WorldWideScience

Sample records for off-gas performance test

  1. Off gas condenser performance modelling

    A suite of three programmes has been developed to model the ruthenium decontamination performance of a vitrification plant off-gas condenser. The stages of the model are: condensation of water vapour, NOx absorption in the condensate, RuO4 absorption in the condensate. Juxtaposition of these stages gives a package that may be run on an IBM-compatible desktop PC. Experimental work indicates that the criterion [HNO2] > 10 [RuO4] used to determine RuO4 destruction in solution is probably realistic under condenser conditions. Vapour pressures of RuO4 over aqueous solutions at 70o-90oC are slightly lower than the values given by extrapolating the ln Kp vs. T-1 relation derived from lower temperature data. (author)

  2. ART CCIM Phase II-A Off-Gas System Evaluation Test Plan

    Nick Soelberg; Jay Roach

    2009-01-01

    This test plan defines testing to be performed using the Idaho National Laboratory (INL) engineering-scale cold crucible induction melter (CCIM) test system for Phase II-A of the Advanced Remediation Technologies (ART) CCIM Project. The multi-phase ART-CCIM Project is developing a conceptual design for replacing the joule-heated melter (JHM) used to treat high level waste (HLW) in the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) with a cold crucible induction melter. The INL CCIM test system includes all feed, melter off-gas control, and process control subsystems needed for fully integrated operation and testing. Testing will include operation of the melter system while feeding a non-radioactive slurry mixture prepared to simulate the same type of waste feed presently being processed in the DWPF. Process monitoring and sample collection and analysis will be used to characterize the off-gas composition and properties, and to show the fate of feed constituents, to provide data that shows how the CCIM retrofit conceptual design can operate with the existing DWPF off-gas control system.

  3. Test results from the GA Technologies engineering-scale off-gas treatment system

    Test results are available from the GA Technologies (GA) off-gas treatment facilities using gas streams from both the graphite fuel element burner system and from the spent fuel dissolver. The off-gas system is part of a pilot plant for development of processes for treating spent fuel from high temperature gas-cooled reactors (HTGRs). One method for reducing the volume of HTGR fuel prior to reprocessing or spent fuel storage is to crush and burn the graphite fuel elements. The burner off-gas (BOG) contains radioactive components, principally H-3, C-14, Kr-85, I-129, and Rn-220, as well as chemical forms such as CO2, CO, O2, and SO2. The BOG system employs components designed to remove these constituents. Test results are reported for the iodine and SO2 adsorbers and the CO/HT oxidizer. Integrated testing of major BOG system components confirmed the performance of units evaluated in individual tests. Design decontamination and conversion factors were maintained for up to 72 h. In a reprocessing flowsheet, the solid product from the burners is dissolved in nitric or Thorex acid. The dissolver off-gas (DOG) contains radioactive components H-3, Kr-85, I-129, Rn-220 plus chemical forms such as nitrogen oxides (NO/sub x/). In the pilot-scale system iodine is removed from the DOG by adsorption. Tests of iodine removal have been conducted using either silver-exchanged mordenite (AgZ) or AgNO3-impregnated silica gel (AC-6120). Although each sorbent performed well in the presence of NO/sub x/, the silica gel adsorbent proved more efficient in silver utilization and, thus, more cost effective

  4. Development of high performance catalyst for off-gas treatment system in BWR

    A high performance catalyst for off-gas treatment system in boiling water reactor (BWR) has been developed. The hydrogen concentration in the outlets of off-gas recombiners increased at several BWR plants in Japan. These phenomena were caused by deactivation of catalysts for the recombiners, and we assumed two types of deactivation mechanisms. The first cause was an increase of the amount of boehmite in the catalyst support due to alternation of the manufacturing process. The other cause was catalysts being poisoned by cyclic siloxanes that were introduced from the silicone sealant used in the upstream of the off-gas recombiners. The catalysts were manufactured by Pt adhering on alumina support. The conventional catalyst (CAT-A) used the aqueous solution of the chloroplatinic acid for adhesion of Pt. A dechlorination process by autoclave was applied to prevent the equipment at the downstream of the recombiners from stress corrosion cracking, but this process caused the support material to transform into boehmite. The boehmite-rich catalysts were deactivated more easily by organic silicon than gamma alumina-rich catalysts. Therefore, the CAT-A was replaced at many Japanese BWR plants by the improved catalyst (CAT-B), and their support was transformed into more stable gamma alumina by heating at 500degC. However, the siloxanes keep being detected in the off-gas though the source of siloxane had been removed and there still remain possibilities to deactivate the catalysts. Therefore, we have been developing high performance catalyst (CAT-C) that has higher activity and durability against poisoning. We investigated the properties of CAT-C by performance tests and instrumental analyses. The dependency of thermal output of nuclear reactor, and durability against siloxane poisoning were investigated. We found that CAT-C showed higher performance and better properties than CAT-B did. Moreover, we have been developing a modeling method to evaluate the hydrogen recombination

  5. ART CCIM PHASE II-A OFF-GAS SYSTEM EVALUATION TEST REPORT

    Nick Soelberg

    2009-04-01

    AREVA Federal Services (AFS) is performing a multi-year, multi-phase Advanced Remediation Technologies (ART) project, sponsored by the U.S. Department of Energy (DOE), to evaluate the feasibility and benefits of replacing the existing joule-heated melter (JHM) used to treat high level waste (HLW) in the Defense Waste Processing Facility (DWPF) at the Savannah River Site with a cold crucible induction melter (CCIM). The AFS ART CCIM project includes several collaborators from AREVA subsidiaries, French companies, and DOE national laboratories. The Savannah River National Laboratory and the Commissariat a l’Energie Atomique (CEA) have performed laboratory-scale studies and testing to determine a suitable, high-waste-loading glass matrix. The Idaho National Laboratory (INL) and CEA are performing CCIM demonstrations at two different pilot scales to assess CCIM design and operation for treating SRS sludge wastes that are currently being treated in the DWPF. SGN is performing engineering studies to validate the feasibility of retrofitting CCIM technology into the DWPF Melter Cell. The long-term project plan includes more lab-testing, pilot- and large-scale demonstrations, and engineering activities to be performed during subsequent project phases. A simulant of the DWPF SB4 feed was successfully fed and melted in a small pilot-scale CCIM system during two test series. The OGSE tests provide initial results that (a) provide melter operating conditions while feeding a DWPF SB4 simulant feed, (b) determine the fate of feed organic and metal feed constituents and metals partitioning, and (c) characterize the melter off-gas source term to a downstream off-gas system. The INL CCIM test system was operated continuously for about 30 hours during the parametric test series, and for about 58 hours during the OGSE test. As the DWPF simulant feed was continuously fed to the melter, the glass level gradually increased until a portion of the molten glass was drained from the melter

  6. Test results from the GA technologies engineering-scale off-gas treatment system

    One method for reducing the volume of HTGR fuel prior to reprocessing or spent fuel storage is to crush and burn the graphite fuel elements. The burner off-gas (BOG) contains radioactive components, principally H-3, C-14, Kr-85, I-129, and Rn-220, as well as chemical forms such as CO2, CO, O2, and SO2. The BOG system employs components designed to remove these constitutents. Test results are reported for the iodine and SO2 adsorbers and the CO/HT oxidizer. Silver-based iodine adsorbents were found to catalyze the premature conversion of CO to CO2. Subsequent tests showed that iodine removal could not be performed downstream of the CO/HT oxidizer since iodine in the BOG system rapidly deactivated the Pt-coated alumina CO catalyst. Lead-exchanged zeolite (PbX) was found to be an acceptable alternative for removing iodine from BOG without CO conversion. Intermittent and steady-state tests of the pilot-plant SO2 removal unit containing sodium-exchanged zeolite (NaX) demonstrated that decontamination factors greater than or equal to 100 could be maintained for up to 50 h. In a reprocessing flowsheet, the solid product from the burners is dissolved in nitric or Thorex acid. The dissolver off-gas (DOG) contains radioactive components H-3, Kr-85, I-129, Rn-220 plus chemical forms such as nitrogen oxides (NO/sub x/). In the pilot-scale system at GA, iodine is removed from the DOG by adsorption. Tests of iodine removal have been conducted using either silver-exchanged mordenite (AgZ) or AgNO3-impregnated silica gel (AC-6120). Although each sorbent performed well in the presence of NO/sub x/, the silica gel adsorbent proved more efficient in silver utilization and, thus, more cost effective

  7. Test results in the treatment of HTR reprocessing off-gas

    The AKUT II-facility (throughput 10 m3/h, STP) for the clean up of the burner off-gas has been tested with synthetic off-gas and with off-gas from cold burner tests. The results are reported. During dissolution of the burner ash in nitric acid an off-gas is formed whose main component is air and which, besides the gaseous fission products, contains NO/sub x/. Before the separation of the gaseous fission products NO/sub x/ and/or O2 are removed by reaction with H2 or NH3. For these reactions catalysts were used. Because of the known disadvantages of catalytic systems, like reduction in efficiency by poisoning or thermal influence, the alternative method of thermal, flameless reduction was tested. The reactions were carried out in a stainless steel and a quartz reactor. Throughput, reaction temperature, O2-, NO/sub x/-, H2-, and NH3-concentrations respectively were varied. The goal of these tests was to remove O2 and NO/sub x/ to below 1 ppM behind the reactor and NH3 to below the detection limit of 50 ppM. It was found that at a reaction temperature of 7500C in the stainless steel reactor these goals can be reached for both H2 and NH3 as reducing agents. In the quartz reactor only the O2-H2-reaction takes place. Obviously stainless steel acts as a catalyst for all other reactions

  8. Off-gas treatment and characterization for a radioactive in situ vitrification test

    Effluents released to the off gas during the in situ vitrification (ISV) of a test site have been characterized. The site consisted of a 19 L waste package of soil containing 600 nCi/g transuranic and 30,000 nCi/g mixed fission products surrounded by uncontaminated soil. Radioactive isotopes present in the package were 241Am, /sup 238/239/Pu, 137Cs, 106Ru, 90Sr, and 60Co. The ISV process melted the waste package and surrounding soil and immobilized the radionuclides in place, producing a durable, 8.6 metric ton glass and crystalline monolith. The test successfully demonstrated that the process provides containment of radioactive material. No release to the environment was detected during processing or cooldown. Due to the high temperatures during processing, some gases were released into the off-gas hood that was placed over the test site. The hood was maintained at a light negative pressure to contain any volatile or entrained material during processing. Gases passed from the hood to an off-gas treatment system where they were treated using a venturi-ejector scrubber, a tandem nozzle gas cleaner scrubber followed by a condenser, heater, and two stages of HEPA filters. The off-gas treatment system is located in the semi-trailer to allow transport of the process to other potential test sites. Retention of all radionuclides by the vitrified zone was greater than 99%. Soil-to-off-gas decontamination factors (DFs) for transuranic elements averaged greater than 4000 and for fission products, DFs ranged from 130 for 137Cs to 3100 for 90Sr

  9. Off-gas treatment and characterization for a radioactive in situ vitrification test

    Effluents released to the off gas during the in situ vitrification (ISV) of a test site have been characterized by Pacific Northwest Laboratory. The site consisted of a 19 L waste package of soil containing 600 nCi/g transuranic and 30,000 nCi/g mixed fission products surrounded by uncontaminated soil. Radioactive isotopes present in the package were 241Am, 238/239Pu, 137Cs, 106Ru, 90Sr, and 60Co. The ISV process melted the waste package and surrounding soil and immobilized the radionuclides in place, producing a durable, 8.6 metric ton glass and crystalline monolith. The test successfully demonstrated that the process provides containment of radioactive material. No release to the environment was detected during processing of cooldown. Due to the high temperature during processing, some gases were released into the off-gas hood that was over the test site. The hood was maintained at a slight negative pressure to contain any volatile or entrained material during processing. Gases passed from the hood to an off-gas treatment system where they were treated using a venturi-ejector scrubber, a tandem nozzle gas cleaner scrubber followed by a condenser, heater, and two stages of HEPA filters. The off-gas treatment system is located in the semi-trailer to allow transport of the process to other potential test sites. Retention of all radionuclides by the vitrified zone was greater than 99%. Soil-to-off-gas decontamination factors (DFs) for transuranic elements averaged greater than 4000 and for fission products, DFs ranged from 130 for 137Cs to 3100 for 90Sr. 7 references, 15 figures, 4 tables

  10. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    (chloride, fluoride, sulfur), will have high ammonia, and will contain carryover particulates of glass-former chemicals. These species have potential to cause corrosion of tanks and equipment, precipitation of solids, release of ammonia gas vapors, and scale in the tank farm evaporator. Routing this stream to the tank farms does not permanently divert it from recycling into the WTP, only temporarily stores it prior to reprocessing. Testing is normally performed to demonstrate acceptable conditions and limits for these compounds in wastes sent to the tank farms. The primary parameter of this phase of the test program was measuring the formation of solids during evaporation in order to assess the compatibility of the stream with the evaporator and transfer and storage equipment. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW facility melter offgas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and, thus, the composition will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. This report discusses results of evaporation testing of the simulant. Two conditions were tested, one with the simulant at near neutral pH, and a second at alkaline pH. The neutral pH test is comparable to the conditions in the Hanford Effluent Treatment Facility (ETF) evaporator, although that evaporator operates at near atmospheric pressure and tests were done under vacuum. For the alkaline test, the target pH was based on the tank farm corrosion control program requirements, and the test protocol and equipment was comparable to that

  11. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

    2014-01-27

    (chloride, fluoride, sulfur), will have high ammonia, and will contain carryover particulates of glass-former chemicals. These species have potential to cause corrosion of tanks and equipment, precipitation of solids, release of ammonia gas vapors, and scale in the tank farm evaporator. Routing this stream to the tank farms does not permanently divert it from recycling into the WTP, only temporarily stores it prior to reprocessing. Testing is normally performed to demonstrate acceptable conditions and limits for these compounds in wastes sent to the tank farms. The primary parameter of this phase of the test program was measuring the formation of solids during evaporation in order to assess the compatibility of the stream with the evaporator and transfer and storage equipment. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW facility melter offgas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and, thus, the composition will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. This report discusses results of evaporation testing of the simulant. Two conditions were tested, one with the simulant at near neutral pH, and a second at alkaline pH. The neutral pH test is comparable to the conditions in the Hanford Effluent Treatment Facility (ETF) evaporator, although that evaporator operates at near atmospheric pressure and tests were done under vacuum. For the alkaline test, the target pH was based on the tank farm corrosion control program requirements, and the test protocol and equipment was comparable to that

  12. Design, Fabrication, and Shakeout Testing of ATALANTE Dissolver Off-Gas Sorbent-Based Capture System

    Walker, Jr, Joseph Franklin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jubin, Robert Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jordan, Jacob A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bruffey, Stephanie H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-07-31

    A sorbent-based capture system designed for integration into the existing dissolver off-gas (DOG) treatment system at the ATelier Alpha et Laboratoires pour ANalyses, Transuraniens et Etudes de retraitement (ATALANTE) facility has been successfully designed and fabricated and has undergone shakeout testing. Discussions with personnel from the ATALANTE facility provided guidance that was used for the design. All components for this system were specified, procured, and received on site at Oak Ridge National Laboratory (ORNL). The system was then fabricated and tested at ORNL to verify operation. Shakeout testing resulted in a simplified system. This system should be easily installed into the existing facility and should be straightforward to operate during future experimental testing. All parts were selected to be compatible with ATALANTE power supplies, space requirements, and the existing DOG treatment system. Additionally, the system was demonstrated to meet all of four design requirements. These include (1) a dissolver off-gas flow rate of ≤100 L/h (1.67 L/min), (2) an external temperature of ≤50°C for all system components placed in the hot cell, (3) a sorbent bed temperature of ~150°C, and (4) a gas temperature of ~150°C upon entry into the sorbent bed. The system will be ready for shipment and installation in the existing DOG treatment system at ATALANTE in FY 2016.

  13. Development and testing of prototype alpha waste incinerator off-gas systems

    A test program is in progress at Savannah River Laboratory (SRL) to confirm and develop incinerator design technology for an SRP production Alpha Waste Incinerator (AWI) to be built in the mid-1980's. The Incinerator Components Test Facility (ICTF) is a full-scale (5 kg/h), electrically heated, controlled-air prototype incinerator built to burn nonradioactive solid waste. The incinerator has been operating successfully at SRL since March 1979 and has met or exceeded all design criteria. During the first 1-1/2 years of operation, liquid scrubbers were used to remove particulates and hydrochloric acid from the incinerator exhaust gases. A dry off-gas system is currently being tested to provide data to Savannah River Plant's proposed AWI

  14. Interim report on testing of off-gas treatment technologies for abatement of atmospheric emissions of chlorinated volatile organic compounds

    Haselow, J.S.; Jarosch, T.R.; Rossabi, J.; Burdick, S.; Lombard, K.

    1993-12-01

    The purpose of this report is to briefly summarize the results to date of the off-gas treatment program for atmospheric emissions of chlorinated volatile organic compounds (CVOCs), in particular trichloroethylene (TCE) and perchloroethylene (PCE). This program is part of the Department of Energy`s Office of Technology Development`s Integrated Demonstration for Treatment of Organics in Soil and Water at a Non-Arid Site. The off-gas treatment program was initiated after testing of in-situ air stripping with horizontal wells was completed. That successful test expectedly produced atmospheric emissions of CVOCs that were unabated. It was decided after that test that an off-gas treatment program would complement the Integrated Demonstration not only because off-gas treatment is an integral portion of remediation of CVOC contamination in groundwater and soil but also because several technologies were being developed across the US to mitigate CVOC emissions. A single platform for testing off-gas treatment technologies would facilitate systematic and unbiased evaluation of the emerging technologies.

  15. Interim report on testing of off-gas treatment technologies for abatement of atmospheric emissions of chlorinated volatile organic compounds

    The purpose of this report is to briefly summarize the results to date of the off-gas treatment program for atmospheric emissions of chlorinated volatile organic compounds (CVOCs), in particular trichloroethylene (TCE) and perchloroethylene (PCE). This program is part of the Department of Energy's Office of Technology Development's Integrated Demonstration for Treatment of Organics in Soil and Water at a Non-Arid Site. The off-gas treatment program was initiated after testing of in-situ air stripping with horizontal wells was completed. That successful test expectedly produced atmospheric emissions of CVOCs that were unabated. It was decided after that test that an off-gas treatment program would complement the Integrated Demonstration not only because off-gas treatment is an integral portion of remediation of CVOC contamination in groundwater and soil but also because several technologies were being developed across the US to mitigate CVOC emissions. A single platform for testing off-gas treatment technologies would facilitate systematic and unbiased evaluation of the emerging technologies

  16. Final Report on Testing of Off-Gas Treatment Technologies for Abatement of Atmospheric Emissions of Chlorinated Volatile Organic Compounds

    The purpose of this report is to summarize the results of the program for off-gas treatment of atmospheric emissions of chlorinated volatile organic compounds (CVOCs), in particular trichloroethylene (TCE) and perchloroethylene (PCE). This program was funded through the Department of Energy Office of Technology Development's VOC's in Non-Arid Soils Integrated Demonstration (VNID). The off-gas treatment program was initiated after testing of in-situ air stripping with horizontal wells was completed (Looney et al., 1991). That successful test expectedly produced atmospheric emissions of CVOCs that were unabated. It was decided after that test that an off-gas treatment is an integral portion of remediation of CVOC contamination in groundwater and soil but also because several technologies were being developed across the United States to mitigate CVOC emissions. A single platform for testing off-gas treatment technologies would facilitate cost effective evaluation of the emerging technologies. Another motivation for the program is that many CVOCs will be regulated under the Clean Air Act Amendments of 1990 and are already regulated by many state regulatory programs. Additionally, compounds such as TCE and PCE are pervasive subsurface environmental contaminants, and, as a result, a small improvement in terms of abatement efficiency or cost will significantly reduce CVOC discharges to the environment as well as costs to United States government and industry

  17. Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Taylor-Pashow, Kathryn M.; Nash, Charles A.; Crawford, Charles L.; McCabe, Daniel J.; Wilmarth, William R.

    2014-01-21

    compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are also expected to be in appreciable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. This report discusses results of preliminary radionuclide decontamination testing of the simulant. Testing examined use of Monosodium Titanate (MST) to remove {sup 90}Sr and actinides, inorganic reducing agents for {sup 99}Tc, and zeolites for {sup 137}Cs. Test results indicate that excellent removal of {sup 99}Tc was achieved using Sn(II)Cl{sub 2} as a reductant, coupled with sorption onto hydroxyapatite, even in the presence of air and at room temperature. This process was very effective at neutral pH, with a Decontamination Factor (DF) >577 in two hours. It was less

  18. Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Off-Gas Condensate stream is Technetium-99 (99Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are also expected to be in appreciable concentration in the LAW Off-Gas Condensate are 129I, 90Sr, 137Cs, and 241Am. This report discusses results of preliminary radionuclide decontamination testing of the simulant. Testing examined use of Monosodium Titanate (MST) to remove 90Sr and actinides, inorganic reducing agents for 99Tc, and zeolites for 137Cs. Test results indicate that excellent removal of 99Tc was achieved using Sn(II)Cl2 as a reductant, coupled with sorption onto hydroxyapatite, even in the presence of air and at room temperature. This process was very effective at neutral pH, with a Decontamination Factor (DF) >577 in two hours. It was less effective at alkaline pH. Conversely, removal of the cesium

  19. Removal efficiency of silver impregnated filter materials and performance of iodie filters in the off-gas of the Karlsruhe reprocessing plant WAK

    Herrmann, F.J.; Herrmann, B.; Hoeflich, V. [Wiederaufarbeitungsanlage Karlsruhe (Germany)] [and others

    1997-08-01

    An almost quantitative retention of iodine is required in reprocessing plants. For the iodine removal in the off-gas streams of a reprocessing plant various sorption materials had been tested under realistic conditions in the Karlsruhe reprocessing plant WAK in cooperation with the Karlsruhe research center FZK. The laboratory results achieved with different iodine sorption materials justified long time performance tests in the WAK Plant. Technical iodine filters and sorption materials for measurements of iodine had been tested from 1972 through 1992. This paper gives an overview over the most important results, Extended laboratory, pilot plant, hot cell and plant experiences have been performed concerning the behavior and the distribution of iodine-129 in chemical processing plants. In a conventional reprocessing plant for power reactor fuel, the bulk of iodine-129 and iodine-127 is evolved into the dissolver off-gas. The remainder is dispersed over many aqueous, organic and gaseous process and waste streams of the plant. Iodine filters with silver nitrate impregnated silica were installed in the dissolver off-gas of the Karlsruhe reprocessing plant WAK in 1975 and in two vessel vent systems in 1988. The aim of the Karlsruhe iodine research program was an almost quantitative evolution of the iodine during the dissolution process to remove as much iodine with the solid bed filters as possible. After shut down of the WAK plant in December 1990 the removal efficiency of the iodine filters at low iodine concentrations had been investigated during the following years. 12 refs., 2 figs., 2 tabs.

  20. LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT

    Taylor-Pashow, K.; Nash, C.; McCabe, D.

    2014-09-29

    compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in greatest abundance in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are low but are also expected to be in measurable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, {sup 241}Pu, and {sup 241}Am. These are present due to their partial volatility and some entrainment in the off-gas system. This report discusses results of optimized {sup 99}Tc decontamination testing of the simulant. Testing examined use of inorganic reducing agents for {sup 99}Tc. Testing focused on minimizing the quantity of sorbents/reactants added, and minimizing mixing time to reach the decontamination targets in this simulant formulation. Stannous chloride and ferrous sulfate were tested as reducing agents to determine the minimum needed to convert soluble pertechnetate

  1. Development And Initial Testing Of Off-Gas Recycle Liquid From The WTP Low Activity Waste Vitrification Process - 14333

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.; Taylor-Pashow, Kathryn M.; Adamson, Duane J.; Crawford, Charles L.; Morse, Megan M.

    2014-01-07

    The Waste Treatment and Immobilization Plant (WTP) process flow was designed to pre-treat feed from the Hanford tank farms, separate it into a High Level Waste (HLW) and Low Activity Waste (LAW) fraction and vitrify each fraction in separate facilities. Vitrification of the waste generates an aqueous condensate stream from the off-gas processes. This stream originates from two off-gas treatment unit operations, the Submerged Bed Scrubber (SBS) and the Wet Electrospray Precipitator (WESP). Currently, the baseline plan for disposition of the stream from the LAW melter is to recycle it to the Pretreatment facility where it gets evaporated and processed into the LAW melter again. If the Pretreatment facility is not available, the baseline disposition pathway is not viable. Additionally, some components in the stream are volatile at melter temperatures, thereby accumulating to high concentrations in the scrubbed stream. It would be highly beneficial to divert this stream to an alternate disposition path to alleviate the close-coupled operation of the LAW vitrification and Pretreatment facilities, and to improve long-term throughput and efficiency of the WTP system. In order to determine an alternate disposition path for the LAW SBS/WESP Recycle stream, a range of options are being studied. A simulant of the LAW Off-Gas Condensate was developed, based on the projected composition of this stream, and comparison with pilot-scale testing. The primary radionuclide that vaporizes and accumulates in the stream is Tc-99, but small amounts of several other radionuclides are also projected to be present in this stream. The processes being investigated for managing this stream includes evaporation and radionuclide removal via precipitation and adsorption. During evaporation, it is of interest to investigate the formation of insoluble solids to avoid scaling and plugging of equipment. Key parameters for radionuclide removal include identifying effective precipitation or ion

  2. Development And Initial Testing Of Off-Gas Recycle Liquid From The WTP Low Activity Waste Vitrification Process - 14333

    The Waste Treatment and Immobilization Plant (WTP) process flow was designed to pre-treat feed from the Hanford tank farms, separate it into a High Level Waste (HLW) and Low Activity Waste (LAW) fraction and vitrify each fraction in separate facilities. Vitrification of the waste generates an aqueous condensate stream from the off-gas processes. This stream originates from two off-gas treatment unit operations, the Submerged Bed Scrubber (SBS) and the Wet Electrospray Precipitator (WESP). Currently, the baseline plan for disposition of the stream from the LAW melter is to recycle it to the Pretreatment facility where it gets evaporated and processed into the LAW melter again. If the Pretreatment facility is not available, the baseline disposition pathway is not viable. Additionally, some components in the stream are volatile at melter temperatures, thereby accumulating to high concentrations in the scrubbed stream. It would be highly beneficial to divert this stream to an alternate disposition path to alleviate the close-coupled operation of the LAW vitrification and Pretreatment facilities, and to improve long-term throughput and efficiency of the WTP system. In order to determine an alternate disposition path for the LAW SBS/WESP Recycle stream, a range of options are being studied. A simulant of the LAW Off-Gas Condensate was developed, based on the projected composition of this stream, and comparison with pilot-scale testing. The primary radionuclide that vaporizes and accumulates in the stream is Tc-99, but small amounts of several other radionuclides are also projected to be present in this stream. The processes being investigated for managing this stream includes evaporation and radionuclide removal via precipitation and adsorption. During evaporation, it is of interest to investigate the formation of insoluble solids to avoid scaling and plugging of equipment. Key parameters for radionuclide removal include identifying effective precipitation or ion

  3. TREATMENT TANK OFF-GAS TESTING FOR THE ENHANCED CHEMICAL CLEANING PROCESS

    Wiersma, B.

    2011-08-29

    The purpose of this activity was to provide a bounding estimate of the volume of hydrogen gas generated during Enhanced Chemical Cleaning (ECC) of residual sludge remaining in a Type I or Type II treatment tank as well as to provide results independent of the sludge volume in the waste tank to be cleaned. Previous testing to support Chemical Cleaning was based on a 20:1 oxalic acid to sludge ratio. Hydrogen gas evolution is the primary safety concern. Sealed vessel coupon tests were performed to estimate the hydrogen generation rate due to corrosion of carbon steel by 2.5 wt.% oxalic acid. These tests determined the maximum instantaneous hydrogen generation rate, the rate at which the generation rate decays, and the total hydrogen generated. These values were quantified based on a small scale methodology similar to the one described in WSRC-STI-2007-00209, Rev. 0. The measured rates support identified Safety Class functions. The tests were performed with ASTM A285 Grade C carbon steel coupons. Bounding conditions were determined for the solution environment. The oxalic acid concentration was 2.5 wt.% and the test temperature was 75 C. The test solution was agitated and contained no sludge simulant. Duplicate tests were performed and showed excellent reproducibility for the hydrogen generation rate and total hydrogen generated. The results showed that the hydrogen generation rate was initially high, but decayed rapidly within a couple of days. A statistical model was developed to predict the instantaneous hydrogen generation rate as a function of exposure time by combining both sets of data. An upper bound on the maximum hydrogen generation rate was determined from the upper 95% confidence limit. The upper bound confidence limit for the hydrogen generation rate is represented by the following equation. ln (G{sub v}) = -8.22-0.0584 t + 0.0002 t{sup 2}. This equation should be utilized to estimate the instantaneous hydrogen generation rate per unit surface area, G

  4. FINAL REPORT REGULATORY OFF GAS EMISSIONS TESTING ON THE DM1200 MELTER SYSTEM USING HLW AND LAW SIMULANTS VSL-05R5830-1 REV 0 10/31/05

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D' ANGELO NA; BRANDYS M; KOT WK; PEGG IL

    2011-12-29

    The operational requirements for the River Protection Project - Waste Treatment Plant (RPP-WTP) Low Activity Waste (LAW) and High Level Waste (HLW) melter systems, together with the feed constituents, impose a number of challenges to the off-gas treatment system. The system must be robust from the standpoints of operational reliability and minimization of maintenance. The system must effectively control and remove a wide range of solid particulate matter, acid mists and gases, and organic constituents (including those arising from products of incomplete combustion of sugar and organics in the feed) to concentration levels below those imposed by regulatory requirements. The baseline design for the RPP-WTP LAW primary off-gas system includes a submerged bed scrubber (SBS), a wet electrostatic precipitator (WESP), and a high efficiency particulate air (HEPA) filter. The secondary off-gas system includes a sulfur-impregnated activated carbon bed (AC-S), a thermal catalytic oxidizer (TCO), a single-stage selective catalytic reduction NOx treatment system (SCR), and a packed-bed caustic scrubber (PBS). The baseline design for the RPP-WTP HLW primary off-gas system includes an SBS, a WESP, a high efficiency mist eliminator (HEME), and a HEPA filter. The HLW secondary off-gas system includes a sulfur-impregnated activated carbon bed, a silver mordenite bed, a TCO, and a single-stage SCR. The one-third scale HLW DM1200 Pilot Melter installed at the Vitreous State Laboratory (VSL) was equipped with a prototypical off-gas train to meet the needs for testing and confirmation of the performance of the baseline off-gas system design. Various modifications have been made to the DM1200 system as the details of the WTP design have evolved, including the installation of a silver mordenite column and an AC-S column for testing on a slipstream of the off-gas flow; the installation of a full-flow AC-S bed for the present tests was completed prior to initiation of testing. The DM1200

  5. Low-Level waste phase 1 melter testing off gas and mass balance evaluation

    Wilson, C.N.

    1996-06-28

    Commercially available melter technologies were tested during 1994-95 as part of a multiphase program to test candidate technologies for vitrification of the low-level waste (LLW) stream to be derived from retrieval and pretreatment of Hanford Site tank wastes. Seven vendors were selected for Phase 1 testing to demonstrate vitrification of a high sodium content liquid LLW simulant. The tested melter technologies included four Joule-heated melters, a carbon electrode melter, a combustion melter, and a plasma melter. Various dry and slurry melter feed preparation processes were also tested. Various feed material samples, product glass samples, and process offgas streams were characterized to provide data for evaluation of process decontamination factors and material mass balances for each vitrification technology. This report describes the melter mass balance evaluations and results for six of the Phase 1 LLW melter vendor demonstration tests.

  6. Laboratory optimization tests of technetium decontamination of Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable simplified operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  7. Laboratory optimization tests of technetium decontamination of Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    Taylor-Pashow, Kathryn M.L. [Savannah River Site (SRS), Aiken, SC (United States); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-11-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable simplified operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  8. Results of cleaning dissolver off-gas in the PASSAT prototype dissolver off-gas filter system

    For demonstration of an advanced dissolver off-gas cleaning system the new PASSAT filter system has been developed, set up under licensing conditions pertinent to industrial scale reprocessing facilities and commissioned for trial operation. Major components of the PASSAT off-gas cleaning system are the packed fiber mist eliminator with flushing capability (Brink filter) for initial removal of droplet and solid aerosols, which has been installed to extend the service life of HEPA filters, and the series connected iodine adsorption filters for optimum utilization of the iodine adsorption material, AC 6120. The tests performed so far and the experience accumulated in testing these remotely operated filter components under simulated dissolver off-gas conditions, are described and discussed

  9. FY'99 final report for the expedited technology demonstration project: demonstration test results for the MSO/off-gas and salt recycle system

    Molten Salt Oxidation (MSO) is a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility in which an integrated pilot-scale MSO treatment system is being tested and demonstrated. The system consists of a MSO vessel with a dedicated off-gas treatment system, a salt recycle system, feed preparation equipment, and a ceramic final waste forms immobilization system. This integrated system was designed and engineered based on operational experience with an engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. The MSO/off-gas system has been operational since December 1997. The salt recycle system and the ceramic final forms immobilization became operational in May 1998. In FY98, we have tested the MSO facility with various organic feeds, including chlorinated solvents, tributyl phosphate/kerosene, PCB-contaminated waste oils and solvents, booties, plastic pellets, ion exchange resins, activated carbon, radioactive-spiked organics, and well-characterized low-level liquid mixed wastes. MSO is shown to be a versatile technology for hazardous waste treatment and may be a solution to many waste disposal problems in DOE sites. The results of the demonstration conducted in FY98 has been reported [1]. In FY99 (October 1998 to April 1999) we conducted further testing in the MSO/off-gas system with ion exchange resins, two real waste specimens, activated carbon, and TNT-loaded activated carbon, both at regular feed rates and higher feed rates up to a superficial gas velocity of 1.75 ft/s. We also drained the salt three times (SR7, SR8, SR9) in FY99 and sent the spent salts to the salt recycle system for further processing. This report presents the results obtained from the demonstration of the MSO/off-gas system and the salt recycle system from October 1998 to April 1999. We then shut down the operation and cleaned the

  10. Method for freezing out xenon from the dissolver off-gas from fuel reprocessing plants

    A laboratory arrangement on the basis of an evaporator-type cryostatic temperature regulator with LN2 cooling has been developed to separate radioactive xenon impurities by freezing out from the dissolver off-gas from fuel reprocessing plants. This simple cryotrapping principle enables freezing out of xenon controlled only by temperature. This is confirmed by the results of extensive test performed with simulated dissolver off-gas mixes (having a xenon content <= 2 vol%). (orig./HP)

  11. Antifoam Degradation Products in Off Gas and Condensate of Sludge Batch 9 Simulant Nitric-Formic Flowsheet Testing for the Defense Waste Processing Facility

    Smith, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-14

    Ten chemical processing cell (CPC) experiments were performed using simulant to evaluate Sludge Batch 9 for sludge-only and coupled processing using the nitric-formic flowsheet in the Defense Waste Processing Facility (DWPF). Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on eight of the ten. The other two were SRAT cycles only. Samples of the condensate, sludge, and off gas were taken to monitor the chemistry of the CPC experiments. The Savannah River National Laboratory (SRNL) has previously shown antifoam decomposes to form flammable organic products, (hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), and propanal), that are present in the vapor phase and condensate of the CPC vessels. To minimize antifoam degradation product formation, a new antifoam addition strategy was implemented at SRNL and DWPF to add antifoam undiluted.

  12. Laboratory Optimization Tests of Technetium Decontamination of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Melter Off-Gas Condensate Simulant

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  13. Laboratory Optimization Tests of Technetium Decontamination of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Melter Off-Gas Condensate Simulant

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  14. Off-gas behavior in the Harvest pot vitrification process

    The conversion of highly radioactive waste liquor into glass by the pot vitrification process has been studied at Harwell using a full-scale inactive pilot plant. A summary of the off-gas behavior and its interpretation is presented. Experimental runs were carried out on 3 representative wastes (MAGNOX - thermal reactor, metal fuel, THORP - thermal oxide fuel and PFR - fast reactor oxide fuel) using 2 methods of feeding the glass-formers (slurry and crizzle). Materials were carried over from the vitrification vessel into the off-gas system by entrainment supplemented by volatilization. The overall behavior of the off-gas was consistent with the presence in it of 5 separate aerosols of particulate matter. Sources of entrainment gave rise to 3 aerosols, and a further 2 aerosols were formed as a result of chemical reaction (Ru) and condensation (Cs) processes involving the volatile species. Entrainment was enhanced when the feed contained free alkali nitrate. The Ru volatility correlated directly with the amount of salt nitrates in the feed. The off-gas equipment consisted of a condenser followed by two packed tower scrubbers. The variation in equipment performance between different sets of experiments could be attributed entirely to changes in the proportion of air present in the off-gas. The entrainment aerosols were the easiest to remove from the off-gas, whilst the Cs aerosol proved to the most difficult. The overall process decontamination factors of the pilot was about 2x104 for vapor-Ru, 2.5-5x103 for particulate-Ru, and 5x103-1x104 for Cs. Non-volatile fission products were about 103 better. These results emphasize the need for a high efficiency filter and a Ru vapor absorber in an off-gas system. (Auth.)

  15. Development and Testing of the Advanced CHP System Utilizing the Off-Gas from the Innovative Green Coke Calcining Process in Fluidized Bed

    Chudnovsky, Yaroslav; Kozlov, Aleksandr

    2013-08-15

    Green petroleum coke (GPC) is an oil refining byproduct that can be used directly as a solid fuel or as a feedstock for the production of calcined petroleum coke. GPC contains a high amount of volatiles and sulfur. During the calcination process, the GPC is heated to remove the volatiles and sulfur to produce purified calcined coke, which is used in the production of graphite, electrodes, metal carburizers, and other carbon products. Currently, more than 80% of calcined coke is produced in rotary kilns or rotary hearth furnaces. These technologies provide partial heat utilization of the calcined coke to increase efficiency of the calcination process, but they also share some operating disadvantages. However, coke calcination in an electrothermal fluidized bed (EFB) opens up a number of potential benefits for the production enhancement, while reducing the capital and operating costs. The increased usage of heavy crude oil in recent years has resulted in higher sulfur content in green coke produced by oil refinery process, which requires a significant increase in the calcinations temperature and in residence time. The calorific value of the process off-gas is quite substantial and can be effectively utilized as an “opportunity fuel” for combined heat and power (CHP) production to complement the energy demand. Heat recovered from the product cooling can also contribute to the overall economics of the calcination process. Preliminary estimates indicated the decrease in energy consumption by 35-50% as well as a proportional decrease in greenhouse gas emissions. As such, the efficiency improvement of the coke calcinations systems is attracting close attention of the researchers and engineers throughout the world. The developed technology is intended to accomplish the following objectives: - Reduce the energy and carbon intensity of the calcined coke production process. - Increase utilization of opportunity fuels such as industrial waste off-gas from the novel

  16. Nuclear off-gas treatment...the cryogenic distillation method

    Instrumentation for the cryogenic distillation method of treating off-gas from a BWR nuclear power plant is described. A review of control valve reliability and leakage tests is presented. The design and testing of monitor and control analyzers to ensure process safety are considered, along with the seismic requirements applicable to all the instrumentation

  17. Performance tests.

    Wetherell, A

    1996-01-01

    This paper discusses the use of psychological performance tests to assess the effects of environmental stressors. The large number and the variety of performance tests are illustrated, and the differences between performance tests and other psychological tests are described in terms of their design, construction, use, and purpose. The stressor emphasis is on the effects of drugs since that is where most performance tests have found their main application, although other stressors, e.g., fatig...

  18. Hanford Low-Activity Waste Processing: Demonstration of the Off-Gas Recycle Flowsheet - 13443

    Vitrification of Hanford Low-Activity Waste (LAW) is nominally the thermal conversion and incorporation of sodium salts and radionuclides into borosilicate glass. One key radionuclide present in LAW is technetium-99. Technetium-99 is a low energy, long-lived beta emitting radionuclide present in the waste feed in concentrations on the order of 1-10 ppm. The long half-life combined with a high solubility in groundwater results in technetium-99 having considerable impact on performance modeling (as potential release to the environment) of both the waste glass and associated secondary waste products. The current Hanford Tank Waste Treatment and Immobilization Plant (WTP) process flowsheet calls for the recycle of vitrification process off-gas condensates to maximize the portion of technetium ultimately immobilized in the waste glass. This is required as technetium acts as a semi-volatile specie, i.e. considerable loss of the radionuclide to the process off-gas stream can occur during the vitrification process. To test the process flowsheet assumptions, a prototypic off-gas system with recycle capability was added to a laboratory melter (on the order of 1/200 scale) and testing performed. Key test goals included determination of the process mass balance for technetium, a non-radioactive surrogate (rhenium), and other soluble species (sulfate, halides, etc.) which are concentrated by recycling off-gas condensates. The studies performed are the initial demonstrations of process recycle for this type of liquid-fed melter system. This paper describes the process recycle system, the waste feeds processed, and experimental results. Comparisons between data gathered using process recycle and previous single pass melter testing as well as mathematical modeling simulations are also provided. (authors)

  19. Hanford Low-Activity Waste Processing: Demonstration of the Off-Gas Recycle Flowsheet - 13443

    Ramsey, William G.; Esparza, Brian P. [Washington River Protection Solutions, LLC, Richland, WA 99532 (United States)

    2013-07-01

    Vitrification of Hanford Low-Activity Waste (LAW) is nominally the thermal conversion and incorporation of sodium salts and radionuclides into borosilicate glass. One key radionuclide present in LAW is technetium-99. Technetium-99 is a low energy, long-lived beta emitting radionuclide present in the waste feed in concentrations on the order of 1-10 ppm. The long half-life combined with a high solubility in groundwater results in technetium-99 having considerable impact on performance modeling (as potential release to the environment) of both the waste glass and associated secondary waste products. The current Hanford Tank Waste Treatment and Immobilization Plant (WTP) process flowsheet calls for the recycle of vitrification process off-gas condensates to maximize the portion of technetium ultimately immobilized in the waste glass. This is required as technetium acts as a semi-volatile specie, i.e. considerable loss of the radionuclide to the process off-gas stream can occur during the vitrification process. To test the process flowsheet assumptions, a prototypic off-gas system with recycle capability was added to a laboratory melter (on the order of 1/200 scale) and testing performed. Key test goals included determination of the process mass balance for technetium, a non-radioactive surrogate (rhenium), and other soluble species (sulfate, halides, etc.) which are concentrated by recycling off-gas condensates. The studies performed are the initial demonstrations of process recycle for this type of liquid-fed melter system. This paper describes the process recycle system, the waste feeds processed, and experimental results. Comparisons between data gathered using process recycle and previous single pass melter testing as well as mathematical modeling simulations are also provided. (authors)

  20. CHARACTERIZATION OF DWPF MELTER OFF-GAS QUENCHER SAMPLE

    Newell, J.

    2011-11-14

    mixture of sludge and glass frit. The major component was Si along with Fe, Al, and other elements in the radioactive waste being processed. The deposits analyzed also contained U-235 fission products and actinide elements. Prior to that, deposits in the off-gas system in the DWPF nonradioactive half scale melter and the one-tenth scale integrated DWPF melter system were analyzed and determined to be mixtures of alkali rich chlorides, sulfates, borates, and fluorides entrained with iron oxides, spinels and frit particles formed by vapor-phase transport and condensation. Additional work was performed in 2007 in which researchers similarly found the deposits to be a combination of sludge and frit particles.

  1. Literature search for offsite data to improve the DWPF melter off-gas model

    Daniel, W.E.

    2000-05-04

    This report documents the literature search performed and any relevant data that may help relax some of the constraints on the DWPF melter off-gas model. The objective of this task was to look for outside sources of technical data to help reduce some of the conservatism built in the DWPF melter off-gas model.

  2. FY-12 INL KR CAPTURE ACTIVITIES SUPPORTING THE OFF-GAS SIGMA TEAM

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D Law

    2012-08-01

    Tasks performed this year by INL Kr capture off-gas team members can be segregated into three separate task sub-sections which include: 1) The development and testing of a new engineered form sorbent, 2) An initial NDA gamma scan effort performed on the drum containing the Legacy Kr-85 sample materials, and 3) Collaborative research efforts with PNNL involving the testing of the Ni-DOBDC MOF and an initial attempt to make powdered chalcogel material into an engineered form using our binding process. This document describes the routes to success for the three task sub-sections.

  3. Technology of off-gas treatment for liquid-fed ceramic melters

    The technology for treating off gas from liquid-fed ceramic melters (LFCMs) has been under development at the Pacific Northwest Laboratory since 1977. This report presents the off-gas technology as developed at PNL and by others to establish a benchmark of development and to identify technical issues. Tests conducted on simulated (nonradioactive) wastes have provided data that allow estimation of melter off-gas composition for a given waste. Mechanisms controlling volatilization of radionuclides and noxious gases are postulated, and correlations between melter operation and emissions are presented. This report is directed to those familiar with LFCM operation. Off-gas treatment systems always require primary quench scrubbers, aerosol scrubbers, and final particulate filters. Depending on the composition of the off gas, equipment for removal of ruthenium, iodine, tritium, and noxious gases may also be needed. Nitrogen oxides are the most common noxious gases requiring treatment, and can be controlled by aqueous absorption or catalytic conversion with ammonia. High efficiency particulate air (HEPA) filters should be used for final filtration. The design criteria needed for an off-gas system can be derived from emission regulations and composition of the melter feed. Conservative values for melter off-gas composition can be specified by statistical treatment of reported off-gas data. Statistical evaluation can also be used to predict the frequency and magnitude of normal surge events that occur in the melter. 44 refs., 28 figs., 17 tabs

  4. Technology of off-gas treatment for liquid-fed ceramic melters

    Scott, P.A.; Goles, R.W.; Peters, R.D.

    1985-05-01

    The technology for treating off gas from liquid-fed ceramic melters (LFCMs) has been under development at the Pacific Northwest Laboratory since 1977. This report presents the off-gas technology as developed at PNL and by others to establish a benchmark of development and to identify technical issues. Tests conducted on simulated (nonradioactive) wastes have provided data that allow estimation of melter off-gas composition for a given waste. Mechanisms controlling volatilization of radionuclides and noxious gases are postulated, and correlations between melter operation and emissions are presented. This report is directed to those familiar with LFCM operation. Off-gas treatment systems always require primary quench scrubbers, aerosol scrubbers, and final particulate filters. Depending on the composition of the off gas, equipment for removal of ruthenium, iodine, tritium, and noxious gases may also be needed. Nitrogen oxides are the most common noxious gases requiring treatment, and can be controlled by aqueous absorption or catalytic conversion with ammonia. High efficiency particulate air (HEPA) filters should be used for final filtration. The design criteria needed for an off-gas system can be derived from emission regulations and composition of the melter feed. Conservative values for melter off-gas composition can be specified by statistical treatment of reported off-gas data. Statistical evaluation can also be used to predict the frequency and magnitude of normal surge events that occur in the melter. 44 refs., 28 figs., 17 tabs.

  5. Investigation of Discharge Performance of SOFC Using Biogas and Its Off-gas%生物气及其电池尾气 SOFC 放电性能研究

    王德震; 左薇; 张军; 吴晓燕; 孔晓伟

    2015-01-01

    To investigate the discharge performance of Ni-YSZ anode solid oxide fuel cell using various biogas and evaluate the valve of reusing its off-gas, electrochemical performance and gas properties were studied when two SOFC operated in tandem using diverse ratio of CH4/CO2 at 750 ℃. Compared with the cell performance using H2, two SOFC both operated at high power density with the first stage SOFC using various CH4/CO2 biogas and the second stage using the off-gas of the first stage. Both of two SOFC worked mostly steadily at constant current density for short time with little carbon deposition. The analysis of the gas properties at 566 mA•cm-2 indicated that the dry reforming rate was the highest when the ratio of CH4/CO2 was 2. The research results show that power generation of SOFC using biogas and its off-gas is feasible. This research can be useful for designing gas circuit of SOFC piles using biogas.%为探究以不同浓度生物气为燃料的固体氧化物燃料电池(SOFC)发电性能及该类电池尾气的再发电价值,通过模拟含不同比例甲烷和二氧化碳的生物气,在750℃下对气路串联 Ni/YSZ 阳极支撑 SOFC 进行放电性能测试和气体特性分析。放电结果显示燃料气经第一级 SOFC 利用后通入第二级 SOFC,同氢气经过两级 SOFC 相比,不同浓度下生物气均获得了较高的功率密度,且短时间恒流时,两级电池均能稳定运行;两级电池均以566 mA· cm-2电流密度恒流放电时的气体分析表明,当 CO2/CH4为2时,电池内甲烷的干重整率最高。研究结果表明两级 SOFC 使用生物气及其电池尾气发电是可行的,可为以生物气为燃料 SOFC 电堆气路设计提供依据。

  6. Processing device for volatile ruthenium in off-gas

    Volatile ruthenium has a nature of forming stable non-volatile ruthenium dioxide solids upon contact with an organic solvent. In view of the above, in a volatile ruthenium processing device comprising an off-gas inlet pipeway, a cooler, a demister and a heater connected to each other, a gas scrubbing tower having an organic solvent as a cleaning solution is disposed between the off-gas inlet pipeway and tahe cooler and the organic solvent and the off-gases are brought into contact in a counter-current manner in the gas scrubging tower. This enables to convert the volatile ruthenium in the gases into stabale ruthenium dioxide solids and deposit them into the organic solvent. Further, since the deposited ruthenium dioxide solides can easily be separated by filters, the organic solvent as the cleaning solution can always be kept clean and the adsorption performance for volatile ruthenium is not reduced even after repeating use. (T.M.)

  7. Sorption Modeling and Verification for Off-Gas Treatment

    Tavlarides, Lawrence L. [Syracuse Univ., NY (United States); Lin, Ronghong [Syracuse Univ., NY (United States); Nan, Yue [Syracuse Univ., NY (United States); Yiacoumi, Sotira [Georgia Inst. of Technology, Atlanta, GA (United States); Tsouris, Costas [Georgia Inst. of Technology, Atlanta, GA (United States); Ladshaw, Austin [Georgia Inst. of Technology, Atlanta, GA (United States); Sharma, Ketki [Georgia Inst. of Technology, Atlanta, GA (United States); Gabitto, Jorge [Prairie View A & M Univ., Prairie View, TX (United States); DePaoli, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-29

    The project has made progress toward developing a comprehensive modeling capability for the capture of target species in off gas evolved during the reprocessing of nuclear fuel. The effort has integrated experimentation, model development, and computer code development for adsorption and absorption processes. For adsorption, a modeling library has been initiated to include (a) equilibrium models for uptake of off-gas components by adsorbents, (b) mass transfer models to describe mass transfer to a particle, diffusion through the pores of the particle and adsorption on the active sites of the particle, and (c) interconnection of these models to fixed bed adsorption modeling which includes advection through the bed. For single-component equilibria, a Generalized Statistical Thermodynamic Adsorption (GSTA) code was developed to represent experimental data from a broad range of isotherm types; this is equivalent to a Langmuir isotherm in the two-parameter case, and was demonstrated for Kr on INL-engineered sorbent HZ PAN, water sorption on molecular sieve A sorbent material (MS3A), and Kr and Xe capture on metal-organic framework (MOF) materials. The GSTA isotherm was extended to multicomponent systems through application of a modified spreading pressure surface activity model and generalized predictive adsorbed solution theory; the result is the capability to estimate multicomponent adsorption equilibria from single-component isotherms. This advance, which enhances the capability to simulate systems related to off-gas treatment, has been demonstrated for a range of real-gas systems in the literature and is ready for testing with data currently being collected for multicomponent systems of interest, including iodine and water on MS3A. A diffusion kinetic model for sorbent pellets involving pore and surface diffusion as well as external mass transfer has been established, and a methodology was developed for determining unknown diffusivity parameters from transient

  8. Sorption Modeling and Verification for Off-Gas Treatment

    The project has made progress toward developing a comprehensive modeling capability for the capture of target species in off gas evolved during the reprocessing of nuclear fuel. The effort has integrated experimentation, model development, and computer code development for adsorption and absorption processes. For adsorption, a modeling library has been initiated to include (a) equilibrium models for uptake of off-gas components by adsorbents, (b) mass transfer models to describe mass transfer to a particle, diffusion through the pores of the particle and adsorption on the active sites of the particle, and (c) interconnection of these models to fixed bed adsorption modeling which includes advection through the bed. For single-component equilibria, a Generalized Statistical Thermodynamic Adsorption (GSTA) code was developed to represent experimental data from a broad range of isotherm types; this is equivalent to a Langmuir isotherm in the two-parameter case, and was demonstrated for Kr on INL-engineered sorbent HZ PAN, water sorption on molecular sieve A sorbent material (MS3A), and Kr and Xe capture on metal-organic framework (MOF) materials. The GSTA isotherm was extended to multicomponent systems through application of a modified spreading pressure surface activity model and generalized predictive adsorbed solution theory; the result is the capability to estimate multicomponent adsorption equilibria from single-component isotherms. This advance, which enhances the capability to simulate systems related to off-gas treatment, has been demonstrated for a range of real-gas systems in the literature and is ready for testing with data currently being collected for multicomponent systems of interest, including iodine and water on MS3A. A diffusion kinetic model for sorbent pellets involving pore and surface diffusion as well as external mass transfer has been established, and a methodology was developed for determining unknown diffusivity parameters from transient

  9. Adsorption Model for Off-Gas Separation

    Veronica J. Rutledge

    2011-03-01

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior and feedback loops. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes will provide substantial cost savings and many technical benefits. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed in gPROMS software. Inputs include gas stream constituents, sorbent, and column properties, equilibrium and kinetic data, and inlet conditions. It models dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions for a multiple component gas stream. The simulation outputs component concentrations along the column length as a function of time from which the breakthrough data is obtained. It also outputs temperature along the column length as a function of time and pressure drop along the column length. Experimental data will be input into the adsorption model to develop a model specific for iodine adsorption on silver mordenite as well as model(s) specific for krypton and xenon adsorption. The model will be validated with experimental breakthrough curves. Another future off-gas modeling goal is to develop a model for the unit operation absorption. The off-gas models will be made available via the server or web for evaluation by customers.

  10. Adsorption Model for Off-Gas Separation

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior and feedback loops. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes will provide substantial cost savings and many technical benefits. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed in gPROMS software. Inputs include gas stream constituents, sorbent, and column properties, equilibrium and kinetic data, and inlet conditions. It models dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions for a multiple component gas stream. The simulation outputs component concentrations along the column length as a function of time from which the breakthrough data is obtained. It also outputs temperature along the column length as a function of time and pressure drop along the column length. Experimental data will be input into the adsorption model to develop a model specific for iodine adsorption on silver mordenite as well as model(s) specific for krypton and xenon adsorption. The model will be validated with experimental breakthrough curves. Another future off-gas modeling goal is to develop a model for the unit operation absorption. The off-gas models will be made available via the server or web for evaluation by customers.

  11. Spent fuel dissolution test including dissolver off-gas treatment in the NUCEF (Nuclear Fuel Cycle Safety Engineering Facility) alpha-gamma cell: Spent fuels with burnups up to 44 GWDT-1

    Spent fuel dissolution test was carried out to study the dissolution behavior of nuclides and the behavior of volatile nuclides, using a bench-scale reprocessing test rig in the NUCEF alpha-gamma cell. 29 and 44 GWdt-1 spen fuels were respectively dissolved. Study on the dissolution behavior showed that the dissolution rate of uranium and plutonium were similar. Also, other species: Cesium, Americium, Strontium and Neodymium were found to dissolve in the similar manor to uranium. The fraction of Mo dissolved was found to decrease during the dissolution. Zirconium molybdate (Zr(Mo2O7)(OH)2(H2O)2) was identified from the XRD pattern of residue in the 29 GWdt-1 spent fuel dissolution. Those results suggested the precipitation of the hydrate during dissolution. As for the iodine-129 removal, decontamination factor of AGS (silica-gel impregnated with silver nitrate) column was more than 36,000. Measurement of iodine-129 in the dissolver solution revealed that less than 0.57% of total iodine-129 generated, which was estimated by ORIGEN II calculation, was remained in the dissolver solution. Also, measurement of iodine-129 by an iodine-stripping operation from dissolver solution using potassium iodate suggested that another 2.72% of total iodine-129 precipitated as iodide. In addition, about 70% of total iodine generated was measured in the AGS columns. Rest of iodine-129 was supposed to adsorb to the HEPA filter and the inner surface of dissolver off-gas lines. Those results on iodine-129 distribution were found to be almost identical to the results obtained in the study using iodine-131 as tracer. Release of carbon-14 as carbon dioxide during dissolution was found to occur when the release of Kr-85. From the measurement of carbon-14, initial nitrogen-14 concentration in the fuel was estimated to be about several ppms, which was within the range reported. (author)

  12. Cleanable sintered metal filters in hot off-gas systems

    Filters with sintered metal elements, arranged as tube bundles with backflush air cleaning, are the equivalent of bag filters for high-temperature, harsh environments. They are virtually the only alternative for high-temperature off-gas systems where a renewable, highly efficient particle trap is required. Tests were conducted which show that the sintered metal elements installed in a filter system provide effective powder collection in high-temperature atmospheres over thousands of cleaning cycles. Such a sintered metal filter system is now installed on the experimental defense waste calciner at the Savannah River Laboratory. The experimental results included in this paper were used as the basis for its design

  13. Literature review: Assessment of DWPF melter and melter off-gas system lifetime

    Reigel, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-30

    A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax® K-3 refractory and Inconel® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing and reducing flowsheets; however, DWPF has primarily processed a reducing flowsheet (i.e., Fe2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.

