ppPY surface. This indicates that the presence of graphene can enhance the electrochemical activity of ppPY without reducing the sensitivity of biomolecular adsorption. (author)

  3. Biogeochemistry and community composition of iron- and sulfur-precipitating microbial mats at the Chefren mud volcano (Nile Deep Sea fan, Eastern Mediterranean)

    DEFF Research Database (Denmark)

    Omoregie, Enoma O.; Mastalerz, Vincent; de lange, Gert; Straub, Kristina L.; Kappler, Andreas; Ry, Hans; Stadnitskaia, Alina; Foucher, Jean-Paul; Boetius, Antje

    2008-01-01

    In this study we determined the composition and biogeochemistry of novel, brightly colored, white and orange microbial mats at the surface of a brine seep at the outer rim of the Chefren mud volcano. These mats were interspersed with one another, but their underlying sediment biogeochemistries di...... empty Fe(III) (hydr)oxide-coated microbial sheaths, similar to those produced by the neutrophilic Fe(II)-oxidizing betaproteobacterium Leptothrix ochracea. None of the 16S rRNA gene sequences obtained from these samples were closely related to sequences of known neutrophilic aerobic Fe...

  4. Compsitos magnticos baseados em hidrotalcitas para a remoo de contaminantes aninicos em gua Magnetic composites based on hydrotalcites for removal of anionic contaminants in water

    OpenAIRE

    Leandro da Conceio; Sibele B. C Pergher; Celso C. Moro; Luiz C. A Oliveira

    2007-01-01

    In this work the adsorption features of hydrotalcites (Al, Mg- CO3) and the magnetic properties of iron oxides have been combined in a composite to produce a magnetic adsorbent. These magnetic composites can be used as adsorbents for anionic contaminants in water and subsequently removed from the medium by a simple magnetic process. The magnetic hydrotalcites were characterized by XRD, magnetization measurements, N2 adsorption isotherms and Mssbauer spectroscopy. These magnetic adsorbents sh...

  5. NIST/ARPA-E Database of Novel and Emerging Adsorbent Materials - SRD 205

    Data.gov (United States)

    National Institute of Standards and Technology, Department of Commerce The NIST/ARPA-E Database of Novel and Emerging Adsorbent Materials is a free, web-based catalog of adsorbent materials and measured adsorption properties of...

  6. REGENERATION AND REACTIVATION OF CARBON ADSORBENTS BY RADIO FREQUENCY INDUCTION HEATING

    Science.gov (United States)

    1. Electrical Properties of Adsorbents: We measured the electric permittivity of four commercially available carbon adsorbents (supplied by Wesvaco Inc) over the radio frequency range (1 to 40 MHz). Westvaco is by far the largest volume supplier of activated carbon...

  7. Interstitial and adsorbed phosphates in shelf sediments off Visakhapatnam, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.; Raju, G.R.K.

    Spatial distribution of interstitial and adsorbed phosphates in the shelf sediments shows an increasing trend with distance from coastal to inshore region. Maximum concentration ranges of interstitial and adsorbed phosphates are 16-19 and 40-50 mu g...

  8. Competitive Adsorption of a Two-Component Gas on a Deformable Adsorbent

    OpenAIRE

    Usenko, A. S.

    2013-01-01

    We investigate the competitive adsorption of a two-component gas on the surface of an adsorbent whose adsorption properties vary in adsorption due to the adsorbent deformation. The essential difference of adsorption isotherms for a deformable adsorbent both from the classical Langmuir adsorption isotherms of a two-component gas and from the adsorption isotherms of a one-component gas taking into account variations in adsorption properties of the adsorbent in adsorption is ob...

  9. Removal of alizarin red S (dye) from aqueous media by using alumina as an adsorbent

    International Nuclear Information System (INIS)

    Adsorption is potentially an attractive methodology for removing hazardous dyestuff and heavy metals from industrial effluents. In this work the removing efficiency of an industrially important dye Alizarin Red S from aqueous media using alumina as adsorbent has been investigated. Various parameters, which can influence the adsorption like, mesh size of adsorbent, contact time of solution with adsorbent, temperature, pH, adsorbent dose and stirring speed were optimized. (author)

  10. Measurement of the Mass and Rigidity of Adsorbates on a Microcantilever Sensor

    OpenAIRE

    Javier Tamayo; Zaballos, A; Johann Mertens; Montserrat Calleja; Daniel Ramos

    2007-01-01

    When microcantilevers are used in the dynamic mode, the resonance shift upon material adsorption depends on the position of the adsorbate along the microcantilever. We have previously described that the adsorbate stiffness needs to be considered in addition to its mass in order to correctly interpret the resonance shift. Here we describe a method that allows obtaining the Young's modulus of the adsorbed bacteria derived from the measurement of the frequency shift when adsorbates are placed cl...

  11. Nanocrystalline Akaganeite as Adsorbent for Surfactant Removal from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Eleni A. Deliyanni

    2013-01-01

    Full Text Available The present study presents the effective use of nanocrystalline akaganeite for the adsorption of an anionic (SDS, a cationic (CTAB, and a nonionic (tween80 surfactant from wastewater. Equilibrium experiments, as well as thermodynamic analysis, were performed. The maximum SDS adsorption occurs at the lowest pH value (5, the opposite is observed for CTAB (pH = 11, while for tween80, the change of pH value did not affect the adsorption. The equilibrium data could be described by Freundlich and Langmuir isotherms. The maximum adsorption capacity at 25 C (pH = 8 was 823.96 mg/g for SDS, 1007.93 mg/g for CTAB, and 699.03 mg/g for tween80. The thermodynamic parameters revealed the exothermic and spontaneity nature of the process. Also, FTIR measurements established that surfactants are adsorbed on the surface of akaganeite, replacing adsorbed water.

  12. Determination of Cr and Cd concentration adsorbed by chicken feathers

    International Nuclear Information System (INIS)

    In this work the results of the samples analysis of chicken feathers are presented, used as adsorber of the heavy metals Cd and Cr present in water solutions with well-known concentrations of these metals. It was used the Neutron Activation Analysis technique (AAN), using the TRIGA Mark-III reactor of the Nuclear Center of Mexico. The obtained results they show the advantages of having a versatile installation for the analysis of this type of samples. By means of the analysis of the results, it was determined the feasibility of using chicken feathers like adsorber of these metals present in polluted waters, additionally, it was detected the presence of others polluting elements in the inputs to prepare the reference solutions as well as in the processes, so much of preparation of the feathers like of the metals adsorption. (Author)

  13. Palladium dimers adsorbed on graphene: A DFT study

    International Nuclear Information System (INIS)

    The 2D structure of graphene shows a great promise for enhanced catalytic activity when adsorbed with palladium. We performed a systematic density functional theory (DFT) study of the adsorption of palladium dimer (Pd2) on graphene using SIESTA package, in the generalized gradient approximation (GGA). The adsorption energy, geometry, and charge transfer of Pd2-graphene system are calculated. Both horizontal and vertical orientations of Pd2 on graphene are studied. Our calculations revealed that the minimum energy configuration for Pd dimer is parallel to the graphene sheet with its two atoms occupying centre of adjacent hexagonal rings of graphene sheet. Magnetic moment is induced for Pd dimer adsorbed on graphene in vertical orientation while horizontal orientation of Pd dimer on graphene do not exhibit magnetism. Insignificant energy differences among adsorption sites means that dimer mobility on the graphene sheet is high. There is imperceptible distortion of graphene sheet perpendicular to its plane. However, some lateral displacements are seen

  14. Adsorption studies of radon and xenon on different adsorbents

    International Nuclear Information System (INIS)

    Liquid noble gas detectors play a leading role for direct detection dark matter experiments. Particularly xenon with its high mass and the absence of radioactive isotopes is well suited as target material and used in the XENON project. To reduce background the detector of the next generation, the XENON1T detector, is planned to be operated with a dynamic, adsorption based purification system to clean the xenon from radon contamination. In the first part of this bachelor thesis, radon adsorption in presence of xenon was analyzed for different adsorbent samples, to find the best suited material for the radon removal system. In total one metal organic framework and two zeolites were tested. The second part of the thesis describes measurements of xenon adsorption isotherms on an activated carbon sample at different temperatures. These measurements should help to answer questions concerning the amount and type of adsorbent required to operate successfully the radon removal system planed for the XENON1T experiment.