  14. Literature review: Assessment of DWPF melter and melter off-gas system lifetime

    Reigel, M. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-30

    A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax® K-3 refractory and Inconel® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing and reducing flowsheets; however, DWPF has primarily processed a reducing flowsheet (i.e., Fe2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.

  15. Enhancing energy recovery in the steel industry: Matching continuous charge with off-gas variability smoothing

    Highlights: • A system based on phase change material is inserted into the off-gas-line of a continuous charge electric arc furnace. • The off-gas temperature profile after scrap preheating is smoothed. • A heat transfer fluid through phase change material containers allows to control overheating issues. • The smoothed off-gas profiles enable efficient downstream power generation. • The recovery system investment cost is decreased due to lower sizes of components. - Abstract: In order to allow an efficient energy recovery from off-gas in the steel industry, the high variability of heat flow should be managed. A temperature smoothing device based on phase change materials at high temperatures is inserted into the off-gas line of a continuous charge electric arc furnace process with scrap preheating. To address overheating issues, a heat transfer fluid flowing through containers is introduced and selected by developing an analytical model. The performance of the smoothing system is analyzed by thermo-fluid dynamic simulations. The reduced maximum temperature of off-gas allows to reduce the size and investment cost of the downstream energy recovery system, while the increased minimum temperature enhances the steam turbine load factor, thus increasing its utilization. Benefits on environmental issues due to dioxins generation are also gained

  16. Development of membrane moisture separator for BWR off-gas system

    In BWR plant off-gas treatment systems, dehumidifiers are used to maintain noble gas adsorption efficiency in the first half of the charcoal hold-up units. From the perspective of simplifying and reducing the cost of such a dehumidification system, Japanese BWR utilities and plant fabricators have been developing a dehumidification system employing moisture separation membrane of the type already proven in fields such as medical instrumentation and precision measuring apparatus. The first part of this development involved laboratory testing to simulate the conditions found in an actual off-gas system, the results of which demonstrated satisfactory results in terms of moisture separation capability and membrane durability, and suggested favorable prospects for application in actual off-gas systems. Further, in-plant testing to verify moisture separation capability and membrane durability in the presence of actual gases is currently underway, with results so far suggesting that the system is capable of obtaining good moisture separation capability. (author)

  17. Biological off-gas treatment: let's make things better

    Groenestijn, J.W. van

    1998-01-01

    Biological off-gas treatment is the most effective cleaning method for many off-gases which contain low concentration of pollutants (<5 g/m3). The world market share in off-gas treatment is a few percent. Potential buyers are reserved because of existing biofilter quality differences and lack of exp

  18. Heat exchangers and thermal energy storage concepts for the off-gas heat of steelmaking devices

    The fluctuating thermal emissions of electric arc furnaces require energy storage systems to provide downstream consumers with a continuous amount of thermal energy or electricity. Heat recovery systems based on thermal energy storage are presented. A comparison of different thermal energy storage systems has been performed. For the purpose, suitable heat exchangers for the off-gas heat have been developed. Dynamic process simulations of the heat recovery plants were necessary to check the feasibility of the systems and consider the non-steady-state off-gas emissions of the steelmaking devices. The implementation of a pilot plant into an existing off-gas duct of an electric arc furnace was required to check the real behavior of the heat exchanger and determine suitable materials in view of corrosion issues. The pilot plant is presented in this paper.

  19. Innovative method for increased methane recovery from two-phase anaerobic digestion of food waste through reutilization of acidogenic off-gas in methanogenic reactor.

    Yan, Bing Hua; Selvam, Ammaiyappan; Wong, Jonathan W C

    2016-10-01

    In this study, the performance of a two-phase anaerobic digestion reactor treating food waste with the reutilization of acidogenic off-gas was investigated with the objective to improve the hydrogen availability for the methanogenic reactor. As a comparison a treatment without off-gas reutilization was also set up. Results showed that acidogenic off-gas utilization in the upflow anaerobic sludge blanket (UASB) reactor increased the methane recovery up to 38.6%. In addition, a 27% increase in the production of cumulative chemical oxygen demand (COD) together with an improved soluble microbial products recovery dominated by butyrate was observed in the acidogenic leach bed reactor (LBR) with off-gas reutilization. Of the increased methane recovery, ∼8% was contributed by the utilization of acidogenic off-gas in UASB. Results indicated that utilization of acidogenic off-gas in methanogenic reactor is a viable technique for improving overall methane recovery. PMID:27039352

  20. Textiles Performance Testing Facilities

    Federal Laboratory Consortium — The Textiles Performance Testing Facilities has the capabilities to perform all physical wet and dry performance testing, and visual and instrumental color analysis...

  1. Boiling water reactor off-gas systems evaluation

    An evaluation of the off-gas systems for all 25 operating Boiling Water Reactors (BWR) was made to determine the adequacy of their design and operating procedures to reduce the probability of off-gas detonations. The results of the evaluations are that, of the 25 operable units, 13 meet all the acceptance criteria. The other 12 units do not have the features needed to meet the criteria, but have been judged to have, or are committed to provide, features which give reasonable assurance that the potential for external off-gas detonations is minimized. The 12 units which did not originally meet the criteria are aware of the potential hazards associated with off-gas detonations and have agreed to take action to minimize the probability of future detonations

  2. Treatment of off-gas from radioactive waste incinerators

    An effective process reducing volume of radioactive wastes is incineration of combustible wastes. Appropriate design of the off-gas treatment system is necessary to ensure that any releases of airborne radionuclides into the environment are kept below acceptable limits. In many cases, the off-gas system must be designed to accommodate chemical constituents in the gas stream. The purpose of this publication is to provide the most up-to-date information regarding off-gas treatment as well as an account of some of the developments so as to aid users in the selection of an integrated system for a particular application. The choice of incinerator/off-gas system combination depends on the wastes to be treated, as well as other factors, such as regulatory requirements. Current problems and development needs are discussed. Following comprehensive discussions of the various factors affecting a choice, various incinerator and off-gas treatment systems are recommended for the various types of wastes that may be treated: low PVC content solid, high PVC content solid, organic liquid and resins. The economics or costs of the off-gas system and an evaluation of the overall cost effectiveness of incineration or direct burial is not discussed in detail. This publication is specifically directed toward technical aspects and addresses: incineration types and origin, sources and characteristics of off-gas streams; descriptions of available technologies for off-gas treatment; basic component design requirements and component description; operational experience of plants in active operation and their current practices; legal aspects and safety requirements; remaining problems to be solved and development trends in plant design and component structure. This report seeks to broaden and enhance the understanding of the developed technology and to indicate areas where improvements can be made by further research and development. 110 refs

  3. Preliminary Results from Electric Arc Furnace Off-Gas Enthalpy Modeling

    Nimbalkar, Sachin U [ORNL; Thekdi, Arvind [E3M Inc; Keiser, James R [ORNL; Storey, John Morse [ORNL

    2015-01-01

    This article describes electric arc furnace (EAF) off-gas enthalpy models developed at Oak Ridge National Laboratory (ORNL) to calculate overall heat availability (sensible and chemical enthalpy) and recoverable heat values (steam or power generation potential) for existing EAF operations and to test ORNL s new EAF waste heat recovery (WHR) concepts. ORNL s new EAF WHR concepts are: Regenerative Drop-out Box System and Fluidized Bed System. The two EAF off-gas enthalpy models described in this paper are: 1.Overall Waste Heat Recovery Model that calculates total heat availability in off-gases of existing EAF operations 2.Regenerative Drop-out Box System Model in which hot EAF off-gases alternately pass through one of two refractory heat sinks that store heat and then transfer it to another gaseous medium These models calculate the sensible and chemical enthalpy of EAF off-gases based on the off-gas chemical composition, temperature, and mass flow rate during tap to tap time, and variations in those parameters in terms of actual values over time. The models provide heat transfer analysis for the aforementioned concepts to confirm the overall system and major component sizing (preliminary) to assess the practicality of the systems. Real-time EAF off-gas composition (e.g., CO, CO2, H2, and H2O), volume flow, and temperature data from one EAF operation was used to test the validity and accuracy of the modeling work. The EAF off-gas data was used to calculate the sensible and chemical enthalpy of the EAF off-gases to generate steam and power. The article provides detailed results from the modeling work that are important to the success of ORNL s EAF WHR project. The EAF WHR project aims to develop and test new concepts and materials that allow cost-effective recovery of sensible and chemical heat from high-temperature gases discharged from EAFs.

  4. Development of silver impregnated alumina for iodine separation from off-gas streams

    Funabashi, Kiyomi; Fukasawa, Tetsuo; Kikuchi, Makoto [Energy Research Laboratory, Hitachi (Japan)] [and others

    1995-02-01

    An inorganic iodine adsorbent, silver impregnated alumina (AgA), has been developed to separate iodine effectively from off-gas streams of nuclear facilities and to decrease the volume of waste (spent adsorbent). Iodine removal efficiency was improved at relatively high humidity by using alumina carrier with two different pore diameters. Waste volume reduction was achieved by impregnating relatively large amounts of silver into the alumina pores. The developed adsorbent was tested first with simulated off-gas streams under various experimental conditions and finally with actual off-gas streams of the Karlsruhe reprocessing plant. The decontamination factor (DF) was about 100 with the AgA bed depth of 2cm at 70% relative humidity, which was a DF one order higher than that when AgA with one pore size was used. Iodine adsorption capacity was checked by passing excess iodine into the AgA bed. Values were about 0.12 and 0.35 g-I/cm`-AgA bed for 10 and 24wt% silver impregnated AgA, respectively. The results obtained in this study demonstrated the applicability of the developed AgA to the off-gas treatment system of nuclear facilities.

  5. Integrated DM 1200 Melter Testing Of HLW C-106/AY-102 Composition Using Bubblers VSL-03R3800-1, Rev. 0, 9/15/03

    This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of simulated HLW C-106/AY-102 feed. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW C-106/AY-102 feed; determine the effect of bubbling rate on production rate; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and to perform pre- and post test inspections of system components.

  6. INTEGRATED DM 1200 MELTER TESTING OF HLW C-106/AY-102 COMPOSITION USING BUBBLERS VSL-03R3800-1 REV 0 9/15/03

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D' ANGELO NA; KOT WK; PEGG IL

    2011-12-29

    This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of simulated HLW C-106/AY-102 feed. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW C-106/AY-102 feed; determine the effect of bubbling rate on production rate; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and to perform pre- and post test inspections of system components.

  7. Treatment of nitrous off-gas from dissolution of sludges

    Several configurations have been reviewed for the NOx removal of dissolver off-gas. A predesign has been performed and operating conditions have been optimized. Simple absorption columns seems to be sufficient. NHC is in charge of the treatment of sludges containing mainly uranium dioxide and metallic uranium. The process is based on the following processing steps a dissolution step to oxidize the pyrophoric materials and to dissolve radionuclides (uranium, plutonium, americium and fission products), a solid/liquid separation to get rid of the insoluble solids (to be disposed at ERDF), an adjustment of the acid liquor with neutronic poisons, and neutralization of the acid liquor with caustic soda. The dissolution step generates a flow of nitrous fumes which was evaluated in a previous study. This NOx flow has to be treated. The purpose of this report is to study the treatment process of the nitrous vapors and to 0482 perform a preliminary design. Several treatment configurations are studied and the most effective process option with respect to the authorized level of discharge into atmosphere is discussed. As a conclusion, recommendations concerning the unit preliminary design are given

  8. Off-Gas Adsorption Model Capabilities and Recommendations

    Lyon, Kevin L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Welty, Amy K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Law, Jack [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ladshaw, Austin [Georgia Inst. of Technology, Atlanta, GA (United States); Yiacoumi, Sotira [Georgia Inst. of Technology, Atlanta, GA (United States); Tsouris, Costas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-01

    Off-gas treatment is required to reduce emissions from aqueous fuel reprocessing. Evaluating the products of innovative gas adsorption research requires increased computational simulation capability to more effectively transition from fundamental research to operational design. Early modeling efforts produced the Off-Gas SeParation and REcoverY (OSPREY) model that, while efficient in terms of computation time, was of limited value for complex systems. However, the computational and programming lessons learned in development of the initial model were used to develop Discontinuous Galerkin OSPREY (DGOSPREY), a more effective model. Initial comparisons between OSPREY and DGOSPREY show that, while OSPREY does reasonably well to capture the initial breakthrough time, it displays far too much numerical dispersion to accurately capture the real shape of the breakthrough curves. DGOSPREY is a much better tool as it utilizes a more stable set of numerical methods. In addition, DGOSPREY has shown the capability to capture complex, multispecies adsorption behavior, while OSPREY currently only works for a single adsorbing species. This capability makes DGOSPREY ultimately a more practical tool for real world simulations involving many different gas species. While DGOSPREY has initially performed very well, there is still need for improvement. The current state of DGOSPREY does not include any micro-scale adsorption kinetics and therefore assumes instantaneous adsorption. This is a major source of error in predicting water vapor breakthrough because the kinetics of that adsorption mechanism is particularly slow. However, this deficiency can be remedied by building kinetic kernels into DGOSPREY. Another source of error in DGOSPREY stems from data gaps in single species, such as Kr and Xe, isotherms. Since isotherm data for each gas is currently available at a single temperature, the model is unable to predict adsorption at temperatures outside of the set of data currently

  9. Method for treating a nuclear process off-gas stream

    A method is described for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. The method involves a sequence of adsorption and desorption steps which are specified. Particular reference is made to the separation of xenon and krypton from the off-gas stream, and to the use of silver-exchanged mordenite as the adsorbent. (U.K.)

  10. High-level waste vitrification off-gas cleanup technology

    This brief overview is intended to be a basis for discussion of needs and problems existing in the off-gas clean-up technology. A variety of types of waste form and processes are being developed in the United States and abroad. A description of many of the processes can be found in the Technical Alternative Documents (TAD). Concurrently, off-gas processing systems are being developed with most of the processes. An extensive review of methodology as well as decontamination factors can be found in the literature. Since it is generally agreed that the most advanced solidification process is vitrification, discussion here centers about the off-gas problems related to vitrification. With a number of waste soldification facilities around the world in operation, it can be shown that present technology can satisfy the present requirement for off-gas control. However, a number of areas within the technology base show potential for improvement. Fundamental as well as verification studies are needed to obtain the improvements

  11. Advanced Off-Gas Control System Design For Radioactive And Mixed Waste Treatment

    Nick Soelberg

    2005-09-01

    Treatment of radioactive and mixed wastes is often required to destroy or immobilize hazardous constituents, reduce waste volume, and convert the waste to a form suitable for final disposal. These kinds of treatments usually evolve off-gas. Air emission regulations have become increasingly stringent in recent years. Mixed waste thermal treatment in the United States is now generally regulated under the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. These standards impose unprecedented requirements for operation, monitoring and control, and emissions control. Off-gas control technologies and system designs that were satisfactorily proven in mixed waste operation prior to the implementation of new regulatory standards are in some cases no longer suitable in new mixed waste treatment system designs. Some mixed waste treatment facilities have been shut down rather than have excessively restrictive feed rate limits or facility upgrades to comply with the new standards. New mixed waste treatment facilities in the U. S. are being designed to operate in compliance with the HWC MACT standards. Activities have been underway for the past 10 years at the INL and elsewhere to identify, develop, demonstrate, and design technologies for enabling HWC MACT compliance for mixed waste treatment facilities. Some specific off-gas control technologies and system designs have been identified and tested to show that even the stringent HWC MACT standards can be met, while minimizing treatment facility size and cost.

  12. Advanced Off-Gas Control System Design For Radioactive And Mixed Waste Treatment

    Treatment of radioactive and mixed wastes is often required to destroy or immobilize hazardous constituents, reduce waste volume, and convert the waste to a form suitable for final disposal. These kinds of treatments usually evolve off-gas. Air emission regulations have become increasingly stringent in recent years. Mixed waste thermal treatment in the United States is now generally regulated under the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. These standards impose unprecedented requirements for operation, monitoring and control, and emissions control. Off-gas control technologies and system designs that were satisfactorily proven in mixed waste operation prior to the implementation of new regulatory standards are in some cases no longer suitable in new mixed waste treatment system designs. Some mixed waste treatment facilities have been shut down rather than have excessively restrictive feed rate limits or facility upgrades to comply with the new standards. New mixed waste treatment facilities in the U. S. are being designed to operate in compliance with the HWC MACT standards. Activities have been underway for the past 10 years at the INL and elsewhere to identify, develop, demonstrate, and design technologies for enabling HWC MACT compliance for mixed waste treatment facilities. Some specific off-gas control technologies and system designs have been identified and tested to show that even the stringent HWC MACT standards can be met, while minimizing treatment facility size and cost

  13. Remotely replaceable and testable off-gas filter system for the NWCF

    The process off-gas filter system designed for use in the New Waste Calcining Facility (NWCF) requires remote filter removal, replacement and in-place DOP testing. A series of full-scale mockup tests, modifications and retesting at the Remote Maintenance Development Facility (RMDF) resulted in a system in which a commercial High Efficiency Particulate Air (HEPA) filter can be installed, tested for leaks, operated and removed from a sealed filter housing using remote handling methods. This paper describes the development, testing and results of this effort

  14. Design of off-gas and air cleaning systems at nuclear power plants

    The primary purpose of this report is to describe the current design of air and process off-gas cleaning technologies used in nuclear power plants (NPPs). Because of the large inventory of fission products that are produced in the fuel (i.e. in the range of 5x1019Bq per GW(e)·a) and the highly restrictive airborne radionuclide release limits being established by Member States, air and process off-gas cleaning technologies are constantly being improved to provide higher airborne radionuclide recovery efficiencies and a smaller probability of malfunction. For various technologies considered an attempt has been made to provide the following information: (a) Process description in terms of principles of off-gas and air cleaning, operating parameters and system performance; (b) Design for normal and accident situations; (c) Design of components with regard to construction materials, size, shape and geometry of the system, resistance to chemical and physical degradation from the operational environment, safety and quality assurance requirements

  15. Continuous chemical cold traps for reprocessing off-gas purification

    Absorption of nitrogen oxides and iodine from simulated reprocessing plant off-gas streams has been studied using nitric acid and nitric acid/hydrogen peroxide mixtures at low temperatures. The experiments were carried out at the laboratory and on the engineering scale. The pilot plant scale column has 0.8 m diameter and 16 absorption plates at 0.2 m spacing. Cooling coils on the plates allow operating temperatures down to -600C. The NO concentration in the feed gas usually has been 1% by volume and the flow rate 4-32 m3 (STP) per hour. The iodine behavior has been studied using I-123 tracer. Results of the study are presented. The chemistry of the processes and the advantages and disadvantages in correlation to the various applications for an off-gas purification in a reprocessing plant are compared and discussed. The processes are compatible with the PUREX process and do not produce additional waste

  16. Carbon dioxide-krypton separation and radon removal from nuclear-fuel-reprocessing off-gas streams

    General Atomic Company (GA) is conducting pilot-plant-scale tests that simulate the treatment of radioactive and other noxious volatile and gaseous constituents of off-gas streams from nuclear reprocessing plants. This paper reports the results of engineering-scale tests performed on the CO2/krypton separation and radon holdup/decay subsystems of the GA integrated off-gas treatment system. Separation of CO2 from krypton-containing gas streams is necessary to facilitate subsequent waste processing and krypton storage. Molecular sieve 5A achieved this separation in dissolver off-gas streams containing relatively low krypton and CO2 concentrations and in krypton-rich product streams from processes such as the krypton absorption in liquid carbon dioxide (KALC) process. The CO2/krypton separation unit is a 30.5-cm-diameter x 1.8-m-long column containing molecular sieve 5A. The loading capacity for CO2 was determined for gas mixtures containing 250 ppM to 2.2% CO2 and 170 to 750 ppM krypton in either N2 or air. Gas streams rich in CO2 were diluted with N2 to reduce the temperature rise from the heat of adsorption, which would otherwise affect loading capacity. The effluent CO2 concentration prior to breakthrough was less than 10 ppM, and the adsorption capacity for krypton was negligible. Krypton was monitored on-line with a time-of-flight mass spectrometer and its concentration determined quantitatively by a method of continuous analysis, i.e., selected-ion monitoring. Radon-220 was treated by holdup and decay on a column of synthetic H-mordenite. The Rn-220 concentration was monitored on-line with flow-through diffused-junction alpha detectors. Single-channel analyzers were utilized to isolate the 6.287-MeV alpha energy band characteristic of Rn-220 decay from energy bands due to daughter products

  17. Off-gas adsorption model and simulation - OSPREY

    A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes is expected to provide substantial cost savings and many technical benefits. To support this capability, a modeling effort focused on the off-gas treatment system of a used nuclear fuel recycling facility is in progress. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed within Multi-physics Object Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Off-gas Separation and Recovery (OSPREY) models the adsorption of offgas constituents for dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions. Inputs to the model include gas composition, sorbent and column properties, equilibrium and kinetic data, and inlet conditions. The simulation outputs component concentrations along the column length as a function of time from which breakthrough data can be obtained. The breakthrough data can be used to determine bed capacity, which in turn can be used to size columns. In addition to concentration data, the model predicts temperature along the column length as a function of time and pressure drop along the column length. A description of the OSPREY model, results from krypton adsorption modeling and plans for modeling the behavior of iodine, xenon, and tritium will be discussed. (author)

  18. Test and Performance Anxiety

    Huberty, Thomas J.

    2010-01-01

    Test and performance anxiety is not recognized easily in schools, in large part because adolescents rarely refer themselves for emotional concerns. Not wanting to risk teasing or public attention, anxious adolescents suffer in silence and under perform on school-related tasks. In school, anxiety is experienced often by students when being…

  19. Off-gas cleaning of a liquid waste vitrifier

    Solid radio-active aerosols and semi-volatile fission products e.g. Ru, Cs, Sb are generated during high level liquid waste vitrification processes. The behaviour of these semi-volatile products during the vitrification of simulated liquid waste in a liquid fed melter and the off-gas cleaning with a wet purification system has been studied. It was found that the melter releases to the off-gas depended on different melter situations associated with different melt surface temperature. At the melter outlet, the over-all size distribution of the dust is composed of two components. The large component is associated with a gross entrainment mechanism whereas the small diameter component is associated with a volatilization/condensation process. The submicronic fraction of the dust is generally enriched in cesium and ruthenium. Moreover, volatile ruthenium species can still exist at the low outlet temperature of the melter. The wet purification system comprises in series a packed bed dust scrubber, a condenser, an ejector venturi and an NOsub(x) column. The dust scrubber removes the gross part of the dust and the ejector-venturi has a high removal efficiency for the submicronic aerosol fraction. The global efficiency of the wet purification system ranged from 99.7% for the cesium species to 99.95% for the ruthenium species. (author)

  20. Design report: An off gas trapping system for a voloxidizer in INL of US

    Jung, I. H.; Shin, J. M.; Park, J. J.; Park, G. I.; Lee, H. H

    2006-09-15

    This reports on the 'Development of Voloxidation Process for Treatment of LWR Spent Fuel', and it is the second year since it has started from June 2004 as a tripartite cooperation project among KAERI(Korea Atomic Energy Research Institute), INL(Idaho National Laboratory) and ORNL(Oak Ridge National Laboratory). This report is described mainly for the Task B2 accomplished during the second project year. The Task B2 in proposal contains two sub-tasks. The first one is design of an off-gas treatment system for a voloxidizer to be used in HFEF of INL. For this, KAERI team developed the design of INL OTS (Off-gas Treatment System) for hot experiment in the HFEF. INL team modified and completed the design of the INL OTS. The second task is manufacturing and test operation of the INL OTS for a voloxidizer in the INL. Manufacturing of the OTS is accomplished by INL team with co-work of KAERI. KAERI provided four sets of trapping filters needed for conducting hot experiment in the INL HFEF.

  1. ASSESSMENT OF THE IMPACT OF TOA PARTITIONING ON DWPF MELTER OFF-GAS FLAMMABILITY

    Daniel, G.

    2013-06-18

    An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of increasing the amount of TOA in the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process. The results of this study showed that the concentrations of nonvolatile carbon of the current solvent limit (150 ppm) in the Slurry Mix Evaporator (SME) product would be about 7% higher and the nonvolatile hydrogen would be 2% higher than the actual current solvent (126 ppm) with an addition of up to 3 ppm of TOA when the concentration of Isopar L in the effluent transfer is controlled below 87 ppm and the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle. Therefore, the DWPF melter off-gas flammability assessment is conservative for up to an additional 3 ppm of TOA in the effluent based on these assumptions. This report documents the calculations performed to reach this conclusion.

  2. CALCULATION OF DEMONSTRATION BULK VITRIFICATION SYSTEM MELTER INLEAKAGE AND OFF-GAS GENERATION RATE

    MAY TH

    2008-04-16

    The River Protection Project (RPP) mission is to safely store, retrieve, treat, immobilize, and dispose of the Hanford Site tank waste. The Demonstration Bulk Vitrification System (DBVS) is a research and development project whose objective is to demonstrate the suitability of Bulk Vitrification treatment technology waste form for disposing of low-activity waste from the Tank Farms. The objective of this calculation is to determine the DBVS melter inleakage and off-gas generation rate based on full scale testing data from 38D. This calculation estimates the DBVS melter in leakage and gas generation rate based on test data. Inleakage is estimated before the melt was initiated, at one point during the melt, and at the end of the melt. Maximum gas generation rate is also estimated.

  3. Experimental determination of the solubilities of dissolver off-gas constituents in a Kr-85 recovery solvent (CCl2F2). Final report

    The experimental determination of the solubility of the major off-gas constituent-Nitrogen was performed with a new solubility measurement apparatus. The new apparatus was designed, built and tested; an algorithm for thermodynamic consistency testing of P-T-x-y data for solubility systems was developed, and thermodynamically consistent Nitrogen-R-12 solubility data were taken. The Henry's Law constant for the Nitrogen-R-12 system can be represented by the equation ln H/sub N2-R-12/ (atm) = 0.44 + 1.0708 lnT (0K). The solubility data extend the range of known equilibrium data into a region where process equipment operate and are consistent with both other data at lower temperatures by other researchers and with regular solution theory

  4. Peer review panel summary report for technical determination of mixed waste incineration off-gas systems for Rocky Flats

    A Peer Review Panel was convened on September 15-17, 1992 in Boulder, Co. The members of this panel included representatives from DOE, EPA, and DOE contractors along with invited experts in the fields of air pollution control and waste incineration. The primary purpose of this review panel was to make a technical determination of a hold, test and release off gas capture system should be implemented in the proposed RF Pland mixed waste incineration system; or if a state of the art continuous air pollution control and monitoring system should be utilized as the sole off-gas control system. All of the evaluations by the panel were based upon the use of the fluidized bed unit proposed by Rocky Flats and cannot be generalized to other systems

  5. The development and design of the off-gas treatment system for the thermal oxide reprocessing plant (THORP) at Sellafield

    British Nuclear Fuels completed construction of its Thermal Oxide Reprocessing Plant (THORP) at Sellafield in 1992, at a cost of 1,850M. After Government and Regulatory approval, active commissioning was initiated on 17 January 1994. From the outset, the need to protect the workforce, the public and the environment in general from the plant's discharges was clearly recognised. The design intent was to limit radiation exposure of members of the general public to As Low as Reasonably Practicable. Furthermore no member of the most highly exposed group should receive an annual dose exceeding 50 microsieverts from either the aerial or marine discharge routes. This paper describes how the design intent has been met with respect to aerial discharges. It outlines the development programme which was undertaken to address the more demanding aspects of the performance specification. This ranged from small-scale experiments with irradiated fuel to inactive pilot plant trials and full-scale plant measurements. The resulting information was then used, with the aid of mathematical models, in the design of an off-gas treatment system which could achieve the overall goal. The principal species requiring treatment in the THORP off-gas system are iodine-129, carbon-14, nitrogen oxides (NOx), fuel dust particles and aerosols containing plutonium or mixed fission products. The paper describes the combination of abatement equipment used in different parts of the plant, including counter-current absorption columns, electrostatic precipitators, dehumidifiers and High Efficiency Particulate Air filters. Because a number of separate off-gas streams are combined before discharge, special depression control systems were developed which have already proved successful during plant commissioning. BNFL is confident that the detailed attention given to the development and design phases of the THORP off-gas system will ensure good performance when the plant moves into fully radioactive operation

  6. Time-dependent analysis of dissolver off-gas cleaning installations in a reprocessing plant

    The iodine- and aerosol-filtering test facility PASSAT of the Nuclear Research Centre in Karlsruhe has been investigated using a method which allows time-dependent analyses under accident conditions. This method which is closely related to fault-tree analysis needs subdivision in barriers of the system, and their logical combination in a tree. The barriers have binary states: defect and intact. The defect state will be described by a fault tree, whereas the intact state includes dependences of a barrier operation on physical parameters. The intact state enables time-dependent calculations. Calculations have been done for iodine filtering, because the best known entrance data are given. Results demonstrate clearly that the amount of iodine released increases only if both heaters failed, which heat the off-gas from 300C to 800C and then to 1300C. Additionally the integrated amount of iodine released depends on time period between the failures of the heaters

  7. Cryogenic system for collecting noble gases from boiling water reactor off-gas

    In boiling water reactors, noncondensible gases are expelled from the main condenser. This off-gas stream is composed largely of radiolytic hydrogen and oxygen, air in-leakage, and traces of fission product krypton and xenon. In the Air Products' treatment system, the stoichiometric hydrogen and oxygen are reacted to form water in a catalytic recombiner. The design of the catalytic recombiner is an extension of industrial gas technology developed for purification of argon and helium. The off-gas after the recombiner is processed by cryogenic air-separation technology. The gas is compressed, passed into a reversing heat exchanger where water vapor and carbon dioxide are frozen out, further cooled, and expanded into a distillation column where refrigeration is provided by addition of liquid nitrogen. More than 99.99 percent of the krypton and essentially 100 percent of the xenon entering the column are accumulated in the column bottoms. Every three to six months, the noble-gas concentrate accumulated in the column bottom is removed as liquid, vaporized, diluted with steam, mixed with hydrogen in slight excess of oxygen content, and fed to a small recombiner where all the oxygen reacts to form water. The resulting gas stream, containing from 20 to 40 percent noble gases, is compressed into small storage cylinders for indefinite retention or for decay of all fission gases except krypton-85, followed by subsequent release under controlled conditions and favorable meteorology. This treatment system is based on proven technology that is practiced throughout the industrial gas industry. Only the presence of radioactive materials in the process stream and the application in a nuclear power plant environment are new. Adaptations to meet these new conditions can be made without sacrificing performance, reliability, or safety

  8. Assessment of the impact of the next generation solvent on DWPF melter off-gas flammability

    An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of replacing the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process with the Next Generation Solvent (NGS-MCU) and blended solvent. The results of this study showed that the concentrations of nonvolatile carbon and hydrogen of the current solvent in the Slurry Mix Evaporator (SME) product would both be about 29% higher than their counterparts of the NGS-MCU and blended solvent in the absence of guanidine partitioning. When 6 ppm of guanidine (TiDG) was added to the effluent transfer to DWPF to simulate partitioning for the NGS-MCU and blended solvent cases and the concentration of Isopar®L in the effluent transfer was controlled below 87 ppm, the concentrations of nonvolatile carbon and hydrogen of the NGS-MCU and blended solvent were still about 12% and 4% lower, respectively, than those of the current solvent. It is, therefore, concluded that as long as the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle and the concentration of Isopar®L in the effluent transfer is controlled below 87 ppm, using the current solvent assumption of 105 ppm Isoparsign L or 150 ppm solvent in lieu of NGS-MCU or blended solvent in the DWPF melter off-gas flammability assessment is conservative for up to an additional 6 ppm of TiDG in the effluent due to guanidine partitioning. This report documents the calculations performed to reach this conclusion

  9. Final Report DM1200 Tests With AZ 101 HLW Simulants VSL-03R3800-4, Rev. 0, 2/17/04

    This report documents melter and off-gas performance results obtained on the DM 1200 HLW Pilot Melter during processing of simulated HLW AZ-101 feed. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW AZ-101 feed; determine the effect of bubbling rate and feed solids content on production rate; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and to perform pre- and post-test inspections of system components. The test objectives (including test success criteria), along with how they were met, are outlined in a table.

  10. FINAL REPORT DM1200 TESTS WITH AZ 101 HLW SIMULANTS VSL-03R3800-4 REV 0 2/17/04

    KRUGER AA; MATLACK KS; BARDAKCI T; D' ANGELO NA; GONG W; KOT WK; PEGG IL

    2011-12-29

    This report documents melter and off-gas performance results obtained on the DM 1200 HLW Pilot Melter during processing of simulated HLW AZ-101 feed. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW AZ-101 feed; determine the effect of bubbling rate and feed solids content on production rate; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and to perform pre- and post-test inspections of system components. The test objectives (including test success criteria), along with how they were met, are outlined in a table.

  11. Remediation on off-gas system deposits in a radioactive waste glass melter

    Since the early 1980's, research glass melters have been used at the Savannah River Laboratory (SRL) to develop the reference vitrification process for immobilization of high level radioactive waste. One of the operating concerns for these melters has been the pluggage of the off-gas system with solid deposits. Samples of these deposits were analyzed to be mixture of alkali-rich chlorides, sulfates, borates, and fluorides with entrained Fe2O3 spinel, and frit particles. The spatial distribution of these deposits throughout the off-gas system indicates that they form by vapor-phase transport and subsequently condensation. Condensation of the alkali-rich phases cements entrained particulates causing the off-gas line to plug. It is concluded that off-gas system pluggage can be effectively controlled by maintaining the off-gas velocity above 16 m/s, while maintaining the off-gas temperature as high as practical below the glass softening point. This paper summarizes the results of chemical and physical analyses of off-gas deposit samples from various melters at SRL. Recent design changes made to the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) to alleviate the pluggage problem are also discussed

  12. Infiniband Performance Testing

    Minich, M

    2005-10-13

    A look at the performance of the infiniband interconnect using the Voltaire host stack. This will attempt to compare not only infiniband to other high-performance interconnects, but will also take a look at comparing some of the different hardware choices available at the time of writing (e.g. Opteron, EM64T, pci-express and pci-x).

  13. Airborne waste management technology applicable for use in reprocessing plants for control of iodine and other off-gas constituents

    Extensive work in the area of iodine removal from reprocessing plant off-gas streams using various types of solid sorbent materials has been conducted worldwide over the past two decades. This work has focused on the use of carbon filters, primarily for power plant applications. More recently, the use of silver-containing sorbents has been the subject of considerable research. The most recent work in the United States has addressed the use of silver-exchanged faujasites and mordenites. The chemical reactions of iodine with silver on the sorbent are not well defined, but it is generally believed that chemisorbed iodides and iodates are formed. The process for iodine recovery generally involves passage of the iodine-laden gas stream through a packed bed of the adsorbent material preheated to a temperature of about 150/degree/C. Most iodine removal system designs utilizing silver-containing solid sorbents assume only a 30 to 50% silver utilization. Based on laboratory tests, potentially 60 to 70% of the silver contained in the sorbents can be reacted with iodine. To overcome the high cost of silver associated with these materials, various approaches have been explored. Among these are the regeneration of the silver-containing sorbent by stripping the iodine and trapping the iodine on a sorbent that has undergone only partial silver exchange and is capable of attaining a much higher silver utilization. This summary report describes the US work in regeneration of iodine-loaded solid sorbent material. In addition, the report discusses the broader subject of plant off-gas treatment including system design. The off-gas technologies to recovery No/sub x/ and to recover and dispose of Kr, 14C, and I are described as to their impacts on the design of an integrated off-gas system. The effect of ventilation philosophy for the reprocessing plant is discussed as an integral part of the overall treatment philosophy of the plant off-gas. 103 refs., 5 figs., 8 tabs

  14. Anode shroud for off-gas capture and removal from electrolytic oxide reduction system

    Bailey, James L.; Barnes, Laurel A.; Wiedmeyer, Stanley G.; Williamson, Mark A.; Willit, James L.

    2014-07-08

    An electrolytic oxide reduction system according to a non-limiting embodiment of the present invention may include a plurality of anode assemblies and an anode shroud for each of the anode assemblies. The anode shroud may be used to dilute, cool, and/or remove off-gas from the electrolytic oxide reduction system. The anode shroud may include a body portion having a tapered upper section that includes an apex. The body portion may have an inner wall that defines an off-gas collection cavity. A chimney structure may extend from the apex of the upper section and be connected to the off-gas collection cavity of the body portion. The chimney structure may include an inner tube within an outer tube. Accordingly, a sweep gas/cooling gas may be supplied down the annular space between the inner and outer tubes, while the off-gas may be removed through an exit path defined by the inner tube.

  15. Off-Gas Analysis During the Vitrification of Hanford Radioactive Waste Samples

    This paper describes the off-gas analysis of samples collected during the radioactive vitrification experiments. Production and characterization of the Hanford waste-containing LAW and HAW glasses are presented in related reports from this conference

  16. Off gas filtration system in fuel reprocessing plants - engineering design approach based on operating experience

    A few observations are made based on an overview of the experience over several years of operation of the off gas filtration systems in the Fuel Reprocessing Plants in India. Broad profiles of the nature of problem areas are indicated emphasising the need to accord at design stage due care and consideration to such relatively conventional aspects as filter containers, off gas exhausters, coolers/chillers, demisters, vibration isolators, condensate drainage and logistics of filter cartridge replacement. (author)

  17. Design and optimization of a combined fuel reforming and solid oxide fuel cell system with anode off-gas recycling

    Highlights: → In this work, an analytical, parametric study is performed to evaluate the feasibility and performance of a combined fuel reforming and SOFC system. → Specifically the effects of adding the anode off-gas recycling and recirculation components and the CO2 absorbent unit are investigated. → The AOG recycle ratio increases with increasing S/C ratio and the addition of AOG recycle eliminates the need for external water consumption. → The key finding is that for the SOFC operating at 900 deg. C with the steam to carbon ratio at 5 and no AOG recirculation, the system efficiency peaks. - Abstract: An energy conversion and management concept for a combined system of a solid oxide fuel cell coupled with a fuel reforming device is developed and analyzed by a thermodynamic and electrochemical model. The model is verified by an experiment and then used to evaluate the overall system performance and to further suggest an optimal design strategy. The unique feature of the system is the inclusion of the anode off-gas recycle that eliminates the need of external water consumption for practical applications. The system performance is evaluated as a function of the steam to carbon ratio, fuel cell temperature, anode off gas recycle ratio and CO2 adsorption percentage. For most of the operating conditions investigated, the system efficiency starts at around 70% and then monotonically decreases to the average of 50% at the peak power density before dropping down to zero at the limiting current density point. From an engineering application point of view, the proposed combined fuel reforming and SOFC system with a range of efficiency between 50% and 70% is considered very attractive. It is suggested that the optimal system is the one where the SOFC operates around 900 deg. C with S/C ratio higher than 3, maximum CO2 capture, and minimum AOG recirculation.

  18. Technology status report: Off-gas treatment technologies for chlorinated volatile organic compound air emissions

    Rossabi, J.; Haselow, J.S.

    1992-04-15

    The purpose of this document is to review technologies for treatment of air streams that contain chlorinated volatile organic compounds (CVOCS) and to describe a Department of Energy Office of Technology Development program that is planned to demonstrate innovative technologies for the abatement of CVOC emissions. This report describes the first phase of testing of off-gas treatment technologies. At least one more phase of testing is planned. Guidance for the preparation of this document was provided by a predecisional draft outline issued by the Department of Energy's Office of Technology Development. The report is intended to evaluate the technical and regulatory aspects, public acceptance, and estimated costs of technologies selected for development and testing. These technologies are compared to currently practiced or baseline methods for treatment of CVOC-laden airstreams. A brief overview is provided rather than detailed cost and data comparisons because many of these technologies have not yet been field tested. A description of other promising technologies for the treatment of CVOC emissions is also included. Trichloroethylene (TCE) and perchloroethylene (PCE) were used for industrial cleaning and solvent applications for several decades. These chemicals can be classified as CVOCS. As a result of past standard disposal practices, these types of compounds are persistent groundwater and soil contaminants throughout the United States and the Department of Energy Complex.

  19. Technology status report: Off-gas treatment technologies for chlorinated volatile organic compound air emissions

    Rossabi, J.; Haselow, J.S.

    1992-04-15

    The purpose of this document is to review technologies for treatment of air streams that contain chlorinated volatile organic compounds (CVOCS) and to describe a Department of Energy Office of Technology Development program that is planned to demonstrate innovative technologies for the abatement of CVOC emissions. This report describes the first phase of testing of off-gas treatment technologies. At least one more phase of testing is planned. Guidance for the preparation of this document was provided by a predecisional draft outline issued by the Department of Energy`s Office of Technology Development. The report is intended to evaluate the technical and regulatory aspects, public acceptance, and estimated costs of technologies selected for development and testing. These technologies are compared to currently practiced or baseline methods for treatment of CVOC-laden airstreams. A brief overview is provided rather than detailed cost and data comparisons because many of these technologies have not yet been field tested. A description of other promising technologies for the treatment of CVOC emissions is also included. Trichloroethylene (TCE) and perchloroethylene (PCE) were used for industrial cleaning and solvent applications for several decades. These chemicals can be classified as CVOCS. As a result of past standard disposal practices, these types of compounds are persistent groundwater and soil contaminants throughout the United States and the Department of Energy Complex.

  20. Glass melter off-gas system pluggages: Cause, significance, and remediation

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. Experimental glass melters, used to develop the vitrification process, have occasionally experienced problems with pluggage of the off-gas line with solid deposits. The deposits were determined to be mixtures of alkali rich chlorides, sulfates, borates, and fluorides with entrained insoluble particles of Fe2O3 spinel, and frit. The distribution and location of the alkali deposits throughout the off-gas system indicate that the deposits form by vapor-phase transport and condensation. Condensation of the alkali-rich phases cements the entrained particulates causing the off-gas system pluggages. The identification of vapor phase transport as the operational mechanism causing off-gas system pluggages indicates that deposition can be effectively eliminated by increasing the off-gas velocity. The cementitious alkali borates, halides, and sulfates comprising the off-gas line deposits were determined to be water soluble. Thus pluggage can be effectively removed with water and/or steam

  1. Exergetic Optimization of a Refrigeration Cycle for Re-Liquefaction of LNG Boil-Off Gas

    Mojtaba Babaelahi

    2010-11-01

    Full Text Available The development of liquefaction process for liquefied natural gas boil-off re-liquefaction plants will be addressed to provide an environmentally friendly and cost effective solution for gas transport. Onboard boil-off gas (BOG re-liquefaction is a new technology that liquefies BOG and returns it to the cargo tanks instead of burning it. Exergetic efficiency optimization for cryogenic refrigeration cycle for re-liquefaction of LNG boil-off gas is performed. Thermodynamic modeling has been performed based on the energy and exergy analyses. Objective problem is developed based on maximization of the plant exergetic efficiency and selected decision variables and constraints. Optimization process is performed using MATLAB genetic algorithm optimization

  2. Study of degradation of off-gas H2/O2 recombination catalyst at Hamaoka Unit 4 and 5

    By evaluating the phenomena that hydrogen concentration of outlet gas in the off-gas treatment system at Hamaoka Unit 4 and 5 had increased, it was concluded that the causes of the phenomena were transformation of support alumina by alteration of manufacturing process of catalysts and the deactivation by catalyst poisoning material. Therefore, the manufacturing process was modified and the poisoning material was identified and removed. Moreover, developments such as catalyzer performance monitoring technology with thermometers have been continued in order to improve the reliability of the system. (author)

  3. Diesel auto-thermal reforming for solid oxide fuel cell systems: Anode off-gas recycle simulation

    Highlights: • Diesel reformation with solid oxide fuel cell anode off-gas recycle simulation. • Thermodynamic modeling complemented experiments to optimize fuel reformation. • Comparisons of diesel reforming with anode off-gas recycle and direct water/air. • Single-tube reformer with Rh/CeO2–ZrO2 catalyst for diesel autothermal reforming. - Abstract: Diesel auto-thermal reformation (ATR) with solid oxide fuel cell (SOFC) stack anode off-gas recycle (AOGR) has a reliable steam recycling supply to the reformer and improves overall system efficiency. For the lab-scale experiments, it is crucial to develop a cost-effective technique to simulate the AOGR effects on hydrocarbon catalytic reformation due to safety and cost considerations of providing the full recycle composition in the absence of fuel cell stack hardware. The present work combined thermodynamic modeling and experiments to compare diesel ATR performance with AOGR and with direct water/air inputs as recycle simulation (RS). Variations of input water and air flow were employed to simulate the effects of recycle gas on syngas production and to analyze the contribution of recycled CO2 dry reforming. A single-tube reformer with Rh/CeO2–ZrO2 catalyst was used for diesel ATR experiments with a photo-acoustic micro-soot meter to monitor carbon formation in the reformate effluent. Experimental results suggest water and air input flows are two key variables to simulate performance of diesel ATR with AOGR, whereas gas hourly space velocity and reforming temperature do not significantly affect the recycle simulation process in syngas production. The optimum AOGR ratio for an SOFC stack with 65% fuel utilization was identified as 45% for diesel ATR to achieve maximum syngas production and reforming efficiency with a given input air flow

  4. Inspection system performance test procedure

    This procedure establishes requirements to administer a performance demonstration test. The test is to demonstrate that the double-shell tank inspection system (DSTIS) supplied by the contractor performs in accordance with the WHC-S-4108, Double-Shell Tank Ultrasonic Inspection Performance Specification, Rev. 2-A, January, 1995. The inspection system is intended to provide ultrasonic (UT) and visual data to determine integrity of the Westinghouse Hanford Company (WHC) site underground waste tanks. The robotic inspection system consists of the following major sub-systems (modules) and components: Mobile control center; Deployment module; Cable management assembly; Robot mechanism; Ultrasonic testing system; Visual testing system; Pneumatic system; Electrical system; and Control system

  5. Present status and problems of conventional off-gas cleaning system

    The off-gas from reprocessing dissolution process contains volatile radioactive nuclides such as H-3, Kr-85, I-129 and C-14. The establishment of the method for removing or fixing them in order to prevent the release into environment is a social concern. The study group investigated the present status of the research and development on the volatile nuclides from the generation to the disposal, and attempted to set up the off-gas cleaning system which is considered to be more rational. It is important that the dissolution off-gas cleaning system is composed of the processes which are highly safe and reliable, economical and simple. It is necessary to pay attention to use the techniques of high reliability, to remove strongly corrosive nuclides such as iodine at the first step, to make the system into a continuous type or close to it to prevent the accumulation of radioactive substances, to avoid high temperature, high pressure operation as far as possible, to avoid the use of toxic and highly explosive chemical substances and to make the process flexible so as to be able to cope with the variation of operational condition. From these viewpoints, the existing off-gas cleaning system was examined, and the plan of its improvement was proposed as a total off-gas cleaning system. (Kako, I.)

  6. Detailed Design Data Package item 3.9a: Cadmium buildup in off-gas lines

    Waste currently stored at the Hanford Reservation in underground double-shell and single-shell tanks is being considered for vitrification and disposal. To achieve this, Hanford is conducting a Hanford Waste Vitrification Plant Technology Development Project melter campaign. In this campaign, a requirement was identified to quantify the amount of cadmium depositing in the off-gas line between the liquid-fed ceramic melter and the submerged bed scrubber. This issue of cadmium volatility was raised due to the limited data on cadmium volatility in HLW vitrification. Prior to the start of slurry processing, the off-gas line sections were removed and inspects. Any pre-existing deposits were removed. Following the melter campaign, the lines were again removed and solids deposits were sampled and the quantity of deposits were estimated. The data presented in this package include chemical analysis of feed, glass, line deposits, in-ling off-gas stream, and SBS condensate samples. Process data includes melter feeding and glass production rates, off- gas flow rate, and plenum and off-gas stream temperatures

  7. Organic iodine removal from simulated dissolver off-gas streams using silver-exchanged mordenite

    The removal of methyl iodide by absorption onto silver mordenite was studied using a simulated off-gas from the fuel dissolution step of a nuclear fuel reprocessing plant. The methyl iodide absorption of silver mordenite was examined for the effects of NO/sub x/, humidity, iodine concentration, filter temperature, and filter pretreatment. The highest iodine loading achieved in these tests has been 34 mg CH3I per g of substrate, approximately five times less than the elemental iodine loadings. Results indicate that a filter operating at a temperature of 1500C obtained higher iodine loadings than a similar filter operating at 1000C. Pretreatment of the sorbent bed with hydrogen, rather than dry air, at a temperature of 2000C also improved the loading. Variations in the methyl iodide concentration had minimal effects on the overall loading. Filters exposed to moist air streams attained higher loadings than those in contact with dry air. A study of the regeneration characteristics of silver mordenite indicates limited adsorbent capacity after complete removal of the iodine with 4% hydrogen in the regeneration gas stream at 5000C. 9 figures

  8. Self absorption and geometric correction factors for reactor off-gas samples relative to NBS standards

    Although they can be counted in identical bottles using identical counting systems, real gas samples differ from the NBS solution standards (e.g., mock reactor off-gas) in two respects--geometry and self absorption. Because both detector and source are real and finite, the simple ''narrow beam'' linear attenuation coefficient approximations currently used in the industry are quite inadequate for correction. Accordingly, the well-tested, complete-analog program, BIM 130, was used to compute the fraction of photons, and the photon energy spectra, reaching typical detectors used in the industry. Using this method, it was possible to correct the given NBS standard activity to its effective activity relative to a gas sample in an identical bottle. Factors were much closer to unity than predictions based on ''narrow beam'' linear attenuation coefficient approximations. At 80 keV, for example, such approximations gave 0.76, whereas the factor proved to be 1.03 for a 3'' x 3'' NaI(Tl) crystal and a 3 cm distance. Results are presented for various gamma energies of interest from 80 keV to 1,830 keV, and for the commonly used industrial distances of 3, 10, and 30 cm from the bottom of the sample bottle to the top of the detector container. Complete spectra for photons entering the detectors, as well as factors derived from these for typical NaI(Tl) and Ge(Li) detector resolutions, are given

  9. Development of the krypton absorption in liquid carbon dioxide (KALC) process for HTGR off-gas reprocessing

    Reprocessing of High-Temperature Gas-Cooled Reactor (HTGR) fuel involves burning of the graphite-matrix elements to release the fuel for recovery purposes. The resulting off-gas is primarily CO2 with residual amounts of N2, O2, and CO, together with fission products. Trace quantities of krypton-85 must be recovered in a concentrated form from the gas stream, but processes commonly employed for rare gas removal and concentration are not suitable for use with off-gas from graphite burning. The KALC (Krypton Absorption in Liquid CO2) process employs liquid CO2 as a volatile solvent for the krypton and is, therefore, uniquely suited to the task. Engineering development of the KALC process is currently under way at the Oak Ridge National Laboratory (ORNL) and the Oak Ridge Gaseous Diffusion Plant (ORGDP). The ORNL system is designed for close study of the individual separation operations involved in the KALC process, while the ORGDP system provides a complete pilot facility for demonstrating combined operations on a somewhat larger scale. Packed column performance and process control procedures have been of prime importance in the initial studies. Computer programs have been prepared to analyze and model operational performance of the KALC studies, and special sampling and in-line monitoring systems have been developed for use in the experimental facilities. (U.S.)

  10. The off-gas cleaning system of the INER'S incinerator in Taiwan, Republic of China

    The incinerator designed and constructed by INER has been operated since 1976. It handles the radioactive wastes from INER and Taiwan Power Company. The dry off-gas cleaning system consists of two types of cyclones in series, two bag filters and two HEPA filters in parallel. One of each filter sets is provided as stand-by. The first cyclone is lined with refractory material and operated at 11000C to treat the high-temperature off-gas directly from the top of the incinerator. The off-gas of the first cyclone is mixed with ambient air for controlling the gas flow rate and reducing its temperature to about 2000C. After 10 years' operation, it is found that the radioactivity released in the gaseous effluent meets the MPC air requirement and the implementation of the refractory-lined cyclone extends the service lives of bag filter as well as HEPA filter

  11. Performance testing With JMeter 29

    Erinle, Bayo

    2013-01-01

    Performance Testing With JMeter 2.9 is a standard tutorial that will help you polish your fundamentals, guide you through various advanced topics, and along the process help you learn new tools and skills.This book is for developers, quality assurance engineers, testers, and test managers new to Apache JMeter, or those who are looking to get a good grounding in how to effectively use and become proficient with it. No prior testing experience is required.

  12. Design of an engineering scale off-gas trapping system at KAERI

    KAERI has been developing a high temperature voloxidation process as a head-end process for pyroprocessing technology. This process may remove volatile fission products (Kr, H-3, C-14, I-129 etc.) and other semi-volatiles (Cs, Tc, Te, Mo etc.) that are problematic in the main pyroprocess. Engineering off-gas treatment system was designed to recover the primary semi-volatile products (Cs, Tc, Te, Mo, I, etc.) released from simulated reagents during the high temperature voloxidation process. The off-gas trapping system will trap selectively gaseous nuclides evolved from high temperature voloxidation process, this will also reduce the high level waste due to the separation of Cs. This paper describes design of the off-gas treatment systems for high temperature voloxidation process. Design of an engineering-scale semi-volatile trapping system of 50 kg-SF/batch was done. The gaseous waste arising for off-gas trapping system was estimated considering the release rate of each target fission product. Each unit process in the trapping system is arranged to effectively remove the species of interest by considering the chemical properties of the target fission products to be trapped. Cs and Rb are trapped on a fly ash filter at around 900degC. Tc(Re), Te, Se, and Mo on a calcium filter are trapped at about 700degC, and I on a AgX is trapped at about 250degC. Off-gas trapping system was designed based on the design requirements such as trapping media, fission products to be trapped, design temperatures of the trapping units, optimum operation temperatures and specifications of the filters. Off-gas trapping system was also designed based on the design requirements such as remote operability, accessibility, and flexibility of instrument, separability of trapping basket, material of instrument. (author)

  13. Trends in the design and operation of off-gas cleaning systems in nuclear facilities

    Trends in the design and operation of off-gas cleaning systems in nuclear facilities reflect the normal development by manufacturers of new and improved equipment and the demand for more safety, greater reliability, and higher collection efficiency as an aftermath of the well publicized accident at Three Mile Island. The latter event has to be viewed as a watershed in the history of off-gas treatment requirements for nuclear facilities. It is too soon to predict what these will be with any degree of assurance but it seems reasonable to expect greatly increased interest in containment venting systems for light water and LMFBR nuclear power reactors and more stringent regulatory requirements for auxiliary off-gas cleaning systems. Although chemical and waste handling plants share few characteristics with reactors other than the presence of radioactive materials, often in large amounts, tighter requirements for handling reactor off-gases will surely be transferred to other kinds of nuclear facilities without delay. Currently employed nuclear off-gas cleaning technology was largely developed and applied during the decade of the 1950s. It is regrettable that the most efficient and most economical off-gas treatment systems do not always yield the best waste forms for storage or disposal. It is even more regrettable that waste management has ceased to be solely a technical matter but has been transformed instead into a highly charged political posture of major importance in many western nations. Little reinforcement has been provided by detailed studies of off-gas treatment equipment failures that show that approximately 13% of over 9000 licensee event reports to the United States Nuclear Regulatory Commission pertained to failures in ventilating and cleaning systems and their monitoring instruments

  14. Team Performance with Test Scores

    Kleinberg, Jon; Raghu, Maithra

    2015-01-01

    Team performance is a ubiquitous area of inquiry in the social sciences, and it motivates the problem of team selection -- choosing the members of a team for maximum performance. Influential work of Hong and Page has argued that testing individuals in isolation and then assembling the highest-scoring ones into a team is not an effective method for team selection. For a broad class of performance measures, based on the expected maximum of random variables representing individual candidates, we...