  15. Superfluid transition of 4He films adsorbed in porous materials

    International Nuclear Information System (INIS)

    The superfluid transition of thin 4He films adsorbed in Al2O3 packed powders is studied using third-sound techniques. For powder grain sizes down to 500 A, the transition is found to remain a Kosterlitz-Thouless vortex-screening transition. As the powder size is decreased, however, the drop to zero of the areal superfluid density becomes broadened, and the third-sound attenuation decreases. A finite-size model of the Kosterlitz-Thouless transition is formulated to explain these effects. Limiting the maximum vortex pair separation to the powder grain size leads to a broadening of the transition and reduced dissipation if the grain size is smaller than a vortex diffusion length. The model also describes many features of earlier measurements on films adsorbed in porous Vycor glass. The claim that the transition in Vycor films is three dimensional (not involving vortices) is reexamined in light of the present results

  16. Vibrational excitation in adsorbed acetylene by electron impact

    International Nuclear Information System (INIS)

    The authors have studied the vibrational spectra of acytylene adsorbed on Ni(111) at 150 K by electron energy loss spectroscopy. They observe both dipole scattering and vibrational excitation by electron impact via a broad resonance around 5 eV. The adsorbed acetylene is characterized by C-C and C-H stretching modes at 1200 and 2920 cm-1, respectively. This indicates a rehybridization of the molecule between sp2 and sp3 and a lowering of the C-C bond order down to approximately 1.5. This suggests that the acetylene is predominantly di-sigma-bonded to the surface and the structure resembles that of ethylene. (Auth.)

  17. Plant waste materials from restaurants as the adsorbents for dyes

    Directory of Open Access Journals (Sweden)

    Pavlović Marija D.

    2015-01-01

    Full Text Available This paper has demonstrated the valorization of inexpensive and readily available restaurant waste containing most consumed food and beverage residues as adsorbents for methylene blue dye. Coffee, tea, lettuce and citrus waste have been utilized without any pre-treatment, thus the adsorption capacities and dye removal efficiency were determined. Coffee waste showed highest adsorbent capacity, followed by tea, lettuce and citrus waste. The dye removal was more effective as dye concentration increases from 5 up to 60 mg/L. The favorable results obtained for lettuce waste have been especially encouraged, as this material has not been commonly employed for sorption purposes. Equilibrium data fitted very well in a Freundlich isotherm model, whereas pseudo-second-order kinetic model describes the process behavior. Restaurant waste performed rapid dye removal at no cost, so it can be adopted and widely used in industries for contaminated water treatment.

  18. Near Infrared Tomography Applied to Adsorbing Fixed Bed Columns

    Science.gov (United States)

    Mewes, Dieter; Salem, Karijm

    2008-09-01

    An optical tomographic measurement technique is developed that enables non-intrusive concentration field measurements at the outlet of packed bed adsorbers. The measurement technique provides a time and spatial resolution, given by the maximum measurement frequency of 20Hz and a local resolution of 0.02% related to the measurement cross-section. It is applied to wall effects in the investigation of adsorption occurring in a packed bed with a low ratio between tube and particle diameter of about D/dp=ll. The measured concentration fields indicate that in the design of packed bed adsorbers, the breakthrough must be regarded not only in respect to time, but also in respect to the radial coordinate.

  19. Radiolysis of alanine adsorbed in a clay mineral

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Ovando, Ellen Y.; Negron-Mendoza, Alicia [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Apartado Postal 70-543, Deleg. Coyoacan, C.P. 04510 (Mexico)

    2013-07-03

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role against external sources of ionizing radiation (specifically {gamma}-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine.

  20. Purification of Sardinella sp., Oil: Centrifugation and Bentonite Adsorbent

    OpenAIRE

    S.H. Suseno; Nurjanah, A.M. Jacoeb; Saraswati

    2014-01-01

    Centrifugation and purification using adsorbents is one example of a fish oil refining techniques applied to reduce impurities of fish oil. The study aimed to determine the sardine oil quality before treatment, to determine yield of fish oil after centrifugation treatment and to determine the influence of centrifugation speed and bentonite concentration on sardine oil quality. Factorial design with two factors was used in this study. Level of free fatty acid and peroxide value before purifica...

  1. Capture numbers in the presence of repulsive adsorbate interactions

    OpenAIRE

    Venables, J.A.; Brune, H.

    2002-01-01

    Capture numbers are used in models of nucleation and growth on surfaces, and have been widely applied to predict nucleation densities and other quantities via rate equations. In conventional nucleation theory, much effort has historically been expended on obtaining good expressions for capture numbers in the diffusion-limited case. However, recent experiments and calculations have shown that weak repulsive interactions between adsorbate atoms on relatively smooth (e.g., close-packed metal) su...

  2. Non-linear optical studies of adsorbates: Spectroscopy and dynamics

    International Nuclear Information System (INIS)

    In the first part of this thesis, we have established a systematic procedure to apply the surface optical second-harmonic generation (SHG) technique to study surface dynamics of adsorbates. In particular, we have developed a novel technique for studies of molecular surface diffusions. In this technique, the laser-induced desorption with two interfering laser beams is used to produce a monolayer grating of adsorbates. The monolayer grating is detected with diffractions of optical SHG. By monitoring the first-order second-harmonic diffraction, we can follow the time evolution of the grating modulation from which we are able to deduce the diffusion constant of the adsorbates on the surface. We have successfully applied this technique to investigate the surface diffusion of CO on Ni(111). The unique advantages of this novel technique will enable us to readily study anisotropy of a surface diffusion with variable grating orientation, and to investigate diffusion processes of a large dynamic range with variable grating spacings. In the second part of this work, we demonstrate that optical infrared-visible sum-frequency generation (SFG) from surfaces can be used as a viable surface vibrational spectroscopic technique. We have successfully recorded the first vibrational spectrum of a monolayer of adsorbates using optical infrared-visible SFG. The qualitative and quantitative correlation of optical SFG with infrared absorption and Raman scattering spectroscopies are examined and experimentally demonstrated. We have further investigated the possibility to use transient infrared-visible SFG to probe vibrational transients and ultrafast relaxations on surfaces. 146 refs

  3. Anomalous dispersion of adsorbate phonons of Mo(110)-H

    OpenAIRE

    Krger, J.; Lehwald, S.; Balden, M.; Ibach, H.

    2002-01-01

    The dispersion curve of the longitudinal-optical adsorbate phonon on hydrogen-saturated Mo(110) along [001] is found to exhibit an anomalous indentation. The maximum indentation is observed at a wave vector, which coincides within the experimental angular resolution with the wave vector, at which the known giant Kohn anomaly for the transverse- and longitudinal-acoustic substrate surface phonons along [001] occurs.

  4. Anomalous dispersion of adsorbate phonons of Mo(110)-H

    Science.gov (United States)

    Krger, Jrg; Lehwald, Sieghart; Balden, Martin; Ibach, Harald

    2002-08-01

    The dispersion curve of the longitudinal-optical adsorbate phonon on hydrogen-saturated Mo(110) along [001] is found to exhibit an anomalous indentation. The maximum indentation is observed at a wave vector, which coincides within the experimental angular resolution with the wave vector, at which the known giant Kohn anomaly for the transverse- and longitudinal-acoustic substrate surface phonons along [001] occurs.

  5. Neutron and light scattering studies of polymers adsorbed on laponite

    International Nuclear Information System (INIS)

    The adsorption of poly(ethylene oxide) (PEO) and various poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronic) copolymers onto the synthetic clay Laponite, was investigated using Small Angle Neutron Scattering (SANS) and Dynamic Light Scattering (DLS). The Laponite particles are anisotropic, with a relatively high aspect ratio; but are the same order of magnitude in size as the polymer radius of gyration. Consequently, the particles present a radically different adsorption geometry compared to a locally planar interface, that is assumed by the majority of adsorption studies. The PEO homo-polymer formed thin layers, with the layer thickness being much smaller on the face than on the edge of the particle. Furthermore, the face thickness remained constant with increasing molecular weight, unlike the edge thickness, which grew with a small power law dependence on the molecular weight. Although the hydrodynamic thicknesses (DLS) were larger than those observed with SANS, the layer thicknesses were much smaller than that expected for polymer adsorption on spherical particles. Experimentally determined inter-particle structure factors suggested that the adsorbed PEO layers provided a steric repulsion term to the inter-particle interactions. The autocorrelation functions for aggregating Laponite dispersions were followed with DLS. It was found that the stabilisation provided by the adsorbed layer reduced the aggregation rate, with lower molecular weights being most effective. SANS and DLS measurements on Laponite/Pluronic systems revealed that the thickness of the Pluronic layer was the same on the edge and face of the particle. As the Pluronic anchor fraction decreased, and the PEO block molecular weight increased, a growth in the layer size and adsorbed amount was observed. The low anchor fraction Pluronics had higher adsorbed amounts and thicker layers, than the highest Mw homo-polymers, demonstrating the importance of the PPO block in the adsorption process. In all cases, monolayer plateau adsorption occurred below the critical micelle concentration. (author)