  15. Behaviour of selected contaminants in spray calciner/in-can melter waste vitrification off-gas

    Product loss from spray calciner/in-can melter vitrification of high-level wastes was evaluated with respect to volatile, gaseous and particulate materials. Investigations of the off-gases in a non-radioactive system are discussed, including gaseous constituents, particulate size distributions and loadings. Monitoring of gases leaving the off-gas system during spray calcination/in-can melting of radioactive waste gave material concentrations and material forms in the gases. The most significant conclusion drawn from these studies was that particulate loss accounts for a significant portion of the fission products in the off-gas system. (author)

  16. Removal of CO2 in closed loop off-gas treatment systems

    A closed loop test system has been installed at Argonne National Laboratory (ANL) to demonstrate off-gas treatment, absorption, and purification systems to be used for incineration and vitrification of hazardous and mixed waste. Closed loop systems can virtually eliminate the potential for release of hazardous or toxic materials to the atmosphere during both normal and upset conditions. In initial tests, a 250,000 Btu/h (75 kW thermal) combustor was operated in an open loop to produce a combustion product gas. The CO2 in these tests was removed by reaction with a fluidized bed of time to produce CaCO3. Subsequently, recirculation system was installed to allow closed loop operation with the addition of oxygen to the recycle stream to support combustion. Commercially marketed technologies for removal of CO2 can be adapted for use on closed loop incineration systems. The paper also describes the Absorbent Solution Treatment (AST) process, based on modifications to commercially demonstrated gas purification technologies. In this process, a side loop system is added to the main loop for removing CO2 in scrubbing towers using aqueous-based CO2 absorbents. The remaining gas is returned to the incinerator with oxygen addition. The absorbent is regenerated by driving off the CO2 and water vapor, which are released to the atmosphere. Contaminants are either recycled for further treatment or form precipitates which are removed during the purification and regeneration process. There are no direct releases of gases or particulates to the environment. The CO2 and water vapor go through two changes of state before release, effectively separating these combustion products from contaminants released during incineration. The AST process can accept a wide range of waste streams. The system may be retrofitted to existing Facilities or included in the designs for new installations

  17. Performance testing of extremity dosimeters

    The Health Physics Society Standing Committee (HPSSC) Working Group on Performance Testing of Extremity Dosimeters has issued a draft of a proposed standard for extremity dosimeters. The draft standard proposes methods to be used for testing dosimetry systems that determine occupational radiation dose to the extremities and the performance criterion used to determine compliance. The draft standard has been evaluated by testing the performance of existing processors of extremity dosimeters against the standard's proposed criterion. The proposed performance criterion is: absolute value of B + S ≤ 0.35, where B is the bias (calculated as the average of the performance quotients) of 15 dosimeter measurements and S is the standard deviation of the performance quotients. Dosimeter performance was tested in seven irradiation categories: low-energy photons (general and accident dosimetry), high-energy photons (general and accident dosimetry), beta particles, neutrons, and a mixture category. Twenty-one types of extremity dosimeters (both finger ring and wrist/ankle dosimeters) were received from 11 processors. The dosimeters were irradiated by the Pacific Northwest Laboratory (PNL) to specific dose levels in one or more of the seven categories as specified in the draft standard and were returned to the processors. The processors evaluated the doses and returned the results to PNL for analysis. The results were evaluated against the performance criterion specified in the draft standard. The results indicate that approximately 60% of both the finger ring and the wrist/ankle dosimeters met the performance criterion. Two-thirds of the dosimeters that did not meet the performance criterion had large biases (ranging from 0.25 to 0.80) but small standard deviations (less than 0.15). 21 refs., 3 figs., 20 tabs

  18. LFK, FORTRAN Application Performance Test

    1 - Description of program or function: LFK, the Livermore FORTRAN Kernels, is a computer performance test that measures a realistic floating-point performance range for FORTRAN applications. Informally known as the Livermore Loops test, the LFK test may be used as a computer performance test, as a test of compiler accuracy (via checksums) and efficiency, or as a hardware endurance test. The LFK test, which focuses on FORTRAN as used in computational physics, measures the joint performance of the computer CPU, the compiler, and the computational structures in units of Mega-flops/sec or Mflops. A C language version of subroutine KERNEL is also included which executes 24 samples of C numerical computation. The 24 kernels are a hydrodynamics code fragment, a fragment from an incomplete Cholesky conjugate gradient code, the standard inner product function of linear algebra, a fragment from a banded linear equations routine, a segment of a tridiagonal elimination routine, an example of a general linear recurrence equation, an equation of state fragment, part of an alternating direction implicit integration code, an integrate predictor code, a difference predictor code, a first sum, a first difference, a fragment from a two-dimensional particle-in-cell code, a part of a one-dimensional particle-in-cell code, an example of how casually FORTRAN can be written, a Monte Carlo search loop, an example of an implicit conditional computation, a fragment of a two-dimensional explicit hydrodynamics code, a general linear recurrence equation, part of a discrete ordinates transport program, a simple matrix calculation, a segment of a Planck distribution procedure, a two-dimensional implicit hydrodynamics fragment, and determination of the location of the first minimum in an array. 2 - Method of solution: CPU performance rates depend strongly on the maturity of FORTRAN compiler machine code optimization. The LFK test-bed executes the set of 24 kernels three times, resetting the DO

  19. Removal of I, Rn, Xe and Kr from off gas streams using PTFE membranes

    Siemer, Darryl D.; Lewis, Leroy C.

    1990-01-01

    A process for removing I, R, Xe and Kr which involves the passage of the off gas stream through a tube-in-shell assembly, whereby the tubing is a PTFE membrane which permits the selective passages of the gases for removing and isolating the gases.

  20. DWPF Melter Off-Gas Flammability Assessment for Sludge Batch 9

    Choi, A. S. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-07-11

    The slurry feed to the Defense Waste Processing Facility (DWPF) melter contains several organic carbon species that decompose in the cold cap and produce flammable gases that could accumulate in the off-gas system and create potential flammability hazard. To mitigate such a hazard, DWPF has implemented a strategy to impose the Technical Safety Requirement (TSR) limits on all key operating variables affecting off-gas flammability and operate the melter within those limits using both hardwired/software interlocks and administrative controls. The operating variables that are currently being controlled include; (1) total organic carbon (TOC), (2) air purges for combustion and dilution, (3) melter vapor space temperature, and (4) feed rate. The safety basis limits for these operating variables are determined using two computer models, 4-stage cold cap and Melter Off-Gas (MOG) dynamics models, under the baseline upset scenario - a surge in off-gas flow due to the inherent cold cap instabilities in the slurry-fed melter.

  1. Performance Testing of Cutting Fluids

    Belluco, Walter

    The importance of cutting fluid performance testing has increased with documentation requirements of new cutting fluid formulations based on more sustainable products, as well as cutting with minimum quantity of lubrication and dry cutting. Two sub-problems have to be solved: i) which machining t...

  2. Characterization of magnesium phosphate ceramics incorporating off-gas filters

    Radioactive cesium (Cs-137) and technetium (Tc-99) are discharged from the spent fuel as gaseous forms during the head-end process in pyroprocess. These off-gases are safely trapped via porous ceramic filters made of fly ash and calcium based material. Spent filters have to be treated, converted into proper waste forms in order to be disposed safely at a repository. Conventional technology used to make waste forms such as vitrification requires high temperature and complex process. In this study, we report a promising method to stabilize spent filters containing cesium and technetium using magnesium phosphate ceramics. Simulated spent filters were fabricated by vaporizing nonradioactive cesium and rhenium (a surrogate of Tc) through the voloxidizer. The crushed filters were mixed with raw materials of magnesium phosphate ceramics, to be stabilized in the phosphate ceramic matrix. Characterization of the waste forms was made by the compressive strength test, apparent porosity, XRD analysis, and SEM analysis. The sample containing filters showed the excellent mechanical property, with the highest compressive strength of 38.1 MPa in the sample with 30 wt% of Cs-filter. Microstructural analysis suggests that wastes are embedded in the crystalline phase formed by an acid-base reaction. (author)

  3. Ecotoxicological testing of performance fluids

    Källqvist, T.

    1990-01-01

    Two performance fluids were tested for toxic effects on marine algae and biological degradability. A fluid based on mineral oil was readily degradable (98% DOC removal in 28 days) while a either based oil degraded more slowly (56 % DOC removal in 28 days). The toxicity of both fluids was tested after emulsification of the oils in water and separating the oil and water phase after equilibration. The EC50 values obtained with this approach were 8.15 g/l for the oil based fluid and 116 g/l for t...

  4. Analysis and efficiency enhancement of a boil-off gas reliquefaction system with cascade cycle on board LNG carriers

    Highlights: • An LNG boil-off gas reliquefaction plant on board LNG carriers is improved. • Relevant improvements deals with a study on BOG–C2H4–C3H6 cascade system. • A novel design is proposed to reduce power consumption and COP improvement. • Efficiency improvement by BOG cold energy recovery and compression heat rejection. • Efficiency increase operating in parallel with the engine fuel gas supply system. - Abstract: In this paper, an LNG boil-off gas (BOG) reliquefaction plant operating in accordance with cascade vapor compression cycles, using propylene and ethylene as refrigerants, on board LNG carriers is investigated. As consequence of the analysis results, a new and original design is proposed to reduce power consumption and improve its exergy efficiency. Through energy and exergy analysis, a thermodynamic model is carried out to analyse and evaluate operating conditions as well as to obtain performance values such as the Coefficient of Performance (COP), exergy efficiency, irreversibilities and specific energy consumption. The thermodynamic analysis is performed using the Engineering Equation Solver (EES) software environment. The results of the improved design implemented on the reliquefaction plant for LNG tank conditions of -160.82 °C, a plant BOG input temperature of −125 °C and 25 °C seawater, give COP values of 0.22 and an exergetic efficiency of 37%, such values being 22.22% and 19.35% greater than the original design. The specific energy consumption decreases 14.66% to 0.64 kW h per kg/s of natural BOG. The proposal for improving efficiency is founded on BOG cold energy recovery and BOG compression heat rejection with cooling water in the intercoolers

  5. Reflectors for SAR performance testing.

    Doerry, Armin Walter

    2008-01-01

    Synthetic Aperture Radar (SAR) performance testing and estimation is facilitated by observing the system response to known target scene elements. Trihedral corner reflectors and other canonical targets play an important role because their Radar Cross Section (RCS) can be calculated analytically. However, reflector orientation and the proximity of the ground and mounting structures can significantly impact the accuracy and precision with which measurements can be made. These issues are examined in this report.

  6. Development of a hydrogen mordenite sorbent for the capture of krypton from used nuclear fuel reprocessing off-gas streams

    A novel new sorbent for the separation of krypton from off-gas streams resulting from the reprocessing of used nuclear fuel has been developed and evaluated. A hydrogen mordenite powder was successfully incorporated into a macroporous polymer binder and formed into spherical beads. The engineered form sorbent retained the characteristic surface area and microporosity indicative of mordenite powder. The sorbent was evaluated for krypton adsorption capacities utilizing thermal swing operations achieving capacities of 100 mmol of krypton per kilogram of sorbent at a temperature of 191 K. A krypton adsorption isotherm was also obtained at 191 K with varying krypton feed gas concentrations. Adsorption/desorption cycling effects were also evaluated with results indicating that the sorbent experienced no decrease in krypton capacity throughout testing. (author)

  7. Off-gas purification in waste incineration plants: Wet scrubbing solution; Abgasreinigung in Muellverbrennungsanlagen: Nass-Wasch-Loesung

    Johansson, T. [ABB Vaaxjoo (Sweden); Eriksson, J. [ABB Vaaxjoo (Sweden); Burdis, V. [ABB Umwelttechnik GmbH, Butzbach (Germany)

    1995-08-01

    The article describes an off-gas purification process for a waste incineration plant. It is a two-stage process. In the first alkaline stage, sulphur dioxide is removed with the aid of sodium hydroxide. In the second stage, calcium hydroxide is added to the solution, and gypsum is produced. The wet scrubber technology was installed and tested in a waste incineration plant in Denmark. (orig.) [Deutsch] Der vorliegende Artikel beschreibt die Abgasreinigung in einer Muellverbrennungsanlage. Mit dem zweistufigen Prozess wird in einem Nasswaescher zunaechst in einer alkalischen Stufe Schwefeldioxid mit Hilfe von Natriumhydroxid entfernt. In einer nachgeschalteten zweiten Stufe wird zu der abgezogenen Loesung des Waeschers Calciumhydroxid gegeben und Gips produziert. Diese Nasswaeschertechnik wurde in einer Muellverbrennungsanlage in Daenemark installiert und erfolgreich getestet. (orig.)

  8. Analysis of fire and smoke threat to off-gas HEPA filters in a transuranium processing plant

    The author performed an analysis of fire risk to the high-efficiency particulate air (HEPA) filters that provide ventilation containment for a transuranium processing plant at the Oak Ridge National Laboratory. A fire-safety survey by an independent fire-protection consulting company had identified the HEPA filters in the facility's off-gas containment ventilation system as being at risk from fire effects. Independently studied were the ventilation networks and flow dynamics, and typical fuel loads were analyzed. It was found that virtually no condition for fire initiation exists and that, even if a fire started, its consequences would be minimal as a result of standard shut-down procedures. Moreover, the installed fire-protection system would limit any fire and thus would further reduce smoke or heat exposure to the ventilation components. 4 references, 4 figures, 5 tables

  9. The effect of pranayama on test anxiety and test performance

    Azadeh Nemati

    2013-01-01

    Conclusions: Pranayama seems to have a significant positive effect on test anxiety and test performance. It could be used as an important technique by students prior to their examinations, to reduce their test anxiety and increase their test performance.

  10. Design and operational experience with the off-gas cleaning system of the Seibersdorf incinerator plant

    After a description of the design and the construction principles of the incinerator building, the furnace and its attached auxilary devices are explained. The incinerator is layed out for low level wastes. It has a vertical furnace, operates with discontinuous feeding for trashes with heat-values between 600 and 10000 kcal/kg waste. The maximum throughput ammounts 40 kg/h. The purification of the off-gas is guaranteed by a multistage filter system: 2 stages with ceramic candles, an electrostatic filter and a HEPA-filter system. The control of the off-gas cleaning is carried out by a stack instrumentation, consisting of an aerosol-, gas-, iodine- and tritium-monitor; the building is surveilled by doserate- and aerosolmonitors. Finally the experiences of the first year of operation and the main problems in running the plant are described. (Author)

  11. The integrated melter off-gas treatment systems at the West Valley Demonstration Project

    The West Valley Demonstration project was established by an act of Congress in 1980 to solidify the high level radioactive liquid wastes produced from operation of the Western New York Nuclear Services Center from 1966 to 1972. The waste will be solidified as borosilicate glass. This report describes the functions, the controlling design criteria, and the resulting design of the melter off-gas treatment systems

  12. Regulatory off-gas analysis from the evaporation of Hanford simulated waste spiked with organic compounds.

    Saito, Hiroshi H; Calloway, T Bond; Ferrara, Daro M; Choi, Alexander S; White, Thomas L; Gibson, Luther V; Burdette, Mark A

    2004-10-01

    After strontium/transuranics removal by precipitation followed by cesium/technetium removal by ion exchange, the remaining low-activity waste in the Hanford River Protection Project Waste Treatment Plant is to be concentrated by evaporation before being mixed with glass formers and vitrified. To provide a technical basis to permit the waste treatment facility, a relatively organic-rich Hanford Tank 241-AN-107 waste simulant was spiked with 14 target volatile, semi-volatile, and pesticide compounds and evaporated under vacuum in a bench-scale natural circulation evaporator fitted with an industrial stack off-gas sampler at the Savannah River National Laboratory. An evaporator material balance for the target organics was calculated by combining liquid stream mass and analytical data with off-gas emissions estimates obtained using U.S. Environmental Protection Agency (EPA) SW-846 Methods. Volatile and light semi-volatile organic compounds (1 mm Hg vapor pressure) in the waste simulant were found to largely exit through the condenser vent, while heavier semi-volatiles and pesticides generally remain in the evaporator concentrate. An OLI Environmental Simulation Program (licensed by OLI Systems, Inc.) evaporator model successfully predicted operating conditions and the experimental distribution of the fed target organics exiting in the concentrate, condensate, and off-gas streams, with the exception of a few semi-volatile and pesticide compounds. Comparison with Henry's Law predictions suggests the OLI Environmental Simulation Program model is constrained by available literature data. PMID:15540577

  13. Treatment of off-gas evolved from thermal decomposition of sludge waste

    Korea Atomic Energy Research Institute (KAERI) started a decommissioning program of a uranium conversion plant. The treatment of the sludge waste, which was generated during the operation of the plant, is one of the most important tasks in the decommissioning program of the plant. The major compounds of sludge waste are nitrate salts and uranium. The sludge waste is denitrated by thermal decomposition. The treatment of off-gas evolved from the thermal decomposition of nitrate salts in the sludge waste is investigated. The nitrate salts in the sludge were decomposed in two steps: the first decomposition is due to the ammonium nitrate, and the second is due to the sodium and calcium nitrate and calcium carbonate. The components of off-gas from the decomposition of ammonium nitrate at low temperature are NH3, N2O, NO2, and NO. In addition, the components from the decomposition of sodium and calcium nitrate at high temperature are NO2 and NO. Off-gas from the thermal decomposition is treated by the catalytic oxidation of ammonia and selective catalytic reduction (SCR). Ammonia is converted into nitrogen oxides through the oxidation catalyst and all nitrogen oxides are removed by SCR treatment besides nitrous oxide, which is greenhouse gas. An additional process is needed to remove nitrous oxide, and the feeding rate of ammonia in SCR should be controlled properly for evolved nitrogen oxides. (author)

  14. Test Performance Related Dysfunctional Beliefs

    Recep TÜTÜNCÜ

    2012-11-01

    Full Text Available Objective: Examinations by using tests are very frequently used in educational settings and successful studying before the examinations is a complex matter to deal with. In order to understand the determinants of success in exams better, we need to take into account not only emotional and motivational, but also cognitive aspects of the participants such as dysfunctional beliefs. Our aim is to present the relationship between candidates’ characteristics and distorted beliefs/schemata just before an examination. Method: The subjects of the study were 30 female and 30 male physicians who were about to take the medical specialization exam (MSE in Turkey. Dysfunctional Attitude Scale (DAS and Young Schema Questionnaire Short Form (YSQ-SF were applied to the subjects. The statistical analysis was done using the F test, Mann-Whitney, Kruskal-Wallis, chi-square test and spearman’s correlation test. Results: It was shown that some of the DAS and YSQ-SF scores were significantly higher in female gender, in the group who could not pass the exam, who had repetitive examinations, who had their first try taking an examination and who were unemployed at the time of the examination. Conclusion: Our findings indicate that candidates seeking help before MSE examination could be referred for cognitive therapy or counseling even they do not have any psychiatric diagnosis due to clinically significant cognitive distortion. Measurement and treatment of cognitive distortions that have negative impact on MSE performance may improve the cost-effectiveness and mental well being of the young doctors.

  15. Formation rate of ammonium nitrate in the off-gas line of SRAT and SME in DWPF

    A mathematical model for the formation rate of ammonium nitrate in the off-gas line of the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mixed Evaporator (SME) in DWPF has been developed. The formation rate of ammonium nitrate in the off-gas line depends on pH, temperature, volume and total concentration of ammonia and ammonium ion. Based on a typical SRAT and SME cycle in DWPF, this model predicts the SRAT contributes about 50 lbs of ammonium nitrate while SME contributes about 60 lbs of ammonium nitrate to the off-gas line

  16. Structure-property relationship of metal-organic frameworks (MOFs) and physisorbed off-gas radionuclides

    We report on the host-guest interactions between metal-organic frameworks (MOFs) with various profiles and highly polarizable molecules (iodine), with emphasis on identifying preferential sorption sites in these systems. Radioactive iodine 129I, along with other volatile radionuclides (3H, 14C, Xe and Kr), represents a relevant component in the off-gas resulted during nuclear fuel reprocessing. Due to its very long half-life, 15.7 x 106 years, and potential health risks in humans, its efficient capture and long-term storage is of great importance. The leading iodine capture technology to date is based on trapping iodine in silver-exchanged mordenite. Our interests are directed towards improving existent capturing technologies, along with developing novel materials and alternative waste forms. Herein we report the first study that systematically monitors iodine loading onto MOFs, an emerging new class of porous solid-state materials. In this context, MOFs are of particular interest as: (i) they serve as ideal high capacity storage media, (ii) they hold potential for the selective adsorption from complex streams, due to their high versatility and tunability. This work highlights studies on both newly developed in our lab, and known highly porous MOFs that all possess distinct characteristics (specific surface area, pore volume, pore size, and dimension of the window access to the pore). The materials were loaded to saturation, where elemental iodine was introduced from solution, as well as from vapor phase. Uptakes in the range of ∼125-150 wt% I2 sorbed were achieved, indicating that these materials outperform all other solid adsorbents to date in terms of overall capacity. Additionally, the loaded materials can be efficiently encapsulated in stable waste forms, including as low temperature sintering glasses. Ongoing studies are focused on gathering qualitative information with respect to localizing the physisorbed iodine molecules within the frameworks: X

  17. Structure-property relationship of metal-organic frameworks (MOFs) and physisorbed off-gas radionuclides.

    Nenoff, Tina Maria; Chupas, Peter J. (Argonne National Laboratory); Garino, Terry J.; Rodriguez, Mark Andrew; Chapman, Karena W. (Argonne National Laboratory); Sava, Dorina Florentina

    2010-11-01

    We report on the host-guest interactions between metal-organic frameworks (MOFs) with various profiles and highly polarizable molecules (iodine), with emphasis on identifying preferential sorption sites in these systems. Radioactive iodine 129I, along with other volatile radionuclides (3H, 14C, Xe and Kr), represents a relevant component in the off-gas resulted during nuclear fuel reprocessing. Due to its very long half-life, 15.7 x 106 years, and potential health risks in humans, its efficient capture and long-term storage is of great importance. The leading iodine capture technology to date is based on trapping iodine in silver-exchanged mordenite. Our interests are directed towards improving existent capturing technologies, along with developing novel materials and alternative waste forms. Herein we report the first study that systematically monitors iodine loading onto MOFs, an emerging new class of porous solid-state materials. In this context, MOFs are of particular interest as: (i) they serve as ideal high capacity storage media, (ii) they hold potential for the selective adsorption from complex streams, due to their high versatility and tunability. This work highlights studies on both newly developed in our lab, and known highly porous MOFs that all possess distinct characteristics (specific surface area, pore volume, pore size, and dimension of the window access to the pore). The materials were loaded to saturation, where elemental iodine was introduced from solution, as well as from vapor phase. Uptakes in the range of {approx}125-150 wt% I2 sorbed were achieved, indicating that these materials outperform all other solid adsorbents to date in terms of overall capacity. Additionally, the loaded materials can be efficiently encapsulated in stable waste forms, including as low temperature sintering glasses. Ongoing studies are focused on gathering qualitative information with respect to localizing the physisorbed iodine molecules within the frameworks: X

  18. Cut performance levels and testing.

    Bennett, Bill; Moreland, Jeff

    2011-11-01

    While the ISEA performance levels and general recommendations detailed above can help tp provide guidance when selecting hand protection products, the responsibility for testing products for specific end-user applications still rests with the end user. We can indicate, for example, that a medium-weight, uncoated Kevlar glove will typically have an ISEA cut rating of 3, but we cannot say the glove will provide the level of protection needed for the range of jobs on an automobile assembly line. Another Level 3 glove might be better suited to an application the require the worker to have an oil grip. As glove manufacturers, we know gloves. We do not know the details about every workplace. We therefore, must look to our customers to provide us the properties they need for hand protection products that will sufficiently protect their workers on the job. PMID:22135955

  19. 40 CFR 60.8 - Performance tests.

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Performance tests. 60.8 Section 60.8... PERFORMANCE FOR NEW STATIONARY SOURCES General Provisions § 60.8 Performance tests. (a) Except as specified in... conduct performance test(s) and furnish the Administrator a written report of the results of...

  20. Stereotype Threat, Test Anxiety, and Mathematics Performance

    Tempel, Tobias; Neumann, Roland

    2014-01-01

    We investigated the combined effects of stereotype threat and trait test anxiety on mathematics test performance. Stereotype threat and test anxiety interacted with each other in affecting performance. Trait test anxiety predicted performance only in a diagnostic condition that prevented stereotype threat by stereotype denial. A state measure of…

  1. Critique of Hanford Waste Vitrification Plant off-gas sampling requirements

    Off-gas sampling and monitoring activities needed to support operations safety, process control, waste form qualification, and environmental protection requirements of the Hanford Waste Vitrification Plant (HWVP) have been evaluated. The locations of necessary sampling sites have been identified on the basis of plant requirements, and the applicability of Defense Waste Processing Facility (DWPF) reference sampling equipment to these HWVP requirements has been assessed for all sampling sites. Equipment deficiencies, if present, have been described and the bases for modifications and/or alternative approaches have been developed

  2. A study of mineral zeolite as a nitrogen oxides adsorbent for dissolver off-gas treatment

    In the nuclear fuel reprocessing plant, dissolver off-gas (DOG) is supposed to include nitrogen oxides (NOX) during the operation. An adsorption process by mineral zeolite has been studied for DOG treatment that follows a dehydration and iodine removal process. According to the results, the characteristics of the mineral zeolite hydrogenated by 1 N HCl are very favorable for this purpose. As for the actual operation, a small fraction of iodine is supposed to penetrate the I/sub 2/ removal process to the NOX adsorption process. No degradation has been observed for the NOX adsorption of mineral zeolite by the presence of I/sub 2/

  3. Modelling of Boil-Off Gas in LNG Tanks: A Case Study

    Sheikh Zahidul Islam; Ebenezer Adom; Xianda Ji

    2010-01-01

    This paper focuses on the effect of pressure and heat leakages on Boil-off Gas (BOG) in Liquefied Natural Gas (LNG) tanks. The Lee-Kesler-Plocker (LKP) and the Starling modified Benedict-Webb-Rubin (BWRS) empirical models were used to simulate the compressibility factor, enthalpy and hence heat leakage at various pressures to determine the factors that affect the BOG in typical LNG tanks of different capacities. Using a case study data the heat leakage of 140,000kl, 160,00kl, 180,000kl and 20...

  4. Trinity Acceptance Tests Performance Summary.

    Rajan, Mahesh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    Ensuring Real Applications perform well on Trinity is key to success. Four components: ASC applications, Sustained System Performance (SSP), Extra-Large MiniApplications problems, and Micro-benchmarks.

  5. Operator performance in non-destructive testing: A study of operator performance in a performance test

    In the process industries there is a need of inspecting the integrity of critical components without disrupting the process. Such in-service inspections are typically performed with non-destructive testing (NDT). In NDT the task of the operator is to (based on diagnostic information) decide if the component can remain in service or not. The present study looks at the performance in NDT. The aim is to improve performance, in the long run, by exploring the operators' decision strategies and other underlying factors and to this way find out what makes some operators more successful than others. Sixteen operators performed manual ultrasonic inspections of four test pieces with the aim to detect (implanted) cracks. In addition to these performance demonstration tests (PDT), the operators performed independent ability tests and filled out questionnaires. The results show that operators who trust their gut feeling more than the procedure (when the two come to different results) and that at the same time have a positive attitude towards the procedure have a higher PDT performance. These results indicate the need for operators to be motivated and confident when performing NDT. It was also found that the operators who performed better rated more decision criteria higher in the detection phase than the operators who performed worse. For characterizing it was the other way around. Also, the operators who performed better used more time, both detecting and characterizing, than the operators who performed worse

  6. Operator performance in non-destructive testing: A study of operator performance in a performance test

    Enkvist, J.; Edland, A.; Svenson, Ola [Stockholm Univ. (Sweden). Dept. of Psychology

    2000-05-15

    In the process industries there is a need of inspecting the integrity of critical components without disrupting the process. Such in-service inspections are typically performed with non-destructive testing (NDT). In NDT the task of the operator is to (based on diagnostic information) decide if the component can remain in service or not. The present study looks at the performance in NDT. The aim is to improve performance, in the long run, by exploring the operators' decision strategies and other underlying factors and to this way find out what makes some operators more successful than others. Sixteen operators performed manual ultrasonic inspections of four test pieces with the aim to detect (implanted) cracks. In addition to these performance demonstration tests (PDT), the operators performed independent ability tests and filled out questionnaires. The results show that operators who trust their gut feeling more than the procedure (when the two come to different results) and that at the same time have a positive attitude towards the procedure have a higher PDT performance. These results indicate the need for operators to be motivated and confident when performing NDT. It was also found that the operators who performed better rated more decision criteria higher in the detection phase than the operators who performed worse. For characterizing it was the other way around. Also, the operators who performed better used more time, both detecting and characterizing, than the operators who performed worse.

  7. Confidence and Cognitive Test Performance

    Stankov, Lazar; Lee, Jihyun

    2008-01-01

    This article examines the nature of confidence in relation to abilities, personality, and metacognition. Confidence scores were collected during the administration of Reading and Listening sections of the Test of English as a Foreign Language Internet-Based Test (TOEFL iBT) to 824 native speakers of English. Those confidence scores were correlated…

  8. A Formal Approach to Protocol Performance Testing

    XU Mingwei; WU Jianping

    1999-01-01

    This paper proposes a formal approach to protocol performance testing based on the extended concurrent TTCN. To meet the needs of protocol performance testing, concurrent TTCN is extended, and the extended concurrent TTCN's operational semantics is defined in terms of Input-Output Labeled Transition System. An architecture design of protocol performance test system is described, and an example of test cases and its test resultare given.

  9. Canadian development program for off-gas management in nuclear facilities

    The Canadian program for the development and evaluation of processes and technology for the separation and containment of radioactive species in off-gases is directed towards the following specific aspects: 1) assessment of available treatment technology and evaluation of future clean-up requirements; 2) development and engineering evaluation, under realistic conditions, of promising new processes that would be inherently simpler and safer; and 3) specification of off-gas emission control systems for future nuclear facilities based on the most favourable technology. The program is being carried out by Atomic Energy of Canada Limited in collaboration with the electrical utility, Ontario Hydro, and selected Canadian universities. A brief description is presented of methods for removing tritium and carbon-14 from the moderator systems of CANDU power reactors, methods for removing iodine from the off-gases of a molybdenum-99 production facility at the Chalk River Nuclear Laboratories, and procedures for monitoring the off-gas effluent composition in the Thorium Fuel Reprocessing Experiment (TFRE) facility at the Whiteshell Nuclear Research Establishment

  10. Summary of functional and performance test procedures

    Mitzel, Jens; Gülzow, Erich; Friedrich, K. Andreas; Araya, Samuel; Kaer, Soeren

    2015-01-01

    The EU-funded research project Stack-Test has developed different test procedures for the functional and performance characterization of PEMFC stacks. The different test procedures are pointed out in the current form and the example Performance Mapping Test program is introduced.

  11. The performance tests used the water scrubber for ruthenium rejection

    LEDF (Large Equipment Dismantling Facility) will be constructed for the purpose of decontaminating the high level α solid waste generated in oarai engineering center of JNC. And, main processing process of LEDF is incineration and melting system. LEDF will be intended to reduce the secondary waste that occurs along with the operation of the off gas processing equipment of incineration and melting system. It assumed that we are able to eliminate the adsorption tower using silica gel, if the decontamination factor to volatile ruthenium is able to expect in the packed scrubber that is established to remove harmful gas. Thereupon, we carried out this tests that eliminates the adsorption tower and reduces the secondary waste. The decontamination factor (DF) to the volatile ruthenium by the water scrubber is confirmed in the established institution which is in Tokai Works. However, decontamination factor differs and depends on the ruthenium concentration, harmful gas concentration, washing method and also washing condition. Also, the DF value to the volatile ruthenium in the off gas that occurs from incineration and melting system is obtained, does not exist under the same condition as LEDF. Therefore, the decontamination factor to the volatile ruthenium of the packed scrubber under the operating condition of LEDF is confirmed by this test. The main result of this study is as follows. (1) In the examination of the test device specification, the packed scrubber design method was investigated. And, the test device the maintained the resemblance nature with a real machine was produced on the basis of this result. (2) In the result of the ruthenium occurrence condition confirmation test, it was confirmed that the test condition such as the kind of the oxidizer, hold temperature of the oxidization reaction container that produce volatile ruthenium continuously. (3) In the result of the occurrence temperature influence confirmation test, it was confirmed that the ruthenium

  12. NOx Abatement Pilot Plant 90-day test results report

    High-level radioactive liquid wastes produced during nuclear fuel reprocessing at the Idaho Chemical Processing Plant are calcined in the New Waste Calcining Facility (NWCF) to provide both volume reduction and a more stable waste form. Because a large component of the HLW is nitric acid, high levels of oxides of nitrogen (NOx) are produced in the process and discharged to the environment via the calciner off-gas. The NOx abatement program is required by the new Fuel Processing Restoration (FPR) project permit to construct to reduce NOx emissions from the NWCF. Extensive research and development has indicated that the selective catalytic reduction (SCR) process is the most promising technology for treating the NWCF off-gas. Pilot plant tests were performed to determine the compatibility of the SCR process with actual NWCF off-gas. Test results indicate that the SCR process is a viable method for abating the NOx from the NWCF off-gas. Reduction efficiencies over 95% can be obtained, with minimal amounts of ammonia slip, provided favorable operating conditions exist. Two reactors operated with series flow will provide optimum reduction capabilities. Typical operation should be performed with a first reactor stage gas space velocity of 20,000 hr-1 and an inlet temperature of 320 degrees C. The first stage exhaust NOx concentration will then dictate the parameter settings for the second stage. Operation should always strive for a peak reactor temperature of 520 degrees C in both reactors, with minimal NH3 slip from the second reactor. Frequent fluctuations in the NWCF off-gas NOx concentration will require a full-scale reduction facility that is versatile and quick-responding. Sudden changes in NWCF off-gas NOx concentrations will require quick detection and immediate response to avoid reactor bed over-heating and/or excessive ammonia slip

  13. Ecotoxicological testing of performance fluids

    The report deals with a project comprising the testing of drilling fluids concerning ecotoxicology, biological degradation, and toxicity. Two types of drilling fluids were tested for toxic effects on marine algae and biological degradability. A fluid based on mineral oil was readily degradable (98% DOC removal in 28 days) while an ether based oil degraded more slowly (56% DOC removal in 28 days). The toxicity of both fluids was tested after emulsification of the oils in water and separating the oil and water phase after equilibration. The EC50 values obtained with this approach were 8.15 g/l for the oil based fluid and 116 g/l for the ether fluid. 9 figs., 8 tabs

  14. Test Software Functionality, but Test its Performance as Well

    Jovica Đurković; Jelica Trninić; Vuk Vuković

    2011-01-01

    Software product testing has great importance in the detection of errors appearing in the course of software development and reflecting directly on software quality enhancement before its implementation in the working environment. Special priority in the software product testing phase is given to testing software performance. In contrast to functional testing, which should show if software is capable of carrying out planned functions without making errors, performance testing should show if t...

  15. Novel Sorbent Development and Evaluation for the Capture of Krypton and Xenon from Nuclear Fuel Reprocessing Off-Gas Streams

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law

    2013-09-01

    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbent development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.

  16. Novel Sorbent Development and Evaluation for the Capture of Krypton and Xenon from Nuclear Fuel Reprocessing Off-Gas Streams

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law

    2013-10-01

    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbent development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.

  17. Sustainable test cell : performance evaluation

    Silva, Pedro Correia Pereira da; Bragança, L.; Mendonça, Paulo; Almeida, Manuela Guedes de

    2006-01-01

    Energy is one of the main causes of the environmental pollution. In the European Union, buildings are responsible for 40% of the final energy demand and 1/3 of the emissions of greenhouse gases. Therefore, in order to promote the energy consumption reduction, it is fundamental to employ sustainable development principles in the construction sector. In order to demonstrate and show the potentialities of Sustainable building technologies two Test Cells were built. Comparing the solutions obtain...

  18. Performing and evaluating creep tests

    Dvořák, Jiří; Blum, W.; Král, Petr; Eisenlohr, P.; Sklenička, Václav

    Toulouse: Institut Carnot CIRIMAT, 2015. s. 303-304. [CREEP 2015 - International Conference on Creep and Fracture of Engineering Materials and Structures /13./. 31.05.2015-04.06.2015, Toulouse] R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : creep test * inelastic strain rate * crystallite boundaries * coper * dynamic recovery Subject RIV: JG - Metallurgy

  19. Performance Test on Polymer Waste Form - 12137

    Lee, Se Yup [Korea Nuclear Engineering Co., Ltd., C-504 Bundang Techno-Park 145, Yatap-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-760 (Korea, Republic of)

    2012-07-01

    Polymer solidification was attempted to produce stable waste form for the boric acid concentrates and the dewatered spent resins. The polymer mixture was directly injected into the mold or drum which was packed with the boric acid concentrates and the dewatered spent resins, respectively. The waste form was produced by entirely curing the polymer mixture. A series of performance tests was conducted including compressive strength test, water immersion test, leach test, thermal stability test, irradiation stability test and biodegradation stability test for the polymer waste forms. From the results of the performance tests for the polymer waste forms, it is believed that the polymer waste form is very stable and can satisfy the acceptance criteria for permanent disposal. At present, performance tests with full scale polymer waste forms are being carried out in order to obtain qualification certificate by the regulatory institute in Korea. Polymer waste forms were prepared with the surrogate of boric acid concentrates and the surrogate of spent ion exchange resins respectively. Waste forms were also made in lab scale and in full scale. Lab. scale waste forms were directly subjected to a series of the performance tests. In the case of full scale waste form, the test specimens for the performance test were taken from a part of waste form by coring. A series of performance tests was conducted including compressive strength test, thermal stability test, irradiation stability test and biodegradation stability test, water immersion test, leach test, and free standing water for the polymer waste forms. In addition, a fire resistance test was performed on the waste forms by the requirement of the regulatory institute in Korea. Every polymer waste forms containing the boric acid concentrates and the spent ion exchange resins had exhibited excellent structural integrity of more than 27.58 MPa (4,000 psi) of compressive strength. On thermal stability testing, biodegradation

  20. Performance Test on Polymer Waste Form - 12137

    Polymer solidification was attempted to produce stable waste form for the boric acid concentrates and the dewatered spent resins. The polymer mixture was directly injected into the mold or drum which was packed with the boric acid concentrates and the dewatered spent resins, respectively. The waste form was produced by entirely curing the polymer mixture. A series of performance tests was conducted including compressive strength test, water immersion test, leach test, thermal stability test, irradiation stability test and biodegradation stability test for the polymer waste forms. From the results of the performance tests for the polymer waste forms, it is believed that the polymer waste form is very stable and can satisfy the acceptance criteria for permanent disposal. At present, performance tests with full scale polymer waste forms are being carried out in order to obtain qualification certificate by the regulatory institute in Korea. Polymer waste forms were prepared with the surrogate of boric acid concentrates and the surrogate of spent ion exchange resins respectively. Waste forms were also made in lab scale and in full scale. Lab. scale waste forms were directly subjected to a series of the performance tests. In the case of full scale waste form, the test specimens for the performance test were taken from a part of waste form by coring. A series of performance tests was conducted including compressive strength test, thermal stability test, irradiation stability test and biodegradation stability test, water immersion test, leach test, and free standing water for the polymer waste forms. In addition, a fire resistance test was performed on the waste forms by the requirement of the regulatory institute in Korea. Every polymer waste forms containing the boric acid concentrates and the spent ion exchange resins had exhibited excellent structural integrity of more than 27.58 MPa (4,000 psi) of compressive strength. On thermal stability testing, biodegradation

  1. Research of laser stealth performance test technology

    Chen, Zhen-xing; Shi, Sheng-bing; Han, Fu-li; Wu, Yan-lin; Song, Chun-yan

    2014-09-01

    Laser stealth is an important way of photoelectric stealth weapons systems. According to operational principle of laser range finder, we actively explore and study the stealth performance approval testing technology of laser stealth materials, and bring forward and establish the stealth performance field test methods of stealth efficiency evaluation. Through contrastive test of two kinds of materials, the method is correct and effective.

  2. Performance test on shielding concrete

    The cylinder of the shielding concrete is made from common Portland cement and home-made coarse or fine aggregates. Orthogonal design experiment and regression analysis are adopted to study the effects of the water content, sand percentage and water-cement ratio on the property of shielding concrete and the difference between them. The test shows that the tensile strength is in inverse proportion with water-cement ratio, and the influence is quite significant. Another factor is the type of aggregates. The effect of the age on its density is not obvious. Similarly, the concrete shielding γ rays shares the same influencing factors with that shielding neutron rays on density, slump and tensile strength. And both have the same change rules regarding to mechanical property. (authors)

  3. Decomposition of volatile organic compounds and polycyclic aromatic hydrocarbons in industrial off-gas by electron beams: A review

    The electron beam induced decomposition of volatile organic compounds (e.g. aromatic compounds, esters, chlorinated hydrocarbons) and polycyclic aromatic hydrocarbons (e.g. chlorinated dibenzo-dioxins) in industrial off gas has been investigated by several research groups in Germany and Japan. The method was shown to be effective for cleaning the waste gas of a paint factory, the waste air discharged from an automobile tunnel, the off gas cleaning from a groundwater remediation plant and the flue gas of a waste incinerator. The electron beam process achieves high removal efficiencies for volatile organic compounds. Reaction models have been developed, which suggest that the organic compounds are oxidized by hydroxyl radicals. The electron beam process may treat very large off-gas volumes at ambient temperatures and has a low energy consumption. The production of secondary wastes can be avoided or minimized. Compared to conventional methods the investment and operation costs of the process seem to be attractive for selected applications

  4. Iodine Pathways and Off-Gas Stream Characteristics for Aqueous Reprocessing Plants – A Literature Survey and Assessment

    R. T. Jubin; D. M. Strachan; N. R. Soelberg

    2013-09-01

    Used nuclear fuel is currently being reprocessed in only a few countries, notably France, England, Japan, and Russia. The need to control emissions of the gaseous radionuclides to the air during nuclear fuel reprocessing has already been reported for the entire plant. But since the gaseous radionuclides can partition to various different reprocessing off-gas streams, for example, from the head end, dissolver, vessel, cell, and melter, an understanding of each of these streams is critical. These off-gas streams have different flow rates and compositions and could have different gaseous radionuclide control requirements, depending on how the gaseous radionuclides partition. This report reviews the available literature to summarize specific engineering data on the flow rates, forms of the volatile radionuclides in off-gas streams, distributions of these radionuclides in these streams, and temperatures of these streams. This document contains an extensive bibliography of the information contained in the open literature.

  5. Data quality objectives summary report for the 105-N monolith off-gas issue

    The 105-N Basin hardware waste with radiation exposure rates high enough to make above-water handling and packaging impractical has been designated high exposure rate hardware (HERH) waste. This material, consisting primarily of irradiated reactor components, is packaged underwater for subsequent disposal as a grout-encapsulated solid monolith. The third HERH waste package that was created (Monolith No. 3) was not immediately removed from the basin because of administrative delays. During a routine facility walkdown, Monolith No. 3 was observed to be emitting bubbles. Mass spectroscopic analysis of a gas sample from Monolith No. 3 indicated that the gas was 85.2% hydrogen along with a trace of fission gases (stable isotopes of xenon). Gamma energy analysis of a gas sample from Monolith No. 3 also identified trace quantities of 85Kr. The monolith off-gas Data Quality Objective (DQO) process concluded the following: Monolith No. 3 and similar monoliths can be safely transported following installation of spacers between the lids of the L3-181 transport cask to vent the hydrogen gas; The 85Kr does not challenge personnel or environmental safety; Fumaroles in the surface of gassing monoliths renders them incompatible with Hanford Site Solid Waste Acceptance Criteria requirements unless placed in a qualified high integrity container overpack; and Gassing monoliths do meet Environmental Restoration Disposal Facility Waste Acceptance Criteria requirements. This DQO Summary Report is both an account of the Monolith Off-Gas DQO Process and a means of documenting the concurrence of each of the stakeholder organizations

  6. Performance of a large-scale melter off-gas system utilizing simulated SRP DWPF waste

    The Department of Energy and the DuPont Company have begun construction of a Defense Waste Processing Facility to immobilize radioactive waste now stored as liquids at the Department of Energy's Savannah River Plant. The immobilization process solidifies waste sludge by vitrification into a leach-resistant borosilicate glass. Development of the process has been the responsibility of the Savannah River Laboratory. As part of the development, two large-scale glass melter systems have been designed and operated with simulated waste. Experimental data from these operations show that process requirements will be met. 6 references, 8 figures, 4 tables

  7. A model for utilizing industrial off-gas to support microalgae cultivation for biodiesel in cold climates

    Highlights: • Development of a model to assess process-coupled algae production in cold climates. • Algae growth temperatures in open tanks can be maintained with industrial off-gas. • Indirect and direct heat application from industrial off-gasses are assessed. • CO2-rich off-gas can be bubbled into algae tanks to provide a carbon source. • A nickel smelter’s off-gas is used to demonstrate how waste heat can be repurposed. - Abstract: Lipids produced by microalgae are a promising biofuel feedstock. However, as most commercial mass production of microalgae is in open raceway ponds it is generally considered only a practical option in regions where year-round ambient temperatures remain above 15 °C. To address this issue it has been proposed to couple microalgae production with industries that produce large amounts of waste heat and carbon dioxide (CO2). The CO2 would provide a carbon source for the microalgae and the waste heat would allow year-round cultivation to be extended to regions that experience seasonal ambient temperatures well below 15 °C. To demonstrate this concept, a dynamic model has been constructed that predicts the impact on algal pond temperature from both bubbled-in off-gas and heat indirectly recovered from off-gas. Simulations were carried out for a variety of global locations using the quantity off-gas and waste energy from a smelter’s operations to determine the volume of microalgae that could be maintained above 15 °C. The results demonstrate the feasibility of year-round microalgae production in climates with relatively cold winter seasons

  8. Integrated Performance Testing Workshop, Modules 6 - 11

    Leach, Janice; Torres, Teresa M.

    2012-10-01

    These modules cover performance testing of: Interior Detection Systems; Access Controls; Exterior Detection Systems; Video Assessment Systems; SNM / Contraband Detection Systems; Access Delay Elements

  9. The effect of pranayama on test anxiety and test performance

    Azadeh Nemati

    2013-01-01

    Objectives: In an educational setting, anxiety is often experienced by students when taking a test; which is called ‘test anxiety’. This study intends to investigate the effect of doing pranayama on test anxiety and test performance. Materials and Methods: The participants consisted of 107 MA students who were randomly assigned to the control and experimental groups. The students of the experimental group practiced pranayama for one full semester. Sarason's (1980) test anxiety scale was given...

  10. 40 CFR 63.1161 - Performance testing and test methods.

    2010-07-01

    ... concentration standard for that plant. (d) Test methods. (1) The following test methods in appendix A of 40 CFR... 6 ppmv when operated within its design parameters. The alternative concentration standard shall be established through performance testing while the plant is operated at maximum design temperature and with...

  11. Hanford Waste Vitrification program pilot-scale ceramic melter Test 23

    Goles, R.W.; Nakaoka, R.K.

    1990-02-01

    The pilot-scale ceramic melter test, was conducted to determine the vitrification processing characteristics of simulated Hanford Waste Vitrification Plant process slurries and the integrated performance of the melter off-gas treatment system. Simulated melter feed was prepared and processed to produce glass. The vitrification system, achieved an on-stream efficiency of greater than 98%. The melter off-gas treatment system included a film cooler, submerged bed scrubber, demister, high-efficiency mist eliminator, preheater, and high-efficiency particulate air filter (HEPA). Evaluation of the off-gas system included the generation, nature, and capture efficiency of gross particulate, semivolatile, and noncondensible melter products. 17 refs., 48 figs., 61 tabs.

  12. Performance Test on Polymer Waste Form

    Boric acid wastewater and spent ion exchange resins are generated as a low- and medium- level radioactive wastes from pressurized light water reactors. In Korea, boric acid wastewater is concentrated and dried in the form of granules, and finally solidified by using paraffin wax. In this study, polymer solidification was attempted to produce the stable waste form for the boric acid concentrates and the dewatered spent ion exchange resins. The polymer mixture which consists of epoxy resin, amine compounds and antimony trioxide was used to solidify the boric acid concentrates and the dewatered spent ion exchange resins. To evaluate the stability of polymer waste forms, a series of standardized performance tests was conducted. Also, by the requirement of the regulatory institute in Korea, an additional test was performed to estimate fire resistance and gas generation of the waste forms. A series of performance tests was conducted including compressive strength test, thermal stability test, irradiation stability test and biodegradation stability test, water immersion test, leach test, and free standing water for the polymer waste forms. In addition, a fire resistance test and an analysis of gas generation were performed on the waste forms by the requirement of the regulatory institute in Korea. From the results of the performance tests, it is believed that the polymer waste form is very stable and can satisfy the acceptance criteria for permanent disposal

  13. Performance Test on Polymer Waste Form

    Lee, Se Yup [Korea Nuclear Engineering Co., Ltd, Seongnam (Korea, Republic of)

    2012-07-01

    Boric acid wastewater and spent ion exchange resins are generated as a low- and medium- level radioactive wastes from pressurized light water reactors. In Korea, boric acid wastewater is concentrated and dried in the form of granules, and finally solidified by using paraffin wax. In this study, polymer solidification was attempted to produce the stable waste form for the boric acid concentrates and the dewatered spent ion exchange resins. The polymer mixture which consists of epoxy resin, amine compounds and antimony trioxide was used to solidify the boric acid concentrates and the dewatered spent ion exchange resins. To evaluate the stability of polymer waste forms, a series of standardized performance tests was conducted. Also, by the requirement of the regulatory institute in Korea, an additional test was performed to estimate fire resistance and gas generation of the waste forms. A series of performance tests was conducted including compressive strength test, thermal stability test, irradiation stability test and biodegradation stability test, water immersion test, leach test, and free standing water for the polymer waste forms. In addition, a fire resistance test and an analysis of gas generation were performed on the waste forms by the requirement of the regulatory institute in Korea. From the results of the performance tests, it is believed that the polymer waste form is very stable and can satisfy the acceptance criteria for permanent disposal.

  14. Performance Testing of Download Services of COSMC

    Jiří Horák

    2013-11-01

    Full Text Available The paper presents results of performance tests of download services of Czech Office of Surveying, Mapping and Cadastre according to INSPIRE  requirements. Methodology of testing is explained, including monitoring performance  of reference servers. 26 millions of random requests were generated for each monitored operation, layer and coordinate system. The temporal development of performance indicators are analyzed and discussed. Results of performance tests approve the compliance with INSPIRE qualitative requirements for download services. All monitored services satisfy requirements of latency, capacity and availability. The latency and availability requirements are fulfilled with an abundant reserve. No problems in structure and content of responses were detected.

  15. Summary of performance test for filtered vent

    TOSHIBA has been carried tests to evaluate performance of the filtered vent system. In order to apply several parameters and functions, test facility is useful and has much flexibility. The filtered vent system has 2 functions, one is scrubbing in water and the other is metal filter. Test results show a good performance. We will introduce a outline of the filtered vent system examination. (author)

  16. Off-gas characteristics of defense waste vitrification using liquid-fed Joule-heated ceramic melters

    Off-gas and effluent characterization studies have been established as part of a PNL Liquid-Fed Ceramic Melter development program supporting the Savannah River Laboratory Defense Waste Processing Facility (SRL-DWPF). The objectives of these studies were to characterize the gaseous and airborne emission properties of liquid-fed joule-heated melters as a function of melter operational parameters and feed composition. All areas of off-gas interest and concern including effluent characterization, emission control, flow rate behavior and corrosion effects have been studied using alkaline and formic-acid based feed compositions. In addition, the behavioral patterns of gaseous emissions, the characteristics of melter-generated aerosols and the nature and magnitude of melter effluent losses have been established under a variety of feeding conditions with and without the use of auxiliary plenum heaters. The results of these studies have shown that particulate emissions are responsible for most radiologically important melter effluent losses. Melter-generated gases have been found to be potentially flammable as well as corrosive. Hydrogen and carbon monoxide present the greatest flammability hazard of the combustibles produced. Melter emissions of acidic volatile compounds of sulfur and the halogens have been responsible for extensive corrosion observed in melter plenums and in associated off-gas lines and processing equipment. The use of auxiliary plenum heating has had little effect upon melter off-gas characteristics other than reducing the concentrations of combustibles

  17. Vitrification Facility integrated system performance testing report

    This report provides a summary of component and system performance testing associated with the Vitrification Facility (VF) following construction turnover. The VF at the West Valley Demonstration Project (WVDP) was designed to convert stored radioactive waste into a stable glass form for eventual disposal in a federal repository. Following an initial Functional and Checkout Testing of Systems (FACTS) Program and subsequent conversion of test stand equipment into the final VF, a testing program was executed to demonstrate successful performance of the components, subsystems, and systems that make up the vitrification process. Systems were started up and brought on line as construction was completed, until integrated system operation could be demonstrated to produce borosilicate glass using nonradioactive waste simulant. Integrated system testing and operation culminated with a successful Operational Readiness Review (ORR) and Department of Energy (DOE) approval to initiate vitrification of high-level waste (HLW) on June 19, 1996. Performance and integrated operational test runs conducted during the test program provided a means for critical examination, observation, and evaluation of the vitrification system. Test data taken for each Test Instruction Procedure (TIP) was used to evaluate component performance against system design and acceptance criteria, while test observations were used to correct, modify, or improve system operation. This process was critical in establishing operating conditions for the entire vitrification process

  18. Canadian national internal dosimetry performance testing programme

    This paper describes the design and construction of new Performance Testing programme that was implemented in Canada in 2008. The Canadian Regulator (Canadian Nuclear Safety Commission - CNSC) had determined that their licensees, in addition to the existing In Vivo and In Vitro performance tests, needed to demonstrate their ability in interpreting bioassay results. The program is administered by the Canadian National Calibration Reference Centre for Bioassay and In Vivo Monitoring (NCRC). Currently the NCRC carries out the performance testing for the In Vitro and In Vivo. At time of writing, the first round has not been completed and the pass/fail criteria have not been determined. (author)

  19. SI PC104 Performance Test Report

    Montelongo, S

    2005-12-16

    The Spectral Instruments (SI) PC104 systems associated with the SI-1000 CCD camera exhibited intermittent power problems during setup, test and operations which called for further evaluation and testing. The SI PC104 System is the interface between the SI-1000 CCD camera and its associated Diagnostic Controller (DC). As such, the SI PC104 must be a reliable, robust system capable of providing consistent performance in various configurations and operating conditions. This SI PC104 system consists of a stackable set of modules designed to meet the PC104+ Industry Standard. The SI PC104 System consists of a CPU module, SI Camera card, Media converter card, Video card and a I/O module. The root cause of power problems was identified as failing solder joints at the LEMO power connector attached to the SI Camera Card. The recommended solution was to provide power to the PC104 system via a PC104+ power supply module configured into the PC104 stack instead of thru the LEMO power connector. Test plans (2) were developed to test SI PC104 performance and identify any outstanding issues noted during extended operations. Test Plan 1 included performance and image acquisition tests. Test Plan 2 verified performance after implementing recommendations. Test Plan 2 also included verifying integrity of system files and driver installation after bootup. Each test plan was implemented to fully test against each set of problems noted. Test Plan presentations and Test Plan results are attached as appendices. Anticipated test results will show successful operation and reliable performance of the SI PC104 system receiving its power via a PC104 power supply module. A SI PC104 Usage Recommendation Memo will be sent out to the SI PC104 User Community. Recommendation memo(s) are attached as appendices.

  20. FFTF absorber-pin performance verification test

    The FFTF (Fast Flux Test Facility) Absorber Pin Performance Verification Test - (HA006) is an irradiation test of neutron absorber pins with integral temperature and pressure monitoring instrumentation. The pins, containing boron carbide, are representative of the FFTF Row 3 Safety, Row 5 Control and Row 7 Fixed Shim Absorber Assemblies. In the 300 full power days (FPD) this test will reside in its 2610 Position in the reactor, it will generate test data that will be used to infer the effects of irradiation on the absorber assemblies it simulates. Design and fabrication of the test vehicle began in 1976 and the forty-foot test assembly was loaded in the FFTF on February 10, 1981. The test provided data in March 1981 during a series of natural circulation tests, and again in November 1981 during the eight-day full power run establishing base-line data

  1. Multi-level computational chemistry study on hydrogen recombination catalyst of off-gas treatment system

    In order to reveal the deactivation mechanism of the hydrogen recombination catalyst of off-gas treatment system, we investigate by using multi-level computational chemistry simulation methods. The recombiner apparatus is modeled by the numerical mesh system in the axial coordinates, and unsteady, advection and reaction rate equations are solved by using a finite difference method. The chemical reactions are formulated to represent adsorption-desorption of hydrogen and oxygen on Pt catalyst, and time developments of the coverage factors of Pt are solved numerically. The computational simulations successfully reproduce the very similar behaviors observed by experiments, such as increasing of the inversion rates of H2 to H2O, the temperatures distributions along the flow direction, dependencies of experimental condition, and so on. Thus Pt poisoning is considered to cause the deactivation of the hydrogen recombination catalyst. To clarify the poisoning mechanism, the molecular level simulation is applied to the system of Pt on boehmite attacked by a cyclic siloxane which has been detected by experiments and considered as one of poisoning spices. The simulation shows ring-opening reaction of the cyclic siloxane on Pt, then attachment of two ends of the chain-like siloxane to Pt and boehmite, respectively, and that finally the recombination reaction is prevented. This may be the first study to find out the detailed dynamical mechanism of hydrogen recombination catalyst poisoning with cyclic siloxane. (author)

  2. Silica-based waste form for immobilization of iodine from reprocessing plant off-gas streams

    Matyáš, Josef; Canfield, Nathan; Sulaiman, Sannoh; Zumhoff, Mac

    2016-08-01

    A high selectivity and sorption capacity for iodine and a feasible consolidation to a durable SiO2-based waste form makes silver-functionalized silica aerogel (Ag0-aerogel) an attractive choice for the removal and sequestration of iodine compounds from the off-gas of a nuclear fuel reprocessing plant. Hot uniaxial pressing of iodine-loaded Ag0-aerogel (20.2 mass% iodine) at 1200 °C for 30 min under 29 MPa pressure provided a partially sintered product with residual open porosity of 16.9% that retained ∼93% of sorbed iodine. Highly iodine-loaded Ag0-aerogel was successfully consolidated by hot isostatic pressing at 1200 °C with a 30-min hold and under 207 MPa. The fully densified waste form had a bulk density of 3.3 × 103 kg/m3 and contained ∼39 mass% iodine. The iodine was retained in the form of nano- and micro-particles of AgI that were uniformly distributed inside and along boundaries of fused silica grains.

  3. The integrated melter off-gas treatment systems at the West Valley Demonstration Project

    The West Valley Demonstration Project was established by Public Law 96-368, the open-quotes West Valley Demonstration Project Act, close quotes on October 1, l980. Under this act, Congress directed the Department of Energy to carry out a high level radioactive waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The purpose of this project is to demonstrate solidification techniques which can be used for preparing high level radioactive waste for disposal. In addition to developing this technology, the West Valley Demonstration Project Act directs the Department of Energy to: (1) develop containers suitable for permanent disposal of the high level waste; (2) transport the solidified high level waste to a Federal repository; (3) dispose of low level and transuranic waste produced under the project; and (4) decontaminate and decommission the facilities and materials associated with project activities and the storage tanks originally used to store the liquid high level radioactive waste. The process of vitrification will be used to solidify the high level radioactive liquid wastes into borosilicate glass. This report describes the functions, the controlling design criteria, and the resulting design of the melter off-gas treatment systems which are used in the vitrification process

  4. Excess-air incineration with high temperature filtering for efficient off-gas cleaning

    When SGN started work on volume reduction of low-level and intermediate-level radioactive wastes in the early 1960s, in collaboration with the French Atomic Energy Commission (CEA), incineration was relatively undeveloped but its potential efficiency was immediately recognized. The incinerators then available divided more or less into proven designs used in municipal refuse incineration and so-called advanced systems: SGN's initial impression was that systems for municipal refuse incineration could be readily adapted to handle combustible nuclear wastes. These systems mainly employed excess-air fixed-bed combustion, rotary furnaces or fluidized-bed combustion, sometimes with partial or total pyrolysis. The ''advanced'' systems proposed by various inventors were far more sophisticated but, due to a lack of industrial experience, were often designed with inadequate regard to human safety. The result was a number of serious accidents, including some deaths. Nuclear-grade incineration was a rather esoteric subject at the time. Standard incinerators were not designed to handle radioactive wastes. They lacked essential safety features (e.g. leaktightness) and did not provide for repair and maintenance after contamination nor for affordable dismantling at end of life. Off-gas cleaning had neither the efficiency nor safety required in the nuclear industry. Extensive automation of control and monitoring was not envisaged, because unnecessary in traditional applications

  5. Membrane processes in off-gas purification; Membranverfahren in der Abluftreinigung

    Ohlrogge, K.; Wind, J. [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    2002-07-01

    Membrane processes for separation of organic vapours have gained wider acceptance during the past decade. In fuelling stations, they have achieved a market share of 60 %. In the chemical, petrochemical and pharmaceutical industries, membrane processes are used for separating solvents in off-gas and process gas purification. They are also used successfully as process-integrated systems in polymer production. Examples are vinyl chloride recovery in PVC production and propylene, ethylene and hexane recovery in polypropylene and polyethylene production. [German] Membranverfahren zur Abtrennung organischer Daempfe haben in den letzten 10 Jahren zunehmend an Bedeutung gewonnen. Bei den Tanklaegern fuer Otto-Kraftstoffe, die mit Benzindampf-Rueckgewinnungsanlagen ausgeruestet sind, betraegt der Marktanteil der Membrantechnik ca. 60%. Eine weitere Anwendung findet die Membrantechnik in der Emissionsreduzierung auf Tankstellen bei der Fahrzeugbetankung. In Produktionsstaetten der Chemie, Petrochemie und Pharmazie werden Membranverfahren zur Abtrennung von Loesungsmitteln sowohl in der Abgasreinigung als auch in der Prozessgasreinigung eingesetzt. Als prozessintegrierte Systeme werden Membranverfahren bei der Polymerherstellung erfolgreich eingesetzt. Beispiele sind die Vinylchlorid-Rueckgewinnung in der PVC-Produktion und die Propylen-, Ethylen- und Hexan-Rueckgewinnung bei der Polypropylen- und Polyethylenherstellung. (orig.)

  6. Integrated Performance Testing for Nonproliferation Support Project

    Johns, Russell; Bultz, Garl Alan; Byers, Kenneth R.; Yaegle, William

    2013-08-20

    The objective of this workshop is to provide participants with training in testing techniques and methodologies for assessment of the performance of: Physical Protection system elements; Material Control and Accounting (MC&A) system elements.

  7. The environment and ASME performance test codes

    Today, federal, state and local governmental agencies have enacted comprehensive legislation on power generation emission limits which affects all aspects of the energy sector. This paper reviews the indirect impact of Performance Test Codes on environmental testing, reviewing past, current, and future practices. Existing codes and three new codes currently under development will be cited along with possible future code development

  8. The environment and ASME performance test codes

    Bannister, R.L. [Westinghouse Electric Corp., Orlando, FL (United States); Macak, J.J. III [Mostardi-Platt Associates, Inc., Elmhurst, IL (United States); Newby, R.A. [Westinghouse Science and Technology Center, Pittsburgh, PA (United States)

    1995-12-31

    Today, federal, state and local governmental agencies have enacted comprehensive legislation on power generation emission limits which affects all aspects of the energy sector. This paper reviews the indirect impact of Performance Test Codes on environmental testing, reviewing past, current, and future practices. Existing codes and three new codes currently under development will be cited along with possible future code development.

  9. Verification and performance tests of HYCAR program

    Bhatia, Veena

    1985-01-01

    The HYCAR program simulates the network protocols of HYPERchannel and Fiber Optic Demonstration System (FODS) and other related protocols. Verification tests of the program were conducted using the FODS protocol. The tests validated the operation of the program through deterministic and analytical means. Extensive experimentation with the simulator produced a set of performance characteristics for the FODS protocol under varied loading conditions. These characteristics are consistent with those expected, and are documented with the validation tests.

  10. RHIC sextant test: Accelerator systems and performance

    One sextant of the RHIC Collider was commissioned in early 1997 with beam. We describe here the performance of the accelerator systems, instrumentation subsystems and application software. We also describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems performance and their impact on the planning for RHIC installation and commissioning

  11. Design and performance test of spacecraft test and operation software

    Wang, Guohua; Cui, Yan; Wang, Shuo; Meng, Xiaofeng

    2011-06-01

    Main test processor (MTP) software is the key element of Electrical Ground Support Equipment (EGSE) for spacecraft test and operation used in the Chinese Academy of Space Technology (CAST) for years without innovation. With the increasing demand for a more efficient and agile MTP software, the new MTP software was developed. It adopts layered and plug-in based software architecture, whose core runtime server provides message queue management, share memory management and process management services and forms the framework for a configurable and open architecture system. To investigate the MTP software's performance, the test case of network response time, test sequence management capability and data-processing capability was introduced in detail. Test results show that the MTP software is common and has higher performance than the legacy one.

  12. Literature Review: Assessment of DWPF Melter and Melter Off-gas System Lifetime

    Reigel, M. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-07-30

    Testing to date for the MOC for the Hanford Waste Treatment and Immobilization Plant (WTP) melters is being reviewed with the lessons learned from DWPF in mind and with consideration to the changes in the flowsheet/feed compositions that have occurred since the original testing was performed. This information will be presented in a separate technical report that identifies any potential gaps for WTP processing.

  13. Bias and spread in EVT performance tests.

    Smith, J. G.

    1971-01-01

    Performance tests (error probability measurements) of communications systems characterized by low bit rates and high reliability requirements frequently utilize classical extreme value theory (EVT) to avoid the excessive test times encountered with bit error rate (BER) tests. If the underlying noise is Gaussian or perturbed Gaussian, the EVT error estimates have either excessive bias or excessive variance if an insufficient number of test samples is used. EVT is examined to explain the cause of this bias and spread. Experimental verification is made by testing a known Gaussian source, and procedures that minimize these effects are described. It seems apparent that even under the best of conditions the EVT test results are not particularly better than those of BER tests.

  14. Advanced online monitoring of cell culture off-gas using proton transfer reaction mass spectrometry.

    Schmidberger, Timo; Gutmann, Rene; Bayer, Karl; Kronthaler, Jennifer; Huber, Robert

    2014-01-01

    Mass spectrometry has been frequently applied to monitor the O₂ and CO₂ content in the off-gas of animal cell culture fermentations. In contrast to classical mass spectrometry the proton transfer reaction mass spectrometry (PTR-MS) provides additional information of volatile organic compounds by application of a soft ionization technology. Hence, the spectra show less fragments and can more accurately assigned to particular compounds. In order to discriminate between compounds of non-metabolic and metabolic origin cell free experiments and fed-batch cultivations with a recombinant CHO cell line were conducted. As a result, in total eight volatiles showing high relevance to individual cultivation or cultivation conditions could be identified. Among the detected compounds methanethiol, with a mass-to-charge ratio of 49, qualifies as a key candidate in process monitoring due to its strong connectivity to lactate formation. Moreover, the versatile and complex data sets acquired by PTR MS provide a valuable resource for statistical modeling to predict non direct measurable parameters. Hence, partial least square regression was applied to the complete spectra of volatiles measured and important cell culture parameters such as viable cell density estimated (R²  = 0.86). As a whole, the results of this study clearly show that PTR-MS provides a powerful tool to improve bioprocess-monitoring for mammalian cell culture. Thus, specific volatiles emitted by cells and measured online by the PTR-MS and complex variables gained through statistical modeling will contribute to a deeper process understanding in the future and open promising perspectives to bioprocess control. PMID:24376199

  15. Modelling of Boil-Off Gas in LNG Tanks: A Case Study

    Sheikh Zahidul Islam

    2010-08-01

    Full Text Available This paper focuses on the effect of pressure and heat leakages on Boil-off Gas (BOG in Liquefied Natural Gas (LNG tanks. The Lee-Kesler-Plocker (LKP and the Starling modified Benedict-Webb-Rubin (BWRS empirical models were used to simulate the compressibility factor, enthalpy and hence heat leakage at various pressures to determine the factors that affect the BOG in typical LNG tanks of different capacities. Using a case study data the heat leakage of 140,000kl, 160,00kl, 180,000kl and 200,000kl LNG tanks were analyzed using the LKP and BWRS models. The heat leakage of LNG tanks depends on the structure of tanks, and the small tanks lose heatto the environment due to their large surface area to volume ratio. As the operation pressure was dropped to 200mbar, all four of the LNG tanks’ BOG levels reached 0.05vol%/day. In order to satisfy the BOG design requirement, the operating pressure of the four large LNG tanks in the case study was maintained above 200mbar. Thus, the operating pressure impacts BOG on LNG tanks, but this effect is limited under the extreme high operation pressure. An attempt was made to determine the relationship between the compositions of LNGand BOG; one been combustible and the other non-combustible gases. The main component of combustible gas was methane, and nitrogen was of non-combustible gases. The relationship between BOG and methane compositions was that, as the methane fraction increases in the LNG, the BOG volume also increases. In general, results showed a direct correlation between BOG and operating pressure. The study also found that larger LNG tanks have less BOG; however as the operation pressure is increased the differences in the quantity of BOGamong the four tanks decreased.

  16. Systematic selection of off-gas treatment at the Savannah River Site

    At the Savannah River Site (SRS), from 1958--1985, effluent waste from the reactor fuel and target rod fabrication area (M-Area) was discharged to a settling basin. In 1981, monitoring wells detected groundwater contamination, specifically trichloroethylene and tetrachloroethylene, in the immediate vicinity of the basin. Under the auspices of Resource Conservation and Recovery Act (RCRA) the M-Area contamination must be addressed by a corrective action program until the volatile organic compound (VOC) concentrations reach Drinking Water Standards. This was initiated in 1985 with startup of a full-scale pump-and-treat air stripper system. Recently, remediation efforts have focused on vacuum extraction to treat vadose zone contamination not addressed by the original recovery wells, and additional pump-and-treat systems to achieve hydraulic control of the plume. Regulatory requirements allowed for discharge of VOCs to the atmosphere when the original remediation system was installed; however, 1990 amendments to the Clean Air Act will eventually require treatment of VOC contaminated air prior to discharge. This has ramifications to systems currently being design, as well as the existing systems. In response to the 1990 Clean Air Act amendments, SRS initiated a study to assess commercially available off-gas treatment technologies. These included carbon adsorption, thermal incineration, catalytic oxidation, absorption, condensation, and UV/peroxide destruction, and xenon flashlamp. Criteria used to evaluate the technologies were the thirty (30) year life cycle cost, permitting considerations, and manpower requirements. The study concluded that catalytic oxidation provided the most desirable combination of these elements

  17. Virtual Shaker Testing: Simulation Technology Improves Vibration Test Performance

    Ricci, Stefano; Peeters, Bart; Fetter, Rebecca; Boland, Doug; Debille, Jan

    2008-01-01

    In the field of vibration testing, the interaction between the structure being tested and the instrumentation hardware used to perform the test is a critical issue. This is particularly true when testing massive structures (e.g. satellites), because due to physical design and manufacturing limits, the dynamics of the testing facility often couples with the test specimen one in the frequency range of interest. A further issue in this field is the standard use of a closed loop real-time vibration control scheme, which could potentially shift poles and change damping of the aforementioned coupled system. Virtual shaker testing is a novel approach to deal with these issues. It means performing a simulation which closely represents the real vibration test on the specific facility by taking into account all parameters which might impact the dynamic behavior of the specimen. In this paper, such a virtual shaker testing approach is developed. It consists of the following components: (1) Either a physical-based or an equation-based coupled electro-mechanical lumped parameter shaker model is created. The model parameters are obtained from manufacturer's specifications or by carrying out some dedicated experiments; (2) Existing real-time vibration control algorithm are ported to the virtual simulation environment; and (3) A structural model of the test object is created and after defining proper interface conditions structural modes are computed by means of the well-established Craig-Bampton CMS technique. At this stage, a virtual shaker test has been run, by coupling the three described models (shaker, control loop, structure) in a co-simulation routine. Numerical results have eventually been correlated with experimental ones in order to assess the robustness of the proposed methodology.

  18. Krypton absorption in liquid CO2 (KALC): Campaign III in the Experimental Engineering Section Off-Gas Decontamination Facility

    Results are presented for the third major campaign for quantifying krypton removal from simulated High-Temperature Gas-Cooled Reactor reprocessing off-gas by the KALC process. The Experimental Engineering Section Off-Gas Decontamination Facility used in the campaign provides engineering-scale experiments with nominal gas and liquid flows of 5 scfm and 0.5 gpm, respectively. Mass transfer experiments for the CO2--O2--Kr system are described for the absorption, fractionation, and stripping operations of the KALC process. A detailed discussion of the data analysis is included. The analysis indicates nominal HTU values for the absorber, fractionator, and stripper on the order of 0.4, 0.5, and 0.7 ft, respectively. Flooding data for the packed columns are combined with previous data and are shown to be well represented by an empirical flooding equation

  19. A laser-based sensor for measurement of off-gas composition and temperature in basic oxygen steelmaking

    We are developing an optical sensor for process control in basic oxygen steelmaking. The sensor measures gas temperature and relative CO/CO2 concentration ratios in the furnace off-gas by transmitting the laser probe beam directly above the furnace lip and below the exhaust hood during oxygen blowing. Dynamic off-gas information is being evaluated for optimizing variables such as lance height, oxygen flow, post-combustion control, and prediction of final melt-carbon content. The non-invasive nature of the optical sensor renders it robust and relatively maintenance-free. Additional potential applications of the method are process control for electric arc furnace and bottom-blown oxygen steelmaking processes. (author)

  20. Formation of the ZnFe2O4 phase in an electric arc furnace off-gas treatment system

    Highlights: • EAF dust was characterized with particle size analysis, XRF, and EPMA. • Slag particles showed no sign of reaction with Zn vapor. • Fe2O3 particles showed different degrees of reaction based on their size. • The thermodynamic stability of Zn vapor in EAF off-gas ducts was reevaluated. • In presence of Fe2O3, Zn vapor reacts to form ZnFe2O4 and ZnO. - Abstract: To better understand the phenomena of ZnFe2O4 spinel formation in electric arc furnace dust, the dust was characterized with particle size analysis, X-ray fluorescence (XRF), electron backscatter diffraction (EBSD), and electron probe micro-analysis (EPMA). Different ZnFe2O4 formation reaction extents were observed for iron oxide particles with different particle sizes. ZnO particles were present as both individual particles and aggregated on the surface of larger particles. Also, the slag particles found in the off-gas were shown not to react with the zinc vapor. After confirming the presence of a ZnFe2O4 formation reaction, the thermodynamic feasibility of in-process separation – a new electric arc furnace dust treatment technology – was reevaluated. The large air intake and the presence of iron oxide particles in the off-gas were included into the thermodynamic calculations. The formation of the stable ZnFe2O4 spinel phase was shown to be thermodynamically favorable in current electric arc furnace off-gas ducts conditions even before reaching the post combustion chamber

  1. Test score disclosure and school performance

    Camargo, Bráz Ministério de; Firpo, Sergio Pinheiro; Ponczek, Vladimir Pinheiro

    2012-01-01

    In this paper we test whether the disclosure of test scores has direct impacts on student performance, school composition and school inputs. We take advantage of the discontinuity on the disclosure rules of The National Secondary Education Examination (ENEM) run in Brazil by the Ministry of Education: In 2006 it was established that the 2005 mean score results would be disclosed for schools with ten or more students who took the exam in the previous year. We use a regression discontinuity des...

  2. Testing prospect theory in students’ performance

    Pérez Galdón, Patricia; Nicolau, Juan Luis

    2013-01-01

    This paper tests the existence of ‘reference dependence’ and ‘loss aversion’ in students’ academic performance. Accordingly, achieving a worse than expected academic performance would have a much stronger effect on students’ (dis)satisfaction than obtaining a better than expected grade. Although loss aversion is a well-established finding, some authors have demonstrated that it can be moderated – diminished, to be precise–. Within this line of research, we also examine whether the students’ e...

  3. Core support performance test in the component flow test loop

    A description is given of the Core Flow Test Loop at Oak Ridge National Laboratory. This is a closed-circuit, out-of-pile loop circulating helium at temperatures and pressures anticipated in gas-cooled reactors. It is operated as part of the Gas-Cooled Fast Reactor programme to determine the performance of core assemblies. (U.K.)

  4. Load responsive multilayer insulation performance testing

    Cryogenic insulation designed to operate at various pressures from one atmosphere to vacuum, with high thermal performance and light weight, is needed for cryogenically fueled space launch vehicles and aircraft. Multilayer insulation (MLI) performs well in a high vacuum, but the required vacuum shell for use in the atmosphere is heavy. Spray-on foam insulation (SOFI) is often used in these systems because of its light weight, but can have a higher heat flux than desired. We report on the continued development of Load Responsive Multilayer Insulation (LRMLI), an advanced thermal insulation system that uses dynamic beam discrete spacers that provide high thermal performance both in atmosphere and vacuum. LRMLI consists of layers of thermal radiation barriers separated and supported by micromolded polymer spacers. The spacers have low thermal conductance, and self-support a thin, lightweight vacuum shell that provides internal high vacuum in the insulation. The dynamic load responsive spacers compress to support the external load of a vacuum shell in one atmosphere, and decompress under reduced atmospheric pressure for lower heat leak. Structural load testing was performed on the spacers with various configurations. LRMLI was installed on a 400 liter tank and boil off testing with liquid nitrogen performed at various chamber pressures from one atmosphere to high vacuum. Testing was also performed with an MLI blanket on the outside of the LRMLI

  5. A performance benchmark test for geodynamo simulations

    Matsui, H.; Heien, E. M.

    2013-12-01

    In the last ten years, a number of numerical dynamo models have successfully represented basic characteristics of the geomagnetic field. As new models and numerical methods continue to be developed, it is important to update and extend benchmarks for testing these models. The first dynamo benchmark of Christensen et al. (2001) was applied to models based on spherical harmonic expansion methods. However, only a few groups have reported results of the dynamo benchmark using local methods (Harder and Hansen, 2005; Matsui and Okuda, 2005; Chan et al., 2007) because of the difficulty treating magnetic boundary conditions based on the local methods. On the other hand, spherical harmonics expansion methods perform poorly on massively parallel computers because global data communications are required for the spherical harmonics expansions to evaluate nonlinear terms. We perform benchmark tests to asses various numerical methods for the next generation of geodynamo simulations. The purpose of this benchmark test is to assess numerical geodynamo models on a massively parallel computational platform. To compare among many numerical methods as possible, we consider the model with the insulated magnetic boundary by Christensen et al. (2001) and with the pseudo vacuum magnetic boundary, because the pseudo vacuum boundaries are implemented easier by using the local method than the magnetic insulated boundaries. In the present study, we consider two kinds of benchmarks, so-called accuracy benchmark and performance benchmark. In the accuracy benchmark, we compare the dynamo models by using modest Ekman and Rayleigh numbers proposed by Christensen et. al. (2001). We investigate a required spatial resolution for each dynamo code to obtain less than 1% difference from the suggested solution of the benchmark test using the two magnetic boundary conditions. In the performance benchmark, we investigate computational performance under the same computational environment. We perform these

  6. Testing for Distortions in Performance Measures

    Sloof, Randolph; Van Praag, Mirjam

    Distorted performance measures in compensation contracts elicit suboptimal behavioral responses that may even prove to be dysfunctional (gaming). This paper applies the empirical test developed by Courty and Marschke (2008) to detect whether the widely used class of Residual Income based...... performance measures —such as Economic Value Added (EVA)— is distorted, leading to unintended agent behavior. The paper uses a difference-in-differences approach to account for changes in economic circumstances and the self-selection of firms using EVA. Our findings indicate that EVA is a distorted...... performance measure that elicits the gaming response....

  7. NetBench. Automated Network Performance Testing

    Cadeddu, Mattia

    2016-01-01

    In order to evaluate the operation of high performance routers, CERN has developed the NetBench software to run benchmarking tests by injecting various traffic patterns and observing the network devices behaviour in real-time. The tool features a modular design with a Python based console used to inject traffic and collect the results in a database, and a web user

  8. Performance test of a TMS calorimeter

    Performance tests of a first calorimeter module using the room temperature liquid tetramethylsilane (TMS) as active element are described. Normal carbon steel has been used as absorber. The charge yield is 70% of that in a very pure sample of the liquid. A long term stability of the signal with a lifetime of half a year has been realized. (orig.)

  9. 47 CFR 76.601 - Performance tests.

    2010-10-01

    ... television and FM broadcasting (as described in §§ 73.603 and 73.210 of this chapter) is required to conduct... CABLE TELEVISION SERVICE Technical Standards § 76.601 Performance tests. (a) The operator of each cable television system shall be responsible for insuring that each such system is designed, installed,...

  10. Performance tests for integral reactor nuclear fuel

    Sohn, Dong-Seong; Yim, Jeong-Sik; Lee, Chong-Tak; Kim, Han-Soo; Koo, Yang-Hyun; Lee, Byung-Ho; Cheon, Jin-Sik; Oh, Je-Yong

    2006-02-15

    An integral type reactor SMART plans to utilize metallic Zr-U fuel which is Zr-based alloy with 34{approx}38 wt% U. In order to verify the technologies for the design and manufacturing of the fuel and get a license, performance tests were carried out. Experimental Fuel Assembly (EFA) manufactured in KAERI is being successfully irradiated in the MIR reactor of RIAR from September 4 2004, and it has achieved burnup of 0.21 g/cc as of January 25 2006. Thermal properties of irradiated Zr-U fuel were measured. Up to the phase transformation temperature, thermal diffusivity increased linearly in proportion to temperature. However its dependence on the burnup was not significant. RIA tests with 4 unirradiated Zr-U fuel rods were performed in Kurchatov Institute to establish a safety criterion. In the case of the un-irradiated Zr-U fuel, the energy deposition during the control rod ejection accident should be less than 172 cal/g to prevent the failure accompanying fuel fragmentation and dispersal. Finally the irradiation tests of fuel rods have been performed at HANARO. The HITE-2 test was successfully completed up to a burnup of 0.31 g/cc. The HITE-3 test began in February 2004 and will be continued up to a target burnup of 0.6 g/cc.

  11. Performance tests for integral reactor nuclear fuel

    An integral type reactor SMART plans to utilize metallic Zr-U fuel which is Zr-based alloy with 34∼38 wt% U. In order to verify the technologies for the design and manufacturing of the fuel and get a license, performance tests were carried out. Experimental Fuel Assembly (EFA) manufactured in KAERI is being successfully irradiated in the MIR reactor of RIAR from September 4 2004, and it has achieved burnup of 0.21 g/cc as of January 25 2006. Thermal properties of irradiated Zr-U fuel were measured. Up to the phase transformation temperature, thermal diffusivity increased linearly in proportion to temperature. However its dependence on the burnup was not significant. RIA tests with 4 unirradiated Zr-U fuel rods were performed in Kurchatov Institute to establish a safety criterion. In the case of the un-irradiated Zr-U fuel, the energy deposition during the control rod ejection accident should be less than 172 cal/g to prevent the failure accompanying fuel fragmentation and dispersal. Finally the irradiation tests of fuel rods have been performed at HANARO. The HITE-2 test was successfully completed up to a burnup of 0.31 g/cc. The HITE-3 test began in February 2004 and will be continued up to a target burnup of 0.6 g/cc

  12. MODELING THE IMPACT OF ELEVATED MERCURY IN DEFENSE WASTE PROCESSING FACILITY MELTER FEED ON THE MELTER OFF-GAS SYSTEM-PRELIMINARY REPORT

    Zamecnik, J.; Choi, A.

    2010-08-18

    chloride, only 6% of the mercury fed is expected to get oxidized, mostly as HgCl, while the remaining mercury would exist either as elemental mercury vapor (90%) or HgO (4%). Noting that the measured chloride level in the SB5 qualification sample was an order of magnitude lower than that used in the SB5 simulant, the degree of chloride shortage will be even greater. As a result, the projected level of HgCl in the actual SB5 melter exhaust will be even lower than 6% of the total mercury fed, while that of elemental mercury is likely to be greater than 90%. The homogeneous oxidation of mercury in the off-gas was deemed to be of primary importance based on the postulation that mercury and other volatile salts form submicron sized aerosols upon condensation and thus remain largely in the gas stream downstream of the quencher where they can deposit in the off-gas lines, Steam-Atomized Scrubbers (SAS), and High-Efficiency Mist Eliminator (HEME). Formation of these submicron semi-volatile salts in the condensate liquid is considered to be unlikely, so the liquid phase reactions were considered to be less important. However, subsequent oxidation of mercury in the liquid phase in the off-gas system was examined in a simplified model of the off-gas condensate. It was found that the condensate chemistry was consistent with further oxidation of elemental mercury to Hg{sub 2}Cl{sub 2} and conversion of HgO to chlorides. The results were consistent with the available experimental data. It should also be noted that the model predictions presented in this report do not include any physically entrained solids, which typically account for much of the off-gas carryover on a mass basis. The high elemental mercury vapor content predicted at the DWPF Quencher inlet means that physically entrained solids could provide the necessary surface onto which elemental mercury vapor could condense, thereby coating the solids as well as the internal surfaces of the off-gas system with mercury. Clearly

  13. RHIC Sextant Test - Accelerator Systems and Performance

    Pilat, F.; Ahrens, L.; Brown, K.; Connolly, R.; dell, G. F.; Fischer, W.; Kewisch, J.; Mackay, W.; Mane, V.; Peggs, S.; Satogata, T.; Tepikian, S.; Thompson, P.; Trbojevic, D.; Tsoupas, N.; Wei, J.

    1997-05-01

    One sextant of the RHIC collider and the full AtR (AGS to RHIC) transfer line have been commissioned in early 1997 with beam. We describe here the design and performance of the accelerator systems during the test, such as the magnet and power supply systems, instrumentation subsystems and application software. After reviewing the main milestones of the commissioning we describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems preformance and their impact on the plannig for RHIC installation and commissioning.

  14. Eurados trial performance test for photon dosimetry

    Stadtmann, H.; Bordy, J.M.; Ambrosi, P.;

    2001-01-01

    Within the framework of the EURADOS Action entitled Harmonisation and Dosimetric Quality Assurance in Individual Monitoring for External Radiation, trial performance tests for whole-body and extremity personal dosemeters were carried out. Photon, beta and neutron dosemeters were considered. This...... paper summarises the results of the whole-body photon dosemeter test. Twenty-six dosimetry services from all EU Member States and Switzerland participated. Twelve different radiation fields were used to simulate various workplace irradiation fields. Dose values from 0.4 mSv to 80 mSv were chosen. From...

  15. Testing for robust speech recognition performance

    Simpson, C. A.; Moore, C. A.; Ruth, J. C.

    Results are reported from two studies which evaluated speaker-dependent connected-speech template-matching algorithms. One study examined the recognition performance for vocabularies spoken within a spacesuit. Two token vocabularies were used that were recorded in different noise levels. The second study evaluated the rejection accuracy for two commercial speech recognizers. The spoken test tokens were variations on a single word. The tests underscored the inferiority of speech recognizers relative to the human capability for discerning among phonetically different words. However, one commercial recognizer exhibited over 96-percent rejection accuracy in a noisy environment.

  16. Performance Test of CCTV in a Test Field

    On April 12-13, 2010, US President Obama hosted a Nuclear Security Summit in Washington, DC, to enhance international cooperation to prevent nuclear terrorism, an issue which he has identified as the most immediate and extreme threat to global security. The Summit focused on the security of nuclear materials, nonproliferation, disarmament, and peaceful nuclear energy. At the summit, the Republic of Korea was chosen as the host of the next Summit in 2012. This series of events reflects the growing global interest on 'Nuclear Security' and as the host country of the next Nuclear Summit it is the time for Korea to strengthen the physical protection regime for nuclear facilities as a first step of securing its nuclear security capability. KINAC has been operating Test field as a mean of preparing solid backup data for reviewing and revising DBT (Design Basis Threat) and to test components of the conventional physical protection system. CCTV is a key component which is used worldwide for the assessment measure of alarms. In terms of performance test of CCTV, there are several elements such as image quality, coverage and mechanical features (speed of zoom-in-out, capture, angle shift etc.). Speaking of image quality acquired by the CCTV, the quality is subject to resolution, monitor specification, camera housing, camera mounting and lightening. Thus it is clear that performance tests on image quality should consider those factors and vary the factors respectively in order to verify the influence and the interaction among those. Nevertheless due to the restrictions of the current Test field, this paper focuses on the image quality through resolution test under the various lightening conditions

  17. Testing for Distortions in Performance Measures

    Sloof, Randolph; Van Praag, Mirjam

    2015-01-01

    Distorted performance measures in compensation contracts elicit suboptimal behavioral responses that may even prove to be dysfunctional (gaming). This paper applies the empirical test developed by Courty and Marschke (Review of Economics and Statistics, 90, 428-441) to detect whether the widely...... used class of residual income-based performance measures-such as economic value added (EVA)-is distorted, leading to unintended agent behavior. The paper uses a difference-in-differences approach to account for changes in economic circumstances and the self-selection of firms using EVA. Our findings...

  18. Motivation and Test Anxiety in Test Performance across Three Testing Contexts: The CAEL, CET, and GEPT

    Cheng, Liying; Klinger, Don; Fox, Janna; Doe, Christine; Jin, Yan; Wu, Jessica

    2014-01-01

    This study examined test-takers' motivation, test anxiety, and test performance across a range of social and educational contexts in three high-stakes language tests: the Canadian Academic English Language (CAEL) Assessment in Canada, the College English Test (CET) in the People's Republic of China, and the General English Proficiency…

  19. Performance test of 100 W linear compressor

    In this paper, we present test results of developed 100 W class linear compressor for Stirling-type pulse tube refrigerator. The fabricated linear compressor has dual-opposed configuration, free piston and moving magnet type linear motor. Power transfer, efficiency and required pressure waveform are predicted with designed and measured specifications. In experiments, room temperature test with flow impedance is conducted to evaluate performance of developed linear compressor. Flow impedance is loaded to compressor with metering valve for flow resistance, inertance tube for flow inertance and buffer volumes for flow compliance. Several operating parameters such as input voltage, current, piston displacement and pressure wave are measured for various operating frequency and fixed input current level. Behaviors of dynamics and performance of linear compressor as varying flow impedance are discussed with measured experimental results. The developed linear compressor shows 124 W of input power, 86 % of motor efficiency and 60 % of compressor efficiency at its resonant operating condition.

  20. Performance test of 100 W linear compressor

    Ko, J; Ko, D. Y.; Park, S. J.; Kim, H. B.; Hong, Y. J.; Yeom, H. K. [Korea Institute of Machinery and Materials, Daejeon(Korea, Republic of)

    2013-09-15

    In this paper, we present test results of developed 100 W class linear compressor for Stirling-type pulse tube refrigerator. The fabricated linear compressor has dual-opposed configuration, free piston and moving magnet type linear motor. Power transfer, efficiency and required pressure waveform are predicted with designed and measured specifications. In experiments, room temperature test with flow impedance is conducted to evaluate performance of developed linear compressor. Flow impedance is loaded to compressor with metering valve for flow resistance, inertance tube for flow inertance and buffer volumes for flow compliance. Several operating parameters such as input voltage, current, piston displacement and pressure wave are measured for various operating frequency and fixed input current level. Behaviors of dynamics and performance of linear compressor as varying flow impedance are discussed with measured experimental results. The developed linear compressor shows 124 W of input power, 86 % of motor efficiency and 60 % of compressor efficiency at its resonant operating condition.

  1. RHIC Sextant Test -- Physics and performance

    This paper presents beam physics and machine performance results of the Relativistic Heavy Ion Collider (RHIC) Sextant and AGS-to-RHIC (AtR) transfer line during the Sextant Test in early 1997. Techniques used to measure both machine properties (difference orbits, dispersion, and beamline optics) and beam parameters (energy, intensity, transverse and longitudinal emittances) are described. Good agreement was achieved between measured and design lattice optics. The gold ion beam quality was shown to approach RHIC design requirements

  2. HSE performance tests for dosimetry services

    In the United Kingdom a dosimetry service that measures and assesses whole-body or part-body doses arising from external radiation must successfully complete a performance test. Results of the performance tests for routine whole-body, routine extremity/skin and special accident dosimetry, carried out over the past six years by the AEA Technology Calibration Service at Winfrith, and DRaStaC, the AWE Calibration Service at Aldermaston, are presented. The test involves irradiating groups of dosemeters to known doses of gamma radiation and determining the bias and relative standard deviations for each dose group. The results are compared with the pass criteria specified by the UK Health and Safety Executive. For routine whole-body dosimetry, both the film badge and thermoluminescent dosemeter (TLD) perform adequately for irradiations between 0.6 and 30 mSv. For higher doses up to 250 mSv, where the slow emulsion of the film is used, the film badge shows poorer performance with a tendency to overestimate the dose. For routine extremity/skin dosimetry there is a wider spread of relative standard deviation results than is seen for routine whole-body dosimetry. This is to be expected since the results will include dosemeters that are based on 'disposable' TLDs and ones based on lithium fluoride powder in sachets. For special accident dosimetry the dosemeters are tested between 0.26 and 6 Gy. For the highest dose group the film badge invariably underestimates the true dose, whereas the TLD has a tendency to overestimate it. (author)

  3. Performance tests on the NRPB thermoluminescent dosemeter

    Shaw, K B

    1977-01-01

    Performance tests on the thermoluminescent dosemeter, designed at NRPB for use in the automated personal dosimetry system, are described. An ultra-thin lithium borate dosemeter has been developed for skin absorbed dose measurement. The X-ray, gamma-ray and beta-ray energy response of the dosemeter has been investigated and the angular response for the dosemeter has been examined. The annealing, read-out and stabilisation procedures for the dosemeter are described.

  4. Performance test of a TMS calorimeter

    Performance tests of a first calorimeter module using the room temperature liquid tetramethylsilane (TMS) as active element are described in detail. As absorber planed carbon steel slabs had been used. The charge yield is 70% of that in a very pure sample of the liquid. A long term stability of the signal with a lifetime of half a year has been realized. Experiences are described and the results explained in detail. (orig.)

  5. MEMS performance challenges: packaging and shock tests

    Chang, Jiyoung; Yang, Chen; Zhang, Bin; Lin, Liwei

    2011-06-01

    This paper describes recent advances in the MEMS performance challenges with emphases on packaging and shock tests. In the packaging area, metal to metal bonding processes have been developed to overcome limitations of the glass frit bonding by means of two specific methods: (1) pre-reflow of solder for enhanced bonding adhesion, and (2) the insertion of thin metal layer between parent metal bonding materials. In the shock test area, multiscale analysis for a MEMS package system has been developed with experimental verifications to investigate dynamic responses under drop-shock tests. Structural deformation and stress distribution data are extracted and predicted for device fracture and in-operation stiction analyses for micro mechanical components in various MEMS sensors, including accelerometers and gyroscopes.

  6. O2- and NOsub(x)-removal from the dissolver off-gas by thermal reduction with H2 or NH3

    The reference process for the removal of O2 and NOsub(x) from the dissolver off-gas is the catalytic reduction with H2. Because of the known disadvantages of catalysts, like reduction in efficiency by poisoning or thermal influence, the alternative method of thermal, flameless reduction with H2 and NH3 was tested. The reactions were carried out in a stainless steel and a quartz reactor. Both had a length of 850 mm, an inner diameter of 53 mm, and were heated by resistance heaters on the outside. The main component of the test gases was N2. Tested throughputs were 600, 800, and 1000 l/h (STP). Different amounts of O2 (0.5 and 1%), NO (750 and 1500 ppm) and H2 or NH3 (-40 to +100% of stoichiometric supply) were added. The reaction temperatures were varied between 450 and 750 deg. C. The goal of these tests was to remove O2 and NOsub(x) to below 1 ppm behind the reactor and NH3 (which is formed in the NOsub(x)-H2-reaction) to below the detection limit of 50 ppm

  7. Novel synthesis of bismuth-based adsorbents for the removal of 129I in off-gas

    New adsorbents based on bismuth were investigated for the capture of iodine-129 (129I) in off-gas produced from spent fuel reprocessing. Porous bulky materials were synthesized with polyvinyl alcohol (PVA) as a sacrificial template. Our findings showed that the iodine trapping capacity of as-synthesized samples could reach 1.9-fold that of commercial silver-exchanged zeolite (AgX). The thermodynamic stability of the reaction products explains the high removal efficiency of iodine. We also found that the pore volume of each sample was closely related to the ratio of the reaction products

  8. SNL Sigma Off-Gas Team Contribution to the FY15 DOE/NE-MRWFD Campaign Accomplishments Report.

    Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-21

    This program at Sandia is focused on Iodine waste form development for Fuel Cycle R&D needs. Our research has a general theme of “Capture and Storage of Iodine Fission Gas “ in which we are focused on silver loaded zeolite waste forms, evaluation of iodine loaded getter materials (eg., mordenite zeolite), and the development of low temperature glass waste forms that successfully incorporate iodine loaded getter materials from I2, organic iodide, etc. containing off-gas streams.

  9. DPM PERFORMANCE TESTING USING RASPBERRY PIS

    Regala, M

    2013-01-01

    This is the final report from attending CERN’s Summer Student Programme. The project goal was to do performance testing on the Disk Pool Manager (DPM), a lightweight, reliable, grid-aware storage software used to store and retrieve data produced by CERN’s LHC experiments using the small, low-end ARM powered devices named Raspberry Pis. The idea behind it was to reason if it’s possible to use a cluster of lower-end, under-capable devices to run DPM, and to conclude if it would be more energy efficient than running it on oversized machines, with the same or comparable performance. If this hypothesis was true, the power-hungry machines could be ditched in favour of these small devices, leading to an enormous saving in overall power consumption and hence, overall cost. In this report, I describe what was the initial project goal and intended outcomes, proceeding to explain the underlying technologies used. Afterwards, I’ll explain the setup used, the tests performed, and the conclusions reached. iii

  10. EURADOS trial performance test for photon dosimetry

    Within the framework of the EURADOS Action entitled Harmonisation and Dosimetric Quality Assurance in Individual Monitoring for External Radiation, trial performance tests for whole-body and extremity personal dosemeters were carried out. Photon, beta and neutron dosemeters were considered. This paper summarises the results of the whole-body photon dosemeter test. Twenty-six dosimetry services from all EU Member States and Switzerland participated. Twelve different radiation fields were used to simulate various workplace irradiation fields. Dose values from 0.4 mSv to 80 mSv were chosen. From 312 single results, 26 fell outside the limits of the trumpet curve and 32 were outside the range 1/1.5. Most outliers resulted from high energy R-F irradiations without electronic equilibrium. These fields are not routinely encountered by many of the participating dosimetry services. If the results for this field are excluded, most participating services satisfied the evaluation criteria. (author)

  11. PERFORMANCE TESTING AND ANALYSIS OF CUPOLA FURNACE

    PROF.HEMANT R. BHAGAT-PATIL; MEGHA S. LONDHEKAR

    2013-01-01

    In today’s industrial scenario huge losses/wastage occur in the manufacturing shop floor and foundry industries. The efficiency of any foundry largely depends on the efficiency of the melting process amulti-step operation where the metal is heated, treated, alloyed, and transported into die or mold cavities to form a casting. In this paper we represents the performance testing and analysis of Cupola Furnace, and reduces the problems occurs to give the best results. Our main focus in this work...

  12. Performance testing of UK personal dosimetry laboratories

    Marshall, T O

    1985-01-01

    The proposed Ionising Radiations Regulations will require all UK personal dosimetry laboratories that monitor classified personnel to be approved for personal dosimetry by the Health and Safety Executive. It is suggested that these approvals should be based on general and supplementary criteria published by the British Calibration Service (BCS) for laboratory approval for the provision of personal dosimetry services. These criteria specify certain qualitative requirements and also indicate the need for regular tests of performance to be carried out to ensure constancy of dosimetric standards. This report concerns the latter. The status of the BCS criteria is discussed and the need for additional documents to cover new techniques and some modifications to existing documents is indicated. A means is described by which the technical performance of laboratories, concerned with personal monitoring for external radiations, can be assessed, both initially and ongoing. The costs to establish the scheme and operate it...

  13. Performance testing of UK personal dosimetry laboratories

    The proposed Ionising Radiations Regulations will require all UK personal dosimetry laboratories that monitor classified personnel to be approved for personal dosimetry by the Health and Safety Executive. It is suggested that these approvals should be based on general and supplementary criteria published by the British Calibration Service (BCS) for laboratory approval for the provision of personal dosimetry services. These criteria specify certain qualitative requirements and also indicate the need for regular tests of performance to be carried out to ensure constancy of dosimetric standards. This report concerns the latter. The status of the BCS criteria is discussed and the need for additional documents to cover new techniques and some modifications to existing documents is indicated. A means is described by which the technical performance of laboratories, concerned with personal monitoring for external radiations, can be assessed, both initially and ongoing. The costs to establish the scheme and operate it are also estimated. (author)

  14. Standard specification for agencies performing nondestructive testing

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This specification covers minimum requirements for agencies performing nondestructive testing (NDT). 1.2 When using this specification to assess the capability of, or to accredit NDT agencies, Guide E 1359 shall be used as a basis for the survey. It can be supplemented as necessary with more detail in order to meet the auditor's specific needs. 1.3 This specification can be used as a basis to evaluate testing or inspection agencies, or both, and is intended for use for the qualifying or accrediting, or both, of testing or inspection agencies, public or private. 1.4 The use of SI or inch-pound units, or combination thereof, will be the responsibility of the technical committee whose standards are referred to in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to...

  15. RHIC Sextant Test --- Physics and Performance

    Wei, J.; Fischer, W.; Ahrens, L.; Brennan, J. M.; Brown, K.; Connolly, R.; dell, G. F.; Harrison, M.; Kewisch, J.; Mackay, W. W.; Mane, V.; Peggs, S.; Pilat, F.; Satogata, T.; Tepikian, S.; Thompson, P.; Trahern, C. G.; Trbojevic, D.; Tsoupas, N.

    1997-05-01

    This paper presents beam physics and machine performance results of the Relativistic Heavy Ion Collider (RHIC) Sextant and AGS-to-RHIC (ATR) transfer line during the Sextant test in early 1997. Techniques used to measure both machine properties (difference orbits, dispersion, and beamline optics) and beam parameters (energy, intensity, transverse and longitudinal emittances) are described. The flexibility of the ATR and RHIC Sextant lattices is demonstrated by a widely tunable range of phase advance per cell. Longitudinal tomography is employed to reconstruct beam motion in phase space. Digitized two-dimensional video profile monitors are used to measure transverse beam emittances and beamline optics. The gold ion beam parameters are shown to be comparable to the RHIC design requirements.

  16. Detonation Performance Testing of LX-19

    Vincent, Samuel; Aslam, Tariq; Jackson, Scott

    2015-06-01

    CL-20 was developed at the Naval Surface Weapons Center at China Lake, CA in the mid 80's. Being less sensitive than PETN, but considerably more powerful than HMX, it is the highest energy and density compound known among organic chemicals. LX-19 was developed at LLNL in the early 90's. It is a high-energy plastic bonded explosive, composed of 95.8 wt% CL-20 and 4.2 wt% Estane binder, and is similar to LX-14 (composed of HMX and Estane), but with greater sensitivity characteristics with use of the more energetic CL-20 explosive. We report detonation performance results for unconfined cylindrical rate sticks of LX-19. The experimental diameter effects are shown, along with detonation front shapes, and reaction zone profiles for different test diameters. This data is critical for calibration to Detonation Shock Dynamics (DSD). LA-UR-15-20672.

  17. CFC and HFC recycling equipments: Test performances

    Actual regulatory conditions about ozone layer depleting chemicals set problems on their disposal and on the management of plants still using illegal CFCs. Anyway fluids that will replace CFCs (i.e. HFCs) will not be allowed to be spread into the atmosphere, due to their high costs and to the greenhouse effect. A viable solution would be the recovery, purification and recycle of contaminated fluids. ENEA (National Agency for New Technology, Energy and the Environment), in cooperation with ICF (Industria Componenti Frigoriferi) Company leader in the field of air refrigerating and conditioning, patented a device able to extract, to clean and to recycle CFC 12 and HFC 134a in the refrigerating systems. This paper presents experimental data from the qualification tests on a device performing the above mentioned operations regarding systems that use HFC 134a as process fluid

  18. PERFORMANCE TESTING AND ANALYSIS OF CUPOLA FURNACE

    PROF.HEMANT R. BHAGAT-PATIL

    2013-05-01

    Full Text Available In today’s industrial scenario huge losses/wastage occur in the manufacturing shop floor and foundry industries. The efficiency of any foundry largely depends on the efficiency of the melting process amulti-step operation where the metal is heated, treated, alloyed, and transported into die or mold cavities to form a casting. In this paper we represents the performance testing and analysis of Cupola Furnace, and reduces the problems occurs to give the best results. Our main focus in this work is to improve continuous working hours,reducing preparation time, reducing losses in melting, reducing slag formation and to increase the combustion efficiency of coke and overall productivity and to improve the quality and Mechanical properties of steel using Cupola.

  19. Performance testing of passive autocatalytic recombiners (PARs)

    Passive autocatalytic recombiners (PARs) have been under consideration in the U.S. as a combustible gas control system in advanced light water reactor (ALWR) containments for design basis and severe accidents. PARs do not require a source of power. Instead they use palladium or platinum as a catalyst to recombine hydrogen and oxygen gases into water vapor upon contact with the catalyst. Energy from the recombination of hydrogen with oxygen is released at a relatively slow but continuous rate into the containment which prevents the pressure from becoming too high. The heat produced creates strong buoyancy effects which increases the influx of the surrounding gases to the recombiner. These natural convective flow currents promote mixing of combustible gases in the containment. PARs are self-starting and self-feeding under a very wide range of conditions. The recombination rate of the PAR system needs to be great enough to keep the concentration of hydrogen (or oxygen) below acceptable limits. There are several catalytic recombiner concepts under development worldwide. The USNRC is evaluating a specific design of a PAR which is in an advanced stage of engineering development and has been proposed for ALWR designs. Sandia National laboratories (SNL), under the sponsorship and the direction of the USNRC, is conducting an experimental program to evaluate the performance of PARs. The PAR will be tested at the SURTSEY facility at SNL. The test plan currently includes the following experiments: experiments will be conducted to define the startup characteristics of PARs (i.e., to define what is the lowest hydrogen concentration that the PAR starts recombining the hydrogen with oxygen); experiments will be used to define the hydrogen depletion rate of PARs as a function of hydrogen concentration; and experiments will be used to define the PAR performance in the presence of high concentrations of steam. (author)

  20. Performance tests on helical Savonius rotors

    Kamoji, M.A.; Kedare, S.B. [Department of Energy Science and Engineering, Indian Institute of Technology, Bombay (India); Prabhu, S.V. [Department of Mechanical Engineering, Indian Institute of Technology, Bombay (India)

    2009-03-15

    Conventional Savonius rotors have high coefficient of static torque at certain rotor angles and a negative coefficient of static torque from 135 to 165 and from 315 to 345 in one cycle of 360 . In order to decrease this variation in static torque from 0 to 360 , a helical Savonius rotor with a twist of 90 is proposed. In this study, tests on helical Savonius rotors are conducted in an open jet wind tunnel. Coefficient of static torque, coefficient of torque and coefficient of power for each helical Savonius rotor are measured. The performance of helical rotor with shaft between the end plates and helical rotor without shaft between the end plates at different overlap ratios namely 0.0, 0.1 and 0.16 is compared. Helical Savonius rotor without shaft is also compared with the performance of the conventional Savonius rotor. The results indicate that all the helical Savonius rotors have positive coefficient of static torque at all the rotor angles. The helical rotors with shaft have lower coefficient of power than the helical rotors without shaft. Helical rotor without shaft at an overlap ratio of 0.0 and an aspect ratio of 0.88 is found to have almost the same coefficient of power when compared with the conventional Savonius rotor. Correlation for coefficient of torque and power is developed for helical Savonius rotor for a range of Reynolds numbers studied. (author)

  1. I-129, Kr-85, C-14 and NO/sub x/ removal from spent fuel dissolver off-gas at atmospheric pressure and at reduced off-gas flow

    A dissolver off-gas (DOG) system suitable for a LWR, FBR or HTR spent fuel reprocessing plant is described, incorporating the following features: (1) the DOG flow is reduced to a reasonably small volume, using fumeless dissolution conditions, by maintaining high concentrations, the retention procedures are simplified and accompanied by an economic reduction of the equipment size; (2) all process operations are conducted at atmospheric or subatmospheric pressure, including noble gas removal by selective absorption, without using high temperature processes; (3) all processes, except HEPA filtering, are continuous and do not accumulate large amounts of waste nuclides, the DOG process sequence is mutually compatible with itself and with processing in the headend, showing on-line redundancy for the removal of the most radiotoxic nuclides; and (4) the DOG system only deviates slightly from proven technology. The stage of development and relevant results are given both for a lab. scale and a pilot plant scale

  2. Catalytic O2- and NOsub(x)-removal: a process step for an off-gas cleaning system in reprocessing plants

    The last step of an off-gas purification system for future reprocessing plants of spent nuclear fuels is the retention of the radioactive krypton. If a cryogenic distillation process is chosen for this step, O2 and NOsub(x) must be removed prior to the cryogenic part in order to avoid radiolytic formation of ozone and crystallization problems, respectively. Simultaneous catalytic reduction with H2 was chosen using ruthenium on A12O3 as catalyst. The process step was tested in a semiscale unit with a gas throughput of 50 m3/h. The feed-gas was diluted by N2 in a gas loop by a factor of 10, to prevent formation of explosive gas mixtures. Residual O2- and NOsub(x)-concentrations 1 ppmv were attained routinely in the temperature range of the catalyst between 3500C and 5500C and at space velocities (GHVS) between 10000 and 15000 h-1. Formation of CH4 is very low (2O). H2 feed control is carried out by means of chemical analysis of O2 and NOsub(x) in the feed gas by calculating the necessary H2 amount and controlling the main H2-valve with a microcomputer. An additional small H2-valve is controlled by analysis of the H2 excess behind the catalyst bed. Even large concentration transients of O2 and NOsub(x) can thus be handled by the catalyst without breakthrough. (author)

  3. Customized design of electronic noses placed on top of air-lift bioreactors for in situ monitoring the off-gas patterns.

    Rosi, Pablo E; Miscoria, Silvia A; Bernik, Delia L; Martín Negri, R

    2012-06-01

    A specially designed electronic nose was coupled to an air-lift bioreactor in order to perform on-line monitoring of released vapors. The sensor array was placed at the top of the bioreactor sensing the headspace in equilibrium with the evolving liquor at any time without the need of aspiration and pumping of gases into a separated sensor chamber. The device was applied to follow the off-gas of a bioreactor with Acidithiobacillus thiooxidans grown on beds of elemental sulfur under aerobic conditions. Evolution was monitored by acid titration, pH and optical density measurements. The electronic nose was capable to differentiate each day of reactor evolution since inoculation within periods marked off culture medium replacements using multivariate data analysis. Excellent discrimination was obtained indicating the potentiality for on-line monitoring in non-perturbed bioreactors. The prospects for electronic nose/bioreactor merging are valuable for whatever the bacterial strain or consortium used in terms of scent markers to monitor biochemical processes. PMID:22212349

  4. Comparison of thermochemically calculated and measured dioxin contents in the off-gas of a sinter plant

    Spencer, P.; Eriksson, G.; Neuschuelz, D. [Lehrstuhl fuer Theoretische Huettenkunde, Aachen (Germany)

    1997-12-31

    Polychlorinated dibenzo-p-dioxins and dibenzo-furans form a family of more than 200 compounds which are relatively stable in the biosphere and tend to accumulate in the human body. The tetra- to hexa-chlorinated dioxins and furans are considered highly toxic. To facilitate the assessment of the total toxicity of dioxin and furan mixtures, the estimated toxic effects of the individual compounds relative to the 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD) were introduced as Toxic Equivalent Factors which yield, when multiplied with the respective concentrations, the Toxic Equivalent (TE) of the mixture. Toxic dioxins and furans are unintentionally formed in a number of industrial combustion processes such as waste incineration and iron ore sintering, in the chemical industry and in household heating. To keep the emissions as low as possible, off-gas clearing systems for the collection of dioxins and furans are increasingly prescribed by the authorities. In addition, it appears desirable to select process conditions that are unfavourable for the formation of these compounds. A simulation of the relevant processes on the basis of thermodynamic data may be helpful in defining such process conditions. To simulate dioxin formation in the sintering process, all major gas-solid reactions taking place in the sinter bed must also be simulated. A sufficiently accurate reproduction of the off-gas compositions along the length of the sinter strand requires detailed assumptions concerning the relative amounts of `active` O{sub 2} as well as the distribution of reacting carbon and water over the strand length. From this basis, an equilibrium calculation for the gas/solid reactions at the sintering temperature of 1150 deg C and an equilibrium calculation restricted to the gas phase at 700 deg C produced values for the concentrations of the major off-gas constituents in very good agreement with the measured values. The further assumption that below 700 deg C all reactions are frozen

  5. A Literature Survey to Identify Potentially Volatile Iodine-Bearing Species Present in Off-Gas Streams

    Bruffey, S. H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Spencer, B. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Strachan, D. M. [Strata-G, Knoxville, TN (United States); Jubin, R. T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Soelberg, N. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Riley, B. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-06-30

    Four radionuclides have been identified as being sufficiently volatile in the reprocessing of nuclear fuel that their gaseous release needs to be controlled to meet regulatory requirements (Jubin et al. 2011, 2012). These radionuclides are 3H, 14C, 85Kr, and 129I. Of these, 129I has the longest half-life and potentially high biological impact. Accordingly, control of the release of 129I is most critical with respect to the regulations for the release of radioactive material in stack emissions. It is estimated that current EPA regulations (EPA 2010) would require any reprocessing plant in the United States to limit 129I release to less than 0.05 Ci/MTIHM for a typical fuel burnup of 55 gigawatt days per metric tonne (GWd/t) (Jubin 2011). The study of inorganic iodide in off-gas systems has been almost exclusively limited to I2 and the focus of organic iodide studies has been CH3I. In this document, we provide the results of an examination of publically available literature that is relevant to the presence and sources of both inorganic and organic iodine-bearing species in reprocessing plants. We especially focus on those that have the potential to be poorly sequestered with traditional capture methodologies. Based on the results of the literature survey and some limited thermodynamic modeling, the inorganic iodine species hypoiodous acid (HOI) and iodine monochloride (ICl) were identified as potentially low-sorbing iodine species that could present in off-gas systems. Organic species of interest included both short chain alkyl iodides such as methyl iodide (CH3I) and longer alkyl iodides up to iodododecane (C10H21I). It was found that fuel dissolution may provide conditions conducive to HOI formation and has been shown to result in volatile long-chain alkyl iodides, though these may not volatilize until later in the reprocessing sequence. Solvent extraction processes were found to be significant sources of various organic iodine-bearing species; formation of these

  6. Separation of the fission product noble gases krypton and xenon from dissolver off-gas in reprocessing HTGR-fuel

    This paper describes a process developed for the retainment and separation of volatile (3H, 129+131I) and gaseous (85Kr, Xe) fission products from the off-gas produced during dissolution of HTGR-fuel. To prevent unnecessary dilution of liberated noble gases by surrounding atmosphere, a helium purge-gas cycle is applied to enable a coarse fractionating of krypton and xenon by cold-trapping at about 800K after precleaning the gas stream. The process consists of the following steps: deposition of droplets and solid aerosols; chemisorption of iodine on silver impregnated silica gel; catalytic removal of nitrogen oxides and oxygen; drying of the process gas stream; final filtering of abraded solids; deposition of xenon in solid form at 800K and low subpressure; deposition of krypton in solid form at 800K after compression to about 6 bar; decontamination of 85Kr-containing xenon by batch distillation for eventual industrial utilization; and removal of nitrogen and argon enrichment during continuous operation in the purge-gas stream by inleaking air with charcoal. A continuously operating dissolver vessel, closed to the surrounding atmosphere, yields a very high content of noble gases, i.e., 0.35 vol % krypton and 2.0 vol % xenon. The presented off-gas treatment unit is operated in cold runs with 1/3 of the full capacity and can treat about 1 m3 STP/h helium, corresponding to a quantity of about 10,000 MW/sub e/ HTGR-fuel reprocessing plant

  7. Off-gas treatment for pressurized water reactors by absorption of xenon and krypton in fluorocarbons

    Pilot plant tests showed selective absorption of krypton and xenon in dichlorodifluoromethane produced concentrations as low as 40 ppb and 3 ppb, respectively. Satisfactory operation was demonstrated for a variety of carrier gases including hydrogen, nitrogen, air, helium, and argon. Charcoal absorption, cryogenic absorption, and cryogenic distillation techniques were compared disadvantageously to the fluorocarbon solvent method. (PCS)

  8. Integrated Performance Testing Workshop - Supplemental Materials (Scripts and Procedures)

    Baum, Gregory A.