  6. Toxicity of Uranium Adsorbent Materials using the Microtox Toxicity Test

    International Nuclear Information System (INIS)

    The Marine Sciences Laboratory at the Pacific Northwest National Laboratory evaluated the toxicity of a diverse range of natural and synthetic materials used to extract uranium from seawater. The uranium adsorbent materials are being developed as part of the U. S. Department of Energy, Office of Nuclear Energy, Fuel Resources Program. The goal of this effort was to identify whether deployment of a farm of these materials into the marine environment would have any toxic effects on marine organisms.

  7. Effects of inorganic adsorbents and cyclopiazonic acid in broiler chickens.

    Science.gov (United States)

    Dwyer, M R; Kubena, L F; Harvey, R B; Mayura, K; Sarr, A B; Buckley, S; Bailey, R H; Phillips, T D

    1997-08-01

    Previous studies with cyclopiazonic acid (CPA) have indicated that this mycotoxin strongly adsorbs onto the surface of a naturally acidic phyllosilicate clay (AC). The objective of this study was to determine whether AC (and similar adsorbents) could protect against the toxicity of CPA in vivo. Acidic phyllosilicate clay, neutral phyllosilicate clay (NC, or hydrated sodium calcium aluminosilicate), and a common zeolite (CZ, or clinoptilolite) were evaluated. One-day-old broiler chicks consumed diets containing 0 or 45 mg/kg CPA alone or in combination with 1% AC, NC, or CZ ad libitum from Day 1 to 21. Body weight, feed consumption, feed:gain, hematology, serum biochemical values, and enzyme activities were evaluated. Compared to controls, CPA alone reduced body weight at Day 21 by a total of 26% and resulted in a significantly higher feed:gain ratio. Toxicity of CPA was also expressed through increased relative weights of kidney, proventriculus, and gizzard. Also, there were some alterations in hematology, serum biochemical values, and enzyme activities. Treatment with inorganic adsorbents did not effectively diminish the growth-inhibitory effects of CPA or the increased weights of organs, although there was some protection from hematological, serum biochemical, and enzymatic changes produced by CPA. The results of this study suggest that in vitro binding of CPA to clay does not accurately forecast its efficacy in vivo; the reasons for this discrepancy are not clear, but they may be related to differences in clay binding capacity and ligand selectivity for CPA in vitro vs in vivo. Predictions about the ability of inorganic adsorbents to protect chickens from the adverse effects of mycotoxins should be approached with caution and should be confirmed in vivo, paying particular attention to the potential for nutrient interactions. PMID:9251144

  8. Excitation spectrum of hydrogen adsorbed to carbon nanotubes

    OpenAIRE

    Renker, B.; Schober, H.; Schweiss, P.; Lebedkin, S.; Hennrich, F.

    2003-01-01

    We have studied the microscopic dynamics of hydrogen adsorbed to bundles of single walled carbon nanotubes using inelastic neutron scattering. Evidence is obtained for much higher storage capacities in chemically treated compared to as prepared material. This indicates an additional adsorption layer inside the tubes. Well pronounced excitations in the H2 spectrum at low energies confirm this conclusion. The desorption of hydrogen is monitored in real time as a function of temperature. Hydroge...

  9. Incorporation of molecular adsorbers into future Hubble Space Telescope instruments

    Science.gov (United States)

    Thomson, Shaun R.; Hansen, Patricia A.; Chen, Philip T.; Triolo, Jack J.; Carosso, Nancy P.