    2014-02-01

    A variety of performance tests are described relating to: Material Transfers; Emergency Evacuation; Alarm Response Assessment; and an Enhanced Limited Scope Performance Test (ELSPT). Procedures are given for: nuclear material physical inventory and discrepancy; material transfers; and emergency evacuation.

  9. Testing Assumptions about Evaluating Strategic Alliance Performance

    Olk, Paul; Ariño, Africa

    2003-01-01

    Researchers have used a variety of measures to evaluate strategic alliance performance. In this paper we use data collected on performance of R&D consortia in the U.S. and of Spain-based equity and non-equity dyadic alliances to investigate empirically five basic assumptions made by strategic alliance researchers. We find that while several assumptions are supported, others are not. Results are consistent across samples. We conclude with recommendations for how to evaluate performance in futu...

  10. 40 CFR 60.543 - Performance test and compliance provisions.

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Performance test and compliance... Rubber Tire Manufacturing Industry § 60.543 Performance test and compliance provisions. (a) Section 60.8... measurement of capture system retention time or face velocity. The performance test shall be conducted...

  11. Test plan for dig-face characterization performance testing

    Josten, N.E.

    1993-09-01

    The dig-face characterization concept has been under development at the Idaho National Engineering Laboratory (INEL) since FY 1992 through the support of the Buried Waste Integrated Demonstration Program. A Dig-face Characterization System conducts continuous subsurface characterization simultaneously with retrieval of hazardous and radioactive waste from buried waste sites. The system deploys multiple sensors at the retrieval operation dig-face and collects data that provide a basis for detecting, locating, and identifying hazardous conditions before they are disturbed by the retrieval equipment. This test plan describes initial efforts to test the dig-face characterization concept at the INEL Cold Test Pit using a simplified prototype apparatus and off-the-shelf sensors. The Cold Test Pit is a simulated waste site containing hazardous and radioactive waste surrogates at known locations. Testing will be directed toward three generic characterization problems: metal detection, plume detection, and radioactive source detection. The prototype apparatus will gather data using magnetometers, a ground conductivity meter, a trace gas analyzer, and a gamma ray sensor during simulated retrieval of the surrogate waste materials. The data acquired by a dig-face characterization system are unique because of the high precision, high data density, and multiple viewpoints attainable through the dig-face deployment approach. The test plan establishes procedures for collecting and validating a representative dig-face characterization data set. Analysis of these data will focus on developing criteria for predicting the depth, location, composition, and other characteristics of the surrogate waste materials. If successful, this proof-of-concept exercise will provide a foundation for future development of a fully-operational system that is capable of operating on an actual waste site.

  12. Progress and Application for Off-gas treatment Technology of SCOT Sulfur Recovery%SCOT硫回收尾气处理技术进展及应用

    汪家铭; 林鸿伟

    2012-01-01

    SCOT ( Shell Claus Off-gas Treatment) sulfur recovery off-gas treatment technology was an off-gas purification process by which the number of the constructed plants having been built presently in the world was the maximal. Author has introduced the basic principle and process flow of the SCOT technology: has compared the technical characteristic of the low temperature SCOT, super-class SCOT, low sulfur SCOT with the conventional SCOT; has briefly described the technical progress of the SCOT process; has looked ahead its application prospect in China.%SCOT(Sell claus Off-gas Treating)硫回收尾气处理技术是目前世界上装置建设数量最多的尾气净化工艺。介绍了SCOT技术的基本原理和工艺流程;对比了低温SCOT、超级SCOT、低硫SCOT与常规SCOT的技术特点;简述了SCOT工艺的技术进展;展望了其在国内的应用前景。

  13. Cryogenic separation of krypton and xenon from dissolver off-gas

    Although the release of fission product noble gas krypton-85 has not posed a health problem to date, a process is being developed for the removal and storage of fission product noble gases from the dissolution process stream of fuel reprocessing. The separation process described for noble gas in air being tested on a semi-technical scale includes cryogenic distillation and consists of the following steps: (i) removal of iodine-129 plus iodine-131 on silver-coated silica gel; (ii) deposition of particulate materials by HEPA-filters; (iii) elimination of O2 and NOsub(x) by catalytic conversion with H2 to N2 and H2O; (iv) drying of the gas stream with molecular sieve; (v) deposition of xenon in solid form at about 80K, while the remaining gas components are liquefied; (vi) enrichment of krypton by low-temperature distillation of liquid-gas mixture; (vii) withdrawal of the highly enriched krypton fraction at the bottom of the still to be bottled in pressurized steel cylinders for final disposal; (viii) purification of krypton-85 contaminated xenon for further industrial re-use by batch distillation. (author)

  14. Off gas processing device for degreasing furnace for uranium/plutonium mixed oxide fuel

    A low melting ingredient capturing-cooling trap connected to a degreasing sintering furnace by way of sealed pipelines, a burning/decomposing device for decomposing high melting ingredient gases discharged from the cooling trap by burning them and a gas sucking means for forming the flow of off gases are contained in a glovebox, the inside pressure of which is kept negative. Since the degreasing sintering furnace for uranium/plutonium mixed oxide fuels is disposed outside of the glovebox, operation can be performed safely without greatly increasing the scale of the device, and the back flow of gases is prevented easily by keeping the pressure in the inside of the glovebox negative. Further, a heater is disposed at the midway of the sealed pipelines from the degreasing sintering furnace to the cooling trap, the temperature is kept high to prevent deposition of low melting ingredients to prevent clogging of the sealed pipelines. Further, a portion of the pipelines is made extensible in the axial direction to eliminate thermal stresses caused by temperature change thereby enabling to extend the life of the sealed pipelines. (N.H.)

  15. Thermal performance test through on-line turbine cycle performance monitoring in nuclear power plants

    Now under worldwide deregulation environment, the performance features of nuclear power plants (NPPs) become more important. A turbine cycle thermal performance test in an NPP is regarded as an important tool to improve plant economical efficiency. In this study, the feasibility and the technical issues for the turbine cycle thermal performance test through on-line monitoring are described. The performance test based on on-line monitoring is superior to the performance test by ASME Performance Test Code(PTC)s in the dynamic reflection of operating performance indexes. This advantage improves plant availability and saves resource needed in a performance test. However the critical technical issues such as 1) the security of an on-line data acquisition, 2) signal processing, and 3) plant simulation model development to implement useful on-line performance test concept because of the inherent characteristics of NPPs remain. Additionally the development strategy of a prototype on-line performance test system is proposed

  16. Cr(VI) Generation During Flaring of CO-Rich Off-Gas from Closed Ferrochromium Submerged Arc Furnaces

    du Preez, S. P.; Beukes, J. P.; van Zyl, P. G.

    2015-04-01

    Ferrochromium (FeCr) is the only source of new Cr units used in stainless steel production, which is a vital modern day alloy, making FeCr equally important. Small amounts of Cr(VI) are unintentionally formed during several FeCr production steps. One such production step is the flaring of CO-rich off-gas from closed submerged arc furnaces (SAF), for which Cr(VI) formation is currently not quantified. In this study, the influence of flaring temperature, size of the particles passing through the flare, and retention time within the flame were investigated by simulating the process on laboratory scale with a vertical tube furnace. Multiple linear regression (MLR) analysis was conducted on the overall dataset obtained, which indicated that retention time had the greatest impact on pct Cr(VI) conversion, followed by particle size and temperature. The MLR analysis also yielded an optimum mathematical solution, which could be used to determine the overall impact of these parameters on pct Cr(VI) conversion. This equation was used to determine realistic and unrealistic worst-case scenario pct Cr(VI) conversions for actual FeCr SAFs, which yielded 2.7 × 10-2 and 3.5 × 10-1 pct, respectively. These values are significantly lower than the current unsubstantiated pct Cr(VI) conversion used in environmental impact assessments for FeCr smelters, i.e., 0.8 to 1 pct.

  17. Steady-state and dynamic simulation study on boil-off gas minimization and recovery strategies at LNG exporting terminals

    Kurle, Yogesh

    Liquefied natural gas (LNG) is becoming one of the prominent clean energy sources with its abundance, high calorific value, low emission, and price. Vapors generated from LNG due to heat leak are called boil-off gas (BOG). As world-wide LNG productions are increasing fast, BOG generation and handling problems are becoming more critical. Also, due to stringent environmental regulations, flaring of BOG is not a viable option. In this study, typical Propane-and-Mixed-Refrigerant (C3-MR) process, storage facilities, and loading facilities are modeled and simulated to study BOG generation at LNG exporting terminals, including LNG processing, storage, and berth loading areas. Factors causing BOG are presented, and quantities of BOG generated due to each factor at each location are calculated under different LNG temperatures. Various strategies to minimize, recover, and reuse BOG are also studied for their feasibility and energy requirements. Rate of BOG generation during LNG loading---Jetty BOG (JBOG)---changes significantly with loading time. In this study, LNG vessel loading is simulated using dynamic process simulation software to obtain JBOG generation profile and to study JBOG recovery strategies. Also, fuel requirements for LNG plant to run steam-turbine driven compressors and gas-turbine driven compressors are calculated. Handling of JBOG generated from multiple loadings is also considered. The study would help proper handling of BOG problems in terms of minimizing flaring at LNG exporting terminals, and thus reducing waste, saving energy, and protecting surrounding environments.

  18. Design and operation of off-gas cleaning and ventilation systems in facilities handling low and intermediate level radioactive material

    The number of developing countries constructing new nuclear facilities is increasing. These facilities include the production and processing of radioisotopes, as well as all types of laboratories and installations, which handle radioactive material and deal with the treatment of radioactive wastes. Ventilation and air cleaning systems are a vital part of the general design of any nuclear facility. The combination of a well designed ventilation system with thorough cleaning of exhaust air is the main method of preventing radioactive contamination of the air in working areas and in the surrounding atmosphere. This report provides the latest information on the design and operation of off-gas cleaning and ventilation systems for designers and regulatory authorities in the control and operation of such systems in nuclear establishments. The report presents the findings of an Advisory Group Meeting held in Vienna from 1 to 5 December 1986 and attended by 12 experts from 11 Member States. Following this meeting, a revised report was prepared by the International Atomic Energy Agency Secretariat and three consultants, M.J. Kabat (Canada), W. Stotz (Federal Republic of Germany) and W.A. Fairhurst (United Kingdom). The final draft was commented upon and approved by the participants of the meeting. 69 refs, 37 figs, 12 tabs

  19. Eurados trial performance test for photon dosimetry

    Stadtmann, H.; Bordy, J.M.; Ambrosi, P.; Bartlett, D.T.; Christensen, P.; Colgan, T.; Hyvonen, H.

    paper summarises the results of the whole-body photon dosemeter test. Twenty-six dosimetry services from all EU Member States and Switzerland participated. Twelve different radiation fields were used to simulate various workplace irradiation fields. Dose values from 0.4 mSv to 80 mSv were chosen. From...... 312 single results, 26 fell outside the limits of the trumpet curve and 32 were outside the range 1/1.5 to 1.5. Most outliers resulted from high energy R-F irradiations without electronic equilibrium. These fields are not routinely encountered by many of the participating dosimetry services. If the...

  20. Final Report Integrated DM1200 Melter Testing Using AZ-102 And C-106/AY-102 HLW Simulants: HLW Simulant Verification VSL-05R5800-1, Rev. 0, 6/27/05

    The principal objectives of the DM1200 melter tests were to determine the effects of feed rheology, feed solid content, and bubbler configuration on glass production rate and off-gas system performance while processing the HLW AZ-101 and C-106/AY-102 feed compositions; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components, as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and perform pre- and post test inspections of system components. The specific objectives (including test success criteria) of this testing, along with how each objective was met, are outlined in a table. The data provided in this Final Report address the impacts of HLW melter feed rheology on melter throughput and validation of the simulated HLW melter feeds. The primary purpose of this testing is to further validate/verify the HLW melter simulants that have been used for previous melter testing and to support their continued use in developing melter and off-gas related processing information for the Project. The primary simulant property in question is rheology. Simulants and melter feeds used in all previous melter tests were produced by direct addition of chemicals; these feed tend to be less viscous than rheological the upper-bound feeds made from actual wastes. Data provided here compare melter processing for the melter feed used in all previous DM100 and DM1200 tests (nominal melter feed) with feed adjusted by the feed vendor (NOAH Technologies) to be more viscous, thereby simulating more closely the upperbounding feed produced from actual waste. This report provides results of tests that are described in the Test Plan for this work. The Test Plan is responsive to one of several test objectives covered in the WTP Test Specification for this work; consequently, only part of the scope described in the Test Specification was addressed in this particular Test Plan. For the purpose of

  1. FINAL REPORT INTEGRATED DM1200 MELTER TESTING USING AZ 102 AND C 106/AY-102 HLW SIMULANTS: HLW SIMULANT VERIFICATION VSL-05R5800-1 REV 0 6/27/05

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D' ANGELO NA; BRANDYS M; KOT WK; PEGG IL

    2011-12-29

    The principal objectives of the DM1200 melter tests were to determine the effects of feed rheology, feed solid content, and bubbler configuration on glass production rate and off-gas system performance while processing the HLW AZ-101 and C-106/AY-102 feed compositions; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components, as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and perform pre- and post test inspections of system components. The specific objectives (including test success criteria) of this testing, along with how each objective was met, are outlined in a table. The data provided in this Final Report address the impacts of HLW melter feed rheology on melter throughput and validation of the simulated HLW melter feeds. The primary purpose of this testing is to further validate/verify the HLW melter simulants that have been used for previous melter testing and to support their continued use in developing melter and off-gas related processing information for the Project. The primary simulant property in question is rheology. Simulants and melter feeds used in all previous melter tests were produced by direct addition of chemicals; these feed tend to be less viscous than rheological the upper-bound feeds made from actual wastes. Data provided here compare melter processing for the melter feed used in all previous DM100 and DM1200 tests (nominal melter feed) with feed adjusted by the feed vendor (NOAH Technologies) to be more viscous, thereby simulating more closely the upperbounding feed produced from actual waste. This report provides results of tests that are described in the Test Plan for this work. The Test Plan is responsive to one of several test objectives covered in the WTP Test Specification for this work; consequently, only part of the scope described in the Test Specification was addressed in this particular Test Plan. For the purpose of

  2. Apathy and Cognitive Test Performance in Patients Undergoing Cardiac Testing

    Lynn Reese Kakos

    2013-01-01

    Full Text Available Background. Psychiatric comorbidity is common in patients with cardiovascular disease, with the literature indicating that this population may be at risk for apathy. The current study examined the prevalence of apathy in patients with cardiovascular disease and its relation to aspects of cognitive function. Methods. 123 participants from an outpatient cardiology clinic completed a brief neuropsychological battery, a cardiac stress test, and demographic information, medical history, and depression symptomatology self-report measures. Participants also completed the Apathy Evaluation Scale to quantify apathy. Results. These subjects reported limited levels of apathy and depression. Increased depressive symptomatology, history of heart attack, and metabolic equivalents were significantly correlated with apathy (P<0.05. Partial correlations adjusting for these factors revealed significant correlations between behavioral apathy and a measure of executive function and the other apathy subscale with a measure of attention. Conclusion. Findings revealed that apathy was not prevalent in this sample though associated with medical variables. Apathy was largely unrelated to cognitive function. This pattern may be a result of the mild levels of cardiovascular disease and cognitive dysfunction in the current sample. Future studies in samples with severe cardiovascular disease or neuropsychological impairment may provide insight into these associations.

  3. Experimental test of liquid droplet radiator performance

    The liquid droplet radiator (LDR) is a heat rejection system for space power systems wherein an array of heated liquid droplets radiates energy directly to space. The use of submillimeter droplets provides large radiating area-to-mass ratio, resulting in radiator systems which are several times lighter than conventional solid surface radiators. An experiment is described in which the power radiated by an array of 2300 streams of silicone oil droplets is measured to test a previously developed theory of the LDR radiation process. This system would be capable of rejecting several kW of heat in space. Furthermore, it would be suitable as a modular unit of an LDR designed for 100-kW power levels. The experiment provided confirmation of the theoretical dependence of droplet array emissivity on optical depth. It also demonstrated the ability to create an array of more than 1000 droplet streams having a divergence less than 1 degree. 7 references

  4. Qualification Plus: Performance and Durability Tests Beyond IEC 61215 (Presentation)

    Kurtz, S.; Jordan, J.; Kempe, M.; Miller, D.; Bosco, N.; Silverman, T.; Hacke, P.; Phillips, N.; Earnest, T.; Romero, R.

    2014-03-01

    Qualification Plus is an accelerated test protocol and quality management system that gives higher confidence in field performance of PV modules compared with conventional qualification testing. The test sequences are being developed as consensus standards, but the early publication of these tests enables the community to begin benefiting from them sooner.

  5. Motivational and Cognitive Test-Taking Strategies and Their Influence on Test Performance in Mathematics

    Peng, Yun; Hong, Eunsook; Mason, Elsa

    2014-01-01

    A structural equation model of relationships among testing-related motivation variables (test value, effort, self-efficacy, and test anxiety), test-taking strategies (test tactics and metacognitive strategies), gender, and math test performance were examined with a sample of 10th graders (N = 438; 182 males and 256 females). In general, motivation…

  6. Chinese College Test Takers' Individual Differences and Reading Test Performance: A Structural Equation Modeling Approach.

    Zhang, Limei

    2016-06-01

    This study reports on the relationships between test takers' individual differences and their performance on a reading comprehension test. A total of 518 Chinese college students (252 women and 256 men; M age = 19.26 year, SD = 0.98) answered a questionnaire and sit for a reading comprehension test. The study found that test takers' L2 language proficiency was closely linked to their test performance. Test takers' employment of strategies was significantly and positively associated with their performance on the test. Test takers' motivation was found to be significantly associated with reading test performance. Test anxiety was negatively related to their use of reading strategies and test performance. The results of the study lent support to the threshold hypothesis of language proficiency. The implications for classroom teaching were provided. PMID:27173665

  7. Performance testing of CANDU MOX fuel

    CANDU fuel bundles containing 0.5 wt % plutonium in natural uranium were fabricated at Chalk River Laboratories and were successfully irradiated in the NRU reactor at powers up to 65 Min and to burnups ranging from 13 to 23 MW·d/kg HE. Two of the bundles experienced power histories that bound the normal powers and burnups of natural UO2 CANDU fuel (2 fuel. Significantly more grain growth was observed than that typically expected for UO2 fuel; however, this increase in grain growth had no apparent effect on the overall performance of the fuel. Pellet-centre columnar grain growth was accompanied by plutonium homogenization. Two other MOX bundles operated to extended burnups of 19 to 23 MW·d/kg HE. Burnup extension above 15 MW·d/kg HE had no apparent effect on sheath strain or grain growth, and only a small effect on FGR and the amount of oxide observed on the inner surface of the sheath. (author)

  8. Performance testing of CANDU MOX fuel

    CANDU fuel bundles containing 0.5 wt % plutonium in natural uranium were fabricated at Chalk River Laboratories and were successfully irradiated in the NRU reactor at powers up to 65 kW/m and to burnups ranging from 13 to 23 MW·d/kg HE. Two of the bundles experienced power histories that bound the normal powers and burnups of natural UO2 CANDU fuel (2 fuel. Significantly more grain growth was observed than that typically expected for UO2 fuel; however, this increase in grain growth had no apparent effect on the overall performance of the fuel. Pellet-centre columnar grain growth was accompanied by plutonium homogenization. Two other MOX bundles operated to extended burnups of 19 to 23 MW·d/kg HE. Burnup extension above 15 MW·d/kg HE had no apparent effect on sheath strain or grain growth, and only a small effect on FGR and the amount of oxide observed on the inner surface of the sheath. (author)

  9. Experimental test of liquid droplet radiator performance

    This liquid droplet radiator (LDR) is evolving rapidly as a lightweight system for heat rejection in space power systems. By using recirculating free streams of submillimeter droplets to radiate waste energy directly to space, the LDR can potentially be an order of magnitude lighter than conventional radiator systems which radiate from solid surfaces. The LDR is also less vulnerable to micrometeoroid damage than are conventional radiators, and it has a low transport volume. Three major development issues of this new heat rejection system are the ability to direct the droplet streams with sufficient precision to avoid fluid loss, radiative performance of the array of droplet streams which comprise the radiating elements of the LDR, and the efficacy of the droplet stream collector, again with respect to fluid loss. This paper reports experimental results bearing on the first two issues - droplet aiming in a multikilowatt-sized system, and radiated power from a large droplet array. Parallel efforts on droplet collection and LDR system design are being pursued by several research groups

  10. Change in Criteria for USP Dissolution Performance Verification Tests

    Hauck, Walter W.; DeStefano, Anthony J.; Brown, William E.; Stippler, Erika S.; Abernethy, Darrell R.; Koch, William F.; Williams, Roger L.

    2009-01-01

    The US Pharmacopeial Convention has been evaluating its performance verification tests (PVT) for several years. These tests help ensure the integrity of the US Pharmacopeia performance test when a dissolution procedure, as described in General Chapter Dissolution , is relied upon to test a nonsolution orally administered dosage form. One result of the evaluation is a change in the PVT criterion from one based on individual tablet results to one based on the mean and variability of a set of ta...

  11. 40 CFR 80.166 - Carburetor deposit control performance test and test fuel guidelines.

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Carburetor deposit control performance... § 80.166 Carburetor deposit control performance test and test fuel guidelines. EPA will use the...)(ii)(B). (a) Carburetor Deposit Control Test Procedure and Performance Standard Guidelines....

  12. Fenestration System Performance Research, Testing, and Evaluation

    Jim Benney

    2009-11-30

    The US DOE was and is instrumental to NFRC's beginning and its continued success. The 2005 to 2009 funding enables NFRC to continue expanding and create new, improved ratings procedures. Research funded by the US DOE enables increased fenestration energy rating accuracy. International harmonization efforts supported by the US DOE allow the US to be the global leader in fenestration energy ratings. Many other governments are working with the NFRC to share its experience and knowledge toward development of their own national fenestration rating process similar to the NFRC's. The broad and diverse membership composition of NFRC allows anyone with a fenestration interest to come forward with an idea or improvement to the entire fenestration community for consideration. The NFRC looks forward to the next several years of growth while remaining the nation's resource for fair, accurate, and credible fenestration product energy ratings. NFRC continues to improve its rating system by considering new research, methodologies, and expanding to include new fenestration products. Currently, NFRC is working towards attachment energy ratings. Attachments are blinds, shades, awnings, and overhangs. Attachments may enable a building to achieve significant energy savings. An NFRC rating will enable fair competition, a basis for code references, and a new ENERGY STAR product category. NFRC also is developing rating methods to consider non specular glazing such as fritted glass. Commercial applications frequently use fritted glazing, but no rating method exists. NFRC is testing new software that may enable this new rating and contribute further to energy conservation. Around the world, many nations are seeking new energy conservation methods and NFRC is poised to harmonize its rating system assisting these nations to better manage and conserve energy in buildings by using NFRC rated and labeled fenestration products. As this report has shown, much more work needs to be

  13. Comparing the Effects of Test Anxiety on Independent and Integrated Speaking Test Performance

    Huang, Heng-Tsung Danny; Hung, Shao-Ting Alan

    2013-01-01

    Integrated speaking test tasks (integrated tasks) offer textual and/or aural input for test takers on which to base their subsequent oral responses. This path-analytic study modeled the relationship between test anxiety and the performance of such tasks and explored whether test anxiety would differentially affect the performance of independent…

  14. Performance tests on simulation apparatuses of shallow land

    Performance tests on simulation apparatuses of shallow land, in which natural condition soil can be used as testing materials, were carried out to study the migration behavior of radionuclides in a natural barrier. The apparatuses consist of the simulation apparatuses for aerated and aquifer zones, the air control apparatus, the measurement apparatuses of water and radionuclide moving velocities, etc. As performance tests, characteristics tests were done for these apparatuses and overall test of the simulation apparatuses for aerated and aquifer zones was also done under the actual test condition. It was confirmed that the all of apparatuses have achieved the designated performance requirements. This report describes the results of performance tests on simulation apparatuses of shallow land, which is categorized into three parts, that is, objective, method and result. (author)

  15. Hydroxylamine a potential reagent for dissolution off gas scrubbing in nuclear spent fuel reprocessing: kinetics of the iodine reduction

    Iodine, which can be released inside the containment buildings when accident occurs, can be traced, in normal operating conditions, at the back end of the fuel cycle. Hydroxylamine has been selected as a regent of potential interest to trap iodine in the dissolution off gas treatment. The kinetics of the reaction between hydroxylamine and iodine has been studied in a narrow range of pH(1-2), with hydroxylamine in excess (ratios of hydroxylamine to iodine initial concentrations varying from 2 to 40), at constant temperature (30 deg. C) and ionic strength (0.1 mol/l). Spectrophotometry and voltametry have been coupled for analytical solved using a investigation. The problem of the rapid mixing of the reactants has been solved using a continuous reactor. Tri-iodine has been shown non reactive towards hydroxylamine. An initial rate law have been proposed, pointing out the first order of the reaction with respect to hydroxylamine and iodine, and the inhibitory effect and hydrogen ions. Nitrous acid has been identified as a transitory product. Nitrous oxide and nitrogen monoxide have been detected by gas chromatography, the ratio of the amounts of products formed depending on acidity. The complexity of the overall reaction has been ascribed to the competition of hour reactions (I2 + I I3-NH3OH+ + 2 I2 + H2O ->HNO2 + 4 I- + 5 H+; NH3OH+ + HNO2 -> N2O + 2 H2O + H-+ 2HNO2 + 2 I- + 2H-+ -> 2 NO + I2 + H2O). (authors)

  16. Verification test of an engineering-scale multi-purpose radwaste incinerator

    The verification test of an engineering-scale multi-purpose radwaste incinerator was implemented. The test items include performance determination for the system when solid wastes (include resins) or spent oil were incinerating and off gas was cleaning, tracer test for determining decontamination factor and 72 h continuos running test. 500 h tests verify the reliability and feasibility of designs of technological process, main structure, instrument control and system safety. The incineration system ran smoothly, devices and instruments worked stably. The specifications such as capacity, volume reduction factor, carbon remainder in ash and decontamination factor all meet the design requirements

  17. Performance of the test control system using Java/CORBA

    In order to research the control system for 'Super SOR', we have developed the test bench of the control system and evaluated its performance. We use Common Object Request Broker Architecture (CORBA) as the framework for the control system, and Java as the programming language for the graphical user interface. This paper describes the test bench and its performance. (author)

  18. Impact of Educational Level on Performance on Auditory Processing Tests.

    Murphy, Cristina F B; Rabelo, Camila M; Silagi, Marcela L; Mansur, Letícia L; Schochat, Eliane

    2016-01-01

    Research has demonstrated that a higher level of education is associated with better performance on cognitive tests among middle-aged and elderly people. However, the effects of education on auditory processing skills have not yet been evaluated. Previous demonstrations of sensory-cognitive interactions in the aging process indicate the potential importance of this topic. Therefore, the primary purpose of this study was to investigate the performance of middle-aged and elderly people with different levels of formal education on auditory processing tests. A total of 177 adults with no evidence of cognitive, psychological or neurological conditions took part in the research. The participants completed a series of auditory assessments, including dichotic digit, frequency pattern and speech-in-noise tests. A working memory test was also performed to investigate the extent to which auditory processing and cognitive performance were associated. The results demonstrated positive but weak correlations between years of schooling and performance on all of the tests applied. The factor "years of schooling" was also one of the best predictors of frequency pattern and speech-in-noise test performance. Additionally, performance on the working memory, frequency pattern and dichotic digit tests was also correlated, suggesting that the influence of educational level on auditory processing performance might be associated with the cognitive demand of the auditory processing tests rather than auditory sensory aspects itself. Longitudinal research is required to investigate the causal relationship between educational level and auditory processing skills. PMID:27013958

  19. Performance demonstration tests for detection of intergranular stress corrosion cracking

    This report evaluates detection tests of inservice inspectors (ISI), procedures and equipment that are employed to find intergranular stress corrosion cracks in nuclear power plant piping. Performance is described by two fundamental parameters: false call probability and probability of detection. Acceptable inspection performance and detection tests are therefore defined in terms of these two parameters. 14 refs., 25 figs

  20. Beam test performance of the SKIROC2 ASIC

    Frisson, T; Anduze, M; Augustin, J.E; Bonis, J; Boudry, V; Bourgeois, C; Brient, J.C; Callier, S; Cerutti, M; Chen, S; Cornat, R; Cornebise, P; Cuisy, D; David, J; De la Taille, C; Dulucq, F; Frotin, M; Gastaldi, F; Ghislain, P; Giraud, J; Gonnin, A; Grondin, D; Guliyev, E; Hostachy, J.Y; Jeans, D; Kamiya, Y; Kawagoe, K; Kozakai, C; Lacour, D; Lavergne, L; Lee, S.H; Magniette, F; Ono, H; Poeschl, R; Rouëné, J; Seguin-Moreau, N; Song, H.S; Sudo, Y; Thiebault, A; Tran, H; Ueno, H; Van der Kolk, N; Yoshioka, T

    2015-01-01

    Beam tests of the first layers of CALICE silicon tungsten ECAL technological prototype were performed in April and July 2012 using 1–6 GeV electron beam at DESY. This paper presents an analysis of the SKIROC2 readout ASIC performance under test beam conditions.

  1. DEVELOPING an ENGLISH PERFORMANCE TEST for INCOMING INDONESIAN COLLEGE STUDENTS

    Bill Glenny Wullur

    2011-07-01

    Full Text Available Abstracts This study constructed, developed and validated an English Performance test as a complementary to an existing placement test in Universitas Klabat, Manado, Indonesia.  It is designed to provide a valid criterion-based measurement within the placement programs of the said university. The study aimed to answer the following questions: (1 What test tasks and items are needed in a performance test based on current language testing theory? (2 Is the performance test valid? (3 Is the scoring of the performance test reliable? (4 Is the performance test practical and predictive? And (5 What are the ratings of the resultant performance test? The steps in developing a performance test involved conducting needs analysis, establishing attributes of good performance test, and constructing test specification based on current language testing theory.  The speech event chosen which would generate language use was applying for financial assistance.  From this speech event, four activities were elicited: (1 writing a letter of inquiry, (2 completing an application form, (3 making an appointment for interview, (4 giving an oral presentation/interview.  These activities represent the four authentic tasks in which the desirable modes/channel of communication, language functions and skills, genre, and topic are integrated. The developed test is divided into four sections corresponding with the elicited tasks: (1 Formal letter, (2 Application form, (3 Making Appointment, and (4 Oral Presentation. The test was validated in several ways: (1 face validation compared the scores of Indonesian studying in the Philippines and in Indonesia, and found that the scores are highly correlated at Spearman ρ = .85.  (2 The content validation relied on the evaluation of expert informants.  The finding shows that the content coverage and relevance of the test is highly satisfactory. (3 The concurrent validation was conducted to the existing placement test and found

  2. Formation of the ZnFe{sub 2}O{sub 4} phase in an electric arc furnace off-gas treatment system

    Suetens, T., E-mail: thomas.suetens@mtm.kuleuven.be; Guo, M., E-mail: muxing.guo@mtm.kuleuven.be; Van Acker, K., E-mail: karel.vanacker@lrd.kuleuven.be; Blanpain, B., E-mail: bart.blanpain@mtm.kuleuven.be

    2015-04-28

    Highlights: • EAF dust was characterized with particle size analysis, XRF, and EPMA. • Slag particles showed no sign of reaction with Zn vapor. • Fe{sub 2}O{sub 3} particles showed different degrees of reaction based on their size. • The thermodynamic stability of Zn vapor in EAF off-gas ducts was reevaluated. • In presence of Fe{sub 2}O{sub 3}, Zn vapor reacts to form ZnFe{sub 2}O{sub 4} and ZnO. - Abstract: To better understand the phenomena of ZnFe{sub 2}O{sub 4} spinel formation in electric arc furnace dust, the dust was characterized with particle size analysis, X-ray fluorescence (XRF), electron backscatter diffraction (EBSD), and electron probe micro-analysis (EPMA). Different ZnFe{sub 2}O{sub 4} formation reaction extents were observed for iron oxide particles with different particle sizes. ZnO particles were present as both individual particles and aggregated on the surface of larger particles. Also, the slag particles found in the off-gas were shown not to react with the zinc vapor. After confirming the presence of a ZnFe{sub 2}O{sub 4} formation reaction, the thermodynamic feasibility of in-process separation – a new electric arc furnace dust treatment technology – was reevaluated. The large air intake and the presence of iron oxide particles in the off-gas were included into the thermodynamic calculations. The formation of the stable ZnFe{sub 2}O{sub 4} spinel phase was shown to be thermodynamically favorable in current electric arc furnace off-gas ducts conditions even before reaching the post combustion chamber.

  3. Distillation as a means of separating krypton from the off-gas of a reprocessing plant for graphite-coated HTR fuel elements

    The AKUT-II facility is described, which is designed for an off-gas throughput of 10 Nm3/h. The low-pressure section is for primary purification in several steps, whereas in the high-pressure CO2 section (70 bar, 200C) the separation of Kr-85 by means of distillation is achieved. The parameters for the design of the rectifying columns have been determined experimentally. (HP)

  4. Performance testing framework for smart grid communication network

    Smart grid communication network is comprised of different communication mediums and technologies. Performance evaluation is one of the main concerns in smart grid communication system. In any smart grid communication implementation, to determine the performance factor of the network, a testing of an end-to-end process flow is required. Therefore, an effective and coordinated testing procedure plays a crucial role in evaluating the performance of smart grid communications. In this paper, a testing framework is proposed as a guideline to analyze and assess the performance of smart grid communication network.

  5. History and Performance of Chinese LSAT Test Takers.

    Wang, Xiang Bo; Harris, Vincent

    Although the Law School Admission Test (LSAT) has been administered to Chinese test takers in Taiwan and Hong Kong for more than 22 years and in China for the past decade, there is very little documentation on the history, test taker volumes, performance, or law school admission rates of these candidates. The current study addresses the following…

  6. ASME performance test on TVA Sequoyah Unit 1

    In April 1983 an ASME Performance Test was conducted on the Sequoyah 1 nuclear turbine-generator unit. Test data was collected using a mobile computer-controlled data-acquisition system. Excellent and consistent test results were achieved which showed that the unit performed better than expected. Earlier calorimetric analysis had indicated that the unit was not generating the expected electrical output. These earlier results were based on final feedwater flow measurement using permanently-installed station venturis. The ASME tests, which employed calibrated ASME throat-tap nozzles to measure feedwater flow, showed that the permanently-installed venturis had been indicating high, thereby causing the unit to be operated at less than 100% thermal power prior to the ASME test. The causes of this discrepancy are discussed in the paper. This paper includes a description of the test program and testing procedures and the performance of the major components of the heat cycle

  7. Halogen occultation experiment (HALOE) performance verification test procedure

    Mauldin, L. E., III

    1986-01-01

    The Performance Verification Test Procedure is given for the Halogen Occultation Experiment (HALOE) instrument, which is being developed in house at the Langley Research Center for the Upper Atmosphere Research Satellite (UARS). This procedure is used for comprehensive performance testing of the HALOE instrument which occurs before, during, and after flight environmental tests. The radiometric performance tests include noise, drift, linearity, instantaneous field-of-view, cal wheel gas cell characterization, and self thermal emissions. Pointer/tracker performance tests include sun sensor performance, gimbal performance, control system performance, and boresight alignment. In addition, the instrument is tested functionally in simulated orbit sequences and all command operating modes are exercised. The data analysis required for each test is specified and pass/fail criteria are given where applicable. This test will fully demonstrate the HALOE instrument's ability to achieve science mission requirements. The HALOE instrument is a gas correlation radiometer that measures vertical distribution of eight upper atmospheric constituents: O3, HCl, HF, NO, CH4, H2O, NO2, and CO2.

  8. Nuclebras' installations for performance tests of nuclear power plants components

    The reasons for Nuclebras' Nuclear Technology Development Center to implement a laboratory for supporting Brazilian manufactures, giving to them the means for performing functional tests of industrial products, are presented. A brief description of facilities under construction: the components Test Loop and Facility for Testing N.P.P. components under Accident conditions, and other already in operation, as well as its objectives and main technical characteristics. Some test results had already obtained are also presented. (Author)

  9. Thermionic Fuel Element performance: TFE Verification Program. Final test report

    1994-06-01

    The program objective is to demonstrate the technology readiness of a Thermionic Fuel Element (TFE) suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW(e) range, and a full power life of 7 years. A TFE was designed that met the reliability and lifetime requirements for a 2 MW(e) conceptual reactor design. Analysis showed that this TFE could be used over the range of 0.5 to 5 megawatts. This was used as the basis for designing components for test and evaluation. The demonstration of a 7-year component lifetime capability was through the combined use of analytical models and accelerated, confirmatory tests in a fast test reactor. Iterative testing was performed in which the results of one test series led to evolutionary improvements in the next test specimens. The TFE components underwent screening and initial development testing in ex-reactor tests. Several design and materials options were considered for each component. As screening tests permitted, down selection occurred to very specific designs and materials. In parallel with ex-reactor testing, and fast reactor component testing, components were integrated into a TFE and tested in the TRIGA test reactor at GA. Realtime testing of partial length TFEs was used to test support, alignment and interconnective TFE components, and to verify TFE performance in-reactor with integral cesium reservoirs. Realtime testing was also used to verify the relation between TFE performance and fueled emitter swelling, to test the durability of intercell insulation, to check temperature distributions, and to verify the adequacy over time of the fission gas venting channels. Predictions of TFE lifetime rested primarily on the accelerated component testing results, as correlated and extended to realtime by the use of analytical models.

  10. 40 CFR 63.865 - Performance test requirements and test methods.

    2010-07-01

    ... existing lime kilns in the chemical recovery system at the mill measured as CaO during the performance test... the chemical recovery system at the mill measured during the performance test, Mg/d (ton/d) of black... at Kraft, Soda, Sulfite, and Stand-Alone Semichemical Pulp Mills § 63.865 Performance...

  11. Thermodynamic performance testing of the orbiter flash evaporator system

    Jaax, J. R.; Melgares, M. A.; Frahm, J. P.

    1980-01-01

    System level testing of the space shuttle orbiter's development flash evaporator system (FES) was performed in a thermal vacuum chamber capable of simulating ambient ascent, orbital, and entry temperature and pressure profiles. The test article included the evaporator assembly, high load and topping exhaust duct and nozzle assemblies, and feedwater supply assembly. Steady state and transient heat load, water pressure/temperature and ambient pressure/temperature profiles were imposed by especially designed supporting test hardware. Testing in 1978 verified evaporator and duct heater thermal design, determined FES performance boundaries, and assessed topping evaporator plume characteristics. Testing in 1979 combined the FES with the other systems in the orbiter active thermal control subsystem (ATCS). The FES met or exceeded all nominal and contingency performance requirements during operation with the integrated ATCS. During both tests stability problems were encountered during steady state operations which resulted in subsequent design changes to the water spray nozzle and valve plate assemblies.

  12. Personal dosimetry performance testing in the United States

    The basis for personal dosimetry performance testing in the United States is ANSI/HPS N13.11. Now in it's fourth edition, this standard has been in place since 1983. Testing under this standard is administered by the National Voluntary Laboratory Accreditation Program (NVLAP), and accreditation of dosimetry processors under this program is required by U.S. Nuclear Regulatory Commission (NRC) regulations. The U.S. Department of Energy (DOE) also maintains a testing program for its laboratories and contractors, administered by the Department of Energy Laboratory Accreditation Program (DOELAP). One of the goals of this current revision was the modification of ANSI/HPS N13.11 to allow acceptance by both testing programs in order to bring harmonization to U.S. personal dosemeter performance testing. The testing philosophy of ANSI/HPS N13.11 has always combined elements of type testing and routine performance testing and is thus different from the testing philosophy used in the rest of the world. In this paper, the history of performance testing in the U.S. is briefly reviewed. Also described is the revision that produced the fourth edition of this standard, which has taken place over the last three years (2005-2008) by a working group representing national standards laboratories, government laboratories, the military, dosimetry vendors, universities and the nuclear power industry. (author)

  13. Overview on MOX fuel for LWRs: Design, performance and testing

    This overview looks at the historical background to the design, performance and testing of LWR MOX fuel over the last 30 to 40 years. It briefly examines the scenarios which encouraged the development of MOX fuel for utilisation in LWRs and looks at the design changes required on moving from UO2 to MOX fuel. The paper summarises the national irradiation testing programmes, the commercial developments and performance data obtained throughout this period, highlighting those aspects which have had an impact on manufacturing and design choices. The paper thus provides the historical background information for the contributed papers in Session 3 (Fuel Design, Performance and Testing) of the symposium. (author)

  14. Recommended procedures for performance testing of radiobioassay laboratories: Volume 3, In vivo test phantoms

    Draft American National Standards Institute (ANSI) Standard N13.30 (Performance Criteria for Radiobioassay) was developed for the US Department of Energy and the US Nuclear Regulatory Commission to help ensure that bioassay laboratories provide accurate and consistent results. The draft standard describes the procedures necessary to establish a bioassay performance-testing laboratory and program. The bioassay performance-testing laboratory will conduct tests to evaluate the performance of service laboratories. Pacific Northwest Laboratory helped develop testing procedures as part of an effort to evaluate the draft ANSI N13.30 performance criteria by testing the existing measurement capabilities of various bioassay laboratories. This report recommends guidelines for the preparation, handling, storage, distribution, shipping, and documentation of test phantoms used for calibration of measurement systems for direct bioassay. The data base and recommended records system for documenting radiobioassay performance at the service laboratories are also presented

  15. Tri-State Grain Sorghum Performance Tests, 2013

    Balota, Maria; Heiniger, Ron; Ray, Chris; Mehl, H. L.; Rutto, Laban; Ulanch, Paul

    2014-01-01

    Discusses performance of 45 hybrid types of sorghum at test locations in Virginia, North Carolina and South Carolina. Hybrids were evaluated in terms of yield, grain moisture, plant height, mold and anthracnose, and other factors.

  16. Current Status and Performance Tests of Korea Heat Load Test Facility KoHLT-EB

    A commissioning test has been scheduled to establish the installation and preliminary performance experiments of the copper hypervapotron mockups. And a qualification test will be performed to evaluate the CuCrZr duct liner in the ITER neutral beam injection facility and the ITER first wall small-scale mockups of the semi-prototype, at up to 1.5 and 5 MW/m2 high heat flux. Also, this system will be used to test other PFCs for ITER and materials for tokamak reactors. Korean high heat flux test facility(KoHLT-EB; Korea Heat Load Test facility - Electron Beam) by using an electron beam system has been constructed in KAERI to perform the qualification test for ITER blanket FW semi-prototype mockups, hypervapotron cooling devices in fusion devices, and other ITER plasma facing components. The commissioning and performance tests with the supplier of e-gun system have been performed on November 2012. The high heat flux test for hypervapotron cooling device and calorimetry were performed to measure the surface heat flux, the temperature profile and cooling performance. Korean high heat flux test facility for the plasma facing components of nuclear fusion machines will be constructed to evaluate the performance of each component. This facility for the plasma facing materials will be equipped with an electron beam system with a 60 kV acceleration gun

  17. Current Status and Performance Tests of Korea Heat Load Test Facility KoHLT-EB

    Kim, Sukkwon; Jin, Hyunggon; Shin, Kyuin; Choi, Boguen; Lee, Eohwak; Yoon, Jaesung; Lee, Dongwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Duckhoi; Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    A commissioning test has been scheduled to establish the installation and preliminary performance experiments of the copper hypervapotron mockups. And a qualification test will be performed to evaluate the CuCrZr duct liner in the ITER neutral beam injection facility and the ITER first wall small-scale mockups of the semi-prototype, at up to 1.5 and 5 MW/m{sup 2} high heat flux. Also, this system will be used to test other PFCs for ITER and materials for tokamak reactors. Korean high heat flux test facility(KoHLT-EB; Korea Heat Load Test facility - Electron Beam) by using an electron beam system has been constructed in KAERI to perform the qualification test for ITER blanket FW semi-prototype mockups, hypervapotron cooling devices in fusion devices, and other ITER plasma facing components. The commissioning and performance tests with the supplier of e-gun system have been performed on November 2012. The high heat flux test for hypervapotron cooling device and calorimetry were performed to measure the surface heat flux, the temperature profile and cooling performance. Korean high heat flux test facility for the plasma facing components of nuclear fusion machines will be constructed to evaluate the performance of each component. This facility for the plasma facing materials will be equipped with an electron beam system with a 60 kV acceleration gun.

  18. Performances on Symbol Digit Modalities Test, Color Trails Test, and modified Stroop test in a healthy, elderly Danish sample

    Vogel, Asmus; Stokholm, Jette; Jørgensen, Kasper

    2013-01-01

    different age groups. For SDMT and CTT1, Danish Adult Reading Test (DART) score also had a significant impact on test performances. The incongruent version of the modified Stroop test was significantly correlated to education. Moderate and significant correlations were found between the three tests. Even...

  19. The effect of motivational music on wingate anaerobic test performance

    Özkan Işık; Yasin Ersöz; Murat Pazan; Yücel Ocak

    2015-01-01

    The aim of this study is to examine the effect of the motivational music on the Wingate Anaerobic Test (WAnT) performance. 16 male students who studied at School of Physical Education and Sports, Kocatepe University participated in the study voluntarily. After demographic characteristics of the voluntaries [age, height, body weight (BW), body mass index (BMI)] were measured without music (pre-test) and with motivational music [>120 bpm (beats per minute)] conditions (post-test). For the analy...

  20. Effects of Vigorous Intensity Physical Activity on Mathematics Test Performance

    Phillips, David S.; Hannon, James C.; Castelli, Darla M.

    2015-01-01

    The effect of an acute bout of physical activity on academic performance in school-based settings is under researched. The purpose of this study was to examine associations between a single, vigorous (70-85%) bout of physical activity completed during physical education on standardized mathematics test performance among 72, eighth grade students…

  1. The Impact of Test Anxiety on Test Performance among Iranian EFL Learners

    Minoo Alemi; Parviz Birjandi

    2010-01-01

    As an affective factor, test-taking anxiety has been investigated in different contexts in the
    past two decades. However, the mixed results of the relationship between test-taking anxiety and
    L2 learners’ test performance show that the instrumentation for the assessment of test-taking
    anxiety and the factors comprising the construct of test-taking anxiety trait requires more
    investigation in order to shed more light on the issue. To this e...

  2. Laboratory Performance Testing of Residential Window Air Conditioners

    Winkler, J.; Booten, C.; Christensen, D.; Tomerlin, J.

    2013-03-01

    Window air conditioners are the dominant cooling product for residences, in terms of annual unit sales. They are inexpensive, portable and can be installed by the owner. For this reason, they are an attractive solution for supplemental cooling, for retrofitting air conditioning into a home which lacks ductwork, and for renters. Window air conditioners for sale in the United States are required to meet very modest minimum efficiency standards. Four window air conditioners' performance were tested in the Advanced HVAC Systems Laboratory on NREL's campus in Golden, CO. In order to separate and study the refrigerant system's performance, the unit's internal leakage pathways, the unit's fanforced ventilation, and the leakage around the unit resulting from installation in a window, a series of tests were devised that focused on each aspect of the unit's performance. These tests were designed to develop a detailed performance map to determine whole-house performance in different climates. Even though the test regimen deviated thoroughly from the industry-standard ratings test, the results permit simple calculation of an estimated rating for both capacity and efficiency that would result from a standard ratings test. Using this calculation method, it was found that the three new air conditioners' measured performance was consistent with their ratings. This method also permits calculation of equivalent SEER for the test articles. Performance datasets were developed across a broad range of indoor and outdoor operating conditions, and used them to generate performance maps.

  3. Report on long range alpha detector (LRAD) performance tests

    Kobayashi, H; Ishikawa, H; Unno, M; Yoshida, T

    2002-01-01

    At present, alpha contamination measurement on objects is conducted with ZnS scintillation survey meter (direct method) and smear test (indirect method). But it is difficult to measure large and complicated objects by direct method. Long Range Alpha Detector (LRAD) was produced as a solution for this problem. We carried out performance tests of this LRAD. As a result of the performance tests, we confirmed the linear relation between the measurement values of LRAD and alpha-radioactivity on the surface of objects.

  4. Spent nuclear fuel storage -- Performance tests and demonstrations

    This report summarizes the results of heat transfer and shielding performance tests and demonstrations conducted from 1983 through 1992 by or in cooperation with the US Department of Energy (DOE), Office of Commercial Radioactive Waste Management (OCRWM). The performance tests consisted of 6 to 14 runs involving one or two loadings, usually three backfill environments (helium, nitrogen, and vacuum backfills), and one or two storage system orientations. A description of the test plan, spent fuel load patterns, results from temperature and dose rate measurements, and fuel integrity evaluations are contained within the report

  5. Testing of abstractions for total system performance assessment

    Total system performance assessment requires the explicit quantification of all the relevant processes and process interactions. However, process level descriptions of all the processes required for the evaluation of the total system performance is computationally impractical, thus requiring the abstraction of these process level models. In this paper the unsaturated flow abstraction methodology developed for the current iteration of the total system performance assessment for the potential repository at Yucca Mountain is presented along with a simple test problem

  6. 40 CFR 63.5850 - How do I conduct performance tests, performance evaluations, and design evaluations?

    2010-07-01

    ... test, performance evaluation, and design evaluation in 40 CFR part 63, subpart SS, that applies to you... CFR part 60. (f) The control device performance test must consist of three runs and each run must last... requirements in § 63.7(e)(1) and under the specific conditions that 40 CFR part 63, subpart SS, specifies....

  7. Dynamic Performance Characteristic Tests of Real Scale Lead Rubber Bearing for the Evaluation of Performance Criteria

    Dynamic characteristic tests of full scale lead rubber bearing were performed for the evaluation of performance criteria of isolation system for nuclear power plants. For the dynamic test for a full scale rubber bearing, two 1500mm diameter lead rubber bearings were manufactured. The viewpoints of this dynamic test are determination of an ultimate shear strain level of lead rubber bearing, behavior of rubber bearing according to static and dynamic input motion, sinusoidal and random (earthquake) motion, and 1-dimentional and 2-dimensional input motion. In this study, seismic isolation device tests were performed for the evaluation of performance criteria of isolation system. Through this test, it can be recognized that in the case of considering a mechanical property test, dynamic and multi degree of loading conditions should be determined. But these differences should be examined how much affect to the global structural behavior

  8. RTG performance on Galileo and Ulysses and Cassini test results

    Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Similar comparisons are made for the RTG on the Ulysses spacecraft which completed its planned mission in 1995. Also presented are test results from small scale thermoelectric modules and full scale converters performed for the Cassini program. The Cassini mission to Saturn is scheduled for an October 1997 launch. Small scale module test results on thermoelectric couples from the qualification and flight production runs are shown. These tests have exceeded 19,000 hours are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. Test results are presented for full scale units both ETGs (E-6, E-7) and RTGs (F-2, F-5) along with mission power predictions. F-5, fueled in 1985, served as a spare for the Galileo and Ulysses missions and plays the same role in the Cassini program. It has successfully completed all acceptance testing. The ten years storage between thermal vacuum tests is the longest ever experienced by an RTG. The data from this test are unique in providing the effects of long term low temperature storage on power output. All ETG and RTG test results to date indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of at least five percent are predicted. copyright 1997 American Institute of Physics

  9. RTG performance on Galileo and Ulysses and Cassini test results

    Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Similar comparisons are made for the RTG on the Ulysses spacecraft which completed its planned mission in 1995. Also presented are test results from small scale thermoelectric modules and full scale converters performed for the Cassini program. The Cassini mission to Saturn is scheduled for an October 1997 launch. Small scale module test results on thermoelectric couples from the qualification and flight production runs are shown. These tests have exceeded 19,000 hours are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. Test results are presented for full scale units both ETGs (E-6, E-7) and RTGs (F-2, F-5) along with mission power predictions. F-5, fueled in 1985, served as a spare for the Galileo and Ulysses missions and plays the same role in the Cassini program. It has successfully completed all acceptance testing. The ten years storage between thermal vacuum tests is the longest ever experienced by an RTG. The data from this test are unique in providing the effects of long term low temperature storage on power output. All ETG and RTG test results to date indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of at least five percent are predicted

  10. Play for Performance: Using Computer Games to Improve Motivation and Test-Taking Performance

    Dennis, Alan R.; Bhagwatwar, Akshay; Minas, Randall K.

    2013-01-01

    The importance of testing, especially certification and high-stakes testing, has increased substantially over the past decade. Building on the "serious gaming" literature and the psychology "priming" literature, we developed a computer game designed to improve test-taking performance using psychological priming. The game primed…

  11. Stereotype threat? Effects of inquiring about test takers' gender on conceptual test performance in physics

    Maries, Alexandru; Singh, Chandralekha

    2016-01-01

    It has been found that activation of a stereotype, for example by indicating one's gender before a test, typically alters performance in a way consistent with the stereotype, an effect called "stereotype threat". On a standardized conceptual physics assessment, we found that asking test takers to indicate their gender right before taking the test did not deteriorate performance compared to an equivalent group who did not provide gender information. Although a statistically significant gender ...

  12. SRNL report for the tank waste disposition integrated flowsheet: Corrosion testing

    A series of cyclic potentiodynamic polarization (CPP) tests were performed in support of the Tank Waste Disposition Integrated Flowsheet (TWDIF). The focus of the testing was to assess the effectiveness of the SRNL model for predicting the amount of nitrite inhibitor needed to prevent pitting induced by increasing halide concentrations. The testing conditions were selected to simulate the dilute process stream that is proposed to be returned to tank farms from treating the off-gas from the low activity waste melter in the Waste Treatment and Immobilization Plant.

  13. SRNL report for the tank waste disposition integrated flowsheet: Corrosion testing

    Wyrwas, R. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-30

    A series of cyclic potentiodynamic polarization (CPP) tests were performed in support of the Tank Waste Disposition Integrated Flowsheet (TWDIF). The focus of the testing was to assess the effectiveness of the SRNL model for predicting the amount of nitrite inhibitor needed to prevent pitting induced by increasing halide concentrations. The testing conditions were selected to simulate the dilute process stream that is proposed to be returned to tank farms from treating the off-gas from the low activity waste melter in the Waste Treatment and Immobilization Plant.

  14. Thermal performance analysis of an MHD simulation test facility

    To evaluate the performance of the downstream components of a coal-fired, baseline, open cycle MHD power plant, Mississippi State University has set up a simulation test facility. Reduced thermal data from this test stand for steady-state operating conditions are presented in the paper. A thermal model to predict the variation of important thermal parameters in the test stand is shown. Results from the reduced experimental data and the predictive thermal model are compared. In addition, results for calibration runs and from recent secondary combustion tests are discussed. 7 refs

  15. History of personal dosimetry performance testing in the United States

    The basis for personal dosimetry performance testing in the United States is ANSI/HPS N13.11 (2001). Now in its third edition, this standard has been in place since 1983. Testing under this standard is administered by the National Voluntary Accreditation Program (NVLAP), and accreditation of dosimetry processors under this program is required by US Nuclear Regulatory Commission (NRC) regulations. The US Dept. of Energy (DOE) also maintains a testing program for its laboratories and contractors, administered by the Dept. of Energy Laboratory Accreditation Program (DOELAP). A focus in recent years has been the modification of ANSI/HPS N13.11 to allow acceptance by both testing programs in order to bring harmonisation to US personal dosemeter processing testing. Since there is no type testing program in the US for personal dosemeters, the testing philosophy of ANSI N13.11 has always combined elements of type testing and routine performance testing. This philosophy is explored in detail in this presentation, along with trends in the development of the document to its present state. In addition, a look will be taken at what the future holds for the next revision of the document, scheduled to begin in 2005. (authors)

  16. Performance testing and dose verification for extremity ring dosimetry

    The paper describes the testing performed on an extremity dosimetry system to measure the personal dose equivalent Hp(0.07) in photon and beta reference fields. This research refers to the American National Standard Institute to organize the performance testing for the INER's TLD-100H extremity ring dosimeters. The results show that tolerance level (L), absolute of bias (|B|) and standard deviation (S) for all categories of performance testing meet the ANSI N13.32 performance testing criteria. The performance testing results were suggested to be an important step of an accreditation procedure for the extremity ring dosimetry system in Taiwan. Besides, the dose evaluation of extremity ring dosimeters to measure Hp(0.07) in realistic fields of nuclear medicine is also verified. The reference values of Hp(0.07) were calculated using the Monte Carlo method normalized by the measured activity of the radioactive solution. For nuclear medicine irradiations the relative response to 201Tl and 99mTc radionuclides produced by INER are also satisfactory.

  17. Performance testing of radiobioassay laboratories: In vivo measurements, Final Report

    MacLellan, J.A.; Traub, R.J.; Olsen, P.C.

    1990-04-01

    A study of two rounds of in vivo laboratory performance testing was undertaken by Pacific Northwest Laboratory (PNL) to determine the appropriateness of the in vivo performance criteria of draft American National Standards Institute (ANSI) standard ANSI N13.3, Performance Criteria for Bioassay.'' The draft standard provides guidance to in vivo counting facilities regarding the sensitivity, precision, and accuracy of measurements for certain categories of commonly assayed radionuclides and critical regions of the body. This report concludes the testing program by presenting the results of the Round Two testing. Testing involved two types of measurements: chest counting for radionuclide detection in the lung, and whole body counting for detection of uniformly distributed material. Each type of measurement was further divided into radionuclide categories as defined in the draft standard. The appropriateness of the draft standard criteria by measuring a laboratory's ability to attain them were judged by the results of both round One and Round Two testing. The testing determined that performance criteria are set at attainable levels, and the majority of in vivo monitoring facilities passed the criteria when complete results were submitted. 18 refs., 18 figs., 15 tabs.

  18. Fast Flux Test Facility core restraint system performance

    Characterizing Fast Flux Test Facility (FFTF) core restraint system performance has been ongoing since the first operating cycle. Characterization consists of prerun analysis for each core load, in-reactor and postirradiation measurements of subassembly withdrawal loads and deformations, and using measurement data to fine tune predictive models. Monitoring FFTF operations and performing trend analysis has made it possible to gain insight into core restraint system performance and head off refueling difficulties while maximizing component lifetimes. Additionally, valuable information for improved designs and operating methods has been obtained. Focus is on past operating experience, emphasizing performance improvements and avoidance of potential problems. 4 refs., 12 figs., 2 tabs

  19. Pavement Subgrade Performance Study in the Danish Road Testing Machine

    Ullidtz, Per; Ertman Larsen, Hans Jørgen

    1997-01-01

    Most existing pavement subgrade criteria are based on the AASHO Road Test, where only one material was tested and for only one climatic condition. To study the validity of these criteria and to refine the criteria a co-operative research program entitled the "International Pavement Subgrade...... Performance Study" was sponsored by the FHWA with American, Finnish and Danish partners. This paper describes the first test series which was carried out in the Danish Road Testing Machine (RTM).The first step in this program is a full scale test on an instrumented pavement in the Danish Road Testing Machine...... of elasticity to calculate the stresses and strains at the position of the gauges and to compare these values to the stresses and strains recorded under the rolling wheel load.Plastic strains resulting from 50 000 applications of each of two load levels (20 kN and 40 kN) were recorded, as well as the permanent...

  20. Embedded Test Engine For Efficient At-Speed Scan Testing and Performance Binning of Microprocessors

    Lawlor, Eddie; Farrell, Ronan

    2004-01-01

    In this paper a modified architecture for at-speed scan testing is presented. This new architecture addresses the trend in the semiconductor industry for increased at-speed structural testing. The proposed architecture offers reduced time for standard at-speed testing, and, in particular, substantial savings for the repeated atspeed testing required for microprocessor speed and performance binning. The architecture has been demonstrated on UMC 0.18μm and has achiev...

  1. The Effects of Foreign Language Anxiety and Test Anxiety on Foreign Language Test Performance

    Masoomeh Salehi; Fahimeh Marefat

    2014-01-01

    This study aimed at investigating the effects of foreign language anxiety and test anxiety on foreign language test performance. Another purpose of this study was to see whether there is any relationship between foreign language anxiety and test anxiety. Two hundred students of English as a foreign language at pre-intermediate (Pre 1) level participated in this study. In the present study, the Foreign Language Classroom Anxiety Scale and the Test Anxiety Scale were used to measure foreign lan...

  2. Relationships Between Anaerobic Performance, Field Tests and Game Performance of Sitting Volleyball Players

    Marszalek Jolanta

    2015-12-01

    Full Text Available The aim of this study was to evaluate relationships between anaerobic performance, field tests, game performance and anthropometric variables of sitting volleyball players. Twenty elite Polish sitting volleyball players were tested using the 30 s Wingate Anaerobic Test for arm crank ergometer and participated in six physical field tests. Heights in position to block and to spike, as well as arm reach were measured. Players were observed during the game on the court in terms of effectiveness of the serve, block, attack, receive and defense. Pearson analysis and the Spearman's rank correlation coefficient were used. The strongest correlations were found between the chest pass test and mean power and peak power (r=.846; p=.001 and r=.708; p=.0005, respectively, and also between the T-test and peak power (r= −.718; p=.001. Mean power correlated with the 3 m test (r= −.540; p=.014, the 5 m test (r= −.592; p=.006, and the T-test (r= −.582; p=.007. Peak power correlated with the 3 m test (r= −.632; p=.003, the 5 m test (r= −.613; p=.004, speed & agility (r= −.552; p=.012 and speed & endurance (r=−.546; p=.013. Significant correlations were observed between anthropometric parameters and anaerobic performance variables (p≤.001, and also between anthropometric parameters and field tests (p≤.05. Game performance and physical fitness of sitting volleyball players depended on their anthropometric variables: reach of arms, the position to block and to spike. The chest pass test could be used as a non-laboratory field test of anaerobic performance of sitting volleyball players.

  3. Relationships Between Anaerobic Performance, Field Tests and Game Performance of Sitting Volleyball Players.

    Marszalek, Jolanta; Molik, Bartosz; Gomez, Miguel Angel; Skučas, Kęstutis; Lencse-Mucha, Judit; Rekowski, Witold; Pokvytyte, Vaida; Rutkowska, Izabela; Kaźmierska-Kowalewska, Kalina

    2015-11-22

    The aim of this study was to evaluate relationships between anaerobic performance, field tests, game performance and anthropometric variables of sitting volleyball players. Twenty elite Polish sitting volleyball players were tested using the 30 s Wingate Anaerobic Test for arm crank ergometer and participated in six physical field tests. Heights in position to block and to spike, as well as arm reach were measured. Players were observed during the game on the court in terms of effectiveness of the serve, block, attack, receive and defense. Pearson analysis and the Spearman's rank correlation coefficient were used. The strongest correlations were found between the chest pass test and mean power and peak power (r=.846; p=.001 and r=.708; p=.0005, respectively), and also between the T-test and peak power (r= -.718; p=.001). Mean power correlated with the 3 m test (r= -.540; p=.014), the 5 m test (r= -.592; p=.006), and the T-test (r= -.582; p=.007). Peak power correlated with the 3 m test (r= -.632; p=.003), the 5 m test (r= -.613; p=.004), speed & agility (r= -.552; p=.012) and speed & endurance (r=-.546; p=.013). Significant correlations were observed between anthropometric parameters and anaerobic performance variables (p≤.001), and also between anthropometric parameters and field tests (p≤.05). Game performance and physical fitness of sitting volleyball players depended on their anthropometric variables: reach of arms, the position to block and to spike. The chest pass test could be used as a non-laboratory field test of anaerobic performance of sitting volleyball players. PMID:26834870

  4. Gamma-ray shielding design and performance test of WASTEF

    The Waste Safety Testing Facility (WASTEF) was planned in 1978 to test the safety performance of HLW vitrified forms under the simulated conditions of long term storage and disposal, and completed in August 1981. The designed feature of the facility is to treat the vitrified forms contain actual high-level wastes of 5 x 104 Ci in maximum with 5 units of concrete shilded hot cells (3 units : Bate-Gamma cells, 2 units : Alpha-Gamma cells) and one units of Alpha-Gamma lead shielded cell, and to store radioactivity of 106 Ci in maximum. The safety performance of this facility is fundamentally maintained with confinement of radioactivity and shielding of the radiation. This report describes the method of gamma-ray shielding design, evaluation of the shielding test performed by using sealded gamma-ray sources(Co-60). (author)

  5. Performance testing open source products for the TMT event service

    Gillies, K.; Bhate, Yogesh

    2014-07-01

    The software system for TMT is a distributed system with many components on many computers. Each component integrates with the overall system using a set of software services. The Event Service is a publish-subscribe message system that allows the distribution of demands and other events. The performance requirements for the Event Service are demanding with a goal of over 60 thousand events/second. This service is critical to the success of the TMT software architecture; therefore, a project was started to survey the open source and commercial market for viable software products. A trade study led to the selection of five products for thorough testing using a specially constructed computer/network configuration and test suite. The best performing product was chosen as the basis of a prototype Event Service implementation. This paper describes the process and performance tests conducted by Persistent Systems that led to the selection of the product for the prototype Event Service.

  6. High Temperature Calcination - MACT Upgrade Equipment Pilot Plant Test

    Richard D. Boardman; B. H. O& #39; Brien; N. R. Soelberg; S. O. Bates; R. A. Wood; C. St. Michel

    2004-02-01

    About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste are stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Calcination at high-temperature conditions (600 C, with alumina nitrate and calcium nitrate chemical addition to the feed) is one of four options currently being considered by the Department of Energy for treatment of the remaining tank wastes. If calcination is selected for future processing of the sodium-bearing waste, it will be necessary to install new off-gas control equipment in the New Waste Calcining Facility (NWCF) to comply with the Maximum Achievable Control Technology (MACT) standards for hazardous waste combustors and incinerators. This will require, as a minimum, installing a carbon bed to reduce mercury emissions from their current level of up to 7,500 to <45 {micro}g/dscm, and a staged combustor to reduce unburned kerosene fuel in the off-gas discharge to <100 ppm CO and <10 ppm hydrocarbons. The staged combustor will also reduce NOx concentrations of about 35,000 ppm by 90-95%. A pilot-plant calcination test was completed in a newly constructed 15-cm diameter calciner vessel. The pilot-plant facility was equipped with a prototype MACT off-gas control system, including a highly efficient cyclone separator and off-gas quench/venturi scrubber for particulate removal, a staged combustor for unburned hydrocarbon and NOx destruction, and a packed activated carbon bed for mercury removal and residual chloride capture. Pilot-plant testing was performed during a 50-hour system operability test January 14-16, followed by a 100-hour high-temperature calcination pilot-plant calcination run January 19-23. Two flowsheet blends were tested: a 50-hour test with an aluminum-to-alkali metal molar ratio (AAR) of 2.25, and a 50-hour test with an AAR of 1.75. Results of the testing

  7. Light water reactor pressure isolation valve performance testing

    The Light Water Reactor Valve Performance Testing Program was initiated by the NRC to evaluate leakage as an indication of valve condition, provide input to Section XI of the ASME Code, evaluate emission monitoring for condition and degradation and in-service inspection techniques. Six typical check and gate valves were purchased for testing at typical plant conditions (550F at 2250 psig) for an assumed number of cycles for a 40-year plant lifetime. Tests revealed that there were variances between the test results and the present statement of the Code; however, the testing was not conclusive. The life cycle tests showed that high tech acoustic emission can be utilized to trend small leaks, that specific motor signature measurement on gate valves can trend and indicate potential failure, and that in-service inspection techniques for check valves was shown to be both feasible and an excellent preventive maintenance indicator. Life cycle testing performed here did not cause large valve leakage typical of some plant operation. Other testing is required to fully understand the implication of these results and the required program to fully implement them. (author)

  8. Performance testing of multi-metal continuous emissions monitors

    Haas, W.J. [Ames Lab., IA (United States); French, N.B. [Sky+, Inc. (United States); Brown, C.H. [Oak Ridge National Lab., TN (United States); Burns, D.B. [Westinghouse Savannah River Co., Aiken, SC (United States); Lemieux, P.M.; Ryan, J.V. [National Risk Management Research Lab., Research Triangle Park, NC (United States); Priebe, S.J. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States); Waterland, L.R. [Acurex Environmental Corp. (United States)

    1997-11-17

    Three prototype multi-metals continuous emissions monitors (CEMs) were tested in April 1996 at the Rotary Kiln Incinerator Simulator facility at the US Environmental Protection Agency (EPA) National Risk Management Research Laboratory, Research Triangle Park, North Carolina. The CEM instruments were: Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES); Laser Induced Breakdown Spectrometry-Atomic Emission Spectroscopy (LIBS); and Laser Spark Spectrometry, another LIBS instrument. The three CEMs were tested simultaneously during test periods in which low, medium, and high concentration levels of seven toxic metals -- antimony, arsenic, beryllium, cadmium, chromium, lead, and mercury -- were maintained under carefully controlled conditions. Two methods were used to introduce the test metals into the flue gas: (1) solution atomization, introducing metal-containing aerosol directly into the secondary combustion burner, and (2) injection of fly ash particulates. The testing addressed four measures of CEM performance: relative accuracy (RA), calibration drift, zero drift, and response time. These were accomplished by comparing the toxic metal analyte concentrations reported by the CEMs to the concentrations measured using the EPA reference method (RM) for the same analytes. Overall, the test results showed the prototype nature of the test CEMs and the clear need for further development. None of the CEMs tested consistently achieved RA values of 20% or less as required by the EPA draft performance specification. Instrument size reduction and automation will also likely need additional attention before multi-metal CEMs systems become commercially available for service as envisioned by regulators and citizens.

  9. Performance test of large BaF2 detector

    The γ total absorption facility (GTAF) was being built in China Institute of Atomic Energy (CIAE). It was composed of 40 BaF2 detector modules. The performance of every single module, such as detector construction, choosing of crystal packaging condition, energy resolution, time resolution, and long time stability were tested. From the energy resolution and time resolution test, it shows that the detector modules are good for using in neutron capture cross section measurement. (authors)

  10. Fertilization test performance using Arbacia punctulata maintained in static culture

    Serbst, J.R. [Environmental Protection Agency, Narragansett, RI (United States). Environmental Research Lab.; Wright, L.; Sheehan, C.V.; Fitzpatrick, K. [Science Applications International Corp., Narragansett, RI (United States)

    1995-12-31

    The sea urchin fertilization test using the Atlantic urchin, Arbacia punctulata, is widely utilized in evaluating toxicity of receiving waters and effluents as part of the NPDES program. While this species is easily maintained in uncontaminated, flow-through seawater systems, laboratories without access to flowing seawater either obtain new urchins for each test or maintain populations in static cultures. This study was conducted to assess test success and reproducibility of fertilization tests conducted using urchins maintained in separate-sex, static, temperature-controlled aquaria containing filtered natural seawater. Test performance was evaluated by periodically conducting the standard sea urchin fertilization test (EPA 600/4-87-028) using a common reference toxicant, sodium dodecyl sulfate (SDS) Thirteen tests were conducted between September 1993 and May 1994 using one population of urchins, and five tests were conducted between June and December 1994 with a second population of urchins. Test success was 100% (control fertilization > 50%) with a control fertilization mean of 96.4% (S.D. = 3.3). There were no differences between mean EC{sub 50} values calculated for each set of tests (p < 0.05). The running mean value for toxicity was 7.1 mg/L (S.D. = 1.26) for 18 tests, with a CV of 17.7%, comparing favorably with values generated using urchins maintained in flowing seawater. The running mean value for toxicity in these tests was 2.4 mg/L (S.D. = 0.9) for 18 tests conducted between November 1987 and July 1989 (ASTM STP 1124). Data from all urchin tests were used to construct a control chart defining normal ranges for SDS toxicity. This study demonstrated that fertile, adult sea urchins can produce consistent toxicity responses with low variability while being maintained in static, temperature regulated culture facilities.

  11. Large Scale and Performance tests of the ATLAS Online Software

    Alexandrov; H.Wolters; 等

    2001-01-01

    One of the sub-systems of the Trigger/DAQ system of the future ATLAS experiment is the Online Software system.It encompasses the functionality needed to configure,control and monitor the DAQ.Its architecture is based on a component structure described in the ATLAS Trigger/DAQ technical proposal.Resular integration tests ensure its smooth operation in test beam setups during its evolutionary development towards the final ATLAS online system.Feedback is received and returned into the development process.Studies of the system.behavior have been performed on a set of up to 111 PCs on a configuration which is getting closer to the final size,Large scale and performance tests of the integrated system were performed on this setup with emphasis on investigating the aspects of the inter-dependence of the components and the performance of the communication software.Of particular interest were the run control state transitions in various configurations of the run control hierarchy.For the purpose of the tests,the software from other Trigger/DAQ sub-systems has been emulated.This paper presents a brief overview of the online system structure,its components and the large scale integration tests and their results.

  12. Large scale and performance tests of the ATLAS online software

    One of the sub-systems of the Trigger/DAQ system of the future ATLAS experiment is the Online Software system. It encompasses the functionality needed to configure, control and monitor the DAQ. Its architecture is based on a component structure described in the ATLAS Trigger/DAQ technical proposal. Regular integration tests ensure its smooth operation in test beam setups during its evolutionary development towards the final ATLAS online system. Feedback is received and returned into the development process. Studies of the system behavior have been performed on a set of up to 111 PCs on a configuration which is getting closer to the final size. Large scale and performance test of the integrated system were performed on this setup with emphasis on investigating the aspects of the inter-dependence of the components and the performance of the communication software. Of particular interest were the run control state transitions in various configurations of the run control hierarchy. For the purpose of the tests, the software from other Trigger/DAQ sub-systems has been emulated. The author presents a brief overview of the online system structure, its components and the large scale integration tests and their results

  13. Performance tests of haemodynamic and digital subtraction angiography equipment

    This work presents the results of quality control tests performed in hemodynamic and digital subtraction angiography, which have fundamental importance to the image quality guaranty and to control the doses ministered to patients and staff. These tests are based on national and international standards and they can evaluate the performance of these systems. The results showed that the equipment do not present problems in their digital subtraction systems. Nevertheless, one of the equipment presented patient entrance skin air kerma rates above the limit prescribed by the national standard. (author)

  14. TRAC analyses and GIRAFFE tests for PCCS performance prediction

    The passive containment cooling system (PCCS) would remove decay heat by steam condensation without any electric power supply or operator's action if an accident should occur in nuclear reactors. There is, however, concern that non-condensable gas might influence the PCCS performance in the event of an accident. This paper summarizes Toshiba's activities respecting PCCS development, in particular those activities relating to TRAC qualification for PCCS performance prediction and the GIRAFFE tests. TRAC is a best estimate thermal hydraulic analysis code. GIRAFFE is a full-height test facility simulating the SBWR containment with the PCCS, at Toshiba's Ukishima site. (author)

  15. Performance testing of the AC propulsion ELX electric vehicle

    Kramer, W.E.; MacDowall, R.D.; Burke, A.F.

    1994-06-01

    Performance testing of the AC Propulsion ELX electric vehicle is described. Test data are presented and analyzed. The ELX vehicle is the first of a series of electric vehicles of interest to the California Air Resources Board. The test series is being conducted under a Cooperative Research and Development Agreement (CRADA) between the US Department of energy and the California Air Resources Board. The tests which were conducted showed that the AC Propulsion ELX electric vehicle has exceptional acceleration and range performance. when the vehicle`s battery was fully charged, the vehicle can accelerate from 0 to 96 km/h in about 10 seconds. Energy consumption and range tests using consecutive FUDS and HWFET Driving cycles (the all-electric cycle) indicate that the energy economy of the AC Propulsion ELX electric vehicle with regenerative braking is 97 W{center_dot}h/km, with a range of 153 km (95 miles). Computer simulations performed using the SIMPLEV Program indicate that the vehicle would have a range of 327 km (203 miles) on the all-electric cycle if the lead acid batteries were replaced with NiMH batteries having an energy density of 67 W{center_dot}h/kg. Comparisons of FUDS test data with and without regenerative braking indicated that regenerative braking reduced the energy consumption of the ELX vehicle by approximately 25%.

  16. Performance verification test for APR1400 fluidic device

    Using the full scale test facility called 'VAPER', five sets of repeatability tests have been carried out to verify the performance of the Fluidic Device which is adopted in the standard design of APR1400. Quality assurance program for the APR1400 Fluidic Device verification test has been developed and applied to each set of repeatability test procedure, and precise calibration for major measuring instruments has been performed. Thus, the highest reliability and integrity of the test results was ensured. Throughout the present tests, the repeatability of the major parameter related with APR1400 Fluidic Device performance has been sufficiently confirmed. Total K factor in the actual plant system would be about 16 at high flow condition and about 105 at low flow condition, which is similar to the design goal (about 17 at high flow condition and about 100 at low flow condition) The results of the present research contributes to the smooth construction of Sin-Kori units 3 and 4, and to the promotion of domestic analytic capability for the LOCA of advanced LWR

  17. Verification Test of Hydraulic Performance for Reactor Coolant Pump

    According to this project, basic design for prototype pump and model pump of reactor coolant pump and test facilities has been completed. Basic design for prototype pump to establish structure, dimension and hydraulic performance has been completed and through primary flow analysis by computational fluid dynamics(CFD), flow characteristics and hydraulic performance have been established. This pump was designed with mixed flow pump having the following design requirements; specific velocity(Ns); 1080.9(rpm·m3/m·m), capacity; 3115m3/h, total head ; 26.3m, pump speed; 1710rpm, pump efficiency; 77.0%, Impeller out-diameter; 349mm, motor output; 360kw, design pressure; 17MPaG. The features of the pump are leakage free due to no mechanical seal on the pump shaft which insures reactor's safety and law noise level and low vibration due to no cooling fan on the motor which makes eco-friendly product. Model pump size was reduced to 44% of prototype pump for the verification test for hydraulic performance of reactor coolant pump and was designed with mixed flow pump and canned motor having the following design requirements; specific speed(NS); 1060.9(rpm·m3/m·m), capacity; 539.4m3/h, total head; 21.0m, pump speed; 3476rpm, pump efficiency; 72.9%, Impeller out-diameter; 154mm, motor output; 55kw, design pressure; 1.0MPaG. The test facilities were designed for verification test of hydraulic performance suitable for pump performance test, homologous test, NPSH test(cavitation), cost down test and pressure pulsation test of inlet and outlet ports. Test tank was designed with testing capacity enabling up to 2000m3/h and design pressure 1.0MPaG. Auxiliary pump was designed with centrifugal pump having capacity; 1100m3/h, total head; 42.0m, motor output; 190kw

  18. Pre-test analysis for the KNGR DVI performance test facility using FLUENT

    Pre-test analysis using a FLUENT code has been performed for the KGNR(Korean Next Generation Reactor) DVI(Direct Vessel Injection) performance test facility which is a full height and 1/24.3 volume scaled separate effect test facility. The ideal gas discharge condition is considered to simulation a steam discharge condition. The scale effects on the flow pattern, pressure distribution, and similarity for scaled model are numerically tested. From the various results for the scale effects, it was found that the similarity of hydraulics is founded

  19. Stereotype threat? Effects of inquiring about test takers' gender on conceptual test performance in physics

    Maries, Alexandru; Singh, Chandralekha

    2015-12-01

    It has been found that activation of a stereotype, for example by indicating one's gender before a test, typically alters performance in a way consistent with the stereotype, an effect called "stereotype threat." On a standardized conceptual physics assessment, we found that asking test takers to indicate their gender right before taking the test did not deteriorate performance compared to an equivalent group who did not provide gender information. Although a statistically significant gender gap was present on the standardized test whether or not students indicated their gender, no gender gap was observed on the multiple-choice final exam students took, which included both quantitative and conceptual questions on similar topics.

  20. Stereotype threat? Effects of inquiring about test takers' gender on conceptual test performance in physics

    Maries, Alexandru

    2016-01-01

    It has been found that activation of a stereotype, for example by indicating one's gender before a test, typically alters performance in a way consistent with the stereotype, an effect called "stereotype threat". On a standardized conceptual physics assessment, we found that asking test takers to indicate their gender right before taking the test did not deteriorate performance compared to an equivalent group who did not provide gender information. Although a statistically significant gender gap was present on the standardized test whether or not students indicated their gender, no gender gap was observed on the multiple-choice final exam students took, which included both quantitative and conceptual questions on similar topics.

  1. Performance of Rapid Influenza Diagnostic Testing in Outbreak Settings

    Peci, Adriana; Winter, Anne-Luise; King, Eddie-Chong; Blair, Joanne; Gubbay, Jonathan B.

    2014-01-01

    Rapid influenza diagnostic tests (RIDTs) may be useful during institutional respiratory disease outbreaks to identify influenza and enable antivirals to be rapidly administered to patients and for the prophylactic treatment of those exposed to the virus but not yet symptomatic. The performance of RIDTs at the outbreak level is not well documented in the literature. This study aimed to evaluate the performance of RIDTs in comparison with that of real-time reverse transcription (rRT)-PCR in the...

  2. Predictive testing of performance of metals in HTR service environments

    Status of the material testing in simulated HTGR environment is reviewed with special attention focused on the methodology of the prediction of performance in long time. Importance of controlling effective chemical potentials relations in the material-environmental interface is stressed in regard of the complex inter-dependent kinetic relation between oxidation and carbon transport. Based on the recent experimental observations, proposals are made to establish some procedures for conservative prediction of the metal performance

  3. Performance test of solar-assisted ejector cooling system

    Huang, Bin-Juine

    2014-03-01

    A solar-assisted ejector cooling/heating system (SACH-2k) is built and test result is reported. The solar-driven ejector cooling system (ECS) is connected in series with an inverter-type air conditioner (IAC). Several advanced technologies are developed in SACH-k2, including generator liquid level control in ECS, the ECS evaporator temperature control, and optimal control of fan power in cooling tower of ECS. From the field test results, the generator liquid level control performs quite well and keeps stable performance of ejector. The ECS evaporator temperature control also performs satisfactorily to keep ejector performance normally under low or fluctuating solar radiation. The fan power control system cooling tower performs stably and reduces the power consumption dramatically without affecting the ECS performance. The test results show that the overall system COPo including power consumptions of peripheral increases from 2.94-3.3 (IAC alone) to 4.06-4.5 (SACH-k2), about 33-43%. The highest COPo is 4.5. © 2013 Elsevier Ltd and IIR. All rights reserved.

  4. Round robin performance testing of organic photovoltaic devices

    Gevorgyan, Suren; Zubillaga, Oihana; de Seoane, José María Vega;

    2014-01-01

    This study addresses the issue of poor intercomparability of measurements of organic photovoltaic (OPV) devices among different laboratories. We present a round robin performance testing of novel OPV devices among 16 laboratories, organized within the framework of European Research Infrastructure...... is analyzed by focusing on testing procedures, testing equipment and sample designs. A number of deviations and pitfalls are revealed and based on the analyses, a set of recommendations are suggested for improving the agreement among the measurements of such OPV technologies. © 2013 Elsevier Ltd. All rights...

  5. Performance test of database server based on MySQL

    MySQL is preliminarily chosen as the archive toolkit of CSNS experimental control system. A performance test of a database server based on MySQL is introduced. Main characters including the relationship between query rate, insertion rate and the number of connection threads are carried out with the consideration of data size. The hardware setup, software environment, ways and means of the test, and the results analysis are introduced in detail. The test results will help a lot to the database system design of the CSNS experiment control system. (authors)

  6. Evaluation technology for burnup and generated amount of plutonium by measurement of Xenon isotopic ratio in dissolver off-gas at reprocessing facility (Joint research)

    The amount of Pu in the spent fuel was evaluated from Xe isotopic ratio in off-gas in reprocessing facility, is related to burnup. Six batches of dissolver off-gas (DOG) at spent fuel dissolution process were sampled from the main stack in Tokai Reprocessing Plant (TRP) during BWR fuel (approx. 30GWD/MTU) reprocessing campaign. Xenon isotopic ratio was determined with Gas Chromatography/Mass Spectrometry. Burnup and generated amount of Pu were evaluated with Noble Gas Environmental Monitoring Application code (NOVA), developed by Los Alamos National Laboratory. Inferred burnup evaluated by Xe isotopic measurements and NOVA were in good agreement with those of the declared burnup in the range from -3.8% to 7.1%. Also, the inferred amount of Pu in spent fuel was in good agreed with those of the declared amount of Pu calculated by ORIGEN code in the range from -0.9% to 4.7%. The evaluation technique is applicable for both burnup credit to achieve efficient criticality safety control and a new measurement method for safeguards inspection. (author)

  7. Calculation of the radiation dose from an upset condition in the off-gas system for a boiling water power reactor

    A study has been made which considered the upset conditions to result in a rupture of the delay line or charcoal adsorber portions of the radioactive off-gas treatment system for a boiling water power reactor. Radiation dose calculations were made for an individual at a 300-meter boundary fence. The doses calculated were the whole body immersion dose and the thyroid, bone and lung doses due to inhalation. The relationship between the various operating and upset parameters of the off-gas system and the radiation doses were investigated. A semi-infinite cloud model with a ground level release was assumed. For a delay line rupture, the calculated gamma immersion dose varies from a high of 9 rad for a break at the condenser to a low of 0.2 rad for a break at the maximum end of a 300-minute delay line. The thyroid dose from inhalation of radioiodine was calculated to vary from 3 to 6 millirem for a delay line rupture and to be 0.6 rem for a charcoal bed rupture. The highest gamma immersion dose from a charcoal adsorber bed rupture was calculated to be 1.5 rad for the low flow rate condition with either an ambient or chilled bed system. Curves have been constructed which show the variation of the calculated doses with the various input parameters. (U.S.)

  8. Efficient carbon dioxide utilization and simultaneous hydrogen enrichment from off-gas of acetone-butanol-ethanol fermentation by succinic acid producing Escherichia coli.

    He, Aiyong; Kong, Xiangping; Wang, Chao; Wu, Hao; Jiang, Min; Ma, Jiangfeng; Ouyang, Pingkai

    2016-08-01

    The off-gas from acetone-butanol-ethanol (ABE) fermentation was firstly used to be CO2 source (co-substrate) for succinic acid production. The optimum ratio of H2/CO2 indicated higher CO2 partial pressures with presence of H2 could enhance C4 pathway flux and reductive product productivity. Moreover, when an inner recycling bioreactor was used for CO2 recycling at a high total pressure (0.2Mpa), a maximum succinic acid concentration of 65.7g·L(-1) was obtained, and a productivity of 0.76g·L(-1)·h(-1) and a high yield of 0.86g·g(-1) glucose were achieved. Furthermore, the hydrogen content was simultaneously enriched to 92.7%. These results showed one successful attempt to reuse the off-gas of ABE fermentation which can be an attractive CO2 source for succinic acid production. PMID:27142628

  9. Fluid flow measurements of Test Series A and B for the Small Scale Seal Performance Tests

    The degree of waste isolation achieved by a repository seal system is dependent upon the fluid flow characteristics, or permeability, of the seals. In order to obtain meaningful, site-specific data on the performance of various possible seal system components, a series of in situ experiments called the Small Scale Seal Performance Tests (SSSPT) are being conducted at the Waste Isolation Pilot Plant (WIPP). This report contains the results of gas flow, tracer penetration, and brine flow tests conducted on concrete seals in vertical (Test Series A) and horizontal (Test Series B) configurations. The test objectives were to evaluate the seal performance and to determine if there existed scaling effects which could influence future SSSPT designs. 3 refs., 77 figs

  10. Radiometric instrumentation and measurements guide for photovoltaic performance testing

    Myers, D.

    1997-04-01

    The Photovoltaic Module and Systems Performance and Engineering Project at the National Renewable Energy Laboratory performs indoor and outdoor standardization, testing, and monitoring of the performance of a wide range of photovoltaic (PV) energy conversion devices and systems. The PV Radiometric Measurements and Evaluation Team (PVSRME) within that project is responsible for measurement and characterization of natural and artificial optical radiation which stimulates the PV effect. The PV manufacturing and research and development community often approaches project members for technical information and guidance. A great area of interest is radiometric instrumentation, measurement techniques, and data analysis applied to understanding and improving PV cell, module, and system performance. At the Photovoltaic Radiometric Measurements Workshop conducted by the PVSRME team in July 1995, the need to communicate knowledge of solar and optical radiometric measurements and instrumentation, gained as a result of NREL`s long-term experiences, was identified as an activity that would promote improved measurement processes and measurement quality in the PV research and manufacturing community. The purpose of this document is to address the practical and engineering need to understand optical and solar radiometric instrument performance, selection, calibration, installation, and maintenance applicable to indoor and outdoor radiometric measurements for PV calibration, performance, and testing applications. An introductory section addresses radiometric concepts and definitions. Next, concepts essential to spectral radiometric measurements are discussed. Broadband radiometric instrumentation and measurement concepts are then discussed. Each type of measurement serves as an important component of the PV cell, module, and system performance measurement and characterization process.

  11. Testing performance of CIECAM02 in predicting perceptual contrast

    Weige Lü; Haisong Xu; M.Ronnier Luo

    2012-01-01

    A psychophysical experiment is performed on two large-size liquid crystal displays under three viewing conditions to assess perceptual contrast.Based on the visual data,the performance of CIECAM02 in predicting perceptual contrast under different viewing conditions is tested and compared with other models by F-test.Results show that the perceptual contrast models in the form of Weber contrast using CIECAM02 brightness Q agreed better with the contrast perception of human visual system compared to the models using luminance,CIELAB lightness L*,and CIECAM02 lightness J.%A psychophysical experiment is performed on two large-size liquid crystal displays under three viewing conditions to assess perceptual contrast. Based on the visual data, the performance of CIECAM02 in predicting perceptual contrast under different viewing conditions is tested and compared with other models by F-test. Results show that the perceptual contrast models in the form of Weber contrast using CIECAM02 brightness Q agreed better with the contrast perception of human visual system compared to the models using luminance, CIELAB lightness U, and CIECAM02 lightness J.

  12. MMPI-2 Variables in Attention and Memory Test Performance.

    Gass, Carlton S.

    1996-01-01

    Attention span, verbal list learning, and memory test performance were examined in relation to Minnesota Multiphasic Personality Inventory-2 (MMPI-2) measures of depression, anxiety, and psychotic thinking in 128 male head-injury and psychiatric patients. Results support the view that MMPI-2 scores are relevant to neuropsychological test…

  13. Predicting Performance on a Firefighter's Ability Test from Fitness Parameters

    Michaelides, Marcos A.; Parpa, Koulla M.; Thompson, Jerald; Brown, Barry

    2008-01-01

    The purpose of this project was to identify the relationships between various fitness parameters such as upper body muscular endurance, upper and lower body strength, flexibility, body composition and performance on an ability test (AT) that included simulated firefighting tasks. A second intent was to create a regression model that would predict…

  14. 40 CFR 60.433 - Performance test and compliance provisions.

    2010-07-01

    ... performance test. (b) If an affected facility uses waterborne ink systems or a combination of waterborne and... the solvent-borne and waterborne raw inks and related coatings used is determined by the following... in the waterborne raw inks and related coatings used is determined by the following...

  15. 40 CFR 63.1349 - Performance testing requirements.

    2010-07-01

    ... percent reduction in THC across the control device using the performance test requirements in 40 CFR part.../dscm mercury standard shall demonstrate compliance using EPA Method 29 of 40 CFR part 60. ASTM D6784-02... of THC shall demonstrate initial compliance with the THC limit by operating a continuous...

  16. Test-beam performance of a tracking TRD prototype

    A tracking transition radiation detector prototype has been constructed and tested. It consists of 192 straw tubes, 4 mm in diameter, embedded in a polyethylene block acting as radiator. Its performance has been studied as an electron identifier as well as a tracking device for minimum-ionizing particles. (orig.)

  17. Developing and Testing the Guitar Songleading Performance Scale (GSPS)

    Silverman, Michael J.

    2011-01-01

    Guitar songleading is a critical component in music education and music therapy training curricula. However, at present, there is no standardized instrument to evaluate guitar songleading performance that is both valid and reliable. The purpose of this article is to describe the construction, development, and testing of a guitar songleading…

  18. Teacher Performance and Pupil Achievement on Teacher-Made Tests.

    Ellett, Chad D.; And Others

    This study investigated the predictive validity of the Teacher Performance Assessment Instruments (TPAI) using pupil gains on teacher-made tests (TMT) as a criterion. The TPAI and the TMT's were administered to 56 elementary and secondary classrooms in Georgia. Results supported the validity of the TPAI with a large number of correlations ranging…

  19. Psychological Processes Underlying Stereotype Threat and Standardized Math Test Performance

    Ryan, Katherine E.; Ryan, Allison M.

    2005-01-01

    The No Child Left Behind Act (2002) articulates a vision emphasizing the attainment of high achievement for all students. This legislation has defined a vital role for large-scale assessment in determining whether students are learning. However, standardized mathematics test performance by females and Black students continues to be a source of…

  20. 49 CFR 563.10 - Crash test performance and survivability.

    2010-10-01

    ... CFR 571.208, Occupant crash protection, must comply with the requirements in subpart (c) of this... 49 Transportation 6 2010-10-01 2010-10-01 false Crash test performance and survivability. 563.10... TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EVENT DATA RECORDERS § 563.10 Crash...

  1. The Performance of Multileaf Collimators Evaluated by the Stripe Test

    The performance of 3 multileaf collimator (MLC) systems (Varian Medical Systems, Elekta, and Siemens Medical Solutions) mounted on 7 different radiotherapy linear accelerators was investigated by a stripe test. The stripe test consisted of 8 adjacent multileaf segments of 2.5 x 40 cm2, enclosed by all leaf pairs. With 6-MV photons, the segments were used to irradiate Agfa CR films. The optical density profile of the irradiated film in the travel direction of the MLC was used to estimate the short- and long-term leaf positioning reproducibility. The short-term reproducibility was found by analyzing 6 consecutive stripe tests. The long-term reproducibility was obtained by performing 3 to 5 stripe tests over 2 months. The short-term reproducibility was mainly within 0.3 mm for all systems. For the long-term reproducibility, the Varian and Elekta MLCs were within 0.4 to 0.5 mm, while the Siemens MLC showed a wider distribution, with values up to 1 mm for some leaf pairs. The inferior long-term reproducibility of the Siemens MLCs was mainly due to a decrease of the segment size with time. In conclusion, the stripe test is a useful method for evaluating MLC performance. Furthermore, the long-term reproducibility varied among the MLC systems investigated.

  2. The performance of multileaf collimators evaluated by the stripe test.

    Sastre-Padro, Maria; Lervåg, Christoffer; Eilertsen, Karsten; Malinen, Eirik

    2009-01-01

    The performance of 3 multileaf collimator (MLC) systems (Varian Medical Systems, Elekta, and Siemens Medical Solutions) mounted on 7 different radiotherapy linear accelerators was investigated by a stripe test. The stripe test consisted of 8 adjacent multileaf segments of 2.5 x 40 cm(2), enclosed by all leaf pairs. With 6-MV photons, the segments were used to irradiate Agfa CR films. The optical density profile of the irradiated film in the travel direction of the MLC was used to estimate the short- and long-term leaf positioning reproducibility. The short-term reproducibility was found by analyzing 6 consecutive stripe tests. The long-term reproducibility was obtained by performing 3 to 5 stripe tests over 2 months. The short-term reproducibility was mainly within 0.3 mm for all systems. For the long-term reproducibility, the Varian and Elekta MLCs were within 0.4 to 0.5 mm, while the Siemens MLC showed a wider distribution, with values up to 1 mm for some leaf pairs. The inferior long-term reproducibility of the Siemens MLCs was mainly due to a decrease of the segment size with time. In conclusion, the stripe test is a useful method for evaluating MLC performance. Furthermore, the long-term reproducibility varied among the MLC systems investigated. PMID:19647629

  3. Performance of rapid influenza diagnostic testing in outbreak settings.

    Peci, Adriana; Winter, Anne-Luise; King, Eddie-Chong; Blair, Joanne; Gubbay, Jonathan B

    2014-12-01

    Rapid influenza diagnostic tests (RIDTs) may be useful during institutional respiratory disease outbreaks to identify influenza and enable antivirals to be rapidly administered to patients and for the prophylactic treatment of those exposed to the virus but not yet symptomatic. The performance of RIDTs at the outbreak level is not well documented in the literature. This study aimed to evaluate the performance of RIDTs in comparison with that of real-time reverse transcription (rRT)-PCR in the context of institutional respiratory disease outbreaks. This study included outbreak-related respiratory specimens tested for influenza virus at Public Health Ontario Laboratories by both RIDT and rRT-PCR, from 1 September 2010 to 30 April 2013. At the outbreak level, performance testing of RIDTs compared to rRT-PCR for the detection of any influenza virus type demonstrated an overall sensitivity of 76.5%, a specificity of 99.7%, a positive predictive value (PPV) of 99.5%, and a negative predictive value of 85.3%. Because of their high specificity and PPV, even outside of the influenza season, RIDTs can play a role in screening for influenza virus in outbreaks and instituting antiviral therapy in a timely manner when positive. RIDTs can also be useful in remote settings where molecular virology testing is not easily accessible. Suboptimal sensitivity of RIDTs can be addressed by the use of molecular testing. PMID:25320225

  4. Nuclear performance analyses for HCPB test blanket modules in ITER

    Neutronic, shielding and activation analyses have been performed for recent design variants of the Helium Cooled Pebble Bed (HCPB) test blanket module (TBM) in ITER on the basis of 3D Monte Carlo calculations. The main objective has been to assess and optimise the nuclear performance of the HCPB test blanket modules in terms of the tritium generation, the nuclear heating and the radiation shielding and provide, among others, the data required for the engineering design of the test modules. The shielding efficiency of the TBM system was shown to be sufficient to allow access of work personnel to the port extension after a waiting time of 10 days after shut down as required by ITER. The activation analyses provided the afterheat and activation data for quality assured safety analyses assuming a representative irradiation scenario

  5. Cognition, study habits, test anxiety, and academic performance.

    Kleijn, W C; van der Ploeg, H M; Topman, R M

    1994-12-01

    The Study Management and Academic Results Test (SMART) was developed to measure study- and examination-related cognitions, time management, and study strategies. This questionnaire was used in three prospective studies, together with measures for optimism and test anxiety. In the first two studies, done among 253 first-year students enrolled in four different faculties, the highest significant correlations with academic performance were found for the SMART scales. In a replication study among first-year medical students (n = 156) at a different university, the same pattern of results was observed. A stepwise multiple regression analysis, with academic performance as a dependent variable, showed significant correlations only for the SMART Test Competence and Time Management (Multiple R = .61). Results give specific indications about the profile of successful students. PMID:7892384

  6. The development of a high intensity dance performance fitness test.

    Redding, Emma; Weller, Peter; Ehrenberg, Shantel; Irvine, Sarah; Quin, Edel; Rafferty, Sonia; Wyon, Matthew; Cox, Carol

    2009-01-01

    While there is currently a validated dance-specific exercise method of measuring aerobic fitness, no such test has been developed to measure high intensity capabilities in dance. The purpose of this study was to initiate an intermittent high intensity dance-specific fitness test. The test was designed to be able to observe changes in heart rate (HR), thereby allowing for a measurement of physical fitness at high intensities. Sixteen professional dancers (4 males and 12 females) volunteered to take part in this study. The fitness test protocol consists of movements that are representative of contemporary dance, and contains exercise and rest periods that mimic the intermittent nature of dance. The participants performed four trials. The physiological variables measured were HR (b.min(-1)) for each one minute bout of the four minute test for all trials, oxygen uptake (VO(2)) throughout the test, and end blood lactate (BLa mmol.L) for each trial. In addition, five of the participants undertook a maximal oxygen uptake treadmill test, and the scores obtained were compared with those from the dance test. Results show HR consistency across each one minute bout of the test and across each of the four trials of testing for all participants, indicating that the test is reliable. There was good reliability between bouts of each trial (typical error as % of CV = 1.5), intraclass "r" = 0.8, and good reliability between the four trials (typical error as % of CV = 2.1), intraclass "r" = 0.82. There were no significant differences between the maximal VO(2) and BLa scores established in the treadmill and dance tests, demonstrating validity. Thus, the results of this study indicate that the high intensity dance-specific test is a reliable and valid means of assessing and monitoring the cardiovascular fitness of dancers. The test allows dancers to be assessed within an environment that they are accustomed to (the studio), using a mode of exercise that is relevant (dance), and it is

  7. Stereotype Threat in Middle School: The Effects of Prior Performance on Expectancy and Test Performance

    Howard, Keith E.; Anderson, Kenneth A.

    2010-01-01

    Stereotype threat research has demonstrated how presenting situational cues in a testing environment, such as raising the salience of negative stereotypes, can adversely affect test performance (Perry, Steele, & Hilliard, 2003; Steele & Aronson, 1995) and expectancy (Cadinu, Maass, Frigerio, Impagliazzo, & Latinotti, 2003; Stangor, Carr, & Kiang,…

  8. Factors Affecting Exercise Test Performance in Patients After Liver Transplantation

    Kotarska, Katarzyna; Wunsch, Ewa; Jodko, Lukasz; Raszeja-Wyszomirska, Joanna; Bania, Izabela; Lawniczak, Malgorzata; Bogdanos, Dimitrios; Kornacewicz-Jach, Zdzislawa; Milkiewicz, Piotr

    2016-01-01

    Background Cardiovascular diseases are a leading cause of morbidity and mortality in solid organ transplant recipients. In addition, low physical activity is a risk factor for cardiac and cerebrovascular complications. Objectives This study examined potential relationships between physical activity, health-related quality of life (HRQoL), risk factors for cardiovascular disease, and an exercise test in liver-graft recipients. Patients and Methods A total of 107 participants (62 men/45 women) who had received a liver transplantation (LT) at least 6 months previously were evaluated. Physical activity was assessed using three different questionnaires, while HRQoL was assessed using the medical outcomes study short form (SF)-36 questionnaire, and health behaviors were evaluated using the health behavior inventory (HBI). The exercise test was performed in a standard manner. Results Seven participants (6.5%) had a positive exercise test, and these individuals were older than those who had a negative exercise test (P = 0.04). A significant association between a negative exercise test and a higher level of physical activity was shown by the Seven-day physical activity recall questionnaire. In addition, HRQoL was improved in various domains of the SF-36 in participants who had a negative exercise test. No correlations between physical activity, the exercise test and healthy behaviors, as assessed via the HBI were observed. Conclusions Exercise test performance was affected by lower quality of life and lower physical activity after LT. With the exception of hypertension, well known factors that affect the risk of coronary artery disease had no effect on the exercise test results.

  9. DOE ETV-1 electric test vehicle. Phase III: performance testing and system evaluation. Final report

    Kurtz, D. W.

    1981-12-01

    The DOE ETV-1 represents the most advanced electric vehicle in operation today. Engineering tests have been conducted by the Jet Propulsion Laboratory in order to characterize its overall system performance and component efficiencies within the system environment. A dynamometer was used in order to minimize the ambient effects and large uncertainties present in track testing. Extensive test requirements have been defined and procedures were carefully controlled in order to maintain a high degree of credibility. Limited track testing was performed in order to corroborate the dynamometer results. Test results include an energy flow analysis through the major subsystems and incorporate and aerodynamic and rolling losses under cyclic and various steady speed conditions. A complete summary of the major output from all relevant dynamometer and track tests is also included as an appendix.

  10. Clock Face Drawing Test Performance in Children with ADHD

    Ahmad Ghanizadeh

    2013-01-01

    Full Text Available  Introduction: The utility and discriminatory pattern of the clock face drawing test in ADHD is unclear. This study therefore compared Clock Face Drawing test performance in children with ADHD and controls.   Material & methods: 95 children with ADHD and 191 school children were matched for gender ratio and age. ADHD symptoms severities were assessed using DSM-IV ADHD checklist and their intellectual functioning was assessed. The participants completed three clock-drawing tasks, and the following four functions were assessed: Contour score, Numbers score, Hands setting score, and Center score    Results: All the subscales scores of the three clock drawing tests of the ADHD group were lower than that of the control group. In ADHD children, inattention and hyperactivity/impulsivity scores were not related with free drawn clock test scores. When pre-drawn contour test was performed, inattentiveness score was statistically associated with Number score. None of the other variables of age, gender, intellectual functioning, and hand use preference were associated with Numbers score. In pre-drawn clock, no association of ADHD symptoms with any CDT subscales was significant. In addition, more errors are observed with free drawn clock and Pre-drawn contour than pre-drawn clock.    Conclusion: Putting Numbers and Hands setting are more sensitive measures to screen ADHD than Contour and Center drawing. Test performance, except Hands setting, may have already reached a developmental plateau. It is probable that Hand setting deficit in children with ADHD may not decrease from age 8 to 14 years. Performance of children with ADHD is associated with the complexity of CDT.

  11. Forward lunge as a functional performance test in ACL deficient subjects: test-retest reliability

    Alkjaer, Tine; Henriksen, Marius; Dyhre-Poulsen, Poul; Simonsen, Erik B

    2009-01-01

    The forward lunge movement may be used as a functional performance test of anterior cruciate ligament (ACL) deficient and reconstructed subjects. The purposes were 1) to determine the test-retest reliability of a forward lunge in healthy subjects and 2) to determine the required numbers of...

  12. Raven's Test Performance of Sub-Saharan Africans: Average Performance, Psychometric Properties, and the Flynn Effect

    Wicherts, Jelte M.; Dolan, Conor V.; Carlson, Jerry S.; van der Maas, Han L. J.

    2010-01-01

    This paper presents a systematic review of published data on the performance of sub-Saharan Africans on Raven's Progressive Matrices. The specific goals were to estimate the average level of performance, to study the Flynn Effect in African samples, and to examine the psychometric meaning of Raven's test scores as measures of general intelligence.…

  13. Performance test report for the 1000 kg melter

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Phase 1 of the melter demonstration tests using simulated LLW was completed during fiscal year 1995. This document is the 100 kg melter offgas report on testing performed by GTS Duratek Inc., in Columbia, Maryland. GTS Duratek (one of the seven vendors selected) was chosen to demonstrate Joule heated melter technology under WHC subcontract number MMI-SVV- 384215. The document contains the complete offgas report on the 100 kg melter as prepared by Parsons Engineering Science, Inc. A summary of this report is also contained in the ''GTS Duratek, Phase 1 Hanford Low-Level Waste Melter Tests: Final Report'' (WHC-SD-VI-027)

  14. Orion Exploration Flight Test-1 (EFT-1) Absolute Navigation Performance

    Zanetti, Renato

    2015-01-01

    The Orion vehicle, being design to take men back to the Moon and beyond, successfully completed its first flight test, EFT-1 (Exploration Flight Test-1), on December 5th, 2014. The main objective of the test was to demonstrate the capability of re-enter into the Earth's atmosphere and safely splash-down into the pacific ocean. This un-crewed mission completes two orbits around Earth, the second of which is highly elliptical with an apogee of approximately 5908 km, higher than any vehicle designed for humans has been since the Apollo program. The trajectory was designed in order to test a high-energy re-entry similar to those crews will undergo during lunar missions. The mission overview is shown in Figure 1. The objective of this paper is to document the performance of the absolute navigation system during EFT-1 and to present its design.

  15. Regenerative Life Support Systems Test Bed performance - Lettuce crop characterization

    Barta, Daniel J.; Edeen, Marybeth A.; Eckhardt, Bradley D.

    1992-01-01

    System performance in terms of human life support requirements was evaluated for two crops of lettuce (Lactuca sative cv. Waldmann's Green) grown in the Regenerative Life Support Systems Test Bed. Each crop, grown in separate pots under identical environmental and cultural conditions, was irrigated with half-strength Hoagland's nutrient solution, with the frequency of irrigation being increased as the crop aged over the 30-day crop tests. Averaging over both crop tests, the test bed met the requirements of 2.1 person-days of oxygen production, 2.4 person-days of CO2 removal, and 129 person-days of potential potable water production. Gains in the mass of water and O2 produced and CO2 removed could be achieved by optimizing environmental conditions to increase plant growth rate and by optimizing cultural management methods.

  16. Integrated chemical effects test program for PWR sump performance assessment

    Products attributable to chemical interactions between the emergency core cooling system (ECCS) containment spray water and exposed materials (such as metal surfaces, paint chips, and fiberglass insulation debris) could impede the performance of ECCS recirculation following a loss-of-coolant accident (LOCA) at a pressurized-water reactor (PWR). Five tests have been conducted in the ICET (Integrated Chemical Effects Test) test loop in order to simulate the chemical environment present inside a PWR containment water pool following a LOCA. The tests were conducted for 30 days at a constant temperature of 60 Celsius degrees. The materials tested within this environment included representative amounts of submerged and un-submerged aluminum, copper, concrete, zinc, carbon steel, and insulation samples (either 100% fiberglass or a combination of 80% calcium-silicate and 20% fiberglass by volume). Representative amounts of concrete dust and latent debris were also added to the test solution. Water was circulated through the bottom portion of the test tank during the entire test to achieve representative flow rates over the submerged specimens. Overall, the ICET program provided some insights and initial understanding regarding solution chemistry, as well as the types and amounts of chemical reaction products that may form in the ECCS containment sump pool. The observed chemical products may potentially contribute to pressure losses across a debris-laden sump screen, as well as performance degradation of ECCS components downstream of the sump screen. The ICET results indicate that: -1) chemical reaction products with varied quantities, consistencies, attributes, and apparent formation mechanisms were found; -2) containment materials (metallic, non-metallic, and insulation debris), pH, buffering agent, temperature, and time are all important variables that influence chemical product formation; and -3) changes to one important environmental variable (e.g., pH adjusting agent

  17. The effect of motivational music on wingate anaerobic test performance

    Özkan Işık

    2015-09-01

    Full Text Available The aim of this study is to examine the effect of the motivational music on the Wingate Anaerobic Test (WAnT performance. 16 male students who studied at School of Physical Education and Sports, Kocatepe University participated in the study voluntarily. After demographic characteristics of the voluntaries [age, height, body weight (BW, body mass index (BMI] were measured without music (pre-test and with motivational music [>120 bpm (beats per minute] conditions (post-test. For the analyses of the data; Wilcoxon Rank Test was used in order to detect the difference among the variables. As a result of the measurements taken in with and without music conditions; it was found out that there was a statistically significant difference on behalf of condition with music in terms of maximum anaerobic power (MaxAP, maximum anaerobic capacity (MAC, relative anaerobic power (RAP, relative anaerobic capacity (RAC and fatigue index (FI values (p0,05. It was determined that the motivational music has positive effects on the WAnT performance. However; although it was seen that motivational music increased the WAnT performance, we were of the opinion that this effect emerged thanks to the increased psycho-physiological factors caused by music.

  18. Multiphase pumping: indoor performance test and oilfield application

    Kong, Xiangling; Zhu, Hongwu; Zhang, Shousen; Li, Jifeng

    2010-03-01

    Multiphase pumping is essentially a means of adding energy to the unprocessed effluent which enables the liquid and gas mixture to be transported over a long distances without prior separation. A reduction, consolidation, or elimination of the production infrastructure, such as separation equipments and offshore platforms can be developed more economically. Also it successfully lowed the backpressure of wells, revived dead wells and improved the production and efficiency of oilfield. This paper reviews the issues related to indoor performance test and an oilfield application of the helico-axial multiphase pump designed by China University of Petroleum (Beijing). Pump specification and its hydraulic design are given. Results of performance testing under different condition, such as operational speed and gas volume fraction (GVF) etc are presented. Experimental studies on combination of theoretical analysis showed the multiphase pump satisfies the similitude rule, which can be used in the development of new MPP design and performance prediction. Test results showed that rising the rotation speed and suction pressure could better its performance, pressure boost improved, high efficiency zone expanding and the flow rate related to the optimum working condition increased. The pump worked unstable as GVF increased to a certain extent and slip occurred between two phases in the pump, creating surging and gas lock at a high GVF. A case of application in Nanyang oilfield is also studied.

  19. Wafer-level radiometric performance testing of uncooled microbolometer arrays

    Dufour, Denis G.; Topart, Patrice; Tremblay, Bruno; Julien, Christian; Martin, Louis; Vachon, Carl

    2014-03-01

    A turn-key semi-automated test system was constructed to perform on-wafer testing of microbolometer arrays. The system allows for testing of several performance characteristics of ROIC-fabricated microbolometer arrays including NETD, SiTF, ROIC functionality, noise and matrix operability, both before and after microbolometer fabrication. The system accepts wafers up to 8 inches in diameter and performs automated wafer die mapping using a microscope camera. Once wafer mapping is completed, a custom-designed quick insertion 8-12 μm AR-coated Germanium viewport is placed and the chamber is pumped down to below 10-5 Torr, allowing for the evaluation of package-level focal plane array (FPA) performance. The probe card is electrically connected to an INO IRXCAM camera core, a versatile system that can be adapted to many types of ROICs using custom-built interface printed circuit boards (PCBs). We currently have the capability for testing 384x288, 35 μm pixel size and 160x120, 52 μm pixel size FPAs. For accurate NETD measurements, the system is designed to provide an F/1 view of two rail-mounted blackbodies seen through the Germanium window by the die under test. A master control computer automates the alignment of the probe card to the dies, the positioning of the blackbodies, FPA image frame acquisition using IRXCAM, as well as data analysis and storage. Radiometric measurement precision has been validated by packaging dies measured by the automated probing system and re-measuring the SiTF and Noise using INO's pre-existing benchtop system.

  20. 1997 Performance Testing of Multi-Metal Continuous Emissions Monitors

    Sky +, Inc.

    1998-09-01

    Five prototype and two commercially available multi-metals continuous emissions monitors (CEMs) were tested in September 1997 at the Rotary Kiln Incinerator Simulator facility at the EPA National Risk Management Research Laboratory, Research Triangle Park, North Carolina. The seven CEMs were tested side by side in a long section of duct following the secondary combustion chamber of the RKIS. Two different concentrations of six toxic metals were introduced into the incinerator-approximately 15 and 75 µg/dscm of arsenic, beryllium, cadmium, chromium, lead, and mercury (We also tested for antimony but we are not reporting on it here because EPA recently dropped antimony from the list of metals addressed by the draft MACT rule). These concentrations were chosen to be close to emission standards in the draft MACT rule and the estimated Method Detection Limit (MDL) required of a CEM for regulatory compliance purposes. Results from this test show that no CEMs currently meet the performance specifications in the EPA draft MACT rule for hazardous waste incinerators. Only one of the CEMs tested was able to measure all six metals at the concentrations tested. Even so, the relative accuracy of this CEM varied between 35% and 100%, not 20% or less as required in the EPA performance specification. As a result, we conclude that no CEM is ready for long-term performance validation for compliance monitoring applications. Because sampling and measuring Hg is a recurring problem for multi-metal CEMs as well as Hg CEMs, we recommended that developers participate in a 1998 DOE-sponsored workshop to solve these and other common CEM measurement issues.