    1996-11-01

    The Hubble Space Telescope (HST) has been designed to accommodate changeout and/or repair of many of the primary instruments and subsystem components, in an effort to prolong the useful life of this orbiting observatory. In order to achieve the science goals established for this observatory, many HST instruments must operate in regimes that are greatly influenced by the presence of on-orbit propagated contaminants. To insure that the required performance of each instrument is not compromised due to these contaminant effects, great efforts have been made to minimize the level of on-orbit contamination. These efforts include careful material selection, performing extensive pre-flight vacuum bakeouts of parts and assemblies, assuring instrument assembly is carried out in strict cleanroom environments, performing precision cleaning of various parts, and most recently, the incorporation of a relatively new technology -- molecular adsorbers -- into the basic design of future replacement instruments. Molecular adsorbers were included as part of the wide field/planetary camera 2 (WFPC-2) instrument, which was integrated into the HST during the servicing mission 1 (SM1) in 1993. It is generally recognized that these adsorbers aided in the reductio of on-orbit contamination levels for the WFPC-2 instrument. This technology is now being implemented as part of the basic design for several new instruments being readied for the servicing mission 2 (SM2), scheduled for early 1997. An overview of the concept, design, applications, and to-date testing and predicted benefits associated with the molecular adsorbers within these new HST instruments are presented and discussed in this paper.

  10. Autoimmunity induced by syngeneic splenocyte membranes carrying irreversibly adsorbed paramyxovirus.

    OpenAIRE

    Eaton, M. D.

    1980-01-01

    Newcastle disease virus was adsorbed to a membrane fraction prepared from splenocytes, and the resulting preparation was injected into syngeneic C3H mice. Complement fixing and cytotoxic antibodies reactive with syngeneic tissue and intact cells developed, and some mice died with autoimmune disease characterized by wasting, severe kidney damage, and loss of lymphoid tissue as described previously for animals receiving the membrane fraction of a syngeneic lymphoma in which Newcastle disease vi...

  11. Effects of the STM tip on adsorbate image

    OpenAIRE

    Ramos, Marta M. D.; Sutton, A. P.; A.M. Stoneham

    1991-01-01

    Scanning tunnelling microscopy provides atomic scale information about surface topography and electronic structure. However, the way the tip affects the STM image cannot always be neglected. We present a theoretical study of the effect of the non-uniform electric field of the tip on STM image of adsorbed molecules using Bardeen's approach. Self-consistent geometry optimization and wave-function calculations have been carried out within the CNDO approximation in a cluster model. Our results in...

  12. Dynamic scanning probe microscopy of adsorbed molecules on graphite

    OpenAIRE

    Berdunov, N.; Pollard, A.J.; Beton, P. H.

    2008-01-01

    We have used a combined dynamic scanning tunneling and atomic force microscope to study the organisation of weakly bound adsorbed molecules on a graphite substrate. Specifically we have acquired images of islands of the perylene derivative molecules. These weakly bound molecules may be imaged in dynamic STM, in which the probe is oscillated above the surface. We show that molecular resolution may be readily attained and that a similar mode of imaging may be realised using conventional STM arr...

  13. Toxicity of Uranium Adsorbent Materials using the Microtox Toxicity Test

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jiyeon [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jeters, Robert T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gill, Gary A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bonheyo, George T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-10-01

    The Marine Sciences Laboratory at the Pacific Northwest National Laboratory evaluated the toxicity of a diverse range of natural and synthetic materials used to extract uranium from seawater. The uranium adsorbent materials are being developed as part of the U. S. Department of Energy, Office of Nuclear Energy, Fuel Resources Program. The goal of this effort was to identify whether deployment of a farm of these materials into the marine environment would have any toxic effects on marine organisms.

  14. Infrared Analysis Of Enzymes Adsorbed Onto Model Surfaces

    Science.gov (United States)

    Story, Gloria M.; Rauch, Deborah S.; Brode, Philip F.; Marcott, Curtis A.