  1. 1997 Performance Testing of Multi-Metal Continuous Emissions Monitors

    Five prototype and two commercially available multi-metals continuous emissions monitors (CEMs) were tested in September 1997 at the Rotary Kiln Incinerator Simulator facility at the EPA National Risk Management Research Laboratory, Research Triangle Park, North Carolina. The seven CEMs were tested side by side in a long section of duct following the secondary combustion chamber of the RKIS. Two different concentrations of six toxic metals were introduced into the incinerator-approximately 15 and 75 g/dscm of arsenic, beryllium, cadmium, chromium, lead, and mercury (We also tested for antimony but we are not reporting on it here because EPA recently dropped antimony from the list of metals addressed by the draft MACT rule). These concentrations were chosen to be close to emission standards in the draft MACT rule and the estimated Method Detection Limit (MDL) required of a CEM for regulatory compliance purposes. Results from this test show that no CEMs currently meet the performance specifications in the EPA draft MACT rule for hazardous waste incinerators. Only one of the CEMs tested was able to measure all six metals at the concentrations tested. Even so, the relative accuracy of this CEM varied between 35% and 100%, not 20% or less as required in the EPA performance specification. As a result, we conclude that no CEM is ready for long-term performance validation for compliance monitoring applications. Because sampling and measuring Hg is a recurring problem for multi-metal CEMs as well as Hg CEMs, we recommended that developers participate in a 1998 DOE-sponsored workshop to solve these and other common CEM measurement issues

  2. Character pathology and neuropsychological test performance in remitted opiate dependence

    Steinfeld Matthew

    2008-11-01

    Full Text Available Abstract Background Cognitive deficits and personality pathology are prevalent in opiate dependence, even during periods of remission, and likely contribute to relapse. Understanding the relationship between the two in vulnerable, opiate-addicted patients may contribute to the design of better treatment and relapse prevention strategies. Methods The Millon Multiaxial Clinical Inventory (MCMI and a series of neuropsychological tests were administered to three subject groups: 29 subjects receiving methadone maintenance treatment (MM, 27 subjects in protracted abstinence from methadone maintenance treatment (PA, and 29 healthy non-dependent comparison subjects. Relationships between MCMI scores, neuropsychological test results, and measures of substance use and treatment were examined using bivariate correlation and regression analysis. Results MCMI scores were greater in subjects with a history of opiate dependence than in comparison subjects. A significant negative correlation between MCMI scores and neuropsychological test performance was identified in all subjects. MCMI scores were stronger predictors of neuropsychological test performance than measures of drug use. Conclusion Formerly methadone-treated opiate dependent individuals in protracted opiate abstinence demonstrate a strong relationship between personality pathology and cognitive deficits. The cause of these deficits is unclear and most likely multi-factorial. This finding may be important in understanding and interpreting neuropsychological testing deficiencies in opiate-dependent subjects.

  3. Orion Launch Abort System Performance on Exploration Flight Test 1

    McCauley, R.; Davidson, J.; Gonzalez, Guillermo

    2015-01-01

    This paper will present an overview of the flight test objectives and performance of the Orion Launch Abort System during Exploration Flight Test-1. Exploration Flight Test-1, the first flight test of the Orion spacecraft, was managed and led by the Orion prime contractor, Lockheed Martin, and launched atop a United Launch Alliance Delta IV Heavy rocket. This flight test was a two-orbit, high-apogee, high-energy entry, low-inclination test mission used to validate and test systems critical to crew safety. This test included the first flight test of the Launch Abort System preforming Orion nominal flight mission critical objectives. NASA is currently designing and testing the Orion Multi-Purpose Crew Vehicle (MPCV). Orion will serve as NASA's new exploration vehicle to carry astronauts to deep space destinations and safely return them to earth. The Orion spacecraft is composed of four main elements: the Launch Abort System, the Crew Module, the Service Module, and the Spacecraft Adapter (Fig. 1). The Launch Abort System (LAS) provides two functions; during nominal launches, the LAS provides protection for the Crew Module from atmospheric loads and heating during first stage flight and during emergencies provides a reliable abort capability for aborts that occur within the atmosphere. The Orion Launch Abort System (LAS) consists of an Abort Motor to provide the abort separation from the Launch Vehicle, an Attitude Control Motor to provide attitude and rate control, and a Jettison Motor for crew module to LAS separation (Fig. 2). The jettison motor is used during a nominal launch to separate the LAS from the Launch Vehicle (LV) early in the flight of the second stage when it is no longer needed for aborts and at the end of an LAS abort sequence to enable deployment of the crew module's Landing Recovery System. The LAS also provides a Boost Protective Cover fairing that shields the crew module from debris and the aero-thermal environment during ascent. Although the

  4. Impact of peer interaction on conceptual test performance

    Singh, Chandralekha

    2016-01-01

    We analyze the effectiveness of working in pairs on the Conceptual Survey of Electricity and Magnetism test in a calculus-based introductory physics course. Students who collaborated with a peer showed significantly larger normalized gain on individual testing than those who did not collaborate. We did not find statistically significant differences between the performance of students who were given an opportunity to formulate their own response before the peer discussions, compared to those who were not. Peer collaboration also shows evidence for co-construction of knowledge. Discussions with individual students show that students themselves value peer interaction. We discuss the effect of pairing students with different individual achievements.

  5. Performance of CREAM Calorimeter: Results of Beam Tests

    The Cosmic Ray Energetics And Mass (CREAM), a balloon-borne experiment, is under preparation for a flight in Antarctica at the end of 2004. CREAM is planned to measure the energy spectrum and composition of cosmic rays directly at energies between 1 TeV and 1000 TeV. Incident particle energies will be measured by a transition radiation detector and a sampling calorimeter. The calorimeter was constructed at the University of Maryland and tested at CERN in 2003. Performance of the calorimeter during the beam tests is reported

  6. A LABORATORY TEST FOR THE EXAMINATION OF ALACTIC RUNNING PERFORMANCE

    Armin Kibele

    2005-12-01

    Full Text Available A new testing procedure is introduced to evaluate the alactic running performance in a 10s sprint task with near-maximal movement velocity. The test is performed on a motor-equipped treadmill with inverted polarity that increases mechanical resistance instead of driving the treadmill belt. As a result, a horizontal force has to be exerted against the treadmill surface in order to overcome the resistant force of the engine and to move the surface in a backward direction. For this task, subjects lean with their hands towards the front safety barrier of the treadmill railing with a slightly inclined body posture. The required skill resembles the pushing movement of bobsleigh pilots at the start of a race. Subjects are asked to overcome this mechanical resistance and to cover as much distance as possible within a time period of 10 seconds. Fifteen male students (age: 27.7 ± 4.1 years, body height: 1.82 ± 0.46 m, body mass: 78.3 ± 6.7 kg participated in a study. As the resistance force was set to 134 N, subjects ran 35.4 ± 2.6 m on the average corresponding to a mean running velocity of 3.52 ± 0.25 m·s-1. The validity of the new test was examined by statistical inference with various measures related to alactic performance including a metabolic equivalent to estimate alactic capacity (2892 ± 525 mL O2, an estimate for the oxygen debt (2662 ± 315 ml, the step test by Margaria to estimate alactic energy flow (1691 ± 171 W, and a test to measure the maximal strength in the leg extensor muscles (2304 ± 351 N. The statistical evaluation showed that the new test is in good agreement with the theoretical assumptions for alactic performance. Significant correlation coefficients were found between the test criteria and the measures for alactic capacity (r = 0.79, p < 0.01 as well as alactic power (r = 0.77, p < 0.01. The testing procedure is easy to administer and it is best suited to evaluate the alactic capacity for bobsleigh pilots as well as for

  7. Operating conditions of the SP-1 fuel test: a basis for post-test performance analysis

    Two fast reactor irradiation tests, SP-1 and SP-2, provide a unique and self-consistent data set with which to evaluate the technical feasibility issues of potential fuel systems for the SP-100 space reactor. The first of these tests, SP-1, has completed its first irradiation period and is undergoing nondestructive and destructive examination. The results of these examinations will be reported in a separate paper in this session. An understanding of the fuel element and test capsule design and operating conditions is important to the interpretation and correct extrapolation of the observed performance. This paper discusses the procedures used to determine the SP-1 irradiation test operating conditions

  8. Performance Test of a R134a Centrifugal Water Chiller

    Lee, Hyeonkoo; Yoon, Pil Hyun; Kim, Choon Dong; Lee, Yong Duck; Jeong, Jinhee [LG Cable Ltd., Anyang (Korea)

    2001-05-01

    A centrifugal water chiller using alternative refrigerant R134a have been developed. The prototype was designed to have refrigeration capacity of 300 RT. Its compressor employs a single high-speed impeller, airfoil diffuser and collector. Newly developed enhanced tubes were installed in the evaporator and the condenser to reduce the required head for the compressor. Off-design characteristics at various conditions, performance test of the compressor and analysis of the refrigeration cycle were performed. So the probability of use in part load condition was checked and the direction for revision was suggested. 5 refs., 11 figs., 2 tabs.

  9. Performance verification tests of JT-60SA CS model coil

    Obana, Tetsuhiro; Murakami, Haruyuki; Takahata, Kazuya; Hamaguchi, Shinji; Chikaraishi, Hirotaka; Mito, Toshiyuki; Imagawa, Shinsaku; Kizu, Kaname; Natsume, Kyohei; Yoshida, Kiyoshi

    2015-11-01

    As a final check of the coil manufacturing method of the JT-60 Super Advanced (JT-60SA) central solenoid (CS), we verified the performance of a CS model coil. The model coil comprised a quad-pancake wound with a Nb3Sn cable-in-conduit conductor. Measurements of the critical current, joint resistance, pressure drop, and magnetic field were conducted in the verification tests. In the critical-current measurement, the critical current of the model coil coincided with the estimation derived from a strain of -0.62% for the Nb3Sn strands. As a result, critical-current degradation caused by the coil manufacturing process was not observed. The results of the performance verification tests indicate that the model coil met the design requirements. Consequently, the manufacturing process of the JT-60SA CS was established.

  10. Performance testing of 3D point cloud software

    Varela-González, M.; González-Jorge, H.; Riveiro, B.; Arias, P.

    2013-10-01

    LiDAR systems are being used widely in recent years for many applications in the engineering field: civil engineering, cultural heritage, mining, industry and environmental engineering. One of the most important limitations of this technology is the large computational requirements involved in data processing, especially for large mobile LiDAR datasets. Several software solutions for data managing are available in the market, including open source suites, however, users often unknown methodologies to verify their performance properly. In this work a methodology for LiDAR software performance testing is presented and four different suites are studied: QT Modeler, VR Mesh, AutoCAD 3D Civil and the Point Cloud Library running in software developed at the University of Vigo (SITEGI). The software based on the Point Cloud Library shows better results in the loading time of the point clouds and CPU usage. However, it is not as strong as commercial suites in working set and commit size tests.

  11. Testing and Performance Analysis on Air Conditioner cum Water Dispenser

    Dr. U. V.Kongrea , A. R. Chiddarwarb , P. C. Dhumatkarc , A.B.Aris

    2013-04-01

    Full Text Available The work on developing the heat pumps for space conditioning and water heating has been gone for half a century. The earlier water heating pumps and air to water heating pumps gives only hot water and space conditioning. But in this air conditioning cum water dispenser we get hot and cold water with hot and cold air, thus the system becomes multifunctional. The actual cycles and operating conditions for air and water cycle present in this paper. The paper introduced basic design principles and the test analysis performed in the laboratory. The test results were found encouraging especially the parameters of dispenser output along with air conditioner. The paper also introduced comfort conditions and suitable coefficient of performance with respect to atmospheric condition, without sacrificing the air conditioning output

  12. Performance tests during the ATLAS IBL Stave Integration

    In preparation of the ATLAS Pixel Insertable B-Layer integration, detector components, so called staves, were mounted around the Beryllium ATLAS beam pipe and tested using production quality assurance measurements as well as dedicated data taking runs to validate a correct grounding and shielding schema. Each stave consists of 32 new generation readout chips which sum up to over 860k pixels per stave. The integration tests include verification that neither the silicon planar n+-in-n nor the silicon 3D sensors were damaged by mechanical stress, and that their readout chips, including their bump-bond and wire-bond connections, did not suffer from the integration process. Evolution of the detector performance during its integration will be discussed as well as its final performance before installation

  13. Nuclear Performance Analyses for HCPB Test Blanket Modules in ITER

    The Helium-Cooled Pebble Bed (HCPB) blanket is one of two breeder blanket concepts developed in the framework of the European Fusion Technology Programme for performance tests in ITER. The related efforts currently focus on the design optimisation of suitable Test Blanket Modules (TBM) and associated R-and-D activities. Four different HCPB TBM types are considered for addressing issues related to (i) electromagnetic transients (EM), (ii) neutronics and Tritium (NT), (iii) thermo-mechanical properties of the pebble beds (TM), and (iv) the integral performance of the blanket module (Plant Integration, PI). The lay-out of the NT and the PI modules has been entirely revised to represent the latest HCPB breeder blanket concept for fusion power reactors. A HCPB TBM consists of a steel box with an internal stiffening grid and small breeder units. The stiffening grid forms radially running open cells accommodating the breeder units (BU). The BU consists of a back plate with attached breeder canisters providing space for the breeder pebble beds. The space between the canisters and the stiffening plates is filled with Beryllium pebbles for the neutron multiplication. The latest design assumes two vertically arranged breeder containers per BU with a toroidal bed height of 10 and 24 mm, for NT and PI modules, respectively. Li4SiO4 is assumed as breeder material at 6Li enrichment levels between 40 at % (NT) and 90 at % (PI). This work is devoted to the neutronic, shielding and activation analyses performed recently for NT and PI variants of the HCPB TBM in ITER. The analyses are based on three-dimensional neutronic and activation calculations making use of a 20 degree torus sector model of ITER developed for Monte Carlo calculations with the MCNP code. The model includes a proper representation of the horizontal ITER test blanket port, the water cooled support frame with two integrated HCPB blanket test modules, the radiation shield and the port environment. Monte Carlo

  14. Cognitive Diagnosis of Students' Test Performance Based on Probability Inference

    Junjie Xu; Rong Chen

    2014-01-01

    Cognitive diagnosis is aimed at inferring the degree of cognitive state from observations. This paper considers cognitive diagnosis as an instance of model-based diagnosis, which has been studied in artificial intelligence for many years. The model-based cognitive diagnosis we present runs on a model of students' courses in terms of knowledge items that they may learn, tests them and helps them to understand their faults in cognition, and thus improves their learning performance in an E-learn...

  15. Performance test of the CMS link alignment system

    Arce, P; Calvo, E; Fernández, M G; Ferrando, A; Figueroa, C F; García, N; Josa-Mutuberria, I; Molinero, A; Oller, J C; Rodrigo, T; Vila, I; Virto, A L

    2002-01-01

    A first global test of the CMS Alignment System was performed at the I4 hall of the CERN ISR tunnel. Positions of the network, reproducing a set of points in the CMS detector monitored by the Link System, were reconstructed and compared to survey measurements. Spatial and angular reconstruction precisions reached in the present experimental set-up are already close to the CMS requirements.

  16. Reflectors for SAR performance testing-second edition

    Doerry, Armin Walter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-02-01

    Synthetic Aperture Radar (SAR) performance testing and estimation is facilitated by observing the system response to known target scene elements. Trihedral corner reflectors and other canonical targets play an important role because their Radar Cross Section (RCS) can be calculated analytically. However, reflector orientation and the proximity of the ground and mounting structures can significantly impact the accuracy and precision with which measurements can be made. These issues are examined in this report.

  17. Performance Test of LASCAR Scintillator Detector Array at RIBLL

    WangJinchuan; XiaoGuoqing; GuoZhongyan; ZhanWenlong; QiHuirong; WuLijie; XuZhiguo; ZhangLi; DingXianli; XuHushan; SunZhiyu; LiJiaxing; LiChen; WangMeng; ChenLixin; HuZhengguo; MaoRuishi; ZhaoTiecheng

    2003-01-01

    The LASCAR (Large Area Scattering Chamber at PABLL) scintillator detector array is developed to detect neutrons and charged particles from the reaction induced by, the RIBs from RIBLL. It consists of 8 scintillator plus light guide blocks. As shown in Fig.l, each block matches with 49 photomultipliers (PMTs) of 9214SB type from Electron Tubes Limited. Some technical improvements and the latest performance test of the 294 PMTs in 6 blocks of LASCAR are described in this report.

  18. MOTIVATION AND PERFORMANCE IN PHYSICAL EDUCATION: AN EXPERIMENTAL TEST

    Moreno, Juan A; David González-Cutre; José Martín-Albo; Eduardo Cervelló

    2010-01-01

    The purpose of this study was to analyse, experimentally, the relationships between motivation and performance in a lateral movement test in physical education. The study group consisted of 363 students (227 boys and 136 girls), aged between 12 and 16, who were randomly divided into three groups: an experimental group in which an incremental ability belief was induced, another experimental group in which an entity ability belief was induced, and a control group where there was no intervention...

  19. Irradiation tests performed on the Herschel/Pacs bolometer arrays

    Horeau, B.; Claret, A.; Rodriguez, L; Billot, N.; O. Boulade; Doumayrou, E.; Okumura, K.; Pennec, J. Le

    2010-01-01

    A new concept of bolometer arrays is used for the imager of PACS, one of the three instruments aboard the future Herschel space observatory. Within the framework of PACS photometer characterization, irradiation tests were performed on a dedicated bolometer array in order to study long-term and short-term radiation effects. The main objective was to study particles impacts on the detectors applicable to future observations in orbit and possible hard and/or soft curing to restore its performanc...

  20. Causality Tests for Public School Performance and Funding.

    Christopher C. Klein

    2007-01-01

    This paper seeks to shed light on the role of school funding in individual school performance. A unique data set is utilized for the Metropolitan Nashville – Davidson County School District in Tennessee, known colloquially as Metro. In 2005 the Metro school board undertook the task of breaking down individual school spending levels by funding source. The resulting 2004-2005 financial data are combined with academic test scores and demographic data for 2003-2004 and 2004-2005 academic years fo...

  1. Performance of a 2-megawatt high voltage test load

    A high-power, water-cooled resistive load which simulates the electrical load characteristics of a high-power klystron, capable of 2 megawatts dissipation at 95 kV DC, was built and installed at the Advanced Photon Source for use in load-testing high voltage power supplies. During this testing, the test load has logged approximately 35 hours of operation at power levels in excess of one mezawatt. Slight variations in the resistance of the load during operation indicate that leakage currents in the cooling water may be a significant factor affecting the performance of the load. Sufficient performance data have been collected to indicate that leakage current through the deionized (DI) water coolant shunts roughly 15 percent of the full-load current around the load resistor elements. The leakage current could cause deterioration of internal components of the load. The load pressure vessel was disassembled and inspected internally for any signs of significant wear and distress. Results of this inspection and possible modifications for improved performance will be discussed

  2. Life sciences passive GN2 freezer thermal performance test

    Belshaw, G. W.

    1981-01-01

    Thermal performance tests that were conducted on the life sciences passive GN2 freezer project are summarized as well as the improvements to the freezers to improve the thermal performance of the containers. Procedures were developed, based upon these tests, to initially charge the freezers with LN2 and verify that the freezer performance is adequate for the mission duration. Improvements were made to the corvac sample tube to limit the amount of breakage due to thermal expansion of the liquid during freezing. A method of verifying the freezer vacuum insulative integrity was defined as well as a procedure for refurbishment of the internal vacuum level. Freezer modifications were made to ease the reevacuation of the containers. The orientation of the freezer in a 1-G environment, after being charged, had to remain in a vertical position. The LN2 boiloff rate increased significantly in a horizontal position. This resulted in a stowage definition in the spacecraft prior to launch. Functional testing, using the SL-1 mission timeline showed that the freezer will maintain samples in the frozen state for the duration of the mission.

  3. Development and performances of a high statistics PMT test facility

    Maximiliano Mollo, Carlos

    2016-04-01

    Since almost a century photomultipliers have been the main sensors for photon detection in nuclear and astro-particle physics experiments. In recent years the search for cosmic neutrinos gave birth to enormous size experiments (Antares, Kamiokande, Super-Kamiokande, etc.) and even kilometric scale experiments as ICECUBE and the future KM3NeT. A very large volume neutrino telescope like KM3NeT requires several hundreds of thousands photomultipliers. The performance of the telescope strictly depends on the performance of each PMT. For this reason, it is mandatory to measure the characteristics of each single sensor. The characterization of a PMT normally requires more than 8 hours mostly due to the darkening step. This means that it is not feasible to measure the parameters of each PMT of a neutrino telescope without a system able to test more than one PMT simultaneously. For this application, we have designed, developed and realized a system able to measure the main characteristics of 62 3-inch photomultipliers simultaneously. Two measurement sessions per day are possible. In this work, we describe the design constraints and how they have been satisfied. Finally, we show the performance of the system and the first results coming from the test of few thousand tested PMTs.

  4. Performance Test of the Prototype SSDM for KJRR

    Kim, Sanghaun; Cho, Yeong-Garp; Yoo, Yeon-Sik; Ryu, Jeong Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The purpose of this paper is to introduce the basic performance test results for a prototype of BMSSDM for KJRR. The CRDM acts as the first reactor shutdown mechanism and reactor regulating as well. The SSDM provides an alternate and independent means of reactor shutdown. The Second Shutdown Rods (SSRs) of the SSDM are poised at the top of the core by the hydraulic system during the normal operation and drop by gravity within the specific time. The SSR drop is commanded by the Reactor Protection System (RPS), Alternate Protection System (APS), Automatic Seismic Trip System (ASTS), or by the reactor operator in KJRR. In summary, all of the performance requirements are satisfied from the performance test results. We confirmed that there are no structural failures for the impacted parts, or negligible wear for the moving parts, and no leakage for the hydraulic cylinder assembly and hydraulic system during all of the tests. However, the design for the BMSSDM can be improved because its related reactor components, which are the CRDM, penetration assembly, RSA, and FFA, will be progressed continuously to meet their requirements and interfaces. In addition, accurate environmental conditions including a thermal hydraulic response and FRS will be determined in the near future.

  5. Development and performances of a high statistics PMT test facility

    Mollo Carlos Maximiliano

    2016-01-01

    Full Text Available Since almost a century photomultipliers have been the main sensors for photon detection in nuclear and astro-particle physics experiments. In recent years the search for cosmic neutrinos gave birth to enormous size experiments (Antares, Kamiokande, Super-Kamiokande, etc. and even kilometric scale experiments as ICECUBE and the future KM3NeT. A very large volume neutrino telescope like KM3NeT requires several hundreds of thousands photomultipliers. The performance of the telescope strictly depends on the performance of each PMT. For this reason, it is mandatory to measure the characteristics of each single sensor. The characterization of a PMT normally requires more than 8 hours mostly due to the darkening step. This means that it is not feasible to measure the parameters of each PMT of a neutrino telescope without a system able to test more than one PMT simultaneously. For this application, we have designed, developed and realized a system able to measure the main characteristics of 62 3-inch photomultipliers simultaneously. Two measurement sessions per day are possible. In this work, we describe the design constraints and how they have been satisfied. Finally, we show the performance of the system and the first results coming from the test of few thousand tested PMTs.

  6. Test Program for the Performance Analysis of DNS64 Servers

    Gábor Lencse

    2015-09-01

    Full Text Available In our earlier research papers, bash shell scripts using the host Linux command were applied for testing the performance and stability of different DNS64 server imple­mentations. Because of their inefficiency, a small multi-threaded C/C++ program (named dns64perf was written which can directly send DNS AAAA record queries. After the introduction to the essential theoretical background about the structure of DNS messages and TCP/IP socket interface programming, the design decisions and implementation details of our DNS64 performance test program are disclosed. The efficiency of dns64perf is compared to that of the old method using bash shell scripts. The result is convincing: dns64perf can send at least 95 times more DNS AAAA record queries per second. The source code of dns64perf is published under the GNU GPLv3 license to support the work of other researchers in the field of testing the performance of DNS64 servers.

  7. Verification tests performed for development of an integral type reactor

    SMART is an integral type reactor with innovative design features aimed at achieving a highly enhanced safety and improved economics. The SMART design is based on proven reactor design technologies with the use of new advanced design features. Most of the design features implemented into the SMART have been proven, however the advanced design features implemented into the SMART should be proven by testing. Various thermal hydraulic experiments have been carried out and also planned to assure the fundamental behavior of major concepts of the SMART and to prove the performance of the systems with new innovative technologies. This paper describes the thermal hydraulic test program for the SMART development and briefly discusses the typical test results. (author)

  8. Final tests and performances verification of the European ALMA antennas

    Marchiori, Gianpietro; Rampini, Francesco

    2012-09-01

    The Atacama Large Millimeter Array (ALMA) is under erection in Northern Chile. The array consists of a large number (up to 64) of 12 m diameter antennas and a number of smaller antennas, to be operated on the Chajnantor plateau at 5000 m altitude. The antennas will operate up to 950 GHz so that their mechanical performances, in terms of surface accuracy, pointing precision and dimensional stability, are very tight. The AEM consortium constituted by Thales Alenia Space France, Thales Alenia Space Italy, European Industrial Engineering (EIE GROUP), and MT Mechatronics is assembling and testing the 25 antennas. As of today, the first set of antennas have been delivered to ALMA for science. During the test phase with ESO and ALMA, the European antennas have shown excellent performances ensuring the specification requirements widely. The purpose of this paper is to present the different results obtained during the test campaign: surface accuracy, pointing error, fast motion capability and residual delay. Very important was also the test phases that led to the validation of the FE model showing that the antenna is working with a good margin than predicted at design level thanks also to the assembly and integration techniques.

  9. Performance Test of High Heat Flux Test Facility for the Calorimetry and Beam Control

    The Korea Heat Load Test facility, KoHLT-EB (Electron Beam) has been operating for the plasma facing components to develop fusion engineering in Korea. The ITER Neutral Beam Duct Liner (NBDL) was fabricated and tested to qualify the thermocouple fixation method for the temperature measurement during a direct collision of the high-power neutral beam during ITER operation. The NBDL is CuCrZr panels, which are actively water cooled using deep drilled channels. To perform the profile test, the assessment for the possibility of an electron beam Gaussian power density profile and the result of absorbed power for that profile before the test start is needed. To assess the possibility of Gaussian profile, for the qualification test of a Gaussian heat load profile, small calorimetry was manufactured to simulate a real heat profile in the neutral beam duct liner, and this calorimetry has two cooling channel with five thermocouples, which is the same as NBDL. Preliminary analyses with ANSYSCFX using a 3D model were performed with the calorimetry model. The heating area was modeled to be 60 mm x 250 mm. The simulated heat flux is 0.5 - 1.2 MW/m''2 at 0.75 kg/sec of the water flow rate. A steady heat flux test was performed to measure the surface heat flux, surface temperature profile. With a thermohydraulic analysis and heat load test, the Gaussian heat profile will be confirmed for this calorimetry and NBDL mockup. The Korean heat load test facility will be used to qualify the specifications of various plasma facing components in fusion devices. To conduct a beam profile test, an assessment of the possibility of electron beam Gaussian power density profile and the results of the absorbed power for that profile before the test starts are needed. To assess the possibility of a Gaussian profile, for the qualification test of the Gaussian heat load profile, a calorimeter mockup and large Cu module were manufactured to simulate real heat. For this high-heat flux test

  10. Performance measurements at the fast flux test facility

    In 1984, Fast Flux Test Facility (FFTF) management recognized the need to develop a measurement system that would quantify the operational performance of the FFTF and the human resources needed to operate it. Driven by declining budgets and the need to safely manage a manpower rampdown at FFTF, an early warning system was developed. Although the initiating event for the early warning system was the need to safely manage a manpower rampdown, many related uses have evolved. The initial desired objective for the FFTF performance measurements was to ensure safety and control of key performance trends. However, the early warning system has provided a more quantitative, supportable basis upon which to make decisions. From this initial narrow focus, efforts in the FFTF plant and supporting organizations are leading to measurement of and, subsequently, improvements in productivity. Pilot projects utilizing statistical process control have started with longer range productivity improvement

  11. Orion Launch Abort System Performance During Exploration Flight Test 1

    McCauley, Rachel; Davidson, John; Gonzalez, Guillo

    2015-01-01

    The Orion Launch Abort System Office is taking part in flight testing to enable certification that the system is capable of delivering the astronauts aboard the Orion Crew Module to a safe environment during both nominal and abort conditions. Orion is a NASA program, Exploration Flight Test 1 is managed and led by the Orion prime contractor, Lockheed Martin, and launched on a United Launch Alliance Delta IV Heavy rocket. Although the Launch Abort System Office has tested the critical systems to the Launch Abort System jettison event on the ground, the launch environment cannot be replicated completely on Earth. During Exploration Flight Test 1, the Launch Abort System was to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. Exploration Flight Test 1 was successfully flown on December 5, 2014 from Cape Canaveral Air Force Station's Space Launch Complex 37. This was the first flight test of the Launch Abort System preforming Orion nominal flight mission critical objectives. The abort motor and attitude control motors were inert for Exploration Flight Test 1, since the mission did not require abort capabilities. Exploration Flight Test 1 provides critical data that enable engineering to improve Orion's design and reduce risk for the astronauts it will protect as NASA continues to move forward on its human journey to Mars. The Exploration Flight Test 1 separation event occurred at six minutes and twenty seconds after liftoff. The separation of the Launch Abort System jettison occurs once Orion is safely through the most dynamic portion of the launch. This paper will present a brief overview of the objectives of the Launch Abort System during a nominal Orion flight. Secondly, the paper will present the performance of the Launch Abort System at it fulfilled those objectives. The lessons learned from Exploration Flight Test 1 and the other Flight Test Vehicles will certainly

  12. The 5-Choice Continuous Performance Test: Evidence for a Translational Test of Vigilance for Mice

    Young, Jared W.; Light, Gregory A.; Marston, Hugh M.; Sharp, Richard; Geyer, Mark A.

    2009-01-01

    Background Attentional dysfunction is related to functional disability in patients with neuropsychiatric disorders such as schizophrenia, bipolar disorder, and Alzheimer's disease. Indeed, sustained attention/vigilance is among the leading targets for new medications designed to improve cognition in schizophrenia. Although vigilance is assessed frequently using the continuous performance test (CPT) in humans, few tests specifically assess vigilance in rodents. Methods We describe the 5-choice...

  13. Perfectionism and aptitude test performance: Testees who strive for perfection achieve better test results

    Stoeber, Joachim; Kersting, Martin

    2007-01-01

    Positive conceptions of perfectionism (Stoeber & Otto, 2006) suggest that perfectionistic strivings may form part of a healthy pursuit of excellence and are associated with higher academic achievement and higher performance in laboratory tasks. To extend such research findings, the present study explores if perfectionistic strivings also predict aptitude test performance, while controlling for conscientious achievement striving. A sample of 111 participants, who completed measures of perfecti...

  14. The Role of Bilingualism on Neuropsychological Test Performance among Spanish Speakers Tested in Their Native Language

    Suárez, Paola A.

    2013-01-01

    Rationale : The cognitive science literature suggests both advantages and disadvantages of bilingualism for cognitive performance. However, little is known about the generalizability of such findings to clinical neuropsychology for diagnosing brain dysfunction in Spanish dominant bilinguals in the U.S. The present study examined the effects of bilingualism on Spanish-language neuropsychological test performance, and whether or not these bilingual advantages could be explained by socioeconomic...

  15. Results of Performance Tests Performed on the John Watts Casing Connection on 7" Pipe

    John D. Watts

    1999-08-01

    Stress Engineering Services (SES) was contracted by Mr. John Watts to test his threaded connection developed for oilfield oil and gas service. This particular test required the application of a variety of loads including axial tension and compression, internal pressure (gas), external pressure (water), bending and both low and elevated temperature. These loads were used to determine the sealing and structural limits of the connection. The connection design tested had tapered threads with 10 threads per inch. A square thread form and a round thread form were tested. The square thread form had a 2{sup o} load flank and 15{sup o} stab flank. The round thread had a 0{sup o} load flank and 20{sup o} stab flank. Most of the testing was performed on the round thread form. Both a coupled connection design and an integral connection design were tested. The coupling was a pin by pin (male) thread, with the pipe having a box (female) thread. Both designs have outside and inside diameters that are flush with the pipe body. Both designs also contain a small external shoulder. The test procedure selected for this evaluation was the newly written ISO 13679 procedure for full scale testing of casing and tubing connections. The ISO procedure requires a variety of tests that includes makeup/breakout testing, internal gas sealability/external water sealability testing with axial tension, axial compression, bending, internal gas thermal cycle tests and limit load (failure) tests. This test was performed with four coupled samples and included most of these loads. Two integral samples were also included for limit load testing ISO makeup/breakout tests are divided into three types--initial makeup, IML1, repeated makeup within the same sample, MBL, and repeated makeup using several samples called round robin, RR. IMU and MBL were performed in this project. The ISO sealing and structural procedure is divided into four primary tests and identified as Series A, B, C and Limit Load (failure

  16. General Atomic's superconducting high field test facility and initial performance

    General Atomic has established a high field test facility whose primary mission is to investigate the J-B-T and stability performance margins of commercial NbTi superconductor in the 10 tesla, 4.20K region. This work is part of the overall DOE/MFE/MAGNETIC SYSTEMS effort to provide an adequate technological base for construction of superconducting toroidal field coils for the next generation of large tokamak fusion devices. The principal components of the facility are the coil/cryostat assembly, the helium refrigerator-liquefier/compressor system, and the gaseous helium recovery and storage system. The epoxy impregnated, layer wound main background field coil generates 8 tesla within its 40 cm diameter bore. The insert background field coil was layer wound with cooling channels provided by ''barber pole'' mylar conductor insulation. Ten tesla is generated within its 22 cm bore. The initial performance of the facility will be discussed. Future testing calls for operating test coils with implanted heating elements to simulate mechanically induced perturbations. The normal zone growth and recovery behavior will be observed for various disturbance energies. This data will then be compared with results obtained from the transient recovery analysis developed at General Atomic

  17. Calibration and performance testing of electronic personal dosimeters (EPD)

    In modern radiation protection practices, active personal dosimeters are becoming absolutely necessary operational tools for satisfying the ALARA principle. The aim of this work was to carry out calibration and performance testing of ten electronic personal dosimeters (EPD) used for the individual monitoring. The EPDs were calibrated in terms of operation radiation protection quantity, personal dose equivalent, Hp (10). Calibrations were carried out at three of x-ray beam qualities described in ISO 4037 namely 60, 100 and 150 kV in addition to Cs-137 gamma ray quality. The calibrations were performed using polymethylmethacrylate (PMMA) phantom with dimensions 20*20*15 cm3. Conversion coefficient Hp (10)/K air for the phantom was also calculated. The response and linearity of the dosimeter at the specified energies were also tested. The EPDs tested showed that the calibration coefficient ranged from 0.60 to 1.31 and an equivalent response for the specified energies that ranged from 0.76 to 1.67. The study demonstrated the possibility of using non standard phantom for calibrating dosimeters used for individual monitoring. The dosimeters under study showed a good response in all energies except the response in quality 100 kV. The linearity of the dosimeters was within ±15%, with the exception of the quality 100 kV where this limit was exceeded.(Author)

  18. The modification works and performance tests at JRR-4

    Japan Research Reactor No.4 (JRR-4) is a light water moderated and cooled, graphite and aluminum reflected, pool-type reactor with thermal output of 3500 kW. This reactor was constructed mainly for the purpose of shielding experiments of the Japanese initial nuclear ship in 1962. Since then, JRR-4 had been widely utilized more than 30 years, and on January 12, 1996, the reactor operation using HEU (93% enriched uranium) fuels was terminated. The JRR-4 LEU (about 20% enriched uranium) modification works were begun in October 1996, and continued such as installation, cold run until June 1998. The initial criticality test with the LEU core was achieved in the minimum critical mass (12 fuel elements) on July 14, 1998. All of performance and functional tests were finished in December 1998, and JRR-4 operation was resumed for users in January 1999. This presentation will mainly focus on the JRR-4 modification works and outline of the performance tests. (author)

  19. Safety Performance of Airborne Separation: Preliminary Baseline Testing

    Consiglio, Maria C.; Hoadley, Sherwood T.; Wing, David J.; Baxley, Brian T.

    2007-01-01

    The Safety Performance of Airborne Separation (SPAS) study is a suite of Monte Carlo simulation experiments designed to analyze and quantify safety behavior of airborne separation. This paper presents results of preliminary baseline testing. The preliminary baseline scenario is designed to be very challenging, consisting of randomized routes in generic high-density airspace in which all aircraft are constrained to the same flight level. Sustained traffic density is varied from approximately 3 to 15 aircraft per 10,000 square miles, approximating up to about 5 times today s traffic density in a typical sector. Research at high traffic densities and at multiple flight levels are planned within the next two years. Basic safety metrics for aircraft separation are collected and analyzed. During the progression of experiments, various errors, uncertainties, delays, and other variables potentially impacting system safety will be incrementally introduced to analyze the effect on safety of the individual factors as well as their interaction and collective effect. In this paper we report the results of the first experiment that addresses the preliminary baseline condition tested over a range of traffic densities. Early results at five times the typical traffic density in today s NAS indicate that, under the assumptions of this study, airborne separation can be safely performed. In addition, we report on initial observations from an exploration of four additional factors tested at a single traffic density: broadcast surveillance signal interference, extent of intent sharing, pilot delay, and wind prediction error.

  20. Demonstration of a steam jet scrubber off-gas system and the burner efficiency of a mixed incinerator facility

    A full-scale incinerator system, the Consolidated Incineration Facility (CIF), is being designed to process solid and liquid low-level radioactive, mixed, and RCRA hazardous waste. This facility will consist of a rotary kiln, secondary combustion chamber (SCC), and a wet of-gas system. A prototype steam jet scrubber wastewater will be immobilized in a cement matrix after assumptions for the CIF. The scrubber wastewater will be immobilized in a cement matrix after the blowdown has been concentrated to a maximum solids concentration in a cross-flow filtration system. A sintered metal inertial filter system has been successfully tested. Burner efficiency was tested in a high intensity vortex burner, which destroyed the hazardous waste streams tested. These tests are detailed by the authors

  1. Exercise testing and hemodynamic performance in healthy elderly persons

    To determine the effect of age on cardiovascular performance, 39 healthy elderly men and women, 70 to 83 years old, underwent treadmill thallium-201 exercise perfusion imaging and radionuclide equilibrium angiography at rest and during supine bicycle exercise. Five volunteers who had a positive exercise thallium test response were excluded from the study. Radionuclide left ventricular ejection fraction, regional wall abnormalities, relative cardiac output, stroke volume, end-diastolic volume and end-systolic volume were measured. Seventy-four percent of the subjects maintained or increased their ejection fraction with exercise. With peak exercise, mean end-diastolic volume did not change, end-systolic volume decreased and cardiac output and stroke volume increased. Moreover, in 35% of the subjects, minor regional wall motion abnormalities developed during exercise. There was no significant difference in the response of men and women with regard to these variables. However, more women than men had difficulty performing bicycle ergometry because they had never bicycled before. Subjects who walked daily performed the exercise tests with less anxiety and with a smaller increase in heart rate and systolic blood pressure

  2. Core-support performance test in the component-flow test loop

    The CFTL is a closed-circuit, out-of-pile loop circulating helium at temperatures and pressures anticipated in gas-cooled reactors at flows sufficiently large to perform engineering-scale tests. It has the present capability for fast data acquisition and the control and measurement of gaseous impurities, and it has the potential to perform controlled rapid transients in pressure, flow, and power. The initial HTGR component to be tested in the CFTL is the core support structure for the prismatic bed HTGR. This structure has vertical posts mating with post seats, each with spherical curvatures of different radii. At the point of contact, Hertzian stress concentrations are produced. Under the load of the weight of the core plus the pressure gradient, the graphite will deform until the stress is below its yield limit. The Core Support Performance Test (CSPT) will subject this interface, using actual materials and geometry, to impure helium at HTGR operating temperatures, pressures, and flows under a simulated structural load. The concentration of water, hydrogen, and carbon dioxide will be controlled so that six months of test operation will simulate 40 years of reactor operation. The specification of this concentration is based on existing studies involving small graphite samples exposed to a variety of conditions at a few atmospheres. The extrapolation to concentrations that will duplicate both the amount and the nature of the corrosion is based on the oxidation kinetics of the Gadsby equation as parameterized by Velasquez. Ports are provided in the test vessel for in situ inspection of the graphite during the test period. Post-test examination of the structure will be used to correlate its performance with available computational methods

  3. Testing and performance of high temperature superconducting current leads

    Vapor-cooled current leads generally used for transmitting power to a superconducting magnet can introduce a significant heat leak into the cryostat. Refrigerating and liquefying the vapors associated with cooling of these leads may constitute a significant portion of the power requirement of the refrigeration/liquefaction system. Theoretical studies and experiments have demonstrated that the heat leak introduced by a current lead can be reduced by using ceramic high temperature superconductor as part of the conductor in the current leads. A high temperature superconductor (HTSC) reduces the heat leak in a current lead by being superconducting in the temperature range below its critical temperature and by having a low temperature thermal conductivity which is generally orders of magnitude lower than the copper alloys commonly used as the current lead conductors. Thc combination of superconducting and low thermal conductivity can produce a significant reduction in the heat leak and the associated helium boiloff, as demonstrated earlier by a HTSC lead tested up to 2 kA operating in a self-cooled mode. The ceramic high temperature superconductors are relatively new materials and their mechanical, electrical and thermophysical property data are very limited. Employing these materials in a device such as a current lead requires not only detailed design analyses but, more importantly, comprehensive testing using test models and prototypes. The testing needs to include performance evaluations of the superconductor parts as well as the entire lead assembly. Of particular importance due to the difficulty in making low resistance ceramic/nominal metal joints, experimental evaluations of the joints in the operating temperature range are also required. The technical issue of the testing of such leads and its associate superconductor parts as well as analysis and discussion of some of the test results are presented

  4. CET performance at ROSA/LSTF tests. Twelve tests with core heat-up

    This report summarizes performance of core exit thermocouple (CET) observed in twelve ROSA/LSTF tests which include ten small-break loss-of-coolant accident (SBLOCA) tests and two abnormal transient tests. The report was prepared to a task group in the Working Group of Analysis and Management of Accident (WGAMA) at OECD/NEA, which had been set up to review and consolidate background knowledge of CET application to PWR accident management (AM) measures. The LSTF is the largest PWR simulator in the world with full-height, full-pressure and 1/48 volumetric scaling design. General CET performance to detect core heat-up in the LSTF tests is clarified as follows. (1) A time delay to detect core heat-up and a significant temperature difference from the hottest core are observed in most tests, (2) no CET heat-up was observed in two tests in which fall-back water from hot legs significantly influenced not only the CETs but also the local core cooling, (3) steam flow concentration into the control rod guide tube (CRGT) in case of a PV top SBLOCA test delayed heat-up of CETs installed outside of the CRGT, (4) two abnormal transient tests showed needs of CET superheat indication above saturation temperature during significantly high and low pressure boil-off transients, and (5) applicability of LSTF CET performance to PWR conditions should be carefully analyzed with respect to the fall-back water effects on atypical upper plenum configuration. (author)

  5. Consideration of "g" as a Common Antecedent for Cognitive Ability Test Performance, Test Motivation, and Perceived Fairness

    Reeve, Charlie L.; Lam, Holly

    2007-01-01

    Several different analyses were used to test the hypothesis that test-taking motivation, perceived test fairness, and actual test performance are correlated only because they share a common antecedent. First, hierarchical regressions reveal that initial test performance has a unique influence on non-ability factors even after controlling for…

  6. Gamma thermometer longevity test: Laguna Verde 2 instruments recent performance

    Cuevas V, G. [Global Nuclear Fuel, Americas, 3901 Castle Hayne Road, Wilmington, North Carolina (United States); Avila N, A.; Calleros M, G., E-mail: Gabriel.Cuevas-Vivas@gnf.com [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verda, Carretera Veracruz-Nautla Km 42.5, Alto Lucero, Veracruz (Mexico)

    2013-10-15

    This paper is informative of the General Electric Hitachi and Global Nuclear Fuel - Americas are collaboration with Comision Federal de Electricidad in a longevity test of thermocouples as power monitoring devices. The test conclusions will serve for final engineering design in detailing the Automated Fixed In-core Probes for calibration of the Local Power Range Monitors (LPRMs) of the Economic Simplified Boiling Water Reactor. This paper introduces the collaboration description and some recent performance evaluation of the thermocouples that are sensitive to gamma radiation and are known generically as Gamma Thermometers (G T). The G Ts in Laguna Verde 2 are radially located inside six instrumentation tubes in the core and consist of seven thermocouples, four are aligned with the LPRM heights and three are axially located between LPRM heights. The Laguna Verde 2 G T test has become the longest test of thermocouples as power monitoring devices in a BWR industry history and confirms their reliability in terms of time-dependent small noise under steady state reactor conditions and good agreement against Traversing In-core Probes power measurements. (Author)

  7. Performance testing of waste forms in a tuff environment

    This paper describes experimental work conducted to establish the chemical composition of water which will have reacted with Topopah Spring Member tuff prior to contact with waste packages. The experimental program to determine the behavior of spent fuel and borosilicate glass in the presence of this water is then described. Preliminary results of experiments using spent fuel segments with defects in the Zircaloy cladding are presented. Some results from parametric testing of a borosilicate glass with tuff and 304L stainless steel are also discussed. Experiments conducted using Topopah Spring tuff and J-13 well water have been conducted to provide an estimate of the post-emplacement environment for waste packages in a repository at Yucca Mountain. The results show that emplacement of waste packages should cause only small changes in the water chemistry and rock mineralogy. The changes in environment should not have any detrimental effects on the performance of metal barriers or waste forms. The NNWSI waste form testing program has provided preliminary results related to the release rate of radionuclides from the waste package. Those results indicate that release rates from both spent fuel and borosilicate glass should be below 1 part in 105 per year. Future testing will be directed toward making release rate testing more closely relevant to site specific conditions. 17 references, 7 figures

  8. Gamma thermometer longevity test: Laguna Verde 2 instruments recent performance

    This paper is informative of the General Electric Hitachi and Global Nuclear Fuel - Americas are collaboration with Comision Federal de Electricidad in a longevity test of thermocouples as power monitoring devices. The test conclusions will serve for final engineering design in detailing the Automated Fixed In-core Probes for calibration of the Local Power Range Monitors (LPRMs) of the Economic Simplified Boiling Water Reactor. This paper introduces the collaboration description and some recent performance evaluation of the thermocouples that are sensitive to gamma radiation and are known generically as Gamma Thermometers (G T). The G Ts in Laguna Verde 2 are radially located inside six instrumentation tubes in the core and consist of seven thermocouples, four are aligned with the LPRM heights and three are axially located between LPRM heights. The Laguna Verde 2 G T test has become the longest test of thermocouples as power monitoring devices in a BWR industry history and confirms their reliability in terms of time-dependent small noise under steady state reactor conditions and good agreement against Traversing In-core Probes power measurements. (Author)

  9. Flight Test Performance of a High Precision Navigation Doppler Lidar

    Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockard, George

    2009-01-01

    A navigation Doppler Lidar (DL) was developed at NASA Langley Research Center (LaRC) for high precision velocity measurements from a lunar or planetary landing vehicle in support of the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. A unique feature of this DL is that it has the capability to provide a precision velocity vector which can be easily separated into horizontal and vertical velocity components and high accuracy line of sight (LOS) range measurements. This dual mode of operation can provide useful information, such as vehicle orientation relative to the direction of travel, and vehicle attitude relative to the sensor footprint on the ground. System performance was evaluated in a series of helicopter flight tests over the California desert. This paper provides a description of the DL system and presents results obtained from these flight tests.

  10. Electrical performance characteristics of the SSC Accelerator System String Test

    The intent of the Accelerator System String Test (ASST) is to obtain data for model verification and information on the magnitudes of pressures and voltages encountered in an accelerator environment. The ASST milestone run was achieved during July and August, 1992 and consisted of demonstrating the accelerator components could be configured together as a system operating at full current. Following the milestone run, the string was warmed to counteract some design flaws that impeded the operational range. The string was again cooled to cryogenic temperatures in October, and a comprehensive power testing program was conducted through the end of January, 1993. This paper describes how the collider arc components operate in an accelerator environment during quenches induced by firing both strip heaters and spot heaters. Evaluation of the data illustrates how variations in the design parameters on magnets used in a string environment can impact system performance

  11. Electrical performance characteristics of the SSC accelerator system string test

    The intent of the Accelerator System String Test (ASST) is to obtain data for model verification and information on the magnitudes of pressures and voltages encountered in an accelerator environment. The ASST milestone run was achieved during July and August, 1992 and consisted of demonstrating that the accelerator components could be configured together as a system operating at full current. Following the milestone run, the string was warmed to counteract some design flaws that impeded the operational range. The string was again cooled to cryogenic temperatures in October, and a comprehensive power testing program was conducted through the end of January, 1993. This paper describes how the collider arc components operate in an accelerator environment during quenches induced by firing both strip heaters and spot heaters. Evaluation of the data illustrates how variations in the design parameters on magnets used in a string environment can impact system performance

  12. PERFORMANCE TEST ON UAV-BASED PHOTOGRAMMETRIC DATA COLLECTION

    N. Haala

    2012-09-01

    Full Text Available UAVs are becoming standard platforms for applications aiming at photogrammetric data capture. Since these systems can be completely built-up at very reasonable prices, their use can be very cost effective. This is especially true while aiming at large scale aerial mapping of areas at limited extent. Within the paper the capability of UAV-based data collection will be evaluated. These investigations will be based on flights performed at a photogrammetric test site which was already flown during extensive tests of digital photogrammetric camera systems. Thus, a comparison to conventional aerial survey with state-of-the-art digital airborne camera systems is feasible. Due to this reason the efficiency and quality of generating standard mapping products like DSM and ortho images from UAV flights in photogrammetric block configuration will be discussed.

  13. Readying Students to Test: The Influence of Fear and Efficacy Appeals on Anxiety and Test Performance

    von der Embse, Nathaniel P.; Schultz, Brandon K.; Draughn, Jeremy D.

    2015-01-01

    Educational accountability policies have led to a growth in the use of high-stakes examinations for a number of important educational decisions, including the evaluation of teacher effectiveness. As such, educators are under increasing pressure to raise student test performance. In an attempt to prepare students for a high-stakes exam, teachers…

  14. Design-for-test structure to facilitate test vector application with low performance loss in non-test mode.

    Bratt, Adrian; Harvey, R. J. A.; Dorey, A. P.; Richardson, A. M. D.

    1993-01-01

    A switching based circuit is described which allows application of voltage test vectors to internal nodes of a chip without the problem of backdriving. The new circuit has low impact on the performance of an analogue circuit in terms of loss of bandwidth and allows simple application of analogue test voltages into internal nodes. The circuit described facilitates implementation of the forthcoming IEEE 1149.4 DfT philosophy [1].

  15. Performance testing of a small vertical-axis wind turbine

    Bravo, R.; Tullis, S.; Ziada, S. [McMaster Univ., Hamilton, ON (Canada). Dept. of Mechanical Engineering

    2007-07-01

    Full-scale wind tunnel testing of a prototype 3.5 kW vertical-axis wind turbine (VAWT) was conducted in a low speed wind tunnel in Ottawa. The tests were conducted to determine nominal power curves as well as the system's structural integrity, safety and operational characteristics. Dimensionless power curves were used to assess the relation between the wind turbine's rotary speed and the produced power for various wind speeds. Tests began at the lowest wind speed and revolutions per minute (RPM) and were gradually increased. A proximity sensor was used to determine the passing frequency of spaced bolts. The aerodynamic performance of the turbine was evaluated using a servo-controlled mechanical variable load with a disc brake calliper and electro-hydraulic servo-actuator. A load cell was used to measure torque produced by the turbine. An active closed loop speed control system was used to regulate the rotary speed of the turbine. The system used a high gain proportional control law to guarantee stability. Calculated power was based on the average rotary speed measurement. Results of the study suggested that the dimensional power performance of the turbine could be predicted from the curve for all rotary speeds and for wind speeds between 8 and 16 m/s. The maximum power coefficient of 0.3 occurred at a tip speed ratio of 1.6. Test results demonstrated that the turbine reached its rated power at 14 m/s. However, the range of tip speed ratios for power production were lower than the range for most other small VAWT. 2 refs., 3 figs.

  16. Performance Test Of Hub Engines Of An Electrical Car

    Said Mahmut Çinar; Fatih Onur Hocaoğlu

    2015-01-01

    In this paper joint performances of two hub motors that are designed for electrical motorcycles are investigated. For this aim the electrical car that is produced for a race is employed. The hub motors were 1.5kW power each. The motors are located at the back side of the car. The car was able to run using these engines separately. While the test, first the engine that is located to the right side of the car is run. Then the engine that is located at the left side is run. Finally both...

  17. Injector Cavities Fabrication, Vertical Test Performance and Primary Cryomodule Design

    Wang, Haipeng [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Cheng, Guangfeng [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Clemens, William [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Davis, G [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Macha, Kurt [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Overton, Roland [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Spell, D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2015-09-01

    After the electromagnetic design and the mechanical design of a β=0.6, 2-cell elliptical SRF cavity, the cavity has been fabricated. Then both 2-cell and 7-cell cavities have been bench tuned to the target values of frequency, coupling external Q and field flatness. After buffer chemistry polishing (BCP) and high pressure rinses (HPR), Vertical 2K cavity test results have been satisfied the specifications and ready for the string assembly. We will report the cavity performance including Lorenz Force Detuning (LFD) and Higher Order Modes (HOM) damping data. Its integration with cavity tuners to the cryomodule design will be reported.

  18. Eurados trial performance test for neutron personal dosimetry

    Bordy, J.M.; Stadtmann, H.; Ambrosi, P.; Bartlett, D.T.; Christensen, P.; Colgan, T.; Hyvonen, H.

    This paper reports on the results of a neutron trial performance test sponsored by the European Commission and organised by EURADOS. As anticipated, neutron dosimetry results were very dependent on the dosemeter type and the dose calculation algorithm. Fast neutron fields were generally well...... measured, but particular problems were noted in the determination of intermediate energy fields and large incident angles, demonstrating the difficulties of neutron personal dosimetry. Of particular concern from a radiological protection point of view was the large number of results underestimating...... personal dose equivalent. A considerable over-response was noted in a few cases....

  19. Test beam performance of a tracking TRD prototype

    Lepton identification is expected to play a crucial role in addressing the TeV scale physics which will become accessible with the commissioning of the Superconducting Supercollider (SSC). Transition radiation is potentially a powerful tool for particle identification as its measurement is complementary to calorimetry since the radiation process does not significantly affect the particle energy and direction. A Tracking Transition Radiation Detector prototype has been constructed and tested. It consists of 240 straw tubes, 4 mm in diameter, imbedded in a polyethylene block acting as the radiator. Its performance as an electron identifier as well as a tracking device for minimum ionizing particles has been determined

  20. Comparing candidates’ beliefs and exam performance in speaking tests

    Pérez-Guillot, Cristina; Zabala-Delgado, Julia

    2015-01-01

    The development of a language exam is not a linear process but rather a round cycle in which, by using the test, we obtain information that will in turn be applied to improve each of the steps in the cycle. The goal of our study was to analyse students’ beliefs about their performance in the speaking section of a language proficiency exam and compare them with their actual results in the exam, in order to determine whether their beliefs were based on their actual level of competen...

  1. Performance Tests of Shell and Plate Type Evaporator for OTEC

    Nakaoka, Tsutomu; Uehara, Haruo

    Performance tests on a shell and plate type evaporator (total surface area = 21.95m2, length = 1450mm, width = 235mm, plate number = 100) for ocean thermal energy conversion (OTEC) plants. Freon 22 (R22) and ammonia (NH3) are used as working fluid. The empirical correlations are proporsed in order to predict the boiling heat transfer when using R22 and NH3 and water side heat transfer coefficients for a shell and plate type evaporator. The water side pressure drop is about 3 m at the warm water velocity of 0.7 m/s. The water side friction factor is obtained.

  2. EURADOS trial performance test for neutron personal dosimetry

    This paper reports on the results of a neutron trial performance test sponsored by the European Commission and organised by EURADOS. As anticipated, neutron dosimetry results were very dependent on the dosemeter type and the dose calculation algorithm. Fast neutron fields were generally well measured, but particular problems were noted in the determination of intermediate energy fields and large incident angles, demonstrating the difficulties of neutron personal dosimetry. Of particular concern from a radiological protection point of view was the large number of results underestimating personal dose equivalent. A considerable over-response was noted in a few cases. (author)

  3. The development and performance testing of a biodegradable scale inhibitor

    Hardy, Julie; Fidoe, Steve; Jones, Chris

    2006-03-15

    The oil industry is currently facing severe restrictions concerning the discharge of oil field chemicals into the environment. Many commonly used materials in both topside and downhole applications are phased for substitution for use in the North Sea, and more will be identified. The development of biodegradable and low toxicity chemicals, which afford equal or improved efficacy, compared to conventional technology, available at a competitive price, is a current industry challenge. A range of biodegradable materials are increasingly available, however their limited performance can result in a restricted range of applications. This paper discusses the development and commercialization of a readily biodegradable scale inhibitor, ideal for use in topside applications. This material offers a broad spectrum of activity, notably efficiency against barium sulphate, calcium sulphate and calcium carbonate scales, in a range of water chemistries. A range of performance testing, compatibility, stability and OCNS dataset will be presented. Comparisons with commonly used chemicals have been made to identify the superior performance of this phosphate ester. This paper will discuss a scale inhibitor suitable for use in a variety of conditions which offers enhanced performance combined with a favourable biodegradation profile. This material is of great benefit to the industry, particularly in North Sea applications. (author) (tk)

  4. Airlift Mini-Bubbler Testing in the Slurry FED Melt Rate Furnace

    The objectives of the mini airlift bubbler testing are to evaluate the impact of the bubbler on melt rate, melting behavior and cold cap structure, foam formation and stability, bubbler air venting, off gas behavior, and electrode/plenum power use. In addition, the effects of frit and plenum temperature on bubbler performance were evaluated. This report will cover the second program element, the evaluation of two lengths of mini-bubblers in Slurry Fed Melt Rate Furnaces to assess melting behavior and melt rate enhancement

  5. TESTING OF TACTICAL PERFORMANCE IN YOUTH ELITE SOCCER

    Daniel Memmert

    2010-06-01

    Full Text Available This is a twofold study with the goals of evaluating tactical oriented game test situations for 12-13-year old highly-talented soccer players and to analyze dynamic, intra-individual developments of the players. A cross-sectional design was carried in study 1, using game test situations to measure specific tactics and creative performance for 195 expert players. The results from five evaluation criteria show that both diagnostic instruments can be used for recording football-specific creativity and game intelligence in talented young players. They produced tactical indicators that can be described as objective and valid, exhibit a sufficient degree of differentiation and are easy to record. Study 2 uses a longitudinal design to present a dynamic performance diagnostic tool for analyzing intra-individual improvements of German Soccer Foundation talents according to football-specific creativity and game intelligence. The results with respect to divergent tactical thinking clearly show that very different change processes were observed in the German Soccer Foundation players. Finally, the practical implications for the training process are discussed on the basis of both studies

  6. Performance Test of Engine Fuelled With Diesel and Ethanol Blends.

    B.K.L.Murthy

    2015-04-01

    Full Text Available Environmental concerns and limited amount of petroleum fuels have caused interests in the development of alternative fuels for internal combustion (ICengines. As an alternative, biodegradable and renewable fuel, ethanol is receiving increasing attention. An experimental investigation on the application of the blends of ethanol with diesel to a diesel engine was carried out. First the solubility of ethanol and diesel was conducted with and without the additive of normal butanol (n-butanol. The purpose of this project is to find the optimum percentage of ethanol that gives simultaneously better performance and lower emissions. The experiments were conducted on a water-cooled single-cylinder Direct Injection (DI diesel engine using 0% (neat diesel fuel, 10% (E10-D, 15%(E15–D, 20% (E20–D, and 25%(E25–D ethanol–diesel blended fuels. Experimental tests were carried out to study the performance of the engine fuelled with the blends compared with those fuelled by diesel. The test results show that it is feasible and applicable for the blends with n-butanol to replace pure diesel as the fuel for diesel engine.

  7. Test results of the SMES model coil. Mechanical performance

    The mechanical performance of a SMES model coil was measured by strain gauges, displacement gauges and acoustic emission (AE) sensors attached to the coil surface during an overcharge test. The displacements of the SMES model coil were proportional to the squared currents during charging up until 35.4 kA. It was clear that the coil became deformed elastically by the electromagnetic force during overcharging. The test results obtained by the measurement of strains were compared with calculated results obtained by finite element method analysis. As a result of the comparison, good agreement was found in both stresses, and the values were sufficiently small. It was demonstrated that the coil had no problem regarding mechanical performance. It was clarified that AE signals significantly decreased in the current region after repeated excitation. Furthermore, the characteristics of AE signals were different from the coil windings with coil supports. The wave of AE signals in the windings was minimal ms and more than 100 kHz, and in the coil support more than 10 ms but less than 40 kHz. (author)

  8. Testing the Performance of W-phase Source Inversion

    Rivera, L.; Kanamori, H.

    2008-12-01

    We have recently developed a method to perform fast source parameter inversions for large earthquakes using the W-phase, a very long-period phase starting right after the P-wave arrival (Kanamori and Rivera, 2008). Here we report on the results of a systematic test on the performance of the method for seismic tsunami warning purposes. We tested it using a global data set of all Mw ≥ 7.0 earthquakes between 1990 and 2008 (240 events). We use the vertical VBB data from GSN and Geoscope stations (mainly STS-1 seismometers) filtered between 0.001 and 0.005 Hz. The window length, τ, used for inversion is distance dependent, τ= 15 Δ sec (Δ in degree). Typically we use stations up to 40°- 60° corresponding to a delay of 18-25 min after the origin time. To perform inversion, we need, in addition to the seismic traces, estimates of the hypocenter parameters and of the centroid delay. The PDE parameters, which are quickly available, can be used as a first approximation of the hypocenter location. The centroid source delay is first estimated from an approximate Mw determined from the W phase amplitudes. Having a database of pre-computed Green's functions, the actual inversion process is nearly instantaneous. We can improve the inversion using either grid search or parameter optimization by a non- linear least squares method. In the test reported here, we systematically use the Harvard or the Global CMT solution as reference. Specifically, we compare our solutions with the reference solutions, in terms of the seismic moment (i.e., Mw) and the orientation of the nodal planes. The results of comparison are encouraging. The differences in Mw between the W phase and the CMT inversions are 0.1 or smaller. The differences in the angular distance between the nodal planes are typically less than 5-10 deg. The solutions are in general robust. Because of the sparse station coverage, the solutions for older events (~ 1990-1992) are not constrained well, but are still adequate for

  9. Advancement of flash hydrogasification: Task VIII. Performance testing

    Falk, A.Y.; Schuman, M.D.; Kahn, D.R.

    1986-06-01

    This topical report documents the technical effort required to investigate and verify the reaction chemistry associated with the Rockwell Advanced Flash Hydropyrolysis (AFHP) concept for the production of substitute natural gas (SNG) from coal. The testing phase of the program included 5 preburner performance evaluation tests (14 test conditions) and 11 coal-fed reactor tests (19 test conditions). The reactor test parameters investigated spanned exist temperatures from 1775 to 2050/sup 0/F, residence times from 2 to 8 s, inlet gas-to-coal ratios from 0.15 to 0.27 lb-mole/lb, and inlet-steam-to-H/sub 2/ mole ratios from 0.15 to 0.86. One test was conducted to investigate the effect of CH/sub 4/ addition to the hydrogen feed stream (22 mole % CH/sub 4/), with subsequent partial oxidation of the CH/sub 4/ to CO/sub x/ in the preburner system, on the AFHP reactor chemistry and product gas composition. Overall carbon conversion and total carbon conversion to gases (namely, CH/sub 4/, C/sub 2/H/sub 6/, CO, and CO/sub 2/) ranged from 53 to 68% and 35 to 68%, respectively. The gas produced was primarily CH/sub 4/ (31 to 53% carbon conversion to CH/sub 4/). Carbon conversion to total liquids was strongly dependent on reactor exit temperature and to a lesser extent on residence time, with values ranging from about 20% to 1775/sup 0/F and 2-S residence time to zero at 1975/sup 0/F and residence times greater than 5 s. Carbon conversion to C/sub 6/H/sub 6/ asd high as 11.2% was obtained. Carbon conversion to CO/sub x/ ranged from 3.5 to 29.4%. Methane addition was found not to significantly affect the AFHP reactor chemistry. As a result of this program, Rockwell has expanded its data base and significantly improved its correlation model describing the processes occurring during flash hydropyrolysis. The correlation provides an excellent tool for subsequent process evaluations to determine the economic potential of the Rockwell coal hydrogasification process. 23 refs., 51 figs

  10. Taming Test Anxiety: The Activation of Failure-Related Concepts Enhances Cognitive Test Performance of Test-Anxious Students

    Tempel, Tobias; Neumann, Roland

    2016-01-01

    We investigated processes underlying performance decrements of highly test-anxious persons. Three experiments contrasted conditions that differed in the degree of activation of concepts related to failure. Participants memorized a list of words either containing words related to failure or containing no words related to failure in Experiment 1. In…

  11. Diagnostic performance of the "MESACUP anti-Skin profile TEST".

    Horváth, Orsolya N; Varga, Rita; Kaneda, Makoto; Schmidt, Enno; Ruzicka, Thomas; Sárdy, Miklós

    2016-02-01

    The "MESACUP anti-Skin profile TEST" is a new, commercially available ELISA kit to detect circulating IgG autoantibodies against desmoglein 1, desmoglein 3, BP180, BP230, and type VII collagen, both simultaneously and more rapidly than previous assays. The aim of this study was to evaluate the diagnostic accuracy of this kit for the diagnosis of pemphigus foliaceus, pemphigus vulgaris, bullous pemphigoid and epidermolysis bullosa acquisita. Dual-centre retrospective study in which 138 patients with autoimmune blistering diseases were compared to 40 controls Using the MESACUP anti-Skin profile TEST, both sensitivities and specificities for desmoglein 1, desmoglein 3, BP180, BP230, and type VII collagen autoantibodies were similar to those obtained using previous, specific ELISA systems and 88% of the results were concordant without any significant difference. The MESACUP anti-Skin profile TEST had a similar performance to previously produced ELISA systems. The novel kit can be used for rapid diagnosis of most common autoimmune blistering diseases and is especially suitable for identifying overlapping disorders. PMID:26771500

  12. Test Research for Basic Mechanics Performance of Inorganic Polymer Concrete

    Huihong Liu

    2014-01-01

    Full Text Available The main objective of this study is to evaluate the basic mechanics properties (compressive strength, modulus of elasticity, Poisson’s ratio and splitting tensile strength of inorganic polymer concrete whose mix proportion is ripe recipe and try to provide an experimental and theoretical foundation for application of inorganic polymer concrete in the practical engineering. In this study, the basic mechanics properties of inorganic polymer concrete have been studied by test. At the same time, the same tests researches are made for the common Portland cement concrete for comparison. Through the comparison research, it can be found that the compressive bearing capacity of inorganic polymer concrete is stronger and the modulus of elasticity and Poisson’s ratio is slightly bigger than those of common concrete and that the splitting tensile strength is as poor as those of ordinary Portland cement concrete. In order to investigate its long-term performance, the shrinkage and creep tests of inorganic polymer concrete have been studied as well. The change rules of shrinkage and creep in inorganic polymer concrete with time are obtained. It is that initial deformation is bigger and late deformation gradually becomes small and stable. These rules are basic similar as common Portland cement concrete.

  13. Shear punch tests performed using a new low compliance test fixture

    Based on a recent finite element analysis (FEA) study performed on the shear punch test technique, it was suggested that compliance in a test frame and fixturing which is quite acceptable for uniaxial tensile tests, is much too large for shear punch tests. The FEA study suggested that this relatively large compliance was masking both the true yield point and the shape of the load versus displacement trace obtained in shear punch tests. The knowledge gained from the FEA study was used to design a new shear punch test fixture which more directly measures punch tip displacement. The design of this fixture, the traces obtained from this fixture, and the correlation between uniaxial yield stress and shear yield stress obtained using this fixture are presented here. In general, traces obtained from the new fixture contain much less compliance resulting in a trace shape which is more similar in appearance to a corresponding uniaxial tensile trace. Due to the more direct measurement of displacement, it was possible to measure yield stress at an offset shear strain in a manner analogous to yield stress measurement in a uniaxial tensile test. The correlation between shear yield and uniaxial yield was altered by this new yield measurement technique, but the new correlation was not as greatly improved as was suggested would occur from the FEA study

  14. Performance testing of LiDAR exploitation software

    Varela-González, M.; González-Jorge, H.; Riveiro, B.; Arias, P.

    2013-04-01

    Mobile LiDAR systems are being used widely in recent years for many applications in the field of geoscience. One of most important limitations of this technology is the large computational requirements involved in data processing. Several software solutions for data processing are available in the market, but users are often unknown about the methodologies to verify their performance accurately. In this work a methodology for LiDAR software performance testing is presented and six different suites are studied: QT Modeler, AutoCAD Civil 3D, Mars 7, Fledermaus, Carlson and TopoDOT (all of them in x64). Results depict as QTModeler, TopoDOT and AutoCAD Civil 3D allow the loading of large datasets, while Fledermaus, Mars7 and Carlson do not achieve these powerful performance. AutoCAD Civil 3D needs large loading time in comparison with the most powerful softwares such as QTModeler and TopoDOT. Carlson suite depicts the poorest results among all the softwares under study, where point clouds larger than 5 million points cannot be loaded and loading time is very large in comparison with the other suites even for the smaller datasets. AutoCAD Civil 3D, Carlson and TopoDOT show more threads than other softwares like QTModeler, Mars7 and Fledermaus.

  15. Irradiation tests performed on the Herschel/Pacs bolometer arrays

    Horeau, B; Rodriguez, L; Billot, N; Boulade, O; Doumayrou, E; Okumura, K; Pennec, J Le

    2010-01-01

    A new concept of bolometer arrays is used for the imager of PACS, one of the three instruments aboard the future Herschel space observatory. Within the framework of PACS photometer characterization, irradiation tests were performed on a dedicated bolometer array in order to study long-term and short-term radiation effects. The main objective was to study particles impacts on the detectors applicable to future observations in orbit and possible hard and/or soft curing to restore its performances. Cobalt-60 gamma ray irradiations did not show significant degradation, so we mainly focused on single events effects (SEE). Protons and alphas irradiations were then performed at the Van de Graaf tandem accelerator at the Institut de Physique Nucleaire (IPN, Orsay, France), respectively at 20MeV and 30MeV. Observation showed that the shape of signal perturbations clearly depends on the location of the impacts either on the detector itself or the read-out circuit. Software curing has then to be anticipated in order to ...

  16. AIChe equipment testing procedure centrifugal compressors : a guide to performance evaluation and site testing

    AIChE

    2013-01-01

    With its engineer-tested procedures and thorough explanations, Centrifugal Compressors is an essential text for anyone engaged in implementing new technology in equipment design, identifying process problems, and optimizing equipment performance.  This condensed book presents a step by step approach to preparing for, planning, executing, and analyzing tests of centrifugal compressors, with an emphasis on methods that can be conducted on-site and with an acknowledgement of the strengths and limitations of these methods. The book opens with an extensive and detailed section offering definitions

  17. Final Report Integrated DM1200 Melter Testing Of Redox Effects Using HLW AZ-101 And C-106/AY-102 Simulants VSL-04R4800-1, Rev. 0, 5/6/04

    This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of AZ-101 and C-106/AY-102 HLW simulants. The tests reported herein are a subset of three tests from a larger series of tests described in the Test Plan for the work; results from the remaining tests will be reported separately. Three nine day tests, one with AZ-101 and two with C-106/AY-102 feeds were conducted with variable amounts of added sugar to address the effects of redox. The test with AZ-101 included ruthenium spikes to also address the effects of redox on ruthenium volatility. One of tests addressed the effects of increased flow-sheet nitrate levels using C-106/AY-102 feeds. With high nitrate/nitrite feeds (such as WTP LAW feeds), reductants are required to prevent melt foaming and deleterious effects on glass production rates. Sugar is the baseline WTP reductant for this purpose. WTP HLW feeds typically have relatively low nitrate/nitrite content in comparison to the organic carbon content and, therefore, have typically not required sugar additions. However, HLW feed variability, particularly with respect to nitrate levels, may necessitate the use of sugar in some instances. The tests reported here investigate the effects of variable sugar additions to the melter feed as well as elevated nitrate levels in the waste. Variables held constant to the extent possible included melt temperature, bubbling rate, plenum temperature, cold cap coverage, the waste simulant composition, and the target glass composition. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW feeds with variable amounts of added sugar and increased nitrate levels; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and perform pre- and

  18. FINAL REPORT INTEGRATED DM1200 MELTER TESTING OF REDOX EFFECTS USING HLW AZ-101 AND C-106/AY-102 SIMULANTS VSL-04R4800-1 REV 0 5/6/

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D' ANGELO NA; LUTZE W; BIZOT PM; CALLOW RA; BRANDYS M; KOT WK; PEGG IL

    2011-12-29

    This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of AZ-101 and C-106/AY-102 HLW simulants. The tests reported herein are a subset of three tests from a larger series of tests described in the Test Plan for the work; results from the remaining tests will be reported separately. Three nine day tests, one with AZ-101 and two with C-106/AY-102 feeds were conducted with variable amounts of added sugar to address the effects of redox. The test with AZ-101 included ruthenium spikes to also address the effects of redox on ruthenium volatility. One of tests addressed the effects of increased flow-sheet nitrate levels using C-106/AY-102 feeds. With high nitrate/nitrite feeds (such as WTP LAW feeds), reductants are required to prevent melt foaming and deleterious effects on glass production rates. Sugar is the baseline WTP reductant for this purpose. WTP HLW feeds typically have relatively low nitrate/nitrite content in comparison to the organic carbon content and, therefore, have typically not required sugar additions. However, HLW feed variability, particularly with respect to nitrate levels, may necessitate the use of sugar in some instances. The tests reported here investigate the effects of variable sugar additions to the melter feed as well as elevated nitrate levels in the waste. Variables held constant to the extent possible included melt temperature, bubbling rate, plenum temperature, cold cap coverage, the waste simulant composition, and the target glass composition. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW feeds with variable amounts of added sugar and increased nitrate levels; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and perform pre- and

  19. Calibration and performance tests of the MAGIC-II camera

    The MAGIC 17m diameter Cherenkov telescopes system has been upgraded with a second telescope within the year 2007-2008 to allow stereo observations. This will improve the sensitivity and energy threshold of the current installation. The new MAGIC-II telescope has been equipped with a camera composed of 1039 pixels with 0.1-degree diameter. Seven pixels in a hexagonal configuration are grouped to form one cluster of the camera. This modular design allows easier maintenance and replacement of photosensors. In the first phase Hamamatsu photomultipliers (PMTs) are used, with a quantum efficiency (QE) as high as 332.104 to observe also under moderate moon conditions. In the second phase it is planned to replace the PMTs in the inner part of the camera with higher QE hybrid photo detectors (HPDs). Here we present test measurements and results performed on the PMT clusters

  20. Performance Test of Alpha Spectrometry for Environmental Radioactivity Analysis

    Environmental samples are analyzed by various methods such as, ICP-MS (inductively coupled plasma mass spectrometry), AMS (accelerator mass spectrometry) TIMS (thermal ionization mass spectrometry), HRGS (high resolution gamma spectrometry) and alpha /beta particle analysis. In this study, we will described the result of performance test using alpha spectrometry for analyzing environmental samples. Measurement data of the U activity using SRM based on extraction chromatography with UTEVA resin. It should be effective way to separate of uranium isotope for the measurement of alpha spectrometry. But, the result of this measurement data is higher than another recovery data. Also concentration of U data is lack of consistency. We leave out of consideration many effect of factors about influence in the experiment process. In the future work, we will try to reduce the step of experiment process and reflect the uncertainty factors

  1. Performance Test of Alpha Spectrometry for Environmental Radioactivity Analysis

    Choi, Jung Youn; Yoon, Jong-Ho; Han, Ki-Tek; Ahn, Gil Hoon [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2015-05-15

    Environmental samples are analyzed by various methods such as, ICP-MS (inductively coupled plasma mass spectrometry), AMS (accelerator mass spectrometry) TIMS (thermal ionization mass spectrometry), HRGS (high resolution gamma spectrometry) and alpha /beta particle analysis. In this study, we will described the result of performance test using alpha spectrometry for analyzing environmental samples. Measurement data of the U activity using SRM based on extraction chromatography with UTEVA resin. It should be effective way to separate of uranium isotope for the measurement of alpha spectrometry. But, the result of this measurement data is higher than another recovery data. Also concentration of U data is lack of consistency. We leave out of consideration many effect of factors about influence in the experiment process. In the future work, we will try to reduce the step of experiment process and reflect the uncertainty factors.

  2. Memory complaints and test performance in healthy elderly persons

    Mattos Paulo

    2003-01-01

    Full Text Available In order to compare the use of a structured self-report questionnaire with direct questioning about memory problems, 71 healthy and independent aged individuals (63 women from the community without risk factors for cognitive deficits were objectively asked about subjective memory complaints (SMC, given the Memory Complaint Questionnaire (MAC-Q and then submitted to the Rey Auditory Verbal Learning Test (RAVLT. SMC positively correlated with higher scores on MAC-Q, although a significant percentage of the sample had SMC and lower scores on MAC-Q and also no SMC and higher scores on MAC-Q. Performance on RAVLT was significantly worse (p<0.05 for the group presenting SMC but not for the group with higher scores on the MAC-Q. We conclude that direct questioning maybe more clinically significant than a self report questionnaire, at least for elderly persons from the community without risk factors for cognitive decline or depression.

  3. Experimental investigation and performance test of heavy duty torque converter

    The present study is an investigation on the characteristics of heavy load toque converter by experimental process. To get the dynamic performance, the dynamometer was used with a parameters of speed, torque, oil pressure and oil flux, etc. The torque converter was tested for various input speed, output oil pressure and input oil flow rate. All experiments were investigated in case that the speed ratio is increased. The torque ratio and capacity factor was in inverse proportion to speed. Engine revolution had a more effects at region of low speed ratio. But, the opposite phenomena were represented increase of efficiency. In result of this experiments, the characteristics of torque converter were not influenced by oil pressure and oil flux

  4. Confirmation test on confinement performance of improved glove box

    Glove boxes are used at nuclear facilities to confine radioactive materials by ensuring a high level of airtightness and negative internal pressure. The allowable rate of air leakage is 0.1% vol/hr or less at the pre-service inspection. The negative pressure value is normally maintained at about -30 mm H2 O. Structural strength and confinement reliability of glove boxes during earthquake are major concerns, and most important glove boxes are designed to withstand seismic class A events is Japan. This paper describes vibration tests done to confirm that improve large-sized glove boxes maintain their confinement performance and structural strength even during earthquake and that the design analysis methods used are appropriate. (author). 1 ref., 6 figs., 3 tabs

  5. Absolute Navigation Performance of the Orion Exploration Fight Test 1

    Zanetti, Renato; Holt, Greg; Gay, Robert; D'Souza, Christopher; Sud, Jastesh

    2016-01-01

    Launched in December 2014 atop a Delta IV Heavy from the Kennedy Space Center, the Orion vehicle's Exploration Flight Test-1 (EFT-1) successfully completed the objective to stress the system by placing the un-crewed vehicle on a high-energy parabolic trajectory replicating conditions similar to those that would be experienced when returning from an asteroid or a lunar mission. Unique challenges associated with designing the navigation system for EFT-1 are presented with an emphasis on how redundancy and robustness influenced the architecture. Two Inertial Measurement Units (IMUs), one GPS receiver and three barometric altimeters (BALTs) comprise the navigation sensor suite. The sensor data is multiplexed using conventional integration techniques and the state estimate is refined by the GPS pseudorange and deltarange measurements in an Extended Kalman Filter (EKF) that employs UDU factorization. The performance of the navigation system during flight is presented to substantiate the design.

  6. Operation and performance of the NESTOR test detector

    Aggouras, G. [NESTOR Institute for Deep Sea Research, Technology and Neutrino Astroparticle Physics, Pylos (Greece); Anassontzis, E.G. [University of Athens, Faculty of Physics, Nuclear and Particle Physics Department, Panepistimioupolis, 15771 Ilisia, Athens (Greece)]. E-mail: eanason@phys.uoa.gr; Ball, A.E. [CERN, European Organization for Nuclear Research, Geneva (Switzerland)] (and others)

    2005-11-01

    NESTOR is a deep-sea neutrino telescope that is under construction in the Ionian Sea off the coast of Greece at a depth of about 4000 m. This paper briefly reviews the detector structure and deployment techniques before describing in detail the calibration and engineering run of a test detector carried out in 2003. The detector was operated for more than 1 month and data was continuously transmitted to shore via an electro-optical cable laid on the sea floor. The performance of the detector is discussed and analysis of the data obtained shows that the measured cosmic ray muon flux is in good agreement with previous measurements and with phenomenological cosmic ray models.

  7. Operation and performance of the NESTOR test detector

    NESTOR is a deep-sea neutrino telescope that is under construction in the Ionian Sea off the coast of Greece at a depth of about 4000 m. This paper briefly reviews the detector structure and deployment techniques before describing in detail the calibration and engineering run of a test detector carried out in 2003. The detector was operated for more than 1 month and data was continuously transmitted to shore via an electro-optical cable laid on the sea floor. The performance of the detector is discussed and analysis of the data obtained shows that the measured cosmic ray muon flux is in good agreement with previous measurements and with phenomenological cosmic ray models

  8. LARGO hot water system thermal performance test report

    1978-01-01

    The thermal performance tests and results on the LARGO Solar Hot Water System under natural environmental conditions is presented. Some objectives of these evaluations are to determine the amount of energy collected, the amount of energy delivered to the household as contributed by solar power supplied to operate the system and auxiliary power to maintain tank temperature at proper level, overall system efficiency and to determine temperature distribution within the tank. The Solar Hot Water system is termed a Dump-type because of the draining system for freeze protection. The solar collector is a single glazed flat plate. An 82-gallon domestic water heater is provided as the energy storage vessel. Water is circulated through the collector and water heater by a 5.3 GPM capacity pump, and control of the pump motor is achieved by a differential temperature controller.

  9. DEVELOPMENT OF AN ANTIFOAM TRACKING SYSTEM AS AN OPTION TO SUPPORT THE MELTER OFF-GAS FLAMMABILITY CONTROL STRATEGY AT THE DWPF

    Edwards, T.; Lambert, D.

    2014-08-27

    The Savannah River National Laboratory (SRNL) has been working with the Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) in the development and implementation of an additional strategy for confidently satisfying the flammability controls for DWPF’s melter operation. An initial strategy for implementing the operational constraints associated with flammability control in DWPF was based upon an analytically determined carbon concentration from antifoam. Due to the conservative error structure associated with the analytical approach, its implementation has significantly reduced the operating window for processing and has led to recurrent Slurry Mix Evaporator (SME) and Melter Feed Tank (MFT) remediation. To address the adverse operating impact of the current implementation strategy, SRR issued a Technical Task Request (TTR) to SRNL requesting the development and documentation of an alternate strategy for evaluating the carbon contribution from antifoam. The proposed strategy presented in this report was developed under the guidance of a Task Technical and Quality Assurance Plan (TTQAP) and involves calculating the carbon concentration from antifoam based upon the actual mass of antifoam added to the process assuming 100% retention. The mass of antifoam in the Additive Mix Feed Tank (AMFT), in the Sludge Receipt and Adjustment Tank (SRAT), and in the SME is tracked by mass balance as part of this strategy. As these quantities are monitored, the random and bias uncertainties affecting their values are also maintained and accounted for. This report documents: 1) the development of an alternate implementation strategy and associated equations describing the carbon concentration from antifoam in each SME batch derived from the actual amount of antifoam introduced into the AMFT, SRAT, and SME during the processing of the batch. 2) the equations and error structure for incorporating the proposed strategy into melter off-gas flammability assessments

  10. 42 CFR 493.25 - Laboratories performing tests of high complexity.

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Laboratories performing tests of high complexity....25 Laboratories performing tests of high complexity. (a) A laboratory must obtain a certificate for tests of high complexity if it performs one or more tests that meet the criteria for tests of...

  11. Improving Test-Taking Performance of Secondary At-Risk Youth and Students with Disabilities

    Banks, Tachelle; Eaton, India

    2014-01-01

    Preparing at-risk youth and students with mild disabilities for state and district tests is important for improving their test performance, and basic instruction in test preparation can significantly improve student test performance. The article defines noncognitive variables that adversely affect test-taker performance. The article also describes…

  12. Nitrification inhibition by hexavalent chromium Cr(VI)--Microbial ecology, gene expression and off-gas emissions.

    Kim, Young Mo; Park, Hongkeun; Chandran, Kartik

    2016-04-01

    The goal of this study was to investigate the responses in the physiology, microbial ecology and gene expression of nitrifying bacteria to imposition of and recovery from Cr(VI) loading in a lab-scale nitrification bioreactor. Exposure to Cr(VI) in the reactor strongly inhibited nitrification performance resulting in a parallel decrease in nitrate production and ammonia consumption. Cr(VI) exposure also led to an overall decrease in total bacterial concentrations in the reactor. However, the fraction of ammonia oxidizing bacteria (AOB) decreased to a greater extent than the fraction of nitrite oxidizing bacteria (NOB). In terms of functional gene expression, a rapid decrease in the transcript concentrations of amoA gene coding for ammonia oxidation in AOB was observed in response to the Cr(VI) shock. In contrast, transcript concentrations of the nxrA gene coding for nitrite oxidation in NOB were relatively unchanged compared to Cr(VI) pre-exposure levels. Therefore, Cr(VI) exposure selectively and directly inhibited activity of AOB, which indirectly resulted in substrate (nitrite) limitation to NOB. Significantly, trends in amoA expression preceded performance trends both during imposition of and recovery from inhibition. During recovery from the Cr(VI) shock, the high ammonia concentrations in the bioreactor resulted in an irreversible shift towards AOB populations, which are expected to be more competitive in high ammonia environments. An inadvertent impact during recovery was increased emission of nitrous oxide (N2O) and nitric oxide (NO), consistent with recent findings linking AOB activity and the production of these gases. Therefore, Cr(VI) exposure elicited multiple responses on the microbial ecology, gene expression and both aqueous and gaseous nitrogenous conversion in a nitrification process. A complementary interrogation of these multiple responses facilitated an understanding of both direct and indirect inhibitory impacts on nitrification. PMID:26874778

  13. Testing and Performance of UFFO Burst Alert & Trigger Telescope

    Ripa, J; Lee, J; Park, I H; Kim, J E; Lim, H; Jeong, S; Castro-Tirado, A J; Connell, P H; Eyles, C; Reglero, V; Rodrigo, J M; Bogomolov, V; Panasyuk, M I; Petrov, V; Svertilov, S; Yashin, I; Brandt, S; Budtz-Jorgensen, C; Chang, Y -Y; Chen, P; Huang, M A; Liu, T -C; Nam, J W; Wang, M -Z; Chen, C R; Choi, H S; Kim, S -W; Min, K W

    2015-01-01

    The Ultra-Fast Flash Observatory pathfinder (UFFO-p) is a new space mission dedicated to detect Gamma-Ray Bursts (GRBs) and rapidly follow their afterglows in order to provide early optical/ultraviolet measurements. A GRB location is determined in a few seconds by the UFFO Burst Alert & Trigger telescope (UBAT) employing the coded mask imaging technique and the detector combination of Yttrium Oxyorthosilicate (YSO) scintillating crystals and multi-anode photomultiplier tubes. The results of the laboratory tests of UBAT's functionality and performance are described in this article. The detector setting, the pixel-to-pixel response to X-rays of different energies, the imaging capability for <50 keV X-rays, the localization accuracy measurements, and the combined test with the Block for X-ray and Gamma-Radiation Detection (BDRG) scintillator detector to check the efficiency of UBAT are all described. The UBAT instrument has been assembled and integrated with other equipment on UFFO-p and should be launche...

  14. Calibration and performance test results of uranium lung counter

    A uranium lung counter specially designed for assessment of internal contamination has recently been added to the Health Physics Department of Korea Atomic Energy Research Institute. The counting chamber is constructed of 10 cm low background steel plate for walls, floor and ceiling. The interior is covered with stainless steel liner. The internal dimensions of the counting chamber are 213 cm W x 86 cm D x 137 cm H. The detection system consists of four LEGe detection, and each detector equipped with 0.5 mm Be window has active area of 20 cm2 and thickness of 20 mm. The counter was calibrated by means of the LLNL phantom with lung source sets containing 241Am and 152Eu. Values of MDA based on a 30 minute count of non-contaminated person with 2.2 cm chest wall thickness at 95% confidence level were found to be 5 Bq for 185.7 keV from 235U, and 69 Bq for 63.3 keV form 234Th and 97 Bq for 92.8 keV from 234Th, respectively. In addition to calibration, test for evaluating the performance of the counter in terms of bias and precision was also performed with the LLNL phantom and lung source sets containing 235U and 234Th. The results were within the acceptable limits. (author). 6 refs., 2 figs., 4 tabs

  15. How to Perform a Powder in Flexible Die Test

    Hancock, Mike; Nielsen, Morten Storgaard

    The “Powder in Flexible Die”-test, or PFD-test for short, proposes a new way of testing plastic properties of granular materials. The principal idea for the test originates from Dr. J.I Bech. The test has since been developed further and refined at IPL-DTU. The present work describes the equipment...

  16. An Enhancement of Visual Test Performance for Nuclear Fuel Assembly

    In the overhaul period of the nuclear power plant, integrity of the neutron-irradiated fuel assembly is evaluated. Nuclear regulations require that nuclear power plants meet the design, operation, and inspection requirements of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (B and PV). Section XI of the ASME B and PV Code provides the specific requirements for inspecting the systems, structures, and components; Section V of the ASME Code provides requirements for inspection methods, including volumetric (e.g., ultrasonic testing), surface (e.g., eddy current testing), and visual testing (VT). Visual testing of neutron irradiated fuel assembly is conducted generally for a variety of purposes, for example to detect discontinuities and imperfections on the surface of fuel rods, to detect evidence of leakage from end-cap welds, and to determine the general mechanical and structural condition of one. VT is performed remotely using video camera. As the neutron-irradiated fuel assembly is a high dose-rate gamma-ray source, approximately a few kGy, radiation hardened underwater camera is used in the VT of the fuel assembly. Utilities today follow the EPRI guidelines for VT-1 tests on nuclear components (BWR Vessel and Internals Project-3 1995). The VT-1 guidelines specify which areas around a weld should be examined, how to measure the sizes of indications found, and how to test the resolving power of the visual equipment used for the test. The EPRI guidelines use two 12μm (0.0005-in.) wires or notches as a resolution calibration standard. According to the EPRI guidelines (BWRVIP-03 1995), the camera systems employed were marginally able to detect the 0.0005-inch (12-μm) diameter wire on a steel background. In the some future, it is required that the VT of nuclear fuel assembly follows the EPRI VT-1 guideline. In order to meet the VT-1 guideline, any system used in VT (ranging from the naked eye to a digital closed-circuit TV system

  17. An Enhancement of Visual Test Performance for Nuclear Fuel Assembly

    Cho, Jai Wan; Choi, Young Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Shin, Jung Cheol [Korea Nuclear Fuel, Daejeon (Korea, Republic of)

    2009-05-15

    In the overhaul period of the nuclear power plant, integrity of the neutron-irradiated fuel assembly is evaluated. Nuclear regulations require that nuclear power plants meet the design, operation, and inspection requirements of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (B and PV). Section XI of the ASME B and PV Code provides the specific requirements for inspecting the systems, structures, and components; Section V of the ASME Code provides requirements for inspection methods, including volumetric (e.g., ultrasonic testing), surface (e.g., eddy current testing), and visual testing (VT). Visual testing of neutron irradiated fuel assembly is conducted generally for a variety of purposes, for example to detect discontinuities and imperfections on the surface of fuel rods, to detect evidence of leakage from end-cap welds, and to determine the general mechanical and structural condition of one. VT is performed remotely using video camera. As the neutron-irradiated fuel assembly is a high dose-rate gamma-ray source, approximately a few kGy, radiation hardened underwater camera is used in the VT of the fuel assembly. Utilities today follow the EPRI guidelines for VT-1 tests on nuclear components (BWR Vessel and Internals Project-3 1995). The VT-1 guidelines specify which areas around a weld should be examined, how to measure the sizes of indications found, and how to test the resolving power of the visual equipment used for the test. The EPRI guidelines use two 12{mu}m (0.0005-in.) wires or notches as a resolution calibration standard. According to the EPRI guidelines (BWRVIP-03 1995), the camera systems employed were marginally able to detect the 0.0005-inch (12-{mu}m) diameter wire on a steel background. In the some future, it is required that the VT of nuclear fuel assembly follows the EPRI VT-1 guideline. In order to meet the VT-1 guideline, any system used in VT (ranging from the naked eye to a digital closed-circuit TV

  18. Development of testing techniques for mine fan performance

    WU Zheng-yan; JIANG Shu-guang; PENG Dan-ren

    2006-01-01

    Three progressive stages of testing techniques are elaborated, which are entirely manual operating, taking separate instruments testing and computer program controlling. The testing method and principle are detailed based on the testing process for meteorological parameters, air pressure, air quality and rotating velocity. And every testing technique is analyzed. Finally, the technique outlook is viewed. All this plays a leading role in development of the testing techniques.

  19. Testing the performance of technical trading rules in the Chinese markets based on superior predictive test

    Wang, Shan; Jiang, Zhi-Qiang; Li, Sai-Ping; Zhou, Wei-Xing

    2015-12-01

    Technical trading rules have a long history of being used by practitioners in financial markets. The profitable ability and efficiency of technical trading rules are yet controversial. In this paper, we test the performance of more than seven thousand traditional technical trading rules on the Shanghai Securities Composite Index (SSCI) from May 21, 1992 through June 30, 2013 and China Securities Index 300 (CSI 300) from April 8, 2005 through June 30, 2013 to check whether an effective trading strategy could be found by using the performance measurements based on the return and Sharpe ratio. To correct for the influence of the data-snooping effect, we adopt the Superior Predictive Ability test to evaluate if there exists a trading rule that can significantly outperform the benchmark. The result shows that for SSCI, technical trading rules offer significant profitability, while for CSI 300, this ability is lost. We further partition the SSCI into two sub-series and find that the efficiency of technical trading in sub-series, which have exactly the same spanning period as that of CSI 300, is severely weakened. By testing the trading rules on both indexes with a five-year moving window, we find that during the financial bubble from 2005 to 2007, the effectiveness of technical trading rules is greatly improved. This is consistent with the predictive ability of technical trading rules which appears when the market is less efficient.

  20. Phase 2 Methyl Iodide Deep-Bed Adsorption Tests

    Soelberg, Nick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Watson, Tony [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  1. A system of miniaturized stirred bioreactors for parallel continuous cultivation of yeast with online measurement of dissolved oxygen and off-gas.

    Klein, Tobias; Schneider, Konstantin; Heinzle, Elmar

    2013-02-01

    Chemostat cultivation is a powerful tool for physiological studies of microorganisms. We report the construction and application of a set of eight parallel small-scale bioreactors with a working volume of 10 mL for continuous cultivation. Hungate tubes were used as culture vessels connected to multichannel-peristaltic pumps for feeding fresh media and removal of culture broth and off-gas. Water saturated air is sucked into the bioreactors by applying negative pressure, and small stirrer bars inside the culture vessels allow sufficient mixing and oxygen transfer. Optical sensors are used for non-invasive online measurement of dissolved oxygen, which proved to be a powerful indicator of the physiological state of the cultures, particularly of steady-state conditions. Analysis of culture exhaust-gas by means of mass spectrometry enables balancing of carbon. The capacity of the developed small-scale bioreactor system was validated using the fission yeast Schizosaccharomyces pombe, focusing on the metabolic shift from respiratory to respiro-fermentative metabolism, as well as studies on consumption of different substrates such as glucose, fructose, and gluconate. In all cases, an almost completely closed carbon balance was obtained proving the reliability of the experimental setup. PMID:22887039

  2. Removal of radon-220 from HTGR fuel reprocessing and refabrication off-gas streams by adsorption (based on a literature survey)

    Literature theory and data considered relevant to the removal of Rn-220 from HTGR fuel reprocessing and refabrication off-gas streams by adsorption are presented. The data include equilibrium adsorption coefficients for radon on activated carbon (charcoal) and silica gel in the presence of air and other gases, and for radon on molecular sieve Type 5A in the presence of air. Also included are a few dynamic adsorption data (adsorption coefficients and values for the number of theoretical plates per foot) for radon on charcoal, with air as the carrier gas. These various data, which were obtained mainly at or near 250C, are actually for Rn-222; however, they should also be applicable to Rn-220, provided the conditions are the same. Based on the available information, the radon adsorption coefficients decrease in the expected order: charcoal, molecular sieve Type 5A, and silica gel. Thus, charcoal should be the most effective of these adsorbents for Rn-220 removal; however, its use for this application cannot be recommended until the associated fire and explosion hazards, particularly those with regard to interaction with ozone, are resolved. Sorbent poisoning and particle penetration due to α-recoil are briefly treated. Adsorber design is discussed. Existing information appears adequate for sizing, albeit crudely, the sorbent bed for A Rn-220-charcoal-air (1-atm, less than 10 percent relative humidity) system, and a suggested approach for doing this is outlined. (U.S.)

  3. Static and dynamic performance tests of nuclear powered ship Mutsu reactor (report on nuclear ship Mutsu power-up tests)

    The power-up tests of the Mutsu reactor were performed from March 29th 1990 to December 14th. The tests were divided into six phases: The tests Phase 0 and Phase 1 were done in the state that the ship was moored at the quay of Sekinehama port in March and April; The tests Phase 2, Phase 3, Phase 4, and Phase 5 were done on the Pacific Ocean from July to December. Present report describes the test results on the static and dynamic plant performance. On static plant performance tests, there are 13 test items including measurements of primary system heat balance at low and high power levels, a virgin run of feed water pump with SG steam, a change-over test of steam supply of auxiliary boiler to SG. On the dynamic plant performance, there are 11 test items including a test of reactor power auto-control system, a test of main feed water auto-control system, a test of small load variation, a load increasing test, a turbine trip test, tests of ahead and astern maneuvering, a test of single loop operation, and a reactor scram test. The reactor power for each item's test was increased step by step from zero power to the goal of rated power of 100 %, 36 MWt. In order to confirm proper reactor system performance, criteria were laid down for the static and dynamic tests: for example, (1) reactor scram shall not occur, (2) pressurizer relief valve and steam generator safety valve shall not work, and (3) after the transients reactor systems shall become the steady state without manual adjustment of the reactor control system. The test results satisfied these criteria and some of test data showed that reactor had much more margin in any performance for design. It is verified, therefore, that the Mutsu reactor systems have adequate performances as a marine reactor and that one is capable to respond smoothly and safely to the load of ship's demand. (author)

  4. Performance Test of a Magnetic Change Detection Sensorin a Test Field

    The fast development of technologies regarding detection sensors and access control systems allows the equipment designed by using those technologies to account for a greater part in facilities, physical protection system than ever before. The popular area for the equipment is an exterior intrusion detection system. The selection of intrusion detection equipment involves identifying the equipment and methods of installation that best meet the overall system objectives. The system objectives, including the purpose of the intrusion detection equipment and the types of assumed threats, should indicate the desired requirements of the exterior intrusion detection system in three primary areas: · Probability of detection of the intruder · Nuisance alarm rate and causes of the nuisance alarms · Vulnerability of the equipment to defeat These three areas are intimately interrelated with the characteristics of the particular equipment, the methods of installation and adjustment, the manner in which the equipment is interconnected, and the environment to which the equipment is exposed. While there are twenty nuclear power plants operating with various types of detection equipment deployed in Korea as of now, few studies have been conducted as to actual performance of deployed equipment and guidelines in both installing and operating those equipment. In order to tackle this lack of studies, KINAC established the test field and conducted some field tests on several sensors. This paper aims at describing the procedures and results of the tests on a magnetic change detection sensor (herein called the 'MCDS') and sharing experiences earned through the actual test

  5. The effects of gamelike features and test location on cognitive test performance and participant enjoyment

    Skinner, Andy; Woods, Andy T.; Lawrence, Natalia S.; Munafò, Marcus

    2016-01-01

    Computerised cognitive assessments are a vital tool in the behavioural sciences, but participants often view them as effortful and unengaging. One potential solution is to add gamelike elements to these tasks in order to make them more intrinsically enjoyable, and some researchers have posited that a more engaging task might produce higher quality data. This assumption, however, remains largely untested. We investigated the effects of gamelike features and test location on the data and enjoyment ratings from a simple cognitive task. We tested three gamified variants of the Go-No-Go task, delivered both in the laboratory and online. In the first version of the task participants were rewarded with points for performing optimally. The second version of the task was framed as a cowboy shootout. The third version was a standard Go-No-Go task, used as a control condition. We compared reaction time, accuracy and subjective measures of enjoyment and engagement between task variants and study location. We found points to be a highly suitable game mechanic for gamified cognitive testing because they did not disrupt the validity of the data collected but increased participant enjoyment. However, we found no evidence that gamelike features could increase engagement to the point where participant performance improved. We also found that while participants enjoyed the cowboy themed task, the difficulty of categorising the gamelike stimuli adversely affected participant performance, increasing No-Go error rates by 28% compared to the non-game control. Responses collected online vs. in the laboratory had slightly longer reaction times but were otherwise very similar, supporting other findings that online crowdsourcing is an acceptable method of data collection for this type of research. PMID:27441120

  6. Regenerative Life Support Systems (RLSS) test bed performance - Characterization of plant performance in a controlled atmosphere

    Edeen, Marybeth; Henninger, Donald

    1991-01-01

    By growing higher plants for food, lunar and Martian manned habitats will not only reduce resupply requirements but obtain CO2 removal and both oxygen-production and water-reclamation requirements. Plants have been grown in the RLSS at NASA-Johnson in order to quantitatively evaluate plant CO2 accumulation, O2 generation, evapotranspiration, trace-contaminant generation, and biomass productivity. Attention is presently given to test conditions and anomalies in these RLSS trials; areas where performance must be improved have been identified.

  7. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    Soelberg, Nicholas Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States); Watson, Tony Leroy [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-30

    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO3 and increased NO2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reduced silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO2, very low H2O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  8. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO3 and increased NO2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reduced silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO2, very low H2O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  9. System design description for the whole element furnace testing system

    This document provides a detailed description of the Hanford Spent Nuclear Fuel (SNF) Whole Element Furnace Testing System located in the Postirradiation Testing Laboratory G-Cell (327 Building). Equipment specifications, system schematics, general operating modes, maintenance and calibration requirements, and other supporting information are provided in this document. This system was developed for performing cold vacuum drying and hot vacuum drying testing of whole N-Reactor fuel elements, which were sampled from the 105-K East and K West Basins. The proposed drying processes are intended to allow dry storage of the SNF for long periods of time. The furnace testing system is used to evaluate these processes by simulating drying sequences with a single fuel element and measuring key system parameters such as internal pressures, temperatures, moisture levels, and off-gas composition

  10. Cooling performance test of the superconducting fault current limiter

    Yeom, H.; Hong, Y. J.; Ko, J.; In, S.; Kim, H. B.; Park, S. J. [Korea Institute ofMachinery and Materials, Daejeon (Korea, Republic of); Kim, H.; Kim, H. R. [Korea Electric Power Corporation Research Institute, Daejeon (Korea, Republic of)

    2014-12-15

    The superconducting fault current limiter (SFCL) is an electrical power system device that detects the fault current automatically and limits the magnitude of the current below a certain safety level. The SFCL module does not have any electrical resistance below the critical temperature, which facilitates lossless power transmission in the electric power system. Once given the fault current, however, the superconducting conductor exhibits extremely high electrical resistance, and the magnitude of the current is accordingly limited to a low value. Therefore, SFCL should be maintained at a temperature below the critical temperature, which justifies the cryogenic cooling system as a mandatory component. This report is a study which reported on the cooling system for the 154 kV-class hybrid SFCL owned by Korea Electric Power Corporation (KEPCO). Using the cryocooler, the temperature of liquid nitrogen (LN2) was lowered to 71 K. The cryostat was pressurized to 5 bars to improve the dielectric strength of nitrogen and suppress nitrogen bubble foaming during operation of SFCL. The SFCL module was immersed in the liquid nitrogen of the cryostat to maintain the superconducting state. The performance test results of the key components such as cryocooler, LN2 circulation pump, cold box, and pressure builder are shown in this paper.

  11. Performance Test of the Remote Operation Light Ablation Decontamination System

    Laser induced ablation studies of various materials are the topics in the laser-matter interaction. By virtue of the attainable high energies, lasers are excellent tools to induce a photoelectric response from metallic substrates. Contamination control has been a major concern for the nuclear electric power industry in recent years, but despite the positive steps taken to address the issue, important safety concern still remains. Laser ablation was shown to be potentially superior to all other methods. It is known that when laser intensity is high enough, especially in the case of high power short pulse laser, laser energy absorption occurs rapidly and only in a very thin layer on the target surface. The thin layer is thus instantaneously evaporated and removed. However, investigations into the properties of laser ablation decontamination and its possible application to nuclear facilities are still only in their early stages. In this paper, we used the light ablation decontamination system operated remotely by computer. The system was designed and fabricated by KAERI. The objective of the study is to investigate the performance of the system. Especially, the result of the decontamination test was presented

  12. Performance Tests of a Plate Type Condenser for OTEC

    Nakaoka, Tsutomu; Uehara, Haruo

    The performance tests of a plate type condenser for ocean thermal energy conversion (OTEC) plants are carried out under conditions of OTEC. The total plates used in the condenser are 168 in number and the total surface area is 40.7 m2. The dimensions of plate used in this condenser are 1450 mm in length, 235 mm in width and 1.0 mm in thickness. Freon 22 is used as working fluid. The overall heat transfer coefficient is about 2500W/(m2K) at the cold water velocity of 1 m/s and the vapor inlet temperature of 22.8~23.2°C. The empirical correlations are proporsed for predicting the average condensation heat transfer coefficients and water side heat transfer coefficients for a plate type condenser. The water side pressure drop is 1 m at the cold water velocity of 1 m/s. The water side friction factor is about 0.25 at Reynolds number of 4×103.

  13. System integration and performance of the EUV engineering test stand

    The Engineering Test Stand (ETS) is a developmental lithography tool designed to demonstrate full-field EUV imaging and provide data for commercial-tool development. In the first phase of integration, currently in progress, the ETS is configured using a developmental projection system, while fabrication of an improved projection system proceeds in parallel. The optics in the second projection system have been fabricated to tighter specifications for improved resolution and reduced flare. The projection system is a 4-mirror, 4x-reduction, ring-field design having a numeral aperture of 0.1, which supports 70 nm resolution at a k1 of 0.52. The illuminator produces 13.4 nm radiation from a laser-produced plasma, directs the radiation onto an arc-shaped field of view, and provides an effective fill factor at the pupil plane of 0.7. The ETS is designed for full-field images in step-and-scan mode using vacuum-compatible, magnetically levitated, scanning stages. This paper describes system performance observed during the first phase of integration, including static resist images of 100 nm isolated and dense features

  14. Performance Test of the Remote Operation Light Ablation Decontamination System

    Won, Hui Jun; Jung, Sun Hee; Jung, Chong Hun; Choi, Byung Seon; Lee, Kune Woo; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    Laser induced ablation studies of various materials are the topics in the laser-matter interaction. By virtue of the attainable high energies, lasers are excellent tools to induce a photoelectric response from metallic substrates. Contamination control has been a major concern for the nuclear electric power industry in recent years, but despite the positive steps taken to address the issue, important safety concern still remains. Laser ablation was shown to be potentially superior to all other methods. It is known that when laser intensity is high enough, especially in the case of high power short pulse laser, laser energy absorption occurs rapidly and only in a very thin layer on the target surface. The thin layer is thus instantaneously evaporated and removed. However, investigations into the properties of laser ablation decontamination and its possible application to nuclear facilities are still only in their early stages. In this paper, we used the light ablation decontamination system operated remotely by computer. The system was designed and fabricated by KAERI. The objective of the study is to investigate the performance of the system. Especially, the result of the decontamination test was presented

  15. Cooling performance test of the superconducting fault current limiter

    The superconducting fault current limiter (SFCL) is an electrical power system device that detects the fault current automatically and limits the magnitude of the current below a certain safety level. The SFCL module does not have any electrical resistance below the critical temperature, which facilitates lossless power transmission in the electric power system. Once given the fault current, however, the superconducting conductor exhibits extremely high electrical resistance, and the magnitude of the current is accordingly limited to a low value. Therefore, SFCL should be maintained at a temperature below the critical temperature, which justifies the cryogenic cooling system as a mandatory component. This report is a study which reported on the cooling system for the 154 kV-class hybrid SFCL owned by Korea Electric Power Corporation (KEPCO). Using the cryocooler, the temperature of liquid nitrogen (LN2) was lowered to 71 K. The cryostat was pressurized to 5 bars to improve the dielectric strength of nitrogen and suppress nitrogen bubble foaming during operation of SFCL. The SFCL module was immersed in the liquid nitrogen of the cryostat to maintain the superconducting state. The performance test results of the key components such as cryocooler, LN2 circulation pump, cold box, and pressure builder are shown in this paper.

  16. System integration and performance of the EUV engineering test stand

    Tichenor, Daniel A.; Ray-Chaudhuri, Avijit K.; Replogle, William C.; Stulen, Richard H.; Kubiak, Glenn D.; Rockett, Paul D.; Klebanoff, Leonard E.; Jefferson, Karen L.; Leung, Alvin H.; Wronosky, John B.; Hale, Layton C.; Chapman, Henry N.; Taylor, John S.; Folta, James A.; Montcalm, Claude; Soufli, Regina; Spiller, Eberhard; Blaedel, Kenneth; Sommargren, Gary E.; Sweeney, Donald W.; Naulleau, Patrick; Goldberg, Kenneth A.; Gullikson, Eric M.; Bokor, Jeffrey; Batson, Phillip J.; Attwood, David T.; Jackson, Keith H.; Hector, Scott D.; Gwyn, Charles W.; Yan, Pei-Yang; Yan, P.

    2001-03-01

    The Engineering Test Stand (ETS) is a developmental lithography tool designed to demonstrate full-field EUV imaging and provide data for commercial-tool development. In the first phase of integration, currently in progress, the ETS is configured using a developmental projection system, while fabrication of an improved projection system proceeds in parallel. The optics in the second projection system have been fabricated to tighter specifications for improved resolution and reduced flare. The projection system is a 4-mirror, 4x-reduction, ring-field design having a numeral aperture of 0.1, which supports 70 nm resolution at a k{sub 1} of 0.52. The illuminator produces 13.4 nm radiation from a laser-produced plasma, directs the radiation onto an arc-shaped field of view, and provides an effective fill factor at the pupil plane of 0.7. The ETS is designed for full-field images in step-and-scan mode using vacuum-compatible, magnetically levitated, scanning stages. This paper describes system performance observed during the first phase of integration, including static resist images of 100 nm isolated and dense features.

  17. Pad-weighing test performed with standardized bladder volume

    Lose, G; Rosenkilde, P; Gammelgaard, J;

    1988-01-01

    with a standardized bladder volume (50% of the cystometric bladder capacity). Twenty-five female patients with stress or mixed incontinence underwent two separate tests. Test-retest results were highly correlated (r = 0.97, p less than 0.001). Nonetheless, analysis of test-retest differences revealed a variation up...... to +/- 24 g between two tests. It is concluded that this setup (i.e., standardized bladder volume) of the one-hour pad-weighing test allows for a more reliable assessment of urinary incontinence for quantitative purposes.......The result of the one-hour pad-weighing test proposed by the International Continence Society has been demonstrated to depend on the urine load during the test. To increase reproducibility of the pad-weighing test by minimizing the influence of variation in urine load the test was done...

  18. Modified performance test of vented lead acid batteries for stationary applications

    The concept of a modified performance test for vented lead acid batteries in stationary applications has been developed by the IEEE Battery Working Group. The modified performance test is defined as a test in the ''as found'' condition of the battery capacity and its ability to provide a high rate, short duration load (usually the highest rate of the duty cycle) that will confirm the battery's ability to meet the critical period of the load duty cycle, in addition to determining its percentage of rated capacity. This paper will begin by reviewing performance and service test requirements and concerns associated with both types of tests. The paper will then discuss the rationale for developing a modified performance test along with the benefits that can be derived from performing a modified performance test in lieu of a capacity test and/or a service test. The paper will conclude with an example on how to apply a modified performance test and test acceptance criteria

  19. Demonstration of the iodine and NO/sub x/ removal systems in the Oak Ridge National Laboratory integrated equipment test facility

    This report summarizes the findings from three sets of experiments on iodine and NO/sub x/ removal performance using dual downdraft condensers in the dissolver off-gas line. The initial experiments were conducted in the laboratory using glassware in proof-of-principle tests. Two additional sets of condenser experiments were conducted using equipment prototyical for a 0.5-t/d plant in the Integrated Equipment Test (IET) facility at the Oak Ridge National Laboratory. This report also describes the NO/sub x/ removal performance of a packed scrubber in the IET during the dissolution of depleted uranium oxides. The overall iodine pass-through efficiency of the condensers in the IET was high as desired. Removal efficiencies ranged from only 0.35 to 6.29%, indicating that the bulk of the iodine in the off-gas will be transferred on through the condensers to the iodox process for final disposal rather than recycled to the dissolver. The optimum operating temperature for the first condenser was in the range of 50 to 700C, with the temperature of the second condenser held near 200C. The NO/sub x/ removal performance of the combined dual condensers and packed scrubber resulted in effluent off-gas stream NO/sub x/ compositions of ∼0.4 to 1.0%, which are acceptable levels for the iodox process. The NO/sub x/ removal efficiency of the condensers ranged from ∼5 to 58%, but was generally around 20%. The removal efficiency of the packed tower scrubber was observed to be in the range of 40 to 60%. The NO/sub x/ removal performance of the condensers tended to complement the performance of the scrubber in that the condenser removal afficiency was high when the scrubber efficiency was low and vice versa

  20. Off-gas processing device

    Purpose: To remove volatile ruthenium in off-gases at high efficiency. Constitution: In a pre-processing tower, off-gases are at first washed by a scrubber thereby removing most of impurity ingredients such as NOx having strong affinity with scrubbing water to increase the relative ratio of volatile ruthenium relative to the impurity ingredients in the off-gases. Then, the off-gases are once cooled to condensate to about 20 deg C by a cooler and mist components are removed by a demister and, further, heated by a heater to 70 - 80 deg C to reduce the water concentration in the off-gases to less than about 4 %. Since most of noxious materials to silica gel such NOx or water content are eliminated by way of the adsorption tower after applying such a pre-treatment, adsorption can be conducted in the adsorption tower mainly for volatile ruthenium. (Seki, T.)