    1989-12-01

    The adsorption of the enzymes, subtilisin BPN' and lysozyme, onto model surfaces was examined using attenuated total reflectance (ATR) infrared (IR) spectroscopy. Using a cylindrical internal reflection (CIRcle) cell with a Germanium (Ge) internal reflection element (IRE), model hydrophilic surfaces were made by plasma cleaning the IRE and model hydrophobic surfaces were made by precoating the IRE with a thin film of polystyrene. Gas chromatography (GC)-IR data collection software was used to monitor adsorption kinetics during the first five minutes after injection of the enzyme into the CIRcle cell. It was found that for both lysozyme and BPN', most of the enzyme that was going to adsorb onto the model surface did so within ten seconds after injection. Nearly an order-of-magnitude more BPN' adsorbed on the hydrophobic Ge surface than the hydrophilic one, while lysozyme adsorbed somewhat more strongly to the hydrophilic Ge surface. Overnight, the lysozyme layer continued to increase in thickness, while BPN' maintained its initial coverage. The appearance of carboxylate bands in some of the adsorbed BPN' spectra suggests the occurrence of peptide bond hydrolysis. A Au/Pd coating on the CIRcle cell o-rings had a significant effect on the adsorption of BPN'. (This coating was applied in an attempt to eliminate interfering Teflon absorption bands.) An apparent electrochemical reaction occurred, involving BPN', Ge, Au/Pd, and the salt solution used to stabilize BPN'. The result of this reaction was enhanced adsorption of the enzyme around the coated o-rings, etching of the Ge IRE at the o-ring site, and some autolysis of the enzyme. No such reaction was observed with lysozyme.

  15. Mercury(II) Removal with Modified Magnetic Chitosan Adsorbents

    OpenAIRE

    Kyzas, George Z.; Eleni A. Deliyanni

    2013-01-01

    Two modified chitosan derivatives were prepared in order to compare their adsorption properties for Hg(II) removal from aqueous solutions. The one chitosan adsorbent (CS) is only crosslinked with glutaraldehyde, while the other (CSm), which is magnetic, is cross-linked with glutaraldehyde and functionalized with magnetic nanoparticles (Fe3O4). Many possible interactions between materials and Hg(II) were observed after adsorption and explained via characterization with various techniques (SEM...

  16. Concept of filter-adsorber type integrated air purifier

    OpenAIRE

    Raos Miomir; ivkovi? Ljiljana; ?or?evi? Amelija; ivkovi? Nenad; Radosavljevi? Jasmina

    2010-01-01

    In order to prove flow-thermal and operating parameters of air purifiers in a filter-adsorber system, the authors conducted comprehensive experimental examination in the laboratory for air quality control at the Faculty of Occupational Safety in Ni. Experimental examination was carried out on original experimental equipment with the concept of integrated air purifier which includes simultaneous activity of two different filter screens on separating mechanical and chemical test contamin...

  17. Field testing of carbon adsorber beds-II

    International Nuclear Information System (INIS)

    The service life of activated-carbon-adsorber beds used for air-cleaning was studied. Ethane gas was used in a pulse test to determine the residual adsorption capacity (RAC) of the carbon. Small cartridges were placed in a manifold parallel to the main bed with the air flow closely matching that of the main bed. The cartridges were moved periodically and tested in the laboratory for the RAC

  18. Arxps-Based Analysis of Different Oxygen States Adsorbed at Silver Foil

    Science.gov (United States)

    Bukhtiyarov, V. I.; Boronin, A. I.; Baschenko, O. A.

    Atomic oxygen states adsorbed at silver surface have been studied by angle-resolved XPS. It has been shown that all states have different structure of adsorbed layers. This allowed us to conclude that ARXPS followed by depth concentration profile restoration is useful technique for analysis of the adsorbate location with respect to upper substrate layers.

  19. Preparation of amidoxime-fiber adsorbents by radiation-induced grafting

    International Nuclear Information System (INIS)

    The fibrous adsorbents containing amidoxime groups were synthesized by radiation-induced graft polymerization of acrylonitrile onto polypropylene fibers, followed by functionalization of cyano groups to amidoxime groups with hydroxylamine. The polypropylene-based fibrous adsorbents exhibited a high grafting rate. The adsorption tests proved the performance of these fibrous adsorbents as a promising material for uranium recovery from seawater. (Author)

  20. Preparation of amidoxime-fiber adsorbents by radiation-induced grafting

    Science.gov (United States)

    Kabay, Nalan; Katakai, Akio; Sugo, Takanobu

    1995-02-01

    The fibrous adsorbents containing amidoxime groups were synthesized by radiation-induced graft polymerization of acrylonitrile onto polypropylene fibers, followed by functionalization of cyano groups to amidoxime groups with hydroxylamine. The polypropylene-based fibrous adsorbents exhibited a high grafting rate. The adsorption tests proved the performance of these fibrous adsorbents as a promising material for uranium recovery from seawater.